Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Graph Mining based on a Data Partitioning Approach

Nguyen, S.N., Orlowska, M.E. and Li, X.

    Existing graph mining algorithms typically assume that the dataset can fit into main memory. As many large graph datasets cannot satisfy this condition, truly scalable graph mining remains a challenging computational problem. In this paper, we present a new horizontal data partitioning framework for graph mining. The original dataset is divided into fragments, then each fragment is mined individually and the results are combined together to generate a global result. One of the challenging problems in graph mining is about the completeness because the of complexity graph structures. We will prove the completeness of our algorithm in this paper. The experiments will be conducted to illustrate the efficiency of our data partitioning approach.
Cite as: Nguyen, S.N., Orlowska, M.E. and Li, X. (2008). Graph Mining based on a Data Partitioning Approach. In Proc. Nineteenth Australasian Database Conference (ADC 2008), Wollongong, NSW, Australia. CRPIT, 75. Fekete, A. and Lin, X., Eds. ACS. 31-37.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007