Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

User Preference Representation Based on Psychometric Models

Hu, B., Li, Z., Chao, W. H., Hu, X. and Wang, J.

    Neighbourhood-based collaborative filtering is one of the most popular recommendation techniques, and has been applied successfully in various fields. User ratings are often used by neighbourhood-based collaborative filtering to compute the similarity between two users or items, but, user ratings may not always be representatives of their true preferences, resulting in unreliable similarity information and poor recommendation. To solve these problems, this paper proposes to use latent preferences for neighbourhood-based collaborative filtering instead of user ratings. Latent preferences are based on user latent interest estimated from ratings through a psychometric model. Experimental results show that latent preferences can improve the recommendation accuracy and coverage while lessening the prediction time of neighbourhood-based collaborative filtering by finding out reliable and effective neighbours; and latent preferences are better than user ratings for representing user preferences.
Cite as: Hu, B., Li, Z., Chao, W. H., Hu, X. and Wang, J. (2011). User Preference Representation Based on Psychometric Models. In Proc. Australasian Database Conference (ADC 2011) Perth, Australia. CRPIT, 115. Heng Tao Shen and Yanchun Zhang Eds., ACS. 57-64
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS