
Static Analysis of Students’ Java Programs

Nghi Truong, Paul Roe, Peter Bancroft
Faculty of Information Technology

Queensland University of Technology
GPO Box 2434, Brisbane QLD 4001, Australia

(n.truong, p.roe, p.bancroft)@qut.edu.au

Abstract
A recent industry survey (Townhidnejad and Hilburn,
2002) has reported that more than fifty percent of a
software project’s budget is spent on activities related to
improving software quality. Industry leaders claim that
this is caused by the inadequate attention paid to software
quality in the development phase. This paper introduces a
static analysis framework which can be used to give
beginning students practice in writing better quality Java
programs and to assist teaching staff in the marking
process. The framework uses both software engineering
metrics and relative comparison to judge the quality of
students’ programs and provide feedback about how
solutions might be improved..

Keywords: static analysis, Java, web, tutoring system,
XML, online learning.

1 Introduction
Programming is a complex intellectual activity and the
core skill for first year IT students. Research has shown
that most students are able to write programs; however,
their programs are often poorly constructed because they
do not consider different solutions to a program.
Beginning students often try to solve a problem as
quickly as possible without thinking about the quality of
their programs (Vizcaino et al, 2000). The study of
McGill and Volet (1995) shows that there is a strong
relationship between the quality of students’ algorithms
and the quality of their final programs. The study also
reflects that few students adopt a program design
methodology when writing a program but rather use one
only when required to.

There is a large body of literature which calls for
increased emphasis on program design methodologies in
introductory programming courses (Townhidnejad and
Hilburn, 2002, Sanders and Hartman, 1987, McGill and
Volet, 1995, Linn and Clancy, 1992). McGill and Volet
(1995) suggest that the best way to improve the quality of
students’ programs is for instructors to talk through how
they solve a specific problem, to discuss alternatives and
to allow for backtracking from initial conjectures;

Copyright ©2004, Australian Computer Society, Inc. This paper
appeared at the sixth Australian Computing Education
Conference (ACE2004), Dunedin, New Zealand. Conferences in
Research and Practice in Information Technology, Vol. 30.
Raymond Lister and Alison Young, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

however, providing timely feedback on student
programming exercises and helping students to think
about the quality of their programs are difficult tasks,
time consuming and laborious especially with the current
large class sizes (Mengel and Yerramilli, 1999).
Automated analysis of student programs has the potential
to combat this problem. Furthermore, automated analysis
may augment the grading process performed by
instructors and teaching assistants. More importantly, it
can help to give a finer level of detail about the quality of
student programs, allowing them more insight towards
improving their programming skills.

The contribution of this paper is to describe a static
analysis framework for use with beginning students’ Java
programs. It is designed for both tutoring and semi-
automatic assessment purposes. The framework provides
feedback about the quality of a student solution, ideas for
alternative solutions and their relative merits and hints to
improve the student solution. The key features of the
framework are its configurability and extensibility.
Analyses can be configured to suit different types of
exercises. In addition, the complexity of analyses can be
controlled by different program abstraction levels.
Additional analyses can be plugged into the framework
easily. Although the framework can be used as a separate
tool, it is particularly useful for “fill in the gap” style
exercises such as provided by the Environment for
Learning to Program (ELP) (Truong et al, 2002, 2003).
At Queensland University of Technology (QUT), the
static analysis framework is currently being integrated
into the ELP.

The framework brings benefits to both students and
teaching staff. It adds intelligent assistance to existing
online learning programming environments; thus it
increases the level of flexible delivery and facilitates the
constructive, effective learning environment of these
online learning systems. Although the framework is not
able to completely replace the role of instructors or tutors,
it helps students to learn in an environment where
formative feedback and correct solutions can be obtained
immediately and therefore, misconceptions among
students are eliminated (Ben-Ari, 2001). Students are able
to access as much tuition as they need at their own pace;
they are not limited to standard working hours or their
current location, by having to come to university to
consult teaching staff about their tutorial work. Most
importantly, the feedback provided by the framework
helps students to justify their choice of algorithms for
solving a problem; making them to become more
effective programmers (Sanders and Hartman, 1987).

With the analysed result from the framework, the
marking task will be less time consuming and laborious.

