
Putting Integrated Information in Context:
Superimposing Conceptual Models with SPARCE

1Sudarshan Murthy, 1David Maier, 1Lois Delcambre, 2Shawn Bowers
1Department of Computer Science and Engineering

OGI School of Science & Engineering at OHSU
20000 NW Walker Road, Beaverton, OR 97006 USA

2San Diego Supercomputer Center
University of California, San Diego

9500 Gilman Drive, La Jolla, CA 92093 USA

{smurthy, maier, lmd}@cse.ogi.edu bowers@sdsc.edu

Abstract
A person working with diverse information sources—with
possibly different formats and information models—may
recognize and wish to express conceptual structures that
are not explicitly present in those sources. Rather than
replicate the portions of interest and recast them into a
single, combined data source, we leave base information
where it is and superimpose a conceptual model that is
appropriate to the task at hand. This superimposed model
can be distinct from the model(s) employed by the
sources in the base layer.

An application that superimposes a new conceptual model
over diverse sources, with varying capabilities, needs to
accommodate the various types of information and dif-
fering access protocols for the base information sources.
The Superimposed Pluggable Architecture for Contexts
and Excerpts (SPARCE) defines a collection of architec-
tural abstractions, placed between superimposed and base
applications, to demarcate and revisit information ele-
ments inside base sources and provide access to content
and context for elements inside these sources. SPARCE
accommodates new base information types without alter-
ing existing superimposed applications. In this paper, we
briefly introduce several superimposed applications that
we have built, and describe the conceptual model each
superimposes. We then focus on the use of context in
superimposed applications. We describe how SPARCE
supports context and excerpts. We demonstrate how
SPARCE facilitates building superimposed applications
by describing its use in building our two, quite diverse
applications.

Keywords: Conceptual modelling, superimposed informa-
tion, software architecture, excerpts, context, SPARCE..

1 Introduction
When a physician prepares for rounds in a hospital inten-
sive care unit, she often creates a quick synopsis of im-
portant problems, with relevant lab tests or observations,
for each patient, as shown in Figure 1. The information

Copyright © 2004, Australian Computer Society, Inc. This
paper appeared at the 1st Asia-Pacific Conference on
Conceptual Modelling (APCCM 2004), Dunedin, New Zealand.
Conferences in Research and Practice in Information
Technology, Vol. 31. Sven Hartmann and John Roddick, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

is largely copied from elsewhere, e.g., from the patient
medical record, or the laboratory system. Although the
underlying data sources use various information
structures, including dictated free text, tabular results and
formatted reports, the physician may organize the
selected information items into the simple cells or groups
as shown in Figure 1 (without concern for the format or
information model of the base sources). Each row
contains information about a single patient, with the four
columns containing patient identifying information, (a
subset of) the patient’s current problems, (a subset of)
recent lab results or other reports, and notes (including a
“To Do” list for the patient). While the information
elements selected for this synopsis will generally suffice
for the task at hand (patient rounds), the physician may
need to view an element (such as a problem or a lab
result) in the original source [Gorman 2000, Ash 2001].
However, this paper artefact obviously provides no means
of automatically returning to the original context of an
information element.

In an ICU, we have observed a clinician actively working
with a potentially diverse set of underlying information
sources as she prepares to visit a patient, selecting bits of
information from the various information sources, orga-
nizing them to suit the current purpose, possibly
elaborating them with highlighting or annotation, or mix-
ing them with new additional information, including new
relationships among bits of information [Gorman 2000].

In our work [Delcambre 2001], we have put forth the
notion of superimposed information for use in such sce-
narios. The superimposed layer contains marks, which
are encapsulated addresses, to the information elements
of interest in the base layer. More than that, the superim-
posed layer may contain additional information (beyond
marks) and may be structured according to an appropriate
conceptual model. We are particularly interested in
viewing and manipulating base information using tools
appropriate for the information source (e.g., Microsoft
Word for .doc files, Adobe Acrobat for .PDF files, and an
electronic medical record system for patient data). We
have built several superimposed applications that use
conceptual models that are quite different from those of
any of the underlying base information sources.

In past work we have implemented superimposed
applications and models that rely solely on the ability of a
base application to create a mark and to return to the
marked region. In this paper, we explore the use of
excerpts and context for marks in superimposed applica-

tions. An excerpt consists of the extracted content for a
mark and the context contains additional descriptive in-
formation (such as section heading and font
characteristics) about the marked information.

In Section 2 we present two superimposed applications
that superimpose a new conceptual model over the base
information (which is largely text documents), and makes
use of excerpt and mark capabilities. In Section 3 we
describe the notion of excerpts and contexts in more
detail and provide the rationale for using middleware to
access them. The main contribution of this paper is our
architecture for building superimposed applications called
the Superimposed Pluggable Architecture for Contexts
and Excerpts (SPARCE), presented in Section 4. This
architecture makes it easy for a developer to build
superimposed applications, including those that
superimpose a conceptual model that is different from
any of the base conceptual models. The paper concludes
with a discussion of how to structure and access context,
a summary of related work, and conclusions and plans for
future work, in Sections 5, 6, and 7, respectively.

