Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Rare Association Rule Mining via Transaction Clustering

Koh, Y.S. and Pears, R.

    Rare association rule mining has received a great deal of attention in the recent past. In this research, we use transaction clustering as a pre-processing mechanism to generate rare association rules. The basic concept underlying transaction clustering stems from the concept of large items as defined by traditional association rule mining algorithms. We make use of an approach proposed by Koh & Pears (2008) to cluster transactions prior to mining for association rules. We show that pre-processing the dataset by clustering will enable each cluster to express their own associations without interference or contamination from other sub groupings that have different patterns of relationships. Our results show that the rare rules produced by each cluster are more informative than rules found from direct association rule mining on the unpartitioned dataset.
Cite as: Koh, Y.S. and Pears, R. (2008). Rare Association Rule Mining via Transaction Clustering. In Proc. Seventh Australasian Data Mining Conference (AusDM 2008), Glenelg, South Australia. CRPIT, 87. Roddick, J. F., Li, J., Christen, P. and Kennedy, P. J., Eds. ACS. 87-94.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007