This paper is organized into six sections. Previous
systems that have been developed to help students learn
to program are discussed in Section 2. An overview of the
ELP system is described in Section 3. Section 4 of the
paper gives a general overview of the static analysis
framework. The current implementation is reported in
Section 5. Lastly, limitations and the future development
plans for the framework are discussed in Section 6.

2 Approaches and Systems
As previously mentioned, the framework described in this
paper can be used for both tutoring and semi-automatic
marking purposes. This section gives an overview of
research into automatic programming tutors and marking
systems. It also describes systems which have had a
major impact on the design and implementation of the
framework: Talus (Murray, 1988), CourseMaster
(CourseMaster, 2000) and Expresso (Hristova et al,
2003).

2.1 Approaches
Static analysis is the process of examining source code
without executing the program. It is used to locate
problems in code including potential bugs, unnecessary
complexity and high maintenance areas. Dynamic
analysis is the process of running a program through a set
of data. The main aim of dynamic analysis is to uncover
execution errors and to help evaluate the correctness of a
program. Applications in tutoring and automatic marking
make use of either static analysis or dynamic analysis or
both to evaluate student programs. There are many
techniques to implement static analysis; however,
approaches that have been adopted in computer science
education applications vary from string matching based
on the program source (simplest form) to matching
program graph representations (complicated form).

Much research has been devoted to developing a system
to help novice students learn to program. According to
Deek and McHugh (1998), a large part of this research
has focused on issues concerning syntax and has not
addressed the lack of problem solving skills and analysis
and design methodologies among beginning students.

Software metrics is one well known way to measure the
quality of programs. Despite that, few of the existing
systems have adopted metrics to evaluate student
programs (Mengel and Yerramilli, 1999). Leach and
Mengel (1995, 1999) claims that Halstead metrics
(Halstead, 1977), McCabe cyclomatic complexity
(McCabe, 1976), number of coupling instances and Berry
and Meekings style guide line (Harrison and Cook, 1986)
are common and useful static metrics for computer
science education applications. However, they are often
used for marking and plagiarism detection purposes
rather than for teaching students design and writing good
quality programs which require more detail feedback
compare to the other two purposes.

Automatic grading systems are economical and effective.
This kind of system reduces the workload for instructors
and improves the student’s learning experience by
providing instant feedback. Because of these benefits,
widespread research has been carried out to develop
automatic grading systems, the idea being introduced by
Hollingsworth (1960). Among the earliest systems were
GRADER1 and GRADER2 used at Stanford University
with beginning students’ BALGOL programs (Forsythe,
1964). A student program can be assessed in various
ways which include style, correctness, efficiency and
plagiarism. Examples of systems that perform only static
analysis are ASSYST (Jackson and Usher, 1997), CAP
(Schorsch, 1995) and Expresso (Hristova et al, 2003). A
system that performs only dynamic analysis is TRY
(Reek, 1989). There are systems which integrate both
tutoring and automatic marking to develop courseware,
for example CourseMaster (CourseMaster, 2000) and
BOSS (Joy and Luck, 1998).

The goal of the program analysis framework described in
this paper is to use software engineering metrics tools and
good programming practices to judge the quality of
student programs. The framework performs the analysis
based on XML representation of program abstract syntax
trees; it incorporates both quantitative and qualitative
analyses to provide detailed feedback to students.

2.2 Systems
Talus (Murray, 1988) is an automatic program debugging
tool for the Lisp language. Talus diagnoses both non-
stylistic and stylistic bugs at three different levels of
abstraction including algorithm level, function level and
implementation level. It uses a plan based program
analysis approach and debugs input programs in four
steps: program simplification, algorithm recognition, bug
detection and bug recognition. Program simplification
transforms the input program into a Lisp code dialect. In
algorithm recognition, the simplified functions are parsed
into frames and partially matched frames in the task
representation. Once it identifies bugs in the input
program, Talus attempts to correct them using techniques
based on theorem proving and heuristic methods. Talus
has three main limitations. Firstly, it can only analyze
programs with functions that are allocated exactly as
specified in the programming plan. This is a serious
limitation when dealing with large programs. Secondly, it
assumes the task is already known. Lastly, Talus provides
only limited data structure definitions and has problems
with large programs and imperative programming style
(Song et al, 1996).

