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Abstract

Nowadays, biologists use a number of large biological data-
banks to find relevant information for their research. Users of

these databanks face a number of problems. One problem is
that users are required to have good knowledge about the con-

tents, implementations and conceptual models of many data-
banks to be able to ask precise and relevant questions. Further,
the terminology that is used in the different databanks may

be different. Also, when asking complex queries to multiple

databanks, users need to construct a query plan on their own
possibly leading to poor performance or not even obtaining re-

sults. To alleviate these problems we define an architecture

for systems that deal with these problems by allowing for a
transparent and integrated way to query the multiple sources.

The contribution of this paper is threefold. First, we describe a

study of current biological databanks. Then, we propose a base
query language that contains operators that should be present

in any query language for biological databanks. Further, we
present an architecture for a system supporting such a language

and providing integrated access to the highly distributed and

heterogeneous environment of biological databanks.

1 Introduction

Nowadays, biologists use a number of large biolog-
ical databanks such as SWISS-PROT (Bairoch and
Apweiler 2000), EMBL (Stoesser et al. 2001) and
Genbank (Benson et al. 2000) to find relevant infor-
mation for their research. An example of this is the
field of comparative genomics where information on
the location and functionality of genes and the in-
teraction between genes is derived by doing sequence
comparison with sequences in the databanks for which
there already exist established results. There are a
huge amount of such biological databanks. For in-
stance, the online database issue and collection 2001
of the Nucleic Acids Research journal (NAR 2001)
describes briefly 95 information sources and contains
a Molecular Biology Database Collection with 281
information sources. DBCAT (DBCAT -) lists 511
sources.

One of the areas in the field of bioinformatics con-
cerns the study of the creation, maintenance and use
of these biological databanks. Users of these data-
banks face a number of problems. This is partly
due to the inherent complexity of building such data-
banks. Some of the facts that contribute to this com-
plexity are, for instance, the fact that biological data
is highly complex when compared with data in most
other domains, the amount and range of variability in
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data is high and the schemas in biological databanks
change at rapid pace (Elmasri and Navathe 2000).
However, another source of the problems is the ad hoc
way in which some of these databanks have been built
without much consideration for the practice in and
lessons learned from building complex data sources
in related areas such as distributed databases and in-
formation retrieval.

One problem that users face is that they are re-
quired to have good knowledge about which data-
banks contain which information as well as about the
query languages or user interfaces and the conceptual
models of many databanks. For example, there are
29 publicly accessible srs6 servers providing access to
over 300 different databanks. It is possible to use
systems such as Sequence Retrieval System (SRS -)
to write queries involving the information in different
databanks, but it is still required to select the data-
banks over which the queries should be performed.

Often there is a form-based user interface that
helps the user partly, although different systems may
use different ways of filling in the data fields in the
forms. With respect to querying most databanks al-
low for full-text search and for search with predefined
keywords. The structure of the databanks may be
different (e.g. flat files, relational databases, object-
oriented databases). Also the formats of the query
results may be different. Biologists, however, should
not need to have good knowledge about the spe-
cific implementations of the databanks, but instead
a transparent solution should be provided.

Another problem is that representations of the
same data by different biologists will likely be dif-
ferent. For instance, two databanks may store dif-
ferent information about the same entity. In figure
1 we show part of the Genelynx (GeneLynx -) en-
try for the adrenergic alpha-2B receptor, which is a
hormone receptor for adrenaline. Genelynx collects
hyperlinks for each human gene. The figure shows
(part of) the links to databanks that have informa-
tion about this receptor with the identifiers in the
databanks in brackets. One of the databanks, SWISS-
PROT (Bairoch and Apweiler 2000), contains infor-
mation about the name, synonyms, source organism,
taxonomy, references, function, subcellular location,
similarity, features and amino-acid sequence. KEGG
(KEGG -), on the other hand, contains information
about the name, definition, class, position and amino-
acid and nucleotide sequences. Also, the same entity
may have different names in different databanks. This
is the case, for instance, for entities for which a stan-
dardization committee has introduced a new name
and both the new and the old names are used in (dif-
ferent) databanks. To solve this problem methods
for representing and reasoning about biological data
are needed. Also approaches for identifying the dif-
ferences between conceptual models and integrating
them are required.



Genelynx #3309
Gene name: ADRA2B
Description: adrenergic, alpha-2B-, receptor
Summary pages: Unigene (Hs.247686), Lo-
cusLink (151), GeneCards (ADRA2B), Swiss-Prot
(A2AB HUMAN), KEGG gene (151), EGAD
(28203), euGenes (HUgn0000151), HumanPSD
(ADRA2B)
Genomic resources: NCBI/EBI/DDBJ (AF005900,
M34041), GDB (120539), GenAtlas(ADRA2B)

Figure 1: Information about ADRA2B in different
sources.

When users have a complex query where informa-
tion from different sources needs to be combined, they
often have to divide the queries into a number of sim-
ple queries, submit the simple queries to one databank
at a time and combine the results themselves. This
is a non-trivial task containing steps such as decid-
ing which databanks to use and in which order, how
terms in one databank map to terms in other data-
banks and how to combine the results. A mistake in
any of these steps may lead to inefficient processing
or even in not obtaining a result. A requirement for
biological databanks is therefore that they allow for
complex queries in a highly distributed and heteroge-
neous environment.

To alleviate these problems we want to define an
architecture for systems that deal with these prob-
lems by allowing for a transparent and integrated way
to query the multiple sources. The systems should
provide a long-term solution taking into account the
complexity of the field as well as the fact that there
are a large number of legacy systems. Our approach
can be seen as a view integrating approach (Davidson
et al. 2001). In this kind of approach the under-
lying schemas of the resources are integrated into a
global schema and this schema is queried in a high-
level query language. The contribution of this paper
is threefold. First, we describe a study of a number of
current biological databanks. The focus in thestudy
was to investigate the query support of the differ-
ent databanks. Then, we propose a high-level base
query language that contains operators that should
be present in any query language for multiple bio-
logical databanks. The choice is based on the study
of current practice as well as on a (currently small)
number of interviews. In this paper we restrict the
scope of the query language to text. We observe that
the proposed query language is not necessarily used
as an end-user query language. For the common end
user the language is likely to be hidden behind a user
interface. The study is described in section 2. The
query language is introduced in section 3. In section 4
we propose an architecture for a system that supports
this query language. The architecture is currently be-
ing implemented in a prototype. Related work is dis-
cussed in section 5 and the paper concludes in section
6.

2 Study of databanks

We decided to study a number of the most used and
best known databanks and chose GenBank (Benson
et al. 2000), EMBL (Stoesser et al. 2001), DDBJ
(DDBJ -), SWISS-PROT (Bairoch and Apweiler
2000), PIR (Wu et al. 2002), ENZYME (Bairoch
2000), PDB (Berman et al. 2000), MMDB (Wang
et al. 2002), PROSITE (Falquet et al. 2002), PRINTS
(Attwood 2002) and BLOCKS (Henikoff et al. 2000).
For these systems we investigated the organization of
the data, the data content and the data retrieval pos-
sibilities. With respect to the organization of the data

Databank R L DB
GenBank Y EMBL, DDBJ
EMBL Y GenBank, DDBJ
DDBJ Y EMBL, GenBank
SWISS-PROT Y Y GenBank, EMBL DDBJ
PIR Y Y GenBank, EMBL DDBJ
ENZYME Y Y IUBMB
PDB Y
MMDB PDB
PROSITE Y Y SWISS-PROT
PRINTS Y SWISS-PROT, TREMBL
BLOCKS Interpro

Table 1: Source of the data. (Researchers (R), Liter-
ature (L), Other databanks (DB).)

Databank FTP server user interface
GenBank genbank flat file, genbank flat file

asn.1
EMBL embl flat file embl flat file,

fasta, xml
DDBJ ddbj flat file ddbj flat file,

embl flat file,
xml, fasta

SWISS-PROT swissprot flat file, user friendly view
fasta swissprot flat file

PIR nbfr-pir, codata, nbfr-pir, codata,
fasta, xml fasta, xml

ENZYME enzyme flat file, user friendly view,
asn.1 enzyme flat file

PDB pdb flat file, pdb flat file,
mmCIF mmCIF

MMDB asn.1 mmdb flat file
PROSITE prosite flat file user friendly view,

prosite flat file
PRINTS prints flat file prints flat file
BLOCKS blocks flat file blocks flat file

Table 2: Data formats.

we looked at the kind of data, the source, the data
model, the update frequency and the location of the
data. The chosen databanks store information about
nucleotide sequences (GenBank, EMBL, DDBJ), pro-
tein sequences (SWISS-PROT, PIR, ENZYME), 3D
macromolecular structures (PDB, MMDB) and pro-
tein families (PROSITE, PRINTS, BLOCKS). The
source of the data can be researchers (that submit
their data), literature (data from published articles)
and other databanks. This is summarized in table 1.
Data can usually be retrieved in different ways: via
a web interface, ftp and e-mail. The underlying data
models for these databanks are the flat file model,
the relational model and the object-relational model.
Also different formats may be used for the databank
behind the web interface and the databank that can
be loaded from ftp servers. A summary of the formats
is given in table 2.

The content information can be grouped into the
header, the annotation and the actual information.
The header contains a unique identifier for the data
item, one or more entry dates, one or more names,
the source of the information and references. The an-
notation part contains comments and feature infor-
mation. Finally, there is additional information that
can contain a protein or DNA sequence, structure de-
scriptions or experiment descriptions depending on
the kind of databank. The level of detail of the data
is also different.

With respect to retrieval capabilities we found that
most databanks allow for queries based on the oc-
currence of text within a data item (full-text search)
and all databanks support queries based on the occur-
rence of a text string within certain predefined fields.
The user is often guided by the retrieval interface of
the systems as to which fields are searchable. Two of
the databanks, ENZYME and PRINTS, also allow for



Databank UI CL
GenBank a,n,nr,k,o,g,au,c,spec a,n
EMBL a,n,nr n,nr
DDBJ a,n,nr,k
SWISS-PROT a,n,nr,d,o,g,au,c a,n,nr,d,o,g,k,au
PIR a,nr,k,g,o,au,c,f n,nr
ENZYME n,d,spec n
PDB a,n,d,k,au,c,spec n
MMDB a,n,o,au,c,spec a,n
PROSITE a,n,nr,d,au,c,spec a,n,nr,d,au
PRINTS n,nr,d,f,s,spec n
BLOCKS n,k,s n,k

Table 3: Search within specific fields in the form-
based user interface (UI) and the command-line in-
terface (CL).

a: all text n: entry name nr: accession number
d: description k: keyword o: organism
g: gene name au: author c: citation
f: family s: sequence spec: specific fields

Table 4: Explanation of abbreviations in table 3.

browsing the branches of a predefined structure. Most
systems support Boolean queries (using and, or, not)
as well as wildcards in the text strings. In addition to
a form-based query interface, most systems also sup-
port command-line querying using the systems query
language. A summary is given in table 3. An expla-
nation of the abbreviations used in table 3 is given
in table 4. The result of a query is for most systems
a list of the data entries that match the query. The
actual result data is the complete data entry. In some
systems it is possible to define views over the result
and in that way one may retrieve only the interesting
fields. Two systems, PDB and PIR, supported reuse
of query results in new queries.

3 Query language

Our aim is to define a base query language that sup-
ports the most common queries that biologists want
to ask to biological databanks. According to the in-
terviews and the study of current systems, the most
common operations are text search (full-text search
and search within specific fields) as well as the appli-
cation of specialized tools such as sequence alignment
tools. Further, we want to be able to enhance the
power of the search mechanism by supporting the use
of ontologies. As most databanks are accessed via the
web we have also investigated web query languages
and query languages for semi-structured data such as
Lorel (Abiteboul et al. 1007), STRUQL (Fernandez
et al. 1997), WebSQL (Mendelzon et al. 1997) and the
language defined in (Lambrix and Shahmehri 2000).

As a base for our query language we have defined
a simple object model. This is in line with the obser-
vation in (Thierry-Mieg et al. 1999) that object mod-
els are most convenient when the conceptual model is
complex, the data is irregular and the queries are cor-
related. These characteristics fit biological data well
(Elmasri and Navathe 2000). Let C be a set of types
and R a set of relations. Let OID be a set of object
identifiers. Then an object o is a tuple <oid,C,R>,
where oid ∈ OID, C ∈ C and R is a set of pairs
<r,o′> where r ∈ R and o′ is an object. Some of the
types in C are predefined, such as String, Document
and Sequence. For these predefined types a number
of operations may be defined.

