
Tree Based Scalable Indexing for Multi-Party
Privacy-Preserving Record Linkage

Thilina Ranbaduge, Peter Christen, and Dinusha Vatsalan

Research School of Computer Science, College of Engineering and Computer Science,
The Australian National University,

Canberra ACT 0200, Australia,
Email: {thilina.ranbaduge, peter.christen, dinusha.vatsalan}@anu.edu.au

Abstract

Recently, the linking of multiple databases to identify
common sets of records has gained increasing recog-
nition in application areas such as banking, health,
insurance, etc. Often the databases to be linked con-
tain sensitive information, where the owners of the
databases do not want to share any details with any
other party due to privacy concerns. The linkage of
records in different databases without revealing their
actual values is an emerging research discipline known
as privacy-preserving record linkage. Comparison of
records in multiple databases requires significant time
and computational resources to produce the resulting
matching sets of records. At the same time, preserv-
ing the privacy of the data is becoming more prob-
lematic with the increase of database sizes.

We propose a novel indexing (blocking) approach
for privacy-preserving record linkage between multi-
ple (more than two) parties. Our approach is based on
Bloom filters to encode attribute values into bit vec-
tors. The Bloom filters are used to construct a single-
bit tree, where the encoded records are arranged into
different blocks. The approach requires the parties
to only participate in a secure summation protocol
to find the best bits to construct the trees in a bal-
anced manner. Leaf nodes of the trees will contain
the blocks with encoded records. These blocks can fi-
nally be compared using private comparison and clas-
sification techniques to determine the similar record
sets in different databases. Experiments conducted
with datasets of sizes up-to one million records show
that our protocol is scalable with both the size of the
datasets and the number of parties, while providing
better blocking quality and privacy than a phonetic
based indexing approach.

Keywords: Multi-party protocol, privacy technolo-
gies, scalability, Bloom filter, single-bit tree, secure
summation protocol.

Funded by the Australian Research Council under Discovery
Project DP130101801.

Copyright c©2014, Australian Computer Society, Inc. This pa-
per appeared at Australasian Data Mining Conference (AusDM
2014), Brisbane, 27-28 November 2014. Conferences in Re-
search and Practice in Information Technology, Vol. 158. Richi
Nayak, Xue Li, Lin Liu, Kok-Leong Ong, Yanchang Zhao, Paul
Kennedy Eds. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

1 Introduction

Many organizations, including businesses, govern-
ment agencies and research organizations, are collect-
ing vast amounts of data that are stored, processed
and analyzed for the improvement of their works.
These data often contain millions of records. As
the size of data is continuously increasing, develop-
ing techniques for efficient processing, analyzing and
mining has gained much recognition in both academia
and industry. Many application domains require in-
formation from multiple sources to be integrated and
combined in order to improve data quality and to
facilitate further analysis of the data. The process
of matching records that relate to the same entities
from different data sources is known as ‘record link-
age’ (Fellegi & Sunter 1969).

In most occasions the linkage of records from mul-
tiple sources requires much computational resources
for processing. The process becomes even more chal-
lenging when the records contain personal informa-
tion. Organizations commonly do not want their sen-
sitive information to be linked with other data sources
due to growing privacy and confidentiality concerns.
The research paradigm of finding records in multiple
data sources that relate to the same entity without
revealing personal information is known as ‘privacy-
preserving record linkage’ (PPRL), ‘blind data link-
age’ or ‘private record linkage’ (Al-Lawati et al. 2005,
Churches & Christen 2004, Karakasidis & Verykios
2011, Yakout et al. 2012).

On occasions where unique identifiers for entities
are available across all the databases to be linked, a
simple database join would be trivial for the purpose
of identifying the matching pairs of records. How-
ever, in most cases finding such a common identifier
in all databases would not be possible. A possibility
to overcome this issue is to use quasi-identifiers (QID)
such as first name, last name, address details, age, etc.
(Hawashin et al. 2011). This will allow to accurately
link records, but it will reveal personal information
to other parties involved in the linking process. In
order to cope with privacy issues the values in those
identifiers need to be somehow encoded.

Bloom filters, which were proposed by Bloom
(1970), have widely been used for encoding of records
in record linkage approaches. A Bloom filter is a
bit array which can hold 1’s and 0’s according to a
bit pattern where initially all bit positions are set to
0’s. Records can be hashed by using hash encoding
algorithms to generate bit patterns for the records.
These bit pattens can then be included in a Bloom
filter by setting the relevant bit positions to 1’s. Sev-
eral approaches (Lai et al. 2006, Schnell et al. 2009,
de Vries et al. 2011, Vatsalan & Christen 2012) have
used Bloom filters for matching record sets.

Proceedings of the Twelfth Australasian Data Mining Conference (AusDM 2014), Brisbane, Australia

31

While preserving the privacy of the QID values,
which are used for the linking process, one major chal-
lenge is to cope with scalability. Many different in-
dexing or blocking approaches have been introduced
to compare databases (Christen 2012b), because the
naive approach of comparing all pairs of records is
not feasible when the databases are large. An index-
ing mechanism reduces the large number of potential
comparisons by removing as many record pairs as pos-
sible that correspond to non-matches. This decreases
the amount of computational efforts required for the
comparison of larger databases.

The aim of this paper is to propose a new indexing
mechanism for multi-party PPRL that can provide
better scalability, blocking quality, and privacy, which
are important factors for any practical PPRL appli-
cation. We introduce a tree based approach which
uses a secure summation protocol to generate blocks.
The paper also presents an empirical evaluation of the
proposed approach with regard to scalability, block-
ing quality, and privacy.

The remainder of the paper is structured as fol-
lows. In the following section, we provide an overview
of related work in PPRL. In Section 3 we describe the
current problem of indexing with multiple parties. In
Section 4 we provide a detailed description of our pro-
tocol, and in Section 5 we analyze our protocol with
regard to complexity, quality, and privacy. In Section
6 we validate these analyses through an experimental
study. Finally we summarize our findings and discuss
future research directions in Section 7.

2 Related Work

Recently, a variety of indexing or blocking approaches
have been developed for reducing candidate record
pairs that need to be compared in record linkage. In
the survey by Christen (2012b) a comprehensive re-
view about existing indexing mechanisms is provided.
Some of the developed approaches have been adapted
for PPRL based on existing indexing techniques, such
as standard blocking, mapping based blocking, clus-
tering, sampling, and locality sensitive hash func-
tions. In our research we mainly focus on develop-
ing a blocking mechanism that is scalable to large
databases as well as with the number of parties while
providing blocking quality and privacy, which are the
trade-offs of any indexing step in PPRL.

A protocol proposed by Song et al. (2000) tried to
address the problem of approximate matching by cal-
culating enciphered permutations for private approxi-
mate record matching. Their suggested approach be-
comes impractical since predicting all possible per-
mutations is impossible in real-world applications. A
two-party protocol, which does not require a trusted
third party to perform the linking as in three-party
protocols, is suggested by Atallah et al. (2003).
This approach allows the parties to compute the edit
distance between strings without exchanging these
strings, but this protocol is impractical due to the
large amount of necessary communication required to
compute the distances. Ravikumar et al. (2004) used
a secure set intersection protocol for PPRL that re-
quires extensive computations, which makes the pro-
tocol impractical for large datasets.

A blindfolded multi-party approach was suggested
by Churches & Christen (2004), which uses q-gram
hash digests to achieve approximate private linkage.
Their approach is computationally costly, because of
the generation of power sets of the q-grams of record
values. Al-Lawati et al. (2005) introduced three block-
ing mechanisms for three-party protocols which re-

quire a trusted third party to perform the linkage.
Their work used hash signatures for comparison of
records. Their methods provide a trade-off between
privacy and computational and communication cost.

