

A Functional Taxonomy for Software WatermarkingJasvir Nagra* Clark Thomborson* Christian Collbergy*Department of Computer ScienceThe University of Auckland,Private Bag 92019Auckland, New Zealand,fjas,cthomborg@cs.auckland.ac.nzyDepartment of Computer ScienceUniversity of ArizonaTucson, AZ 85721 USAcollberg@cs.arizona.eduAbstractDespite the recent surge of interest in digital watermarkingtechnology from the research community, we lack a comprehen-sive and precise terminology for software watermarking. In thispaper, we attempt to �ll that gap by giving distinctive namesfor the various protective functions served by software water-marks: Validation Mark, Licensing Mark, Authorship Markand Fingerprinting Mark. We identify the desirable propertiesand speci�c vulnerabilities of each type of watermark, and weillustrate the utility of our terminology in a discussion of recentresults in software watermarking.Keywords: Watermark, �ngerprint, software licens-ing, authentication, steganography, software author-ship.1 IntroductionDigital watermarking has recently received a
urryof attention from the research community. Variousaspects and applications of watermarking have beenidenti�ed, but we lack an unambiguous and compre-hensive terminology. This leads to some confusionand even apparent contradiction in the published lit-erature.We de�ne watermarking as the process of embed-ding a small amount of identifying information in me-dia and we de�ne such embedded information as a wa-termark. In this paper, we are especially interestedin watermarks that are embedded in software, how-ever, the terms de�ned are equally applicable to othertypes of audio visual media.The type of information identi�ed by a watermarkdepends on the function that a watermark is designedto serve. We, hence further introduce four novel termsto unambiguously and conveniently denote the vari-ous functionally-distinct watermarks for software pro-tection: Authorship Mark, Fingerprinting Mark, Val-idation Mark, and Licensing Mark.In this paper we attempt to clarify some of theconfusion that has arisen in the discussion of water-marks in academic writing. In Section 3, we seek toshow examples were the lack of uni�ed terminologymay cause ambiguity among authors.We develop and support our taxonomic de�nitionsin Sections 4 and 5 below. To aid further investiga-tion, in Sections 6 and 7 we o�er a careful de�nitionof the desirable properties of software watermarks,Copyright c
2001, Australian Computer Society, Inc. This pa-per appeared at the Twenty-Fifth Australasian Computer Sci-ence Conference (ACSC2002), Melbourne, Australia. Confer-ences in Research and Practice in Information Technology, Vol.4. Michael Oudshoorn, Ed. Reproduction for academic, not-forpro�t purposes permitted provided this text is included.

such as fragility and robustness. Our taxonomy andde�nitions enabled us to identify several novel classesof transformations on watermarked objects, which weuse to further re�ne our taxonomy. In Sections 8, 9and 10 we conclude this paper by giving simple ex-amples of software watermarks, considering attackson the various categories of watermarks, and �nallydeveloping what we believe to be a novel categoriza-tion of the attacks on fragile watermarks.2 MotivationAn excellent and authoritative survey of digital wa-termarking commences with the following de�nition:\A digital watermark embeds an imperceptible [em-phasis added] signal into data such as audio, videoand images, for a variety of purposes, including cap-tioning and copyright control" (Miller, Cox, Linnartz& Kalker 1999). In another article, two of the au-thors of this survey assert (we believe rightly) to thecontrary: that some watermarks should be readilyperceptible. \Copy protection applications requirethat a watermark can be read by anyone, even bypotential copyright pirates, but nonetheless only thesender should be able to embed and erase the water-mark" (Cox & Linnartz 1998). Other authors concurwith this requirement of visibility: \By watermarkswe mean `marks' that are readily detectable, even bya casual user, such as a `logo' or `banner' that appearsto be `lightly' printed over each page of a document"(Kaplan 1996).The unadorned term \watermark" is thus deeplyambiguous. Depending on the context, a watermarkmay be required to be invisible, \(usually) indis-tinguishable from the original" (Lacy, Quackenbush,Reibman & Snyder 1998), barely noticeable, or read-ily detectable. Others have noted this di�culty, andhave made admirable (but incomplete) steps towardaddressing it: \Several names have been coined forsuch techniques, and therefore it is necessary to clar-ify the di�erences. Visible watermarks ... are visualpatterns ... very similar to visible paper watermarks.Watermarking ... has the additional notion of robust-ness against attacks" (Kutter & Hartung 2000).Robustness is another contested property of digitalwatermarks. According to the passage just cited, allwatermarks are robust. Elsewhere, we read that dig-ital watermarks are generally designed to be \robust... [so that they will] survive common distortions...[but] In some applications, we want exactly the op-posite of robustness. Consider, for example, the useof physical watermarks in bank notes. The point ofthese watermarks is that they do not survive any kindof copying, and therefore can be used to indicate thebill's authenticity" (Miller et al. 1999).

