Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Variance-wise Segmentation for a Temporal-Adaptive SAX

Sun, C., Stirling, D., Ritz, C., and Sammut, C.

    The Symbolic Aggregate approXimation algorithm (SAX) is a very popular symbolic mapping technique for time series data, and it is widely employed in pattern identification, sequence classification, abnormality detection and other data mining research. Although SAX is a general approach which is adaptable to most data, it utilises a fixed-size sliding window in order to generate motifs (temporal shapes). When certain target phenomena (activities of interest) are manifested over differing time scales, SAX-motifs are unable to correctly account for all such targets. This paper proposes a new method named the variance-wise segmentation method which can adaptively change the size of the sliding window in a generalised SAX approach. By generating motifs with differing durations, patterns can be found for activities with similar shape but occurring over a significant altered time base. This method is tested on both artificially modified ECG data, as well as, variable tactile vibration data, with improved results compared to the original SAX formulation.
Cite as: Sun, C., Stirling, D., Ritz, C., and Sammut, C. (2012). Variance-wise Segmentation for a Temporal-Adaptive SAX. In Proc. Data Mining and Analytics 2012 (AusDM 2012) Sydney, Australia. CRPIT, 134. Zhao, Y., Li, J. , Kennedy, P.J. and Christen, P. Eds., ACS. 71 - 78
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS