Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Improving Naive Bayes Classifier Using Conditional Probabilities

Taheri, S., Mammadov, M. and Bagirov, A. M.

    Naive Bayes classifier is the simplest among Bayesian Network classifiers. It has shown to be very efficient on a variety of data classification problems. However, the strong assumption that all features are conditionally independent given the class is often violated on many real world applications. Therefore, improvement of the Naive Bayes classifier by alleviating the feature independence assumption has attracted much attention. In this paper, we develop a new version of the Naive Bayes classifier without assuming independence of features. The proposed algorithm approximates the interactions between features by using conditional probabilities. We present results of numerical experiments on several real world data sets, where continuous features are discretized by applying two different methods. These results demonstrate that the proposed algorithm significantly improve the performance of the Naive Bayes classifier, yet at the same time maintains its robustness.
Cite as: Taheri, S., Mammadov, M. and Bagirov, A. M. (2011). Improving Naive Bayes Classifier Using Conditional Probabilities. In Proc. Australasian Data Mining Conference (AusDM 11) Ballarat, Australia. CRPIT, 121. Vamplew, P., Stranieri, A., Ong, K.-L., Christen, P. and Kennedy, P. J. Eds., ACS. 63-68
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS