
An Abstract Interaction Model for a MDA Software Production

Method

Francisco Valverde
1
, Ignacio Panach

1
, Oscar Pastor

1

1
Department of Information Systems and Computation

Technical University of Valencia

Camino de Vera S/N, 46025 Valencia , Spain

Email:{fvalverde,jpanach,opastor}@dsic.upv.es

Abstract

Currently, most well-known model-based software pro-

duction methods focus on defining the system functional-

ity (business logic and persistence). However, the interac-

tion between users and the system is too often not accu-

rately described. Frequently an interface must be gener-

ated for multiple technological platforms (Desktop, Web,

Mobile devices etc.) from the same model. The key issue

is the model that was designed for describing a specific

platform interface. When this model is used in other plat-

forms, the final user interfaces have usability problems

due to a lack of expressiveness at conceptual level. An

interesting approach is to solve this problem from a MDA

point of view. Two abstraction levels are defined in order

to model interaction: a PIM (Platform Independent

Model) or abstract level to describe interaction without

taking into account technological issues and a PSM (Plat-

form Specific Model) or concrete level to deal with plat-

form concrete requirements. This paper explains in detail

how the PIM level is defined in order to produce multi-

platform user interfaces. This Abstract Interaction Model

is made up of two models: an User Model that defines

different types of users and an Abstract Interface Model

to define the user interface. The final goal is to introduce

these new models into OO-Method, an MDA-based soft-

ware production method to produce software systems. As

a result, a user interface which can be used as a prototype

is automatically generated.

Keywords: Model Driven Development, MDA, Interac-

tion modelling, User Interfaces, HCI

1 Introduction

An important topic to be analysed by the Software Engi-

neering (SE) community is the interaction modelling. SE

community has developed some well known methods to

represent system structure and functionality in an abstract

way, like the Class Diagram or the Sequence Diagram

(UML 2003). However, SE community does not have a

Copyright (c) 2007, Australian Computer Society, Inc. This

paper appeared at the Twenty-Sixth International Conference on

Conceptual Modeling - ER 2007 - Tutorials, Posters, Panels and

Industrial Contributions, Auckland, New Zealand. Conferences

in Research and Practice in Information Technology, Vol. 83.

John Grundy, Sven Hartmann, Alberto H. F. Laender, Leszek

Maciaszek and John F. Roddick, Eds. Reproduction for aca-

demic, not-for profit purposes permitted provided this text is

included.

method widely used and accepted to represent the interac-

tion between the user and the system.

Several methods provide an Interaction Model that only

represents interfaces for a concrete platform like the Web.

As a consequence, the migration process to another plat-

form (i.e. mobile devices) is a difficult task. In addition,

when this migration process is possible, the interaction

model does not have enough expressiveness to describe

specific characteristics of the new platform. Some authors

have proposed user interface languages such as USIXML

(Vanderdonckt 2004) or models such as UMLi (Silva

2003) to define interaction in an abstract way. But these

approaches only define generic user interfaces and are not

integrated in a full code generation process. Therefore,

how the user interface is properly linked to the system

functionality is not clear.

OO-Method is a software production method based on

MDA (MDA 2003) that has a Presentation Model

(Molina 2002) that represents the system user interface.

For each modelling element, a software representation in

several implementation languages is generated by a

Model Compiler. Currently, the Model Compiler always

produces the same code, from the same modelling ele-

ment. This approach has a drawback because a modelling

element could have several implementations, especially

from a user interface perspective. For example, a user

interface can be more adequate in a particular domain

attending to usability constraints. The current OO-

Method solution could be acceptable in a desktop envi-

ronment where homogeneity between applications is

recommended. However in web environments in which

interfaces guidelines are less strict, the generated Web

Applications may have different usability issues or do not

meet customer requirements.