In view of this de�nitional confusion about the(in)visibility and (non)robustness that may be re-quired of watermarks, we have come to believe thatthe ambiguous term \watermark" should be usedonly in its generic sense if academic, technical or le-gal precision is required. To �ll the resulting lin-guistic gap, we introduce four novel terms to un-ambiguously and conveniently denote the variousfunctionally-distinct digital constructs for softwareprotection, that have been called \watermarks" else-where: Authorship Mark, Fingerprinting Mark, Vali-dation Mark, and Licensing Mark.Other authors have constructed a similar taxon-omy to ours, but for watermarks on media rather thansoftware, by considering functionality. However eitherthey didn't name their categories (Miller et al. 1999)or they didn't identify the full range of generality(Kutter & Hartung 2000).In our survey of the literature, we have identi�eda possible �fth category that we would call SecretMarks. Such marks carry subliminal information formilitary or espionage purposes (Miller et al. 1999);and therefore they are outside the scope of this pa-per. We are concerned only with protective markson software. In our view, Secret Marks are stegano-graphic (\invisible writing") but they should proba-bly not be considered watermarks. They do have along and fascinating history, starting from a mentionin Herodotus (Petitcolas 2000) to recent academic in-quiry (Kurak & McHugh 1992).3 BackgroundThe Oxford English Dictionary de�nes watermarks asbeing marginally perceptible: \a distinguishing markor device impressed in the substance of a sheet ofpaper during manufacture, usually barely noticeableexcept when the sheet is held against strong light"(Simpson & Weiner 2000).The art of media watermarking may have �rstbeen practiced in the Western world in the late thir-teenth century, when discerning Italian customers andmerchants in the town of Fabriano could examine pa-per for embossed watermarks. This was apparently areliable means of identifying the paper mill at whichit was produced, and perhaps even the artisan whosmoothed the paper with a \calendar" stone. (Kutter& Hartung 2000).Over the next seven hundred years, watermark-ing found many further applications. In 1990, the�rst digital watermarks were invented as a protec-tive measure for digital imagery (Tanaka, Nakamura& Matsui 1990), cited in (Kutter & Hartung 2000).Image watermarking has received an ever-increasinglevel of attention since then; a recent survey containsreferences to �fty-four articles on this topic (Dugelay& Roche 2000).Popular image-processing software such asAdobe's PhotoShop, Corel's Photo-Paint, and PaintShop Pro o�er the technically-literate public astraightforward way to embed easily-visible water-marks in their graphic creations (Chastain 2001).Watermarking of software is an even more re-cent development, with a correspondingly smallerlevel of publication activity (Grover 1992), (Holmes1994), (Samson 1994), (Davidson & Myhrvold 1996),(Moskowitz & Cooperman 1998), (Monden, Iidaet al. 1998), (Collberg & Thomborson 1999),(Stern,Hachez, Fran & Quisquater 2000), (Pieprzyk 1999),(Palsberg, Krishnaswamy, Minseok, Ma, Shao &Zhang 2000), (Venkatesan, Vazirani & Sinha 2001).Watermarking is only one of many approaches fordealing with the protection of intellectual property insoftware. Other technical means include the use of aregistration database (Shivakumar & Garc��a-Molina

1996), advanced cryptography with hardware sup-port (e.g. (Ostrovsky & Goldreich 1992), (Nardoneet al. 2001)), obfuscation (Collberg, Thomborson &Low 1998), and tamperproo�ng (Aucsmith 1996).Non-technical means of protection include prosecu-tion under copyright and patent law (Burk 2001), en-forcement of licenses under contract law, appropri-ate business models (Davis 2001) and ethical controls(P
eeger 1997).An approximate determination of the author of asoftware product may be obtained by analysis of whatwe might call Inadvertent Authorship Marks. Thesehave been studied elsewhere (Krsul 1994) and will notbe considered further in this paper.4 SettingWe develop a precise terminology for watermarkingfrom the point of view of the person embedding thewatermark. Where possible, we have kept the ter-minology consistent with terminology generally ac-cepted in the information hiding research community.To illustrate our terminology, we adopt stereotypi-cal names and rules from cryptographic research: Al-ice, author of software O, wishes to distribute O viaher distributor Douglas to her customer, Catherine.According to custom, the adversary is named Bob,who in our scenario wishes to gain �nancially bystealing Alice's intellectual property. Furthermore,to more accurately re
ect the software distributionmodel, we extend this simple scenario to include thepossibility that each of these characters representsmultiple authors, distributors or customers, respec-tively.
Alice
(Author)

Bob
(Adversary)

Catherine
(Customer)

Douglas
(Distributor)

Figure 1: Actors in our analysis of software distribu-tion. The arrows denote the desired
ow of software,which Bob is trying to disrupt.5 Applications of Digital WatermarkingSeveral scenarios in watermarking can be discoveredby considering the interests of each of the playersshown in Figure 1. In particular, there are three\good guys": our authors, Alice; the distributors,Douglas; and consumers, Catherine. Each one hasa di�erent interest to protect. Our adversary, Bobis involved not to protect his own interest but to in-fringe on the interests of the remaining participants.We will discuss Bob's activities in Section 9, when wede�ne the e�ectiveness of watermarks.5.1 Author(s)The most commonly perceived application for water-marking is to identify the author of the software andto protect their intellectual property. In this applica-tion, the objective for our author, Alice is to embed

in her source code a mark that prevents Bob fromclaiming to have authored O. A common variationfor such a scheme would be to allow multiple authorsto alter the original and for each contributor to leavea mark so that a recognizer could identify the contrib-utors to the �nal product, O. We de�ne such marksas Authorship Marks.An Authorship Mark(AM) is a water-mark that embeds in the software, informa-tion identifying its author.Authorship Marks may identify a single author, inwhich case they are called Single Authorship Marks.Alternatively, they may allow a �nite or arbitrarilylarge number of authors, in which case they are calledMultiple Authorship Marks. These latter marks ap-ply when the original author would like additionalcontributors to the source to be able to embed theirown authorship marks.We expect Authorship Marks to be visible androbust. Generally authors want their name to bevisible to the end-user, as an assertion of qualityand/or copyright. Robustness is important as a de-fense against copyright infringement.5.2 Distributor(s)The ability to identify the channel of distribution ofO from Alice to Catherine may be valuable in orderto identify one or more distributors of a particularillegal copy of O. The identi�cation of distributionchannels will also be useful when gathering statistics,for instance about the e�ectiveness of particular dis-tributors or distribution channels. We de�ne a markdesigned to identify the distribution channel as a Fin-gerprinting Mark or a Fingerprint.A Fingerprinting Mark(FM) is a water-mark that embeds information in the soft-ware identifying the serial number or pur-chaser of that software.While Authorship Marks embed the same water-mark in all copies of the same content, FingerprintingMarks allow each distributed copy to be customizedfor each recipient. Such a scheme makes it possiblefor a watermark recognizer to track the distributionhistory of a particular copy of the source. The his-tory may identify only a single distributor; alterna-tively a Fingerprinting Mark may record a successionof agents in a distribution chain, in which case wewould call it a Multiple Fingerprinting Mark.We expect Fingerprinting Marks to be invisibleand robust. Generally the end-user is not interestedin seeing information about the distribution of the ob-ject they are using, and invisibility tends to increasethe robustness of the watermark. Robustness is avery important property of Fingerprinting Marks, insituations where license infringements are suspected.5.3 Consumer(s)At the end-user level, two actors have interests to pro-tect. Firstly the end-user Catherine needs to be ableto ascertain that the version of the software she is us-ing has not been altered in any way. Secondly, theauthor Alice may want to ensure that Catherine isnot violating her license agreement, i.e. that Cather-ine has paid for the software that she is in posses-sion of, and that she is not using an illegal number ofcopies. Accordingly, we de�ne two marks: ValidationMarks to assure non-alteration, and Licensing Marksto control payment.