2 Sample Applications
We present two superimposed applications built using
SPARCE to demonstrate the ability to superimpose
different conceptual models, over the same corpus of base
information. These applications are designed for use in
the Appeals Decision Process in the Forest Services of
the US Department of Agriculture (USFS).

USFS routinely makes decisions to solve (or prevent)
problems concerning forests. The public may appeal any
USFS decision after it is announced. The appeal process
begins with a set period of time during which an appellant
can send in an appeal letter that raises one or more issue
with a USFS decision or the decision-making process. A
USFS editor processes all appeal letters pertaining to a
decision and prepares an appeal packet for a reviewing
officer. An appeal packet contains all documents a
reviewing officer might need to consult while formulating
a recommended decision about the complete set of issues
raised in the appeals. This set of documents is called the
Records, Information, and Documentation (RID) section

of the appeal packet. This section contains a RID letter
that lists the issues raised and a summary response for
each issue. An Editor synthesizes a RID letter using
documents in the RID such as the Decision Notice, the
Environmental Assessment, the Finding of No Significant
Impact (FONSI), and specialists’ reports. In the RID
letter, the editor presents information from other
documents in a variety of forms such as excerpts,
summaries, and commentaries. In addition, the editor
documents the location and identity of the information
sources referenced in the RID letter.

2.1 RIDPad
Composing a RID letter requires an editor to maintain a
large working set of information. Since it is not unusual
for an editor to be charged with preparing appeal packets
for several decisions simultaneously, the editor may need
to maintain several threads of organization. Though using
documents in electronic form can be helpful, such use
does not necessarily alleviate all problems. For example,
the editor still needs to document the identity and location
of information. In using electronic documents, the editor
may have to cope with more than a dozen documents
simultaneously.

RIDPad is a superimposed application for the USFS ap-
peal process. A USFS editor can use this application to
collect and organize information needed to prepare a RID
letter. A RIDPad instance is a collection of items and
groups. An item is a superimposed information element
associated with a mark. It has a name and a description.
The name is user-defined and the description is the text
excerpt from the associated mark. A group is a conven-
ient collection of items and other groups.

Figure 2 shows a RIDPad instance with information con-
cerning the “Road 18 Caves” decision (made in the
Pacific Northwest Region of USFS). The instance shown
has eight items (labeled Summary, Details, Comparison
of Issues, Alternative A, Alternative B, Statement,
Details, and FONSI) in four groups (labeled
Environmental Assessment, Proposed Action, Other
Alternatives, and Decision). The group labeled
“Environmental Assessment” contains two other groups.

Figure 1: (Hand-drawn) Information summary as prepared by a resident prior to conducting
rounds in a hospital intensive care unit (used with permission)

The information in the instance shown comes from three
distinct base documents in two different base applica-
tions. (The item labeled “Comparison of Issues” contains
an MS Excel mark; all other items contain MS Word
marks.) All items were created using base-layer support
included in the current implementation of SPARCE.

Figure 2: A RIDPad Instance

RIDPad affords many operations on items and groups. A
user can create new items and groups, and move items
between groups. The user can also rename, resize, and
change visual characteristics such as colour and font for
items and groups. With the mark associated with an item,
the user can navigate to the base layer if necessary, or
browse the mark’s context from within RIDPad via the
Context Browser (as shown in Figure 3). Briefly, the
Context Browser is a superimposed application window
with information related to a mark. Figure 3 shows the
Context Browser for the item labelled “FONSI”. From
the context elements listed on the left we see that this
item has both content and presentation kinds of context
elements. The browser displays the value of the selected
context element to the right. The formatted text content is
currently selected and displayed in the
browser.

Figure 3: Context of a RIDPad Item

RIDPad superimposes a simple conceptual model over
the selected base information with Group and Item as the
only model constructors. A group contains a name, size,

location, and an ID. An item contains a name,
description, size, location, and an ID. Items can occur
within a Group and Groups can be nested within a Group.
Figure 4 shows the model as a UML Class Diagram. The
class RIDPadDoc represents the RIDPad instance which
includes information that will likely be used to prepare
the RIDPad document.

Figure 4: RIDPad Information Model (Simplified)

2.2 Schematics Browser
Appeal letters from different appellants in the USFS ap-
peal process tend to share features. They all contain
appellant names and addresses, refer to a Decision
Notice, and raise issues. Such similarities suggest a
schema for appeal letters. A superimposed schematic is
an E-R schema superimposed over base information
[Bowers 2002]. The Schematics Browser (see Figure 5) is
a superimposed application that demonstrates the use of
superimposed schematics. It is meant to allow USFS
personnel to consider a set of appeal decisions to look for
important issues or trends. The Schematics Browser
might be used to support strategic planning activities.

Figure 5: Schematics Browser

Name

RIDPadDoc ID
Name
Size
Location

Group

ID
Name
Description
Size
Location

Item

Belongs to 0..1

*

0..1 * 0..1

Contains
*

0..1

*

ID
Address

Mark

Figure 5 shows an instance of a USFS appeal decision
schematic opened in the Schematics Browser. The upper
left frame lists instances of the appeal decision schematic.
The user can select one of these instances, and then use
the large middle frame to browse through information
associated with the decision. The “1997 Ranch House
Timber Sale” appeal decision is selected in Figure 5. This
schematic allows the user to easily browse from a par-
ticular issue to the appeal letter(s) where the issue was
raised to the appellant who raised the issue, for example.

