Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

A Further Study in the Data Partitioning Approach for Frequent Itemsets Mining

Nguyen, S.N. and Orlowska, M.E.

    Frequent itemsets mining is well explored for various data types, and its computational complexity is well understood. Based on our previous work by Nguyen and Orlowska (2005), this paper shows the extension of the data pre-processing approach to further improve the performance of frequent itemsets computation. The methods focus on potential reduction of the size of the input data required for deployment of the partitioning based algorithms. We have made a series of the data pre-processing methods such that the final step of the Partition algorithm, where a combination of all local candidate sets must be processed, is executed on substantially smaller input data. Moreover, we have made a comparison among these methods based on the experiments with particular data sets.
Cite as: Nguyen, S.N. and Orlowska, M.E. (2006). A Further Study in the Data Partitioning Approach for Frequent Itemsets Mining. In Proc. Seventeenth Australasian Database Conference (ADC2006), Hobart, Australia. CRPIT, 49. Dobbie, G. and Bailey, J., Eds. ACS. 31-37.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007