The base query language we propose is given in an
SQL-like syntax. In this section we give examples to
show the properties of the language. The syntax and
semantics of the complete base language are given in
the appendix.

In our language queries can be asked using the type
of the requested information. For instance, to find all
signal transducers we could write the following query.

select *
where Signal-transducer

In this case Signal-transducer is a type that is de-
fined in the global view over the data sources or in the
ontologies that are used. We require that the query
returns all found signal transducers. For instance,
assuming that receptors are signal transducers, also
the objects belonging to the type Receptor should be
returned.

The select-part of a query can contain * or a path
expression. In the first case all objects satisfying the
where-part are returned. In the second case we can
retrieve selected information. For instance, the fol-
lowing query returns the titles and authors of the
articles that are found by following the paths Ref-
erence.Title and Reference.Author.1 Reference and
Title are relation terms that are defined in the global
view or the ontologies. We have also required that
the start objects from which the paths should be fol-
lowed have accession number P18089.2 We have used
the fills construct which in the example requires that
the value for the Accession-number relation is P18089.

select Reference.Title, Reference.Author
where fills Accession-number P18089

It is not always the case that a user knows the in-
ternal structure of the databanks. Therefore, path
variables are introduced. For instance, the path
#p.Title matches any path with Title as the last re-
lation in the path. In the case where we do not know
that documents are connected via the Reference rela-
tion, the previous query can be written as:

select #p.Title, #p.Author
where fills Accession-number P18089

Conditions in the where-part of the query can be
combined by boolean operators and, or and and-
not. We also allow to require that following some
or all paths lead to objects of a specific type. For
instance, to find all objects that have a source organ-
ism classified as Homo sapiens and have a possible
related clone for which the vector type is a phage, we
can write:

select *
where (fills Source-organism Homo-Sapiens

and some Related-clone
(select *
where (fills Vector-type Phage)))

Some common queries require operations on spe-
cial types. To support this, we introduce the
function-construct. This construct provides a hook
to programs implementing operations on predefined
types. In the base language we have defined special
operations for two kinds of common queries: a string
search operation on documents and an alignment op-
eration on sequences. Similar operations could be de-
fined for other data types. As an example, the follow-
ing query finds all documents containing the string ‘E.
Coli’.

1Technically, to be consistent with the object model, the query
returns complex objects that have the retrieved values as values
for the path expressions. See the semantics in the appendix.

2The accession number is a commonly used identifier. However,
an entity may have different accession numbers in one data source
and not all data sources use the same kind of identifier. The ac-
cession number used in the query is the SWISS-PROT accession
number for the adrenergic alpha-2B receptor.



select *
where function string-search ‘E. Coli’

To find alignments for the sequence ‘MDHQD-
PYSVQ ...’ using BLAST (Altschul et al. 1990) we
construct the following query.

select *
where function align ‘MDHQDPYSVQ ...’
wrt BLAST

In the case where we leave the decision on which
alignment program to use to the retrieval system, the
wrt-part is left out. All the different types of queries
exemplified above can be combined.

The language that we have defined up till now can
be extended in a number of ways. For instance, as
it was shown in the interviews, it may be that the
user has a preference as to which databanks to use to
retrieve the information. Similarly, the user may want
to use preferred ontologies. The constructs using-db
and using-ontology could be used to provide this
flexibility. The retrieval system needs to take these
requirements into account during the processing of
the query. Another possibility is to allow to prefix
relations and types with the names of the databanks
and the ontologies.

4 Architecture

Our proposed architecture for a system supporting
the query language defined in section 3 is shown in
figure 2. The architecture is based on the assump-
tion that different communities create their own data-
banks (as has been done up till now) and that many
legacy systems are in use. Therefore, the integration
of the different, possibly heterogeneous, sources such
that the multiple sources can be queried in a uniform
and integrated way, is required.

db

wrapper

db

wrapper

base
knowledge
databankontology

base

retrieval engine

query interpreter and expander answer filter and assembler

user interface

user

central system

Figure 2: Architecture

The architecture contains a central system con-
sisting of a user interface, a query interpreter and
expander, an answer filter and assembler, and a re-
trieval engine. Further, the architecture assumes the
existence of an ontology base, a databank knowledge
base as well as the use of wrappers that encapsulate
the source databanks.

