Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Pruning SIFT for Scalable Near-duplicate Image Matching

Foo, J.J. and Sinha, R.

    The detection of image versions from large image col- lections is a formidable task as two images are rarely identical. Geometric variations such as cropping, rotation, and slight photometric alteration are unsuitable for content-based retrieval techniques, whereas digital watermarking techniques have limited application for practical retrieval. Recently, the application of Scale Invariant Feature Transform (SIFT) interest points to this domain have shown high effectiveness, but scalability remains a problem due to the large number of features generated for each image. In this work, we show that for this application domain, the SIFT interest points can be dramatically pruned to effect large reductions in both memory requirements and query run-time, with almost negligible loss in ef- fectiveness. We demonstrate that, unlike using the original SIFT features, the pruned features scales bet- ter for collections containing hundreds of thousands of images
Cite as: Foo, J.J. and Sinha, R. (2007). Pruning SIFT for Scalable Near-duplicate Image Matching. In Proc. Eighteenth Australasian Database Conference (ADC 2007), Ballarat, Australia. CRPIT, 63. Bailey, J. and Fekete, A., Eds. ACS. 63-71.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007