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Abstract 
Multi-camera environments allow constructing volumetric 
models of the scene to improve the analysis performance 
of computer vision algorithms (e.g. disambiguating 
occlusion). When representing volumetric results of 
image-based multi-camera analysis, a direct approach is 
to scan the 3D space with regular voxels. Regular 
voxelization is good at high spatial resolutions for 
applications such as volume visualization and rendering 
of synthetic scenes generated by geometric models, or to 
represent data resulting from direct 3D data capture (e.g. 
MRI). However, regular voxelization shows a number of 
drawbacks for visual scene analysis, where direct 
measurements on 3D voxels are not usually available. In 
this case, voxel values are computed rather as a result of 
the analysis on �projected� image data.  

In this paper, we first provide some statistics to show how 
voxels project to �unbalanced� sets of image data in 
common multi-view analysis settings. Then, we propose a 
3D geometry for multi-view scene analysis providing a 
better balance in terms of the number of pixels used to 
analyse each elementary volumetric unit. The proposed 
geometry is non-regular in 3D space, but becomes regular 
once projected onto camera images, adapting the 
sampling to the images. The aim is to better exploit multi-
view image data by balancing its usage across multiple 
cameras instead of focusing in regular sampling of 3D 
space, from which we do not have direct measurements. 
An efficient recursive algorithm using the proposed 
geometry is outlined. Experimental results reflect better 
balance and higher accuracy for multi-view analysis than 
regular voxelization with equivalent restrictions.. 

Keywords:  Multi-view analysis, volume voxelization, 
epipolar geometry. 
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1 Introduction 

The ever decreasing cost of acquisition devices and 
computing capabilities are making multi-camera settings 
increasingly common for visual analysis in controlled 
environments. Multi-view image analysis exploits 
similarity and disparity in images provided by multiple 
cameras observing the scene. This offers promising 
advantages compared to single camera analysis: 

• Multi-view analysis algorithms benefit from 3D cues. 
Non-redundant information extracted from multiple 
cameras disambiguates occlusions and augments the 
available visual information with projections from 
otherwise occluded parts of the scene 

• Multi-view image analysis may also yield additional 
robustness by redundant detection across views. 
Object tracking, face detection, gesture analysis, etc. 
exploit correspondences in the available views by 
checking the consistency of the analysed primitives 
(colour, salient points�) in the various projections 
of the actual 3D scene.  

An implicit or explicit auxiliary 3D representation in the 
form of a volumetric model of the scene is often used as a 
reference for inter-camera registration in multi-view 
analysis when camera calibration is available. One 
usually resorts to an ordered scanning of the 3D space 
(Cheung 2000, Kutulakos 2000), where volumetric units 
(or voxels) are equally sized cubes sequentially analysed 
from their projections in the multiple cameras.   

At high resolutions, with the working 3D space 
sampled at regularly spaced intervals in its orthogonal 
axes, regular voxelization (Kaufman 1993) is adequate 
for volume visualization, modelling and rendering of 
synthetic scenes. Voxelization is also the natural support 
for data from direct 3D measurements in medical imaging 
(CT, MRI, ultrasound), biology, geosciences, industry, 
etc. However, regular voxelization has a number of 
drawbacks for multi-view scene analysis. This is mainly 
due to the fact that measurements on 3D voxels are not 
directly available in multi-camera settings. Voxel features 
are computed rather as a result of the analysis from their 
projections in multiple views; i.e. the analysis takes place 
on �projected� or �image� data. The actual measurements 
available are the data sets of pixels belonging to the voxel 
projections in each view.  

The problem arises from the fact that the sampling 
geometry generated by the regular scanning of the 3D 



space is distorted by the camera projection. Once 
projected onto the camera images, the sampling geometry 
becomes irregular, and the amount of data (pixels) from 
each view available for the analysis of each volumetric 
unit (voxel) depends on its distance to the camera and on 
the intrinsic camera parameters. Furthermore, voxel sizes 
(3D sampling parameters) are not dependent of image 
resolution and have to be carefully chosen considering the 
worst case (e.g. projections of two adjacent voxels should 
not overlap on the same pixel in most of the views). A 
better approach is to oversample the voxel array so that it 
can be guaranteed that each 3D sample is drawn from at 
least a single pixel (Broadhurst 2001).  

