Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Enhancing the Visualization Process with Principal Component Analysis to Support the Exploration of Trends

Mueller, W., Nocke, T. and Schumann, H.

    This paper describes the integration of the Principal Component Analysis into the Visualization Process. Although, the combination of Principal Component Analysis (PCA) and visual methods is a common approach to the analysis of high-dimensional datasets, it is mostly limited to a pure preprocessing step for dimension reduction. In this paper we will discuss, how PCA results can be used to control all steps of the visualization pipeline to generate more effective visual representations, and thus, a higher degree of understanding of the PCA values as well as of original data.
Cite as: Mueller, W., Nocke, T. and Schumann, H. (2006). Enhancing the Visualization Process with Principal Component Analysis to Support the Exploration of Trends. In Proc. Asia Pacific Symposium on Information Visualisation (APVIS2006), Tokyo, Japan. CRPIT, 60. Misue, K., Sugiyama, K. and Tanaka, J., Eds. ACS. 121-130.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007