Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Elliptic Indexing of Multidimensional Databases

Danko, O. and Skopal, T.

    In this work an R-tree variant, which uses minimum volume covering ellipsoids instead of usual minimum bounding rectangles, is presented. The most significant aspects, which determine R-tree index structure performance, is an amount of dead space coverage and overlaps among the covering regions. Intuitively, ellipsoid as a quadratic surface should cover data more tightly, leading to less dead space coverage and less overlaps. Based on studies of many available R-tree variants (especially SR-tree), the eR-tree (ellipsoid R-tree) with ellipsoidal regions is proposed. The focus is put on the algorithm of ellipsoids construction as it significantly affects indexing speed and querying performance. At the end, the eR-tree undergoes experiments with both synthetic and real datasets. It proves its superiority especially on clustered sparse datasets.
Cite as: Danko, O. and Skopal, T. (2009). Elliptic Indexing of Multidimensional Databases. In Proc. Twentieth Australasian Database Conference (ADC 2009), Wellington, New Zealand. CRPIT, 92. Bouguettaya, A. and Lin, X., Eds. ACS. 87-95.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007