Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Graph Grammar Encoding and Evolution of Automata Networks

Luerssen, M.H.

    The global dynamics of automata networks (such as neural networks) are a function of their topology and the choice of automata used. Evolutionary methods can be applied to the optimisation of these parameters, but their computational cost is prohibitive unless they operate on a compact representation. Graph grammars provide such a representation by allowing network regularities to be efficiently captured and reused. We present a system for encoding and evolving automata networks as collective hypergraph grammars, and demonstrate its efficacy on the classical problems of symbolic regression and the design of neural network architectures.
Cite as: Luerssen, M.H. (2005). Graph Grammar Encoding and Evolution of Automata Networks. In Proc. Twenty-Eighth Australasian Computer Science Conference (ACSC2005), Newcastle, Australia. CRPIT, 38. Estivill-Castro, V., Ed. ACS. 229-238.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007