CourseMaster (CourseMaster, 2000) is a client server
system for delivering course based programming. It
provides functions for automatic assessment of students
work in Java and C++ and administration of the resulting
marks, solutions and course materials. A student is able to
develop a program, submit it to the server for marking or
evaluation and get instant feedback. The student program
is analyzed for typographic layout, dynamic execution,
program features, flowchart, object oriented design and
logic circuit marking. The analysis process relies heavily
on the standard Unix C utility, lint. Thus, the main

drawback of the system is that it is not platform
independent.

Expresso (Hristova et al, 2003) is designed to identify
beginning student Java programming errors. Expresso
detects students’ Java syntax, semantic and logic errors
and provides hints about how the problem should be
fixed. The input program removes comments and white
spaces and tokenizes the text into small tokens. Expresso
then uses string matching techniques to detect mistakes
and generate feedback. Feedback messages generated by
the tool are enhanced compiler error messages.

3 ELP
ELP is an online interactive and constructive environment
for learning to program, which is currently being
developed at QUT to help Information Technology
students to write Java programs successfully at an early
stage in their learning. Students undertake web based
programming exercises from the ELP web server. They
complete exercises and submit them to the server for
compilation. If there are no syntax errors in the student’s
solution, the resulting class files of the exercise are
packed together with other necessary libraries in a JAR
file and subsequently downloaded and run on the
student’s machine. Otherwise, a compilation error
message is returned. All exercises in the ELP system are
“fill in the gap” exercises. This type of exercise not only
reduces the complexity of writing programs but also
allows students to focus on the problem to be solved.
Figure 1 illustrates the integration between the ELP
system and the program analysis framework that is
described in this paper.

Figure 1: ELP and the program analysis framework
integration

4 Framework Design
This section describes the design of the static analysis
framework. Common mistakes among beginning Java

programming students at QUT are discussed in Section
4.1. These mistakes play an important role in the design
of the framework. Section 4.2 gives an overview of the
analyses that the framework currently provides.

4.1 Students’ Common Java Errors
In order to identify students’ programming practices and
their well-known logic errors, a comprehensive literature
review was carried out. Subsequently, a survey of
students’ work was conducted in the Faculty of
Information Technology at QUT to validate the literature
review findings and to gain a better understanding of
mistakes that beginning students often make.

The literature indicates that most of the previous research
was conducted on a very small scale. The work of
Hristova (2003) is one of the few large scale surveys. The
survey was conducted among Java teaching staff at Bryn
Mawr College and 58 teaching staff from 58 schools in
the United States. Sixty-two Java programming errors
were reported; however 20 of these are considered most
important and they were grouped as follows: syntax
errors, semantic errors and logic errors. Various other
resources on the web identifying common student Java
programming errors include (Topor, 2002, Ziring, 2001).

A survey was conducted among teaching staff and
students of an introductory programming course in the
Faculty of Information Technology at QUT. The course
aims to teach students basic programming using Java as
well as some object oriented concepts. “Java: A
Framework for Programming and Problem Solving”
(Lambert and Osborne, 2002) is used as the textbook.
Students are required to design, implement, execute and
debug small Java programs. The results of the survey
revealed nine common poor programming practices and
five common logic errors that occurred in beginning
students’ programs.

Table 1 summarizes the findings of the literature and the
survey.

Poor Programming Practices

• Too many loop and conditional statements

• Not enough methods

• Use of global variables rather than parameters
to a method

• Too large methods

• Use of magic numbers (literals)

• Unused variables

• Perform unnecessary checking with Boolean
expression

• Un-initialised variables

• Inappropriate access modifiers

Exercise
Database

Program
analysis

framework

Compile error or
program JAR file for
execution

Feedback

Web based
programming

exercises

ELP

Web Server

Compiler

Common Logic Errors

• Omitted “break” statement in a case block

• Omitted “default” case in a switch statement

• Confusion between instance and local variables

• Omitted call to super class constructor

Table 1: Beginning students common errors

4.2 The Static Analysis
The static analysis process was designed with the main
aim of judging the quality of students’ programs. It can
be used to help beginning students learn to program and
to provide teaching staff with semi-automatic marking
tools. As mentioned earlier, all exercises in the ELP
system are “fill in the gap” exercises therefore only the
gap code supplied by the student is analysed. Although a
gap can be any number of missing lines in an exercise on
the ELP system, only well formed gaps are analysed by
the framework to ensure that there is enough information
about the context. Examples of well formed gaps are a
statement or block of statements, a method or a complete
class. It is important to point out that the framework
analyses only compilable programs.