Figure 1 illustrates this problem. The projections 
(splats) of one voxel in two different views have varying 
sizes for cameras located at different distances (this is the 
usual case for most voxels in the analysed scene). For 
those views where the splat size is reduced to a few 
pixels, image data will hardly contribute significant 
information to the voxel being analysed. Symmetrically, 
two equally sized voxels project in a different number of 
pixels on the same camera if they are located at different 
distances/orientations in 3D space.  

 

 
Figure 1 : Two projections of the same voxel, as seen by a 

close camera (top) and by a far one (bottom) 

One way to overcome the dispersion in the image data 
for voxel analysis is to assign varying weights to the 
different views when analysing each voxel (Broadhurst 
2001). This might result in a certain lack of �balance� in 
data sets representing each elementary 3D unit across 
multiple views. Alternative approaches introduce space 
discretization which does not rely on regular voxels (Erol 
2005) or use hybrid techniques combining volumetric and 
surface-based approaches (Boyer 2003).  

In this paper we follow such alternative approaches 
and change to an irregular scanning strategy to construct 
the auxiliary 3D model of the scene under analysis. The 
resulting geometry is based on the epipolar constraint 
(Zhang 1998) and is proposed with the aim to better adapt 
3D scene analysis to the available image data. It provides 
a better �balance� for the analysis of volumetric 
elementary units from projected data. In addition, the new 
geometry naturally derives 3D sampling parameters from 
the original resolution of image data.  

The following section analyses regular voxelization 
and provides statistical values showing the dispersion in 
the data used to analyse each voxel. Sections 3 and 4 
define the proposed scanning geometry and outline a 
recursive algorithm to scan 3D space. Section 5 analyses 
statistics of the new geometry and Section 6 compares 
results obtained for an analysis technique to regular 
voxelization. Finally, advantages of the proposed method 
are discussed along with conclusions and future work. 

2 Statistics of Voxel Projection Size for 
Regular Voxelization in Multi-view Analysis 

We have analysed the problem of the dispersion in the 
available image data used to represent each voxel in a 
particular, albeit common, multi-view analysis situation. 
In our experiments, a Smart Room is equipped with 5 
fully calibrated cameras. Four cameras are placed on the 
room corners and the fifth one is mounted on the ceiling, 
providing a zenithal view of the scene.  

A regular sampling geometry with 3 cm sided cubic 
voxels is defined in the 3D working space of 4x5x2 m3. 
We have computed the statistics of the projection size (in 
pixels) for all voxels in the working space. The histogram 
of the voxel projection size is shown in Figure 2 for one 
of the corner cameras (cam1). Table 1 outlines minimum, 
maximum, mean and dispersion values of the voxel 
projection size for all cameras. 
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Figure 2 : Histogram of voxel projection size onto camera 1 for 

all 3x3x3 cm3 voxels in a 4x5x2 m3 working space 

 
 Min 

projection 
size 

Max 
projection 

size 

Mean  
projection 

size 

Standard 
deviation in 

proj. size 
Cam1 4 1797 60 67 
Cam2 4 1864 58 65 
Cam3 4 1650 59 66 
Cam4 4 2155 60 69 
Cam5 2 296 40 22 

Table 1 : Statistics of voxel projection size (in pixels) for 3 cm 
sided voxels in a 4x5x2 m3 working space 

The statistics of the voxel projection size show 
considerable dispersion: standard deviation is of the same 
order as the mean value. This situation is not favourable 
for multi-view analysis algorithms when looking for 
matching visual features in different views or when 
checking the consistency of the analysis across multiple 
projections of the actual 3D scene. The analysis algorithm 
will be using quite different amounts of image data 
(number of pixels projected in each view) for the analysis 
of an individual voxel in 3D space. This is due to the 
dispersion in the projection size of the uniform 
elementary unit employed in this geometry. 

Regular voxelization of 3D space is, therefore, �non-
adapted� to image data for multi-view analysis. At least 
in settings as common as a smart room with 5 evenly 
distributed cameras, voxels project to �unbalanced� sets of 
image data in each camera, from which analysis 
algorithms have to work out feature matches and 
consistency checks. As mentioned before, one way of 
adapting the analysis to the available image data would 



be to avoid giving the same importance to the data set 
(projection) in each view. When the analysis algorithm 
has to make a decision on that voxel (e.g. whether it is 
foreground or background; surface or interior; skin, 
clothing or object�) it will have to take into account the 
amount of pixels in each view informing the analysis 
decision. This strategy depends on the analysis itself and 
does not solve the lack of �balance� of the data sets 
representing each voxel in the different views. The 
dispersion in the projection data sets is due to an arbitrary 
3D scanning geometry chosen to support analysis data. 

