Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Towards Scalable Real-Time Entity Resolution using a Similarity-Aware Inverted Index Approach

Christen, P. and Gayler, R.

    Most research into entity resolution (also known as record linkage or data matching) has concentrated on the quality of the matching results. In this paper, we focus on matching time and scalability, with the aim to achieve large-scale real-time entity resolution. Traditional entity resolution techniques have assumed the matching of two static databases. In our networked and online world, however, it is becoming increasingly important for many organisations to be able to conduct entity resolution between a collection of often very large databases and a stream of query or update records. The matching should be done in (near) real-time, and be as automatic and accurate as possible, returning a ranked list of matched records for each given query record. This task therefore becomes similar to querying large document collections, as done for example by Web search engines, however based on a different type of documents: structured database records that, for example, contain personal information, such as names and addresses. In this paper, we investigate inverted indexing techniques, as commonly used in Web search engines, and employ them for real-time entity resolution. We present two variations of the traditional inverted index approach, aimed at facilitating fast approximate matching. We show encouraging initial results on large real-world data sets, with the inverted index approaches being up-to one hundred times faster than the traditionally used standard blocking approach. However, this improved matching speed currently comes at a cost, in that matching quality for larger data sets can be lower compared to when standard blocking is used, and thus more work is required.
Cite as: Christen, P. and Gayler, R. (2008). Towards Scalable Real-Time Entity Resolution using a Similarity-Aware Inverted Index Approach. In Proc. Seventh Australasian Data Mining Conference (AusDM 2008), Glenelg, South Australia. CRPIT, 87. Roddick, J. F., Li, J., Christen, P. and Kennedy, P. J., Eds. ACS. 51-60.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007