
A System for Managing Data Provenance in In Silico Experiments

Jarrod Trevathan, Ian M. Atkinson, Wayne W. Read, Nigel Sim and Chris Christensen

eResearch Centre,
James Cook University,

101 Angus Smith Drive, Douglas, Townsville, Queensland, Australia, 4811
Email: eResearch@jcu.edu.au

Abstract

In silico experiments use computers or computer sim-
ulation to speed up the rate at which scientific discov-
eries are made. However, the voluminous amounts of
data generated in such experiments is often recorded
in an ad hoc manner without regard to workflow,
and often lacks rigorous business rules. The absence
of stringent auditing and reporting policies makes it
difficult to repeat experiments and largely denies in-
dependent parties the ability to verify study results.
This paper presents a data provenance management
system based on the utility of the ICAT metadata
storage service as a viable schema for representing
in silico experiments. The system provides a portal
interface to integrate ICAT with job execution. We
have built on a data repository which can handle ar-
bitrary data size, complexity and type. This can be
practically used to compare, validate and aid in the
repetition of historic experiments. Furthermore, data
can be verified via external repositories/sources which
will ultimately enhance the scientific merit of in sil-
ico experimentation. Our proposed system augments
existing applications and therefore does not require
users to modify their current experimentation plat-
form. A test case for a pharmacological study is pre-
sented to illustrate the proposed system’s versatility
for reporting and auditing of experiments and their
results.

Keywords: Provenance, in silico, experiment manage-
ment, workflow, version control

1 Introduction

Execution of computational, or in silico experiments
follows the same methodical processes as any other
scientific pursuit. Therefore, clear, accurate and de-
tailed record keeping is equally important in a vir-
tual environment as it would be in a physical labo-
ratory. Since the information about an in silico ex-
periment setup is already computerised, it is a much
simpler task to capture this in a standardised way
than in a comparable physical laboratory. Various
disciplines specify standards and procedures for the
collection and storage formats of scientific metadata.
However, there are numerous inconsistencies between
disciplines.

As Grid (Foster and Carl 1999, Fran et al. 2003)
and Cloud (Armbrust et al. 2009, Buyya et al. 2008)

Copyright c©2011, Australian Computer Society, Inc. This pa-
per appeared at the 22nd Australasian Database Conference
(ADC 2011), Perth, Australia, January 2011. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 115, Heng Tao Shen and Yanchun Zhang, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

computing systems become more widely adopted to
perform in silico experiments, it is increasingly impor-
tant to acknowledge that their heterogeneous nature
poses a risk to experiment reliability and repeatabil-
ity. Systems will vary in terms of both hardware and
software. This makes it difficult to ascertain whether
the outcome of an experiment will be the same when
repeated on different platforms.

Extensive documentation regarding the main at-
tributes of the system environment can help to over-
come this by providing appropriate insight which can
explain unusual trends in the data.

Collecting static machine information regarding
hardware and software, sets up reference metrics
which can be used to group and loosely compare ex-
ecution runs on different machines. The same work-
flow run on a machine with identical memory and
CPU should be very similar. Significant discrepancies
would indicate there are issues relating to the hard-
ware, software, or the application being executed.
Then software dependencies could be investigated,
ideally leading to the offending library, or methods
being identified and rectified.

When analysing a dataset using computational
techniques, it is easy and sometimes commodious to
assume that the dataset simply came into existence.
This is typically done without questioning the true
origin, quality, or how/why it came to be in its inter-
mediate and final representations. Simple provenance
information is essential when trying to audit, review
or reproduce findings (Buneman et al. 2000, Simmhan
et al. 2005).

Existing data provenance management systems
(DPMS) are built into some eScience tools. For
example, experimentation environments such as
Chimera (Foster et al. 2002), myGrid (Stevens et al.
2003, Yu and Buyya 2005) and Kepler (Altintas et al.
2006, Ludscher et al. 2005) provide various mecha-
nisms for automatically capturing data provenance
for experiments conducted using their frameworks.
These environments use their own proprietary sys-
tem for storing the provenance information in either
an XML, RDF or relational form. Such systems are
satisfactory when the target audience:

1. Is largely consuming existing services;

2. Is able to migrate to a new system; and

3. Does not desire to participate in the development
of in silico simulations.

However, such an application-specific nature leads to
a heterogeneous environment where each system does
not interface conveniently with other external tools
and systems. It is also undesirable to re-tool the prac-
titioner with an entire new framework in an effort to
improve their book keeping practises.

While the collection methods for provenance in-
formation will vary between implementations, it does



not need to occur within the main application. We
propose that a pre and post process can be used to col-
lect this information without the need for modification
to the running application. This data is written to
the document store, and returned along with the re-
sults of the main application. Therefore, a provenance
management system must enable the current users
of in silico experimentation to capture their prove-
nance information without amending their existing
systems. The provenance data can then be stored in
a general-purpose repository where it can be verified
by independent third parties and used to reproduce
experiments if desired.

The physical science community utilises a num-
ber of Laboratory Information Management Systems
(LIMS) which track physical experimentation. One
such system from the crystallography community is
the ICAT schema (Flannery et al. 2009). ICAT is
a relational database implementation of the Council
for the Central Laboratory of the Research Councils
(CCLRC) Scientific Metadata Model. There are a
number of Service-Oriented Architecture (SOA) im-
plementations which present this schema to other ap-
plications. The generic and interoperable nature of
ICAT makes it ideal as a repository for data storing
provenance from in silico experiments in a verifiable
manner.

This paper presents a DPMS based on the util-
ity of the ICAT metadata storage service as a viable
schema for representing in silico experiments. The
system provides a portal interface to integrate ICAT
with job execution. We have built on a data reposi-
tory which can handle arbitrary data size, complexity
and type. This can be practically used to compare,
validate and aid in the repetition of historic exper-
iments. Furthermore, data can be verified via ex-
ternal repositories/sources which will ultimately en-
hance the scientific merit of in silico experimentation.
Our proposed system augments existing applications
and therefore does not require users to modify their
current experimentation platform. A test case for a
pharmacological study is presented to illustrate the
proposed system’s versatility for reporting and audit-
ing of experiments and their results.

This paper is organised as follows: Section 2 dis-
cusses related work on grid and cloud computing data
management systems. Section 3 describes the archi-
tectural framework within which the system operates.
Section 4 presents the design methodology for con-
structing our system. Section 5 describes the imple-
mentation of the proposed system. Section 6 gives a
case study and discussion for the proposed system.
Section 7 provides some concluding remarks and av-
enues for future work.

2 Related Work

The Computer Science and Informatics communities
currently do not adopt a uniform experiment manage-
ment regime. However, there exist opportunities and
resources to facilitate data provenance management
and enable other flow-on benefits to these research
communities. This section presents related work that
has been conducted on creating in silico workflow and
data provenance management systems.

Bunemann et al (Buneman et al. 2000) outline
some of the major issues with capturing data prove-
nance, while Simmhan et al (Simmhan et al. 2005)
discuss a number of models and uses of provenance
metadata in eScience. Yu and Buyya (Yu and Buyya
2005) present a taxonomy of workflow management
systems for Grid computing.

Chimera (Foster et al. 2002) is a virtual data sys-
tem, which combines a virtual data catalogue for

representing data derivation procedures and derived
data, with a virtual data language interpreter The
interpreter translates users’ requests into data defini-
tion and query operations on the database. Chimera
is coupled with distributed “Data Grid” services to
enable on-demand execution of computation sched-
ules constructed from database queries. The system
has been tested on two problems. The first involved
the reconstruction of simulated collision event data
from a high-energy physics experiment. the second
was the search of digital sky survey data for galactic
clusters.

A novel use of provenance in Chimera is to plan
and estimate the cost of regenerating datasets. When
a dataset has been previously created and it needs
to be regenerated (e.g., to create a new replica), its
provenance guides the workflow planner in selecting
an optimal plan for resource allocation.

myGrid (Stevens et al. 2003) provides middleware
in support of in silico (computational laboratory) ex-
periments in biology, modelled as workflows in a Grid
environment. myGrid services include resource dis-
covery, workflow enactment, and metadata and prove-
nance management, which enable integration and
present a semantically enhanced information model
for bio-informatics. myGrid is service-oriented and
executes workflows written in XScufl language using
the Taverna engine (Oinn et al. 2004). A provenance
log of the workflow enactment contains the services
invoked, their parameters, the start and end times,
the data products used and derived, and ontology
descriptions, and it is automatically recorded when
the workflow executes. This process-oriented work-
flow derivation log is inverted to infer the provenance
for the intermediate and final data products. Users
need to annotate workflows and services with seman-
tic descriptions to enable this inference and have the
semantic metadata carried over to the data products.

Kepler (Ludscher et al. 2005) is an open-source sci-
entific workflow system which enables scientists to de-
sign scientific workflows and execute them efficiently.
Kepler provides emerging Grid-based approaches for
access to distributed resources such as data and com-
putational services, while hiding the underlying com-
plexity of the Grid technologies. The Kepler system
supports the automation of low-level data processing
tasks so the focus can remain on the scientific ques-
tions of interest. The workflows that Kepler produces
can be implemented in cross platform environments,
provide documentation and visualisation of the pro-
cesses and bring the power of distributed databases,
computational Grid resources and applications to the
desktop. Each workflow step is represented by actors,
which are individual processing components that can
be manipulated through a drag and drop method into
a workflow, via Kepler’s visual interface. The actors
are then connected and organised according to the
data flow, and the dependencies among them, to form
the workflow.

Altintas et al (Altintas et al. 2006) present a
framework for data and process provenance in Kepler.
They outline the requirements and issues related to
data and workflow provenance in a multi-disciplinary
workflow and show how generic provenance capture
can be facilitated by Kepler’s actor-oriented work-
flow environment. They also describe the usage of
the stored provenance information for efficient rerun-
ning of scientific workflows.

Other DPMSs include the CMCS project (My-
ers et al. 2003, Pancerella et al. 2003) for collabo-
ration and metadata-based management for multi-
scale science, the Earth System Science Workbench
(ESSW) (Frew and Bose 2001) for metadata man-
agement and data storage for Earth Science applica-
tions, and Trio (Cui and Widom 2000, Widom 2005)



Figure 1: The ARCHER research data management Workflow

for tracing lineage information in data warehouses.