3 Proposed 3D Scanning Geometry 

An alternative strategy is �image-based� scanning of the 
3D scene. Matusik introduced the concept of �image-
based� visual hulls (Matusik 2000, Matusik 2001) to 
render an observed scene in real time from a virtual 
camera�s point of view without constructing an explicit 
auxiliary volumetric representation. He claims that the 
advantage of performing geometric computations based 
on epipolar geometry in image space is the elimination of 
resampling and quantization artefacts in volumetric 
approaches. However, his paper focuses on visualization 
and rendering applications rather than visual analysis and 
does not consider the effects of image sampling. We 
follow Matusik�s concept of �image-based� processing, 
but focussing on analysis applications. In particular, we 
propose an image-based recursive scanning algorithm for 
multi-view analysis, and derive the corresponding 
geometry in 3D space. This provides a volumetric 
representation for image data functionally equivalent to 
regular voxelization as volumetric data support for the 
analysis algorithms. The 3D scanning procedure is better 
adapted to the image data than regular voxelization, 
minimizing the dispersion in the amount of data used for 
the analysis of each voxel in the different views.  

The motivation behind the proposed approach is that 
it does not make much sense to scan the 3D space (from 
which we do not have direct measurements) with a 
regular geometry while this results in a non-regular 
geometry once projected on the camera images. The 
actual data we have available in multi-view scene 
analysis applications are visual measurements (pixel data) 
from the camera images, and we better base the scene 
analysis geometry on the available data unless there is a 
clear benefit from not doing so. The proposed procedure 
changes the usual multi-view analysis paradigm adapting 
the analysis strategy to the available image data. Instead 
of scanning 3D space with arbitrary regular voxels �from 
which we do not have direct data�, the proposed scanning 
is natural and regular on the camera images, which are 
divided in a regular way, and the 3D equivalents of such 
divisions generate the volumetric geometry.  

In the next subsections we introduce the basic tools 
defining a 3D geometry adapted to the images. First, we 
define the quadrant as an image region. Then, the cone is 
obtained as back-projection of the quadrant. The conexel 
�elementary volumetric unit for the proposed geometry� 
is obtained by intersection of cones. Finally, we outline a 
recursive algorithm for 3D space scanning in multi-
camera settings based on this geometry, which has proven 
useful for multi-view analysis techniques. 

3.1 Image regions: quadrants 

To avoid dispersion in the amount of image data from the 
different views used in the analysis of a volumetric unit, 
we divide camera images in quadrants. Quadrants are 
defined as regular square shaped, non-overlapping 
regions in the projected images. 3D space scanning will 
be defined based in the geometry generated by the 
quadrants, instead of using the voxel-based geometry.  

The expected behaviour of the proposed approach is 
that the data sets in every image will be balanced when 
scanning a 3D space region: their projections will always 
lie inside the selected quadrants. Furthermore, the 
subdivision of the images in quadrants can be made 
recursive, and the scanning algorithm described at the end 
of this section exploits this possibility. 

3.2 Back-projection of quadrants in 3D: cones 

The cone is the 3D back-projection of a 2D quadrant, also 
known as the projective extrusion of the 2D silhouette 
(Matusik 2000). To obtain the 3D back-projection of a 
quadrant in an image, we compute the back-projected ray 
of the four corners of the quadrant (Garcia 2005). Then, 
we compute the inequations of four planes by combining 
the four ray equations, so that the pixels in the quadrant 
are the projection of the inner volume enclosed by the 
four planes. The Center Of Projection (COP) of the 
camera is the main vertex of the cone, which results in a 
pyramidal shape without a basis.  

An illustration of two such cones computed from their 
corresponding quadrants is shown in Figure 3 for the 
actual settings of cameras 1 and 2 in our smart room. 

3.3 Intersection of two or more cones: conexels 

The elementary volumetric unit in our scanning geometry 
is called conexel 1. We define the conexel as the 3D 
intersection of back projected cones. The cones defining a 
conexel are generated by a selected quadrant in each 
available view. The procedure to obtain a conexel is: 

1. Select a quadrant for every available camera image 
2. Compute back-projected cones for the selected 

quadrants (a set of 4 inequations define each cone) 
3. Obtain volumetric intersection of computed  cones 

Figure 4 presents a 3D view of a conexel obtained as 
the intersection of the two cones shown in Figure 3, 
corresponding to quadrants (2,1) and (1,1) selected from 
the views in cameras 1 and 2, respectively. Clearly, the 
geometry of the conexel is that of a polyhedral visual hull 
and its 3D computation is perhaps not so straightforward. 
We will see that the defined geometry will be implicitly 
used in the proposed scanning algorithm and, unless an 
explicit volumetric representation with conexels is 
required, multi-view scene analysis algorithms do not 
need to compute the 3D conexels. Anyway, computing 
and rendering a 2D �view-dependent� representation of a 
polyhedral hull can be done efficiently (Matusik 2001). 

                                                           
1 Named after �cone element� in analogy with pixel from 
�picture element� and �voxel� from �volume element� 
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Figure 3 : Two cones (bottom) computed as projective 

extrusions of the two camera quadrants (highlighted at top). 
Room floor (colored square) included as visual reference 

 

 

Camera 1 Camera 2 

 
Figure 4 : Conexel (bottom) obtained as the intersection of two 

cones (top). Room floor is again included as reference 

4 Scanning Method 

For multi-view scene analysis purposes, the projection of 
a conexel in every camera can be computed in a fast way, 
without having to calculate its actual 3D geometry and 
project it on every camera image. This is accomplished 
using epipolar geometry. 

In particular, we compute equations of the epipolar 
lines corresponding to the corners of each quadrant in the 
other views using fundamental matrices (Hartley 2000). 
The equations of the epipolar lines are converted to 
inequations (Ma 2003) so that we can define two image 
regions in the current view for every cone generated by 
the quadrant in another view: pixels lying inside the cone 
projection and pixels lying outside. The area limited by 
the inequations generated by all epipolar lines defines the 
projection of the intersection of the cones generated by 
the quadrants from the other views in the current view 
(see Figure 5). Pixels inside the quadrant in the current 
view for the working camera are checked and only those 
also lying inside the projections of all cones are selected 
as belonging to the projection of the conexel on the 
current camera image. 

 

Conexel projection on 
camera 1 

Conexel projection on 
camera 2  

Figure 5 : In general, the reprojection of a conexel (dark grey) 
does not completely cover the generating quadrants (light grey). 

The innermost epipolar lines (corresponding to the corners of 
the quadrant in the other view) are shown in red for each view 

Please note that, when projecting the conexel obtained 
as the intersection of cones onto the camera images, the 
projections do not completely cover the quadrants which 
generated the conexel, as shown in Figure 5. As a 
consequence, when using the proposed geometry with the 
conexel as elementary scanning volume, there will still be 
some dispersion in the amount of image data used for the 
analysis of the volumetric unit in 3D space. Anyway, the 
dispersion is expected to be smaller than with regular 
voxelization. In fact, the number of pixels of the 
projection of the conexel in each camera view will range 
from 1 to the total number of pixels in the quadrant, with 
a dispersion range usually much smaller than the 
dispersion range for regular voxelization computed in 
section 2. We will present statistics to assess this 
statement in a quantitative manner in the results section, 
proving that the proposed image-based 3D geometry is 
better adapted to the image data, and provides a better 
balance in the sets of image data (pixels) characterizing 
the volumetric elementary unit across the available views.  

4.1 Recursive scanning and the m-tree 

The proposed scanning method based on quadrants can be 
implemented in a recursive 3D space scanning algorithm, 
allowing progressive scene analysis approaches. By 
performing a quad-tree decomposition on the projected 
2D image data, each quadrant can be subdivided in four 
sub-quadrants. The algorithm proceeds by dividing the 
resulting quadrant in sub-quadrants until some analysis 
condition is met (e.g. until a foreground or colour 
consistency check yields true). For each division, the 
result will be a new set of conexels, always included in 
the previous one. This strategy can be used to selectively 
enhance the resolution of 3D analysis only in the regions 
where needed �such as objects contours� without using 
the highest resolution in homogeneous space regions, 
where it is not necessary to subdivide further. Therefore, 
a progressive space analysis algorithm based on the 
proposed procedure may start the analysis at rough 
resolution levels using large quadrants (conexels) and 
progressively refine the analysis by recursive subdivision 
to scan at higher resolution only those quadrants 
(conexels) where needed, depending on the analysis 
results at the previous resolution level.  