Another three-party protocol to provide privacy
for both data and schema matching without reveal-
ing any information was presented by Scannapieco
et al. (2007). It uses a greedy heuristic re-sampling
method for arranging records into blocks. However,
their experimental results indicate that the linkage
quality is affected by this greedy heuristic re-sampling
method. Inan et al. (2010) suggested an approach
based on anonymization using a cryptography tech-
nique to solve the PPRL problem. Their block-
ing step used value generalization hierarchies and se-
cure multi-party computation (SMC) based matching
(Yao 1986) by using a cryptographic technique, which
is computationally expensive to perform.

Bloom filters are used commonly in the PPRL
context, due to their capability for computing sim-
ilarities. Various approaches have been suggested for
similarity calculation in PPRL by using Bloom filters
(Lai et al. 2006, Schnell et al. 2009, Durham 2012,
Vatsalan & Christen 2012, Bachteler et al. 2013).

A multi-party approach was proposed by Lai et al.
(2006) that uses Bloom filters to securely transfer
data between multiple parties for private set intersec-
tion. All the records are encoded into Bloom filters
and segmented according to the number of parties in-
volved in the protocol. These segments are shared
among the parties, where each party will perform a
logical conjunction (and) on segments. Each party
compares its own full Bloom filter with the segments
of the other parties for matches. Their evaluated re-
sults showed that the false positive rate increases with
the number of parties involved in the communication,
where none of the parties will be able to guess the ex-
istence of a given record correctly.

A three-party approach was introduced by Schnell
et al. (2009), which performs approximate matching
of records by using Bloom filters. The string values in
the attributes are converted into sets of q-grams which
are then mapped into a Bloom filter using a dou-
ble hashing mechanism. Durham (2012) proposed a
three-party framework for PPRL using Bloom filters.
She suggested record-level Bloom filters for encoding
all attribute values of a record into a single Bloom
filter. Locality sensitive hashing (LSH) functions are
used to reduce the computational complexity of the
private blocking.

An iterative two-party protocol was proposed by
Vatsalan & Christen (2012), which reveals selected
bits in the Bloom filters between two database owners.
The approach classifies record pairs into matches and
non-matches in an iterative way to reduce the number
of pairs with unknown match status at each iteration
without compromising privacy.

Kristensen et al. (2010) used Bloom filters to effi-
ciently find similar chemical fingerprints in a database
based on a user defined similarity threshold value.
Each chemical fingerprint was represented by a Bloom
filter. For rapid screening of fingerprints among the
set of Bloom filters, they introduced a novel tree data
structure known as multi-bit tree. All fingerprints
are arranged in a binary tree data structure accord-
ing to the value in selected bit positions. These bit
positions are selected to keep the tree structure as
balanced as possible. According to the experiments
conducted by the authors, it was noted that the per-
formance of the queries increased with the use of this
tree data structure. The tree reduced the amount of
comparison calculations and computationally scaled
linearly when the size of the datasets was increasing.

CRPIT Volume 158 - Data Mining and Analytics 2014

32

Table 1: Number of candidate record sets generated
with multiple parties for different sizes of datasets and
blocks.

Number of parties
Data set / Block size 3 5 7 10

10,000 / 10 106 108 1010 1013

10,000 / 100 108 1012 1016 1022

10,000 / 1,000 1010 1016 1022 1031

100,000 / 10 107 109 1011 1014

100,000 / 100 109 1013 1017 1023

100,000 / 1,000 1011 1017 1023 1032

1,000,000 / 10 108 1010 1012 1015

1,000,000 / 100 1010 1014 1018 1024

1,000,000 / 1,000 1012 1018 1024 1033

The concept of multi-bit trees was further ex-
tended by Bachteler et al. (2013) as a new blocking
method for record linkage. In their approach they
used Bloom filters to hold the data. The string val-
ues in the attributes are first converted into sets of
q-grams, which are then mapped into a Bloom filter
using a double hashing mechanism. The generated
Bloom filters are then partitioned into separate bins
according to the number of bits set to 1. All the
Bloom filters in each bin are stored in a multi-bit
data structure. A given Bloom filter will be queried
against all Bloom filters that are stored in the multi-
bit tree and at each node the similarity is calculated
to find matches. According to the experiments con-
ducted it was noted that the proposed blocking ap-
proach is performing better than existing blocking
methods such as standard blocking, canopy cluster-
ing and sorted neighborhood approaches, while scal-
ing linearly in terms of total running time for con-
struction and querying of a multi-bit tree.

3 Problem Statement

As mentioned in Section 1, generating the candi-
date record sets for multiple databases becomes com-
putationally expensive when the number of parties
is increasing. In such situations, methods or tech-
niques to reduce the comparison space are needed.
In the record linkage process these methods are re-
ferred to as blocking or indexing methods (Chris-
ten 2012b). Such methods identify reduced sets of
candidate records for comparison and classification,
by keeping true matching records in sets of candi-
date records while removing as many of the true non-
matching record sets as possible.

When the number of parties is increasing, more
sophisticated indexing mechanisms are required. A
larger number of blocks with a small number of
records, or a smaller set of blocks with a large num-
ber of records, will still require more comparisons.
This problem is highlighted in Table 1 to illustrate the
number of candidate record sets generated for differ-
ent number of parties with various datasets and block
sizes (by assuming all blocks have the same size).

Table 1 shows how the number of generated candi-
date record sets grows exponentially with the number
of parties involved in a multi-party protocol, and how
even with very small sized blocks (e.g. 10 records per
block per party) the number of candidate record sets
becomes prohibitively large to be practically feasible.

One major problem in currently available indexing
solutions is that not enough control is available over
the block sizes. Generating different sizes of large
number of blocks makes the comparison step even

more problematic and requires more computational
time. To overcome this problem, in our protocol we
provide a parameterized solution, where the user can
control the size of the blocks that will be generated.
The protocol is based on an indexing mechanism that
can generate blocks of records in a balanced tree data
structure. Each participating party will have a simi-
lar tree data structure constructed holding blocks of
records on leaf nodes. The construction of the tree
is done in a secure manner without exchanging any
information about the records that are held by each
party.

4 Tree Based Scalable Indexing for PPRL

In this section we provide details on how the pro-
posed indexing mechanism works. We highlight how
attribute values are encoded into Bloom filters and
how they are used to construct the tree data struc-
ture to hold the blocks. First we will explain the
details of the building blocks that are needed for the
construction of the index.

4.1 Building Blocks

4.1.1 Bloom Filters

Bloom filters are data structures proposed by Bloom
(1970) for checking element membership in any given
set (Broder & Mitzenmacher 2004). A Bloom filter is
a bit vector of length m, where initially all the bits are
set to 0. In order to map an element into the domain
between 0 and m−1 of the Bloom filter, k independent
hash functions h1, h2, . . . , hk are used. Furthermore,
to store n elements of the set S = {s1, s2, . . . , sn}
into the Bloom filter, each element si ∈ S is encoded
using the k hash functions and all bits having index
positions hj(si) for 1 ≤ j ≤ k are set to 1.

4.1.2 Q-grams

A q-gram (also known as n-gram) is a character sub-
string of length q in a string (Christen 2012a). Of-
ten string values are prefixed and suffixed, which
is also known as padding, with a special character
of length q − 1 before they are converted into q-
grams (Bachteler et al. 2013). This padding char-
acter helps to emphasize the first and last charac-
ters of a string. A q-gram of length 2 is known
as a bigram or digram and a q-gram of length 3 is
known as a trigram. A string s of length c contains
l = c − q + 1 q-grams (Christen 2012a). For an ex-
ample, the string “THILINA” can be padded with
character ‘ ’ and the resulting bigram (q = 2) set is
{ T, TH,HI, IL, LI, IN,NA,A }.

