Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Towards Automated Record Linkage

Goiser, K. and Christen, P.

    The field of Record Linkage is concerned with identifying records from one or more datasets which refer to the same underlying entities. Where entity-unique identifiers are not available and errors occur, the process is non-trivial. Many techniques developed in this field require human intervention to set parameters, manually classify possibly matched records, or provide examples of matched and non-matched records. Whilst of great use and providing high quality results, the requirement of human input, besides being costly, means that if the parameters or examples are not produced or maintained properly, linkage quality will be compromised. The contributions of this paper are a critical discussion on the record linkage process, arguing for a more restrictive use of blocking in research, and evaluating and modifying the farthest first clustering technique to produce results close to a supervised technique.
Cite as: Goiser, K. and Christen, P. (2006). Towards Automated Record Linkage. In Proc. Fifth Australasian Data Mining Conference (AusDM2006), Sydney, Australia. CRPIT, 61. Peter, C., Kennedy, P. J., Li, J., Simoff, S. J. and Williams, G. J., Eds. ACS. 23-31.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007