5.3.1 Validation MarkA Validation Mark(VM) is a watermarkthat embeds in the software, informationverifying that the software is still essentiallythe same as when it was authored.(We will give a precise de�nition of \essentially thesame" in the next section.)Digitally signed Java Applets (Sun Microsystems2001) are Validation Marks by our de�nition becausethey allow the applet sandbox to validate incomingapplets. In fact, like signed applets, Validation Marksoften are a cryptographic digest of the document to beprotected (Nat'l Inst. of Standards and Technology1999). A general scheme for implementing this classof Validation Marks is illustrated in Figure 2.The \Original" document shown in the �gure isthe document or software to be protected. SupposeAlice publishes a paper on watermarking and wishesto embed a Validation Mark to assure readers of itauthenticity. However, she realises that the layout,spacing and font characteristics may need to be al-tered by her publisher (who plays the role of distrib-utors in our scheme). The essence extraction processshown is a function whose input is the original docu-ment, and whose output is invariant for all versions ofthe original document that are essentially the same.In our current example, the essence function wouldstrip presentation information from Alice's document.A cryptographic digest of this \essence" can then begenerated and added to the document by the aggre-gation function shown in the �gure. The aggregationmay be as simple as concatenation, where Alice sim-ply attaches the digest to the document or it may bemore complex.The Marked document can now be distributed.If a reader would like to verify the authenticity ofthe document, the publicly available Veri�er detachesthe body of the document from the digest, runs theessence extractor on the body and computes a digest.If the digest is missing or di�erent from the one com-puted, then the reader knows the document has beenaltered in a way that Alice had not intended.A number of essence-extraction algorithms forplacing Validation Marks on digital imagery havebeen investigated. For example, see (Lin & Chang2000) who distinguish between \robust authentica-tion" in which no perceptible change is allowed in theprotected image, and \content authentication" by a\semi-fragile watermark" which veri�es the semanticcontent. We make this distinction in a lower level ofour taxonomy, by suitable de�nition of what is \es-sentially the same" for a given application.We expect Validation Marks to be fragile and visi-ble. The end-user must be able to detect a ValidationMark to be assured of the integrity of the underlyingobject, and an appropriate level of fragility of a Vali-dationMark provides assurance that the object hasn'tbeen modi�ed to the point that it has become invalid.5.3.2 Licensing MarkA Licensing Mark(LM) is a watermarkthat embeds in the software, informationcontrolling how the software can be used.Licensing Marks for software generally contain a de-cryption key as a fundamental part of their licensecontrol, and the software under license control is gen-erally held in encrypted form. The decryption key willbecome ine�ective if the License Mark is damaged.We thus expect a License Mark to be fragile; and wealso expect it to be invisible, so that it is somewhatmore di�cult for an adversary (Bob, in our scenario)to forge.

Original

Validity Mark

Verifier Document Valid

Document Invalid

PR
IV

A
TE

PU
BL

IC

Extraction
Validation

Calculation

Original

Essence

Essence
Mark

Validity

Mark

Aggregation

Figure 2: A general scheme for a class of Validation Marks
Validation

Watermarking

Licensing Authorship Fingerprinting

RobustFragile

Single Multiple Single MultipleFigure 3: A taxonomy tree for digital watermarkingAfter we develop some mathematical notation inthe next section, we will be able to describe how a Li-cense Mark can be used to limit the number of copiesthat can be made by a licensed user.Figure 3 is a graphical presentation of our taxon-omy for software watermarking.6 Fundamental PropertiesWe adapt the customary mathematical notation forimage watermarking, to give formal expressions andde�nitions for the most important concepts in soft-ware watermark embedding, recognition and othertransformations on software.Let O be a computer program that is available formanipulation in the current state S of a computersystem. We use the notation S = [O; :::] to denote astate S in which there is exactly one copy of O; wewrite S0 = [O;O; :::] to denote a state S0 containingtwo identical copies of O. (We are not particularlyconcerned, in this paper, with the location or addressof O in the state S.)Let ! be a watermark, and E be a watermark em-bedding function, thenE(S; !) = S!where S = [O; :::] is a computer state containing anobject to be watermarked and a desired watermark,and S! = [O! ; :::] is a computer state containing thedesired watermarked object. The corresponding wa-termark recognition function, R, has the property8S! : R(S!) = !

