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Abstract 
Entropy-based image thresholding are used widely in image 
processing. Conventional methods are efficient in the case of bi-
level thresholding. But they are very computationally time 
consuming when extended to multilevel thresholding since they 
exhaustively search the optimal thresholds to optimize the 
objective functions. In this paper, we propose a conditional 
probability entropy (CPE) based on Bayesian theory and employ 
Genetic Algorithm (GA) to maximize the CPE for the multi-
thresholds. The experimental results show that CPE is a good 
criterion of image thresholding and GA is a applicable fast 
algorithm for multi-level thresholding compared to the 
exhaustive searching method.  

1 Introduction 
Image thresholding is an important first stage for many 
image processing applications. The entropy-based global 
thresholding approach has been concerning in recent two 
decades owing to its simple and straightforward property. 
In this approach, an image posteriori entropy first be 
defined in terms of its gray levels. For instance, Kapur’s 
(1985) and Pun’s (1980 and 1981) entropies based on the 
image histogram and Zheng’s (1998), Zhao’s (2001) and 
Fleury’s (1996) entropies based on fuzzy partition.  
Secondly, a searching procedure is carried out to 
maximize the entropy in partition domain to determine 
the thresholded classes and optimal thresholds. For the 
bilevel thresholding , the search procedure is easy to carry 
out quickly. However, as pointed out in (Cheng 1999 and 
Fleury 1996), the computational complexity increases 
exponentially as the number of thresholds increases.  For 
k classes, the searching times are up to 
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kL
kL + , where L 

denotes the number of gray levels. So a fast algorithm to 
find a maximum entropy in order to determine the 
optimal thresholds is necessary. Genetic Algorithms 
(GAs) have been found to have many advantages over 
traditional searching techniques (Yin 1999 and Goldberg 
1989. One is that GA-based method is a global searching 
one and would not be trapped into local optimal solutions. 
Another important advantage is that the GA-based 
method can be faster by parallel implementation. In this 
paper, we propose a conditional probability entropy 
(CPE) based on Bayesian theory and employ Genetic 
Algorithm (GA) to maximize the CPE for the thresholds. 
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CPE consider the fact that the pixels with the same gray 
level in an image may belong to different classes with 
different probabilities. An optimal classification for these 
pixels is to classify them to the class with higher 
probability. The chromosome structure in GA is designed 
based on the conditional probability function employed 
with two parameters.  

2 Conditional Probability Entropy 
Let D denote the two-dimensional intensity domain of an 
image I, and G={0,1,…L-1} denote the L intensity values. 
Thus, an image I can be considered as a mapping from 
the two-dimensional domain D to the one-dimensional 
domain G. 
Let D },...,2,1|{ * KkDk == denote K classes. The purpose of 
multi-level thresholding of an image is to classify its L 
classes in G into K classes in D. Due to the fact that the 
boundaries between the classes *

iD  and *
jD  

( Kji ,...2,1, = and )ji !  are not well defined, some of the 
pixels with the same intensity value (i.e. corresponding to 
the same Gg" ) may be classified into different classes. 
Therefore, it is assumed that for each Gg" , gD  is 
composed of K classes kgD  (k=1,2,…,K), which satisfy 
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Let *
kP denote the probability of the event *

kD , i.e., 
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In above three equations, gkp |  denotes the conditional 
probability of the event that a pixel is classified into the 
class *

kD  under the condition that the pixel has an 
intensity value g. 
The information theoretic entropy measures the mean 
value of the uncertainty. In class space, entropy is the 
sum of the entropies in the K classes of D: 
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Thus, the entropy function E is a functional of *
kp , 

(k=1,2,…K). Since *
kp  is defined by the conditional 

probability functions gkp | , g=0,1,…,L-1, shown in 
Equation (1), entropy E given by Equation (6) is actually 
a functional of gkp | .   

The larger the value of ),...,,( ||2|1 gkgg pppE , the more 
compatibility there is between hg and gkp | . Therefore, we 
assume that gkp |  has the following forms: 
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where ),,( kkk cagf  and ),,('
kkk cagf  is a monotonous 

decrease and increase continuous functions respectively.  
Considering Equations (1), (5) and (6), the entropy 
function defined in Equation (4) is the function of 2K 
parameters :,...,2,1,, Kkca kk =  

),...,,,,( ,2211 kk cacacaE = 
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A set of optimal parameters ),...,2,1|~,~( Kkca kk =  should be 
the one where Equation (7) has a maximum. The optimal 
thresholds can be obtained by 
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3 Optimal Thresholds’ Search Using Genetic 
Algorithm 

Genetic Algorithms (GAs) are known to be robust 
(Goldberg 1989) and have enjoyed increasing popularity 
in the field of numerical optimization in recent years. 
GAs are search algorithms based on the mechanics of 
natural selection and natural genetics.  
The following four parts are generally involved in a GA 
searching for any problems: 

1. An effective chromosome encoding method 
2. A fitness function to be maximized or minimized 
3. A selection procedure to select the pairs with 

better genes for producing offspring 
4. A mating process to produce offspring from their 

parents 
Five parameters are considered in proposed GA: (1) 
population size Spop; (2) crossover probability Pc; (3) 
mutation probability Pm; (4) the total number of bits in a 
generation Nb; (5) maximum number of generations  Ng. 
To map our search problem to GA, the following four 
aspects corresponding to the above four parts are 
determined. 

3.1 Chromosome Encoding   
 The 2K parameters consist of a chromosome v  that has 
the order of ),,...,,,,( 2211 KK cacaca . The population with 
Spop chromosomes can be described as 
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Each parameter has ( L2log ) bits. So a chromosome has 
(2K L2log ) bits. The construct of a chromosome is shown 
in Figure 1.  
 
 
 
For randomly generating jv , it is generally possible that 
Equation (8) is not sufficient. Here we transfer the 
insufficient parameters from the range [0,L-1] to the 
following ranges in order to meet the condition of 
Equation (8)    
 

(a) if ji aa ) , transfer ai to ],0[ ja  by calculating 

1
'

%
=

L
aa

a
k
j

k
ik

i . 

(b) if ii ca ) , transfer ci to ]1,[ %Lai by calculating 

%
%=

1
1'

L
acc

k
ik

i
k

i . 

3.2 Fitness Function 
For the problem of our image thresholding method, the 
fitness function )(vE  is the entropy given by the 
Equation (7). 

3.3 Selection Procedure 
This procedure is to select the pairs for producing their 
offspring with respect to the probability distribution j

sP , 
j=1,2,…,Spop, based on the fitness value. We employ the 
selection procedure based on spinning a roulette wheel 
Spop times (Goldberg 1989). A Cumulative probability for 
each chromosome jv  is 
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j
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=
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i
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1
)(  is the total fitness of the population.  

Generating a random number r from the range [0,1], if 
1
sPr < , then select the first chromosome 1v ; otherwise 

select the jth chromosome jv )2( popSj ''  such that 
j

s
j

s PrP '<%1 . 

3.4 Mating Process 
After several pairs are selected as parents randomly with 
probability Ps, the mating process is carried out. In this 
process, it is hoped that the selected parents combine their 

a1 c1 a2 c2 … ai ci … aK cK 

          Figure1. One chromosome structure 
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 Figure 2. CPE Vs generations in GA on average 

good characteristics to produce a better offspring. It is 
accomplished by GAs through crossover and mutation 
operators.   

• Crossover operator: first generate a random 
number in [1, 16K] as the position of the 
crossing point of the parents’ chromosomes. 
Next, swap the parents’ genes after the crossing 
point to produce their offspring.  

• Mutation operator: this is performed on a bit-by-
bit basis. There are Nb= 2KSpop L2log bits in a 
population, so generate Nb random numbers 
from the range [0,1]; if  the random number is 
less than the predefined mutation probability Pm, 
mutate the bit. 

Till now, we have obtained a new population 
(generation). This procedure goes on till a preset 
generation number Ng is reached at. 
In conclusion, the procedure of the proposed GA search is 
as follows: 
Step1: Initiation: random generate an initial population V1 

which consists of Spop chromosomes.  
Step2: Evaluation: evaluate fitness function for all 

chromosomes by Equation (7) 
Step3: Selection: use roulette wheel to select new 

population Vk with respect to the probability 
distribution based on fitness value.    

Step4: Crossover:   
• select chromosome pairs as parents for crossover 

with respect to the probability Pc  
• determine the cross point using a random integer 

in [1, 2(K-1) L2log ] 
• mate parents with each other to generate their 

two children 
• replace parents by their children for a new 

population 
Step5: Mutation:  

• generate 16KSpop random number in [0,1] 
• if r<Pm, mutate the corresponding bit, where Pm 

is the mutation probability . 
Step6: Termination: if generation iterations equal Ng , 

stop the GA. 

4 Experimental Results 
We applied the proposed method to many kinds of 
images. The experiment results for four of the images, 

Family, Computer, Model and Ball, with 256 gray levels 
are presented in this section. Figure 2a and 3a show two 
original images: Family and Model. Since GAs are 
stochastic, we run each GA ten times and evaluate their 
average results. In our experiment, the population size 
Spop is 30 and the probabilities of a cross-over Pc and a 
mutation Pm are set to 0.6 and 0.1 respectively.  
Figure 2 is the maximum CPE graph in generations on 
average of four images. It is observed that the GA 
converges very fast in 10-20 generations. Thus, the 
number of generations is selected to 20 in this paper.   
Figure 3b-3d and 4b-4d present the thresholding results 
for the two images with three-, five- and eight-level 
respectively. For Family image, the optimal thresholds 
obtained by CPE and GA searching method are (32,86), 
(18,40,75,128) and (13,23,39,60,83,122,169) with three-, 
five- and eight-level respectively. While for Model image, 
the optimal thresholds are (132,230), (78,146,195,240) 
and (45,98,140,198,220,232,239) with three-, five- and 
eight-level respectively.  

 
For demonstrating the efficient of proposed approach, the 
running times of multilevel thresholding using GA and 
exhausted searching (ES) method (Pun 1980 and Cheng 
1998) are compared in Figure 5. It is proved that the 
running time of the exhausted search (ES) (figure 5a) 
increase exponentially as the number of thresholds 
increases like mentioned in Section 1. The running time, 
however, increase rough linearly using GA search (Figure 
5b) with class number increases.  

5 Conclusion 
In this paper, it has been developed a thresholding 
algorithm based on conditional probability entropy  
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        Figure 5   Searching times with different K 



 

(CPE). For obtaining optimal thresholds, a GA is  
D. E. designed and applied to speed up the optimal 
searching procedure.  Experiments shows that CPE with 
GA search are effective and much faster than CPE with 
conventional exhausted searching (ES) method. 
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 (a)                                      (b) 

    
                (c)                                    (d) 
Figure 3. Family  (a) original image (b-d) thresholed 
images with 3-,5- and 8-level respectively 
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 (c)            (d) 
Figure 4. Model  (a) original image (b-d) thresholed 
images with 3-,5- and 8-level respectively 
 