The main contribution of this poster is to propose an

Abstract Interaction Model that redefines current OO-

Method Presentation Model. This new definition, Interac-

tion Model, emphasizes that interface is not only related

to aesthetic aspects but it must take into account the

communication between the user, the interface and the

system. This new Interaction Model, to be compliant with

the MDA development process proposed by OO-Method,

is divided into two abstraction levels: An Abstract level

(PIM), in which interaction is modelled without taking

into account platform details and a Concrete level (PSM),

in which specific concepts related to the target platform

are defined. According to this approach, the set of model-

ling elements to be used in the PIM level must have the

required expressiveness to represent multiplatform (Web,

Task Model

Use Cases Model

CIM

Task Model

Use Cases Model

CIM

Abstract Interface

Model
M2M

PIM

Abstract Interface

Model
M2M

PIM

Desktop Concrete

Model

Web Concrete

Model

Mobile Device

Concrete Model

M2M

PSM

M2M

M2M

Desktop Concrete

Model

Web Concrete

Model

Mobile Device

Concrete Model

M2M

PSM

M2M

M2M

WWW

Interface

M2T

M2T

M2T

WWW

Interface

M2T

M2T

M2T

User Model

OOWS OO-Method+

Current Presentation Models

OOWS OO-Method+

Current Presentation Models

OOWS OO-Method+

Current Presentation Models

Figure 1: Abstract Interaction Model in a MDA development process

Desktop and PDA) aspects. Once the Abstract Interface

Model is built, the Concrete Interface Model is generated

by means of model-to-model transformations. At this

level, analysts can refine the generated Concrete Interac-

tion Model to introduce specific platform requirements.

Subsequently, the Model Compiler transforms each Con-

crete modelling element to specific code. Therefore, the

same Abstract Interaction Model can be used to produce a

Web interface or a Desktop one.

This work is focused on the new Interaction Model de-

fined at abstract level (PIM). The model is composed of

two sub-models: the Users Model to represent different

types of users that can interact with the system; and the

Abstract Interface Model, that extends the current OO-

Method Presentation Model with the interaction concept.

Since the described modelling elements are defined inde-

pendently from technological and methodological as-

pects, the same concepts can be used by another software

engineering methods based on abstract models.

To accomplish the goals mentioned above, the paper is

structured as follows: section 2 presents the OO-

Method’s Background and another works related to inter-

action. Section 3 describes the Interaction Model at the

abstract level. Next, in section 4, a practical example that

shows how an user interface is defined using the Abstract

Interaction Model is presented. Finally, the conclusions

and future research lines are stated.

2 Background and Related Work

Previous experiences of OO-Method and OOWS, our

current methodologies, have been considered in order to

define the new Abstract Interaction Model. OO-Method

(Pastor 2001) is an Object Oriented software production

Method that is MDA compliant (MDA 2003). OO-

Method models the system in different abstraction levels,

distinguishing between problem space (the most abstract

level) and solution space (the lowest abstract level). The

system is represented by a set of Conceptual Models: 1)

A Class Diagram that represents the static structure; 2)

The State and Functional Diagram that represents the

behaviour; 3) The Presentation Model (Molina 2002), that

is the current model used in OO-Method to describe ab-

stract user interfaces. The Presentation Model is based on

a pattern language that represents common interactions as

information retrieval, service execution or data validation.

The Abstract Interface Model described in this work, has

been developed to be included in this method.

The industrial tool that supports OO-Method is called

OlivaNOVA, (CARE) that has been developed in close

cooperation with Care Technologies S.A. This tool pro-

duces functional systems for several platforms and im-

plementation languages from an OO-Method Conceptual

Model. However, users complained about the low usabil-

ity of the generated web applications.

In order to solve OO-Method web usability issues,

OOWS (Object-Oriented Web Solutions) was defined.

OOWS (Fons 2003) is a web engineering method that

provides methodological support for web application

development. OOWS has been developed as an extension

of OO-Method to support web-domain concepts. OOWS

introduces the diagrams that are needed to capture web-

based applications requirements, enriching the expres-

siveness of the OO-Method Conceptual Model. From a

web engineering perspective, OOWS generates the code

corresponding to the user interaction layer, and Oli-

vaNOVA generates the business logic layer and the per-

sistence layer. Some development process (Valverde

2007 and Giner 2007), are using OOWS to model and

produce web interfaces.

In the HCI field, some proposals have appeared to model

the interaction in an abstract way. Two proposals that

share the same approach are USIXML (USer Interface

eXtensible Markup Language) (Vanderdonckt 2004) and

TERESA tool (Transformation Environment for inteRac-

tivE Systems representAtions) (Mori 2004). In these

works, the system is designed independently of techno-

logical platform characteristics. User interface specifica-

tion is described in two levels: 1) Using a Task Model

and a Concept Model in order to define an abstract model

independently of the platform; 2) The Abstract Model is

refined in a Concrete Model for a specific context of use.

However, it is important to mention that both USIXML

and TERESA are not an interface implementation lan-

guage themselves. Their abstract user interface language

does not generate system functionality as OO-Method

proposes. Moreover, USIXML needs a transformation

engine to interpret the model and to generate the interface

code.

There are other proposals based on UML models, as

WISDOM (Whitewater Interactive System Development

with Objetc Models) (Nunes 2000), or UMLi (Da Silva

2003). On the one hand, WISDOM uses three models

related to interaction modelling: the Interaction Model in

analysis step, and Dialog Model and Presentation Model

in design step. However, WISDOM does not support

automatic software generation at business logic level or

interface level. On the other hand, UMLi uses a User

Interface Diagram based on UML to capture interaction

requirements formally. UMLi project includes an auto-

matic code generation process for user interfaces. How-

ever, the models have to be built with too much detail.

Therefore, the User Interface Diagram is little practical

and a medium–size specification problem is difficult to

carry out.

Finally, in the web engineering field, there are several

web engineering methods that, as OOWS does, use mod-

els to define web user interface. Some examples are

OOHDM (Schwabe 1996), WebML (Ceri 2003) or

WSDM (De Troyer 2003). However, their presentation

models are mainly focused on visual appearance and

configuration of web system information. As a conse-

quence, using their presentation models in other platforms

is a difficult task.

The main difference with regard to other interaction ap-

proaches mentioned above, is that the Abstract Interaction

Model presented is incorporated into a software produc-

tion method. Therefore, the user interface generated is a

component of fully functional system.

3 The OO-Method Abstract Interaction Model

This model extends OO-Method Presentation Model with

the concept called Interaction. In the context of this work,

interaction is defined as the actions that take place be-

tween a human user and an interface, which acts as com-

munication link to the software system functionality, in

order to perform a particular task. Therefore, in the inter-

action process there are three main actors: the user, the

software system and the interface between them. Since

the software system is modelled by OO-Method Concep-

tual Model, the main task of the Interaction Model is to

define the other two actors. As a consequence presenta-

tion model is not a precise concept to abstract interaction.

Interfaces produced by the Interaction Model follow an

MDA approach. Figure 1 illustrates the global approach.

First, interactions are modelled in an abstract level (PIM)

using the User Model and the Abstract Interface Model

(explained below). Next, the abstract models are trans-

lated to the Concrete Interaction Model (PSM) in order to

capture the specific platform requirements. This paper is

focused only on the abstract level. To define the two

models that compose the Interaction Model abstract level,

OOWS and OO-Method Presentation Models have been

used as starting point. Combining experiences from both

domains (Web and Desktop environments) a more ex-

pressive model has been proposed.

The main modelling constructor of the Abstract Interac-

tion Model is the Interaction Unit (IU). An IU is defined

as a modelling elements container that encapsulates a

specific interaction (Buy a ticket, See all clients, etc.)

between the user and the software system. Introducing

this concept, the whole interaction process can be seen as

an aggregation of different Interaction Units.

3.1 User Model

The User Model represents sets of human users that are

allowed to interact with the system. Each type of user has

the rights to access to a set of UIs which defines its Inter-

action Map. Therefore, a main objective of the Interaction

Map is to provide a global vision about the user available

interactions. To emphasize reuse, a user can inherit the

Interaction Map from another User or in other words,

Users can inherit IU access rights. In this case, all parent

IUs are available for the child user that can additionally

access to its own IUs. The notation used to define the

Interaction Map is based on UML Use Cases; users are

presented as actors that are connected by arrows to

stereotyped UML packages that represent UIs. This nota-

tion has been chosen among others, because is widely

accepted in the Software Engineering community. The

figure 2 illustrates an Interaction Map.

Anonymous

«IU»

Select Car

«IU»

See last

offers

«IU»

Rent Car

«IU»

Create new

account

Exploration IUs Sequence IUs

Figure 2: Interaction Map Diagram

Interaction Units are classified in the Interaction Map

from an accessibility point of view: Exploration IUs that

are always available to the user and Sequence IUs that

only can be reached from a source IU. Sequence IUs are

useful to define a sequence of previous required interac-

tions to follow. For example, the interaction “Rent car”

cannot be realized if previously, the “Select Car” interac-

tion has not been performed.

3.2 Abstract Interface Model

This model defines for each IU the set of interaction

components that define its interface with the software

system. Interaction components are conceptual modelling

elements that describe the interaction behaviour expected

by the user but not how this interaction is implemented.

For that reason, interaction components are not related to

visual aspects such as colour, font size or layout, though

their final implementations are user interface widgets. An

IU can be composed by two types of interaction compo-

nents: Basic Interaction Components (BICs), which de-

scribes a generic interaction and Interaction Patterns that

models a complex interaction.

3.2.1 Basic Interaction Components

A Basic Interaction Component or BIC represents a ge-

neric interaction. The BIC concept is related to the ab-

stract canonical components introduced in (Constantine

2003) that have been used by other approaches as

USIXML (Vanderdonckt 2004). Each BIC abstracts, in a

simple way, a clear purpose from the interaction point of

view. Thanks to their flexibility, BICs can be used to

represent quickly the interaction needed with the system.

Abstract Interface Model uses five BICs:

• Input: this component models the data introduc-

tion to the system introduced by the user. Com-

mon interactions that are represented by this

component are for example to write a search

string, login or introduce personal data.

• Output: shows to the user information retrieved

from the system. This BIC is very common in

user interfaces. It models interactions such as to

show information in a table, field labels or feed-

back messages.

• Navigation: in the Interaction Model a transition

from one UI to other UI is called navigation.

Therefore Navigation BIC is related to an inter-

face element that triggers navigation. Examples

in the final system are links in a web application

or the main menu in a desktop one.

• Action: an action interaction component triggers

an event that changes the state of the system ob-

jects or the interface. This BIC is mainly related

to service execution. Push a button to store data

is an interaction example that can be modelled as

an action interaction.

• Group: this component groups a set of BICs in

order to define a more complex component.

Grouping is very useful to provide relationship

between BICs. For example, in a conventional

invoice service, to separate those arguments rep-

resenting personal data from those arguments

describing the billing information.

With the purpose of illustrate the use of BICs, a little

example is explained. The IU “Create new account” (See

Fig.2) is a modelled interaction to create a new customer

in the System. The user must introduce the personal in-

formation (name, e-mail, password, country etc.) and

choice a set of personal preferences. When the data is

entered the new user is created in the system and a con-

firmation e-mail is sent.

This interaction is modelled with several inputs that rep-

resent the user information to be entered. The inputs can

be divided into two groups: Personal Information and

Profile Preferences. After that, two Action BICs are

needed; one to store the information and another to send

an e-mail reply. Finally a navigation component is de-

fined in order to navigate to an IU that informs the user

about the operation result.

3.2.2 Interaction Patterns

An Interaction Pattern (IP) defines a complex interaction,

such as to retrieve data or to fill a form and execute a

service, carried out frequently by users. The set of inter-

actions that can be expressed by BICs are too generic so

interaction behaviour must be defined at Concrete Level.

For that reason, the main purpose of Interaction Patterns

is to be more detailed than BICs. As a result, the analyst

can define more precise interactions and more related to

the domain. From a model using IPs, a functional user

interface can be generated whereas from an interaction

model made up by BICs, only a prototype is possible.

Therefore, both concepts complement each other in order

to support a wide range of user interactions.

Each IP is defined by a pattern template (Molina 2002)

that describes the pattern in a generic way to be compared

with others. This template is made up by five sections: 1)

Intent: the interaction that is modelled and the problem

that the patterns solve, 2) Formal representation: a MOF

based meta-model that describes the pattern structure and

its relationships with other patterns and modelling ele-

ments, 3) Specification: the information needed to instan-

tiate the pattern, 4) Semantics: the relationship between

the pattern elements and their corresponding interface and

5) Example: an user interface implementation that shows

the pattern in action. Currently, the Abstract Interface

Model is composed by ten patterns that are briefly de-

scribed below:

• Population: represents a set of instances re-

trieved from the system that shows data to the

user. The Population IP is defined as an informa-

tion view over the OO-Method Class Diagram.

This view is made up by a Manager Class and a

set of its attributes that describes what informa-

tion is retrieved. For example, if the user wants

to know all names of the cars in the system, a

Population IP is defined over class “Car” and its

attribute “name”. The information could be com-

plemented by means of several Complementary

Classes, which have a structural relationship

with the Manager Class. From the Complemen-

tary Classes only the instances related to the

Manager Class are shown.

• Service: abstracts a service dialog (usually a

form) in order to be executed. Service IP is asso-

ciated to a unique service from the Class Dia-

gram. For each argument from the service signa-

ture, an Input BIC is created to insert the corre-

sponding value. In addition, an Action BIC is

needed to trigger the execution.

• Feedback: shows a message to the user from the

system. There are three types of possible feed-

back behaviour: error, when an internal or vali-

dation error has happened; information, to in-

form the user about an specific situation; and

progress, to show the evolution of a complex

transaction

• Order Criteria: this pattern is always related to a

Population IP. It defines how to order the in-

stances of a Population IP (Ascendant or De-

scendent) from a set of attributes defined in the

view. This mechanism improves usability allow-

ing the user to find information easily.

• Validation Rule: a validation rule is related to an

Input BIC. It defines a rule based on a logic for-

mula that must be accomplished by the value in-

troduced. If the value is not correct, an error,

which is defined as a Feedback IP, is shown.

• Enumeration: this pattern defines a set of values

associated to an Input BIC. The user only can

choose one value from the enumeration to fill

the input. The set of values could be a static list

of values, defined in modelling time, or a dy-

namic list of values linked to a Population IP.

• Filter: a filter is always related to a Population

IP. By default, a Population IP retrieves all the

instances that compose the view. A filter defines

a well-formed formula that restricts the popula-

tion to be retrieved. Only the instances that

comply with the formula are shown to the user.

Two types of filters are distinguished: dynamic,

if the user must introduce a value to define the

filter condition (as a consequence, an Input BIC

is needed) or static if the condition is fully speci-

fied.

• Object Navigation: this pattern models a naviga-

tion that is triggered when an object attribute is

selected within a Population IP. When the new

IU is reached, the object oid is available in the

target IU. This information is globally available

to other IPs that made up the target IU and can

be used to restrict their interactions to a particu-

lar object.

• Relationship Navigation: this navigation is asso-

ciated to a relationship defined in a Population

IP. When an instance of the Manager Class and

the relationship is selected, the navigation is trig-

gered. In the target IU, the object oid from the

instance and the relationship id is available.

• Service Navigation: in contrast to previous navi-

gations, this navigation is triggered when a ser-

vice is executed. Therefore, service navigation is

related to a Service IP. As commented before,

the target IU receives the object oid from which

the service was executed.

