Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Indoor Location Prediction Using Multiple Wireless Received Signal Strengths

Tran, K., Phung, D., Adams, B. and Venkatesh, S.

    This paper presents a framework for indoor location prediction system using multiple wireless signals available freely in public or office spaces. We first propose an abstract architectural design for the system, outlining its key components and their functionalities. Different from existing works, such as robot indoor localization which requires as precise localization as possible, our work focuses on a higher grain: location prediction. Such a problem has a great implication in context-aware systems such as indoor navigation or smart self-managed mobile devices (e.g., battery management). Central to these systems is an effective method to perform location prediction under different constraints such as dealing with multiple wireless sources, effects of human body heats or mobility of the users. To this end, the second part of this paper presents a comparative and comprehensive study on different choices for modeling signals strengths and prediction methods under different condition settings. The results show that with simple, but effective modeling method, almost perfect prediction accuracy can be achieved in the static environment, and up to 85% in the presence of human movements. Finally, adopting the proposed framework we outline a fully developed system, named Marauder, that support user interface interaction and real-time voice-enabled location prediction.
Cite as: Tran, K., Phung, D., Adams, B. and Venkatesh, S. (2008). Indoor Location Prediction Using Multiple Wireless Received Signal Strengths. In Proc. Seventh Australasian Data Mining Conference (AusDM 2008), Glenelg, South Australia. CRPIT, 87. Roddick, J. F., Li, J., Christen, P. and Kennedy, P. J., Eds. ACS. 187-192.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007