3 ARCHER

This section describes the ARCHER project and
presents architecture within which the proposed
DPMS operates.

The Australian ResearCH Enabling enviRon-
ment 1 (ARCHER) project (Androulakis et al. 2009)
is an Australian higher education initiative which has
developed ‘production-ready’ software tools, operat-
ing in a secure environment, to assist researchers to:

• Collect, capture and retain large data sets from
a range of different sources including scientific
instruments;

• Deposit data files and data sets to eResearch
storage repositories;

• Populate these eResearch data repositories with
associated metadata;

• Permit data set annotation and discussion in a
collaborative environment; and

• Support next-generation methods for research
publication, dissemination and access.

3.1 Applications

Figure 1 illustrates the main software components
and workflow of the ARCHER platform. Within this
framework, ARCHER offers the following services:

* ARCHER Enhanced Plone - a collaborative
workspace development tool for building websites
where researchers can come together.

* HERMES - for managing research datasets from
a desktop client application.

1www.archer.edu.au

Figure 2: Layers in ARCHER

* HYDRANT - for managing workflow automa-
tions from a web application.

* DIMSIM - Distributed Integrated Multi-Sensor
and Instrument Middleware for concurrent data
capture and analysis.

* CIMA - Common Instrument Middleware Archi-
tecture.

* SAL - A Sensor Abstraction Layer to automate
sensor network hardware configuration and sim-
plify sensor instrument access and control (Tre-
vathan et al. 2010).

3.2 Data Services Layer

Figure 2 illustrates the logical layers within the
ARCHER system. At the top is the Application Layer
that supports the aforementioned applications. Below
this is the Data Services Layer. The ARCHER Data
Services (ADS) infrastructure supports other com-
ponents in the ARCHER Toolset, and incorporates
both third-party and ARCHER-developed software.



Figure 3: The SRB middleware (figure taken
from (Baru et al. 1998))

It provides data storage via the Storage Resource Bro-
ker (SRB) (Baru et al. 1998), metadata storage with
ICAT, and authentication through MyProxy.

ADS is made up of two layers:

• ADS Service Layer provides web service inter-
faces to the data and metadata storage.

• ADS Infrastructure Layer provides distributed
storage, authentication, and an optional certifi-
cate authority.

Infrastructure Layer

The ADS Infrastructure Layer is a streamlined
package of third party grid components such as
Globus 2, MyProxy and SRB with customisations to
allow authentication to an Lightweight Directory Ac-
cess Protocol (LDAP) server. The components are all
installed through automated deployment scripts with
minimal configuration required.

SRB provides a uniform interface to heterogeneous
data storage resources over a network (see Figure 3).
It is a logical distributed file system based on a client-
server architecture which presents users with a single
global logical namespace or file hierarchy. As part of
this, it implements a logical namespace (distinct from
physical file names) and maintains metadata on data-
objects (files), users, groups, resources, collections,
and other items in a Metadata Catalog (MCAT). Sys-
tem and user-defined metadata can be queried to lo-
cate files based on attributes as well as by name.

SRB is middleware in the sense that it is built on
top of other major software packages (various storage
systems, real-time data sources, a relational database
management system, etc.). It has callable library
functions that can be utilized by higher level software.
However, it is more complete than many middleware
software systems as it implements a comprehensive
distributed data management environment, including
various end-user client applications. It has features
to support the management and collaborative (and
controlled) sharing, publication, replication, transfer,
and preservation of distributed data collections.

SRB is a commercial product, free for use by aca-
demic institutions, and with full source code avail-
able. It is sometimes used in conjunction with com-
putational grid computing systems, such as Globus
Alliance, and can utilize the Globus Alliance Grid
Security Infrastructure authentication system. SRB
can store and retrieve data in archival storage sys-
tems such as HPSS and SAM-FS, on disk file systems

2http://www.globus.org/

(Unix, Linux, or Windows), as Binary Large Objects
or tabular data in relational database management
systems, and on tape libraries.

The Virtual Data Toolkit 3 (VDT) is a grid soft-
ware packaging system that installs several grid com-
ponents, including MyProxy and the Globus libraries.

MyProxy 4 is a service that listens on port 7512,
generating short-lived certificates called “proxies” for
users upon request. It serves these over the network,
allowing users access to remote services. ARCHER
adds LDAP authentication to the standard MyProxy
installation.

Many parts of ARCHER Toolset require a com-
mon Certificate Authority (CA) to sign certificates.
ARCHER Data Services can set up MyProxy to
function as a CA. This is useful in a testing or
development environment.

Service Layer

The ADS Service Layer is composed of two web
applications – ICAT and MCAText.

ICAT is a metadata storage service that imple-
ments the CCLRC Scientific Metadata Model version
2 to record information about scientific experiments.
The data from the experiments itself is stored on the
SRB, while the metadata is held in the ICAT. ICAT’s
storage is implemented as a PostgreSQL database,
which is installed through the Archer XDMS applica-
tion.

MCAText is an ARCHER-developed web service
layer over SRB and its MCAT database. It provides
a high performance mechanism for other services to
lookup authorisation information on content within
SRB. It provides update notification to other services
when content is modified, moved, or created. It is
used by certain ARCHER tools, including the ICAT
service and ARCHER Collaborative Workspace.

Figure 4 illustrates how all of the internal compo-
nents interact in the standard ADS configuration.

3.3 Bringing it all Together

The main ARCHER project was completed in 2008.
As a result of the work performed in ARCHER, re-
searchers in general are now much closer to: having a
place to collect, store and manage experimental data;
deploying software tools focused on management of
data and information; being able to easily customise
a collaborative and adaptable portal web site relevant
to their research field; having standardised and secure
methods of storing, accessing, and analysing research
results; and finding it easier to collaborate and share
research datasets and information.

ARCHER has addressed many key issues in e-
Research data management. It is enabling researchers
to keep better track of their scientific data by organ-
ising them into intuitive and generic structures de-
scribed by the CCLRC Scientific Metadata Model,
and by making the research repository easily search-
able. It is alleviating issues around the collaboration
of large datasets by: supporting the storage of large
research datasets, adopting a data-centric view; and
by providing an initial set of collaborative tools that
can be directly associated with the research data. It is
also protecting the confidentiality and security of re-
search data by limiting the access to a project team’s
research data.

3http://vdt.cs.wisc.edu/
4http://www.my-proxy.com/



Figure 4: The standard tested ARCHER ADS configuration

Figure 5: ICAT schema for result sets from physical
automated experiments

4 Design Methodology

This section presents the design methodology for con-
structing the proposed system.

4.1 The ICAT Schema

The proposed DPMS is based on the continued work
from the ARCHER implementation of the ICAT ser-
vice. This implementation provides a web services
interface with the schema, and includes tight integra-
tion with the SRB as a file repository.

ICAT is primarily concerned with result sets from
physical, automated experimentation. Figure 5 il-
lustrates the ICAT schema. Represented within the
schema are studies, which form the highest grouping
of research activities. Studies contain many investi-
gations which are the individual experiments. Inves-
tigations involve zero or more samples, which are the
focus of the investigation, and produce datasets and
data files.

However, ICAT can also represent in silico experi-
ments, by defining a dataset type as an input dataset
and not defining any samples. If we consider an in-
vestigation to be any process which produces data
output from samples or other datasets, then we can
model any transformation as a sample. This makes
sense especially if we want to capture failed experi-
ments, such as descriptor calculations which fail due
to invalid or out of bounds structures.

One of the key extensions provided by the
ARCHER-ICAT services is the ability to store aux-
iliary documents against ICAT elements. It allows
listing, insertion, updating and deletion of these doc-
uments, given the ICAT element type and element
ID as the key. We use this feature to store an XML
document for each of the in silico investigation types
discussed here.

4.2 User Source Code Integrity

Principle among the requirements for effective data
lineage and provenance collection for in silico exper-
iments, is capturing the exact workflow or scripting
used to transform or process the data. This is partic-
ularly evident when analysis is performed using cus-
tom software, or scripted environments such as MAT-
LAB 5 or R 6. The benefit which the user can lever-
age from these situations, which cannot necessarily be
captured in a single set of configuration parameters,
requires a more powerful approach.

Being able to identify the exact code used to per-
form a specific computation is essential. Given the
ease with which small changes can be made to text-
based scripts means robust and integrated methods
of code validation are required.

Source code version control systems used in soft-
ware development offer a capability to store, address
and recall historic versions of a code base. Utilising
this functionality within the provenance framework
gives an opportunity to address the temporal software
validation issue. However, the following constraints
must be applied:

• The version control repository is maintained
alongside the main provenance store. This en-
sures the same level of security from tampering,
and also disaster tolerance.

• The code is always checked out from the reposi-
tory by the execution system, and is not modified
before execution.

5http://www.mathworks.com/products/matlab/
6http://www.r-project.org/



In the proposed system we consider the centralised
version control application – Subversion 7. Subversion
stores text and binary files in a hierarchical directory
tree. When a file is changed, added or deleted, it can
be checked back into the central repository, creating a
new revision. The user, or another process, can then
check these files out at another location and they will
be identical to the version used at the original file
location. When changes are made, the user is able
to view the difference between the working copy and
those in the central repository, containing all previous
revisions stored in that repository.

Provided the code is in a version control system,
then the exact version of the software can be re-
trieved to process the dataset. The software revision
is stored in a network accessible format within the
provenance system as follows:

<protocol>://<host>[:<port>]/<path>@<revision>

The <protocol> will typically be http or https,
and <host> is the network name of the subversion
server. The <port> will be supplied if it is non-
standard, <path> is the location of the code, and
<revision> is what version of the code will be used
for this experiment.

4.3 Reporting and Auditing

By collecting provenance information in the afore-
mentioned manner, it becomes possible to produce
new tools to assist in the monitoring and supervision
of experiment-based research. Through providing a
query interface, the ICAT service can enable supervi-
sors to remotely, and continuously monitor students
and subordinates. This helps to allow for rapid recti-
fication of experimental errors.