Figure 6 illustrates the recursive subdivision and its 
representation in an m-tree. The m-tree (Lu 1996) has 
been chosen to store the progressive analysis results of 
the recursive scanning algorithm. Its implementation 
includes a set of functions which allow moving up, down 
and sideways in the tree structure.  
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Figure 6 : Progressive scanning of 3D space by recursive 

subdivision of quadrants and its representation in an m-tree 

4.2 Algorithm allowing 3D recursive scanning 
for progressive multi-view analysis  

As the number of cameras may vary, the proposed 
algorithm will loop depending on the number of cameras. 
A vector is defined to store the current quadrant under 
analysis for every camera and a variable stores the current 
camera in use. The main recursive algorithm to scan 3D 
space based on the geometry defined by the conexels 
works through the following steps: 

1. Set the current camera view to zero (first camera) 
and the chosen quadrant vector to all zeros. 

2. If the currently selected camera index is larger or 
equal to zero go to the next step; otherwise, finish. 

3. For each camera with smaller index than the one 
currently selected, select one quadrant and obtain 
their cone projections onto the currently selected 
camera view. Also obtain cone projections for the 
current quadrant in the currently selected camera 
onto the camera views with smaller index. If any of 
the cameras does not have any pixel belonging to 
the conexel projection, it means that no conexel 
exists for the current set of quadrants. In that case 
jump to step 6; otherwise, go to the next step. 

4. If the currently selected camera is the last one 
available (meaning that a conexel exists for the 
current set of quadrants), count the number of 
pixels of the conexel projection on every camera 
and, if different from zero, go to next step. In any 
other case, select next camera and jump to step 2. 

5. At this step any visual analysis function can be 
implemented requiring a multi-view consistency 
check on the projected pixels corresponding to the 
obtained conexel in 3D. In case that the consistency 
check needs a higher resolution, jump to step 7; 
otherwise, store the results in the m-tree and go to 
the next step. 

6. If the current quadrant in the current camera is not 
the last one, increment it. Otherwise, set it to 0, 
decrement the currently selected camera index and 
repeat this step while the current camera is larger or 
equal than zero. Finally jump to step 2. 

7. Subdivide each quadrant in smaller quadrants in 
every view, go down in the m-tree, call recursively 
this procedure and go up in the m-tree again2. Then 
jump to step 6. 

                                                           
2 The available quadrants in every camera are stored in 
the m-tree 

5 Statistics of Conexel Projection Sizes for the 
Proposed Scanning Geometry 

As stated before, an improvement of analysis results is 
expected due to the fact that the presented scanning 
approach is more natural to image data. In particular, the 
proposed geometry minimizes the dispersion in the 
number of pixels used for the analysis of the elementary 
volumes when projected onto the different camera views.  

As the projections of the conexel onto the camera 
images do not completely cover the quadrants, the 
projection size of the elementary volumetric unit of the 
proposed geometry is not constant. We have compared 
the distribution of the conexel projection size in the same 
3D working space with those of regular voxelization 
shown in section 2. In order to compare the statistics of 
the two geometries, we note that the average projection 
size for 3 cm sided voxels is 60 pixels for camera 1 (see 
Table 1). This value is in between the projection sizes of 
6x6 pixels and 12x12 pixels quadrants. This is why we 
show the distribution for these two cases in Figure 7.  
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Figure 7 : Histogram of voxel projection size for 3 cm sided 
voxels (blue line, same as Figure 2), quadrants of 6x6 pixels 

(green) and quadrants of 12x12 pixels (red) 

The distribution of the conexel projection size has 
completely changed its shape compared with regular 
voxelization. The range of possible values is restricted to 
the maximum quadrant size3 and dispersion values are 
reduced with respect to the regular case, but standard 
deviation is still of the order of the mean value of the 
distribution. 

6 Experimental Results 

In this section we provide an objective validation proving 
that the proposed geometry is better adapted to image 
data in terms of sampling accuracy. This will serve as a 
proof of concept aiming to quantitatively evaluate the 
extent to which the geometry based on conexels improves 
analysis applications in multi-camera settings. Then, we 
illustrate the progressive capabilities of the proposed 
multi-view scanning algorithm in a real application. 

The analysis application chosen for the experiments is 
3D foreground segmentation or Shape-from-Silhouette 
(Landabaso 2005), which has been designed for 3D 
object tracking in the smart room. 

