Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Face Recognition Using Multi-feature and Radial Basis Function Network

Hongtao, S., Feng, D.D. and Rong-chun, Z.

    In this paper, a face recognition algorithm using multi feature and Radial basis Function Network (RBFN) is proposed. The algorithm consists of three steps. In the first step, a coarse classification is performed using Fourier frequency spectrum feature, and only the first k gallery images with minimum Euclidean distance to the probe image are retained. In the second step, the Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) features of frequency spectrum are extracted, which will be taken as the input of the RBFN in the third step. In the last step, the classification is carried out by using RBFN. The proposed approach has been tested on ORL face database and Shimon database. The experimental results have demonstrated that the performance of this algorithm is much superior to the other algorithms on the same database.
Cite as: Hongtao, S., Feng, D.D. and Rong-chun, Z. (2003). Face Recognition Using Multi-feature and Radial Basis Function Network. In Proc. Pan-Sydney Area Workshop on Visual Information Processing (VIP2002), Sydney, Australia. CRPIT, 22. Jin, J. S., Eades, P., Feng, D. D. and Yan, H., Eds. ACS. 51.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007