Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

An Investigation of the State Formation and Transition Limitations for Prediction Problems in Recurrent Neural Networks

Kennedy, A. and MacNish, C.

    Recurrent neural networks are able to store information about previous as well as current inputs. This 'memory' allows them to solve temporal problems such as language recognition and sequence prediction, and provide memory elements for larger cognitive networks. It is generally understood that there is an (increasing) relationship between the number of nodes (and connections) in a network, the capabilities of the network, and the amount of training required. However the specifics of this relationship are less well understood. In particular, given that the state of a recurrent network is encoded as a real-valued vector of activation levels, even for small networks there are infinitely many states to choose from. What then determines, or limits, the capabilities of the network? In this paper we use dynamical systems techniques to examine this question in regard to temporal lag. We show that for simple delay problems that the network is unable to solve, the system is able to learn sufficient state representations, but appears to be unable to create transitions that allow it to access those states in the correct order (or equivalently, is unable to arrange its states to suit the transitions that it can support).
Cite as: Kennedy, A. and MacNish, C. (2008). An Investigation of the State Formation and Transition Limitations for Prediction Problems in Recurrent Neural Networks. In Proc. Thirty-First Australasian Computer Science Conference (ACSC 2008), Wollongong, NSW, Australia. CRPIT, 74. Dobbie, G. and Mans, B., Eds. ACS. 137-145.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007