Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Using Association Rules to Make Rule-based Classifiers Robust

Hu, H. and Li, J.

    Rule-based classification systems have been widely used in real world applications because of the easy interpretability of rules. Many traditional rule-based classifiers prefer small rule sets to large rule sets, but small classifiers are sensitive to the missing values in unseen test data. In this paper, we present a larger classifier that is less sensitive to the missing values in unseen test data. We experimentally show that it is more accurate than some benchmark classifies when unseen test data have missing values.
Cite as: Hu, H. and Li, J. (2005). Using Association Rules to Make Rule-based Classifiers Robust. In Proc. Sixteenth Australasian Database Conference (ADC2005), Newcastle, Australia. CRPIT, 39. Williams, H. E. and Dobbie, G., Eds. ACS. 47-54.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007