Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Quantum List Decoding from Quantumly Corrupted Codewords for Classical Block Codes of Polynomially Small Rate

Yamakami, T.

    Our task of quantum list decoding for a classical block code is to recover from a given quantumly corrupted codeword a short list containing all messages whose codewords have high 'presence' in this quantumly corrupted codeword. All known families of efficiently quantum list decodable codes, nonetheless, have exponentially-small message rate. We show that certain generalized Reed-Solomon codes concatenated with Hadamard codes of polynomially-small rate and constant codeword alphabet size have efficient quantum list decoding algorithms, provided that target codewords should have relatively high presence in a given quantumly corrupted codeword.
Cite as: Yamakami, T. (2007). Quantum List Decoding from Quantumly Corrupted Codewords for Classical Block Codes of Polynomially Small Rate. In Proc. Thirteenth Computing: The Australasian Theory Symposium (CATS2007), Ballarat, Australia. CRPIT, 65. Gudmundsson, J. and Jay, B., Eds. ACS. 153-162.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007