Marks into any number of base sources can be associated
with entities, relationships, and attributes (but only one
mark per entity and attribute). When an entity,
relationship, or an attribute has an associated mark, a user
can either visit the base layer or choose to view the
excerpt from within the browser.

Figure 6 shows a simplified version of the information
model the Schematics Browser uses in superimposing the
E-R model over base information. The browser stores all
superimposed information in a relational database. This
structure is a simple generic model that accommodates
arbitrary Entity-Relationship style schematics.

Name
Schematic

ID
Name
Description

Entity
ID
Name
Value

Attribute

1 1..*

1 *

1*

ID
Address

Mark

ID
Name

SchematicInst

ID
Address

Mark

Figure 6: Schematics Browser’s Information Model

Figure 7 uses the Schematic Browser’s meta model to
show a partial superimposed schematic instance. It shows
an instance of the “1997 Ranch House Timber Sale” ap-
peal decision schematic (also shown in Figure 5) and an
Issue entity. It also shows the two attribute instances,
desc and number, of the Issue entity. The desc attrib-
ute is associated with a mark instance (ID 41). In this
simple implementation, the schematic instance data has
its corresponding type information stored in the Name
field.

2.3 Impact of Superimposed Information on
Conceptual Model(s)

Superimposed information introduces one significant
modeling construct – the mark. The mark spans between
information at the superimposed layer and information in
the various base layer sources. The mark thus serves as a
bridge between the conceptual model used in the super-
imposed layer and the conceptual model used in a base
information source.

Name = Appeal Decision
 : Schematic

ID = 2
Name = 1997 Ranch House Timber Sale

 : SchematicInst

ID = 1
Name = Issue
Description = Failed to meet Treaty and trust obligations

 : Entity

ID = 1
Name = desc
Value = The Forest Service i...

 : Attribute

ID = 2
Name = number
Value = 1

 : Attribute

ID = 41
Address = Win1997.pdf|1|79|115

 : Mark

Figure 7: Partial Superimposed Schematic Instance

In the RIDPad application, the superimposed model con-
sists of groups and items, where groups can be nested.
This model is somewhat like a simplified XML model
where groups are analogous to elements. But one impor-
tant difference is that items contain marks, as opposed to
PCDATA or other content. In a similar manner, the
Schematics Browser uses a superimposed model that is
similar to an entity-relationship model, but marks may
appear as attribute values. In addition, each entity and
relationship instance may be anchored, i.e., may be in
one-to-one correspondence with a mark.

Any superimposed application, by definition, includes
marks in the superimposed layer. Thus, the conceptual
model used in the superimposed layer must, necessarily,
be extended to include marks in some manner.

The use of marks has no impact on the conceptual model
of the base layer. In fact, the use of marks, in general,
requires no change to the base information or the base
application. Marks encapsulate an address to an infor-
mation element in the base source. Thus, the use of
marks requires an addressing scheme for each base source
that participates in a superimposed application. The ad-
dressing scheme may exploit the data model of the base
information source. As an example, we could use XPath
expressions to address information elements in an XML
document. It is also possible to use addressing schemes
that are independent of the data model used in the base
information source. For example, a MS Word document
could be converted to a PDF document and a user could
create a mark using a bounding box where the interior of
the box contains parts of individual characters. Regard-
less of the addressing scheme used in a mark, the super-
imposed layer is shielded from the details of the
addressing scheme as well as the details of the conceptual
model used in the base information source.

3 Excerpts and Contexts
Superimposed applications may want to incorporate con-
tents of base-layer elements in the superimposed layer.
For example, an application might use the extracted base-
layer content as the label of a superimposed element. We
call the contents of a base-layer element an excerpt. An
excerpt can be of various types. For example it may be
plain text, formatted text, or an image. An excerpt of one

type could also be transformed into other types. For ex-
ample, formatted text in a word processor could also be
seen as plain text, or as a graphical image.

In addition to excerpts, applications may use other infor-
mation related to base-layer elements. For example, an
application may group superimposed information by the
section in which the base-layer elements reside. To do so,
the application needs to retrieve the section heading (as-
suming one exists) of each base-layer element. We call
information concerning a base-layer element, retrieved
from the base layer, its context. Presentation information
such as font name and location information such as line
number might be included in the context of a mark. The
context of a base-layer element may contain more than
one piece of information related to the base-layer ele-
ment. Each such piece of information is a context element
(and context is a collection of context elements).

Figure 8: A Base-Layer Selection

Figure 8 shows a fragment of an HTML page as
displayed by a web browser. The highlighted region of
the fragment is the marked region. Table 1 shows an
excerpt and a few context elements of this marked region.
The column on the left lists names of context elements
whereas the column on the right shows values of those
context elements.

Name Value

Excerpt Cheatgrass, Bromus tectorum, grows near many
caves in this project area.

