Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Probe Distance-Hereditary Graphs

Chang, M.-S., Hung, L.-J. and Rossmanith, P.

    A graph G = (V,E) is called a probe graph of graph class G if V can be partitioned into two sets P (probes) and N (nonprobes), where N is an independent set, such that G can be embedded into a graph of G by adding edges between certain nonprobes. A graph is distance hereditary if the distance between any two vertices remains the same in every connected induced subgraph. Distance-hereditary graphs have been studied by many researchers. In this paper we give an O(nm)-time algorithm for recognizing probe graphs of distance-hereditary graphs.
Cite as: Chang, M.-S., Hung, L.-J. and Rossmanith, P. (2010). Probe Distance-Hereditary Graphs. In Proc. 16-th Computing: The Australasian Theory Symposium (CATS 2010) Brisbane, Australia. CRPIT, 109. Viglas, T. and Potanin, A. Eds., ACS. 55-64
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS