CONFERENCES IN RESEARCH AND PRACTICE IN
INFORMATION TECHNOLOGY

VOLUME 96

CONCEPTUAL MODELLING 2009

AUSTRALIAN COMPUTER SCIENCE COMMUNICATIONS, VOLUME 31, NUMBER 6

C Qv
@ Research

AUSTRALIAN & E

COMPUTER ducation

SOCIETY

CONCEPTUAL MODELLING 2009

Proceedings of the

Sixth Asia-Pacific Conference on Conceptual Modelling
(APCCM 2009), Wellington, New Zealand,

January 2009

Markus Kirchberg and Sebastian Link, Eds.

Volume 96 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library. v

iii

Conceptual Modelling 2009. Proceedings of the Sixth Asia-Pacific Conference on Conceptual Modelling
(APCCM 2009), Wellington, New Zealand, January 2009

Conferences in Research and Practice in Information Technology, Volume 96.

Copyright (©2009, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:

Markus Kirchberg

Data Mining Department

Institute for Infocomm Research (I°R)

Agency for Science, Technology and Research (A*STAR)
1 Fusionopolis Way

#21-01 Connexis (South Tower)

Singapore 138632

Singapore

Email: MKirchberg@i2r.a-star.edu.sg

Sebastian Link

School of Information Management
Victoria University of Wellington
PO Box 600

Wellington

New Zealand

Email: sebastian.link@vuw.ac.nz

Series Editors:

Vladimir Estivill-Castro, Griffith University, Queensland
John F. Roddick, Flinders University, South Australia
Simeon Simoff, University of Western Sydney, NSW
crpit@infoeng.flinders.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office

Sydney 1230

New South Wales

Australia.

Conferences in Research and Practice in Information Technology, Volume 96.
ISSN 1445-1336.
ISBN 978-1-920682-77-4.

Printed, January 2009 by Flinders Press, PO Box 2100, Bedford Park, SA 5042, South Australia.
Cover Design by Modern Planet Design, (08) 8340 1361.

The Conferences in Research and Practice in Information Technology series aims to disseminate the results of
peer-reviewed research in all areas of Information Technology. Further details can be found at http://crpit.com/.

Table of Contents

Proceedings of the Sixth Asia-Pacific Conference on Conceptual Modelling
(APCCM 2009), Wellington, New Zealand, January 2009

Preface vii
Programme Committee........ viii
Organising Committee........ ix
Welcome from the Organising Committee X
CORE - Computing Research & Education...................................... xi
ACSW Conferences and the Australian Computer Science

Communications xii
ACSW and APCCM 2009 SPONSOTSointii e xiv

Keynote

Finite Model Theory and it5 OTIGINS ettt et et 3

Ronald Fagin

Invited Papers

A Semantic Associative Computation Method for Automatic Decorative-Multimedia Creation with
“Kansei” Information 7
Yasushi Kiyoki and Xing Chen

Modeling Natural Language Communication in Database Semantics 17
Roland Hausser

Contributed Papers

Business Process Integration: Method and Analysis. i 29
Evan D. Morrison, Alex Menzies, George Koliadis and Aditya K. Ghose

Conceptional Modeling and Analysis of Spatio-Temporal Processes in Biomolecular Systems 39
Andreas Schéfer and Mathias John

Conceptual Application Domain Modelling e 49
Bernhard Thalheim, Klaus-Dieter Schewe and Hui Ma

Conceptual Business Document Modeling using UN/CEFACT’s Core Components 59
Philipp Liegl

Contrasting Classification with Generalisation, 71
Thomas Kiihne

Extracting and Modeling the Semantic Information Content of Web Documents to Support Semantic
Document Retrieval 79
Shahrul Azman Noah, Lailatulgadri Zakaria and Arifah Che Alhadi

Extracting Conceptual Graphs from Japanese Documents for Software Requirements Modeling 87
Ryo Hasegawa, Motohiro Kitamura, Haruhiko Kaiya and Motoshi Saeki

Modelling Web-Oriented Architectures.ttt e et 97
Gunnar Thies and Gottfried Vossen

Multi-Level Domain Modeling with M-Objects and M-Relationships 107
Bernd Neumayr, Katharina Grin and Michael Schrefl

Reverse Engineering of XML Schemas to Conceptual Diagrams 117
Martin Necasky

Synthesis of Orchestrators from Service Choreographies 129
Stephen Mcllvenna, Marlon Dumas and Moe Thandar Wynn

Towards Accurate Conflict Detection in a VCS for Model Artifacts: A Comparison of Two Semanti-
cally Enhanced Approaches 139
Kerstin Altmanninger and Gabriele Kotsis

Author Index 147

vi

Preface

This volume contains the proceedings of the Sizth Asia-Pacific Conference on Conceptual Modelling
(APCCM 2009), held at the Museum of New Zealand Te Papa Tongarewa in Wellington, New Zealand
from January 20 to 23, 2009 as part of the Australasian Computer Science Week (ACSW 2009).

The APCCM series focuses on disseminating the results of innovative research in conceptual modelling
and related areas, and provides an annual forum for experts from all areas of computer science and infor-
mation systems with a common interest in the subject. The scope of APCCM 2009 includes areas such
as:

— Business, enterprise, process and services mod- Implementations of information systems;

elling; — Information and schema integration;
— Concepts, concept theories and ontologies; — Information customisation and user profiles;
— Conceptual modelling and user participation; — Information recognition and information mod-
— Conceptual modelling for decision support and elling;
expert systems; digital libraries; e-business, e- — Information retrieval, analysis, visualisation and
commerce and e-banking systems; health care prediction;
systems, knowledge management systems; mo- — Information systems design methodologies;
bile information systems; user interfaces; and — Knowledge discovery, knowledge representation
Web-based systems; and knowledge management;
— Conceptual modelling of semi-structured data — Methods for developing, validating and commu-
and XML; nicating conceptual models;
— Conceptual modelling of spatial, temporal and — Philosophical, mathematical and linguistic foun-
biological data; dations of conceptual models;
— Conceptual modelling quality; — Reuse, reverse engineering and reengineering;
— Conceptual models in management science; — Semantic Web; and
— Design patterns and object-oriented design; — Software engineering and tools for information
— Evolution and change in conceptual models; systems development.

The program committee has selected the contributed papers from 38 submissions. All submitted papers
have been refereed by at least two international experts, and have been discussed thoroughly. The twelve
papers judged best by the program committee members have been accepted and are included in this volume.

The program committee invited Dr. Ronald Fagin, to present a plenary keynote on Finite Model Theory
and its Origins. Dr. Fagin is the Manager of the Foundations of Computer Science group at the Computer
Science department of the IBM Almaden Research Centre in San Jose, California, USA. The committee
also invited Professor Roland Hausser from the University of Erlangen, Germany, and Professor Yasushi
Kiyoki from Keio University, Japan, to give invited talks. Professor Hausser’s talk was entitled Model-
ing Natural Language Communication in Database Semantics, and Professor Kiyoki’s talk was entitled A
Semantic Associative Computation Method for Automatic Decorative Multimedia Creation with “Kansei’
Information.

)

The program committee selected the paper Reverse Engineering of XML Schemas to Conceptual Di-
agrams by Martin Necasky for the APCCM 2009 Best Paper Award. The award includes a prize of NZ$
500.-; which has been sponsored by the School of Information Management, Victoria University of Welling-
ton, New Zealand. Warmest congratulations to the author.

We wish to thank all authors who submitted papers and all the conference participants for the fruit-
ful discussions. We are grateful to the members of the program committee and the additional reviewers
for their timely expertise in carefully reviewing the papers. We also like to acknowledge the excellent
work of Dagong Dong who programmed and supported the MuCoMS conference management system
(http://www.mucoms.org/). Finally, we wish to express our appreciation to the local organisers at the
Victoria University of Wellington for the wonderful days in Wellington.

Markus Kirchberg
Institute for Infocomm Research (I?R), A*STAR, Singapore

Sebastian Link
Victoria University of Wellington, New Zealand

APCCM 2009 Programme Chairs
January 2009

vii

Programme Committee

Chairs

Markus Kirchberg, Institute for Infocomm Research (I?R), A*STAR (Singapore)
Sebastian Link, Victoria University of Wellington (New Zealand)

Members

Boualem Benatallah, University of New South Wales (Australia)
Byron Koon Kau Choi, Hong Kong Baptist University (Hong Kong SAR, China)
Denise de Vries, Flinders University (Australia)

Gillian Dobbie, University of Auckland (New Zealand)

Aditya K. Ghose, University of Wollongong (Australia)

Angela Eck Soong Goh, Nanyang Technological University (Singapore)
Sven Hartmann, Clausthal University of Technology (Germany)
Annika Hinze, University of Waikato (New Zealand)

Yasushi Kiyoki, Keio University (Japan)

Dirk Labudde, Dresden University of Technology (Germany)

Chiang Lee, National Cheng-Kung University (Taiwan)

Qing Li, City University of Hong Kong, (Hong Kong SAR, China)
Jixue Liu, University of South Australia (Australia)

Pavle Mogin, Victoria University of Wellington (New Zealand)

James Noble, Victoria University of Wellington (New Zealand)

Sudha Ram, University of Arizona (USA)

Michael Rosemann, Queensland University of Technology (Australia)
Motoshi Saeki, Tokyo Institute of Technology (Japan)

Klaus-Dieter Schewe, Information Science Research Centre (New Zealand)
II-Yeol Song, Drexel University (USA)

Stefano Spaccapietra, EPFL (Switzerland)

Nigel Stanger, University of Otago (New Zealand)

Markus Stumptner, University of South Australia (Australia)
Bernhard Thalheim, Christian-Albrechts-University Kiel (Germany)
Yanchun Zhang, Victoria University (Australia)

Additional Reviewers

George Koliadis, University of Wollongong (Australia)

Thomas Kiihne, Victoria University of Wellington (New Zealand)

Duy Ngan Le, Nanyang Technological University (Singapore)

Ki Jung Lee, Drexel University (USA)

Evan Morrison, University of Wollongong (Australia)

Wee Siong Ng, Institute for Infocomm Research (I?R), A*STAR, (Singapore)
Rajesh Thiagarajan, University of South Australia (Australia)

Ornsiri Thonggoom, Drexel University (USA)

viii

Co-Chairs

Dr Alex Potanin
Professor John Hine

Venues

Dr David Pearce

Operations
Dr Peter Komisarczuk

Mrs Suzan Hall
Mr Craig Anslow

Finance and Program

Dr Stuart Marshall

Communications

Dr Ian Welch
Mr Craig Anslow

Events

Professor John Hine

Organising Committee

Welcome from the Organising Committee

We would like to welcome you to ACSW2009 hosted by Victoria University of Wellington, New Zealand.

Wellington is set on the edge of a stunning harbour and surrounded by rolling hills. The earliest name
for Wellington, from Maori legend, is Te Upoko o te Ika a Maui. In Maori it means the head of Maui’s
fish. Caught and pulled to the surface by the Polynesian navigator Maui, the fish became the North Island.
Wellington is the capital city of New Zealand and home to the seat of parliament. But this vibrant and
dynamic city also has many other capital claims including Culture capital, Creative capital and Events
capital. It is a compact, walkable city waiting to be explored. The conference venue is less than fifteen
minutes walk to accommodation, Courtenay Place with its wide range of bars, and the harbour with its
restaurants and activities such as sea kayaking. The conference venue itself is in the Museum of New
Zealand Te Papa Tongarewa, offering visitors a unique and authentic experience of this country’s treasures
and stories. Over five floors, you can explore the nation’s nature, art, history, and heritage - from the
shaping of its land to the spirit of its diverse peoples, from its unique wildlife to its distinctive art and
visual culture.

Victoria University of Wellington - Te Whare Wananga o te Upoko o te Ika a Maui - is over a century
old. Victoria College was founded through an Act of Parliament in 1897, the year of Queen Victoria’s
Diamond Jubilee celebrations, and named in her honour. Victoria is a thriving community of almost 25,000
people. Situated in the capital city across four campuses, Victoria can take advantage of connections and
values its relationships with iwi, business, government, the judiciary, public and private research organisa-
tions, cultural organisations and resources, other universities and tertiary providers and the international
community through the diplomatic corps. ACSW2009 coincides with the opening of the new School of En-
gineering and Computer Science as part of the Faculty of Engineering at Victoria University of Wellington
- combining a long history of research and teaching of the software engineering and network engineering
in the Computer Science department and computer system engineering and electronic engineering in the
Physics department. Professor John Hine, co-chairing ACSW2009, is the current Dean of Engineering and
the inaugural Head of School of Engineering and Computer Science.

ACSW2009 consists of the following conferences:

— Australasian Computer Science Conference (ACSC) (Chaired by Bernard Mans),

— Australasian Computing Education Conference (ACE) (Chaired by Margaret Hamilton and Tony
Clear),

— Australasian Database Conference (ADC) (Chaired by Athman Bouguettaya and Xuemin Lin),

— Australasian Symposium on Grid Computing and e-Research (AUSGRID) (Chaired by Wayne Kelly
and Paul Roe),

— Computing: The Australasian Theory Symposium (CATS) (Chaired by Prabhu Manyem and Rod
Downey),

— Asia-Pacific Conference on Conceptual Modelling (APCCM) (Chaired by Markus Kirchberg and Se-
bastian Link),

— Australasian Information Security Conference (AISC) (Chaired by Ljiljana Brankovic and Willy Susilo),

— Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by Jim
Warren),

— Australasian User Interface Conference (AUIC) (Chaired by Gerald Weber and Paul Calder),

— Australasian Computing Doctoral Consortium (ACDC) (Chaired by David Pearce and Vladimir Estivill-
Castro).

The nature of ACSW requires the co-operation of numerous people. We would like to thank all those
who have worked to ensure the success of ACSW2009 including the Organising Committee, the Conference
Chairs and Programme Committees, our sponsors, the keynote speakers and the delegates.

Dr Alex Potanin and Professor John Hine
ACSW2009 Co-Chairs

Victoria University of Wellington

January, 2009

CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2009 in Wellington. CORE, the peak body representing academic
computer science in Australia and New Zealand, is responsible for the annual ACSW series of meetings,
which are a unique opportunity for our community to network and to discuss research and topics of mutual
interest. The original component conferences — ACSC, ADC, and CATS, which formed the basis of ACSW
in the mid 1990s — now share the week with seven other events, which build on the diversity of the
Australasian CS community.

This year, we have chosen to feature a small number of plenary speakers chosen from across the disci-
pline, Ronald Fagin, Tan Foster, Mark Guzdial, and Andy Hopper. I thank them for their contributions to
ACSW’09.The efforts of the conference chairs and their program committees have led to strong programs
in all the conferences — again, thanks. And thanks are particularly due to Alex Potanin, John Hine, and
their colleagues for organising what promises to be a memorable ACSW.

In Australia, 2008 has been a busy year for academia, with the incoming Labor government instituting
major reviews in areas such as the higher education sector, research funding, postgraduate study, and
national curricula. However, while the reviews have exposed severe shortcomings in the funding of higher
education and research, they have not as yet been translated into definite action, and the sector as a whole
is shrinking. Although there is a widespread perception of a shortage of IT staff, and graduate salaries
remain strong, student interest in ICT continues to be low. Moreover, per-place funding for computer
science students has dropped relative to that of other physical and mathematical sciences. Several forums
and initiatives involving industry, government, and academia have attempted to address the issue of the
ongoing difficulties of attracting students to the discipline, but with little perceptible effect. New initiatives
that seek to address the issues of students and funding will be a CORE priority in 2009.

During 2008, CORE continued to work on journal and conference rankings, with much of the activity
driven by requests for information from the government. A key aim is now to maintain the rankings, which
are widely used overseas as well as in Australia, a challenging process that needs to balance competing
special interests as well as addressing the interests of the community as a whole. A new activity in 2008
was a review of computing curriculum, which is still ongoing, with the intention that a CORE curriculum
statement be used for accreditation of degrees in computer science, software engineering, and information
technology. ACSW’09 includes a forum on computing curriculum to discuss this process.

CORE’s existence is due to the support of the member departments in Australia and New Zealand, and
I thank them for their ongoing contributions, in commitment and in financial support. Finally, I am grateful
to all those who gave their time to CORE in 2008; in particular, I thank Jenny Edwards, Alan Fekete,
Tom Gedeon, Leon Sterling, Vanessa Teague, and the members of the executive and of the curriculum and
ranking committees.

Justin Zobel
President, CORE
January, 2009

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.
2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.

2008. Volume 30. Host and Venue - University of Wollongong, NSW.

2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.

2006. Volume 28. Host and Venue - University of Tasmania, TAS.

2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.

2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.

2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue
- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.

2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.

2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,
ACT. First running of AUIC.

1999. Volume 21. Host and Venue - University of Auckland, New Zealand.

1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and
Curtin University. Venue - Perth, WA.

1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.
ADC held with DASFAA (rather than ACSW) in 1997.

1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS
joins ACSW.

1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -
Glenelg, SA.

1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first
time separately in Sydney.

1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.

1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).

1991. Volume 13. Host and Venue - University of New South Wales, NSW.

1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information
Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.

1988. Volume 10. Host and Venue - University of Queensland, QLD.

1987. Volume 9. Host and Venue - Deakin University, VIC.

1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.

1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.

1984. Volume 6. Host and Venue - University of Adelaide, SA.

1983. Volume 5. Host and Venue - University of Sydney, NSW.

1982. Volume 4. Host and Venue - University of Western Australia, WA.

1981. Volume 3. Host and Venue - University of Queensland, QLD.

1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.

1979. Volume 1. Host and Venue - University of Tasmania, TAS.

1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACE. Australian/Australasian Computing Education Conference.

ACSAC. Asia-Pacific Computer Systems Architecture Conference (previously Australian Computer Architecture
Conference (ACAC).

ACSC. Australian/Australasian Computer Science Conference.

ACSW. Australian/Australasian Computer Science Week.

ADC. Australian/Australasian Database Conference.

AISW. Australasian Information Security Workshop.

APBC. Asia-Pacific Bioinformatics Conference.

APCCM. Asia-Pacific Conference on Conceptual Modelling.

AUIC. Australian/Australasian User Interface Conference.

AusGrid. Australasian Workshop on Grid Computing and e-Research.

CATS. Computing - The Australian/Australasian Theory Symposium.

HDKM. Australasian Workshop on Health Data and Knowledge Management.

HIKM. Australasian Workshop on Health Informatics and Knowledge Management (former HDKM).

Note that various name changes have occurred, most notably the change of the names of conferences to reflect a
wider geographical area.

xiii

ACSW and APCCM 2009 Sponsors

We wish to thank the following sponsors for their contribution towards this conference. For an up-to-date overview
of sponsors of ACSW 2009 and APCCM 2009, please see http://www.mcs.vuw.ac.nz/Events/ACSW2009/Sponsors.

CITYLINK

CityLink, New Zealand,
www.citylink.co.nz

The EEIELE)

)\ Computer

Society inc

New Zealand Computer Society,
WWW.NZCS.0rg.nz

TE WHARE WANANCA O TE DPOKSD O TE (KA A sAU0
i@B UNTVERSITY DF WELLINGTOMN

Victoria University of Wellington,
www.victoria.ac.nz

®

AUSTRALIAN
COMPUTER
SOCIETY

Australian Computer Society,
WWwWWw.acs.org.au

(tOmpuling
Rcscarch
& Education

CORE - Computing Research and Education,
www.core.edu.au

Xero

Xero,
WWW.Xero.com

Xiv

CrD
secu rity-assessment.com

Security Assessment, New Zealand,
www.security-assessment.com

catalyst /

IT LIMITED

Catalyst, New Zealand,
www.catalyst.net.nz

@

hellum

Helium, New Zealand,
www.heliumnz.co.nz

Institute for
Infocomm Research

A*STAR

Institute for Infocomm Research (I’R),
Agency for Science, Technology and Research
(A*STAR), Singapore
www.i2r.a-star.edu.sg

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

KEYNOTE

CRPIT Volume 96 - Conceptual Modelling 2009

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Finite Model Theory and its Origins

Ronald Fagin

IBM Almaden Research Center, Dept. K53/B2
650 Harry Road, San Jose, California 95120-6099, USA

Email: fagin@almaden.ibm.com

Extended Abstract

Finite model theory is a study of the logical proper-
ties of finite mathematical structures. This talk gives
an overview of how finite model theory arose, and of
some work that sprang from that. This includes:

1. Differences between the model theory of finite
structures and infinite structures. Most of the
classical theorems of logic fail for finite struc-
tures, which gives us a challenge to develop new
concepts and tools, appropriate for finite struc-
tures.

2. The relationship between finite model theory and
complexity theory. Surprisingly enough, it turns
out that in some cases, we can characterize com-
plexity classes (such as NP) in terms of logic,
without using any notion of machine, computa-
tion, or time.

3. Zero-one laws. There is a remarkable phe-
nomenon, which says that certain properties
(such as those expressible in first-order logic) are
either almost surely true or almost surely false.

4. Descriptive complexity. Here we consider how
complex a formula must be to express a given

property.

The goal of this talk is to introduce the audience
to the fascinating area of finite model theory.

Copyright (©2009, Australian Computer Society, Inc. This
paper appeared at the Sixth Asia-Pacific Conference on Con-
ceptual Modelling (APCCM 2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 96, Markus Kirchberg and
Sebastian Link, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

CRPIT Volume 96 - Conceptual Modelling 2009

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

INVITED PAPERS

CRPIT Volume 96 - Conceptual Modelling 2009

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

A Semantic Associative Computation Method
for Automatic Decorative-Multimedia Creation
with “Kansei” Information

Yasushi Kiyoki* and Xing Chen**
*Faculty of Environmental Information
Keio University
Fujisawa, Kanagawa 252-8520, Japan
**Department of Information & Computer Sciences,
Kanagawa Institute of Technology,
Atsugi, Kanagawa 243-0292, Japan

*kiyokie@sfc.keio.ac.jp, www.mdbl.sfc.keio.ac.jp
** cheneic.kanagawa-it.ac.jp

Abstract

In the design of multimedia systems, one of the important
issues is how to deal with “Kansei” of human beings. The
concept of “Kansei” in Japanese includes several meanings
on sensitive recognition, such as “impression,” “human
senses,” “feelings,” “sensitivity,” “psychological reaction”
and “physiological reaction.”

This paper presents a new concept of “automatic
decorative-multimedia creation” and a semantic
associative computation method. This method realizes
automatic main-media decoration with dynamic
sub-media data selection for representing main-media as
decorative multimedia. The aim of this method is to create
a new field of “automatic decorative-media art” with
“semantic associative computing.”

This paper defines an “automatic media decoration
model” with semantic spaces and media-decoration
functions. Automatic media decoration is realized by
applying the Mathematical Model of Meaning (MMM) to
a media-transmission space for computing semantic
correlations between main-media objects and sub-media.

The process of this dynamic media decoration method
consists of the following functions:

(1) Extraction of semantic ‘“Kansei” features of
“main-media object,” such as music, image and video.

(2) Mapping of the main-media object onto the
media-transmission space between main-media and
sub-media.

(3) Semantic associative computation of correlations
between the main-media object and the features of the
sub-media space by MMM, and creating a vector of
the main-media object with the features of the
sub-media space.

(4) Mapping of the vector of the main-media object to the
sub-media space, and semantic associative computing
between the main-media object and sub-media data.

LENT3

Copyright (¢)2009, Australian Computer Society, Inc. This paper
appeared at the Sixth Asia-Pacific Conference on Conceptual
Modelling (APCCM 2009), Wellington, New Zealand, January
2009. Conferences in Research and Practice in Information
Technology, Vol. 96. Markus Kirchberg and Sebastian Link, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

(5) Semantic ranking of sub-media objects as the result of
the semantic associative computation, and selects one
of the sub-media objects with high correlation values
to the target main-media object.

(6) Automatic rendering of the target main-media object
with the selected sub-media object for decorating the
main-media presentation.

This paper shows several significant applications of the
semantic associative computation method for “automatic
decorative-media creation.”

1 Introduction

In the field of multimedia systems, the concept of “Kansei”
is related to data definition and data retrieval with
“Kansei” information for multimedia data, such as images,
music and video. The important subject is to retrieve
images, music and stories dynamically according to the
user's impression given as “Kansei” information.

The field of “Kansei” information was originally
introduced as the word “aesthetics” by Baumgrarten in
1750. The aesthetics of Baumgrarten had been established
and succeeded by Kant with his ideological aesthetics [5].
In the research field of multimedia database systems, it is
becoming important to deal with “Kansei” information for
defining and extracting media data according to
impressions and senses of individual users. In the field of
“Kansei” database systems, the essential functions for
dealing with “Kansei” in database systems can be
summarized as follows:

(1) Defining “Kansei” information to media data
(metadata definition for media data).

(2) Defining “Kansei” information for user's requests
(metadata definition for user's requests (user's
keywords) with “Kansei” information).

(3) Computing semantic correlations between “Kansei”
information of media data and a user's request

(4) Adapting retrieval results according individual
variation and improving accuracy of the retrieval
results by applying a learning mechanism to metadata
of media data (learning mechanism for metadata).

There are several research projects to realize these
functions. In the design of the “Kansei” information for
media data, the important issues are how to define and

CRPIT Volume 96 - Conceptual Modelling 2009

represent the metadata of media data and how to search
media data dynamically, according to user's impression
and media data contents. Creation and manipulation
methods of metadata for media data have been
summarized in [5], [20].

As a semantic associative search method for
multimedia database systems dealing with “Kasei”
information, we have proposed the Mathematical Model of
Meaning (MMM) [10], [11], [13].

The MMM is a basic model for realizing a semantic
associative search method with context recognition
mechanisms for computing semantic distances and
correlations between different media data, information
resources and words. One of the important applications,
we have presented a semantic associative search system
for images [11], [14].

The important feature of this model is that the data
objects in databases are mapped into an orthogonal
semantic space and extracted by a semantic associative
search mechanism [11], [14]. This method realizes the
computational machinery for recognizing the meaning of a
keyword according to a context (context words) and
obtaining the related data objects to the keyword in the
given context.

The MMM is applied to a semantic image and music
search, as a fundamental framework for representing the
metadata and searching images and music. The main
feature of this model is that the semantic associative search
is performed unambiguously and dynamically in the
orthogonal semantic space. This space is created for
computing semantic equivalence or similarity between
user's impression and image's metadata items which
represent the features of image data.

We point out that context recognition is essentially
needed for multimedia information retrieval. The meaning
of information is determined by the relation between
contents and the context. The machinery for realizing
dynamic context recognition is essentially important for
multimedia information acquisition.

The advantages and original points of the MMM are as
follows:

(1) The semantic associative media search based on
semantic computation for words is realized by a
mathematical approach. This media search method
surpasses the search methods which use pattern matching
for associative search. Users can use their own words for
representing impression and data contents for media
retrieval, and do not need to know how the metadata of
media data of retrieval candidates are characterized in
databases.

(2) Dynamic context recognition is realized using a
mathematical foundation. The context recognition can be
used for obtaining multimedia information by giving the
user's impression and the contents of the information as a
context. A semantic space is created as a space for
representing various contexts which correspond to its
subspaces. A context is recognized by the computation for
selecting a subspace.

Several information retrieval methods, which use the
orthogonal space created by mathematical procedures like
SVD (Singular Value Decomposition), have been
proposed. The MMM is essentially different from those

methods using the SVD (e.g. the Latent Semantic Indexing
(LSI)) method [3]. The essential difference is that our
model provides the important function for semantic
projections which realizes the dynamic recognition of the
context. That is, the context-dependent interpretation is
dynamically performed by computing the distance
between different media data, information resources and
words. The context-dependency is realized by dynamically
selecting a subspace from the entire orthogonal semantic
space, according to a context. In MMM, the number of
phases of contexts is almost infinite (currently 2°** in the
general English word space and 2'® in the color-image
space, approximately). For semantic associative
computations of “Kansei” information in MMM, we have
constructed several actual semantic spaces, such as the
general English-word space in 2115 dimensions, the
color-image space in 183 dimensions, and music space in 8
dimensions in the current implementations.

We have applied this method to several multimedia
database applications, such as image and music database
search by impressionistic classification. We have
introduced these research results in [11], [14] and [15].
Through these studies, we have created a new meta-level
knowledge base environment by applying those methods
to data retrieval, data integration and data mining [12],
[16].

A learning mechanism is very important for database
systems dealing with “Kansei” information to adapt search
results according to individual variation and to improve
accuracy of the search results. Generally, multimedia
database systems dealing with “Kansei” information might
not always select accurate and appropriate media data
from databases, because the judgment of accuracy for the
search results is highly related to individual variation. In
the learning process, if inappropriate search results for a
request are extracted by the system, accurate data items
which must be the search results are specified as
suggestions. Then, the learning mechanism is applied to
the system to extract the appropriate retrieval results in
subsequent requests. We have designed several database
systems dealing with “Kansei” information for searching
and extracting media data according to the user's
impression and the image's contents. Those systems
provide learning mechanisms for supporting adaptability
to individual variations in “Kansei” [11], [14].

In this paper, we present a new concept of “automatic
decorative-media creation” and a semantic associative
computation method realizing automatic sub-media data
selection and main-media decoration for representing a
main-media object as decorative multimedia, as shown in
Figure 1.

The important features of this method are summarized
as follows:

(1) Main-media representation is automatically decorated
by sub-media data with the semantic associative
computation between a main-media object and
sub-media data. The “Kansei” information of the
main-media object is used as a context to compute
semantic association and selection to the sub-media
data in MMM.

(2) Each main-media object is mapped in the
media-specific semantic space corresponding to the

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

main-media, and then, it is mapped onto the related
sub-media space by using semantic associative
computation in MMM, through a media-transmission
space. Two semantic spaces and a media-transmission
space are used for computing semantic correlations
between different media data in our automatic
decorative-multimedia creation.

This method will lead to various applications for
decorative-multimedia creation as follows:

(A-1) “decorative music rendering with images, according
to the impression and “Kansei” of the music,

(A-2) “decorative video rendering with color visualization
according to impression transition of a video story”,

(A-3) “decorative text (novel) representation with the
appropriate fonts, according to the impression of a
story.

(A-4)“decorative image presentation with music
according to the impression and “Kansei” of the
image,

(A-5) “automatic decoration of a room with appropriate
room lighting, according to the situation and context
of the room,

(A-6) “automatic Web-page decoration with appropriate
fonts and colors according to the impression of the
page content.

In this paper we show several significant applications of
the semantic associative computation method for
“automatic decorative-media creation” related to (A-1) and
(A-2).

-l

Decorative multimedia-data >

Automatic decorative
multimedia creation engine

1 Sub-media space databases for
Semantic associative search decoration
engine in MMM [(font, color, background music,

/ age, presentation layout, etc.

Automatically
extracting the
metadata of <
image data

Automatically
extracting the

metadata of
music data

'l\\//|

Automatically
extracting the
metadata of
document data

Extracting
images from
video data

Detecting media

Main-media data

(- O

Figure 1: The overview of automatic
decorative-multimedia creation

2 The Semantic Associative Search Method

In this section, the outline of the Mathematical Model of
Meaning (MMM) is briefly reviewed. This model has been
presented in [10], [11] and [13] in detail.

In the Mathematical Model of Meaning, an orthogonal
semantic space is created for realizing the semantic
associative search. Retrieval candidates and queries are
mapped onto the semantic space. The semantic associative
search is performed by calculating correlations of the
retrieval candidates and queries on the semantic space.

2.1

To create the semantic space, a dictionary is selected and
utilized. We refer to the basic words that are used to
explain all the vocabulary entries in the dictionary as
features [1]. For example, in a dictionary, an entry term
“beautiful” is explained by the features “good,” “sort,”
“beautiful” etc. as shown in Figure 2.

Creation of the semantic space

beautiful [a.] good of its sort :

beautiful good sort beautiful
small [a.] opp.-greatin size, degree etc. :
small -great size degree small
data matrix (LD)
M reat_good size sort ... woodland
- 0 1 0 o 1 0 1 0
beautiful
small 0o .. o0 1 4 0 1 0 . o0
(LD)

«Items: Basic words in Longman Dictionary of Contemporary English (LD) (2115words)

Figure 2: The matrix M for semantic space
creation in MMM (The matrix is constructed
based on a dictionary.)

When m terms are given as the vocabulary entries in the
dictionary and » features are utilized to explain all these
terms, an m by n matrix M is constructed for the space
creation. Each term in the matrix M is characterized by the
n features.

For example, the term “beautiful” is characterized by
the features “good,” “sort,” “beautiful,” etc. When a
feature, for example, “good,” is used for explaining the
term “small,” the value of the entity at the row of
“beautiful” and the column “good” is set to “1” as shown
in Figure 2.

In the case of “small,” for example, in Figure 2, the
term is characterized by the features “great,” “size,”
“degree,” etc. When a feature, for example, “degree,” is
used for explaining the term “small,” the value of the
entity at the row of “small” and the column “degree” is set
to “1”. If a feature is used as the negative meaning, for
example, the feature “great,” the column corresponding to
this feature is set to the value “-1.” If features are not used
to explain terms, the columns corresponding to those
features are set to “0.” As the features “ability” and
“beautiful” are not used to explain the term “small,” the
characterized value of these two features is “0.”

By using this matrix M, the orthogonal space is created
as the semantic space based on a mathematical method.

2.2 An overview of the Mathematical Model of
Meaning

In the Mathematical Model of Meaning, an orthogonal
semantic space is created for semantic associative search.
Retrieval candidates and queries are mapped onto the
semantic space. The semantic associative search is
performed by calculating the correlation of the retrieval
candidates and the queries on the semantic space in the
following steps:

(1) A context represented as a set of impression words is

given by a user, as shown in Figure 3 (a)..

CRPIT Volume 96 - Conceptual Modelling 2009

(2) A subspace is selected according to the given context
as shown in Figure 3 (b).

(3) Each information resource is mapped onto the
subspace and the norm of Al is calculated as the
correlation value between the context and the
information resource, as shown in Figure 3 (c).

congextl
~.

Ay
the correlation of Al for
given contextl=(calm,silent)

(a)

Semant

ems Semantk
subspa

subspa

Ay
the correlation of Al for
given contextl=(calm,silent)

q
the correlation of Al for
given contextl=(calm,silent)

(b) (©)

Figure 3: Semantic associative search in MMM

In MMM, the semantic interpretation is performed as
projections of the semantic space dynamically, according
to contexts, as shown in Figure 4.

Subspacel @

. Queryl 4
Semantic Space ¢ neext

q (viewpoint)

"o

q, ¢ Query2
Context2

9@ N Subspace2 q

Figure 4: Semantic interpretation according to
contexts in MMM

2.3 Metadata structures in MMM

In the MMM, an orthogonal semantic space is defined and
information resources are mapped onto the space for
computing semantic correlations between associated
information resources according to various contexts.

To compute semantic correlations, context words that
represent the user's impression and data contents are given
as a context. According to these context words, a
“semantic subspace” is selected dynamically. Then, the
most related information resource to the context is
extracted by computing semantic correlations in the
selected semantic subspace.

Metadata items are classified into three different kinds.
The first kind of metadata items is used for the creation of
the orthogonal semantic space, which is used as a search
space for semantic associative search. These data items are
referred to as “data-item for space creation.”

The second kind of metadata items is used as the
metadata items of the information resources, which are the
candidates for semantic associative search. These

metadata items are referred to as “metadata for
information resources.”

The third kind of metadata items is used as context
words, which represent user's impression and data contents
in semantic associative search. These metadata items are
referred to as “metadata for contexts.”

The metadata structures in the MMM are summarized

as follows:

(1) Creation of the semantic space:

To provide the function of semantic associative search,
basic information on m data items ("data-items for space
creation") is given in the form of a matrix. Each data item
is provided as fragmentary metadata which are
independently represented one another. No relationship
between data items is needed to be described. The
information of each data item is represented by n features
as n-dimensional vector. The m basic data items are given
in the form of an m by n matrix M. For given m basic data
items, each data item is characterized by n features. Then,
each column of the matrix is normalized by the 2-norm in
order to create the matrix M.

The eigenvalue decomposition of MM is computed.

o

MM =0 v o', 0<v<n.

The orthogonal matrix Q is defined by
0=(q1-92-9,)" -

We call the eigenvectors "semantic elements." Here, all
the eigenvalues are real and all the eigenvectors of
{91.95,+,q,} are mutually orthogonal because the

matrix MM is symmetric.

The orthogonal semantic space MDS is created as a
linear space generated by linear combinations of
{qlan’”'iqv} . We note that {qlan"”’CIV} is an
orthogonal basis of MDS.

The number of the semantic elements is 2", and
accordingly it implies that 2" different phases of meaning
can be expressed by this formulation.

(In this space, a set of all the projections from the
orthogonal semantic space to the invariant subspaces
(eigen spaces) is defined. Each subspace represents a
phase of meaning, and it corresponds to a context.)

(2) Representation of information resources and contexts
in n-dimensional vectors:

Each of the information resources is represented in the
n-dimensional vector whose elements correspond to n
features used in (1). These vectors are used as "metadata
for information resources". The information resources are
the candidates for semantic associate search in this model.
Furthermore, each of context words, which are used to
represent the user's impression and data contents in
semantic associative search, is also represented in the
n-dimensional vector. These vectors are used as "metadata
for contexts."

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

2.4 The outline of semantic associative search in
MMM
The outline of the MMM is expressed as follows:

(1) A set of m words is given, and each word is
characterized by n features. That is, an m by n matrix
M is given as the data matrix.

(2) The correlation matrix MM with respect to the n
features is constructed from the matrix M. Then, the
eigenvalue decomposition of the correlation matrix is
computed and the eigenvectors are normalized. The
orthogonal semantic space MDS is created as the span
of the eigenvectors which correspond to nonzero
eigenvalues.

(3) Context words are characterized by using the n
features and representing them as n-dimensional
vectors.

(4) The context words are mapped into the orthogonal
semantic space by computing the Fourier expansion
for the n-dimensional vectors.

(5) A set of all the projections from the orthogonal
semantic space to the invariant subspaces (eigen
spaces) is defined. Each subspace represents a phase
of meaning, and it corresponds to a context or
situation.

(6) A subspace of the orthogonal semantic space is
selected according to the user's impression expressed
in n-dimensional vectors as context words, which are
given as a context represented by a sequence of
words.

(7) The most correlated information resources to the
given context are extracted in the selected subspace
by applying the metric defined in the semantic space.

3 Semantic Associative Search for Image
Media

The MMM can be used to realize a semantic associative

search system for image media.

The basic function of semantic associative search is
provided for context dependent interpretation. This
function performs the selection of the semantic subspace
from the semantic space. When a sequence s’ of context
words for determining a context is given to the system, the
selection of the semantic subspace is performed. This
selection corresponds to the recognition of the context,
which is defined by the given context words. The selected
semantic subspace corresponds to a given context. The
metadata item for the most correlated image to the context
in the selected semantic subspace is extracted from the
specified image data item set. Semantic associative search
is performed by the following procedure:

1. When a sequence of the context words for
determining a context (the user’s impression and the
image’s contents) are given, the Fourier expansion is
computed for each context word, and the Fourier
coefficients of each context word with respect to each
semantic element are obtained. This corresponds to
seeking the correlation between each context word
and each semantic element.

2. The values of the Fourier coefficients for each
semantic element are summed up to find the

correlation between the given context words and each
semantic element.

3. If the sum obtained in the step 2 in terms of each
semantic element is greater than a given threshold, the
semantic element is employed to form the semantic
subspace. This corresponds to recognizing the context
which is determined by the given context words.

4. By using the norm calculation as a metric in the
semantic subspace, the metadata item for the image
with the maximum norm is selected among the
candidate metadata items for images in the selected
semantic subspace. This corresponds to finding the
image with the greatest association to the given
context.

4 An automatic media-decoration model

In this section, we present a new concept of “automatic
decorative-multimedia creation” by applying the MMM to
automatic sub-media data selection for decorating a
main-media object. To realize this concept, we define an
“automatic media decoration model” with semantic spaces
and media-decoration functions. The overview of this
model is shown in Figure 5.

4.1 Basic semantic spaces and a

media-transmission space

We define two semantic spaces and a media-transmission
space (matrix) for computing semantic correlations
between main-media objects and sub-media.

(1) M-Space (Main-media semantic space)
Each main-media object or each impression word

expressing impression of a main-media object is defined as
an M-Space vector with m main-media-features.
(2) S-Space (Sub-media semantic space):

Each sub-media object or each impression word
expressing impressions in a sub-media object is defined as
an S-Space vector with n sub-media-features. In this space,
various sub-media objects are mapped in advance, as
retrieval candidates, in S-Space for decorating the
main-media object.

(3) MS-Space (Main-media and Sub-media transmission
space):

Each of m features of Main-media is expressed in the n
features of Sub-media in the MS space. The MS-space is
defined as a (m, n) matrix for transmitting an M-space
vector into its corresponding S-space vector.

4.2 Basic functions for media decoration:

In this method, basic functions for decoration of a
main-media object with sub-media are defined:,

Step-1: maps a target main-media object onto the M-Space
as the M-space vector for the decoration target, by
expressing the object as an m-dimensional vector with the
m features.

Step-2: computes correlation values between the M-space
vector and each sub-media feature in the MS-Space

(Main-media and Sub-media transmission space) by the
Mathematical Model of Meaning (MMM), and creates an

11

CRPIT Volume 96 - Conceptual Modelling 2009

S-Space vector (target-S-Space vector) as the transmitted
vector of the main-media object.

Step-3: maps the target S-Space vector expressing the
main-media object onto the S-Space.

Step-4: executes the semantic associative search processes
by the MMM between the target S-Space vector and the
candidate sub-media objects which have been mapped
onto the S-Space in advance. (In MMM, the target S-Space
vector is mapped as a context vector in S-Space, and
candidate sub-media objects are mapped as retrieval
candidates in S-Space.)

Step-5: outputs semantic ranking of sub-media objects as
the result of our semantic associative search processes, and
selects one of the sub-media objects with high correlation
values to the target main-media object.

Step-6: renders the target main-media object with the
selected sub-media object for decorating the main-media
presentation with the selected sub-media data.

Media-transmission Space

for mapping the main-media Sub-media

object to the sub-media . object
space : definition

Main-media
object
definition

Mapping the Mapping the
main-media main-media
object (mm-i) object (mm-i)

to the to the sub-
media
semantic
space

transmission
matrix

Sub-media Semantic Space for
mapping sub-media objects
(sm-+j) and a transmitted main-
media object

Main-media Semantic Space
for mapping a target main-
media object (mm-i)

Figure 5: Automatic decorative-multimedia creation
by the semantic associative computation method

5. Applications of “automatic decorative

multimedia creation”

In this section, we present several applications of the
automatic decorative-multimedia creation by our semantic
associative computation method.

(1) Music decoration with images:

This application is automatic “music decoration with
images,” as shown in Figures 6 and 7. This decoration
process consists of 6 steps.

Step-1: generates the metadata (in a form of a vector in the
“music semantic space”) of music-media object, as a
main-media object.

Our research project has proposed several automatic
impression metadata generation methods for music [8],
[21]. In this step, we use the metadata generation method
to create impression metadata of music data [8]. This
method applies the music psychology by K. Hevner [6],
[7] to automatic extraction of music impression.

Step-2: generates the metadata (in a form of a vector in the
“image semantic space”) of each image-media object in
the image collection, as the collection of sub-media object.

Our research project has also proposed several
automatic impression metadata generation methods for

images. In this step, we apply one of the metadata
generation methods to create metadata of image data [11],
[14].

Step-3: maps the metadata of the music-media object to
the metadata in the image-media space, by using the
MS-space (“Main-media and Sub-media transmission
space”).

In this step, we apply a main-media and sub-media
transformation space by using the relationships between
the features of music and those of images in colors, which
are created by artists and psychologists. This space
consists of the correlations between the impression words
of music and images.

Step-4: calculates semantic correlations between the
music-media object and image-media objects in the
“image semantic space.”

In this step, we apply the MMM to calculate the
impression correlation between music and images.

Step-5: outputs the semantic ranking of image-media
objects as the result of our semantic associative
computation process, and selects image-media objects
with high correlation values to the target music-media
object.

This step outputs the correlation values of image data in
ascending order.

Step-6: renders the music-media object with the selected
images as the music-media decorated with images.

This step is a rendering process for music decorated
with images.

vAg
=)5

lighting color ~ Eﬁ’ (suibm_f\‘/%eedia)

(Sub-Media)
ic. ’ 8?\:‘
frasrance

music
(Main-Media)
(Sub-Media)

» Main-Media
Object (music)

Main-Media object Result:

ovket - ENF VRV Vi
(Music) = - g s
I Calculating th semanticl I

Sub- W;rrel;}zms
Medi T
(mages | ™% T T . B
and coor LTI eeeree. 1]
colors)

Figure 6: Music decoration with images by automatic
decorative-multimedia creation

[Anna) [Tam the Walrus |

[Ask Me Why |

[Good Morning]|

—
Time

Figure 7: Decoration for music-collections (the Beatles
music collection) with images

(2) Color-based impression analysis for video and
decoration with “Kansei” information

Main media decorated by Sub-Media data

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

We have designed an experimental system for video
analysis in terms of “Kansei” information expressed by the
color-impression, as shown in Figure 8. This system

realizes a color-based impression analysis for video-media.

This system creates a story-line in impressions by
analysing colors in each frame composing a video stream
[19].

Analysls Matrix

s Captured HSV 130 color RN
images images histogram
Color Video
Color Scheme
°'°r Histogram| - | Frequency Color
Converter

[Color Scheme Welght Matrix],
2

Figure 8: Video analysis in colors for decorating video
with “Kansei” information

In this system, we have created the color-impression space
using 120 chromatic colors and 10 monochrome colors
defined in the “Theory of Colours” [4] and “Color Image
Scale” [17] based on the Munsell color system. We used
183 words, which are also defined as cognitive scales of
colors in the Color Image Scale, as impression words in
the process of construction of color-impression space,
shown in Figure 9. To generate a color histogram of each
frame composing video, we used 130 colors in Figure 10,
the same number of colors used in the color-impression
space. This system converts RGB values to HSV values
per pixel of each image, clusters them into the closest color
of 130 colors, and calculates the percentage of each color
to all pixels of the image [18]. The 183 color schemas,
which correspond to 183 impression word sets, are defined
as color-impression variations by using the 130 basic color
features, as shown in Figure 9. By correlation calculations
between 183 color schemas (183 impression word sets)
and 130 basic colors, this system extracts the
color-impression for each frame composing a video, and
creates a sequence of color-impressions of the video along
the timeline, as shown in Figures 11, 12, 13 and 14.

In the color-impression space used as the main-media
space, this system creates a sequence of color-impressions
of the video and applies it to decorate the video with
sub-media, such as music or images, by using the semantic
associative computation method.

130 Basic Colors

‘RIP || YRIP H YIP

|| GY/P || GP |

‘ RVp H YRIVp H YNp H GY/Np || G/Vp

‘ RiLgr || YRILgr || YiLgr || GYilgr | Gllgr

0 [E

Figure 10: Munsell 130 Basic Colors for extracting
color schemas in impressions

183 Color-Schemas

RV |RS |RB |RP|... [N95
sl [T 0 0 0 .. 0
g 2 04 0 0 0 .. 0
S0 w3 0 0 0 0 .. 0
o 9
csI83)00 0 06 0

Figure 9: Image-media features in 183 color schemas
(183 impression word sets) related to 130 color

variations

csl | cs2 | cs3 | CS,,
tl 0.2 0.4 0.2 0.1
- _t2 0.1 0.1 0.0 0.2
g 3 0.1 0.3 0.25 0.4
[¢]
t, 0.43 033 0.11 0.04

Figure 11: The video-media story expressed in 183 color
schemas (183 impression word sets) along the timeline

w2 MediaMatrix

.1255362690358922, masculine(cs175)=0.08038414849175349
, refreshing(cs60)=0.06461286544799806, intellectual(cs174)=0.05583151792
868589, youthful(cs179)=0.04221666124131944

0ung(cs96)=0.12170432270437048, masculine(cs175)=0.0779489587854456
2, refreshing(cs60)=0.06376870473225912, intellectual(cs174)=0.0542397132
2866586, open(cs24)=0.04564717610677082

oung(cs96)=0.1474138342815894
5, intellectual(cs174)=0.068082956|
254069, rational(cs53)=0.04589224

supple(cs70)=0.046368005952380:

Figure 12: Video analysis for expressing 183 color
schemas (183 impression word sets) in each frame
composing the video

m: MediaMatrix

PE

supple(cs?o)

supple(cs70) smart(cs91)
] .

dry(cs35) masculine(cs175) modern(cs162)

noble(cs134) young(cs96) smart(cs91)
u

neat(cs59) refreshing(cs60)

Figure 13: Video analysis with 183 color schemas (183
impression word sets) in each scene

13

CRPIT Volume 96 - Conceptual Modelling 2009

m: MediaMatrix

e About

Matrix Detall ~Story Histogram Impre:

14 15 16 17 18 19 20 21

& Japanese(cs180) - Western(cs172) 4 agreeable_to(cs138) — amiable(cs132) = aqueous(cs73) + aromatic(cs52)
assiduous(es113) + august(cs121) - authoritative(cs45) - bitter(cs130) & bold(cs107) -+ bright(cs142) - caim(cs19)
-+~ chic(csB6) = classic(cs57) ¥ clean(cs93) = clean_and_fresh(cs154) » clear(csd3)
cool(cs182) 4 crystalling(cs41) -+ cultured(cs150) = dauntiess(cs92)
dignified(cs25) -+ dreamy(cs161) = dry(cs35)
elegant(cs 13) = enjoyable(cs110) -+ exact(cs115) = familiar(cs126) fashionable(cs75)
fleet(csB3) = forceful(cs137) & formal(cs146) 4 fruitfullcs111) - genteel(cs69) = gentie(cs21)

complex(cs147)
<+ composed(cs176)
-+ delicate(cs101) = delicious(cs15) - dewy(es133)

conservative(cs153)

earmest(cs156)
elaborate(cs56)

-+ festive(cs22)

gentle_and_elegant(cs23) = graceful(cs167) - heavy_and_deep(cs76) - intellectual(cs174) —+ intense(cs40)
lively(cs28) -+ lofty(cs50)
-+ merry(cs170) -+ metallic(cs160) ~+ mild(cs155) & modern(cs162) - modest(cs17)

= interesting(cs78) -+ light(es114) majestic(cs104) -+ masculine(cs 175) = mellow(cs 14)

mysterious(cs148) -+ natural(csé4)
neat(cs69) nimble(cs8s)
old-fashioned(cs42)

- polished(cs103) - precious(cs39) + precise(cs99)

noble(cs134)
open(cs24) -+ pastoral(cs119)

noble_and_dignified(csd4) - noble_and_elegant(cs48) < nostalgic(cs128)
placid(cs20)

progressive (¢s85) = proper(cs84) -+ provincial(cs143)

quiet(cs63)

refined(cs@1) -# refreshing(csB0) -#-restful(cs135) - romantic(cs177)

plain(cs36) - pleasant(cs158)

-+ provocative(cs62) < pure(cs78) -=-pure_and_elegant(cs100) <+ pure_and_simple(cs97)
-+ quiet_and_sophisticated(cs7 1)
-+ salty(cs61) = sedate(cs67) -+ serious(cs123)
smart(cs91)

rational(cs53)
sharp(cs74) + simple(csgd)
smooth(cs 129) -+ sober(cs72) - solemn(cs18)

simple_and_appealing(cs106)
sound(cs47)
subtle(cs 144) ~ subtle_and_mysterious(cs168) & supple(cs70)

simple_quiet_elegant(cs32)
steady(es7) — stylish(cs)
-+ tasteful(cs3) + tender(cs163)

-+ young(cs9B) - youthful{cs179)

sublime(cs86)

tropical(cs125) = urbane(cs122) ~+ vigorous(cs1) —vivid_and_intense(cs102)

Figure 14: Video-media decoration with
impression-transition in color schemas (183 impression
word sets) along the timeline

(3) Music-media decoration with tonality-transition in
colors

The experimental system realizes music-media
decoration with colors along tonality-transition in music.
This system renders music with the visualization of
tonality-transition in colors [9]. Figure 15 shows a
music-media decoration with tonality-transition in colors
for 15 music compositions, J.S.Bach’s Invention
No.1—No.15. The system analyses a MIDI file as a data
source for each music composition and generates music
features extracted by tonality-analysis, musical segment
analysis and tempo analysis. For analysing tonality
transition of music, we have applied the
Krumhansl-Schmuckler algorithm to MIDI files as a
tonality-finding method. Figure 16 represents the tonality
transition of music “Sarabande” in colors. Those music
features of tonality are automatically extracted and
mapped to the music-media space along the timeline. Then,
our semantic associative computation method is applied to
music rendering for decorating it with colors.

14

Figure 15: Music-media_decoration for J.S.Bach’s
Invention No.1—No.15 with tonality-transition in
colors along the timeline

175
1.50
1.25
1.00
075
0.50

Score

0.25

0.00
-0.25
-0.50
-0.75

-1.00

125

25 5.0 75 10.0 125 15.0 17.5 200 225 25.0 275
Time

= A = Ab + Abm Am =B - Bb
F < F# = F#m « Fm 4G - Gm

Bbm + Bm = C =Cm = D

Db = Dbm = Dm = E = Eb = Ebm = Em

Figure 16: Music-media decoration with tonality
transition of “Sarabande” in colors along the timeline

5 Conclusion

In this paper, we have presented a new concept of
“automatic decorative-multimedia creation” and a
semantic associative computation method. This method
realizes automatic main-media decoration with sub-media
data selection for representing a main-media object as
decorative multimedia.

We have reviewed the Mathematical Model of Meaning
(MMM) applied to automatic decorative-multimedia
creation as a basic model for semantic associative
computing for multimedia creation. This model is used as
a basic computational model for computing semantic
correlations between different media data with context
computation mechanisms.

This paper has also defined an ‘“automatic media
decoration model” with semantic spaces and
media-decoration functions. This model defines several
functions for realizing automatic decorative-multimedia
creation by semantic associative computations for images,
music and video.

We have implemented several experimental
decorative-multimedia creation systems for music, images
and video media to clarify the feasibility of “automatic
decorative-multimedia creation” and a semantic
associative computation method. As our future work, we
realize automatic decorative-multimedia creation
environments for various application fields. We also create
an on-the-fly automatic decorative-multimedia creation
system for dynamic video representation decorated with
various media data.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Acknowledgments

We would like to thank Prof. Takashi Kitagawa
(University of Tsukuba) as a co-designer of the
Mathematical Model of Meaning (MMM). We would also
like to thank our MDBL project members in Keio
University for valuable experiments in multimedia
database systems.

6 References

[1] “Longman Dictionary of Contemporary English”,
Prentice Hall College Div, 2006.

[2] Chen, X. and Kiyoki, Y., “4 Visual and Semantic
Image Retrieval Method Based on Similarity
Computing with Query-Context Recognition,”
Information Modelling and Knowledge Bases, Vol.
XVIIIL, pp.245-252, May 2007.

[3] Deerwester, S., Dumais, S. T., Landauer, T. K.,
Furnas, G. W. and Harshman, R. A., “Indexing by
latent semantic analysis,” Journal of the American

Society for Information Science, Vol.41, No.6,
pp-391-407, 1990.

[4] Goethe, W. J., “Theory of Colours,” trans. Charles
Lock Eastlake, Cambridge, Massachusetts: The M.L.T.
Press, 1982.

[5] Harada, A. (eds.), “Report of modeling the evaluation
structure of KANSEI”, Univ. of Tsukuba, 1997.

[6] Hevner, K., “Expression in Music: A Discussion of
Experimental Studies and Theories,” Psychological
Review, Vol.42, pp.186-204, 1935.

[71 Hevner, K., “Experimental Studies of the Elements of
Expression in Music,” American Journal of
Psychology, Vol.48, pp.246-268, 1936.

[8] Ljichi, A. and Kiyoki, Y., “4 Kansei Metadata
Generation Method for Music Data Dealing with
Dramatic Interpretation,” Information Modelling and
Knowledge Bases, Vol.XVI, I0S Press, pp. 170--182,
(May, 2005).

[9] Imai, S., Kurabayashi, S. and Kiyoki, Y., “4 Music
Retrieval System Supporting Intuitive Visualization by
the Color Sense of Tonality,” Proceedings of the 24th
IASTED International Multi-Conference
DATABASES AND APPLICATIONS (DBA2006),
pp-153-159, Feburary 2006.

[10]Kitagawa, T. and Kiyoki, Y., “A mathematical model
of meaning and its application to multidatabase
systems,” Proc. 3rd IEEE International Workshop on
Research Issues on Data Engineering: Interoperability
in Multidatabase Systems, pp.130-135, April 1993.

[11]Kiyoki, Y., Kitagawa, T. and Hayama, T., “4
metadatabase system for semantic image search by a
mathematical model of meaning,” ACM SIGMOD
Record, Vol.23, No. 4, pp.34-41, Dec. 1994.

[12]Kiyoki, Y. and Kitagawa, T., “A4 semantic associative
search method for knowledge acquisition,”
Information Modelling and Knowledge Bases (I0S
Press), Vol. VI, pp.121-130, 1995.

[13]Kiyoki, Y., Kitagawa, T. and Hitomi, Y., “4
fundamental framework for realizing semantic

interoperability in a multidatabase environment,”
International Journal of Integrated Computer-Aided
Engineering, Vol.2, No.l(Special Issue on
Multidatabase and Interoperable Systems), pp.3-20,
John Wiley & Sons, Jan. 1995.

[14]Kiyoki, Y., Kitagawa,T. and Hayama, T., “4
Metadatabase System for Semantic Image Search by a
Mathematical Model of Meaning,” Multimedia Data
Management -- using metadata to integrate and apply
digital media --," McGrawHill(book), A. Sheth and W.
Klas(editors), Chapter 7, March 1998.

[15]Kiyoki, Y., “A Semantic Associative Search Method
Jor WWW Information Resources,” Proceedings of
IST International Conference on Web Information
Systems Engineering, (invited paper), 2000.

[16]Kiyoki,Y. and Ishihara, S., “A Semantic Search Space
Integration Method for Meta-level Knowledge
Acquisition from Heterogeneous Databases,”
Information Modelling and Knowledge Bases
(IOS Press), Vol. 14, pp.86-103, May 2002.

[17]Kobayashi, S., “Color Image Scale” (The Nippon
Color & Design Research Institute ed., translated by
Louella Matsunaga, Kodansha International, 1992).

[18] Sasaki, S., Itabashi, Y., Kiyoki, Y. and Chen, X., “An
Image-Query Creation Method for Representing
Impression by Color-based Combination of Multiple
Images,” Proceedings of the 18th European-Japanese
Conference on Information Modelling and
Knowledge Bases, pp. 105-112, June 2008.

[19]Sato, Y. and Kiyoki, Y., “A semantic associative
search method for media data with a story,”
Proceedings of the 18th IASTED International
Conference on Applied Informatics, pp., Feb., 2000.

[20]Sheth, A. and Klas, W, (eds.) “Multimedia Data
Management - Using Metadata to Integrate and Apply
Digital Media,” MacGraw-hill, March 1998.

[21] Yara, F, Yoshida, N., Sasaki, S. and Kiyoki, Y., “4
Continuous Media Data Rendering System for
Visualizing Psychological Impression-Transition,”
The 10th TASTED International Conference on
Internet and Multimedia Systems and Applications
(IMSA2006), pp. 32 - 40, Aug. 2006.

15

CRPIT Volume 96 - Conceptual Modelling 2009

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Modeling Natural Language Communication
in Database Semantics

Roland Hausser

1

L Abteilung Computerlinguistik
Universitiat Erlangen-Niirnberg (CLUE)
Bismarckstr. 6 & 12, D-91054 Erlangen, Germany
Email: rrh@linguistik.uni-erlangen.de

Abstract

Database Semantics (DBS) is a computational model
of how communicating with natural language works.
Defined at a level of abstraction which may be applied
to natural and artificial agents alike, such a model is a
precondition for achieving free human-machine com-
munication in natural language, and thus has great
potential for a wide range of practical applications.
The basic functionality of DBS is a cognitive agent’s
turn taking between the speaker mode (mapping con-
tent stored in memory into language surfaces) and
the hearer mode (mapping surfaces into content for
storage in memory). DBS is defined in terms of (i)
the data structure of flat feature structures, (ii) the
algorithm of time-linear LA-grammar, and (iii) the
database schema of a classic network database.

Keywords: language production; language inter-
pretation; turn taking; data structure; algorithm;
database schema; parts of speech; semantic rela-
tions; functor-argument structure; coordination; el-
ementary, phrasal, and clausal level; hearer mode;
speaker mode; proplets; LA-grammar; Word Bank

1 Linguistic Background

The analysis of natural languages and of natural lan-
guage communication has long been an interdisci-
plinary enterprise involving linguistics, philosophy,
psychology, physiology, neurology, sociology, math-
ematics, and computer science. As a consequence,
we are faced today with a vast patchwork of differ-
ent theories, topics, and empirical analyses. Rather
than attempting an overview of current work, which
by necessity would have to be selective, let us begin
with those aspects of traditional' language analysis
which are (i) uncontroversial and (ii) important for
understanding the remainder of this paper.

1.1 Compositionality

The sentences of natural language are built from word
forms. For example, the sentence Julia knows John.
is built from the word forms Julia, knows, John and
the full stop. Each word form has a surface and a
lexical meaning.? By ordering word form surfaces of

Copyright (©2009, Australian Computer Society, Inc. This
paper appeared at the Sixth Asia-Pacific Conference on Con-
ceptual Modelling (APCCM 2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 96, Markus Kirchberg and
Sebastian Link, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

'For a representative contemporary example see Benner 2008.

2For example, the meaning of the English surface tree has the
surface arbre in French and Baum in German. For a detailed analysis

a given natural language into a grammatically well-
formed sequence, the associated lexical meanings are
combined into a sentence meaning.

Lexical meanings are analyzed in the linguistic
field of lexical semantics, while the derivation of sen-
tence meanings is analyzed in compositional seman-
tics. The relation between lexical semantics and com-
positional semantics is described by the Fregean Prin-
ciple, named after Gottlob Frege (1848-1925):

1.1.1 FREGEAN PRINCIPLE

The meaning of a complex expression is a
function of the meaning of its parts and their
mode of composition.

For example, the two sentences

The dog bites the man.
The man bites the dog.

consist of exactly the same parts (English word form

surfaces), but differ in their word order (mode of com-

position) — which is one reason why two sentences may

turn out to have different sentence meanings.
Furthermore, the two sentences

The dog is chasing a cat.
The dog is chasing a squirrel.

have the same word order (mode of composition), but
differ in one of their parts (namely the respective last
word form) — which is the other reason why two sen-
tences may turn out to have different sentence mean-
ings.?

1.2 Parts of Speech

The words of a natural language are divided into con-
tent words, for example, table, write, or beautiful, and
function words, for example, the, and, or before. The
number of content words in a natural language is
several ten thousands, while the number of function
words is only a few hundred. However, while a func-
tion word like the is used very often, comprising 6%
of the running word forms in a corpus, a content word
like table has a comparatively much lower frequency.

The most basic way of classifying a word is accord-
ing to its part of speech. The basic parts of speech are
the nouns, the verbs and the adjectives.*

Consider the following examples:

of meaning in an agent-oriented approach see FoCL’99, Sects. 3.2—
3.4, 4.2,4.3, 6.1, 6.2, 19.1; NLC’06, Sects. 4.2-4.4, 5.4-5.6.

3In order for the Fregean Principle to hold it is important to
distinguish (i) between the literal meaning of language expressions
(meaning;) and the speaker meaning of utterances (meanings) and
(ii) between the unanalyzed and the analyzed surface. As shown
in FoCL’99, Sects. 4.2-4.5, the Fregean Principle applies solely to
the meaning; of analyzed surfaces.

4 Additional parts of speech used in the classic grammar of Latin
are adverb, pronoun, preposition, conjunction, and interjection.

17

CRPIT Volume 96 - Conceptual Modelling 2009
1.2.1 PARTS OF SPEECH AT ELEMENTARY LEVEL

1. noun: Examples are Julia (proper name) and ta-
ble (common noun).

2. wverb: Examples are sleep (one-place), write (two-
place), and give (three-place).

3. adjective: Examples are brief (adnominal) and
briefly (adverbial).

In the linguistic school of structuralism, the parts
of speech are justified by means of substitution and
movement tests.® For example, Julia and John have
the same part of speech because substituting John for
Julia in the sentence Julia slept briefly. results in an-
other well-formed sentence with a similar meaning. In
contrast, substituting Julia with wrote would result in
an ungrammatical expression. However, substituting
wrote in John wrote a letter. with typed renders an-
other well-formed sentence, indicating that wrote and
typed are of the same part of speech.

In addition to the classification of a word in terms
of its part of speech, there is the distinction between
the different word forms of a word. For example,
book, book's, books, and books' are different forms
of the noun book. Similarly, learn, learns, learned, and
learning are different forms of the verb learn. And
quick, quickly, quicker, and quickest are different forms
of the adjective quick. Strictly speaking, sentences,
texts, and dialogues of natural language consist of
word forms rather than words.®

Forms of elementary content and function words
may be combined into complex parts of speech at the
phrasal and the clausal level:

1.2.2 PARTS OF SPEECH AT THE PHRASAL LEVEL

1. moun: An example is the pretty young girl, which
consists of a determiner (function word), two ele-
mentary adjectives, and an elementary noun, the
latter being content words.

2. verb: An example is could have been sleeping,
which consists of (forms of) a modal verb, two
auxiliaries, and a main verb.

3. adjective: An example is for five minutes, which
can be used adnominally as well as adverbially
and consists of a preposition, a determiner, and
a noun, the latter being a content word.

Again, the functional equivalence between elementary
and clausal parts of speech may be shown by sub-
stituting one for the other. For example, the sen-
tence Julia slept briefly. consists of an elementary
noun, an elementary verb, and an elementary adjec-
tive. Replacing Julia with The pretty young girl results
in a similar sentence with a phrasal noun, namely the
pretty young girl slept briefly. By replacing the elemen-
tary verb and adjective with phrasal counterparts as
well, we might get the pretty young girl could have been
sleeping for five minutes. — which has the same gram-
matical structure at the phrasal level as Julia slept
briefly. has at the elementary level.

At the highest level, elementary and phrasal parts
of speech are combined into clausal parts of speech,
which serve as nouns and as adjectives. The part
of speech verb at the clausal level is equivalent to a
complete clause or sentence.

Adverbs are treated here as the adverbial use of adjectives (in con-
tradistinction to the adnominal use); pronouns like you or he are
treated as nouns; prepositions are treated as function words which
make phrasal adjectives, conjunctions are treated as function words
which make coordinations (parataxis) and clausal nouns or adjec-
tives (hypotaxis). A treatment of interjections is omitted.

5Cf. FoCL’99, Sect. 8.4.

SFor a more detailed discussion see FoCL’99, Chapt. 13.

1.2.3 PARTS OF SPEECH AT THE CLAUSAL LEVEL

1. noun: An example is that Julia read a book, as
in That Julia read a book pleased her mother. —
which has a similar grammatical structure as Ju-
lia pleased her mother. In other words, that Ju-
lia read a book may serve the same grammati-
cal function as the elementary noun Julia or the
phrasal noun the pretty young girl.

2. adnominal adjective: An example is which Mary
saw, as in The dog which Mary saw barked. —
which has a similar grammatical structure as The
black dog barked. In other words, the adnominal
clause which Mary saw has the same grammatical
function as the elementary adnominal black or
the phrasal adnominal with the black fur.

3. adverbial adjective: An example is When Fido
barked, as in When Fido barked Mary smiled —
which has a similar grammatical structure as Re-
cently Mary smiled. In other words, the adverbial
clause When Fido barked has the same grammati-
cal function as the elementary adverb recently or
the phrasal adverb after her nap.

1.3 Semantic Relations

In natural language, word forms are assembled into
well-formed, meaningful expressions by means of only
two kinds of semantic relations, namely (i) functor-
argument and (i) coordination structure. These se-
mantic relations are based to a large extent on the
parts of speech of the words and expressions, and are
the topic of the linguistic disciplines of syntax and
compositional semantics.

Functor-argument structure is used to build the dif-
ferent sentential moods, such as declarative, interrog-
ative, and imperative in English. In a proposition
(sentence), there is the obligatory relation between
the functor (verb) and its arguments (nouns), and
the optional relation between a verb or noun and its
modifiers (adjectives).

For example, the functor-argument structure of Ju-
lia knows John is based on the lexical analysis of the
verb form knows as a two-place functor and of the
nouns Julia and John as arguments. Similarly, the
functor-argument structure of Julia slept is based on
the lexical analysis of the verb form slept as a one-
place functor and Julia as the argument. And the
functor-argument structure of John gave Julia a flower
is based on the lexical analysis of gave as a three-place
functor and the arguments John, Julia, and a flower.

Depending on the lexical valency structure of the
verb, its arguments are distinguished with respect to
their grammatical role. For example, in the sentence
Julia slept., the argument Julia serves as the subject;
in Julia knows John., Julia serves as the subject and
John as the object; and in John gave Julia a flower.,
John serves as the subject, Julia as the indirect object,
and a flower as the direct object. These distinctions
apply also to arguments at the phrasal and the clausal
level.

In order for a sentence to be complete, it must have
as many arguments as required by its verb. It is in this
sense that the arguments are obligatory. The modi-
fiers, in contrast, are optional. For example, the sen-
tence Julia slept briefly. is still complete without the
adverbial modifier briefly. Similarly, the sentence The
black dog barked. is still complete without the adnom-
inal modifier black. The optional nature of modifiers
applies also at the phrasal and clausal level.

While functor-argument structure assembles ex-
pressions of different parts of speech, coordination
assembles word forms, phrases, and clauses of the
same part of speech. For example, Julia, Susanne,

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

and John is an elementary noun coordination, bought,
cooked, and ate is an elementary verb coordination,
and quickly, tastefully, and professionally is an elemen-
tary adjective coordination in adverbial use.

Clausal coordination may be intrasentential, as in
Julia slept, John sang, and Susanne dreamed. or ez-
trasentential, as in Julia slept. John sang. Susanne
dreamed. An intrasentential form are gapping con-
structions, such as Bob ate an apple, walked his dog,
and read the paper (subject gap), Bob ate an apple, Jim
a pear, and Bill a peach (verb gap), and Bob bought,
Jim peeled, and Bill ate the peach. (object gap).”