Ontology base

The ontology base contains a number of ontologies
together with information about the dependencies
between the items in the different ontologies. The
ontologies may be general or de facto standard on-
tologies (e.g. GeneOntology (GO 2000) that in-
cludes a number of the model organisms such as
Drosophila melanogaster (fruitfly), Saccharomyces
cerevisiae (budding yeast), Mus musculus (mouse),
Arabidopsis thaliana and Caenorhabditis elegans), or
company-dependent ontologies. The current ontolo-
gies use different ways to represent the information.

For instance, GeneOntology (GO 2000) has both a flat
file and XML format. The TAMBIS ontology (Baker
et al. 1999) is based on a description logic. The re-
cently created BioOntology Consortium has proposed
DAML+OIL (DAML -, OIL -), a language based on
frame systems, description logics and RDF, as their
preferred representation language.

The ontologies may be manually created (Lambrix
et al. 2002) or semi-automatically using, for instance,
dictionary construction methods (e.g. (Soderland
et al. 1995, Riloff 1996, Riloff and Jones 1999)) or
by merging already existing ontologies (Lambrix and
Edberg 2003). The information about dependencies
can also be created manually or semi-automatically
using, for instance, schema integration methods (e.g.
(Mena et al. 2000)).

Databank knowledge base

The databank knowledge base stores information
about the global integrated view over the data sources
as well as data source descriptions and the rela-
tions between the global model and the data sources.
There are different ways to describe this relation.
In the global-as-view approach (e.g. (Roth and
Schwarz 1997)) the global concepts are modeled as
views on the source models. The advantage is that
global queries are easily translated into local queries.
However, whenever a local model changes or new
sources are added, the global model needs to be up-
dated. In the local-as-view approach (e.g. (Levy
et al. 1995)) the local sources are modeled in terms
of concepts in the global model. The query planning
is harder, but updates in the local models are dealt
with in an easier way.

Further, the databank knowledge base stores in-
formation about the capabilities of the source data-
banks. This includes information about query an-
swering capabilities, update frequency and costs for
query answering.

Knowledge representation languages with similar
requirements have been proposed in the area of infor-
mation agents such as SIMS (Arens et al. 1993) and
the Information Manifold (Levy et al. 1995). The in-
formation in the knowledge base could be added man-
ually, but we may also use schema extraction tech-
niques to (semi-)automate this task. The informa-
tion is used by the retrieval engine to decide which
databanks to use.

Central system

The user interacts with the central system via the
user interface. User queries are stated via the inter-
face, translated into queries in the language as pro-
posed in section 3, and sent to the query interpreter
and expander. The query can be expanded to take
domain knowledge into account. This domain knowl-
edge could be found in the ontologies. For instance, if
the domain knowledge states that receptors are signal
transducers and the system needs to retrieve all sig-
nal transducers with particular characteristics, then
the query may be expanded to also retrieve the re-
ceptors with these characteristics. The used domain
knowledge may be of different kinds such as strict
subsumption knowledge and default knowledge.

The expanded query is sent to the retrieval en-
gine. The retrieval engine generates the answer to
the query. It processes the expanded query by gener-
ating a query plan. The query plan consists of sub-
queries to the (wrappers of) the different databanks.
For generating the query plan the engine needs to de-
cide which databanks should be used and in which or-
der. This decision is based on information about the



contents, the availability and the query capabilities
of the different databanks as well as domain knowl-
edge. For instance, information may be obtained from
different sources or some sources may not be avail-
able at query time. This information can be obtained
from the databank knowledge base as well as from
the ontology base. Further, the query plan should be
optimized with respect to the query. According to
(Davidson et al. 1995) a number of strategies should
be used including pushing operations down to the
source databanks as much as possible and exploiting
parallelism at the servers.

The answer filter and assembler receives the re-
sults of the queries from the retrieval engine and may
modify the results and arrange them for presentation
to the user.