Since the framework only analyses small programs, our
main conjecture is that a program’s structure reflects its
quality. As a result of that, analyses that are provided by
the framework only focus on the structure and quality of
code. It is important to make the distinction between
structural analysis and semantic analysis. While structural
analysis emphasizes the design of programs, semantic
analysis is often used in program optimization and
verification.

The two main design aims of the framework are
configurability and extensibility. Analyses are provided
as a set of functions and instructors can specify which
analyses should be carried out for each gap in an exercise.
These analyses make use of dynamic loading at run time
so that other additional analyses can be easily plugged in,
if required. There are two distinct groups: software
engineering metrics analysis and structural similarity
analysis, described in Sections 4.2.1 and 4.2.2
respectively.

4.2.1 The Software Engineering Metrics
Analysis

Software metrics is a well-known quantitative approach
used to measure software quality. This analysis is based
on software complexity metrics and good programming
practice guide lines to assess the quality of student
solutions. Cyclomatic complexity, which measures the
number of linearly-independent paths through a program
module, is adopted in the framework because it provides
useful information about the structure of a program.

Other software engineering metrics have been used to
evaluate beginning student programs, for example

Halstead software metrics were used in (Leach, 1995) to
detect plagiarism. Coupling and cohesion metrics and
Berry-Meekings style guideline metrics were used in
Jackson (1996). These software engineering metrics can
be easily loaded into the framework at runtime if desired
because of its extensibility characteristic.

4.2.2 Structural Similarity Analysis
The purpose of this analysis is to refine the result of the
software engineering metrics analysis and to check how
the structure of the student solution compares with model
solutions. In the analysis, the student solution and model
solution are both transformed to an abstract pseudo code
form which represents just the abstract algorithmic
structure of the programs. The abstract representations of
the student solution and model solution are compared to
identify differences. Feedback to both students and
instructors indicates the similarity of the student and
model solutions. It is important to note that the techniques
that are used to design this analysis only work for simple
introductory programs.

By comparing student solutions with model solutions, the
framework is able to identify high complexity areas in the
student code, such as lengthy methods. Unmatched areas
between student solutions and model solutions can be
used to predict and provide better feedback to students if
their solutions result in an incorrect output in dynamic
analysis. Thus structural similarity analysis closes the gap
between static analysis and dynamic analysis which exists
in earlier related research.

Rich and Wills (1990) raised several issues with the use
of cliché matching including syntactic and
implementation variation; thus it is difficult to anticipate
all possible solutions for a problem. To overcome this
drawback, the framework is designed so that when the
system cannot find a match between the student solution
and all available model solutions, the student solution is
sent to teaching staff for review. If the instructor
recognizes that it is another allowable solution for the
exercise, it can be added to the model solution list. In
addition, as only small or “fill-in the gap” exercises are
analysed by the framework, the implementation variation
is very small. Last but not least, the matching process in
the framework is based on the algorithm structure instead
of exact match.

In order to ensure the framework may be used effectively
with different types of exercises, the abstraction and
matching processes are configurable by instructors to suit
the individual exercise. For example the abstract pseudo
code form can retain detailed information such as variable
names and method calls or just statistics of the code.
Similarly, the matching process varies from exact to
relative matching of the statistical information.

5 Framework Implementation
The software engineering metrics and structural
correctness analyses operate on the program Abstract
Syntax Trees (AST). The AST is represented using XML.
When a gap exercise is submitted for analysis, it is first
converted to an XML marked-up AST using the ANTLR

(Parr, 2003) parser. The student solution is analysed for
all options in the software engineering metric as specified
by the instructor and feedback is generated. After that the
abstraction of the model solution AST and student AST
are obtained from the program transformation process.
These two abstraction documents are compared with each
other to identify differences and provide further feedback
to students. Figure 2 illustrates the overview of the static
analysis process.

Section 5.1 discusses the usage of AST and XML to
implement the static analysis. The detailed
implementation of each analysis is described in Section
5.2 and 5.3.

5.1 Implementation Consideration
An AST representation was chosen as the base type to
perform the analysis because according to Badros (2000),
it can efficiently exploit a well-defined and well
understood structural representation of a program. This
will enable the framework to give more detailed feedback
about the quality of student programs.