In our approach we used q-gram sets of the QIDs
to convert these QIDs into Bloom filters. First, the
selected QID values of a given record are converted
into a q-gram set. Then each q-gram set is stored
in a Bloom filter by using k hash functions. This
is repeated for all records in the dataset. Figure 1
illustrates the transformation of a record’s QID value
into a Bloom filter.

4.1.3 Optimal Parameter Settings for Bloom
Filters

A crucial aspect that affects all three challenges (qual-
ity, scalability and privacy) of PPRL approaches that
are based on Bloom filters is the parameter settings
used to generate the Bloom filters. In this section
we describe our choice of parameters, which follows

Proceedings of the Twelfth Australasian Data Mining Conference (AusDM 2014), Brisbane, Australia

33

Figure 1: Mapping of a string value into a Bloom
filter of m = 14 bits by using k = 2 hash functions.

earlier Bloom filter based PPRL approaches (Schnell
et al. 2009, Durham 2012, Durham et al. 2013, Vat-
salan & Christen 2012).

For a given Bloom filter length, m, and number of
elements (e.g. q-grams) to be inserted into the Bloom
filter, n, the optimal number of hash functions, k, that
minimizes the false positive rate, r, can be calculated
as (Mitzenmacher & Upfal 2005)

k =
m

n
ln(2), (1)

leading to a false positive rate of

r =

(
1

2ln(2)

)m/n

. (2)

We can calculate the value for n by analyzing the
content of a dataset to be used for a PPRL project
by calculating the average number of q-grams that
are generated from a record (i.e. we convert attribute
values into q-grams as described above and count how
many q-grams are generated on average for a record).

The value of m determines how much memory and
communication will be required in our PPRL proto-
col. For a given m, we can calculate k based on n as
calculated from the datasets. For a certain dataset
and n, the larger m the larger k will be, with larger
values of k requiring more computation as more hash
values need to be calculated and mapped into a Bloom
filter for each record.

While k and m determine the computational as-
pects of our approach, quality and privacy will be de-
termined by the false positive rate r. A higher value
for r will mean a larger number of false matches (i.e. a
set of non-matching records classified to correspond to
the same entity), and thus lower quality. At the same
time, a higher false positive rate r will also mean im-
proved privacy, as false positives mean an adversary
cannot be absolutely sure that a certain Bloom filter
corresponds to a certain record (Schnell et al. 2009,
Durham 2012, Vatsalan & Christen 2012).

It was proven (Mitzenmacher & Upfal 2005) that
a Bloom filter should ideally have half its bits set
to 1 (i.e. 50% filled) to achieve the lowest possible
false positive probability for given values of n, m
and k. Equations 1 and 2 in fact lead to a prob-
ability that a bit in a Bloom filter is set to 1 as
p = e−kn/m = 0.5 (Mitzenmacher & Upfal 2005). For
PPRL this is important, because the bit patterns and
their frequencies in a set of Bloom filters can be ex-
ploited by a cryptanalysis attack (Kuzu et al. 2013).
Such an attack exploits the fact that Bloom filters
that are almost empty can provide information about
rare q-grams and thus rare attribute values.

In our experimental evaluation we will set the
Bloom filter parameters for our approach according
to the discussion presented here and following earlier
Bloom filter work in PPRL (Schnell et al. 2009).

Figure 2: Single-bit tree : The blue squares represent
the bits chosen for the given node, while the light
gray squares mark bits chosen at an ancestor. The
blue triangles represent sub-trees that are not shown.

4.1.4 Single-bit Tree Data Structure

A single-bit tree is a binary tree data structure that
can be used to store information of a set of bit vectors
(Kristensen et al. 2010). The construction of the tree
starts from the root node, where all bit vectors are
assigned to this node. At each node in the tree a
position in the bit vectors is chosen to best split all the
children of the node into two parts of equal size, which
in turn will keep the tree as balanced as possible.
All bit vectors with a 0 at that position are stored
in the left subtree while all bit vectors with a 1 are
stored in the right subtree. This division is continued
recursively until all the bit vectors in a given node
are the same, or all the bit positions have been used
for the construction. Figure 2 shows an example of
a single-bit tree.

It is not directly apparent how best to choose
which bit position to split the data on at a given node
when building the tree data structure. The selection
of the best splitting bit position requires information
about all the bit vectors held by a given node. This
requires to view all the child bit vectors in a given
node and select a bit position which contains 0 in
half of the children and 1 in the other half.

The continuation of the recursive division is based
on the bit vectors available in a given node and bit
positions used in each parent node. Other than these
two factors, in our protocol we provide a paramet-
ric solution to control this recursive division. The
construction of the single bit tree data structure is
described in more detail in Section 4.2.2.

4.1.5 Secure Summation Protocol

The secure summation protocol is a method used in
secure multi-party computation, which has been used
in several record linkage approaches (Clifton et al.
2002, Rashid et al. 2009). Secure multi-party compu-
tation was first introduced by Yao (1986) with the
idea of performing computations securely such that
at the end of the computation no party knows any-
thing except its own input and the final results of the
computed function (O’Keefe et al. 2004, Lindell &
Pinkas 2009, Cheng et al. 2010). The secure sum-
mation protocol allows multiple cooperating parties
to compute a sum over their individual data without
revealing their data to the other parties.

The idea behind the secure summation protocol
can be described as follows (Clifton et al. 2002, Karr
et al. 2004). Protocol 1 shows the steps involved.
Assume there are P parties with each one having a
secret input ai, where 1 ≤ i ≤ P . The parties want
to compute the summation of these inputs. Initially
party P1 chooses a large random number r and then

CRPIT Volume 158 - Data Mining and Analytics 2014

34

Protocol 1: Basic secure summation protocol

Input:
- P : Number of parties
- ai : A secret input, 1 ≤ i ≤ P

Output:
- s: Final sum , where s =

∑n

1
ai

1: Party P1 generates a random number r
2: Party P1 computes partial sum s1 = a1 + r
3: Party P1 sends s1 to P2

4: for (i = 2 to P) do
5: Party Pi computes partial sum si = si−1 + ai
6: if i = P then
7: Party Pi sends si to party P1

8: else
9: Party Pi sends si to party Pi+1

10: Party P1 computes final sum s = sP − r
11: Party P1 sends final sum s to other parties.

adds this random number to his input a1. Then party
P1 sends this value to party P2. Since R is random,
party P2 learns effectively nothing about a1.

Party P2 adds his value a2 to r+a1, and sends the
result to party P3. This process repeats until all the
parties have added their values and the partial sum
s = r+a1+. . .+aP is received by the first party. Then
the first party subtracts r from s and the resulting
sum is distributed to all the other parties. Once the
computation is finished each party only knows the
total sum, from which they are unable to derive the
other parties’ information.

4.2 Blocking Approach

The previous sections provided details about the
building blocks, which are needed for the construction
of the blocking mechanism, and here we will elabo-
rate in detail how the single-bit trees can be used as
a blocking mechanism in the multi-party PPRL con-
text. The construction of the index for a dataset of
an individual party contains two main phases.

1. Generate Bloom filters for the records in the
dataset.

2. Construct the single-bit tree by using the gen-
erated Bloom filters. This phase can be further
extended into three sub phases, which are:

(a) Perform secure summation to find the best
splitting bit position.

(b) Split the set of Bloom filters.

(c) Generate the child nodes of the tree.

