Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Approximate Data Mining in Very Large Relational Data

Bezdek, J.C., Hathaway, R.J., Leckie, C. and Kotagiri, R.

    In this paper we discuss eNERF, an extended version of non-Euclidean relational fuzzy c-means (NERFCM) for approximate clustering in very large (unloadable) relational data. The eNERF procedure consists of four parts: (i) selection of distinguished features by algorithm DF to be monitored during progressive sampling; (ii) progressively sampling a square N� N relation matrix RN by algorithm PS until an n � n sample relation Rn passes a goodness of fit test; (iii) Clustering Rn using algorithm LNERF; and (iv), extension of the LNERF results to RN-Rn by algorithm xNERF, which uses an iterative procedure based on LNERF to compute fuzzy membership values for all of the objects remaining after LNERF clustering of the accepted sample. Three of the four algorithms are new - only LNERF (called NERFCM in the original literature) precedes this article.
Cite as: Bezdek, J.C., Hathaway, R.J., Leckie, C. and Kotagiri, R. (2006). Approximate Data Mining in Very Large Relational Data. In Proc. Seventeenth Australasian Database Conference (ADC2006), Hobart, Australia. CRPIT, 49. Dobbie, G. and Bailey, J., Eds. ACS. 3-13.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007