The framework makes use of XML extensively. As well
as the analysis performed on the XML marked-up
representation of a program, the results of the analysis
and the configuration are also XML documents. The use
of XML has brought several advantages to the framework
including: easy to understand and manipulate, extensible,
widely supported and human readable (Mamas and
Kontogiannis, 2000).

Figure 2: An overview of Static Analysis

5.2 Implementation of Software Engineering
Metrics Analysis

Currently, the system provides a set of configuration
functions to check students’ common poor programming

practices and logic errors mentioned in Section 4.1. The
key point in this analysis is that the functions are
configurable for each gap in an exercise. Table 2 lists all
available functions together with their descriptions.

All analyses are stored in the “StaticAnalysis” folder on
the server and are only loaded when they are specified as
one of the required analyses for a gap. A new analysis
which can be a Java class file or JAR package can be
added to the framework easily by saving it to the located
folder. The only requirement for the new component is
that it needs to implement the StaticAnalysis
interface which is show in Figure 3.

Figure 3: StaticAnalysis Interface

Check Description

Program
Statistics

Count the total number of
variables, statements and
expressions in a gap.

Shadow
Variables

Check if a variable is declared in
both class scope and method
scope.

Cyclomatic
Complexity

Count the number of logic
decisions in a program.

Unused
Parameters

Check if there are any unused
parameters in a method.

Redundant
Logic
Expression

Detect redundant logical e.g.
expressions “x==true”.

Unused
Variables

Check if there are any
unreferenced variables in a
specified scope.

Magic
Numbers

Ensure student solutions do not
have hard coded numbers or string
literals.

Access
Modifiers

Ensure variables and methods
have the correct modifiers.

Switch
Statements

Ensure that all switch statements
have “default” case and in each
case block there is a “break”
statement.

Character Per
Line

Calculate number of characters
per line (max 80).

No Tabs Ensure that space is used to indent
the code rather than Tab key.

Table 2: Functions provided

public interface StaticAnalysis {
 public String getShortDes();

 public String getLongDes();

 public Document analyse(

Element gap, Document configDoc,

Document solution);

 public Document similarity(

Document studSol, Document modelSol,

Document configDoc);
}

Student
solution

Model
solution

Java parser

Software
engineering

analysis

Program
transformation

engine

Java parser

Program
transformation

engine

Normalized
student
solution

Normalized
student
solution

Comparison

Feedback Feedback

XML
Markup

AST

XML
Markup

AST

Java reflection is used to load and invoke analyses at run
time. The analyse method of the class which
implements the StaticAnalysis interface will be
invoked for all software engineering metrics analyses
whereas the similarity method will be invoked for
all structural similarity analyses. The getShortDes
and getLongDes methods are used to display
descriptions for the analysis.

Feedback to students can be either automatically
generated or customized by instructors. The feedback
received specifies the line number in the solution where
the poor code lies, together with suggestions of how the
solution might be improved. In the future, it is planned to
generate feedback to aid tutors with marking.

5.3 Implementation of Structural Similarity
Analysis

As with the software engineering metrics analysis, the
structural similarity analysis is only loaded when it is
specified as required for an exercise. In this analysis, one
or more model solutions and the student solution for a
gap are transformed into a simpler form and compared
with each other. If a student solution has a matching
structure, a congratulatory message is returned. Otherwise
feedback highlighting all the differences between the
student and model solutions together with instructors’
suggestions of how the problem should be solved is
given. These suggestions are embedded in the XML mark
up of the exercises.

Program abstraction is achieved by adding generic nodes
to the AST. For example a generic loop node is used to
represent any form of loop. Similarly, there are generic
expression and selection nodes. Other generic nodes
represent statement counts. Figure 4 illustrates a gap for a
block of statements and its normalized form. This
normalization process also helps to limit the variation of
possible solutions for a problem.

Figure 4: A gap and its normalization

5.4 Example
The following example illustrates how the framework
integrates into the ELP system.

Question:

Write a simple program that obtains two integer values –
lowerLimit and upperLimit from the user. Display all
integers between lowerLimit and upperLimit in ascending
order.

Figure 5 illustrates a “fill in the gap” ELP version of this
exercise with a student solution in the gap. The
underlined statements in the gap show the differences in
the student solution and the model solution.

