Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Clustering and Classification of Maintenance Logs using Text Data Mining

Edwards, B., Zatorsky, M. and Nayak, R.

    Spreadsheets applications allow data to be stored with low development overheads, but also with low data quality. Reporting on data from such sources is difficult using traditional techniques. This case study uses text data mining techniques to analyse 12 years of data from dam pump station maintenance logs stored as free text in a spreadsheet application. The goal was to classify the data as scheduled maintenance or unscheduled repair jobs. Data preparation steps required to transform the data into a format appropriate for text data mining are discussed. The data is then mined by calculating term weights to which clustering techniques are applied. Clustering identified some groups that contained relatively homogeneous types of jobs. Training a classification model to learn the cluster groups allowed those jobs to be identified in unseen data. Yet clustering did not provide a clear overall distinction between scheduled and unscheduled jobs. With some manual analysis to code a target variable for a subset of the data, classification models were trained to predict the target variable based on text features. This was achieved with a moderate level of accuracy.
Cite as: Edwards, B., Zatorsky, M. and Nayak, R. (2008). Clustering and Classification of Maintenance Logs using Text Data Mining. In Proc. Seventh Australasian Data Mining Conference (AusDM 2008), Glenelg, South Australia. CRPIT, 87. Roddick, J. F., Li, J., Christen, P. and Kennedy, P. J., Eds. ACS. 193-199.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007