Flagging of other interesting artefacts within re-
sults also becomes possible. The uniform storage of
these investigations means such annotations can be
extracted reliably, and without risking the loss of pos-
sibly interesting and insightful avenues for future in-
vestigation.

5 Implementation

This section describes how to implement the proposed
DPMS using the ICAT schema, a source code version
control system, and the related components of the
ARCHER project.

5.1 Data Format

Within the ICAT schema, investigations and datasets
both have a type attribute which is used to distinguish
the specific function of the element. The available
types are not stipulated by the ICAT specification,
which allows the schema to be used for many pur-
poses. The following investigation types are defined
for the in silico use cases:

• Retrieval – This is either downloaded from a web-
site, or queried from a database;

• Calculation – Includes the running of format con-
version and the calculation of molecular descrip-
tors; and

• Analysis – The running of a workflow or applica-
tion script which processes the data.

The following dataset types are defined to comple-
ment the investigation types:

7http://subversion.tigris.org/

• Input Dataset – These are the source datasets
for the defined Calculation and Analysis inves-
tigation types. The data files may or may not
be populated, depending on whether this is the
primary registration of the dataset, or if it is the
culmination of data from other datasets.

• Output Dataset – These are the files produced
by Calculation or Analysis. Data files need to be
populated to describe what is in each file.

By using the dataset type and the investigation
type, a complete history of the data back to the orig-
inal collection can be constructed.

Two supplementary documents are also stored
against the investigation which details the operation.
These are used to fully capture the metadata about
the configuration of the investigations. These docu-
ments are stored as XML, and the schema is specific
to the investigation type.

The first document is referred to as the Retrieval
document. The purpose of the retrieval operation is
to capture the source information about the dataset.
This allows verification to occur at a later date.
Furthermore, it can be cited correctly when used in
investigations. The format of the retrieval document
is as follows:

Retrieval:

• URI

• Retrieval time

• License

• Dublin Core metadata record 8

The second document is referred to as the Analysis
and Calculation document. Analyses are computer
applications which are run using the data. The
metadata associated with them needs to be collected
at the point of execution. This data includes the
hardware and software environments which affect the
execution of the analysis. Furthermore, application
parameters also need to be captured so that the
analysis can be repeated by an independent third
party. As some applications require configuration
files, these can be stored in the document, as can
references to other input files. Input file validity is
confirmed by also storing a SHA-256 9 checksum of
the files. The format of the Analysis and Calculation
document is as follows:

Analysis and Calculation:

• Applications

– Name
– Version
– Operating System
– Runtime
– Command - command line

∗ Library Path (name =)
· Library name

∗ Input Parameters
· Name
· Value

8http://dublincore.org/
9Secure Hash Algorithm (SHA) is a family of hash functions

used for verifying the integrity of a document. SHA-256 uses 32-
bit words.



Figure 6: Interactions between ICAT, SRB and MCAText

∗ Input Files – Data files not already in
ICAT
· Name
· Location
· Hash
· Data – Optional intended for

configuration files

When the output files are available, they are
moved off their initial storage into the data reposi-
tory component of the system. This is achieved using
a transfer agent which is started on the head node
of the execution cluster. The agent is initialised with
the details of the ICAT server, destination dataset,
and the user’s X.509 certificate 10. It will copy the
files into the data store and computes the checksum
as this is happening. Upon completion, the details
are written directly to the ICAT service against the
dataset specified.

5.2 The ICAT Service and Security

The ICAT service exposes the ICAT schema via web
services, providing basic creation, read, update, and
delete operations for each of the elements. It also
allows arbitrary XML documents to be stored against
specific ICAT elements. The framework is presented
in a manner that is easily extensible for adding new
operations to the service, and altering some aspects
of the existing service.

The ICAT-SRB services is an extension to the
vanilla ICAT service, integrating file data storage us-
ing SRB. This implements a security model which
is based around the object permissions within SRB.
This is achieved by mirroring the core ICAT struc-
ture as folders and files within SRB, and then explic-
itly linking the ICAT records to these SRB objects
using the location attribute on the given ICAT ob-
ject. In the case of ICAT objects which have no direct

10X.509 is a cryptographic standard for a public key infrastruc-
ture for single sign-on and Privilege Management Infrastructure.
X.509 specifies standard formats for public key certificates, certifi-
cate revocation lists, attribute certificates, and a certification path
validation algorithm.

mirror within the SRB hierarchy, the permissions are
inherited from the closest parent which is mirrored.
Lookup table objects are access controlled via a sep-
arate access control list in the service, as they are
always world readable, and administered centrally.

Figure 6 illustrates the interactions between ICAT,
SRB and MCAText. Achieving this integration re-
quires both SRB and the ICAT services to be using
X.509 authentication, so that the X.500 DN (Distin-
guished Name) 11 of the authenticated user is used
to match the user’s permissions via a call from the
ICAT service to an SRB support service.

MCAText provides two key functions to authorised
services:

• Read only lookups of SRB permission informa-
tion; and

• Notification of file and folder changes within
SRB.