False-recognition of watermarks is not desirable,so we require 8S!; !0 6= ! : R(S!) 6= !0The assertions above must be understood asdesiderata. In any practical setting, to obtain a fea-sible solution, we would be forced to admit a smallprobability of error in watermark recognition.A watermarking algorithm, A = (E ;R), is a com-bination of an embedding function E with its corre-sponding recognition function R.6.1 Visible and Invisible WatermarksIn keeping with the spirit in which visible watermarkis used in academic literature, we use this phrase todescribe a watermarking algorithm A = (E ;R) inwhich the recognition function R is public knowledge.In terms of our scenario of Figure 1, any visible water-mark will be legible to our customer Catherine, andto our adversary Bob, because they know the recog-nition function.We are especially interested in how the recognitionfunction will operate on watermarked objects that un-dergo various transformations T : S ! S, such asthose occurring in data compression, decompilation,etc. We thus formalise our de�nition of \legible" asfollows:We say that a watermarking algorithm, A =(E ;R) is legible after a transformation T if8S! : R(T (E(S; !))) = R(E(S; !))By contrast, in an invisible watermarking algo-rithm, the recognition function (or some critical com-ponent thereof, such as an encryption key or \whereto look for the mark") is not public knowledge. Suchmarks are intended to remain illegible to everyone ex-cept the watermarker (which may be either the Au-thor or the Distributor, in our scenario).6.2 Robust and Fragile WatermarksIn the case of a robust watermark, we want to beassured that the watermark is legible (can be rec-ognized correctly by someone who knows R), aftera su�ciently-mild transformation has been applied.In the case of a fragile watermark, we want to be

assured that the watermark will become illegible ifthe transformation is su�ciently severe. We now for-malise these notions.A watermarking algorithm, A = (E ;R) is robustover a set of transforms T , if A is legible after allT 2 T .Fragility is more subtle than robustness. A use-ful de�nition (as will be seen below) is that a water-marking algorithm, A = (E ;R) is fragile except fora set of transforms T , if A is not legible under anyT 62 T . The mathematically-inclined reader may notethat this is a reasonable way to de�ne fragility as \ex-actly the opposite" of robustness { in conformancewith a prior informal English description elsewhere(Miller et al. 1999).The simplest interesting class of transforms isT identity, which contains only the transform T identitymaking no change to state S.Figure 4 is a Venn diagram showing T identity, aswell as other classes of interest in software watermark-ing.Transforms in the \move" set, T moves, allow theprogramO to be moved to di�erent regions of memorybut not to be duplicated. For convenience we includeT identity as a \null-move" in T moves.We are now able to describe the operation of thecopy-restrictions embodied in the Content Protectionfor Recordable Media (CPRM) scheme proposed bya consortium called the 4C entity (4C Entity 2001a),(4C Entity 2001b), (Orlowski 2000). The 4C Entityconsists of Intel, IBM, Toshiba and Matsushita. TheCPRM proposal for copy-protection involves the en-cryption of copy-protected data on a portable diskor other removable storage device. The data can bedecrypted only by a CPRM-compliant device or ap-plication (unless there is a breach of security, for ex-ample by public disclosure of the cryptographic keysand methods involved). The clever part of the schemeis that some information about the decryption key isstored in a restricted area of the removable storagedevice, inaccessible to devices and applications thatare not CPRM-compliant. Thus if the protected datais copied (without the \permission" of the CPRM de-vice or application) to some other device, it will becopied in encrypted form without its accompanyingdecryption key, and thus it will be unusable. Gen-erally, CPRM licensing will permit the data to bemoved from one CPRM-compliant device to another,but the old copy must be invalidated in the process.This can easily be accomplished by invalidating thedecryption key on the �rst device while the movementis in progress. (We note that there is an unavoidable\race condition" in this invalidation: if the key is in-validated before the movement is complete, then anaborted move will destroy all usable copies of the pro-tected object. In this case, the licensee must applyto the licensor for another copy. If the key is inval-idated only after the movement is complete, then acarefully-timed abortion of the movement has a �-nite, but perhaps inconsequentially-small, chance ofproducing two usable copies.)In terms of our taxonomy, the CPRM system de-scribed above is a License Mark that is fragile underT move.The Content Protection System Architecture (ofwhich the CPRM is a part) speci�es another form ofwatermark for use when the protected data is sentin cleartext form (4C Entity 2001a). It would betempting to call this a License Mark, however it mustbe highly robust rather than fragile { so that it willsurvive the many transformations and signal degra-dations that occur in broadcast media. In our tax-onomy, this second CPSA mark is a FingerprintingMark. In this case the mark identi�es the Distributoras someone who wishes to participate in the copy-

protection system of the CPSA. The highly-robustmark will be recognized by CPSA-compliant storagedevices, so they will refuse accept the protected datafor writing.Returning now to Figure 4, outside of T moves we�nd T limited-copy(n). These are useful for LicenseMarks that allow up to n copies. Each of the trans-forms in T limited-copy(n) have a curious behavior: theydestroy one licensed copy and create two.For example, if we wished to allow a single backupcopy to be created, we would design a License Markthat is fragile under the set of transforms T moves[T1,where T1(S) = � [O2; O3; :::] if S = [O1; :::]S otherwiseThe original software installationmust give rise to thestate S = [O1; :::].We could allow a second backup copy if we in-cluded T2 in the fragility set of our License Mark,where T2(S) = � [O4; O5; :::] if S = [O2; :::]S otherwiseThe scheme can be generalized to allow an arbitrarynumber of copies, if we have a su�cient range of wa-termark values ! = 1; 2; :::; n available in our LicenseMark.Referring again to Figure 4, transformations inT unlimited copy allow an unlimited number of un-changed copies to be made. This set is simply de�nedby adding T [O; :::] = [O;O; :::] to T limited-copy(n) forarbitrary n.Similar-text transforms T similar apply to softwarewhich is written in a high level language and thencompiled to produce a binary. Speci�cally: trans-formations in T similar make alterations to the sourcecode that results in no changes to the actual �nalbinary after compilation. These include add, dele-tion or modi�cation of comments, and in some casesvariable and method names. We give a name to thisset of transforms so that we can succinctly describethe robustness of simple watermarks that are carriedin program text. For example, an Authorship Markrobust to T similar might be a comment bearing theAuthor's name. Such marks are common in open-source code; we would say their security is based onthe ethical and social constraints in the open-sourcecommunity, rather than on the trivial e�ort requiredto strip comments from source code.Outside of trusted communities, robust marksmust survive at least trivial attacks, so we turn againto Figure 4 to consider the T state-preserving trans-forms. Such transforms are relevant only to exe-cutable software. They may adjust the software codearbitrarily, but they can not change the data struc-tures built by the software during its execution. Dy-namic software watermarks are robust to such trans-forms, however static software watermarks are not(Collberg & Thomborson 1999).In our exploration of Figure 4 we have now passedthe outer limit of current technology. An ideal ro-bustness for Authorship and Fingerprinting Marks,in many applications for software protection, wouldbe over the set T semantic-preserving. Transforms inthis set must preserve the observable behavior of theprogram, but they may change all other aspects.Theoretical computer scientists have recentlymade some intriguing arguments about the impossi-bility of making a watermark that will withstand anattack by someone who is able to search through a