Source databanks

The source databanks are accessed through the wrap-
pers. A wrapper encapsulates a databank and deals
with the translation of the sub-queries from the cen-
tral system into queries that are supported by the
databank’s retrieval system. The databank’s retrieval
system can, for instance, be a relational database
management system or a collection of PERL pro-
grams. The results of the local query are then prop-
agated to the retrieval engine of the central system.

5 Related work

There exist a number of systems that provide access
to multiple biological databanks. These systems can
be divided into two categories (Davidson et al. 2001).
The category of the link-driven federations contains
most of the currently used websites that provide an in-
terface to multiple biological resources, such as Entrez
(Entrez -) and SRS (SRS -). These systems support
a number of basic queries via a web interface. Often,
they also allow to use alignment algorithms such as
BLAST (Altschul et al. 1990) on the result of a query.
Usually, the users need to explicitly state which re-
sources should be used for retrieving the answers, re-
quiring good knowledge of the underlying sources.
The data source systems are often implemented us-
ing flat files and specialized retrieval packages. Most
of the integration is link driven and is achieved by
the creation of cross-reference indexes. For instance,
the SRS language (SRSum -) defines search in indexes
of databanks (including string search, regular expres-
sions, numeric ranges and dates), and combinations
of queries using and, or and andnot. With respect
to the combination of databanks the link construct
is introduced. This allows for queries of the forms
‘find all entries in databank A that are referenced in
databank B’, and ‘find all entries in databank A that
reference entries in databank B’. The advantage of
such systems is that queries relating to knowledge in
different databanks can be asked and that the query
processing is fast. However, although this is a first
step in integrating data sources, this solution does
not handle the differences in terminology used in the
underlying sources, is syntax based and only allows
limited query functionality over multiple databanks.
Also, adding a new resource requires cross-referencing
with the other resources.

The BioKleisli (Davidson et al. 1997), K2
(Davidson et al. 2001), TINet (Eckman et al. 2001),
P/FDM (Kemp et al. 2000) and TAMBIS (Goble
et al. 2001) systems, our own approach and the
proposal in (Burger et al. 1997) use an approach
based on view integration. Also IBM’s DiscoveryLink
(DiscoveryLink -) can be placed into this category. As
mentioned before, in this case the underlying schemas

are integrated to form a global schema. The global
schema is queried in a high-level language such as
CPL (BioKleisli) or OQL (K2). For instance, OQL
(Catell et al. 2000) relies on the ODMG object model.
It is close to SQL92 and has extensions concerning
complex objects, object identity, path expressions,
polymorphism, operation invocation and late bind-
ing. One difference between our query language and
the other proposals is that our language has been
inspired by web query languages and is based on a
(currently small) study of the use of current biolog-
ical databanks. Also the TAMBIS developers did a
user requirements survey (Stevens et al. 2001). The
other proposals seem to be based mainly on database
technology. In general, the view approach allows for
more complex querying and allows for support for in-
tegration on schema level. The advantages of such
systems include the possibility of complex querying,
the knowledge that is required of the end-user is not
as large and the local conceptual models are used in
the integration. Further, these view integration sys-
tems may also be used to create warehouses. An ex-
tension to the current implemented systems that is
needed and that we propose, is the use of ontologies.
This would lead to a possible solution of the discrep-
ancy problem in the local schemas as well as it is a
step towards semantic querying. A system that has
proposed some solutions in that direction is TAMBIS
(Goble et al. 2001). Some of the proposals in this cat-
egory are implemented and some of them have been
field tested. We are currently implementing a proto-
type based on our proposed architecture.

6 Conclusion

In this paper we introduced, based on a study of user
needs and current practise, a base query language
with operations that should be available in query lan-
guages for multiple biological databanks. The query
language provides an integrated and centralized ac-
cess that allows for complex queries in a highly dis-
tributed and heterogeneous environment. Further, we
introduced a possible architecture for systems sup-
porting this integrated access.

An important direction for future work is the def-
inition of a knowledge representation language and
an inference mechanism that support the representa-
tion of and reasoning about the information about the
contents and capabilities of the databanks as well as
the information in the ontology base. Another im-
portant direction for future work is the definition,
maintenance and integration of ontologies. The use
of ontologies can greatly improve the quality of search
results. An issue that we did not tackle in this paper
is the updating and maintenance of the databanks. In
the integrated system this will become an important
aspect.
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Appendix

The syntax of the language is as follows.3

<query> ::
select <selection-list>
[where <where-list>]

3{} represents an occurrence of zero or more times. [] represents
an optional part.