HTML Cheatgrass, <i>Bromus tectorum </i>,
 grows near many caves in this project
area.

Font name
(Inherited)

Times New Roman

Font size
(Inherited)

12

Table 1: Sample Context Elements of an HTML Mark

Note that superimposed applications may access context
information that a user might not explicitly access (or
even be aware of). For example, consider the marked
region shown in Figure 8. The HTML markup for this
region (shown in Table 1) does not contain font
information. If a superimposed application needs to
display the mark’s excerpt exactly as it is in the base
layer, the application needs to examine the markup of the
enclosing element, possibly traversing to the beginning of
the document (because font characteristics can be
inherited in HTML). The superimposed application may

also need to examine the configuration of the Web
browser to retrieve some or all of the format
specification.

Several kinds of context are possible for a mark. The
following is a representative list of context kinds along
with example context elements for each kind.
• Content: Text, graphics.
• Presentation: Font name, color.
• Placement: Line number, section.
• Sub-structure: Rows, sentences.
• Topology: Next sentence, next paragraph.
• Container: Containing paragraph, document.
• Application: Options, preferences.

Contexts can vary across base-layer types. For example,
the context of a mark to a region in a graphics-format
base layer might include background colour and fore-
ground colour, but not font name. However, the context
of a mark to a selection in a web page might include all
three elements. Contexts can also vary between marks of
the same base-layer type. For example, an MS Word
mark to text situated inside a table may have a “column
heading” context element, but a mark to text not situated
in a table does not include that context element. Lastly,
the context of a mark itself may change with time. For
example, the context of a mark to a figure inside a docu-
ment includes a “caption” context element only as long as
a caption is attached to that figure.

Supporting excerpts and contexts for marks are a natural
extension of our original notion of mark as an encapsu-
lated address. Because we use the same mechanism to
support both contexts and excerpts, we will often use the
term “context” broadly to refer to both kinds of informa-
tion about a base-layer element.

Accessing information inside diverse base-layer types
requires superimposed applications to work with a variety
of base information models, addressing mechanisms, and
access protocols. In addition, base applications may have
different capabilities. For example, base applications may
vary in their support for navigation or querying, but users
of superimposed applications may want to navigate
through selected base information elements seamlessly
and uniformly, e.g., using the Schematics Browser. We
use middleware to ease communication between the two
layers and make up for deficiencies of base applications.
And we want the middleware to allow independent evo-
lution of components in these layers.

By providing a uniform interface to base information and
its context, the middleware reduces the complexity of
superimposed applications and allows superimposed
application developers to focus on the needs of their ap-
plications such as the intricacies of the conceptual model
they aim to superimpose.

4 SPARCE
The Superimposed Pluggable Architecture for Contexts
and Excerpts (SPARCE) is a middleware for mark and
context management [Murthy 2003]. It is designed to be
extensible in terms of supporting new base-layer types

and contexts, without adversely affecting existing su-
perimposed applications.

Figure 9: SPARCE Reference Model

Figure 9 shows a reference model for SPARCE. The
Mark Management module implements operations such
as mark creation. It also maintains a repository of marks.
The Context Management module is responsible for re-
trieving context of base information. This module
depends on the Mark Management module to locate in-
formation inside base layers. The Clipboard module is
modelled after the Clipboard object in operating systems
such as Macintosh and MS Windows. The Superimposed
Information Management module provides storage ser-
vice to superimposed applications. We have developed a
generic representation for information, called the Uni-
Level Description [Bowers 2003], that can represent
information (including superimposed information) struc-
tured according to various data models or representation
schemes, such as XML, RDF or database models, in a
uniform way. In this architecture, superimposed applica-
tions can choose whether they use this module for
storage, or another storage manager.

4.1 Key Abstractions
Table 2 provides a brief description of the classes and
interfaces SPARCE uses for mark and context manage-
ment. SPARCE supports context for three classes of
objects: marks, containers, and applications (using the
classes Mark, Container, and Application respectively). A
Container is an abstraction for a base document (or a
portion of that document). An Application is an abstrac-
tion for a base application. SPARCE also defines the
interface Context-Aware Object to any base-layer element
that supports context. The classes Mark, Container, and
Application implement this interface. Superimposed
applications use the class SPARCE Manager to create
new marks and to retrieve existing marks. The SPARCE
Manager maintains a repository of marks.

SPARCE treats context as a property set (a collection of
name-value pairs). Context is the entire set of properties
of a base-layer element and a context element is any one
property. For example, the text excerpt and font name of
a mark are context elements. Modelling context as a
property set makes it possible to support a variety of
contexts, both across and within base layers, without af-
fecting existing superimposed applications. This model
also provides a uniform interface to context of any base-
layer element, for any base-layer type.

