Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Verifying Michael and Scott's Lock-Free Queue Algorithm using Trace Reduction

Groves, L.

    Lock-free algorithms have been developed to avoid various problems associated with using locks to control access to shared data structures. These algorithms are typically more intricate than lock-based algorithms, as they allow more complex interactions between processes, and many published algorithms have turned out to contain errors. There is thus a pressing need for practical techniques for verifying lock-free algorithms and programs that use them. In this paper we show how Michael and Scott's well known lock-free queue algorithm can be verified using a trace reduction method, based on Lipton's reduction method. Michael and Scott's queue is an interesting case study because, although the basic idea is easy to understand, the actual algorithm is quite subtle, and it demonstrates several way in which the basic reduction method needs to be extended.
Cite as: Groves, L. (2008). Verifying Michael and Scott's Lock-Free Queue Algorithm using Trace Reduction. In Proc. Fourteenth Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, NSW, Australia. CRPIT, 77. Harland, J. and Manyem, P., Eds. ACS. 133-142.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007