A student submits an exercise to the server for analysis by
pressing the “Analyse” button. The framework builds the
complete Java source file and compiles the student
solution to ensure that there are no syntax errors. If the
compilation process is successful, the whole Java source
file is run through the customized ANTLR parser to
obtain the XML marked-up AST representation of the
program. A GapExtractor engine processes the resulting
AST to extract the gap. It then extracts the AST that
represents the student solution from the complete
program AST. Figure 6 below represents the static
analysis configuration together with the model solution
for the gap.

With reference to Figure 6, all XML elements that are
children of SoftwareEng node (CyclomaticComplexity,
CheckRedundantLogicExpression) are named to match
the corresponding Java class. As mentioned earlier, these
classes implement the StaticAnalysis interface. The
framework reads the analysis configuration for the gap
and uses Java reflection to invoke the analyses.

With the structural similarity analysis, the skeleton which
is extracted from the marked-up exercise, the exercise
solutions which are constructed from possible solutions
embedded in each gap and the AST marked up XML for
the exercise solution are generated and stored on the
server the first time the exercise is analysed. Unlike the
software engineering metrics analysis, this analysis is
class based. If an exercise has more than one gap, all gaps
need to be completed in order to carry out the analysis.
When an exercise has more than one class, depending on

guess = reader.readInt("Guess a number " +

 "between 1 and 100 ");

while(guess != secret){

 if(guess < secret){

 writer.println("Your guess is low");

 }

 else {

 writer.println("Your guess is high");

 }

 guess = reader.readInt("Guess a " +

 "number between 1 and 100 ");
}

<gap>

<statements>

 <assignment>1</assignment>

 <methodCall>1</methodCall>

 <loop>

 <condition>

 <trueBranch>

 <methodCall>1</methodCall>

 </trueBranch>

 <falseBranch>

 <methodCall>1</methodCall>

 </falseBranch>

 </condition>

 <assignment>1</assignment>

 <methodCall>1</methodCall>

 </loop>

</statements>
</gap>

the dependency among classes, students might need to
complete all classes in the exercise. If the gap has more
than one solution, they are arranged sequentially in the
marked-up exercise. The similarity method will be
invoked for all analyses that belong to the structural
similarity analysis.
import TerminalIO.*;

public class SafeCountBy1
{
 KeyboardReader reader =
 new KeyboardReader();
 ScreenWriter writer =
 new ScreenWriter();

 public void run()
 {
 writer.println("Welcome to the " +
 "SafeCountBy1 program");

 //Input variables
 int lowerLimit;
 int upperLimit;

 //Intermediate variables
 int counter;

 //Read lower and upper limit
 lowerLimit =
 reader.readInt("lower limit: ");
 upperLimit =
 reader.readInt("upper limit: ");

 counter = lowerLimit;
 while(((counter <= upperLimit)== true)
 && (counter >=0))
 {
 writer.println("counter = " +
 counter);
 counter = counter + 1;
 }
 }
 public static void main(String[] args)
 {
 SafeCountBy1 tpo = new SafeCountBy1();
 tpo.run();
 }
}

Save

Compile & Save

Reset

Analyse

Figure 5: An ELP exercise example with a student
solution

The ELP system displays the results of the analysis as a
list of links presented to the student; Figure 7 illustrates
the static analysis feedback returned to student. The
student can select which of the analysis they would like to
see. Each analysis has a long and a short description; the
short description is displayed as a tool tip for the link; the
student can view the long description by clicking on the
“View Description” button. As shown in the
StaticAnalysis interface, all the analyses return an
XML document which represents the results of the
analysis. When the student selects an analysis to view, a
servlet that belongs to the analysis processes the result
document to generate feedback.

Figure 6: The gap analysis configuration and solution

Save

Compile & Save

Reset

Analyse

Static Analysis Result

 Cyclomatic Complexity
View Description

 Redundant Logic Expression
View Description

 Structural Similarity
View Description

Figure 7: Static Analysis Result

The value computed by the CyclomaticComplexity
analysis is obtained by counting the number of logic
decisions in the code plus one. For example, the
cyclomatic complexity value will be three for the student
solution. The feedback can be either only the complexity
value such as in the given example or customized by
comparing the specified accepted value and its variation
depending on the configuration. With the
CheckRedundantLogicExpression analysis, the feedback
is a list of logic expressions that perform redundant
checks in the code. In this example, (counter <=
upperLimit) == true is returned.

