Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

A New Modi cation of Kohonen Neural Network for VQ and Clustering Problems

Mohebi, E. and Bagirov, A.M.

    Vector Quantization (VQ) and Clustering are significantly important in the field of data mining and pattern recognition. The Self Organizing Maps has been widely used for clustering and topology visualization. The topology of the SOM and its initial neurons play an important role in the convergence of the Kohonen neural network. In this paper, in order to improve the convergence of the SOM we introduce an algorithm based on the split and merging of clusters to initialize neurons. We also introduce a topology based on this initialization to optimize the vector quantization error. Such an approach allows one to find global or near global solution to the vector quantization and consequently clustering problem. The numerical results on 4 small to large real-world data sets are reported to demonstrate the performance of the proposed algorithm.
Cite as: Mohebi, E. and Bagirov, A.M. (2013). A New Modi cation of Kohonen Neural Network for VQ and Clustering Problems. In Proc. Eleventh Australasian Data Mining Conference (AusDM13) Canberra, Australia. CRPIT, 146. Christen, P., Kennedy, P., Liu, L., Ong, K.L., Stranieri, A. and Zhao, Y. Eds., ACS. 81-88
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS