Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Microarray Image Processing Based on Clustering and Morphological Analysis

Wu, S. and Yan, H.

    Microarrays allow the monitoring of expressions for tens of thousands of genes simultaneously. Image analysis is an important aspect for microarray experiments that can affect subsequent analysis such as identification of differentially expressed genes. Image processing for microarray images includes three tasks: spot gridding, segmentation and information extraction. In this paper, we address the segmentation and information extraction problems, and proposed a new segmentation method based on K-means clustering and a new background and foreground correction algorithm based on mathematical morphological and histogram analysis for information extraction. The advantage of our method is that it does not have any restrictions for the shape of spots. We compare our experimental results with those obtained from the popular software GenePix.
Cite as: Wu, S. and Yan, H. (2003). Microarray Image Processing Based on Clustering and Morphological Analysis. In Proc. First Asia-Pacific Bioinformatics Conference (APBC2003), Adelaide, Australia. CRPIT, 19. Chen, Y.-P. P., Ed. ACS. 111-118.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007