Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Clustering Moving Objects for Spatio-temporal Selectivity Estimation

Zhang, Q. and Lin, X.

    Many spatio-temporal applications involve managing and querying moving objects. In such an environment, predictive spatio-temporal queries become an important query class to be processed to capture the nature of moving objects. In this paper, we investigated the problem of selectivity estimation for predictive spatio-temporal queries. We propose a novel histogram technique based on a clustering paradigm. To avoid expensive computation costs, we developed linear time heuristics to construct such a histogram. Our performance study indicated that the new techniques improve the accuracy of the existing techniques by one order of magnitude.
Cite as: Zhang, Q. and Lin, X. (2004). Clustering Moving Objects for Spatio-temporal Selectivity Estimation. In Proc. Fifteenth Australasian Database Conference (ADC2004), Dunedin, New Zealand. CRPIT, 27. Schewe, K.-D. and Williams, H. E., Eds. ACS. 123-130.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007