                                                           
3 Note: For these measures, we assume that the recursive 
algorithm goes always down to the highest resolution 
(either 6x6 or 12x12 pixels) for all quadrants in all views. 



In Shape from Silhouette applications input data 
(camera views) are binary images obtained as foreground 
segmentation masks by a 2D foreground extraction 
algorithm (Stauffer 2000) from the original camera views. 
In experiments with real image data, inaccuracies of 2D 
foreground extraction4 might prevent an exact 
quantitative evaluation of the performance of the 
proposed geometry. This is why we have first chosen the 
projections of an ideal object (a sphere) in order to have 
the ground truth available for quantitative comparison. 

6.1 Proof of concept: synthetic sphere 

For this proof of concept, we have generated 5 simple 
synthetic scenes. A sphere with a diameter of 1 meter is 
placed at 5 different positions in the working space of the 
smart room. As ground truth, we generate the images for 
the camera views by projecting with the actual intrinsic 
and extrinsic parameters of every camera. An example of 
one of these input projections is illustrated in Figure 8. 

 

 
Figure 8 : Input projection for camera 2 for the first of the 5 

generated scenes with a simple synthesized sphere. We will take 
this as ground truth because, contrary to real foreground scenes, 

it does not show noise effects, misses or false detections 

We compare the presented image-based scanning 
approach for 3D foreground segmentation algorithm with 
regular voxelization as the competing method. As before, 
the criteria for comparing results is using a voxel side 
that, in average, has a projection size in pixels on camera 
images equal to the number of pixels of the smallest 
quadrant used in the reconstruction. The formula 
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3 / 2
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nPix r
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dist voxCenter COP
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π

π

α

≈

 ⋅ ⋅
≈   

 
= ⋅

 

allows computing an equivalent voxel side from the 
number of pixels we want the voxel to be projected to. 
We approximate the average voxel projection size in 
pixels by the projection size of the central voxel in the 
sphere, and compute the α in the formula for all the 
scenes and for every camera. Then, an average of α is 
computed for every scene along all the available cameras.  

                                                           
4 like misses or false detections, and the presence of noise 
appearing as isolated or grouped foreground pixels  

 Equivalent voxel side for quadrants of 
Synthetic sphere        

scene num. (average α) 3x3 pixels 6x6 pixels 12x12 pixels 

Scene 1 (α=8.256) 1.04 cm 2.088 cm 4.176 cm 

Scene 2 (α=8.222) 1.05 cm 2.092 cm 4.185 cm 

Scene 3 (α=8.160) 1.05 cm 2.100 cm 4.201 cm 

Scene 4 (α=8.226) 1.05 cm 2.100 cm 4.184 cm 

Scene 5 (α=7.104)  1.03 cm  2.251 cm 4.502 cm 

Voxel side size taken: 1 cm 2 cm 4 cm 

Table 2 : Equivalent voxel size side for various quadrant sizes 

For quadrants of 3x3 pixels, the equivalent voxel side 
in all scenes is around 1.1 cm. So, to be in the safe side, 
we take 1 cm as the equivalent voxel side. This is done 
similarly for quadrants of 6x6 and 12x12 pixels, as shown 
in Table 2, resulting in equivalent voxel sides of 2 cm and 
3 cm respectively, with a slight advantage in resolution 
for regular voxelization in all cases. After performing the 
analysis with both methods, the 3D foreground volume 
reconstructed is projected back to all cameras.  

To evaluate the distortion in the projected image 
introduced by the sampling 3D geometry with respect to 
the original ground truth, we define the following metric:  

( ) ( )( , )
( )

area rec gt area rec gtdist rec gt
area gt

∪ − ∩
=  

that is, the distance is computed as number pixel 
differences among reconstructed projection and ground-
truth divided by the number of pixels of ground-truth. 
This distance function is computed for every available 
projection of the sphere.  

In the case of 3x3 pixel quadrants, Table 3 and 
Table 4 list the distance to ground truth for all 5 scenes 
and 5 cameras for regular voxelization and image-adapted  
scanning. Results are given in %, with a multiplicative 
factor of 100 to render them more easily readable. 