The combination of the two semantic relations at
the elementary, the phrasal and the clausal levels may
result in constructions of arbitrary complexity and
length. Intrasententially, functor-argument structure
provides for subclause constructions of arbitrary com-
plexity in the different sentential moods. Extrasen-
tentially, coordination provides for text or dialogue
of arbitrary length.

1.4 'Word Order, Word Forms, Agreement

While the functor-argument and coordination struc-
ture are based semantically on the parts of speech,
their coding depends on word order, word forms,
and agreement. The role of these structural surface
properties varies widely between different natural lan-
guages and is thus highly language-dependent.

For example, in English the grammatical role of the
arguments is coded by means of word order: in Julia
knows John., the first argument is the subject and the
second argument the object. Changing the order into
John knows Julia. changes the subject and the object.
Furthermore, in declarative sentences of English, the
verb (functor) must be in post-nominative position.

In Russian, in contrast, the word order is free and
the case role of the arguments is coded morpholog-
ically in the endings (suffixes) of the word forms.
Thus the content of English Julia knows John has
six surfaces in Russian, corresponding in word order
to Juliay knows Johng, Juliay Johng knows, Knows
Juliay Johnyu, Knows John, Juliay, Johnas knows
Juliay, and John 4 Juliay knows., while the content of
English John gave Julia a flower has a total of twenty-
four corresponding surfaces in Russian.

Because of the fixed word order of English, the
number of different word forms may be comparatively
small. In common nouns, there is the distinction be-
tween singular and plural, e.g., book vs. books and
between unmarked and genitive case, e.g., book vs.
book's and books vs. books'. In finite verbs, there
is the distinction between 3. person singular present
tense, and the other persons and numbers (numeri)
in present tense, e.g., sings vs. sing, and the distinc-
tion between present tense and past tense, e.g., sing
and sang. In adjectives, there is the distinction be-
tween adnominal and adverbial use, e.g., beautiful and
beautifully, and the distinction between the positive,
comparative, and superlative, as in fast, faster, fastest.

The choice of a particular form of a word is par-
tially semantic, as between Julia knows John. and
Julia knew John., and partially syntactic, as in every
girl (singular) and all girls (plural). In the latter case,
the correct choice of word forms is a matter of gram-
matical agreement. For example, in English there is
agreement between the subject and the finite verb in
the present tense, and between determiners like a(n),

every, all, one, two, three, etc., and their nouns.®

"Even though gapping constructions turn out to be of very low
frequency in corpora, we know of no natural language in which they
(i) don’t occur and (ii) don’t have strong grammatical intuitions
with the native speakers. For a detailed analysis of coordination
including gapping constructions see NLC’06, Chapts. 8 and 9.

8For a DBS analysis of “quantifiers” see NLC’06, Sect. 6.2.

1.5 Automatic Word Form Recognition

For purposes of computational linguistics, the tradi-
tional distinctions of grammar at the level of elemen-
tary word forms may be represented as flat feature
structures. A feature structure is defined as a set of
attribute value pairs or avp. In DBS, a flat? feature
structure representing word forms is called a proplet:
just as a droplet is the smallest element in a sea of
water, a proplet is the smallest element in a sea of
propositions. Consider the following examples of lex-
ical proplets, which illustrate the basic parts of speech
with forms of content words:

1.5.1 EXAMPLES OF LEXICAL PROPLETS

sur: books - -
sur: swam

noun: book ; sur: slowly
verb: swim .

cat: pl , adj: slow
cat: s3’ v

sem: count cat: adv
sem: past

fnc: are: sem: pos

mdr: g€ mdd:
mdr:

nc: nc:

pe: nc: pe:

. c:

idy: p prn:
Lprn: J

prn:

The first attribute sur (surface) has the language-
dependent surface of the word as its value. The
second attribute is called the core attribute of the
proplet. It indicates the part of speech and has a
language-independent meaning as its value, called the
core value. Core values may be of the different kinds
of sign symbol, indexical, and name.'® For simplicity,
the meanings are represented by corresponding words
of English written in italics,'! used here as place hold-
ers or names of the meaning in question.

The third attribute cat specifies grammatical prop-
erties relevant for the combinatorics of the word form,
such as singular vs. plural in nouns, the valency po-
sitions of verbs, and the adnominal versus adverbial
use in adjectives. The fourth attribute sem specifies
morphologically coded aspects of meaning which are
not directly relevant for the combinatorics of the word
form, such as tense.

The remaining attributes are non-lexical and there-
fore have no values yet. The attributes fnc (func-
tor), mdr (modifier), nc (next conjunct), and pc (pre-
vious conjunct) in nouns are called the continuation
attributes which code the functor-argument and coor-
dination relations of the proplet. Verbs and adjectives
differ from nouns in that verbs have fnc (functor) and
adjectives mdd (modified) as their obligatory contin-
uation attribute.'?

In addition to the continuation attributes there are
the bookkeeping attributes idy (identity) in nouns and
prn (proposition number) in nouns, verbs, and adjec-
tives. Other bookkeeping attributes used only in the
software are trc (transition counter) and wrn (word
number). While lexical attributes have their values
defined in the on-line lexicon and continuation at-
tributes receive their values by the rules of syntactic-
semantic parsing, bookkeeping attributes have nu-
merical values assigned by the parsing engine.

The on-line definition of lexical proplets is the ba-
sis of automatic word form recognition. 1t is needed
because for the computer an unanalyzed surface like
books is merely a sequence of letters, with no essential
difference between books and skoob, for example. By
matching the unanalyzed surface with the sur value of

9A feature structure is called flat or non-recursive if it does not
allow that values may themselves be feature structures.

19Cf. FoCL’99, Sect. 6.1.

H Basic meanings originate as the patterns (types) needed for the
agent’s recognition and action procedures, cf. FoCL’99, Sect. 3.2;
NLC’06, Sects. 4.2-4.4.

12For a more detailed discussion see NLC’06, Sect. 4.1.

CRPIT Volume 96 - Conceptual Modelling 2009

a lexical proplet, all the information contained in the
proplet definition becomes available to the parser.

The main tasks of automatic word form recognition
are categorization and lemmatization. Categorization
is provided by the cat value of a proplet, and needed
for controlling the combinatorial interaction within
the functor-argument and the coordination structure.
Lemmatization is provided by the core value, i.e., the
value of the noun, verb, or adj attribute, and needed
for access to the words’ core meaning.'3

2 Formal Systems of Grammatical Analysis

Based on automatic word form recognition, complex
expressions of natural language may be grammati-
cally analyzed by a computer in accordance with the
Fregean Principle (cf. 1.1.1). For computational lin-
guistics, this procedure has two aspects: (i) the for-
mal grammatical analysis of complex expressions and
(ii) the construction of an automatic analysis sys-
tem, called parser, which uses the formal grammatical
analysis as a declarative specification.

A declarative specification is important for software
writing in general because it formulates the abstract
solution to the task at hand, specifying the necessary
properties of the software, in contrast to accidental
properties such as the choice of programming lan-
guage or idiosyncrasies of the programmer.'* How-
ever, while using a formal grammar as a declarative
specification is a necessary condition for implement-
ing a transparent natural language parser, it is not
sufficient to guarantee longterm success.

In addition to being formally explicit, the grammar
must be of low mathematical complezity to run in real
time. Furthermore, the grammar must turn out to
be empirically adequate by supporting fast upscaling
from a small system to one with an ever wider data
coverage. Finally, the formal system must be func-
tionally complete to support different applications of
human-computer communication, whereby building a
freely talking robot is the ultimate challenge.

2.1 Categorial Grammar

Designing a formal grammar raises the questions of
(i) how exactly the word forms in a sentence should
be combined and (ii) what the purpose of the result
should be. To get an idea of how these questions have
been approached in the past, let us briefly consider
the most distinctive approaches proposed so far.

The historically first approach to a formal gram-
matical analysis of natural language is Categorial
grammar as proposed by Bar Hillel (1953), based on a
formal system by Les$niewski (1929) and Ajdukiewicz
(1935). Consider the following example:

2.1.1 BoTTOM-UP CATEGORIAL ANALYSIS OF

Julia knows John.

Julia knows John

®

e Bog + Gpay T Py dulia (e)
: A
e 1 a iy vy * Bxy aB vy knows

The grammatical analysis is shown as the tree on the
right, while the combination rules applying at the

B An overview of different methods of automatic word form
recognition is provided in FoCL’99, Chapt. 14.
MFor a more detailed discussion see NLC’06, Sect. 1.2.

20

input levels are shown on the left. The derivation
starts with (i) categorized words like knows(c/(c\))
and John(,. The rules consist of the variables a and
B, which match the surface of a categorized word,
e.g., John, and the variables X and Y, which match
a category or part of a category, e.g., (e\t). Catego-
rized words or expressions may be combined if their
categories can be matched by one of the two rules.
The purpose is a semantic interpretation of functor-
argument structure using set theory.

For example, ax,y matches the categorized word
knows(c/(e\¢)), while [x matches the categorized
word John(,). Therefore, according to rule 1,
knows(c/(e\¢)) * John(e) may be combined into the ex-
pression knows John(.\4). The category (e\t) results

from the category (e/(e\t)) of know by canceling the
first e with the category (e) of John (see dotted arrow
on the right of 2.1.1).

Next, Julia() and knows John(.\) are combined by
rule 2 into Julia knows John), this time canceling the

e in the category (e\t) of knows John. The two rules
differ only in that the expression with the complex
category (the functor) precedes the expression with
the canceling category (the argument) in rule 1, while
in rule 2 the order is reversed.

2.2 Phrase Structure Grammar

The historically second approach to a formal gram-
matical analysis is Phrase Structure grammar, as pro-
posed by Chomsky (1957, 1965), based on a formal
system by Post (1936). Its purpose is to characterize
the native speakers’ innate language capability and
to explain language acquisition by the child.

2.2.1 ToP-DOWN PHRASE-STRUCTURE ANALYSIS
OF Julia knows John.

rulel: S—= NP VP S

rue2: NP —» N NP vp
rule 3: VP —» V NP ‘ /\
rule 4 N —» Julia John, N \ NP

rule 5: V— knows ‘
N

Julia knows John

The analysis uses rewrite rules of the form A — B C.
There are non-terminal symbols like S (for start
or sentence), NP (for noun phrase), VP (for verb
phrase), N (for noun), and V (for verb), and terminal
symbols like Julia, John, and knows. The derivation
begins with the S, which rule 1 substitutes with NP
VP. Then rule 2 substitutes NP with N, and rule 3
substitutes VP with V NP. Then rule 2 applies again,
substituting the second NP with N. Finally the ter-
minal rules 4 and 5 apply, replacing the nodes N and
V with terminal symbols, i.e., with word surfaces.

The Categorial analysis 2.1.1 and the Phrase Struc-
ture analysis 2.2.1 have in common that they express
the grammatical relations as a hierarchy such that a
complex constituent (i.e., a phrasal or clausal part of
speech) dominates its smaller parts. This hierarchy,
called constituent structure, is based on the principle
of possible substitutions and is reflected by the asso-
ciated tree in terms of the dominance and precedence
relations between the nodes. The assumption of con-
stituent structure affects the grammatical derivation
order: the phrasal and clausal parts of speech must
be assembled first before they can be combined with
each other like elementary parts of speech.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

2.3 Left-Associative Grammar

According to constituent structure, it would not be
correct to postulate a Phrase Structure rule like
S — NV because N V or the corresponding Julia
knows is neither an elementary nor a phrasal nor a
clausal part of speech. For the speaker, however, a
sentence like Julia knows John. begins by combining
Julia and knows into Julia knows. Then Julia knows is
combined with John into Julia knows John. Similarly
for the hearer, who doesn’t have to wait for the end
of the sentence before interpretation can begin.

In other words, the derivation order used by the
speaker and the hearer is time-linear, i.e., linear like
time and in the direction of time, word by word, from
beginning to end. This raises the question of whether
there isn’t a better way to express the grammatical
relations than dominance and precedence. How could
functor-argument and coordination structure at the
elementary, phrasal, and clausal levels be integrated
into a strictly time-linear derivation order?

The time-linear derivation order corresponds to the
left-associative bracketing structure ((((a b) c) d) e)
known from logic. It is used by Left-Associative gram-
mar (LA-grammar), which analyzes the combination
of elementary, phrasal, and clausal parts of speech by
computing possible continuations rather than possible
substitutions. LA-grammar was first developed in the
context of the NEWCAT’86 parser.

2.3.1 TIME-LINEAR NEWCAT DERIVATION OF
Julia knows John.

Julia knows John.

[cat: decl]
3SHP {1} Julia knows John \
[cat: VT] [VT' SM] [cat: V] [cat: v' decl]
cancel VT \ A
2FV+NP {S+IF} Julia knows John
[cat: NP X VT] [NP] [cat: @ v] [cat: nm]
cancel NP A
1Nom+FV {FV+NP} Julia knows
[cat: NP] [cat: NP X v1] [cat:nm] feat: S5 V]
cancel NP

The bottom-up left-associative derivation always
combines a sentence start with a next word into a
new sentence start, until no next word is available.
The completely regular structure of the tree is used
to express the derivation order, not the grammatical
relations — which are coded instead into the categories
shown in the tree on the right and into the categorial
operations of the rules on the left.

The combination of Julia and knows is based on can-
celing the subject valency position s3' in the category
of the next word. The combination of Julia knows and
John is based on canceling the object valency position
a’ in the sentence start. And similarly for the third
combination (as indicated by the dotted arrows).

Each rule consists of (i) a rule name, e.g., Nom+FV
(for nominative plus finite verb), (ii) a rule package,
e.g. {FV4+NP}, containing the set of rules to be tried
after a successful application of the current rule, (iii)
a pattern for the sentence start, e.g., [cat: NP], (iv)
a pattern for the next word, e.g., [cat: NP’ X VT,
and a set of operations, e.g., cancel NP. The patterns
are based on variables like NP and NP’ where NP is
restricted to noun valency fillers and NP’ is restricted
to noun valency positions.'?

15In addition to the definition of the rules, an LA-grammar re-
quires the definition of a set of start states, a set of final states, a
set of variables and their restrictions, and a set of lexical proplets
See FoCL’99, 10.2.1, for the algebraic definition of LA-grammar.

LA-grammar differs from Categorial grammar as
shown in 2.1.1 in that (i) an LA-grammar is not
restricted to two rules, (ii) the LA-grammar rules
have rule packages, (iii) the rule patterns indicate va-
lency structures as lists rather than binary bracket-
ings, (iv) there is an open number of variables with
suitable restrictions and agreement conditions, and
(v) the derivation has a clearly defined starting point,
namely the first word. LA-grammar differs from
Phrase Structure grammar in that it has a complexity
hierarchy which is orthogonal to the Chomsky hier-
archy (cf. TCS’92), parsing many context-free and
context-sensitive languages in linear time.

The NEWCAT approach illustrated in 2.3.1 has
been applied to all major functor-argument and coor-
dination constructions of English and German. Due
to its time-linear derivation structure, it proved to be
well-suited for rapid upscaling. The algebraic defini-
tion of LA-grammar in CoL.’89 was distilled from the
Lisp code of the English parser published in NEW-
CAT’86.

2.4 Database Semantics: Hearer Mode

Despite their differences, C-grammar 2.1.1, PS-
grammar 2.2.1, and NEWCAT 2.3.1 have in common
that they are sign-oriented. Sign-oriented approaches
analyze expressions of natural language as isolated
grammatical structures, but leave unanswered the
central question of What to do with them?

For human speaker-hearers the answer is obvious:
expressions of natural language are used for commu-
nication. To arrive at a similar answer in linguis-
tics, the analysis of language expressions (theory of
grammar) must be embedded into a functional model
of how communicating with natural language works
(theory of language).'® Today, the most straightfor-
ward scientific way to do this is the construction of
an artificial cognitive agent, i.e., a talking robot with
a real body!” acting in the real world (AL1J°01).

This leads from a sign-oriented to an agent-oriented
approach, which constrains the grammatical analysis
with much needed functional requirements. The most
basic of these is the computational reconstruction of
turn taking,'® i.e., the agent’s ability to switch be-
tween the hearer mode and the speaker mode. In the
hearer mode signs of natural language are interpreted
as content which is stored in the agent’s memory.
In the speaker mode, content in the agent’s memory
is selectively activated and realized as corresponding
surfaces in the natural language of choice.

Leaving important matters'® like the external in-
terfaces for recognition and action, the auto- and
the service channel of artificial cognitive agents, and
the language and the context level aside, let us turn
to three theoretical issues which any computational
agent-oriented approach has to address from the start:

2.4.1 COMPUTATIONAL DESIGN DECISIONS

1. What should be the data structure (abstract data
type) of the content items stored in memory?

2. What should be the algorithm to read items of
content into (hearer mode) and out of (speaker
mode) the agent’s memory?

3. What should be the data base schema according
to which the content items are stored in and re-
trieved from memory?

16Cf. NLC'06, Sect. 2.4.

17The importance of agents with a real body (instead of virtual
agents) has been emphasized by emergentism (MacWhinney 2008).

8Cf. NLC’06, Sect. 1.1, Schegloff (2007).

Y For a detailed discussion see NLC’, Chapts. 1 and 2.

21

CRPIT Volume 96 - Conceptual Modelling 2009

These three must be co-designed for maximal support
of the functional flow in the hearer mode, the think
mode, and the speaker mode.