SPARCE uses the interface Context Agent to achieve its
extensibility goal. A class that implements this interface
takes a context-aware object and returns its context. That
is, SPARCE does not access base-layer elements or their
contexts directly. It uses external agents to do so on its
behalf. However, SPARCE is responsible for associating
a context-aware object with an appropriate context agent.
The SPARCE Manager obtains the name of the class that
will be the context agent for a mark from the description
of the marks. The SPARCE Manager instantiates the
context agent class by name whenever a superimposed
application accesses the context of a context-aware ob-
ject. Typically, there is one implementation of the context
agent interface per base-layer type. For example, a PDF
Agent is an implementation of this interface for use with
PDF documents. A context agent implementation deter-
mines the constitution of context for its context-aware
objects. SPARCE does not require an implementation to
support particular context elements (nor does it prevent
an implementation from defining any context element).
However, we expect implementations to support kinds of
context elements commonly expected (such as those
listed in Section 3), and use meaningful names for context
kinds and elements.

Class/Interface Description
Mark A mark to base-layer information.
Container The base document (or a portion of it)

in which a mark is made.
Application The base application in which a mark is

made.
Context-Aware
Object (interface)

Interface to any base-layer element
able to provide context. Classes Mark,
Container, and Application implement
this interface.

Context Context of a context-aware object. It is
a collection of context elements.

Context Element A single piece of context information
about a context-aware object.

Context Agent
(interface)

Interface to any base-layer. An imple-
mentation will retrieve context from a
context-aware object.

SPARCE Manager Creates, stores, and retrieves marks;
associates context-aware objects with
appropriate context agents.

Table 2: SPARCE Classes and Interfaces

4.2 Creating Marks
A user initiates mark creation after selecting some infor-
mation in a base application. The mark creation process
consists of two steps: (1) generating the address of the
selected base information, perhaps with other auxiliary
information (collectively called mark fodder) and (2)
creating a mark object in the mark repository. The ad-
dress contained in mark fodder uses the addressing
mechanism appropriate for the base information source.
For example, the address to information inside a PDF
document contains the page number and the starting and
ending word indexes; the address to a selection in a
spreadsheet contains the row and column numbers for the
first and last cell in the selection. (Other addressing
schemes are possible for these base types.)

Superimposed
Application

Superimposed
Information

Management

Mark
Management

Context
Management

Clipboard

Base
Application

Figure 10 depicts two possible mark-creation scenarios as
a UML Use Case Diagram. (The boxes in this figure
denote system boundaries; the broken arrows denote
object flows.) In both scenarios, a user starts mark
creation in a base application and completes it in a
superimposed application. In the first scenario, labelled
“Copy”, the user is able to use the normal copy operation,
e.g., of a word processor, to create the mark fodder. In
the “Mark” use case, the user invokes a newly introduced
function (such as the Mark menu item shown in Figure
8). The superimposed application retrieves the mark
fodder from the Clipboard, and passes it to the SPARCE
Manager. The SPARCE Manager creates a mark object
(from the fodder), assigns it a unique ID, stores it in the
mark repository, and returns the new object to the
superimposed application.

Copy

User
Mark

Base Application

Clipboard

Operating System

Complete

Superimposed
Application

Figure 10: Two Mark-creation Scenarios

The first scenario allows a user to select base information
in a preferred base application and copy it to the
Clipboard without having to learn any new application,
tool, or process to create marks. However, supporting this
scenario requires cooperative base applications such as
Microsoft Word and Excel. Some base applications do
not directly support Clipboard operations, but they
provide mechanisms (such as plug-ins or add-ins) to
extend their environments. A special mark creation tool
or menu option can be inserted in to the user interface of
such applications. The Mark use case in Figure 10
demonstrates this scenario. Early versions of Adobe
Acrobat and Netscape Navigator are examples of base
applications in this category.

Figure 11 shows the internal representation of a mark.
This mark corresponds to the selection in the HTML page
shown in Figure 8. Superimposed applications do not
have visibility of a mark’s internal representation. They
simply use the mark’s interface to access its details.

4.3 Accessing Marks and Context
A superimposed application sends a mark ID to the
SPARCE Manager to retrieve the corresponding mark
object from the marks repository. The SPARCE Manager
instantiates an implementation of the context agent inter-
face that is appropriate for the mark. The superimposed
application can work with the mark object directly (for
example, to navigate to the base layer) or can interact
with the mark’s context agent object (for example, to re-
trieve mark context).

With a context object in hand, a superimposed application
can find out what context elements are available. It can
also retrieve values for context elements of interest. The
superimposed application may use a context-element’s

value in various ways. For example, it may use the text
content of the mark as a label, or it may apply the font
characteristics of the marked region to some
superimposed information.

<Mark ID="HTML2003Apr22065837YZXsmurthy">

<Agent>HTMLAgents.IEAgent</Agent>
<Class>HTMLMark</Class>
<Address>4398|4423</Address>
<Description/>Noxius Weeds in ea1.html
</Description>
<Excerpt>Cheatgrass, Bromus tectorum,
grows near many caves in this project
area.</Excerpt>
<Who>smurthy</Who>
<Where>YZX</Where>
<When>2003-04-22 06:58:37</When>
<ContainerID>cdocsea1html</ContainerID>

</Mark>

Figure 11: Internal Representation of a Mark

For ease of use, our design also allows the application to
retrieve the value of a context element from the context-
aware object or even from the context-agent object. An
application developer may choose the access path that is
most convenient to his or her particular situation.

4.4 Implementation
We have implemented SPARCE for Microsoft-Windows
operating systems using ActiveX technology [COM]. The
current implementation includes support for the following
base applications: MS Word, MS Excel, Adobe Acrobat
(PDF files), and MS Windows Media Player (a variety of
audio/video file types). The agents for these base appli-
cations support the following kinds of context: content,
presentation, containment, placement, sub-structure,
topology, document, and application. (Some possible
context elements of these kinds are listed in Section 3.)

We have implemented reusable view facilities such as the
Context Browser to display the complete context of a
context-aware object, and tabbed property pages to dis-
play properties of context-aware objects. We have also
implemented a few testing aids. For example, we have
implemented a generic context agent with limited
functionality (that can be used with any base-layer type)
to test integration with new base-layer types. The Context
Browser is also a good testing tool when support for a
new a base type is added or when definition of context is
altered for a base type.

4.5 Extensibility
Supporting new context elements is straightforward in
SPARCE: The new context element name is just added to
the property set. Superimposed applications may ignore
the new context elements if they are not capable of
handling them.

Supporting new base-layer types is more involved. It re-
quires a developer to understand the base layer and its
addressing mechanisms. The developer must implement
the context agent interface for the base-layer type. And
the developer must implement a means to allow users to

select regions within this type of base information and
copy mark fodder to the Clipboard. As we mention in
Section 4.2, the developer might be able to exploit exten-
sibility mechanisms of base applications for creating
mark fodder.

We have used the extensibility mechanism to add support
for MS Word, MS Excel, Adobe Acrobat, and MS
Windows Media Player. It took us about 7-12 hours to
support each of these base types. The SPARCE imple-
mentation and the superimposed applications were not
changed or recompiled when new base types were added.

4.6 Evaluation
Our observations show that developing superimposed
applications with SPARCE is relatively easy. Although
the effort required to develop a superimposed application
depends on the specifics of that application, using ab-
stractions such as marks and contexts alleviate the need to
model those entities in each application. For example,
RIDPad is a complex application due to its graphical na-
ture and the variety of operations it supports. However,
we were able to develop that application in approximately
30 hours. As we added support for new base types using
the extensibility mechanism of SPARCE, RIDPad was
able to automatically work with the new base types.

The original Schematics Browser application worked
only with PDF files. The application was responsible for
managing marks and interacting with Adobe Acrobat.
The application had no context-management capabilities.
We altered this application to use SPARCE and it
instantaneously had access to all base-layer types
SPARCE supported (and those it will support in future).
In addition, it also had access to context of base
information. In less than 7 hours, we were able to alter
the Schematics Browser to use SPARCE.

There are many ways to deploy the components of
SPARCE and its applications (based on application and
user needs). For example, RIDPad is expected to be a
single-user application. Thus, all components of RIDPad
and SPARCE may run on a single computer. In contrast,
the Schematics Browser is likely to be used by many
USFS personnel to browse schematic instances of past
appeal decisions. That is, shared repositories of superim-
posed information and marks can be useful. Based on
such analyses, we are currently in the process of evaluat-
ing different deployment configurations of SPARCE and
its applications. In addition to studying performance of
these configurations, we intend to explore the benefits of
caching context information.

5 Issues in Context Representation
One of the areas of SPARCE design we are still exploring
is the representation of context. We have considered de-
fining contexts via data types (say, a context type for each
base type), but feel that approach would be too restrictive.
The set of context elements available for a mark might
vary across a document. For example, a mark in a Word
document might have a “column name” context element
if it is in a table, but not otherwise. It is even possible
that the context elements available for a single mark may

change over time. For instance, the “image” context ele-
ment might only be available while the invocation of the
base application in which the mark was originally created
is still running. A context type could define all possible
context elements, where a particular mark produces null
values on elements undefined for it, but that approach
complicates the application programming interface (espe-
cially for context elements of scalar types such as
numbers and strings). Another issue with types is making
it possible to write a superimposed application without
specifying in advance all the base sources it will be used
with (and their context types). We have demonstrated
with our current approach the ability of a superimposed
application to work with new context agents without
modifying the application. The superimposed application
can make use of any context elements it knows about
(from the elements the new agent supplies). While
inheritance schemes can support some polymorphism in
types, they do not seem adequate to support the arbitrary
kinds of overlap we have seen among context elements
across base types.

Another issue is the internal structure of a context. Cur-
rently a context is a property set of context elements,
where each element is a name-value pair. Context ele-
ments also have kinds (such as presentation and
substructure), which allows grouping context elements in
user interfaces. We are considering giving contexts an
explicit hierarchical structure. There are several alterna-
tives for such an approach: Make a context a compound
object capable of holding sub-contexts, use of qualified
names (for example, format.font.fontsize), or employ a
hierarchical namespace as in a directory structure. We do
not see great differences in these three alternatives. The
advantage of some kind of hierarchical structure, how-
ever, versus the current flat structure might come in the
interface between superimposed applications and the
context agent. Rather than the application asking for
context elements individually (or for all context ele-
ments), it could ask for a particular subgroup of elements
of interest.