 
 Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Average

Cam1 7.40 7.28 7.65 7.57 7.46 7.47 

Cam2 7.25 7.46 7.62 7.74 7.34 7.48 

Cam3 7.68 7.63 7.46 7.24 7.52 7.51 

Cam4 7.62 7.65 7.39 7.49 7.35 7.50 

Cam5 7.31 7.46 7.35 7.38 7.47 7.39 

Average 7.45 7.50 7.49 7.48 7.43 7.47 

Table 3 : Distance to ground-truth for regular voxelization 
with 1 cm sided voxels 

 Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Average

Cam1 2.03 2.55 3.12 2.91 2.56 2.63 

Cam2 2.51 1.95 3.13 2.98 2.83 2.68 

Cam3 3.29 2.97 1.89 2.37 2.76 2.66 

Cam4 2.74 3.19 2.50 2.01 2.81 2.65 

Cam5 2.36 2.37 2.66 2.74 2.52 2.53 

Average 2.59 2.61 2.66 2.60 2.70 2.63 

Table 4 : Distance to ground-truth for image-adapted scanning 
with 3x3 pixel quadrants 



Image-adapted scanning provides more accurate 
reconstruction. The averaged pixel differences (or errors) 
are about 35% of those obtained for regular voxelization 
with quadrants of size 3x3 pixels.  

To illustrate those results, Figure 9 shows pixel 
differences between the ground-truth image and the 
projection from the reconstructed 3D object for the third 
scene projected on camera 2 obtained with regular 
voxelization. Figure 10 is the equivalent result with 
image-adapted scanning with conexels. Please note how 
the dispersion in the amount of data used for analysis in 
regular voxelization causes larger false volumes to 
appear. 

 

 
Figure 9 : Pixel differences between the reconstruction with 
regular voxelization and ground-truth for the third scene on 

camera 2 (voxel side 1 cm) 

 

 
Figure 10 : Pixel differences between the reconstruction with 

image-adapted scanning and ground-truth for the third scene on 
camera 2 (3x3 pixels quadrants)  

 
The cases of 6x6 and 12x12 pixel quadrants yield 

similar results. We have just provided the averaged 
metrics per scene for two pairs of equivalent cases in 
Table 5 and Table 6 for regular voxelization and image-
adapted scanning. Please observe that, at these lower 
resolutions, image-adapted scanning still provides more 
accurate reconstruction. Pixel differences are now about 
50% of regular voxelization. Figure 11 through Figure 14 
show pixel differences between ground-truth and 
projection of the reconstructed sphere for regular and 
image-adapted scanning for the cases of 2 cm and 4 cm 
sided voxels, and the equivalent cases of 6x6 pixels and 
12x12 pixels quadrants. 

 

All cameras  Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Average
Regular with 
2 cm sided 
voxels 

13.23 13.13 13.12 13.11 13.03 13.12 

Image 
adapted with 
6x6 pixels 
quadrants 

6.31 6.68 6.31 6.47 6.86 6.53 

Table 5 : Distance to ground-truth for regular voxelization 
with 2 cm sided voxels and image-adapted scanning with 

(equivalent) 6x6 pixels quadrants 

 
All cameras  Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Average
Regular with 
4 cm sided 
voxels 

24.21 24.22 24.12 24.18 24.03 24.15 

Image 
adapted with 
12x12 pixels 
quadrants 

14.34 14.43 13.17 13.98 14.66 14.11 

Table 6 : Distance to ground-truth for regular voxelization 
with 4 cm sided voxels and image-adapted scanning with 

(equivalent) 12x12 pixels quadrants 

 
 

 
Figure 11 : Pixel differences for the reconstruction with regular 

voxelization (voxel side 2 cm) 

 

 
Figure 12 : Pixel differences for the reconstruction with image-

adapted scanning (6x6 pixels quadrants) 

 



 
Figure 13 : Pixel differences for the reconstruction with regular 

voxelization (voxel side 4 cm) 

 

 
Figure 14 : Pixel differences for the reconstruction with image-

adapted scanning (12x12 pixel quadrants) 

6.2 Real SfS application 

The proof of concept provided above for the 
reconstruction of a synthetic sphere from its silhouette 
projections has shown quantitative improvements for the 
image-based scanning method. We now show qualitative 
results for the proposed 3D scanning geometry with 
actual images from our smart room, in a real application 
of the Shape-from-Silhouette multi-view analysis 
algorithm. In addition, we illustrate the progressive 
performance of the multi-view scanning algorithm 
introduced in section 4.2 in 3D foreground segmentation 
for object tracking (Landabaso 2005). 

