Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Gene Expression Data Clustering and Visualization Based on a Binary Heirarchical Clustering Framework

Szeto, L.K., Liew, A.W.-C., Yan, H. and Tang, S.-s.

    We describe the use of a binary hierarchical clustering (BHC) framework for clustering of gene expression data. The BHC algorithm involves two major steps. Firstly, the K-means algorithm is used to split the data into two classes. Secondly, the Fisher criterion is applied to the classes to assess whether the splitting is acceptable. The algorithm is applied to the sub-classes recursively and ends when all clusters cannot be split any further. BHC does not require the number of clusters to be known. It does not place any assumption about the number of samples in each cluster or the class distribution. The hierarchical framework naturally leads to a tree structure representation. We show that by arranging the BHC clustered gene expression data in a tree structure, we can easily visualize the cluster results. In addition, the tree structure display allows user judgement in finalizing the clustering result using prior biological knowledge.
Cite as: Szeto, L.K., Liew, A.W.-C., Yan, H. and Tang, S.-s. (2003). Gene Expression Data Clustering and Visualization Based on a Binary Heirarchical Clustering Framework. In Proc. First Asia-Pacific Bioinformatics Conference (APBC2003), Adelaide, Australia. CRPIT, 19. Chen, Y.-P. P., Ed. ACS. 145-152.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007