<selection-list> ::
*
| <path> {, <path>}

<where-list> ::
<type-description>
| <function-description>
| (<where-list> and <where-list>

{and <where-list>})
| (<where-list> or <where-list>

{or <where-list>})
| (<where-list> and-not <where-list>)

<function-description> ::
<content-description>
| <alignment-description>

<type-description> ::
top
| <type-name>
| all <path> (<query>)
| some <path> (<query>)
| atleast <non-negative integer> <path>
| atmost <non-negative integer> <path>
| fills <path> <object-name> {<object-name>}

<content-description>::
function string-search ’<string>’

<alignment-description>::
function align <sequence-name>
[wrt <program-name>]

<path> :: <path-part> {. <path-part>}
<path-part> :: #<string> | <relation-name>
<relation-name> :: <string>
<type-name> :: <string>
<object-name> :: <string>
<sequence-name> :: <string>
<program-name> :: <string>
<string> :: <symbol>[<string>]
<symbol> :: A | B | .. | Z | a | b | .. | z | 0 | .. | 9

The semantics of the query language is defined in
a model-theoretic way. An interpretation for the lan-
guage consists of a tuple < D, ε >, where D is a
domain and ε an extension function. The extension
function maps relations into sub-sets of D×D, types
into sub-sets of D and objects into elements of D such
that ε[o1] 6= ε[o2] whenever o1 6= o2.

We require that if o = <oid,C,R>, then ε[o] ∈
ε[C]. If o contains <r,o′> in its R-component then we
require that <ε[o],ε[o′]> ∈ ε[r]. For path expressions,
the following holds:
ε[r1.r2. ... .rn] = {<x,y> | ∃ x1,...,xn−1:
<x,x1> ∈ ε[r1] ∧ <x1,x2> ∈ ε[r2] ∧ ...
∧<xn−1,y> ∈ ε[rn]}.
Also, ε[#q] = {<x,y> | ∃ p: <x,y> ∈ ε[p]}

query descriptions:

ε[select * where A] = ε[A]

ε[select p where A] =
{ x | ∃ y ∈ ε[A]: <y, x> ∈ ε[p] }

ε[select p1,...,pn where A] =
{πp1,...,pn

(x) | x ∈ ε[A]} for n > 1

i) πp1,...,pn(x) is the projection of x on the paths
p1,...,pn.
ii) ∀ p ∈ {p1,...,pn} ∀ z:
<x,z> ∈ ε[p] ↔ <πp1,...,pn(x),z> ∈ ε[p]

iii) ∀ p 6∈ {p1,...,pn} ∀ z: <πp1,...,pn(x),z> 6∈ ε[p]

ε[A and B] = ε[A] ∩ ε[B]

ε[A or B] = ε[A] ∪ ε[B]

ε[A and-not B] = ε[A] \ ε[B]

type descriptions:

ε[top] = D

ε[all p A] =
{x | ∀ y : <x,y> ∈ ε[p] → y ∈ ε[A]}

ε[some p A] =
{x | ∃ y : <x,y> ∈ ε[p] ∧ y ∈ ε[A]}

ε[atleast m p] =
{x | ] {y | <x,y> ∈ ε[p]} ≥ m}

ε[atmost m p] =
{x | ] {y | <x,y> ∈ ε[p]} ≤ m}

ε[fills p o1 ... om] =
{x | <x,ε[o1]> ∈ ε[p] ∧ ... ∧ <x,ε[om]> ∈ ε[p]}

content description:

ε[function string-search s] =
{x | x ∈ ε[Document] ∧ x contains s}

alignment description:

ε[function align s wrt pr] =
{x | x ∈ ε[Sequence] ∧ sim(x,s,pr)}
sim(x,s,pr) is true if x and s are similar with respect
to the similarity defined by pr.

ε[function align s] =
{x | x ∈ ε[Sequence] ∧ ∃ pr: sim(x,s,pr)}
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