Moves (Destructive copy)

Identity

Limited Copy

Minor cropping

Major Cropping (Not completely erased)

Erasing (No correlation to original)

(No observable changes)
Semantic Preserving

State Preserving
(No internal state changes)

Similar Text
(No major changes to executable)

(No changes)
Unlimited Copy

Figure 4: Classes of transformationssu�ciently wide variety of semantic-preserving trans-forms (Barak et al. 2001). We are still evaluatingthese arguments.Conceivably, software watermarks could be de-signed to survive the T minor-cropping transforms,which preserve most of the semantics of the protectedobject. The ultimate level of robustness in softwarewatermarking would be an algorithm that is robust toall T major-cropping transforms. Such transforms mustpreserve at least some of the original semantics, andwould be very useful when protecting the intellectualproperty in each module of a large software system.It is obviously impossible for any watermark to berobust to T erasing transformations, which eradicateall information about the protected object (perhapsby over-writing it with information about some otherobject).7 Other Important PropertiesIt is a common practice to compare the e�ectivenessof di�erent watermarking schemes using metrics forvisibility, robustness, e�ciency, and �delity (Milleret al. 1999, Voyatzis, Nikolaidis & Pitas 1998). How-ever, as noted in the Introduction, metrics of visibil-ity and robustness would have di�erent meaning anddesirability depending on the type of mark being eval-uated. In the previous section, we indicated how visi-bility and robustness could be evaluated qualitatively,by considering the class of transforms after which thewatermarking algorithm is guaranteed to remain leg-ible. Similarly, invisibility and fragility could be eval-uated by considering the class of transforms such thatany transform outside this class is guaranteed to ren-der the watermarking algorithm illegible.In this section we brie
y discuss the other impor-tant properties of watermarks.7.1 E�ciencyThere are two aspects of watermarking e�ciency thatneed to be evaluated. These are, �rstly, the compu-tational cost involved in developing, embedding andrecognizing marks; and secondly, the impact on therunning time and memory consumption of embeddinga watermark into a program.

7.1.1 Developer Time CostsOften, before a watermark can be embedded into soft-ware, the software needs to be \prepared" in someway. This generally involves annotating the sourcecode to indicate the locations where the watermarkshould reside, the parts of the source code that itshould avoid (for example, highly optimized or ex-tremely fragile sections of code) and the informationthat should be embedded. Depending on the water-marking scheme, the cost of this preparation phasemay vary.In one static watermarking scheme, \a dummymethod (of a class), which will never be executed, isappended to a target Java source program" (Monden,Iida & ichi Matsumoto 2000). Presumably, since themethods is never executed, any arbitrary method in-serted would su�ce, however, unless some care istaken in ensuring the inserted method appears similarto other methods in the source, an adversary may beable to quickly identify these methods that carry thewatermark. The ability to generate plausible look-ing methods that fool a human adversary may bedi�cult to automate fully and would require the in-tervention of a developer to be robust in practice.Also, a well-designed \opaque predicate" (Collberget al. 1998) must be added to guard a plausible (butnever-executed) call to the method, otherwise it willbe easily eliminated as dead-code.An even greater amount of developer time is re-quired to embed watermarks using the current ver-sion of the SandMark system (Collberg & Townsend2001). This system requires annotations throughoutthe source, to de�ne points where the code to generatedynamic watermarks may be inserted.We are not aware of any quantitative research onthe developer time costs of various techniques for soft-ware watermarking. However we would expect to seea tradeo� between robustness and developer time, be-cause writing an Authorship Mark into a comment�eld takes only a trivial amount of a developer's time.7.1.2 Embedding and Recognition TimeCostsUsually watermarking consists of two operations thatoccur at di�erent times. These are, the operationembedding a watermark into a source program and

the operation to recognize a watermark in an existingapplication.In most applications, a time consuming embeddingmethod would be acceptable in exchange for otherbene�cial properties. This is because most softwareis produced slowly. However, for other applications,such as livestream video or audio, a fast embeddingmethod would be critical.Similarly, the need for fast recognition of water-marks vary from application to application.For some applications, it may in fact be desirableto have a recognizer that works slowly in order to stalloracle attacks. An oracle attack is where an adversaryhas access to the recognizer and makes small changesto the software until the watermark recognizer fails.Such a system would be particularly bene�cial for wa-termarks that would need to be recognized only oc-casionally.7.1.3 Runtime CostsThe runtime cost of a watermark is the increase inmemory consumption and slow down in the runningof a watermarked software compared to the same soft-ware without watermarks. Inserting software water-marks can result in software that runs more slowly oris considerably larger than the unwatermarked ver-sion. Whilst it is clear that some static marks such asthose that use dummy methods or instruction order-ing to encode marks will have minimal impact on theruntime e�ciency, experimentation is required to es-tablish the e�ciency of complex dynamic watermarks.Experimental results (Palsberg et al. 2000) indi-cate that \planted plane cubic tree" dynamic water-marks (Collberg & Thomborson 1999) increase therunning time of a typical programs by no more than7%.7.2 FidelityA concept that is closely related to visibility is �delity.We de�ne Fidelity as \the extent to which embeddingthe watermark deteriorates the original content". Ina software context, this measures how much a water-mark introduces errors into a piece of software or howmuch it changes its stability.Ideally a watermark preserves the entire seman-tics of a program, however, this may not be possi-ble and occasionally not even desired (Moskowitz &Cooperman 1998).Some watermarks may depend on highly unusualinput to activate a copyright display. These wa-termarks are known as Easter Eggs (Wolfsites LLC2001), and they su�er from some speci�c problems.For example, if the input that displays the Easter Eggshould instead activate some other component in thesystem, errors could be introduced into an otherwisecorrect program.The distinction between visibility and �delity mayrequire some clari�cation. A mark is visible or invis-ible by intent, depending upon the purpose: a copy-right notice should be visible, while other marks maybe invisible to avoid attacks based on an adversaryknowing the location of the mark. Fidelity is con-cerned with how usable (semantically accurate) a pro-gram remains, in spite of the insertion of the water-mark. The Netscape copyright message of Figure 10has high �delity, despite its high visibility, because itintroduces little if any deterioration in the correctnessof the program as perceived by its users.8 ExamplesIn this section we give some simple examples of soft-ware watermarks, to illustrate how visible and invisi-