Usually, an IP extends one or more BICs or is related to

another IP to complement the interaction that it offers. In

addition, an IP can model behavioural aspects related to

the system and the domain model (OO-Method Class

Diagram). Therefore, an IP can be related to modelling

elements from the OO-Method Class Diagram such as

classes and its attributes, associations or operations.

4 Applying the Interaction Model: Rent a Car

In order to show the use of the Abstract Interaction

Model, a small example is explained. This application

example is based on an on-line rent a car service. The

interactions to model are:

• Allow the user to select a car by its category

from all available in the system

• Model a dialog to rent the selected car and vali-

date the information

The user to perform the interaction is an “anonymous

user”. The Interaction Map is made up of two Interaction

Units, each one related to a requirement: Car Selection

and Rent Car (See Fig. 2). The first IU is an Exploration

IU whereas the second is a Sequence IU (a car would not

be able to be rented if it had not previously selected).

The first Interaction Unit, a car list selection, is modelled

by a Population IP. The view is associated to Car Class

and Category Class from the Class Diagram. This Popula-

tion IP includes the relevant car attributes to show to the

user as: car name, rent price, description and so on. To

aid the customer to select a car, a Dynamic Filter IP is

defined in order to show only the cars related to the se-

lected category. In addition, an Order Criteria IP defined

over an attribute from the Population IP, for example car

name, is recommended to aid the car selection attending

to usability issues. Finally, an object navigation whose

target is “Rent Car” IU and defined over car name attrib-

ute is specified.

Next, the second IU “Rent Car” has as main element a

Service IP. This service IP is related to the operation Rent

from the class Car. The Service IP is composed by sev-

eral Input BICs that represent the operation arguments:

car to rent, delivery date, return date, customer name, etc.

The argument car to rent is filled with the car object that

was previously selected in “Car Selection” IU. For a

delivery and return date, two Validation Rules IP are

mandatory to avoid incorrect values (for example, a pre-

vious date from today). Feedback IPs to inform user

about errors or process progress are recommended ac-

cording to usability guidelines.

5 Conclusions and Further Research

This poster presents a new Abstract Interaction Model for

OO-Method, an MDA software generation method. This

Abstract Interaction Model together with the rest of OO-

Method Conceptual Models generates automatically full

functional systems. To be compliant with MDA princi-

ples and HCI community, this Interaction Model is de-

fined in two levels: 1) an abstract level that describes the

interaction independently of concrete interface aspects; 2)

a concrete level that defines interaction details for a con-

crete platform. This decision is compatible with the pre-

vious works in the field.

Two models are proposed to model interaction at abstract

level: the User Model and the Abstract Interface Model.

These models contribute to more expressiveness to the

OO-Method Presentation Model. A small example has

been used as a basic proof of concept. Currently, we are

studying how a first draft of the Abstract Interaction

Model, could be generated from the requirements capture

phase (España 2006).

Another interesting contribution is the interaction compo-

nents presented in the Abstract Interface Model: Basic

Interaction Components and Interaction Patterns. Both

concepts complement OO-Method to cover more interac-

tion possibilities. On the one hand, BICs can be used to

define a user interface quickly or to represent interaction

that Interaction Patterns does not cover. On the other

hand, the set of IPs represents complex interactions that

have been extracted from real implemented applications

developed with OlivaNOVA and customer requirements.

Therefore, IPs could be a useful guide to solve similar

problems in other model-based software development

methods. As future work, the set of IPs could be extended

if new interactions, which can be abstracted as patterns,

are detected. To achieve this task, an empirical evaluation

is planned to be done in order to detect possible lack of

expressiveness.

With the purpose of producing high-quality user inter-

face, the Interaction Model must include usability aspects

defined in the ISO/IEC 9126-1 (ISO/IEC 9126, 2001). As

future research, usability features must be included to

guarantee that generated systems are quality systems.