A methodological issue related to context structure is how
to coordinate the naming of context elements across mul-
tiple base types and multiple superimposed applications.
There is no requirement currently that the “same” context
element be named the same thing for different base types
(or, in fact, in alternative context agents for the same base
type). Even if the same name is used, the types of the
associated values could be different. With an individual
or small group writing context agents and superimposed
applications, informal methods will work for consistency
in naming. However, a more structured process will be
needed at the point that context agents and superimposed
applications are being produced by different organiza-
tions.

6 Related Work
Memex and Evolutionary List File were visionary pro-
posals for organizing information from diverse sources
[Bush 1945, Nelson 1965]. Hypertext and compound
document models are two classes of systems that attempt
to realize these visions. Hypertext systems are helpful in

preparing information for non-linear media. Although
designed to help organize information, they tend to be
limited in the types of source, granularity of information,
and location of information that can be organized. For
example, NoteCards and Dexter both require information
consulted to be stored in a proprietary database [Halasz
1987, 1994]. Intermedia can address base information
only at sub-document granularity [Yankelovich 1988].
Hypertext systems typically do not support retrieval of
contextual information from sources.

Compound document systems are helpful in preparing
information for linear media (such as paper). They can
address base information at both document and sub-
document granularity, but they tend to constrain display
models of tools developed. For example, OLE 2 requires
rectangular display areas [COM]. Like SPARCE (and
unlike hypertext systems), compound document systems
provide architectural support for building applications.
Compound document systems support only retrieval of
contents. Information sources decide the content, its for-
mat, and geometry.

Table 3 provides a brief comparison of SPARCE with
hypertext and compound document systems. NoteCards,
Intermedia, and Dexter are hypertext systems. OpenDoc
[Apple 1994] and OLE 2 are compound document sys-
tems.

N
ot

eC
ar

ds

In
te

rm
ed

ia

D
ex

te
r

O
pe

nD
oc

O
LE

 2

SP
A

R
C

E

Base
types

2 3 Any Any Any Any

Base
location

Custom Files Custom Any Any Any

Base
granu-
larity

Whole Part Both Both Both Both

Context
kinds

None None None Con-
tent

Con-
tent

Many

Table 3: SPARCE Compared with Related Systems

Multivalent documents [Phelps 2000b] allow multiple
behaviours to be superimposed on to a single base docu-
ment using an abstraction similar to the context-agent
interface in SPARCE. The system uses contents of a
region of interest (and its surrounding), but only to
address that region [Phelps 2000a].

In the area related to dynamism and representation of
context, OLE Automation [Microsoft 1996] provides an
interesting comparison to our approach. An OLE auto-
mation object exposes an interface to the type information
object (ITypeInfo) that corresponds to itself. The type
information object is resident in a type library (that con-
tains type information for possibly many automation
object types). Changing type information (deleting mem-
bers or adding new members) requires creation of a new
type-information object and a new type library. Although
the framework allows each instance of an object type to
return a different type-information object, the require-
ment to create new type information and a type library
makes it impractical to do so. Consequently, type infor-

mation of an OLE automation object tends to include all
possible elements, without regard to whether those mem-
bers are relevant in a given situation. For example, the
type information for a Range object of a MS Word docu-
ment contains over 30 members [Microsoft]. The value of
a member of scalar type that is not applicable for a given
Range object will be equivalent of NULL (and the inap-
plicable collection-type members will be empty). In
SPARCE, the context of a mark contains only those ele-
ments that apply to the mark.

It might seem that links in OLE 2 compound documents
provide similar functionality to marks. An OLE 2 com-
pound document supports only retrieval of contents from
links. It does not provide a mechanism from within a
compound document to obtain the OLE automation ob-
ject that corresponds to a link (even when the link source
defines an automation object corresponding to the region
the link represents). As a consequence, context-like in-
formation about the linked region cannot be accessed via
the link directly. For example, linking a selection S from
the main body of MS Word document D1 into Word
document D2 makes D2 a compound document. How-
ever, the Range object for S (which is available in D1) is
not accessible through the link in D2. A user needing
more information about S must navigate to the source
document D1. SPARCE not only provides the ability to
link information via marks, it also provides access to
context of the mark through the mark itself.

7 Discussion and Future Work
One way to view our work is that we have extended the
standard modelling building blocks (integers, floats,
dates, strings, etc.) with a new primitive—mark—that
encapsulates an information element from an external
source. A conceptual model (extended to be a superim-
posed model) can permit the use of marks in any of its
structuring constructs (tuples, relationships, attributes,
entities, etc.), without regard to the complexities of the
underlying element. Support for context allows superim-
posed applications to extract information from that
element and its surrounding elements or the information
source in a controlled manner, to augment what is explic-
itly stored in the superimposed model.

As a means to provide “new models for old data,” our
approach is quite different from data integration ap-
proaches such as mediators and data warehouses. Such
approaches seek to provide an integrated view through a
global schema describing base information that faithfully
reflects the structure of the base source. In our work, we
are exploring the use of selected base information
elements (using marks). Note that the selection of marks
is often performed manually, by a domain expert (e.g., a
clinician or a USFS scientist), for a specific purpose (e.g.,
to treat a patient or prepare a RID). We have no
requirement to represent the structure or relationships
present within the base layer. Rather, we rely on the
original application to provide interpretation for a mark
and, if appropriate, to describe any relationships among
marks. Standard integration approaches describe infor-
mation from various sources and expect the mediator to
be responsible for its interpretation.

