Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

We wish you a happy and safe holiday season and all the best for 2025


An Empirical Comparison of Supervised Machine Learning Techniques in Bioinformatics

Tan, A.C. and Gilbert, D.

    Research in bioinformatics is driven by the experimental data. Current biological databases are populated by vast amounts of experimental data. Machine learning has been widely applied to bioinformatics and has gained a lot of success in this research area. At present, with various learning algorithms available in the literature, researchers are facing difficulties in choosing the best method that can apply to their data. We performed an empirical study on 7 individual learning systems and 9 different combined methods on 4 different biological data sets, and provide some suggested issues to be considered when answering the following questions: (i) How does one choose which algorithm is best suitable for their data set? (ii) Are combined methods better than a single approach? (iii) How does one compare the effectiveness of a particular algorithm to the others?
Cite as: Tan, A.C. and Gilbert, D. (2003). An Empirical Comparison of Supervised Machine Learning Techniques in Bioinformatics. In Proc. First Asia-Pacific Bioinformatics Conference (APBC2003), Adelaide, Australia. CRPIT, 19. Chen, Y.-P. P., Ed. ACS. 219-222.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007