Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Exploring Bit-Difference for Approximate KNN Search in High-dimensional Databases

Cui, B., Shen, H.T., Shen, J. and Tan, K.-L.

    In this paper, we develop a novel index structure to support efficient approximate k-nearest neighbor (KNN) query in high-dimensional databases. In high-dimensional spaces, the computational cost of the distance (e.g., Euclidean distance) between two points contributes a dominant portion of the overall query response time for memory processing. To reduce the distance computation, we first propose a structure (BID) using BIt-Difference to answer approximate KNN query. The BID employs one bit to represent each feature vector of point and the number of bit-difference is used to prune the further points. To facilitate real dataset which is typically skewed, we enhance the BID mechanism with clustering, cluster adapted bitcoder and dimensional weight, named the BID+. Extensive experiments are conducted to show that our proposed method yields significant performance advantages over the existing index structures on both real life and synthetic high-dimensional datasets.
Cite as: Cui, B., Shen, H.T., Shen, J. and Tan, K.-L. (2005). Exploring Bit-Difference for Approximate KNN Search in High-dimensional Databases. In Proc. Sixteenth Australasian Database Conference (ADC2005), Newcastle, Australia. CRPIT, 39. Williams, H. E. and Dobbie, G., Eds. ACS. 165-174.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007