ble marks might be embedded. We begin by pointingout a fundamental technological distinction between\static" and \dynamic" software watermarks. Thisdistinction does not arise in non-executable media.A static watermark is de�ned in (Collberg &Thomborson 1999) as one which is stored in the ap-plication executable itself. For a simple example, con-sider the program in Figure 5. This program can bewatermarked by inserting a simple visible, static wa-termark, namely a print statement that displays anauthorship notice as shown in Figure 6.main() {int a = 10;int b = 20;print(a+b);} Figure 5: Original unwatermarked programAlternatively, an invisible static watermark couldbe used where the watermark is encoded as the order-ing of the assignment statements as shown in Figure7. In this case, the encoding is susceptible to attackswhere the attacker, hoping to destroy the mark, ran-domly reorders statements in a way that maintainsthe semantics of the original.main() {int a = 10;int b = 20;print("Authored by Alice");print(a+b);} Figure 6: Visible Static watermarked programOn the other hand, dynamic watermarks are storedin a program's execution state, rather than in the pro-gram code itself (Collberg & Thomborson 1999). InFigure 8, our original program is altered to introducea variable W, our dynamic watermark.main() {int b = 20;int a = 10;print(a+b);} Figure 7: Invisible Static watermarked program8.1 Visible Authorship MarksIt is common for software to display a copyright noticeas it starts up, or as an easily accessible menu option.See Figure 9.8.2 Invisible MarksThe simplest kind of \invisible marks" are those thatembed strings in the software itself, as in the exam-ple of Figure 6. In this case, the watermark recog-nizer is extremely simple, and involves merely look-ing through the binary for these strings. We illustratethis simple recognition process for a commercial pro-gram in Figure 10.The static-string watermarking algorithm of Fig-ures 6 and 10 su�ers from an obvious shortcoming:an adversary may easily locate, and then modify, thestrings that are serving as watermarks. In order tomake it more di�cult to �nd such watermarks, the

CM version 4e1, Copyright (C) 1990, 1991, 1992, 1993, 1994 Aubrey Jaffer.SCM comes with ABSOLUTELY NO WARRANTY; for details type `(terms)'.Figure 9: Copyright notice displayed by SCM, a scheme interpreterjas@firebird jas\$ strings `which netscape` | grep Copyright\# Copyright Netscape Communications Corp (C) 1996, 1997bnlib 1.1 Copyright (c) 1995 Colin Plumb.Copyright (C) 1995, Thomas G. Lane* Copyright (C) 1998 Netscape Communications Corporation. All Rights"The CPS and this certificate are copyrighted: Copyright (c) 1997 VeriSign, ""Copyright (c)1996, 1997 VeriSign, Inc. All Rights Reserved. CERTAIN "CopyrightCopyright [c] 1995 INSO Corporationinflate 1.0.4 Copyright 1995-1996 Mark Adlerdeflate 1.0.4 Copyright 1995-1996 Jean-loup Gaillyjas@firebird jas\$Figure 10: Copyright notices embedded in Netscape. Note that not all of these messages are in fact displayedwhile running the software.main() {int a = 10;int b = 20;int W = b*a*10;print(a+b);} Figure 8: Dynamic watermarked programcontents of the string could be encrypted or encodedto appear part of the program data. Also, variousforms of tamperproo�ng have been proposed, so thatit becomes more di�cult for the adversary to mod-ify the watermarked program without damaging ordestroying its functionality.Alternatively, in an invisible watermarking schemeproposed in (Monden et al. 1998), the authorship in-formation is encoded in the choice of opcodes andoperand arguments. This encoding is then insertedas dummy methods which are known not to be exe-cuted. The drawbacks of this method were discussedin Section 7.1.1.All the above methods su�er from the problemthat the location of the watermarks can be straight-forwardly deduced and removed, because the water-marks and software are not highly dependent on eachother.In (Stern et al. 2000), the authors propose en-coding watermarks by hiding bits of information inthe free choice of synonymous instruction sequencesfor live code, for example by using a MOV instruc-tion instead of a PUSH instruction in x86 machinecode. Each MOV could represent a \0" (in contextswhere a PUSH could be substituted), and each PUSHcould represent a \1". Regrettably, the authors donot discuss what seems to be an obvious threat { ouradversary Bob could easily \
atten" the watermarkby rewriting the code to use only MOV instructions.Some complex sets of synonyms may be resistant tothis attack.Some subtle attacks on invisible watermarks havebeen identi�ed, leading to a requirement that theembedding process for such marks be \nonquasi-invertible" (Craver, Memon, Yeo & Yeung 1997).9 AttacksWe now focus our attention on our attacker, Bob. Hisgoal is to disrupt any watermarking system and his