The superimposed layer, by definition, allows the user to
mix marks with additional information that may not exist
in any of the base information sources. Such information
may augment the base layer, e.g., by making implicit in-
formation explicit (e.g., “this issue relates only to
Alternative A”) or by providing commentary. Another
use of superimposed information is to link related
information from multiple sources, e.g., by placing marks
in the same group or by explicitly linking between
information elements in two sources. Finally, the
superimposed approach permits reinterpretations that are
much less structured than the original. For example, base
information elements can be grouped or linked without
having to observe any type constraints imposed in the
original source.

Exploring different representations of context and ways
to reconcile context definition from different context
agents is one area of our future work. Understanding the
needs of new superimposed conceptual models (other
than those we have described), and exploiting contexts to
superimpose richer conceptual models is another area of
our interest. A natural application of superimposed con-
ceptual models would be to create means of querying
jointly over superimposed and base information. We are
also interested in superimposed applications that facilitate
“schema later” organization of diverse information. That
is, a user can start accumulating and arranging informa-
tion items of interest, and—as he or she starts forming a
mental conceptual model—incrementally define a
superimposed model that reflects it.

8 Acknowledgements
This work has been supported by US NSF grants IIS
9817492 and IIS 0086002. We thank John Davis for
helping us understand the USFS appeal process. We also
thank the anonymous reviewers for their comments.

9 References
Acrobat SDK: Acrobat Software Development Kit,

Adobe Systems Incorporated.

Apple (1994): The OpenDoc Technical Summary. Apple
World Wide Developers Conference Technologies CD,
San Jose; CA.

Ash, J., Gorman P., Lavelle, M., Lyman J., Delcambre,
L., Maier, D., Bowers, S. and Weaver, M. (2001):
Bundles: Meeting Clinical Information Needs. Bulletin
of the Medical Library Association 89(3):294-296.

Bowers, S., Delcambre, L. and Maier, D. (2002): Super-
imposed Schematics: Introducing E-R Structure for In-
Situ Information Selections. Proc. ER 2002, pp 90–
104, Springer LNCS 2503.

Bowers, S. and Delcambre, L. (2003): The Uni-Level
Description: A Uniform Framework for Representing
Information in Multiple Data Models. Proc. of the 22nd
International Conference on Conceptual Modeling (ER
2003), Chicago, IL, October 2003.

Bush, V. (1945): As We May Think. The Atlantic
Monthly; 1945; July.

Delcambre, L., Maier, D., Bowers, S., Weaver, M., Deng,
L., Gorman, P., Ash, J., Lavelle, M. and Lyman, J.
(2001): Bundles in Captivity: An Application of Su-
perimposed Information. Proc. ICDE 2001, Heidel-
berg, Germany, pp 111-120.

Gorman, P., Ash, J., Lavelle, M., Lyman, J., Delcambre,
L. and Maier, D. (2000): Bundles in the wild: Manag-
ing information to solve problems and maintain situa-
tion awareness. Lib. Trends 2000 49(2):266-289.

Halasz, F.G., Moran, T.P. and Trigg, R.H. (1987):
NoteCards in a Nutshell. Proc. ACM CHI+GI Confer-
ence, New York, NY, pp 45-52, ACM Press.

Halasz, F.G. and Schwartz, F. (1994): The Dexter Hy-
pertext Reference Model. Communications of the ACM,
37(2):30-39, ACM Press.

Maier, D. and Delcambre, L. (1999): Superimposed In-
formation for the Internet. Proc. WebDB 1999 (infor-
mal), Philadelphia, PA, pp 1-9.

COM: The Component Object Model Specification, Mi-
crosoft Corporation.

Microsoft Corporation. (1996): OLE Automation Pro-
grammer’s Reference. Microsoft Press.

Microsoft Office: Microsoft Office Development Re-
sources, Microsoft Corporation.

Murthy, S. and Maier, D. (2003): SPARCE: Superim-
posed Pluggable Architecture for Contexts and Ex-
cerpts. OGI CSE Technical Report #CSE-03-010.
2003, May.

Nelson, T.H. (1965): A File Structure for The Complex,
The Changing and the Indeterminate. Proc. ACM 20th
National Conference, Cleveland, OH, pp 84-100.

Phelps, T.A. and Wilensky, R. (2000a): Robust intra-
document locations. Proc. 9th World Wide Web Confer-
ence, Amsterdam, Netherlands.

Phelps, T.A. and Wilensky, R. (2000b): Multivalent
Documents. Communications of the ACM, 43(6):83-90.

Yankelovich, N., Haan, B.J., Meyrowitz, N.K. and
Drucker, S.M. (1988): Intermedia: The Concept and the
Construction of a Seamless Information Environment.
IEEE Computer 21(1): 81-83, 90-96, IEEE.