This provides integration of the permissions systems,
and also allows ICAT to be kept consistent with ob-
ject changes within SRB.

5.3 Application Portal

The principle objective of this project was to capture
more of the computational experiment information
from the users during experimentation. To achieve

11The X.500 directory service is a global directory service. Its
components cooperate to manage information about objects such
as countries, organizations, people, machines, and so on in a world-
wide scope. It provides the capability to look up information by
name (a white-pages service) and to browse and search for informa-
tion (a yellow-pages service). The information is held in a directory
information base (DIB). Entries in the DIB are arranged in a tree
structure called the directory information tree (DIT). Each entry
is a named object and consists of a set of attributes. Each at-
tribute has a defined attribute type and one or more values. The
directory schema defines the mandatory and optional attributes for
each class of object (called the object class). Each named object
may have one or more object classes associated with it. The X.500
namespace is hierarchical. An entry is unambiguously identified by
a distinguished name (DN). A DN is the concatenation of selected
attributes from each entry, called the relative distinguished name
(RDN), in the tree along a path leading from the root down to the
named entry. Users of the X.500 directory may (subject to access
control) interrogate and modify the entries and attributes in the
DIB.



this, the cluster job submission portal was augmented
with ICAT experiment metadata facilities. As job
submission is handled by the portal, it is practical to
automatically capture execution environment infor-
mation directly from within the submission scripts.
Initially the user is required to provide some informa-
tion about the job they are submitting including:

• Source of the data (ICAT, web, etc.);

• Code version (obtained from Subversion);

• Experiment description;

• Which study this is a part of; and

• The names of the relevant output files.

Using the information provided, the portal can
automatically create a new investigation within the
appropriate study. Upon completion of the job, the
output data is stamped with a checksum and injected
into the institutional repository. This provides a per-
manent record of the particular experiment.

In some cases there is significant experiment pa-
rameter tuning required before any meaningful out-
put is produced (for instance when fixing bugs). In
this case it is undesirable to capture every experiment
automatically, rather after the fact the practitioner
may choose to capture an experiment. This is done
by providing the same information as previously, ex-
cept this investigation will be given a flag to indicate
that it was not an automatic capture.

Furthermore, after an investigation has been cap-
tured, the practitioner may wish to annotate this run
with notes about motivation for certain design or pa-
rameter decisions.

5.4 Command Line Assistant

A command line assistant is provided to assist with
jobs run in batch mode, such as cluster environ-
ments. This can be used to call the actual application,
and will produce an XML document in the analysis
schema. This will need to be completed by the user.
All other information is supplied automatically by the
system, such as environment, input files and param-
eters. The resulting document is then submitted to
the ICAT service along with the output details of the
execution.

6 Case Study and Discussion

This section outlines a case study using the proposed
DPMS and discusses its effectiveness in managing in
silico provenance information.

6.1 Task

Consider the life cycle of a typical data mining exer-
cise. It involves the following steps:

• Data collection or retrieval

• Data conversion and filtering

• Processing

Any of these steps may be performed many times,
leading to a tree of descendant investigations origi-
nating from the initial dataset. For an institution
which has many concurrent and historic lines of in-
vestigation, this information is critical when revisit-
ing previous work, or for discovering colleagues who
are deriving work from common internal, public or
reference datasets.

Figure 7: HIA Case Study Workflow

This reference implementation was tested using
a PhD student computational chemistry study lines.
The study involves taking a public dataset of human
intestinal absorption (HIA) for pharmacological com-
pounds, and constructing a predictive or explanatory
model using characteristics of these compounds. The
dataset consists of 3D molecular models of the com-
pounds under investigation, and as their HIA values.
The derivation of the molecular characteristics can be
performed in many ways, such as enumerating com-
mon physical structures, calculating general topolog-
ical properties, or computing approximations of elec-
trochemical properties. In general, this approach gen-
erates a number of numerical or categorical descrip-
tors which are representative of the function of the
individual compounds. These descriptors can be used
directly in statistical or data mining models.

6.2 Workflow

The study proceeds as outlined in the following work-
flow (see Figure 7):

1. Download reference data set

2. Register dataset with ICAT

3. Calculate descriptors

4. Store transform with ICAT

5. Perform analysis

6. Store results in ICAT

7. Repeat steps 5 and 6 refining the model param-
eters

In steps 1 and 2, the outcome is to retrieve this
dataset from its public repository and place it in
ICAT as a special “retrieval” investigation. This in-
volves uploading the dataset into data storage area
(i.e., SRB), which provides a local copy of the data
and ensures that subsequent investigations are us-
ing the same dataset. This offers protection against
changes to datasets in external repositories (both
public and private), going unnoticed and corrupting
investigations.

Next, steps 3 and 4 transform these input data
models into a set of molecular descriptors which can
be used within the data mining methods. This trans-
formation is done using the E-DRAGON (Tetko et al.
2005) web portal 12. It produces a number of out-
put files, which are processed into a single dataset file.

12E-DRAGON is the electronic remote version of the well known
software DRAGON, which is an application for the calculation of
molecular descriptors developed by the QSAR Research Group.
These descriptors can be used to evaluate molecular structure-
activity or structure-property relationships, as well as for similarity
analysis and high throughput screening of molecule databases.