In Database Semantics, the data structure are pro-
plets, i.e., flat (non-recursive) feature structures rep-
resenting word forms; the algorithm is time-linear
LA-grammar; and the data base schema is that of a
classic network database (Elmasri and Navate 1989).
As an example of the hearer mode, consider the fol-
lowing derivation, using the same sentence as before:

2.4.2 HEARER-MODE DERIVATION IN DBS

Julia knows John .
lexical lookup ‘ ‘ ‘ ‘
noun: Julia verb: know noun: John pnc: .
cat: nm ca:s3 a v cat: nm cat: v’ decl
fnc: arg: fnc: prn:
prn: prn: prn:
syntactic-semantic parsing
[noun: Julia :\‘%iow]
cat: nm '3 a v
INom+FV | fne: e | ag:
prn: 1 prn:
[noun: Julia | [verb: know —|_ [noun:dohn
cat: nm cat:a v nm
2FV+Nom | fnc: know arg: ulia | fnc:
prn: 1 prn: 1 prn:
[moun: Julia | [verb:know | [noun: John pnc: .
3SHP cat: nm cat: v cat: nm cat: v’ decl
fnc: know arg: JuliaJohn fnc: know prn:
prn: 1 prn: 1 prn: 1
result of syntactic—semantic parsing
[noun: Julia | [verb:know | [noun: John
cat: nm cat: decl cat: nm
fnc: know arg: JuliaJohn fnc: know
prn: 1 prn: 1 prn: 1

The derivation begins with lexical lookup of the in-
coming unanalyzed surfaces. The functor-argument
structure is coded by copying values between proplets
(indicated by the diagonal arrows). The derivation
is strictly time-linear, as indicated by the stair-like
addition of next word proplets.?’ The result of the
derivation is an order-free set of proplets ready to
sorted into the database. The case assigned to the
arguments is indicated in the resulting verb proplet
by the order of the arg values (here arg: Julia John).
Connecting the lexical proplets in accordance with
the grammatical functor-argument (and, if given,
coordination) structure of an input is provided by
syntactic-semantic parsing, based on a variant of LA-
grammar, called LA-hear. Consider, for example, the
first rule application in 2.4.2 (explanations in italics):

2.4.3 EXAMPLE OF LA-HEAR RULE APPLICATION

i rule name ii rule package

NOM+FV {FV+NP}
iii ss-pattern iv nw-pattern v operations
r r cancel NP
rule noun: & verb: 3 acopy « nw.ar,
cat: NP cat: NP/ X VT by Arg
level ecopy [ss.fnc
fnc: arg:
L L COPYss COPYnuw
matching and binding of wvariables
[moun: Julia] [verb: know |
language cat: nm cat: s3’ a’ v
level fnc: arg:
prn: prn:
output - J - 4 -
[moun: Julia] [verb: know |
cat: nm cat: 83’ a’ v
fnc: know arg: Julia
| prn: 1] [prn:1]

The LA-hear rule resembles the corresponding NEW-
CAT rule (cf. 2.3.1) in that it consists of (i) a rule

20Tn contradistinction to the bottom-up NEWCAT derivation
2.3.1, the DBS hearer mode derivation is not represented as a tree
and must be read from top to bottom.

22

name, (ii) a rule package, (iii) an ss-pattern, (iv) an
nw-pattern, and (v) a set of operations. Moreover,
the NEWCAT and the LA-hear versions of Nom+FV
share the same cat features and the associated oper-
ation cancel NP.

The two versions differ, however, in that the LA-
hear version has the additional features [noun: o] and
[fnc:] in the ss-pattern, and [verb: /] and [arg: | in
the nw-pattern. Vertical binding of the variable o to
the value Julia and the of 8 to know at the language
level enables the operations acopy a nw.arg and ecopy
0 ss.fnc. Consequently, the output proplet Julia spec-
ifies its functor as know and the output proplet know
specifies one of its arguments as Julia.

Furthermore, while the result of the NEWCAT
derivation 2.3.1 is the whole tree (which raises the
same problems for storage in and retrieval from a
database as the other sign-oriented representations),
the result of the LA-hear derivation 2.4.2 is an order-
free set of proplets. This set, shown below in a se-
quence using the alphabetical order of the core values,
represents the content coded by the natural surface:

2.4.4 CONTENT OF Julia knows John.

noun: John noun: Julia verb: know

cat: nm cat: nm cat: decl
fnc: know fnc: know arg: Julia John
prn: 1 prn:1 prn: 1

The proplets are order-free because the grammatical
relations between them are coded solely by attribute-
value pairs (and not in terms of dominance and prece-

dence in a hierarchy?!). Therefore, they are suitable
for storage and retrieval in accordance with the meth-
ods of one’s database.

Given that DBS uses the database schema of a clas-
sic network database, the proplets of 2.4.4 are stored
as follows:

2.4.5 STORAGE OF PROPLETS IN A WORD BANK

owner records member records
moun: John]
cat: nm
fnc: know
prn: 1

[noun: John]

moun: Julia’]
cat: nm
fnc: know

| prn: 1

[noun: Julia]

[verb: know
cat: decl

arg: Julia John
| pro: 1

[Vcrb: know}

A network database containing proplets is called a
Word Bank. The database schema consists of owner
records in alphabetical vertical order, and member
records stored horizontally behind their owner record.
A horizontal sequence of an owner record followed by
an arbitrary number of member records with the same
core value is called a token line. The horizontal order
of proplets in a token line reflects the order of their
arrival, like sediment, because new incoming proplets
are always stored at the end of their token line.

This method of storage is complemented by an
equally simple method of retrieval: any core value
provides access to all member records with the same
core value by selecting the corresponding token line.
Furthermore, given a core value and a prn (propo-
sition number) value, the associated proplet may be

21For a detailed discussion see Hausser (2007)

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

retrieved by (i) going to the token line of the core
value and (ii) searching through the token line for the

proplet with the corresponding prn value.??

2.5 Database Semantics: Think Mode

Next let us see how (i) the data structure of pro-
plets, (ii) the algorithm of LA-grammar, and (iii) the
database schema of a network database (Word Bank)
serve to realize language production in the speaker
mode. The task of language production is tradition-
ally divided into what to say and how to say it.

In Database Semantics, these two aspects are
viewed as (i) the activation of content in the agent’s
Word Bank and (ii) the realization of activated con-
tent in a natural language. The selective, autonomous
activation of content is treated as a kind of thinking
and based on a structural property of a Word Bank
which goes beyond a classic network database.

This property is the concatenation of proplets in
terms of the semantic relations of functor-argument
and coordination structure. It constitutes something
like a railroad system which supports a navigation
along the semantic relations between proplets, thus
selectively activating content and re-introducing a
time-linear order.

For example, the know proplet in 2.4.4 specifies Ju-
lia as its first argument. Using the retrieval mecha-
nism of the database, the navigation moves an imag-
inary focus point from know to Julia, then back to
know and on to John, back to know and on to the
next proposition.?> This navigation may be shown
schematically as follows:

2.5.1 NAVIGATING THROUGH A CONSTELLATION

3
1 A
V N N
\}__‘:2 -

The schema shows the constellation VNN (with V for
verb and N for noun) and a navigation through the
constellation, indicated by numbered arrows.

Given that any written representation of an order-
free constellation of concatenated proplets must use
some order, the V is written first because it speci-
fies the connections to previous and following propo-
sitions (extrapropositional relations) as well as to
the nominal arguments (intrapropositional relations).
The first N is interpreted here as the subject and the
second N as the object.

Navigating through a constellation of concatenated
proplets is constrained by the following conditions:

2.5.2 CONDITIONS ON A NAVIGATION
1. A navigation is a shortest route to traverse

2. all proplets in the constellation such that

3. each successor proplet is accessible from the cur-
rent proplet.

For example, after navigating from the V to the first
N in a VNN constellation, it is necessary to return

22Please note that the structuring of a Word Bank indicated in
2.4.4 is purely conceptual and does in no way restrict the storage
locations in the actual implementation of the database.

23Because the concatenated propositions in a Word Bank usu-
ally offer alternative continuations, there is the need to build an
autonomous control structure for choosing between alternatives.
This is a major task (cf. Hausser 2002, Hausser in print) which ex-
ceeds the limits of this paper. We concentrate here on the question
of how a given navigation should be realized in a natural language.

to the V to get the continuation values for accessing
the second N (object noun). After navigating to the
second N, it is necessary to return to the V in order
to get the continuation values for accessing the next
proposition.

A navigation through a constellation is driven by
the rules of an LA-think grammar. For example,
traversal 1 in the constellation 2.5.1 is based on the
following application of the rule VNs to proplets in
the Word Bank 2.4.4 (explanations in italics):

2.5.3 EXAMPLE OF LA-THINK RULE APPLICATION

i rule name ii rule package

VNs {NVs}
iii ss pattern iv nw pattern v operations
r noun: «
rule level verb: 3 mdr: 7 output
arg: ' X aY P T
nc: position nw
prn: k
L | prn: k

matching and binding variables

[verb: know [moun: Julia]
Word Bank cat: decl cat: nm
level arg: Julia John | |fnc: know
| pro: 1 | prn: 1 i
R
noun: Julia
output cat: nm
fnc: know
| prn: 1

The explanations i—v show that this LA-think rule
consists of the same components as the NEWCAT
rules 2.3.1 and the LA-hear rule 2.4.3. The rule name
VNs indicates that the rule moves the navigation from
a V to an N and stays there.

By vertically binding the variable § in the ss-
pattern to the value know, the variable « to the value
Julia, and the variable k to the value 1 at the Word
Bank level, the retrieval mechanism of the database
has the information needed for navigating to (touch,
activate, traverse) the nw-proplet Julia. This output
serves as the ss-proplet of the next LA-think rule ap-
plication. Navigation step 2 in 2.5.1 returns to the V,
based on the rule NVs (specified in the rule package
of VNs). NVs resembles VNs except that the patterns
for ss and nw are reversed.

The basic principle of navigating through the con-
tent of a Word Bank, using the semantic relations be-
tween proplets as a railroad system, is as simple as it
is efficient.?* Yet it has enormous descriptive poten-
tial because the rules may have more operations than
the one in 2.5.3. For language production, for exam-
ple, the LA-think rules may be turned into LA-speak
rules by adding operations like lex-n [noun: a], which
serve to realize specific surfaces. Other operations are
used for inferences, as in the reconstruction of modus
ponens in NLC’06, Sect. 5.3, and the answering of
questions, as shown in NLC’06, Sect. 5.1.

2.6 Database Semantics: Speaker Mode

Having outlined the what to say aspect of language
production, let us turn to the aspect of how to say it.
The time-linear sequence of proplets activated by a
navigation like 2.5.1 contributes the following struc-
tural properties to language production:

2.6.1 CONTRIBUTIONS OF NAVIGATION
1. core values

2. parts of speech

24The complexity of a navigation is linear as long as it does not
branch, the number of operations per rule is below a finite upper
bound, and the operations are simple.

23

CRPIT Volume 96 - Conceptual Modelling 2009

3. semantic relations
4. traversal sequence

5. ingredients of perspective

In order to map these structural details into a cor-
responding language-dependent surface, the LA-think
rules activating the constellation must be turned into
LA-speak rules by adding operations for handling the
following properties of the language-dependent sur-
face:

2.6.2 CONTRIBUTIONS OF GRAMMAR

1. language-dependent word order (defined on top
of the traversal sequence)

2. language-dependent function word precipitation
(utilizing proplet features)

3. selection of word forms (based on proplet features
and rules of agreement)

4. lexical selection (driven by the core values of the
proplets traversed)

These language-dependent properties of grammar are
tightly interconnected, riding piggyback on the LA-
think navigation rules.?® For example, the activation
of constellation 2.5.1 may be used to produce the En-
glish surface Julia knows John. as follows:

2.6.3 REALIZING A TRANSITIVE SURFACE

Julia knows John

Transition 1 is used for realizing Julia, 2 for knows, 3
for John, and 4 for the full stop.

An alternative way to express the same content is
passive.?6 It is based on an alternative activation or-
der which is in concord with the conditions 2.5.2:

2.6.4 REALIZING A PASSIVE SURFACE

John isknown by Julia

As indicated by the traversal numbers, the navigation
first traverses the object and then the subject.?” The
realization of the passive surface in English provides a
change of word order, but it also requires word forms
different from the active as well as function word sup-
port.

25In earlier work, LA-speak was treated as a separate component,
which required a constant switching between LA-think and LA-
speak. As shown by NLC’06, Chapt. 13, this turned out to be
rather complicated. The current approach narrows the gap between
LA-think and LA-speak by defining LA-speak as a variant of LA-
think. Now the only difference between the two are additional
operations for lexical realization in LA-speak, which provides for a
much simpler solution.

26 As pointed out by Givén (1997), one of the main functions
of passive is the possibility of leaving the deep subject (agens)
unspecified, as in The car had been stolen.

27SVO languages like English or German and SOV languages
like Korean or Japanese use the navigation order of 2.6.3 as the
unmarked case, whereas VOS languages like Fijian or Malagasi
and OSV languages like Xavante or Warao use 2.6.4.

24

Other word orders in English are illustrated by Ice
cream John likes., which may be realized from the nav-
igation of 2.6.4 using the realization steps 134:

2.6.5 REALIZING A TOPICALIZED OBJECT

Ice cream John likes.

Furthermore, in spoken language and in poetry the
word order restrictions of a language are often han-
dled rather freely. In Database Semantics, all such
phenomena relating to word order and function word
precipitation are accommodated by (i) the choice be-
tween different ways to traverse the constellation in
question (for example, 2.6.3 vs. 2.6.4) and (ii) the
choice of when to realize a surface during the traver-
sal (for example, 2.6.4 vs. 2.6.5).

3 Treating the Phrasal and Clausal Levels

So far, the examples used have been functor-argument
structures at the elementary level, without any mod-
ifiers and without an explicit treatment of function
words. As an example at the phrasal level let us con-
sider the sentence The little black dog barked.

3.1 Interpretation in the Hearer Mode

At the phrasal level, the hearer mode mapping of nat-
ural language surfaces into content involves function
word absorption and modification, as illustrated by
the following derivation:

3.1.1 ADNOMINAL MODIFICATION (HEARER M.)
the little black dog
lexical lookup ‘ ‘ ‘

kaed

Eoun: n_1 [adn: little | [adn: black noun: dog \a/reéb: bark
nc: ' A nc: :
mdr: mdfi' md‘,’- mdr: mdr:
lprn: e prn: prn: prn:

syntactic-semantic parsing: :
Poun: ni___ | wlittle
nc: = .

1 mdr:«—| ﬁdd\
|prn: 23 | |pm

Moun: n_1—— | [adn: little | @blac(
fnc: T mde-:
2 mdr: Iinled//%— .
lprn: 23 |prn: | pm B
[noun: n_1<«——Tadn-tittte——adn-brack] -dog
3 fng:l I'tt7I black mdd: n_lA/m mgr
Enr]n:rlzé e blac pm:23 | |pm:23 | |pm
?oun: dog— [agn: tittle | [adn: black | ~bark
nc. <+—— [| . . 5
4 |mdr littleblack| |Mdd: dog | jmdd: dog mar:
lprn: 23 o) |pm: 23 | |prm: 23 | prn:
result of syntactic-semantic parsing:
Pr?gnt:)grﬁg adn: little adn: black verb:d bark
- 1 mdd: dog mdd: dog arg: aog
mdr: little black . X dr:
lpm: 23 pm:23 | |pe23 | g}nf 23

The determiner the is treated lexically as a function
word with the core value n_1, called a substitution
value. In line 1 of syntactic-semantic parsing, the
value little is copied into the mdr (modifier) slot of the
and the value n_1 is copied into the mdd (modified)
slot of little. Similarly in line 2, in which black and n_1
are cross-copied, as indicated by the diagonal arrows.

In line 3, all instances of n_1 are simultaneously
replaced by the core value of the dog proplet, which
is then discarded (as indicated by the gap in line 4).
In other words, the determiner and the noun proplets
are being fused by absorbing the core value of the

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

noun into the determiner proplet,?® and providing the
adnominal modifiers with suitable mdd values.

The result of the hearer mode derivation is an order-
free set of proplets, shown below using the order of a
VNAA constellation (cf. 3.2.1 below):

3.1.2 CONTENT OF The little black dog barked

noun: dog

verb: bark cat: def s adj: little adj: black

cat: decl) € cat: adn cat: adn

arg: dog fne: bark mdd: dog mdd: dog
’ mdr: little black ' '

prn: 23 prn: 23 prn: 23 prn: 23

In DBS, the phrasal nature of the noun the little black
dog is not expressed by a single node dominating
other nodes, as it would be in PS-grammar (cf. 2.2.1)
or C-grammar (cf. 2.1.1). Instead of a hierarchy,
it is treated as a constellation of bidirectionally con-
catenated proplets representing the modified and its
modifiers. The contribution of the function word the
appears as the cat?® value def in the dog proplet.

3.2 Production in the Speaker Mode

Producing the English sentence the little black dog
barked. from a constellation requires (i) realization
of the determiner absorbed during interpretation and
(ii) the correct positioning of the elementary adnomi-
nal modifiers between the determiner and their mod-
ified. This is shown by the following navigation with
associated realization:

3.2.1 ADNOMINAL MODIFICATION (SPEAKER M.)

The little black dog barked.

w3

1VNs 23NAr 45NAr 6NVs

In this VNAA constellation, the V precedes the N for
the reasons explained in connection with 2.5.1. The
N precedes the As because they are accessible only
from the N (cf. transitions 2,3 and 4,5).

The English surfaces are realized from the goal pro-
plet of a transition by means of lex functions such as
lex-d (for determiners), lex-nn (for elementary com-
mon nouns) and lex-n (for determiner noun sequences
without intervening adnominal adjectives), as defined
below for the regular cases:

3.2.2 LEXICALIZATION FUNCTIONS

1. lex-d
If one of the following patterns matches an N proplet, then
lex-d applied to this proplet produces the associated surface:

pattern surface pattern surface
r noun:o
noun:er a(n) cat: snp every
sem: indef sg
L sem: pl exh
r noun:o
noun:a some cat: pnp all
sem: sel ’
L sem: pl exh
[noun:a
|sem: def X} the

28The relevant content of a function word may also be absorbed
into a content word. An example are punctuation signs, which are
absorbed into the verb proplet, as illustrated in 2.4.2.