The structural similarity analysis feedback consists of the
comparison between the suggested model solution and

<Gap>

<Analysis>

 <Static>

 <SoftwareEng>

 <CyclomaticComplexity/>

 <CheckRedundantLogicExpression/>

 </SoftwareEng>

 <StructuralSimilarity/>

 </Static>

</Analysis>

<Solution>

while(lowerLimit < upperLimit){

 writer.println("Sorry, lower limit may " +

 " not be greater than upper limit!");

 upperLimit = reader.readInt(" upper " +

 " limit ");

}

counter = lowerLimit;

while(counter <= upperLimit){

 writer.println("counter = " + counter);

 counter = counter + 1;

}

</Solution>
</Gap>

structure of the student solution. Figures 8 and 9 illustrate
the Structural Similarity analysis feedback and the
suggested solution. Through the feedback shown in
Figure 8, the student can recognize that they have missed
one loop in their gap solution.

Save

Compile & Save

Reset

Analyse

Structural Similarity Analysis Result

Your solution does not have the right structure!

 Here is the structural comparison between your solution and
model solution:

Your solution Model Solution

 1 assignment
 loop
 1 assignment
 1 methodCall

 loop
 1 assignment
 2 methodCall

 1 assignment
 loop
 1 assignment
 1 methodCall

View suggested solution

Figure 8: Structural Similarity analysis Feedback

Suggested Solution with Highlighted Structure

Color code

 Loop statements Red

 If statements Fuchsia

 Switch statements Blue

// Trap invalid value of upperLimit:
while(lowerLimit > upperLimit){
 writer.println("Sorry, lower limit may not"
 + " be greater than upper limit!");
 upperLimit=reader.readInt("upper limit: ");
}

// Count from lowerLimit to
// upperLimit in steps of 1
counter = lowerLimit;
while(counter <= upperLimit){
 writer.println("counter = " + counter);
 counter = counter + 1;
}

Figure 9: Suggested solution with code highlighted

6 Conclusions and Future Work
The static analysis framework consists of two analyses:
software engineering metrics and structural similarity.
The first evaluates the quality and the second examines
the similarity in structure of student programs compared
with model solution. The analyses are performed on
XML marked-up AST representations of programs.
Feedback to students includes comments about the

quality and structure of their programs, hints of how the
solution might be improved and alternative solutions.

Overall, the framework has four limitations. First, the
chosen technique only works with small or “fill in the
gap” type programming exercises to minimize the
implementation variation in structural similarity analysis.
Second, the framework is able to analyse only well-
formed gaps. Third, the framework does not implement
semantic analysis; however, with its extensible
architecture, additional analyses can be plugged in easily.
Last, the framework only analyses syntactically correct
programs. All gaps need to be completed in order to carry
out the analysis with multiple dependent gaps exercises.

An evaluation of the framework in a class of 400 students
has been re-scheduled for first semester 2004 to coincide
with the introductory programming course at QUT.
However, the framework was designed and tested on
student tutorial exercises over the last few semesters. In
addition, it is being continuously evaluated by teaching
staff in the faculty and consistently receives positive
feedback.

7 References
Badros, G. J. (2000): JavaML.
http://www.cs.washington.edu/homes/gjb/JavaML/.
Accessed March 2002.

Ben-Ari, M. (2001): Constructivism in Computer Science
Education. Journal of Computers in Mathematics &
Science Teaching 20(1): 24-73.

CourseMaster: School of Computer Science & IT, The
University of Nottingham, UK.
http://www.cs.nott.ac.uk/CourseMaster/cm_com/index.ht
ml. Accessed 2002.

Deek, F. and McHugh, J. (1998): A survey and critical
analysis of Tools for Learning Programming. Journal of
Computer Science Education, 8(2): 130-178.

Forsythe, G. E. (1964): Automatic machine grading
programs. Proc. the 1964 19th national conference, 141-
401, ACM Press.

Halstead, M. H. (1977) Elements of software science,
Elsevier, New York.

Harrison, W. and Cook, C. R. (1986): A Note on the
Berry-Meekings Style Metric. Communications of the
ACM, 29(2): 132-125.

Hollingsworth, J. (1960): Automatic graders for
programming classes. Communications of the ACM,
3(10): 528-529.