Each party needs to follow these phases to construct
the single-bit tree for their own dataset. The over-
all indexing protocol, which includes all these phases
mentioned above, is outlined in Protocol 2.

4.2.1 Generation of the Bloom Filters

Before the construction of the trees, the set of records
needs to be encoded into Bloom filters as given in line
1 in Protocol 2. All parties need to agree upon a bit
array length m (length of the Bloom filter); the length
(in characters) of grams q, the k hash functions, and
a set of attributes (blocking key attributes) that are
used to link the records. As per step 1 in Protocol 2,
each party needs to iterate over its dataset and each
record needs to be encoded. Based on the optimal
parameter settings calculated as described in Section
4.1.3, the blocking key values in a record are encoded

Protocol 2: Single-bit tree indexing protocol

Input:
- Di: Dataset belonging to party Pi

- A: Set of selected attributes
- smin: Minimum bucket size
- smax: Maximum bucket size

Output:
- Ti : Single-bit tree (the tree structure for dataset Di)

Phase 1 :
1: B = generateBloomfilters(Di, A)

Phase 2 :
2: Ti.root = makeNode(B)
3: q = [Ti.root] // Initialization of queue
4: while q 6= ∅ do
5: n = q.pop() // Get the current node

Phase 2.a:
6: R = generateRatios(n) // Generate local bit ratios
7: Rg = secureSummation(R) // Get ratios globally
8: b = getBestBit(Rg)

Phase 2.b:
9: n0, n1 = splitNode(n, b)

Phase 2.c:
10: if (|n0.B| ≥ smin) AND (|n1.B| ≥ smin) then
11: n.left = n0 // Add left child
12: n.right = n1 // Add right child
13: if (|n0.B| ≥ smax) then // If blocks too large
14: q.push(n0) // add to queue
15: if (|n1.B| ≥ smax) then // If blocks too large
16: q.push(n1) // add to queue

17: return Ti

into the Bloom filter using k hash functions. This en-
coding will be performed for all records in the dataset.
Each party needs to generate the set of Bloom filters
from their own dataset before proceeding to construct
their tree.

4.2.2 Construction of the Trees

In the second phase of the protocol, each party can
construct their single-bit tree by using the generated
Bloom filters from their dataset. The construction of
a tree for an individual party is described based on
the lines of Protocol 2.

Before starting the construction process all the
parties need to agree upon the two parameters of min-
imum bucket size (smin) and maximum bucket size
(smax). These parameters specify the minimum and
maximum number of records that need to be included
in a block (bucket), respectively. The use of these pa-
rameters is elaborated in the relevant phases of the
protocol below. Figures 3 to 7 illustrate the steps of
Protocol 2 with an example for three parties.

• Phase 2 : Initialization
As the initial step of the construction, a root
node is created and the list of Bloom filters is
assigned to the respective root node as the node
data. A queue will be created to hold the nodes,
where nodes are created at each iteration in the
tree construction. Initially the root node is as-
signed into the queue. The iterations will con-
tinue until the queue becomes empty as per lines
2 to 5 in Protocol 2.

Proceedings of the Twelfth Australasian Data Mining Conference (AusDM 2014), Brisbane, Australia

35

Party A Party B Party C

Bloom filter set A Bloom filter set B Bloom filter set C
A1 0 1 1 0 0 B1 1 0 0 1 1 C1 0 1 1 1 0
A2 1 0 1 0 1 B2 1 0 1 0 1 C2 0 1 0 1 0
A3 1 0 0 0 0 B3 0 0 1 1 0 C3 1 0 1 1 0
A4 0 1 1 1 0 B4 1 1 1 1 1 C4 1 1 0 0 1
A5 0 1 0 0 1 B5 1 1 0 0 0 C5 0 0 1 0 0
A6 1 1 0 1 0 B6 0 0 1 0 1 C6 1 0 0 1 0
A7 0 1 1 1 0 B7 0 0 0 1 1 C7 0 1 1 0 1
A8 0 1 0 0 0 B8 1 0 1 1 1 C8 0 1 0 1 0

Abs Diff from 0.5 Abs Diff from 0.5 Abs Diff from 0.5
1/8 1/4 0 1/8 1/4 1/8 1/4 1/8 1/8 1/4 1/8 1/8 0 1/8 1/4

Figure 3: Bloom filter generation and calculation of 0/1 bit ratios and absolute differences from 50% filled
(Phase 2 in Protocol 2).

Random vector (R) = 10 5 12 13 6
10.125 5.25 12.0 13.125 6.25 → 10.25 5.5 12.125 13.25 6.5 → 10.375 5.625 12.125 13.375 6.75

Secure sums: 0.375 0.625 0.125 0.375 0.75

Final absolute differences from 50% filled: 0.125 0.208 0.042 0.125 0.25

Figure 4: Secure summation of absolute differences and selecting best bit for splitting (Phase 2.a in Protocol
2).

Party A Party B Party C

Bloom filter set A ‘0’ Bloom filter set B ‘0’ Bloom filter set C ‘0’
A3 1 0 0 0 0 B1 1 0 0 1 1 C2 0 1 0 1 0
A5 0 1 0 0 1 B5 1 1 0 0 0 C4 1 1 0 0 1
A6 1 1 0 1 0 B7 0 0 0 1 1 C6 1 0 0 1 0
A8 0 1 0 0 0 C8 0 1 0 1 0

Abs Diff from 0.5 Abs Diff from 0.5 Abs Diff from 0.5
0 1/4 – 1/4 1/4 1/6 1/6 – 1/6 1/6 0 1/4 – 1/4 1/4

Random vector (R) = 12 4 – 15 11

12.0 4.25 – 15.25 11.25 → 12.167 4.417 – 15.417 11.417 → 12.167 4.667 – 15.667 11.667

Secure sums: 0.167 0.667 – 0.667 0.667

Final differences from 50% filled: 0.056 0.222 – 0.222 0.222

Figure 5: Calculation of absolute differences and secure summation on sub-sets where bit 3 is 0 (Next iteration
of Phase 2.a in Protocol 2).

Party A Party B Party C

Bloom filter set A ‘1’ Bloom filter set B ‘1’ Bloom filter set C ‘1’
A1 0 1 1 0 0 B2 1 0 1 0 1 C1 0 1 1 1 0
A2 1 0 1 0 1 B3 0 0 1 1 0 C3 1 0 1 1 0
A4 0 1 1 1 0 B4 1 1 1 1 1 C5 0 0 1 0 0
A7 0 1 1 1 0 B6 0 0 1 0 1 C7 0 1 1 0 1

B8 1 0 1 1 1

Abs Diff from 0.5 Abs Diff from 0.5 Abs Diff from 0.5
1/4 1/4 – 0 1/4 1/10 3/10 – 1/10 3/10 1/4 0 – 0 1/4

Random vector (R) = 16 8 – 7 14
16.25 8.25 – 7.0 14.25 → 16.35 8.55 – 7.1 14.55 → 16.6 8.55 – 7.1 14.8

Secure sums: 0.6 0.55 – 0.1 0.8

Final differences from 50% filled: 0.2 0.183 – 0.033 0.267

Figure 6: Calculation of absolute differences and secure summation on sub-sets where bit 3 is 1 (Next iteration
of Phase 2.a in Protocol 2).

CRPIT Volume 158 - Data Mining and Analytics 2014

36

Bit 3

A3

A6

A5

A8

0 1

Bit 4 Bit 1

0 1

0 1

A1

A2

A4

A7

Party A

Bit 3 Bit 3

Bit 4 Bit 1

0 1

0 1

Bit 4 Bit 1

0 1

0 1

Party B Party C

0 1

B7 B1

B5

B2

B6

B3

B4

B8

0 1

C2

C8

C4

C6 C7

C5 C1

C3

Figure 7: The resulting single-bit trees as generated by the example in Figures 3 to 6 with blocks across the
three parties.