29TIn 3.1.1, the cat features as well as the sem, nc, pc, and idy
features (cf. 1.5.1) are omitted for simplicity. For a complete
definition of the LA-hear grammar for elementary and phrasal
intrapropositional functor-argument structure and extraproposi-
tional coordination see NLC’06, Chapt. 13.

2. lex-nn
It {noun. «a

cat: snp} matches an N proplet, then lex-nn[noun: a] = a.

cat: pnp
o-s.

1 [noun: a} matches an N proplet, then lex-nn [noun: a] =

3. lex-n
If one of the following patterns matches an N proplet, then
lex-n applied to this proplet produces the associated surface:

pattern surface pattern surface
[noun: « [noun: a
cat: snp a(n) o cat: snp every o
sem: indef sg sem: pl exh
[noun: « [moun: o
cat: snp some « cat: pnp some a+s
sem: sel sem: sel
[moun:a [moun:a
cat: pnp all a+s cat: snp the
sem: pl exh sem: def X
[moun:a
cat: pnp the a+s
sem: def X

Other lex functions are lex-v for the realization of a
finite verb form, lex-adn for adnominal adjectives, and
lex-p for the punctuation signs.

The lex functions are called by the rules of an
LA-speak grammar. Consider the following defini-
tion, which replaces the definition of LA-speak.2 in
NLC’06, Sect. 14.2:

3.2.3 FORMAL DEFINITION OF LA-SPEAK.E2
STg =_def {([verb: o] { 1 VNs})}

VNs {2 NVs, 3 NAr}

. noun: | ifadn £ Z, lex-n [noun: a]
VCI‘l.f).'g v mdr: Z if adn € Z, lex-d [noun: «]
arg: A o fne: B (where adn is an elementary
pro: i - .

prn: i adnominal)

NVs {4 VNs, 5 VVs}

r verb: 3] .

noun: « Xl oY mark « in (-arg

fnc: 8 T if X = NIL, lex-fv [verb:]
| pro: i prn': i if Y = NIL, lex-p [verb: f]
NAr {6 NAr, 7 NVs}

moun:a adj: B] mark § in a-mdr

mdr: X 8Y mdd: « lex-a [adj: S]

prn: i prn: i if adn £, lex-nn [noun: «]
VVs {8 VNs}

[verb: « verb: (3

nc: j B pc: i«

prn: i pro: j

STr =def { ([;f;bxﬂ rpNvs)}

The rules of this grammar have two kinds of suffixes,
s (for staying at the second proplet) and r (for return-
ing to the first proplet). This way of specifying the
output position in the rule name makes the use of the
corresponding operations redundant (compare 2.5.3).

As indicated at the bottom of 3.2.1, rule VNs ex-
ecutes transition 1, thereby realizing the determiner
using lex-d. Rule NAr executes transition 2, realizes
the adnominal little with lex-a, and returns to the
N (transition 3). Then NAr applies again (cf. rule
package), executes transition 4, realizes black, and re-
turns to the N (transition 5), thereby realizing dog
with lex-nn (because adn £ Y). Finally, NVs executes
transition 6 and realizes barked. using lex-v and lex-p.

25

CRPIT Volume 96 - Conceptual Modelling 2009
3.3 Interpretation at the Clausal Level

It remains to show the handling of clausal construc-
tions. As an example, consider the following deriva-
tion of John heard that Fido barked.

3.3.1 OBJECT CLAUSE (HEARER MODE)

John heard that Fido barked
Iexical‘ lookup ‘ ‘ ‘
[noun: John | [verb: hear v v 1 noun: Fido | |verb: bark
fnc: arg: ag: fnc: arg:
mdr: mdr: fnc: mdr: mdr:
prn: prn: prn: prn: prn:
syntactic-semantic derivation
noun: John_H| —hear
1 |fnc; =— [larg
mdr: mdr:
prn: 30 prn:
[noun: John | [verb: hear] Infvi—v 1
2 |fncihear | |arg: John ><' ag.
mdr: mdr: [fic—a
prn: 30 prn: 30 |prn:
[noun: John | [verb: hear] n/v v_1 [nour:Fido |
fnc: hear arg: John31v_1 fnc:
3 |mar: mdr: fnc 30 hear ||mdr:
prn: 30 prn: 30 |prn: 31 prn:
[noun: John | [verb: hear] n/v v_1 <[noun:Fido]luerh: bark
fnc: hear arg: John31lv_1 e nc:v_1 =
4 |mdr: mdr: fnc: 30 hear | |mdr: m
prn: 30 prn: 30 prn: 31 prn: 31
result of syntactlc semantic parsi
[noun: John | [verb: hear |[niv: bark [noun: Fido |
fnc: hear arg: John 31 bark | |arg: Fido fnc: bark
mdr: mdr: fnc: 30 hear | |mdr:
|prn: 30 |prn: 30 |prn: 31 | prn: 31

In the result, the proplets of the main clause and of
the subclause are distinguished by different prn val-
ues, 30 and 31. The connection between the main
verb and its sentential object is coded by the arg value
31 bark of hear. The inverse connection is coded by
the fnc value 30 hear of bark.

The result of the hearer mode derivation is an order-
free set of proplets, shown below in the order of a
VNV"™N constellation (cf. 3.4.1 below):

3.3.2 CONTENT OF John heard that Fido barked.

verb: hear noun: John'| [n/v: bark noun: Fido
arg: John 31 bark | [fnc: hear arg: Fido fnc: bark
mdr: mdr: fnc: 30 hear | | mdr:
prn:30 prn: 30 prn: 31 prn: 31

The double function of the bark proplet as the functor
of the subordinate clause and as the argument of the
main clause is indicated by its core attribute n/v (for
nominal argument in the form of a subclause verb).

3.4 Production at the Clausal Level

Turning to production, consider a schematic charac-
terization of the proplet sequence 3.1.2 as a VNV"N
constellation with an associated realization; V™ rep-
resents the proplet with the n/v core attribute.

3.4.1 OBJECT CLAUSE (SPEAKER MODE)

John heard that Fido barked .

D o
1 VNs 2NVs 3VV"™s 4V"™Ns 5NV"s 6 V"Vs

The LA-speak.3 grammar for realizing English
functor-argument constructions with clausal argu-
ments and clausal modifiers (presented systematically
in NLC’06, Chapt. 7) has a total of 15 rules (includ-
ing the 4 rules of LA-speak.2 defined in 3.2.3).

26

4 Conclusion

Is it really necessary to analyze the grammatical re-
lations as a hierarchy, such that a functor (verb)
must dominate its arguments (nouns), for example?
Apart from well-known problems with discontinuous
elements and the handling of coordination, the as-
sumption of a hierarchical structure stands in the way
of a time-linear interpretation in the hearer mode, a
time-linear navigation in the think mode, and a time-
linear production in the speaker mode.

For a computational model of these operations,
Database Semantics treats the semantic relations of
functor-argument and coordination structures instead
as constellations of order-free proplets connected by
attribute-value pairs. It has been shown here that
this formal method easily accommodates a traditional
approach to grammar based on nouns, verbs, and ad-
jectives at the elementary, phrasal, and clausal level.

5 References

AIJ01 = Hausser, R. (2001) “Database Semantics for natural
language,” Artificial Intelligence, 130.1:27-74

Ajdukiewicz, K. (1935) “Die syntaktische Konnexitat,” Studia
Philosophica, 1:1-27

Bar Hillel, J. (1953) “A quasi-arithmetical notation for syn-
tactic description,” Language, 29.1:47-63

Benner, M. L. (2008) Towson University online Writing Sup-
port, http://www.towson.edu/ows/

Chomsky, N. (1957) Syntactic Structures, The Hague: Mouton

Chomsky, N. (1965) Aspects of the Theory of Syntaz, Cam-
bridge, Mass.: MIT Press

CoL’89 = Hausser, R. (1989) Computation of Language, Sym-
bolic Computation: Artificial Intelligence, Berlin Heidelberg
New York: Springer

Elmasri, R., and S.B. Navathe (1989) Fundamentals of
Database Systems. Redwood City, CA: Benjamin-Cummings

FoCL’99 = Hausser, R. (1999/2001) Foundations of Compu-
tational Linguistics, Human—Computer Communication in
Natural Language, 2nd ed., Berlin Heidelberg New York:
Springer

Givon, T. (1997) Grammatical Relations:
Perspective. Amsterdam: John Benjamins

Hausser, R. (2002) “Autonomous Control Structure for Artifi-
cial Cognitive Agents,” in H. Kangassalo et al. (eds) Infor-
mation Modeling and Knowledge Bases XIII, Amsterdam:
IOS Press Ohmsha

Hausser, R. (2007) “Comparing the Use of Feature Structures
in Nativism and in Database Semantics,” H. Jaakkola et.
al. (eds) Information Modelling and Knowledge Bases XIX,
Amsterdam: IOS Press Ohmsha

A Functionalist

Lesniewski, S. (1929) “Grundziige eines neuen Systems der
Grundlagen der Mathematik,” Warsaw: Fundamenta Math-
ematicae 14:1-81

MacWhinney, B. (2008) “How Mental Models Encode Em-
bodied Linguistic Perspective,” in L. Klatzky et al. (eds.)
Embodiment, Ego-Space, and Action, New York: Psychol-
ogy Press

NEWCAT’86 = Hausser, R. (1986) NEWCAT: Parsing Nat-
ural Language Using Left-Associative Grammar, Lecture
Notes in Computer Science 231, Berlin Heidelberg New York:
Springer

NLC’06 = Hausser, R. (2006) A Computational Model of Nat-
ural Language Communication, Berlin Heidelberg New York:
Springer

Post, E. (1936) “Finite Combinatory Processes — Formulation
1, Journal of Symbolic Logic, 1:103-105

Schegloff, E. (2007) Sequence Organization in Interaction,
New York: Cambridge Univ. Press

TCS’92 = Hausser, R. (1992) “Complexity in Left-Associative
Grammar,” Theoretical Computer Science, 106.2:283-308

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

CONTRIBUTED PAPERS

27

CRPIT Volume 96 - Conceptual Modelling 2009

28

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Business Process Integration: Method and Analysis

Evan D. Morrison Alex Menzies

George Koliadis Aditya K. Ghose

Decision Systems Lab
School of Computer Science and Software Engineering
University of Wollongong,
Wollongong NSW 2522, Australia,
Email: {edm92, am57, gk56, aditya}@uow.edu.au

Abstract

In the study of business management, process integration
has become an interesting area of research that affects an-
alysts studying and working on existing system plans. Pro-
cess integration aims to investigate relationships across a
business compendium to produce classifications and merge
similar activities into a standardized system. Integration
is the process of merging elements from two similar an-
tecedent processes to create a single process that can be
used to replace the original processes. This paper proposes
a practical method for process integration and provides a
theoretical framework and metrics for business process in-
tegration assessment. In the provision of metrics that take
into account similarity of activities within processes we are
able to offer solutions that provide minimal change reduc-
ing change costs, and minimizing change impact risks.

Keywords: BPMN, Process Integration, Similarity Match-
ing, SPNets

1 Introduction

The problem of business process integration is ubiqui-
tous is a wide variety of domains. Consider, for example, a
back-office financial service provider that serves a range of
different pension funds. The service provider must support
processes for clients (individuals) to be added to the system,
new employers to be added to the system, consolidation of
pension accounts in various funds into a single account etc.
The provider must support different versions of these pro-
cesses for the different pension funds that it serves, since
each fund requires its own process to be followed in each
instance. The provider notes that a given process (say that
for changing client addresses) varies minimally from fund
to fund, and seeks to ‘rationalize’ these variants to obtain a

Copyright (©2009, Australian Computer Society, Inc. This paper ap-
peared at the Sixth Asia-Pacific Conference on Conceptual Modelling
(APCCM 2009), Wellington, New Zealand, January 2009. Conferences
in Research and Practice in Information Technology (CRPIT), Vol. 96,
Markus Kirchberg and Sebastian Link, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

single process. The problem is one of business process inte-
gration, where the fund-specific variants are combined into
a single process that achieves the goals of all of the original
processes.

Consider another example where a smaller insurance
company is acquired by a larger insurance company. There
is a need for the resulting entity to support a single claims
handling process, which requires that the claims handling
processes of both the acquiring and acquired companies be
integrated into a single consolidated process that achieves
the goals/objectives of both prior processes.

In both examples, there would be an implicit requirement
that the consolidated process be as ‘close’ or as ‘similar’
as possible to the original processes in order to minimize
disruption and to protect investments in existing process in-
frastructure. The business process integration problem can
thus be viewed as the problem of identifying a single pro-
cess that:

1. Achieves all of the goals/objectives of a set of prior
processes while

2. Minimizing the extent of change required to the origi-
nal processes.

The first requirement involves identifying a new goal that
the integrated process must achieve, which can be a simple
matter of taking the conjunction of the goals of the prior
processes (we do not address more complex questions con-
cerning goal merging when the goals are inconsistent, al-
though this is an important problem). The second require-
ment involves assessing, and ideally measuring, the extent
of change affected by a process variant relative to the origi-
nal process.

We present a novel approach to business process integra-
tion that relies on a set of process proximity metrics. We as-
sume that processes are represented in the industry-standard
BPMN notation. BPMN provides little support for repre-
senting the semantics of the processes being modeled (be-
yond the nomenclature of the tasks involved, and the con-
ditions that label decision gateways). We first describe an
approach to supporting lightweight semantic annotation of
BPMN models by analysts, bearing in mind that insisting
on the use of ‘heavier’ formal methods for annotation, or
the translation of BPMN models into formal semantic do-
mains (on which there is no consensus within the commu-
nity), would find little acceptance in practice. Based on this

29

CRPIT Volume 96 - Conceptual Modelling 2009

scheme, we define a uniform graph-based encoding of se-
mantically annotated BPMN models, called semantic pro-
cess nets (or SPNets) (originally introduced in (Ghose &
Koliadis 2007)). We then describe a class of process prox-
imity metrics, and show how these can form the basis for
an effective business process integration framework. We
note that we do not address the problem of data integra-
tion (which has been the subject of considerable earlier re-
search), but focus only on behavior integration. Our work
improves on several earlier frameworks for process integra-
tion that have been discussed in the next section.

2 Background

The principal purpose of any model is to “identify the
structural features that have the greatest implications for
policy, and thus are worthy of further pursuit” (Fiddaman
1997). Using business process modeling as a means to ex-
press the operation of an organizational system based on a
combination of artifacts and knowledge extracted from do-
main experts provides a level of formalism. Maintenance of
the formal system can be viewed as problem to be solved
within the notation.

2.1 Business Process Modelling

The Business Process Modeling Notation (BPMN) has
received strong industry interest and support (White 2006),
is highly mature (Becker et al. 2005), but has been found to
have some limitations relating to the representation of pro-
cess state and other ambiguities (Becker et al. 2005). Busi-
ness processes are represented in BPMN using flow nodes:
events, activities, and decisions; connectors: control flow
links, and message flow links; and swimlanes: pools, and
lanes within pools.

We model the quality aspects of a BPMN model using
an algebraic scheme developed within the constraint model-
ing literature (Bistarelli 2001), which defines quality scales
as a 5-tuple (A, @, ®,0,1). Under this scheme, A is a set
consisting of numeric, boolean or symbolic preference val-
ues, & and ® are two commutative and associative operators
closed in A, 0 is the least preferred value in A, and 1 is the
most preferred value in A. In addition: & is an idempotent
comparison operator, which has an absorbing element of 1,
and unit element of 0; and, ® is a combination operator,
which is usually decreasing, distributes over comparison,
has an absorbing element of 0, and a unit element of 1.

2.2 Business Process Integration

In the following sub-sections, we introduce the state-of-
the-art in business process matching and integration tech-
niques, and describe how we address some of their draw-
backs.

Matching

Process matching is the process of clustering and relat-
ing similar activities. These clusters can be derived using
various methods each with strengths and weaknesses that
can leverage the knowledge stored in a process.

Clustering techniques classify objects (such as business
process models) into partitions so that the data in each sub-
set share common traits. A number of clustering methods

30

and functions are outlined in (Huang & Ng 1999) using
large set based k-mean algorithms. During the clustering
phase each element is massaged into a group of related el-
ements. In cases where data can not be disseminated using
large data set averaging methods, the classification of ob-
jects in a particular domain can be completed by separat-
ing objects into classes based on their attributes, and giving
criteria for determining whether a particular object in the
domain is in a particular class or not. This is done in bi-
clustering (Busygin et al. 2008) where a set of samples are
simultaneously partitioned into subsets in a way that they
have a high relevance to each other, k-mean clustering can
be used with other methods to create of bi-clustered groups.

The problem of using these techniques within an orga-
nizational domain is the complexity associated with imple-
mentations. Most implementations of data clustering can
be seen in large scale projects such as gene mapping and
search engine crawling.

Smaller steps can be taken to reduce the complexity of
large scale data classification requirements with the use of
naming conventions. Activity names should carry clear and
concise meanings. Each data set name will provide a sig-
nificant meaning to the observer. During design analysts
define models using meaningful naming conventions to pro-
vide clarity in some context. (Kementsietsidis et al. 2003)
Kementsietsidis investigates methods for the logical design
of data values to promote integration from heterogeneous
data sources using data mapping tables. The tables maintain
correspondences between, for example, business processes
within a process repository. Thus, queries may result in al-
ternate names, retaining knowledge in a particular domain.

An example of classification completed by system users
can be seen implemented in the collaborative database
schema integration tool SISIBIS (Beynon-Davies et al.
1997) where during the creation of enterprise data schemas,
analysts and system users were asked to tag various ele-
ments with the semantic meanings (with respect to them-
selves) and how various data was designed using contextual
descriptions.