Figure 8: Relationships Between Investigations

This step is registered in ICAT as a transformation in-
vestigation on the initial download investigation, hav-
ing the input dataset being the output dataset from
the previous step.

Once the data preparation stage is complete, the
actual investigation can proceed. Steps 5 and 6 of
the workflow are particularly exploratory, requiring a
number of independent investigations to explore dif-
ferent approaches for generating a robust model. This
includes executing three different types of model, and
using different pre-processing steps. Each of these
data mining processes are stored in ICAT.

Conclusions as to the appropriate type of model
and pre-processing to use to obtain satisfactory re-
sults cannot be drawn from the results of the data
mining steps which have just been completed. How-
ever, questions still remain as to whether this model is
general enough to be run against another HIA dataset
and produce reliable results. In this case there is al-
ternative HIA investigation stored in the ICAT, that
uses a unique dataset. A new investigation is started,
reusing the model produced in the best performing
investigation from the previous phase, and using the
dataset from the alternative HIA study. This is illus-
trated as steps I, ii and iii in Figure 7.

6.3 Post Experiment Analysis

Should the performance of the model not be as high
as desired, then the practitioner could check the
other investigations run against the alternative HIA
dataset. This may reveal that the dataset was found
to be unreliable, or otherwise not representative of
HIA datasets. Being able to visualise these relation-
ships between investigations can be useful.

Figure 8 illustrates the longer term value of record-
ing experimental provenance metadata with a system
like ICAT. The schema and its implementation al-
lows for the straightforward retrieval and comparison
of results. ICAT also serves as an experiment activity
record keeping system which can be utilised as an au-
dit trail of time stamped records. This can be used in
a variety of ways including fulfilling supervision and
intellectual property requirements.

7 Conclusions

There are numerous inconsistencies with capturing
data provenance in the Computer and Information
sciences fields. This paper presented a DPMS based
on the utility of the ICAT metadata storage service
as a viable schema for representing in silico exper-
iments. The system provides a portal interface to
integrate ICAT with job execution. We have added a
data repository which can handle arbitrary data size,
complexity and type. When used in conjunction with

a source code versioning system such as Subversion,
end users and other parties can determine which ver-
sion of the code was executed for the experimentation,
and whether there have been any modifications to the
code since the experimentation occurred.

The proposed system can be practically used to
compare, validate and aid in the repetition of his-
toric experiments. It allows for verification of data
from external repositories/sources through the use of
SRB. SRB is powerful in that it brings together data
from multiple disparate sources over a distributed en-
vironment. This provides superior facilities for re-
porting/auditing of experiments and their results.

ICAT provides a uniform format for instrument,
sensor and computation data. It also establishes a
unified security procedure for verifying and obtaining
datasets. This is based on the underlying security
provided by SRB.

While the proposed system is based on extensions
to ICAT proposed by the ARCHER project (i.e.,
MCAText), it works independently of the ARCHER
system. Users are free to use any existing platform
they desire to conduct experiments. The proposed
system augments the existing platform with pre and
post processes to manage and capture the desired
provenance information. This approach is more flexi-
ble and versatile than previous data provenance cap-
turing approaches as users do not have to migrate to
entirely new platforms in order to harness data prove-
nance recording features.

At present the experiment model does not apply to
all forms of investigation (e.g., continuous streams).
We aim to address this in future work. Other future
work involves exploring the integration of other do-
main specific metadata requirements. Furthermore,
there is scope for expansion of the reporting func-
tionality based on actual requirements. Additionally,
we will extend the work through a summary/meta-
investigation of the use of a popular dataset. Finally,
it is desirable to expand the proposed system to be a
service integrated with other computational products.

Acknowledgment

The authors would like to thank the anonymous re-
viewers for their comments during the peer review
process.

References

Altintas, I., Barney, O. & Jaeger-Frank, E. (2006),
Provenance Collection Support in the Kepler Sci-
entific Workflow System, in ‘International Prove-
nance and Annotation Workshop (IPAW)’, pp. 118-
132.

Androulakis, S., Buckle, A.M., Atkinson, I., Groe-
newegen, D., Nicholas, N., Treloar, A. & Beitz,
A. (2009), ARCHER e-Research Tools for Re-
search Data Management, in ‘International Journal
of Digital Curation’, 4(1).

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D.,
Katz, R.H., Konwinski, A., Lee, G., Patterson,
D.A., Rabkin, A., Stoica, I. & Zaharia, M. (2009),
Above the Clouds: A Berkeley View of Cloud Com-
puting, ‘Technical Report. UCB/EECS-2009-28’,
EECS Department, University of California, Berke-
ley.

Baru, C., Moore, R., Rajasekar, A. & Wan, M.
(1998), The SDSC Storage Resource Broker, in
‘Cascon ’98: proceedings of the 1998 conference
of the centre for advanced studies on collaborative



research’, IBM Press, Toronto, Ontario, Canada,
pp. 5.

Buneman, P., Khanna, S. & Tan, W. (2000), Data
provenance: Some basic issues, in ‘20th Conference
on Foundations of Software Technology and Theo-
retical Computer Science’.