methods will vary greatly depending on whether thewatermark he is attacking is robust or fragile.9.1 Attacking Robust MarksThe principal kinds of attacks de�ned in (Collberg &Thomborson 1999) against robust marks are subtrac-tive attacks, distortive attacks and additive attacks.A subtractive attack is where Bob estimates theapproximate location of the watermark and attemptsto crop it out su�ciently that while what remains re-mains useful, the watermark is no longer recognizable.On the other hand, in a distortive attack, an ad-versary makes uniform distortive changes throughouta program, and hence to any watermarks it may con-tain with the intention that the watermarker can nolonger recognize her mark.Finally, in an additive attack, the attacker addshis own watermark either overriding the original wa-termark completely or making it impossible to detectwhich watermark was applied �rst and hence is theauthentic one.In addition to these attacks, it is also possible toprevent a conclusive determination about the owner-ship of a watermark if an adversary is able to intro-duce confusion about the identity of the \real" wa-termark recognizer (Craver et al. 1997).9.2 Attacking Fragile MarksAttacks against fragile watermarks have not been dis-cussed extensively in the literature. These require ouradversary Bob to take a di�erent approach than whenhe attacks robust marks. So far we have identi�edthree broad classes of attacks on fragile watermarks.9.2.1 Sneaking around WatermarksAn adversary may try to �nd and apply a set ofessence preserving transforms that nevertheless fail tomaintain the authors intent. Such an attack becomesmore likely if the size of the set of essence preservingtransforms is large or these transforms interact witheach other in ways that are not easily apparent.For example, earlier in this paper we introducedan example of Alice authoring a paper and addinga Validation Mark to it. This Mark was designedto be fragile to all transforms except those that al-tered layout, font and spacing so that a user couldverify the document meant what Alice had intendedit to mean. However, an adversary may be able to

introduce fontsets that display some letters as otherletters. By selectively applying these fonts he altersthe apparent meaning of the document. However, be-cause the transformation is merely one of changingfonts, it is allowed by Alice, and will not disturb herfragile Validation Mark.
People you can trust
1. Alice
.

People you can trust
1.
.
Bob

Original document Docuement as it appears to readers
with Adversary’s font

Font alteration

Adversary’s font _

A B C ... c ... e ... i ... l ...Alice’s original font

B B C _...b ...o

Figure 11: Substituting-fonts attack against a Vali-dation Marked document9.2.2 Reinserting Fragile WatermarksIf Bob has access to Alice's watermark embedder,then it is simple for him to make arbitrary changes toher software. He merely needs to embed a new fragilewatermark, to validate the altered version.In our example, this would be akin to Bob ac-quiring Alice's private key and digest algorithm, thencreating a new digest for his altered version of thedocument.9.2.3 Spoo�ng the RecognizerThe discussion of the watermark recognizer assumesthat a customer wishing to verify the authenticity ofa document is able to acquire the verifying securely.However, this may not necessarily be the case. Anadversary may create a fake recognizer that ignoresthe absence of the author's fragile Validation Markand validates the document anyway. This attack isalso potent against robust watermarks (Craver et al.1997).10 ConclusionSoftware watermarks can be classi�ed based on thepurpose of the mark. We have identi�ed just fourprotective purposes in our survey of the literatureto date. Depending on the speci�c purpose, di�er-ing combinations of properties such as robustness orfragility, perceptibility or invisibility, �delity, and ef-�ciency will be required. We introduced some newterminology to support our brief survey of the cur-rent state of the art in software watermarking.References4C Entity (2001a), `Content protection system archi-tecture, revision 0.81', Available http://www.4centity.com/data/tech/cpsa/cpsa081.pdf,August 2001.4C Entity (2001b), `Policy statement on use ofcontent protection for recordable media,(CPRM) in certain applications', Avail-able http://www.4centity.com/data/tech/cprmfactsheet.pdf, August 2001.

Aucsmith, D. (1996), Tamper resistant software: Animplementation, in R. J. Anderson, ed., `Infor-mation Hiding (Proceedings of the First Interna-tional Workshop, IH'96), LNCS 1174', Springer,pp. 317{333.Barak, B. et al. (2001), `On the (im)possibility ofobfuscating programs (extended abstract)'.Available http://www.wisdom.weizmann.ac.il/~oded/obfuscate.html, August 2001.Burk, D. L. (2001), `Copyrightable functions andpatentable speech', Communications of the ACM44(2), 69{75.Chastain, S. (2001), `Protecting graphics on theweb'. Available http://graphicssoft.about.com/cs/protection1, August 2001.Collberg, C. & Thomborson, C. (1999), Software wa-termarking: Models and dynamic embeddings,in `Symposium on Principles of ProgrammingLanguages', pp. 311{324.URL: citeseer.nj.nec.com/collberg99software.htmlCollberg, C., Thomborson, C. & Low, D. (1998),Manufacturing cheap, resilient, and stealthyopaque constructs, in `Proc. 25th ACMSIGPLAN-SIGACT Symposium on Principles ofProgramming Languages 1998, POPL'98', SanDiego, CA (USA), pp. 184{196.Collberg, C. & Townsend, G. (2001), `Sandmark:Software watermarking for java'. Availablehttp://www.cs.arizona.edu/sandmark/, Au-gust 2001.Cox, I. & Linnartz, J.-P. (1998), `Some generalmethods for tampering with watermarks', IEEEJournal on Selected Areas in Communications16(4), 587{593.Craver, S., Memon, N., Yeo, B.-L. & Yeung, M. M.(1997), On the invertibility of invisible water-marking techniques, in `IEEE Signal ProcessingSociety 1997 International Conference on ImageProcessing (ICIP'97)', Santa Barbara, Califor-nia.Davidson, R. L. & Myhrvold, N. (1996), `Methodand system for generating and auditing a signa-ture for a computer program', US Patent number5,559,884.Davis, R. (2001), `The digital dilemma', Communica-tions of the ACM 44(2), 77{83.Dugelay, J.-L. & Roche, S. (2000), A survey of currentwatermarking techniques, in S. Katzenbeisser &F. Petitcolas, eds, `Information Hiding: Tech-niques for Steganography and Digital Water-marking', Artech House, pp. 121{148.Grover, D. (1992), The Protection of Computer Soft-ware: Its Technology and Applications, TheBritish Computer Society Monographs in Infor-matics, second edn, Cambridge University Press,chapter Program Identi�cation.Holmes, K. (1994), `Computer software protection',US Patent number 5,287,407.Kaplan, M. A. (1996), `Ibm cryptolopes tm, superdis-tribution and digital rights management', Avail-able http://www.research.ibm.com/people/k/kaplan, August 2001.

