Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

A Comparative Study for Domain Ontology Guided Feature Extraction

Wang, B.B., McKay, R.I.B., Abbass, H.A. and Barlow, M.

    We introduced a novel method employing a hierarchical domain ontology structure to extract features representing documents in our previous publication (Wang 2002). All raw words in the training documents are mapped to concepts in a concept hierarchy derived from the domain ontology. Based on these concepts, a concept hierarchy is established for the training document space, using is-a relationships defined in the domain ontology. An optimum concept set may be obtained by searching the concept hierarchy with an appropriate heuristic function. This may be used as the feature space to represent the training dataset. The proposed method aims to solve some drawbacks suffered by text classification algorithms and feature selection algorithms. In this paper, we conducted a series of experiments to compare our approach with other comparable feature-selection and feature-extraction methods. The results indicated that our approach has advantages in many aspects.
Cite as: Wang, B.B., McKay, R.I.B., Abbass, H.A. and Barlow, M. (2003). A Comparative Study for Domain Ontology Guided Feature Extraction. In Proc. Twenty-Sixth Australasian Computer Science Conference (ACSC2003), Adelaide, Australia. CRPIT, 16. Oudshoorn, M. J., Ed. ACS. 69-78.
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS
 

 

ACS Logo© Copyright Australian Computer Society Inc. 2001-2014.
Comments should be sent to the webmaster at crpit@scem.uws.edu.au.
This page last updated 16 Nov 2007