• Phase 2.a : Find best bit position for split-
ting
At each iteration the node that is available at the
front of the queue is processed. By processing the
data available in this node, each party needs to
generate a vector of length m that contains the
values of ratios between the number of 0’s and
1’s for each bit position in the Bloom filters, as
is calculated using Equation 3:

fij = abs(0.5− oij
l

), (3)

where fij is the ratio value of bit position i of
party Pj , oij is the number of 1’s in position i,
and l is the number of Bloom filters processed in
a given node.

The bit positions that are having a value of 1
in half of the Bloom filters are given the lowest
ratio value of 0, and the bit positions that are
having 1’s or 0’s in all the Bloom filters are given
the highest ratio value of 0.5. This processing is
shown in lines 6 and 7 in Protocol 2.

Once all parties have computed the ratio vectors
of the bit positions locally based on their indi-
vidual node data, a common bit position needs
to be selected as the best bit for splitting the
set of Bloom filters for the child nodes in the
next level. For computing this global bit posi-
tion, we extend Protocol 1 to securely compute
the summation of these vectors of ratios, where
each party Pj has as private input a vector fj
of length m, and the random value r in Protocol
1 is extended to a random number vector of the
same length as the ratio vector. Once the secure
summation step (line 7 in Protocol 2) is finished
the globally summed ratio vector is used to find
the best splitting bit position:

ibest = argmin{i : (
P

2
−

P∑
j=1

fij)} (4)

Once each party receives the globally summed
ratio vector, the best splitting bit position (ibest)
is selected to divide the data which are available
in the current node, as shown in line 8 of Proto-
col 2. This best splitting bit position is selected
by ranking the globally summed ratio vector ac-
cording to the summed values, where the bit po-
sition with the lowest sum gets the highest rank
as shown in Equation 4.

• Phase 2.b: Split the set of Bloom filters
The selected global best bit position is used to
split all the Bloom filters of the current node into

two portions. All the Bloom filters that contain
a 0 in the best bit position are assigned to the
left portion of the list and all others are assigned
to the right portion. These portions are assigned
to two new tree nodes, which are to be processed
in the next iterations.

• Phase 2.c : Generate the child nodes
According to the selected best bit position, these
two portions may contain an uneven number of
Bloom filters, i.e. one portion contains a smaller
number of records. The disadvantage of such a
division is that sensitive information can be re-
vealed about the blocks that are having a smaller
number of records, where an adversary can po-
tentially re-identify individual records (Sweeney
2002). As a solution we propose the minimum
block size (smin) to guarantee that every block in
the tree structure contains at least smin records.
After splitting, if any of the portions in the re-
sulting lists contain less than smin records, then
these portions will not be assigned to any block
in the given node. Instead the two portions are
merged and the resulting list is included as a rele-
vant block in the parent of the current node (line
10 in Protocol 2). All parties need to merge the
two portions for the current iteration, which is
informed by using the secure summation proto-
col as explained in Phase 2.a.

If these portions contain a number of records
greater than smin, then these newly created
nodes are assigned as child nodes to the current
node, i.e. the node with the left portion becomes
the left child of the current node and the other
becomes the right child respectively (lines 11 and
12 in Protocol 2).

One important consideration in the tree con-
struction phase is to have control over the num-
ber of blocks created in the tree. We provide
a parameter maximum block size (smax) for this
purpose. This allows the user to control the max-
imum number of records that can be contained
in a block, which indirectly controls the num-
ber of iterations that occur when creating sub-
trees. After splitting the current node data, each
portion is checked against the value of smax. If
any of the two portions contains less than smax
records, then a new block (bucket) is created to
hold the relevant portion and is assigned to the
current node. If the number of records is greater
than smax, then these two child nodes are added
to the queue for future splitting (lines 13 to 16 in
Protocol 2). Therefore the continuation of iter-
ations is decided based on the number of blocks
that are generated.

Proceedings of the Twelfth Australasian Data Mining Conference (AusDM 2014), Brisbane, Australia

37

5 Analysis of the Protocol

In this section we analyze our protocol in terms of
complexity, privacy, and quality of blocking.

5.1 Complexity

In this section we analyze the computational and com-
munication complexities of our blocking protocol in
terms of a single party. Let us assume there are N
records in the dataset with each having an average
of n q-grams. In the Bloom filter generation all the
records are encoded using k hash functions. This en-
coding process is applied to all the records in a linear
manner. Therefore the Bloom filter generation for a
single party is of O(k · n ·N).

In the second phase of the protocol the single-bit
tree construction starts once the records are encoded
into N Bloom filters. In our protocol the parameter
smax is used to control the number of blocks, which
indirectly controls the number of levels generated in
the tree data structure. If smax is equal to N , then the
number of levels in the tree becomes 1 (all the records
are assigned to the root node), while if smax is equal
to N/2 then the tree will have two levels (root node
with two child nodes), and so on. When smax is equal
to 1 the single-bit tree is constructed with log2(N)
levels. Therefore the number of levels in a single-
bit tree can be calculated as log2(N/smax). At each
level of the tree a total of N records are processed,
where all child nodes in a given level hold a total
of N records. Therefore the insertion of N Bloom
filters into a single-bit tree requires a computational
complexity of O(N · log2(N/smax)).

In our protocol, the parties only need to commu-
nicate with each other in order to perform the secure
summation protocol to find the best bit for splitting
the data of the nodes, and to check if block sizes are
less than smin. This requires communication in the
creation of each node. By assuming each party di-
rectly connects to other parties, the distribution of
the final sum to P parties requires P messages for
each node in the tree data structure, each of size m
where m is the length of a Bloom filter. Therefore
the entire protocol has a communication complexity
of O(m ·P · 2N/smax) for P parties. The computation
of the secure summation protocol requires each party
to process the data of the node in a given iteration,
which needs a set of Bloom filters to be scanned for
each bit position to get a count of the number of 1’s.
Therefore line 8 of our protocol has a computational
complexity of O(m ·N) for each level in the tree.

5.2 Privacy

In our protocol we assume each party follows the
honest-but-curious (semi-honest) adversary model
(Al-Lawati et al. 2005, Scannapieco et al. 2007),
where each party follows the steps of the protocol
while trying to find as much as possible about the
data from the other parties. Privacy is a main factor
that needs to be considered to evaluate the amount of
information a party can learn from the data from the
other parties when they communicate during the pro-
tocol. In our protocol, the parties communicate with
each other to compute the global best bit position
for splitting. For the exchange of ratio values of the
Bloom filters our protocol uses a secure summation
protocol.

During the secure summation, each party sums
their ratio vector with the partial resulting vector sent
by the previous party, but will not be able to learn

any information about the ratio values of the previous
party since the random vector is only known to the
party that initiated the protocol. Once the initiated
party received the final partial sum vector, he sub-
tracts the random vector from the summed values,
but is not capable of deducing anything about the
other parties’ ratio vector values. At the end of our
blocking protocol, the set of blocks are generated and
private linkage can be conducted on each respective
block by using a private matching and classification
technique (Atallah et al. 2003, Ravikumar et al. 2004,
Vatsalan & Christen 2012, Durham et al. 2013), which
should not reveal any information regarding the sen-
sitive attributes and non-matches.

Our protocol performs a generalization strategy on
the blocks that makes the re-identification from the
perturbed data not possible (Sweeney 2002). The
parameter minimum block size (smin) is used to guar-
antee that every block in the tree structure contains
at least smin records. This ensures all blocks that are
generated have the same minimum number of records,
which makes a dictionary attack, where an adversary
hash-encodes values from a large publicly available
dataset using existing hash encoding functions, or a
frequency attack, much more difficult (Vatsalan et al.
2013b).