Krsul, I. (1994), Authorship analysis: Identi-fying the author of a program, TechnicalReport CSD-TR-94-030, Computer ScienceDeparment, Purdue University. Available:ftp://ftp.cerias.purdue.edu/pub/papers/ivan-krsul/krsul-spaf-authorship-analysis.ps, Novem-ber 2000.Kurak, C. & McHugh, J. (1992), A cautionary noteon image downgrading, in `Proceedings of theEighth Annual Computer Security ApplicationsConference', San Antonio, TX, USA, pp. 153{159.Kutter, M. & Hartung, F. (2000), Introduction towatermarking techniques, in S. Katzenbeisser &F. Petitcolas, eds, `Information Hiding: Tech-niques for Steganography and Digital Water-marking', Artech House, pp. 97{120.Lacy, J., Quackenbush, S. R., Reibman, A. R. &Snyder, J. H. (1998), Intellectual property pro-tection systems and digital watermarking, inD. Aucsmith, ed., `Information Hiding (Pro-ceedings of the Second International Workshop,IH'98), LNCS 1525', Springer, pp. 158{168.Lin, C.-Y. & Chang, S.-F. (2000), Semi-fragile wa-termarking for authenticating JPEG visual con-tent, in `SPIE International Conf. on Securityand Watermarking of Multimedia Contents II,vol. 3971(13), EI '00', San Jose, USA.Miller, M., Cox, I., Linnartz, J.-P. & Kalker, T.(1999), A review of watermarking principles andpractices, in K. Parhi & T. Nishitani, eds, `Dig-ital Signal Processing in Multimedia Systems',Marcell Dekker Inc., pp. 461{485.Monden, A., Iida, H. & ichi Matsumoto, K. (2000),A practical method for watermarking java pro-grams, in `The 24th Computer Software and Ap-plications Conference'.Monden, A., Iida, H. et al. (1998), A watermarkingmethod for computer programs (in Japanese), in`Proceedings of the 1998 Symposium on Cryp-tography and Information Security, SCIS'98',Institute of Electronics, Information and Com-munication Engineers. Available http://tori.aist-nara.ac.jp/jmark, August 2001.Moskowitz, S. A. & Cooperman, M. (1998), `Methodfor stega-cipher protection of computer code', USPatent number 5,745,569.Nardone, J. et al. (2001), `Tamper resistant methodsand apparatus', US Patent 6,178,509 B1.Nat'l Inst. of Standards and Technology (1999),`Digital signature standards', FIPS Publica-tion 186. Available http://www.itl.nist.gov/fipspubs/fip186.htm.Orlowski, A. (2000), `Everything you ever wanted toknow about CPRM, but ZDNet wouldn't tellyou...', The Register . Available http://www.theregister.co.uk/content/2/15718.html,August 2001.Ostrovsky, R. & Goldreich, O. (1992), `Compre-hensive software system protection', US Patentnumber 5,123,045.Palsberg, J., Krishnaswamy, S., Minseok, K., Ma,D., Shao, Q. & Zhang, Y. (2000), Experiencewith software watermarking, in `Proceedings ofthe 16th Annual Computer Security Applica-tions Conference, ACSAC '00', IEEE, pp. 308{316.

Petitcolas, F. (2000), Introduction to information hid-ing, in S. Katzenbeisser & F. Petitcolas, eds,`Information Hiding: Techniques for Steganogra-phy and Digital Watermarking', Artech House,pp. 1{14.P
eeger, C. P. (1997), Security in Computing, 2ndedn, Prentice Hall.Pieprzyk, J. (1999), Fingerprints for copyright soft-ware protection, in M. Mambo & Y. Zheng, eds,`Proceedings of the Second International Work-shop on Information Security, ISW'99 (LNCS1729)', Springer, Germany, pp. 178{.Samson, P. R. (1994), `Apparatus and method for se-rializing and validating copies of computer soft-ware', US Patent number 5,287,408.Shivakumar, N. & Garc��a-Molina, H. (1996),Building a scalable and accurate copy detec-tion mechanism, in `Proceedings of the FirstACM International Conference on DigitalLibraries DL'96', Bethesda, MD (USA). Avail-able http://www.acm.org/pubs/contents/proceedings/dl/226931/, August 2001.Simpson, J. A. & Weiner, E. S. C., eds (2000), OxfordEnglish Dictionary, second edition edn, OxfordUniversity Press, p. 176. Entry 5"watermark".Stern, J. P., Hachez, G., Fran c. K. & Quisquater, J.-J. (2000), Robust object watermarking: Applica-tion to code, in A. P�tzmann, ed., `InformationHiding (Proceedings of the Third InternationalWorkshop, IH'99), LNCS 1768', Springer, Ger-many.Sun Microsystems (2001), `Security and signed ap-plet', Available http://jsp2.java.sun.com/products/plugin/1.3/docs/netscape.html.Tanaka, K., Nakamura, Y. & Matsui, K. (1990),Embedding secret information into a ditheredmulti-level image, in `Conference Record of theMilitary Communications Conference, MILCOM'90: A New Era, Vol. 1', IEEE, pp. 216{220.Venkatesan, R., Vazirani, V. & Sinha, S. (2001),A graph theoretic approach to software water-marking, in `Information Hiding (Proceedingsof the Fourth International Workshop, IH'01)',Springer.Voyatzis, G., Nikolaidis, N. & Pitas, I. (1998), Digi-tal watermarking: an overview, in `9th EuropeanSignal Processing Conference (EUSIPCO'98)',Island of Rhodes, Greece, pp. 9{12.Wolfsites LLC (2001), `The Easter egg archive: Hid-den secrets in software, movies, music andmore!'. Available http://www.eeggs.com, Au-gust 2001.

