Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Learning Causal Networks from Microarray Data

Ahsan, N., Bain, M., Potter, J., Gaeta, B., Temple, M. and Dawes, I.

    We report on a new approach to modelling and identifying dependencies within a gene regulatory cycle. In particular, we aim to learn the structure of a causal network from gene expression microarray data. We model causality in two ways: by using conditional dependence assumptions to model the independence of different causes on a common effect; and by relying on time delays between cause and effect. Networks therefore incorporate both probabilistic and temporal aspects of regulation. We are thus able to deal with cyclic dependencies amongst genes, which is not possible in standard Bayesian networks. However, our model is kept deliberately simple to make it amenable for learning from microarray data, which typically contains a small number of samples for a large number of genes. We have developed a learning algorithm for this model which was implemented and experimentally validated against simulated data and on yeast cell cycle microarray time series data sets.
Cite as: Ahsan, N., Bain, M., Potter, J., Gaeta, B., Temple, M. and Dawes, I. (2006). Learning Causal Networks from Microarray Data. In Proc. 2006 Workshop on Intelligent Systems for Bioinformatics (WISB 2006), Hobart, Australia. CRPIT, 73. Boden, M. and Bailey, T. L., Eds. ACS. 3-8.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007