Once the Interaction Model has been validated with an

empirical evaluation and the ISO/IEC 9126-1, the final

step is to include the new Interaction Model inside the

OO-Method software generation process. As a conse-

quence, the OO-Method Model Compiler will be able to

generate the user interface that implements the Abstract

Interaction Model.

References

UML: OMG, UML. Unified Modeling Language, version

2.1.1. http://www.uml.org/#UML2.0. Accessed 28 Jun

2007.

MDA: OMG, MDA. Model Driven Architecture Guide.

Juny 2006, http://www.omg.org/docs/omg/03-06-

01.pdf. Accessed 28 Jun 2007.

Pastor, O., Gómez, J., Insfrán, E. Pelechano, V. (2001)

The OO-Method Approach for Information Systems

Modelling: From Object-Oriented Conceptual Model-

ing to Automated Programming. Information Systems,

26(7) 507–534.

España, S., Panach, I., Pederiva, I., Pastor O. (2006).

Towards a Holistic Conceptual Modelling-based Soft-

ware Development Process. ER 2006, Arizona.pp. 437-

450.

ISO/IEC 9126-1 (2001), Software engineering - Product

quality - 1: Quality model.

Mori, G., Paterno, F. and Santoro, C. (2004) Design and

Development of Multidevice User Interfaces through

Multiple Logical Descriptions. IEEE Transactions on

Software Engineering.

Vanderdonckt, J., Q. Limbourg, et al. (2004). USIXML: a

User Interface Description Language for Specifying

Multimodal User Interfaces. Proceedings of W3C

Workshop on Multimodal Interaction WMI'2004,

Sophia Antipolis, Greece.

Silva, P.P.d. and N.W. Paton, User Interface Modeling in

UMLi. IEEE Software, 2003. 20(4): p. 62-69.

Molina, P.J., Meliá, S., Pastor, O. (2002): Just-UI: A User

Interface Specification Model. In: Proc. of 4th Int.

Conf. on Computer-Aided Design of User Interfaces

CADUI’2002. Kluwer Academic Press, Dordrecht 63–

74.

CARE: Care Technologies: http://www.care-t.com Ac-

cessed 3 July 2007.

WISDOM: Nunes, N. J. y J. F. e. Cunha (2000). "Wis-

dom: a software engineering method for small software

development companies." Software, IEEE 17(5): 113-

119.

UMLi: da Silva, P. P. d. and N. W. Paton (2003). "User

Interface Modelling in UMLi " IEEE Softw. 20 (4).

pp. 62-69.

OOHDM: Schwabe D., Rossi G., and Barbosa. S. (1996)

Systematic Hypermedia Design with OOHDM. In

ACM Conference on Hypertext, Washington, USA.

WebML: Ceri, S. Fraternali, P., Bongio, et al. (2003).

Designing Data-Intensive Web Applications.Morgan

Kaufman.

WSDM: De Troyer, O. and Casteleyn, S. (2003) Model-

ling Complex Processes from web applications using

WSDM. In IWWOST 2003. Oviedo, Spain. pp 1-12.

OOWS: Fons J., P. V., Albert M., and Pastor O. (2003).

Development of Web Applications from Web En-

hanced Conceptual Schemas. ER 2003, LNCS.

Springer.pp. 232-245.

Constantine, L. Canonical Abstract Prototypes for Ab-

stract Visual and Interaction Design. in 10th Interna-

tional Workshop on Design, Specification and Verifi-

cation of Interactive Systems (DSV-IS). 2003. Ma-

deira, Portugal. Springer Link.

Giner, P., V. Torres, and V. Pelechano. Building Ubiqui-

tous Business Process following an MDD Approach. in

XII Jornadas de Ingeniería del Software y Bases de Da-

tos . 2007 (Pending Publication). Zaragoza, Spain.

Valverde, F., et al. A MDA-Based Environment for Web

Applications Development: From Conceptual Models

to Code. in 6th International Workshop on Web-

Oriented Software Technologies (Pending Publication).

2007. Como (Italy).

