Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Automatic Extraction of Lung Boundaries by a Knowledge-Based Method

Park, M., Wilson, L.S. and Jin, J.S.

    The aim of this paper is to develop accurate and reliable methods for automated detection of the edges of the lung by a knowledge-based approach. First, the system initialises the ROI(Region Of Interest) using 'unseeded region growing' algorithm. Then IPE(Image Processing Engine) generates candidates within the ROI. The candidates are matched to an anatomical model of the lung boundary using parametric features. A modular system architecture was developed which incorporates the model, image processing routines, an inference engine and a blackboard. 1
Cite as: Park, M., Wilson, L.S. and Jin, J.S. (2001). Automatic Extraction of Lung Boundaries by a Knowledge-Based Method. In Proc. Selected papers from Pan-Sydney Area Workshop on Visual Information Processing (VIP2000), Sydney, Australia. CRPIT, 2. Eades, P. and Jin, J., Eds. ACS. 11-16.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007