5.3 Quality

The quality of our protocol is analyzed in terms of
effectiveness, which requires all similar records to be
grouped into the same block, and efficiency, which
requires the number of candidate record sets gener-
ated to be as small as possible while including all true
matching record sets (Vatsalan et al. 2013b). By as-
suming each block contains smax records and there
are b blocks in each tree for P parties, the number
of candidate record sets generated by our approach
is ((sPmax)b). The parameter smax decides the num-
ber of child nodes that are created in the single-bit
tree, which in turn controls the number of blocks gen-
erated. If the value of smax is large, the number of
blocks generated is reduced by the protocol, while
a smaller smax value provides a single-bit tree with
more blocks. An optimal value for smax needs to be
set by considering factors such as the dataset size and
the number of parties, such that both effectiveness
and efficiency are achieved while guaranteeing suffi-
cient privacy as well.

6 Experimental Evaluation and Discussion

We evaluated our protocol by performing experiments
using a large real world database. In the following
sub-sections we provide details on the datasets that
we used for our experiments, implementation details
of the proposed indexing protocol, and the evaluation
measures used in the experiments.

6.1 Datasets

To provide a realistic evaluation of our approach,
we based all our experiments on a large real-
world database, the North Carolina Voter Regis-
tration (NCVR) database as available from ftp:
//alt.ncsbe.gov/data. This database has been
used for the evaluation of various other PPRL ap-
proaches (Vatsalan et al. 2013a, Durham et al. 2013).
We have downloaded this database every second
month since October 2011 and built a combined tem-
poral dataset that contains over 8 million records of
voter’s names and addresses.

CRPIT Volume 158 - Data Mining and Analytics 2014

38

ftp://alt.ncsbe.gov/data
ftp://alt.ncsbe.gov/data

We are not aware of any available real-world
dataset that contains records from more than two
parties that would allow to us evaluate our multi-
party approach. We therefore created, based on the
real NCVR database, a series of sub-sets as described
next.

To allow the evaluation of our approach on dif-
ferent number of parties, with different dataset sizes,
and with data of different quality, we used and mod-
ified a recently proposed data corruptor (Christen
& Vatsalan 2013) to generate various datasets with
different characteristics based on randomly selecting
records from the NCVR database. During the corrup-
tion process we keep the identifiers of the selected and
modified records, which allows us to identify true and
false matches and therefore calculate various blocking
quality and complexity measures as will be discussed
in Section 6.3.

Specifically, we selected sub-sets from the full
NCVR database for 3, 5, 7 and 10 parties, that con-
tain 5, 000, 10, 000, 50, 000, 100, 000, 500, 000 and
1, 000, 000 records, respectively. In each of these sub-
sets, 50% of records were matches, i.e. half of all
records occur in the sub-sets of all parties. We then
applied various corruption functions on different num-
bers (ranging from 1 to 3) of randomly selected at-
tribute values which allows us to investigate how our
approach can handle ‘dirty’ data. We applied various
corruption functions, including character edit opera-
tions (insertions, deletions, substitutions, and trans-
positions), and optical character recognition and pho-
netic modifications based on look-up tables and cor-
ruption rules (Christen & Vatsalan 2013).

We also created groups of datasets where we in-
cluded a varying number of corrupted records into the
sets of overlapping records (ranging from 0% to 100%
corruption, in 20% steps). This means that a certain
percentage of records in the overlap were modified for
randomly selected parties. Therefore, some of these
records are exact duplicates across some parties in a
group, but only approximately matching duplicates
across the other parties in the group. This simulates
for example the situation where three out of five hos-
pitals have the correct and complete contact details
(like name and address) of a certain patient, while in
the fourth and fifth hospitals some of the details of
the same patient are different.

From the created datasets we extracted four at-
tributes commonly used for record linkage: Given
name, Surname, Suburb (town) name, and Postcode.
These four attributes were used for generating the
Bloom filters for the experiments. In our experiments
we set the Bloom filter parameters as m = 1000 bits,
k = 30, and q = 2 by following earlier Bloom filter
based work in PPRL (Schnell et al. 2009).

6.2 Implementation

We implemented a prototype to evaluate the perfor-
mance of our protocol using the Python programming
language (version 2.7.3). We implemented prototypes
for single-bit tree construction with a recursive ap-
proach and a loop iteration approach. The run time
was measured for both of these approaches on differ-
ent datasets of various sizes. The results showed that
the tree construction using the iterative approach
runs faster than the recursive approach. So we based
all the experiments using the single-bit tree construc-
tion on the iterative approach. All the experiments
were run on a server with 64-bit Intel Xeon (2.4 GHz)
CPU, with 128 GBytes of main memory and running
Ubuntu 12.04. The programs and test datasets are
available from the authors.

Table 2: Average memory (MBytes) requirement per
party.

Data set BF Construction Tree construction
5,000 20 23
10,000 33 47
50,000 112 117
100,000 340 370
500,000 970 987

1,000,000 1, 920 1, 958

We performed a comparison with a phonetic based
blocking approach as a baseline to measure the level
of privacy provided by our indexing approach. In
the phonetic blocking we used Soundex (Christen
2012b) as encoding function for the Given name, Sur-
name and Suburb attributes, while for the Postcode
attribute the first three digits of a Postcode value are
used as the blocking key.

6.3 Evaluation Measures

We evaluated our protocol in terms of complexity,
blocking quality, and privacy for different sizes of
the dataset, different number of parties, and different
block sizes. We measured the runtime for generating
Bloom filters and for the single-bit tree construction
to evaluate the time complexity of blocking. The re-
duction ratio (RR) and pairs completeness (PC) are
used to evaluate the blocking quality, which are stan-
dard measures to assess the efficiency and the effec-
tiveness of blocking (Christen 2012a), respectively.
The RR and PC are calculated as Equations 5 and 6:

RR = 1− BLCS

TRS
(5)

PC =
BLTM

TTM
(6)

where BLCS is the number of candidate record sets
generated by blocking, BLTM is the number of true
matching candidate record sets generated by block-
ing, TTM is the number of total true matching record
sets in the datasets, and TRS is the total number of
record sets.

According to Vatsalan et al. (2014), a standard
and normalized measure to quantify privacy based on
simulated attacks (Kuzu et al. 2013) has so far not
been studied. Vatsalan et al. (2013a) introduced a set
of disclosure risk (DR) measures that can be used to
evaluate and compare different private blocking and
PPRL solutions. To evaluate the privacy of our pro-
tocol we use the measure probability of suspicion (Ps),
which is defined for a value in an encoded dataset as
1/ng, where ng is the number of values in a global
dataset (G) that match with the corresponding value
in an encoded (protected) dataset D.

This measure of Ps is normalized between 0 and
1, where 1 indicates that the value in D can be ex-
actly re-identified with a value in G based on one-
to-one matching, and 0 means a value in D could
correspond to any value in G and therefore it cannot
be re-identified. Based on the normalized Ps values
for each value in D, the maximum disclosure risk and
the mean disclosure risk (Mean) of D can be calcu-
lated as the maximum value of Ps (max(Ps)) of any
value in D, and as the average risk (

∑
(Ps)/|D|) by

considering the distribution of Ps of all values in D,
respectively.

