Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

A Discriminant Analysis for Undersampled Data

Robards, M., Gao, J. and Charlton, P.

    One of the inherent problems in pattern recognition is the undersampled data problem, also known as the curse of dimensionality reduction. In this paper a new algorithm called pairwise discriminant analysis (PDA) is proposed for pattern recognition. PDA, like linear discriminant analysis (LDA), performs dimensionality reduction and clustering, without suffering from undersampled data to the same extent as LDA.
Cite as: Robards, M., Gao, J. and Charlton, P. (2007). A Discriminant Analysis for Undersampled Data. In Proc. 2nd International Workshop on Integrating Artificial Intelligence and Data Mining (AIDM 2007), Gold Coast, Queensland, Australia. CRPIT, 84. Ong, K.-L., Li, W. and Gao, J., Eds. ACS. 11-18.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007