Buyya, R., Yeo, C.S. & Venugopal, S. (2008), Market-
oriented cloud computing: Vision, hype, and re-
ality for delivering it services as computing util-
ities, in ‘10th IEEE International Conference on
High Performance Computing and Communica-
tions (HPCC)’.

Cui, Y. & Widom, J. (2000), Practical Lineage Trac-
ing in Data Warehouses, in ‘16th International
Conference on Data Engineering’, pp. 367–378.

Flannery, D., Matthews, B., Griffin, T., Bicarregui,
J., Gleaves, M., Lerusse, L., Downing, R., Ashton,
A., Sufi, S., Drinkwater, G. & Kleese, K. (2009),
ICAT: Integrating Data Infrastructure for Facilities
Based Science, in ‘5th IEEE International Confer-
ence on e-Science’, pp. 201–207.

Foster, I. & Carl, K. (1999), The Grid: Blueprint for a
New Computing Infrastructure, ‘Morgan Kaufmann
Publishers’, ISBN 1–55860–475–8.

Foster, I., Vckler, J., Wilde, M. & Zhao, Y. (2002),
Chimera: A Virtual Data System for Represent-
ing, Querying, and Automating Data Derivation,
in ‘14th International Conference on Scientific and
Statistical Database Management (SSDBM)’.

Fran, B., Hey, A.J.G. & Fox, G.C. (2003), Grid Com-
puting: Making The Global Infrastructure a Reality,
Wiley. ISBN 0-470-85319-0.

Frew, J. & Bose, R. (2001), Earth System Science
Workbench: A Data Management Infrastructure
for Earth Science Products, in ‘13th International
Conference on Scientific and Statistical Database
Management’, pp. 180–189.

Ludscher, B., Altintas, I., Berkley, C., Higgins, D.,
Jaeger, E., Jones, M., Lee, E.A., Tao, J. & Zhao,
Y. (2005), Scientific Workflow Management and the
KEPLER System, in ‘Concurrency and Computa-
tion: Practice & Experience’, Wiley Interscience.
DOI: 10.1002/cpe.994.

Myers, J., Pancerella, C., Lansing, C., Schuchardt, K.
& Didier, B. (2003), Multi-Scale Science, Support-
ing Emerging Practice with Semantically Derived
Provenance, in ‘ISWC workshop on Semantic Web
Technologies for Searching and Retrieving Scientific
Data’.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Sen-
ger, M., Greenwood, M., Carver, T., Glover, K.,
Pocock, M.R., Wipat, A. & Li, P. (2004), Taverna:
a tool for the composition and enactment of bioin-
formatics workflows, in ‘Bioinformatics’, 20(17),
Oxford University Press, London, UK, pp. 3045–
3054.

Pancerella, C., Hewson, J., Koegler, W., Leahy, D.,
Lee, M., Rahn, L., Yang, C., Myers, J.D., Di-
dier, B., McCoy, R., Schuchardt, K., Stephan, E.,
Windus, T., Amin, K., Bittner, S., Lansing, C.,
Minkoff, M., Nijsure, S., Laszewski, G.v., Pinzon,
R., Ruscic, B., Al Wagner, Wang, B., Pitz, W., Ho,
Y.L., Montoya, D., Xu, L., Allison, T.C., Green,
W.H. & Frenklach, M. (2003), Metadata in the
collaboratory for multi-scale chemical science, in
‘Dublin Core Conference’.

Simmhan, Y.L., Plale, B. & Gannon, D. (2005), A
survey of data provenance in e-science, in ‘Spe-
cial Interest Group on Management of Data Record
(SIGMOD Record)’, 34(3), pp. 31–36.

Stevens, R.D., Robinson, A.J. & Goble, C.A. (2003),
myGrid: Personalized Bioinformatics on the Infor-
mation Grid, in ‘Bioinformatics’, 19(1), Oxford
University Press, London, UK, pp. 302-304.

Tetko, I.V., Gasteiger, J., Todeschini, R., Mauri,
A., Livingstone, D., Ertl, P., Palyulin, V.A., Rad-
chenko, E.V., Zefirov, N.S. & Makarenko, A.S.
(2005), Virtual computational chemistry labora-
tory - design and description, in ‘Journal of Com-
puter Aided Mol. Des.’ Vol 19, pp. 453–463.

Trevathan, J., Atkinson, I., Read, W., Johnstone, R.,
Bajema, N. & McGeachin, J. (2010), Establishing
Low Cost Aquatic Monitoring Networks for De-
veloping Countries, in ‘the International Confer-
ence on Wireless Communications and Information
Technology in Developing Countries’, pp. 37–48.

Widom, J. (2005), Trio: A System for Integrated
Management of Data, Accuracy, and Lineage, in
‘Conference on Inovative Data System Research
(CIDR)’, pp. 262–276.

Yu, J. & Buyya, R. (2005), A Taxonomy of Workflow
Management Systems for Grid Computing, ‘Tech-
nical Report’, GRIDS-TR-2005-1, Grid Computing
and Distributed Systems Laboratory, University of
Melbourne.