Hristova, M., Misra, A., Rutter, M. and Mercuri, R.
(2003): Identifying and Correcting Java Programming
Errors for Introductory Computer Science Students. Proc.
the 34th SIGCSE technical symposium on Computer
science education, Reno, Nevada, USA, 34:153-156,
ACM Press.

Jackson, D. (1996): A software system for grading
student computer programs. Computers Education,
27(3/4): 171-180.

Jackson, D. (1997) A software system for grading student
computer programs. Proc. the twenty-eighth SIGCSE
technical symposium on Computer science education,
San Jose, California, United States 28: 335-339, ACM
Press.

Joy, M. and Luck, M. (1998): Effective electronic
marking for on-line assessment. Proc. The 6th annual
conference on the teaching of computing and the 3rd
annual conference on Integrating technology into
computer science education. Dublin City University,
Ireland, 134-138, ACM Press.

Lambert, K. and Osborne, M. (2002) Java: A Framework
for Programming and Problem Solving, Brooks/Cole.

Leach, R. J. (1995): Using metrics to evaluate student
programs. ACM SIGCSE Bulletin, 27(2): 41-43.

Linn, M. C. and Clancy, M. J. (1992): Can experts'
explanations help students develop program design skills?
International Journal Man-Machine Studies, 36(4): 511-
551.

Mamas, E. and Kontogiannis, K. (2000): Towards
Portable Source Code Representations Using XML. Proc.
Seventh Working Conference on Reverse Engineering,
Brisbane, Australia, 7:172-182, IEEE.

McCabe, T. J. (1976): A Complexity Measure. IEEE
Transactions on Software Engineering, 2(4): 308-320.

McGill, T. and Volet, S. (1995): An Investigation of the
Relationship between Student Algorithm Quality and
Program Quality. SIGCSE Bulletin, 27(2): 44-48.

Mengel, S. and Yerramilli, V. (1999): A Case Study Of
The Static Analysis Of the Quality Of Novice Student
Programs. Proc. Thirtieth SIGCSE technical symposium
on Computer science education, New Orleans, Louisiana,
United States, 13:78-82.

Murray, W. M. (1988) Automatic Program Debugging
for Intelligent Tutoring Systems, Morgan Kaufmann,
Pitman, London.

Parr, T.: ANTLR, http://www.antlr.org. Accessed 2002.

Reek, K. A. (1989): The TRY system -or- how to avoid
testing student programs. Proc. The twentieth SIGCSE
technical symposium on Computer science education,
Louisville, Kentucky, United States, 21:112-116, ACM
Press New York, NY, USA.

Rich, C. and Wills, L. M. (1990): Recognizing a
Program's Design: A Graph-Parsing Approach. IEEE
Software, 7(1): 82-89.

Sanders, D. and Hartman, J. (1987): Assessing the quality
of programs: A topic for the CS2 course. Proc.
Eighteenth SIGCSE technical symposium on Computer
science education, St. Louis, Missouri, United States,
19:92-96, ACM Press.

Schorsch, T. (1995): CAP: An automated self-assessment
tool to check Pascal programs for syntax, logic and style
errors. Proc. The twenty-sixth SIGCSE technical
symposium on Computer science education, Nashville,
Tennessee, United States, 168-172, ACM Press.

Song, J. S., Hahn, S. H., Tak, K. Y. and Kim, J. H.
(1996): An Intelligent tutoring system for introductory C
language course. Computers Education, 28(2): 93-102.

Topor, R. W.: CIT1104 Programming II: Common (Java)
programming errors,
http://www.cit.gu.edu.au/~rwt/p2.02.1/errors.html.
Accessed 1 May 2002.

Townhidnejad, M. and Hilburn, T. B. (2002): Software
Quality Across the Curriculum. Proc. The 15th
Conference on Software Engineering Education and
Training, Covington, KY, USA, 15:268-272, IEEE.

Truong, N., Bancroft, P. and Roe, P. (2002): ELP - A
Web Environment for Learning to Program. Proc. The
19th Annual Conference of the Australasian Society for
Computers in Learning in Tertiary Education, Auckland,
New Zealand, 19:661-670.

Truong, N., Bancroft, P. and Roe, P. (2003): A Web
Based Environment for Learning to Program. Proc.
Twenty-Sixth Australasian Computer Science Conference,
Adelaide, 16:255-264.

Ziring, N.: Java Mistakes Page,
http://users.erols.com/ziring/java-npm.html#item9.
Accessed Sept 2002.