Proceedings of the Twelfth Australasian Data Mining Conference (AusDM 2014), Brisbane, Australia

39

0 200 400 600 800 1000
Dataset size

0

1000

2000

3000

4000

5000

6000

Ti
m
e
(s
)

(a) Tree construction time and BF generation time

Avg tree construction time
Avg BF generation time

5K 10K 50K 100K 500K
Dataset size

0.994

0.995

0.996

0.997

0.998

0.999

1.000

1.001

1.002

R
e
d
u
ct
io
n
 R
a
ti
o

(b) RR with datasets of 0% corruption

3 parties
5 parties
7 parties
10 parties

0 2 4 6 8 10
Maximum block size (%)

0.990

0.992

0.994

0.996

0.998

1.000

1.002

R
e
d
u
ct

io
n
 R

a
ti
o

(c) RR with block sizes for 500K dataset with 0% corruption

3 parties
5 parties
7 parties
10 parties

Figure 8: (a) Average time for tree construction and Bloom filter generation, (b) Reduction ratio (RR) with
dataset size, and (c) RR with different block sizes.

5K 10K 50K 100K 500K
Dataset size

0.95

0.96

0.97

0.98

0.99

1.00

Pa
ir
 C
o
m
p
le
te
n
e
ss

(a) PC with datasets of 0% corruption

3 parties
5 parties
7 parties
10 parties

5K 10K 50K 100K 500K
Dataset size

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ir
 C
o
m
p
le
te
n
e
ss

(b) PC with datasets of 20% corruption

3 parties
5 parties
7 parties
10 parties

5K 10K 50K 100K 500K
Dataset size

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ir
 C

o
m

p
le

te
n
e
ss

(c) PC with datasets of 40% corruption

3 parties
5 parties
7 parties
10 parties

Figure 9: Pair completeness (PC) with dataset sizes for (a) 0% corruption, (b) 20% corruption, and (c) 40%
corruption.

0 2 4 6 8 10
Maximum block size (%)

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

Pa
ir
 C
o
m
p
le
te
n
e
ss

(a) PC with block sizes for 500K dataset with 0% corruption

3 parties
5 parties
7 parties
10 parties

0 2 4 6 8 10
Maximum block size (%)

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ir
 C

o
m

p
le

te
n
e
ss

(b) PC with block sizes for 500K dataset with 20% corruption

3 parties
5 parties
7 parties
10 parties

0 2 4 6 8 10
Maximum block size (%)

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ir
 C

o
m

p
le

te
n
e
ss

(c) PC with block sizes for 500K dataset with 40% corruption

3 parties
5 parties
7 parties
10 parties

Figure 10: Pair completeness (PC) with different block sizes for (a) 0% corruption, (b) 20% corruption, and
(c) 40% corruption.

0 100000 200000 300000 400000 500000
Records sorted according to their probabilities

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro
b
a
b
ili
ty
 o
f
su
sp
ic
io
n

(a) Probability of suspicion (500K dataset) for phonetic indexing

Prob susp
Median
Median prob
Mean prob
Maximum prob

0 100000 200000 300000 400000 500000
Records sorted according to their probabilities

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro
b
a
b
ili
ty
 o
f
su
sp
ic
io
n

(b)Probability of suspicion (500K dataset) for 1% Block Size

Prob susp
Median
Median prob
Mean prob
Maximum prob

0 100000 200000 300000 400000 500000
Records sorted according to their probabilities

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro
b
a
b
ili
ty
 o
f
su
sp
ic
io
n

(c)Probability of suspicion (500K dataset) for 5% Block Size

Prob susp
Median
Median prob
Mean prob
Maximum prob

Figure 11: Probability of suspicion (Ps) in the 500K dataset with (a) phonetic indexing, (b) single-bit tree
with 1% block size, and (c) single-bit tree with 5% block size.

6.4 Discussion

Figure 8 shows the scalability of our approach in
terms of the average time required for generating
Bloom filters and the single-bit tree construction time
for a single party, and the reduction ratio with dif-

ferent sizes of the dataset and blocks. As expected
the tree construction time increases linearly with the
dataset sizes. Reduction ratio remains nearly 1 for
different dataset sizes and for different number of par-
ties, which illustrates our approach is reducing the

CRPIT Volume 158 - Data Mining and Analytics 2014

40

 500K dataset
10-1

100

101

102

103

104

105

B
lo
ck
 s
iz
e
s

SBTree-1% SBTree-5% SBTree-10% PHONETIC

(a) Block sizes generated for 500K dataset

0 20 40 60 80 100
Corruption level (%)

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ir
 C
o
m
p
le
te
n
e
ss

(b) PC with different corruption levels for 500K dataset

3P - SB Tree
5P - SB Tree
7P - SB Tree
10P - SB Tree
3P - Phonetic
5P - Phonetic
7P - Phonetic
10P - Phonetic

Figure 12: (a) Block sizes generated by phonetic indexing, and single-bit tree with 1%, 5%, and 10% block
sizes and (b) Pair Completeness (PC) with different corruption levels for phonetic indexing and single-bit tree.

number of total candidate record sets that need to be
compared dramatically. Table 2 shows that our ap-
proach can be run with less than 2 GBytes of memory
to construct a tree even for one million records.

Figure 9 illustrates the pair completeness (PC) of
our approach with different dataset sizes. It shows
that PC slightly increases with dataset size (Figure
9(a)), which indicates that the blocks of the single-
bit tree contain more true matching records. It is
noted that the blocking quality of our approach is af-
fected by the quality of the data and PC is decreasing
rapidly with the number of parties with low quality
data, as illustrated in Figures 9(b) and 9(c).

As shown in Figure 10, PC increases when the
size of the blocks is increased. The block sizes are
controlled with the smax parameter, where high PC
values are achieved with high smax values. Figures
10(b) and 10(c) illustrate the increment of the PC
values with different quality levels of the data for dif-
ferent block sizes.

Privacy is a main aspect of any indexing mech-
anism in PPRL. We compute Ps values for a sin-
gle party by assuming all trees contain similar block
structures. As shown in Figure 11(b) our approach is
having a maximum Ps value less than 0.0001 for each
individual, which indicates a record in a block can
be matched to more than 10, 000 values in a global
dataset (under the worst case assumption of global
dataset G is being equal to the linkage dataset). It
can be noted that our approach is providing signif-
icantly better privacy compared to the phonetic in-
dexing approach that is having a maximum Ps of 1
as shown in Figure 11(a). Figure 11(c) illustrates that
better privacy can be achieved with larger block sizes.

We compare our approach with the phonetic in-
dexing in terms of the blocks sizes generated and how
the PC is changing with the quality of the data as
shown in Figure 12. It shows that the phonetic index-
ing approach creates a large number of blocks of size
1 (Figure 12(a)). This makes the phonetic based ap-
proach not suitable for PPRL, because these records
can be exactly re-identified by using a value in G
based on one-to-one matching. Figure 12(b) shows
that our approach achieves higher PC values than the
phonetic indexing even with low quality data.

7 Conclusion

In this paper, we presented a novel indexing proto-
col for multi-party privacy-preserving record linkage
based on Bloom filters and single-bit tree data struc-
tures. Each party constructs the single-bit tree index
based on the Bloom filters generated on their dataset,
and the parties communicate with each other to com-
pute the best bit positions to be used for construction

by using a secure summation protocol. The proposed
approach was validated by an experimental evalua-
tion, where we performed the experiments on differ-
ent datasets with a size of up-to one million records.
The evaluation results indicated that our approach
is scalable with both the size of the databases to be
linked and the number of parties. Our approach also
outperforms a phonetic indexing approach in terms
of privacy and quality of blocking. The blocks which
are generated can finally be compared using private
comparison and classification techniques to determine
the similar record sets in different databases.

