Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Some Structural and Geometric Properties of Two-Connected Steiner Networks

Hvam, K., Reinhardt, L., Winter, P. and Zachariasen, M.

    We consider the problem of constructing a shortest Euclidean 2-connected Steiner network (SMN) for a set of terminals. This problem has natural applications in the design of survivable communication net- works. A SMN decomposes into components that are full Steiner trees. Winter and Zachariasen proved that all cycles in SMNs with Steiner points must have two pairs of consecutive terminals of degree 2. We use this result and the notion of reduced block-bridge trees of Luebke to show that no component in a SMN spans more than approximately one-third of the terminals. Furthermore, we show that no component spans more than two terminals on the boundary of the convex hull of the terminals; such two terminals must in addition be consecutive on the boundary of this convex hull. Algorithmic implications of these results are discussed.
Cite as: Hvam, K., Reinhardt, L., Winter, P. and Zachariasen, M. (2007). Some Structural and Geometric Properties of Two-Connected Steiner Networks. In Proc. Thirteenth Computing: The Australasian Theory Symposium (CATS2007), Ballarat, Australia. CRPIT, 65. Gudmundsson, J. and Jay, B., Eds. ACS. 85-90.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007