Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Face Refinement through a Gradient Descent Alignment Approach

Lucey, S. and Matthews, I.

    The accurate alignment of faces is essential to almost all automatic tasks involving face analysis. A common paradigm employed for this task is to exhaustively evaluate a face template/classifier across a discrete set of alignments (typically translation and scale). This strategy, provided the template/classifier has been trained appropriately, can give one a reliable but 'rough' estimate of where the face is actually located. However, this estimate is often too poor to be of use in most face analysis applications (e.g. face recognition, audio-visual speech recognition, expression recognition, etc.). In this paper we present an approach that is able to refine this initial rough alignment using a gradient descent approach, so as to gain adequate alignment. Specifically, we propose an efficient algorithm which we refer to as the sequential algorithm, which is able to obtain a good balance between alignment accuracy and computational efficiency. Experiments are conducted on frontal and non-frontal faces.
Cite as: Lucey, S. and Matthews, I. (2006). Face Refinement through a Gradient Descent Alignment Approach. In Proc. HCSNet Workshop on the Use of Vision in Human-Computer Interaction, (VisHCI 2006), Canberra, Australia. CRPIT, 56. Goecke, R., Robles-Kelly, A. and Caelli, T., Eds. ACS. 43-49.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007