Figure 15 and Figure 16 show the re-projected masks 
obtained as result of �progressive� Shape-from-silhouette 
reconstruction by checking foreground consistency in 5 
cameras with increasing resolutions in quadrants sizes. 
Please note that we start at the lowest resolution with only 
4x3=12 quadrants of 192x192 pixels each. We apply the 
consistency check in all views for each conexel, as 
proposed in the Shape-from-Silhouette technique 
(Landabaso 2005), to see whether the given conexel is all 
background, all foreground or mixed. Only in the later 
case when the conexel is partly foreground and partly 
background, we continue the recursion at lower resolution 
by subdividing the quadrant to the next resolution step. 
As soon as a conexel is detected as uniform (either all 
foreground or all background), the progressive analysis 
stops. In these settings, most conexels are only 

background and this efficiently saves further consistency 
analysis for such �uniform� conexels. 

 Figure 17 shows the results of a different progression 
of the 3D scanning algorithm also for Shape-from-
silhouette reconstruction. In this case, we increase the 
number of cameras, starting from an initial reconstruction 
with 2 cameras and then adding the rest one by one. Of 
course, the two dimensions of progressive analysis 
(increasing resolution, increasing number of cameras) can 
be combined at will. The m-tree data structure has proven 
to be a valuable tool to store the data in progressive 
analysis strategies.  

7 Conclusions and Future Work 

We have presented an image-based multi-view analysis 
approach using a 3D space scanning geometry which is 
adapted to the images. Instead of exploring 3D space 
(from which we do not have direct measurements, but 
only projections) with regular geometry, the proposed 
scanning procedure defines a geometry based on image 
quadrants. The geometry builds on the concepts of image 
quadrant, its volumetric extrusion (the cone) and the 
intersection of two cones (the conexel). This strategy 
adapts the multi-view analysis to the available data 
(pixels in camera images), improving the accuracy of the 
analysis from the multiple views. Contrary to the 
arbitrary choice of a voxel size in regular voxelization, 
the sampling geometry in 3D is naturally derived from 
the resolution of the camera images. Furthermore, 
volumetric scanning can be progressively refined as the 
analysis proceeds. 

The results obtained show less dispersion in the data 
sets from the multiple views used to inform analysis 
decisions for each elementary volumetric unit. As a 
drawback, we must remark that dispersion in the amount 
of data used in analysis has not been completely 
cancelled, but it is more controlled than with regular 
voxelization techniques. The results also show increased 
spatial accuracy when compared with regular 
voxelization. This is the expected behaviour because of 
the balanced usage of the directly measured data. With 
the proposed geometry, we do not have to select a voxel 
size for the working space depending on the smallest 
splat in the projection of the elementary voxels. The size 
of the elementary volumetric unit is a consequence of the 
analysis of image-data (the smallest quadrant). 

Furthermore, a recursive algorithm based on the 
proposed 3D scanning geometry has been described. An 
interesting feature of the proposed algorithm is its 
capability for progressive analysis, either by adaptively 
increasing spatial resolution (subdividing quadrants from 
larger to smaller sizes when needed), or by adding new 
cameras to the analysis as their views are made available. 

The main directions for future improvements must 
focus in the study of the connectivity of neighbouring 
conexels, and in how to use connectivity to remove inner 
conexels from analysis results in case of need. Another 
line of study is the set of situations in which conexels are 
defined from a smaller number of cameras to deal with 
cases where a conexel is only visible in a subset of all the 
available cameras. 

 



 
 

 
 

 
 

 
Figure 15 : Results of progressive Shape-from-silhouette 

reconstruction by checking foreground consistency in 5 cameras 
with increasing resolutions in quadrants sizes. From top to 

bottom: 192x192, 96x96, 48x48 and 24x24 pixels per quadrant 
(continued in Figure 16) 

 

 
 

 
 

 
 

 
Figure 16 : (continued from Figure 15) Results of progressive 
Shape-from-silhouette reconstruction by checking foreground 

consistency in 5 cameras with increasing resolutions in 
quadrants sizes. From top to bottom: 12x12, 6x6 and 3x3 pixels 

per quadrant. The last image is the original image with its 
original lens distortion (corrected in a pre-processing step).  

 



 
 

 
 

 
 

 
 

 
Figure 17 : Results of progressive Shape-from-silhouette 

reconstruction with increasing number of cameras. From top to 
bottom: projection of the 3D reconstruction with 2, 3, 4 and 5 

cameras. Bottom image: original (noisy) 2D foreground. 
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