We plan to extend our protocol with different tree
data structures, which can reduce the number of lev-
els of the trees and by using more bits for the splitting
of the tree nodes. We will also investigate the paral-
lelization of the algorithm, which can further improve
the performance of our protocol. A limitation in our
approach is the assumption of the semi-honest adver-
sary model which is not applicable for some real-world
applications. Privacy can be compromised when some
parties are malicious which requires more secure com-
munication techniques than the adopted secure sum-
mation protocol. We aim to extend this protocol for
different adversary models for allowing it to be em-
ployed in real-world PPRL applications.

References

Al-Lawati, A., Lee, D. & McDaniel, P. (2005),
Blocking-aware private record linkage, in ‘ACM
IQIS’, Baltimore, pp. 59–68.

Atallah, M., Kerschbaum, F. & Du, W. (2003), Se-
cure and private sequence comparisons, in ‘ACM
WPES’, pp. 39–44.

Bachteler, T., Reiher, J. & Schnell, R. (2013), Simi-
larity filtering with multibit trees for record linkage,
Technical report, Working Paper WP-GRLC-2013-
02, German Record Linkage Center, Nüremberg.

Bloom, B. (1970), ‘Space/time trade-offs in hash cod-
ing with allowable errors’, Communications of the
ACM 13(7), 422–426.

Broder, A. & Mitzenmacher, M. (2004), ‘Network
applications of Bloom filters: A survey’, Internet
mathematics 1(4), 485–509.

Cheng, C., Luo, Y.-L., Chen, C.-X. & Zhao, X.-
K. (2010), ‘Research on secure multi-party ranking
problem and secure selection problem’.

Christen, P. (2012a), Data Matching – Concepts
and Techniques for Record Linkage, Entity Reso-
lution, and Duplicate Detection, Data-Centric Sys-
tems and Applications, Springer.

Proceedings of the Twelfth Australasian Data Mining Conference (AusDM 2014), Brisbane, Australia

41

Christen, P. (2012b), ‘A survey of indexing tech-
niques for scalable record linkage and deduplica-
tion’, IEEE TKDE 24(9), 1537–1555.

Christen, P. & Vatsalan, D. (2013), Flexible and ex-
tensible generation and corruption of personal data,
in ‘ACM CIKM’, San Francisco, pp. 1165–1168.

Churches, T. & Christen, P. (2004), Blind data
linkage using n-gram similarity comparisons, in
‘PAKDD’, Sydney, pp. 121–126.

Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X.
& Zhu, M. (2002), ‘Tools for privacy preserving
distributed data mining’, SIGKDD Explorations
4(2), 28–34.

de Vries, T., Ke, H., Chawla, S. & Christen, P. (2011),
‘Robust record linkage blocking using suffix arrays
and Bloom filters’, ACM TKDD 5(2).

Durham, E. (2012), A framework for accurate, effi-
cient private record linkage, PhD thesis, Faculty
of the Graduate School of Vanderbilt University,
Nashville, TN.

Durham, E. A., Toth, C., Kuzu, M., Kantarcioglu,
M., Xue, Y. & Malin, B. (2013), ‘Composite bloom
filters for secure record linkage’, IEEE TKDE .

Fellegi, I. P. & Sunter, A. B. (1969), ‘A theory for
record linkage’, Journal of the American Statistical
Society 64, 1183–1210.

Hawashin, B., Fotouhi, F. & Truta, T. (2011), A pri-
vacy preserving efficient protocol for semantic sim-
ilarity join using long string attributes, in ‘ACM
PAIS’, Uppsala, Sweden.

Inan, A., Kantarcioglu, M., Ghinita, G. & Bertino, E.
(2010), Private record matching using differential
privacy, in ‘EDBT’, Lausanne.

Karakasidis, A. & Verykios, V. (2011), ‘Secure block-
ing+secure matching = secure record linkage’,
Journal of Computing Science and Engineering
5, 223–235.

Karr, A. F., Lin, X., Sanil, A. P. & Reiter, J. P.
(2004), Analysis of integrated data without data
integration, Vol. 17, Chance, pp. 26–29.

Kristensen, T. G., Nielsen, J. & Pedersen, C. N.
(2010), ‘A tree-based method for the rapid screen-
ing of chemical fingerprints’, Algorithms for Molec-
ular Biology 5(1), 9.

Kuzu, M., Kantarcioglu, M., Durham, E. A., Toth,
C. & Malin, B. (2013), ‘A practical approach to
achieve private medical record linkage in light of
public resources’, Journal of the American Medical
Informatics Association 20(2), 285–292.

Lai, P., Yiu, S., Chow, K., Chong, C. & Hui, L.
(2006), An efficient Bloom filter based solution for
multiparty private matching, in ‘International Con-
ference on Security and Management’.

Lindell, Y. & Pinkas, B. (2009), ‘Secure multiparty
computation for privacy-preserving data mining’,
Journal of Privacy and Confidentiality 1(1), 5.

Mitzenmacher, M. & Upfal, E. (2005), Probability and
computing: Randomized algorithms and probabilis-
tic analysis, Cambridge University Press.

O’Keefe, C. M., Yung, M., Gu, L. & Baxter, R.
(2004), Privacy-preserving data linkage protocols,
in ‘ACM WPES’, Washington DC, pp. 94–102.

Rashid, S., Brijesh, K. & Mishra, D. K. (2009), Pri-
vacy preserving k-secure sum protocols, in ‘Com-
puter Science and Information Security’, Vol. 6,
pp. 40–46.

Ravikumar, P., Cohen, W. & Fienberg, S. (2004), A
secure protocol for computing string distance met-
rics, in ‘PSDM held at IEEE ICDM’, Brighton, UK,
pp. 40–46.

Scannapieco, M., Figotin, I., Bertino, E. & Elma-
garmid, A. (2007), Privacy preserving schema and
data matching, in ‘ACM SIGMOD’, pp. 653–664.

Schnell, R., Bachteler, T. & Reiher, J. (2009),
‘Privacy-preserving record linkage using Bloom fil-
ters’, BMC Medical Informatics and Decision Mak-
ing 9(1).

Song, D., Wagner, D. & Perrig, A. (2000), Practi-
cal techniques for searches on encrypted data, in
‘IEEE Symposium of Security and Privacy’, Oak-
land, pp. 44–55.

Sweeney, L. (2002), ‘K-anonymity: A model for
protecting privacy’, International Journal of Un-
certainty Fuzziness and Knowledge Based Systems
10(5), 557–570.

Vatsalan, D. & Christen, P. (2012), An iterative
two-party protocol for scalable privacy-preserving
record linkage, in ‘AusDM, CRPIT 134’, Sydney,
Australia.

Vatsalan, D., Christen, P., O’Keefe, C. M. &
Verykios, V. S. (2014), ‘An evaluation framework
for privacy-preserving record linkage’, Journal of
Privacy and Confidentiality 6(1), 35–75.

Vatsalan, D., Christen, P. & Verykios, V. S. (2013a),
Efficient two-party private blocking based on sorted
nearest neighborhood clustering, in ‘ACM CIKM’,
San Francisco, pp. 1949–1958.

Vatsalan, D., Christen, P. & Verykios, V. S. (2013b),
‘A taxonomy of privacy-preserving record linkage
techniques’, Elsevier Journal of Information Sys-
tems 38(6), 946–969.

Yakout, M., Atallah, M. & Elmagarmid, A. (2012),
‘Efficient and practical approach for private record
linkage’, ACM JDIQ 3(3), 5.

Yao, A. (1986), How to generate and exchange se-
crets, in ‘Foundations of Computer Science’, IEEE,
pp. 162–167.

CRPIT Volume 158 - Data Mining and Analytics 2014

42