The use of matching techniques to connect elements
from incoming processes helps reveal contextual similar-
ity. Contextual similarity is required in process integra-
tion, acting as a mapping function that shows direct simi-
larities between two processes. In (van Dongen et al. 2008)
Dongen,et al. presents a vector based proximity metric for
contextual similarity. These metric are found by beginning
with cluster based semantic similarities across documents
(using causal and contextual footprints and combining with
semantic scoring), where an organization wide vector of ar-
tifacts are contrasted against one another using union op-
erators. This approach allows an analyst to rank semantic
equivalences between two or more processes. The adjunct
system described in (Mendling & Simon 2006)(Mendling)
shows structural integration methods using Event-Driven
Process chains against a number of SAP process models.
In this work a structure merge operator is defined for use
on SAP models that can be used once a semantic similarity
between functions has been defined. Mendling also shows
a reduction method that can be achieved by eliminating re-
dundant process pathways while keeping EPC based struc-
tural integrity. In the preceding research Event-Driven pro-
cess chains are used to verify structural ‘soundness’ or non-
recoverable errors (van Dongen et al. 2005) as well as re-
ducing complexity within the structure. The problems asso-

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

ciated with relying on a union combination of various pro-
cess information (van Dongen et al. 2008) is in considering
similarity of functions (defined using synonyms and words,
or similarly of footprints) ignoring the frequency of the met-
rics (Lewis 1998). We address these problems by consider-
ing differences and adding together algebraic distances.

Integration

Process integration aims to investigate relationships
across a business compendium to produce classifications
and merge activities into a standardized system. This in-
volves both matching and merging methods. The process of
integrating various activities relies heavily on matching cri-
teria. Once objects are considered close enough to integrate
with one another, and if each object is not equal to the other,
then the merging process will begin.

Integration is the process of merging elements from two
similar antecedent processes to create a single process that
can be used to replace the original processes. Integration
is broken into two parts, aggregation and regression. Ag-
gregation is the process of combining data elements after
detecting common elements or common relations (Wang &
Miller 2005). This is done in its simplest form by combin-
ing common elements from two antecedent processes.

Hinke (Hinke 1988) shows a further depth to aggrega-
tion by comparing general cardinality aggregations and in-
ference aggregation in which predictions of inference can
be made from data. Here not only are similar activities from
antecedent processes joined in an integrated output, there is
also a case where if an antecedent activity has a relation to
an activity that does not have a direct role in a process but
acts as a constraint on a future activity within the process,
then the activity is included during integration as an infer-
ence activity. For example, consider a process where there
is an activity of ‘stamping letters in a mail room’. During
the integration of two processes that describe ‘sending a let-
ter to a customer’, we must consider ‘stamping a letter’ as
a constraint to be satisfied before ‘mailing the letter’. This
activity should be included in the integrated output process
even if it is not explicitly defined in one of the antecedent
processes.

Regression is a stage within an integration system that
involves reduction of the possible resulting process solution
space while maintaining consistency. As a model of a pro-
cess is aggregated a number of possible solutions can be
generated. It is during regression that duplicate and struc-
turally unnecessary data and information is removed to form
explicit processes. These processes can then be analysed
and a potential candidate implementation process can be
chosen. In (Morimune & Hoshino 2008) Morimune offers
a number of regression testing methods that can be used to
for the creation of these candidate processes, using homoge-
nous constraints. Regression in the use of process integra-
tion is useful for selecting optimal solutions.

Research into the area of business process space has re-
sulted in interesting work, where many of the technical as-
pects of integration have been addressed. In (Grossmann
et al. 2004), a method for business process integration is
presented, which relies on the introduction of detailed and
explicit process states, inter-process dependencies, and syn-
chronizations as integration criteria. In comparison, the
work in this paper presents a goal and proximity-directed
criterion (relying on minimal analyst intervention) allow-
ing analysts to explore candidate integrations that maintain
structural and semantic similarity to their antecedents. In

(Mendling & Simon 2006), a (database) view integration-
inspired business process integration method, achieved via
a view-merge operator, identity/ordering relations, and re-
structuring (or simplification rules) is presented. In com-
parison, we outline criteria that help establish identity rela-
tions, and minimize structural and (some) semantic differ-
ences during integration.

In the following sections we provide a conceptual frame-
work that can be relatively easily implemented in decision-
support tools to detirmine degree of similarity of process
model integration options. A key challenge with BPMN
is that it provides relatively little by way semantics of
the processes being modeled. Another challenge is that
there is no consensus on how the semantics of BPMN
might be defined, although several competing formalisms
have been proposed. Since integration clearly requires
more information than is available in a pure BPMN pro-
cess model, we propose a lightweight, analyst-mediated ap-
proach to semantic annotation of BPMN models, in par-
ticular, the annotation of activities with effects. Model
checking is an alternative approach, but it requires map-
ping BPMN process models to state models, which is prob-
lematic and ill-defined. We encode BPMN process models
into semantically-annotated digraphs called Semantic Pro-
cess Networks (or SPNets). We then define a class of prox-
imity relations that permit us to compare alternative modi-
fications of process models in terms of how much they de-
viate from the original process model.

3 Semantic Process Nets (SPNets)

Semantic Process Nets (SPNets) (Ghose & Koliadis
2007) provide us with a uniform structural and semantic en-
coding of a BPMN model to which we will be developing
our theory for business process integration.

Definition 1 A Semantic Process Network (SPNet) is a
graph (V. E, s,t,ly,lg) such that: V is a set of nodes; E
a set of edges; s,t : E — V are source and target node
mappings; ly : V. — Qv maps nodes to node labels; and,
lg : V — Qg maps edges to edge labels. Each label in Q)
and Qg is of the form (id, type, value).

We note that a unique SPNet exists for each model in
BPMN. This can be determined objectively through trans-
formation. Each event, activity or gateway in a BPMN
model maps to a node, with the type element of the label
indicating whether the node was obtained from an event,
activity or gateway in the BPMN model. Actors also map
as nodes, with the value label referring to the name of the
role associated with the pool and lane of the actor. The type
element of an edge label can be either control, message, as-
signment, immediate effect, or cumulative effect depending
on whether the edge represents a control flow, message flow,
task assignment, immediate effect, or cumulative effect de-
scriptor. The value element of edge labels are: guard condi-
tions (for control edges); message descriptors (for message
edges); actor names (for assignment edges); post conditions
(for immediate effect edges); or, context descriptors (for cu-
mulative effect edges). Note, s(e¢) = t(e) for an immediate
effect, or cumulative effect edge e € E.

The wvalue elements for immediate effect, and
cumulative effect edges are triples of the form

31

CRPIT Volume 96 - Conceptual Modelling 2009

o=
fs .
=] . . Receipt Form Send Form to
§ @ verify Mailer to Payee Account Processing
=) I
W=
w
[ri)
S
=2
=
§ Vvalidate Process
g Form Auditing
o
Figure 1. Example Process 1
g Receive Form Receipt Form .
§ Werify Mailer to Payee Account
(=]
o | 2 F
w
w
§ Mo
k= =l
bt % Walidate Werify Yes Update DB _j
2 Faorm Mailer to match details
5 N
o

Do client details

need updating?

Figure 2. Example Process 2

(id, function, quality). The id element of an imme-
diate effect edge corresponds to the source node id label
element. The id element of a cumulative effect edge is a
scenario identifier (a vector) where each element is either:
a node identifier; or, a set whose elements are (recursively)
scenario identifiers. A scenario identifier describes the
precise path that would have to be taken through the process
model to achieve the cumulative effect in question.

The function element of an immediate effect, or cu-
mulative effect edge label is a set of assertions, whereas
the quality element is a vector of QoS evaluations. The
function and quality elements of an immediate effect an-
notation edge label can be viewed as a context-independent
specification of its functional and non-functional effects.
These must be accumulated over an entire process to be
able to specify, at the end of each activity, the contextual
function and quality elements of cumulative effect anno-
tation labels. These labels indicate the functional and non-
functional effects that a process would have achieved had it
executed up to that point.

3.1 Accumulating Functional Effects

We define a process for pair-wise effect accumulation,
which, given an ordered pair of tasks with effect anno-
tations, determines the cumulative effect after both tasks
have been executed in contiguous sequence. The procedure
serves as a methodology for analysts to follow if only in-
formal annotations are available. In the case of formal an-
notations, we assume effects have been represented in Con-
junctive Normal Form (CNF) where each clause is also a
prime implicate, thus providing a non-redundant canonical
form. Cumulative effect annotation involves a left-to-right
pass through a participant lane. Activities which are not
connected to any preceding activity via a control flow link

32

are annotated with the cumulative effect {e} where e is the
immediate effect of the task in question. The process of ob-
taining cumulative effect annotations from a BPMN model
annotated with immediate effects can be automated in the
instance of formal or controlled natural language annota-
tions. We note that this approach to obtaining functional ef-
fect descriptions comes with no guarantee of completeness.
In other words, the quality of the descriptions that we obtain
is a function of the quality of immediate effects and goals
specified by analysts. Our experience suggests that the ap-
proach is nonetheless useful in providing an approximately
adequate basis for change management.

Let (t;,t;) be an ordered pair of tasks connected via a
sequence flow such that ¢; precedes t;, let e; be an effect
scenario associated with ¢; and e; be the immediate effect
annotation associated with ¢;.

Let €; = {Cila Ci2y vy Cim,} and 6j =
{¢j1,¢j2,...,¢jn} (we can view CNF sentences as sets of
clauses, without loss of generality). If e; U e; is consistent,
then the resulting cumulative effect, denoted by acc(e;, ej),
is {e; Ue;}. Else, acc(e;, ej) = {ej Uel|(e C e;) and (e U
e; is consistent) and (there does not exist e’[(¢’ U
e; is consistent) and (e C €')])}.

The process continues without modification over splits.
Joins require special consideration. In the following, we
describe the procedure to be followed in the case of 2-joins
only, for brevity. The procedure generalizes in a straightfor-
ward manner for n-way joins.

In the following, let ¢; and t; be the two tasks im-
mediately preceding a join. Let their cumulative effect
annotations be F; = {esi1,es1a,...,es1,,} and Fy =
{esa1, €899, . .., €89, } respectively (where es;; denotes an
effect scenario, subscript s within the cumulative effect of
some task, subscript t). Let e be the immediate effect an-

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

notation, and E the cumulative effect annotation of a task ¢
immediately following the join.

For an AND-join, we define £ = {a; U ajla; €
acc(esii, e) and a; € acc(esaj, e) and esy; €
E, and esg; € E,and {esy;,esy;} are compatible}.
A pair of effect scenarios are compatible if and only if their
identifiers (representing the path and decisions taken during
construction of the scenario) are consistent (the outcomes
of their decisions match). Note that we do not consider the
possibility of a pair of effect scenarios esy; and esg; being
inconsistent, since this would only happen in the case of
intrinsically and obviously erroneously constructed process
models. The result of effect accumulation in the setting
described here is denoted by AN Dacc(Eq, Es, €).

For an XOR-join (denoted by
XORacc(Eq, Eq,€)), we define E =
{a;la; € acc(es;, e) and (es; € Eq ores; € E)}.

For an OR-join, the result of effect accumulation is
denoted by ORacc(E1, Ea,e) = ANDacc(Er, Ea,e) U
XORacc(E7, Ea,e). The role of guard conditions within
effect annotations is also important. Consider the first ac-
tivity ¢ on an outgoing sequence flow from an OR- or XOR-
split.

Let E be the set of effect scenarios annotating the ac-
tivity immediately preceding the XOR-splitand let £/ C E
such that each effect scenario E’ is consistent with the guard
condition c associated with that outgoing flow. Then the
set of effect scenarios of ¢ is given by {a | a € acc(e A
c,er) and e € E'}, where e; is the immediate effect anno-
tation of ¢ and e A c is assumed without loss of generality to
be represented as a set of prima implicates.

We note that the procedure described above does not sat-
isfactorily deal with loops, but we can perform approximate
checking by partial loop unraveling. We also note that some
of the effect scenarios generated might be infeasible. Our
objective is to devise decision-support functionality in the
compliance management space, with human analysts vet-
ting key changes before they are deployed.

3.2 Accumulating Non-Functional Effects

We use scenario identifiers (see Section 3) to compute
cumulative QoS measures. This leads to a cumulative mea-
sure per effect scenario. Recall that a scenario identifier is a
sequence composed of activity identifiers or sets consisting
(recursively) or scenario identifiers. We use the sets in the
label to describe parallel branches. We therefore need to use
our algebraic parallel accumulation operator (&), one for
each QoS factor, to specify how cumulative QoS measures,
propagated along parallel branches, get combined together
at a join gateway.

4 Semantic Process Net Integration

Business process proximity is used during integration to
establish a distance measure between two SPNets. Intu-
itively, this measure is used to ensure that the integrated
model is as similar as possible to its two antecedents. In
other words, we would like to minimize the deviation of
an integrated model from its ancestors, thereby utilizing the
previous legacy configuration and minimizing effort during
integration.

Definition 2 Associated with each SPNet is a proximity
metric: d(p;, p;j); which given an integrated process p;, and
one of its antecedents p;, computes the distance of p; from
p; w.r.t. a combination of structural and semantic criteria,
alternatively defined as either (or by combining):

o dv(pi,p;) + de(pi,p;) + ds(pi,p;);
e wydy(pi,p;) + wede(pi,pj) + wsds(pi, pj);

dv (pi,pj)
Dv (pi,p;)

ds(pi,p;) .
Ds(pi,pj)’

dp(pipj)
Dg(pi.pj)

such that: dvy, dg, and dg are node, edge, and semantic
(effect) proximity metrics; wy, wg, and wg are weights for
each metric; and, Dv, Dg, and Dg indicate the maximum
hypothetical distance.

In order to compute our structural (node and edge) dis-
tance metrics, we consider sets of nodes V(p) and edges
E(p) of each model p in the following way: dv (p;,p;) =
V(p) AV (p,)]: and, dis(py p;) = |E(pi)AE(p;)|. Note,
that for an SPNet encoding of a BPMN model, we only
consider edges of fype: control, message, and assign-
ment. In addition: Dy (p;,p;) = |V (p:)| + |V (p;)|, and
Dg(pi,p;) = |E(pi)| + |E(p;)|- These measures are used
in the last instance to help reduce the dominance of any one
structural or semantic proximity metric.

Computing semantic proximity dg is somewhat more
complicated as it relies on the possible end effect (outcome
or scenario) of either process. Firstly, we require a mecha-
nism for matching the end effects of either process. Let e
be some effect scenario, let &/ be a set of candidate effect
scenario matches, and let mg(e, E) = {e, € E | |eAe| <
leAe,| forall e; € E'} denote the set of min-cardinality dif-
ferent elements of the set of candidate scenarios E w.r.t.
the scenario e. Thus, ds(e, E) = § € {eley | ex €
mg(e, E)} denotes a non-deterministically chosen min-
cardinality difference. Let Ag(E;, E;) = {ds(es, Ej)|e; €
E;} denote the asymmetric difference between the set of
scenarios I; and E; for corresponding processes p; and p;,
and dg(pi,p;) = D |9], forall § € Ag(E;, E;), where E;
and E; correspond to the end effect scenarios of process
p; and p; respectively. Therefore, ds(p;, p;) computes the
sum cardinality of each difference between an end effect
scenario in p; and a matching end effect scenario in p;. We
note that symmetric versions of this metric exist, but omit
their details, along with their proofs, for future work.

In addition, cost metrics could also be incorporated into
our calculation of proximity in order to incorporate the cost
associated with making changes to either antecedent of an
integration.

4.1 Semantic Process Net Integration
Criteria

Any approach to process integration should view both
the process state (Mendling & Simon 2006), the domain
knowledge (Fankhauser et al. 1991) (Beynon-Davies et al.
1997) (Li et al. 2006), as well co-ordination characteristics
(Heinz & Eder 1999) (Grossmann et al. 2005). Under our
integration scheme we provide a framework for process in-
tegration based on process structural and semantic descrip-
tions. This framework may work in combination with one
of the aforementioned approaches.

33

CRPIT Volume 96 - Conceptual Modelling 2009

Accaunting

Recieve Form Receipt Farm
FRBVBWVB'iﬂCaIiDn 1o Payee Account

Integration Option 1

Process
Auditing

Validate Form H

Pracessing

No
Yes Update DB to
match details

Werify Mailer H
Yes

Yes

Do client details
need updating?

Recieve Form

-

Accounting

Yes Receipt Form
to Payee Account

Update DB to
match details

Walidate Form

Integration Option 2

&

Do client details
need updating?

Pracessing

[p{REview Verification
Mo
Yes

Process .
Auditing

) Receipt Form
Verify Mailer H validate Form to Payee Account }—O

Integration Option 3
Accounting

Figure 3. Example Integrations

Definition 3 An SPNet p represents the integration of an
SPNet p1 and SPNet py i f f all of the following hold:

1. SPNet p achieves G, (the goals associated with p)
where G, = G, N\ Gy, and G, is the goal achieved
by process p;;

2. there exists no p’ such that p’ achieves G, and the
following holds: d(p1,p") + d(p2,p’) < d(p1,p) +
d(p2,p). Here d is a distance function between two
processes. This defines an integration solution where
the closest integration super process has no closer po-
tential solution p'.

Note, that our definition of goals above applies to both
the functional and non-functional properties of an SPNet.

4.2 Semantic Process

Net Integration
Methodology

Business process integration in practice requires some
effort on behalf of an analyst, during both process matching
and selection of candidate integrations. The criteria we have
outlined in the previous sections allow us to reduce analyst
effort during the matching and selection steps (as outlined
in the discussion below).

34

Step 1: Business Process Matching.

Prior to and during integration, matching is required to
determine the likelihood that two business processes, or ac-
tivities within a business process, share similarities or are
equivalent. This may involve the use of three techniques.
The first involves evaluating the labels of business processes
and activities using linguistic techniques (mediated with an
ontology) as in (Ehrig et al. 2007). This may help in, for
example, determining that a Package Consignment process
is semantically similar to a Package Receiving process. An-
other technique that may be applied (also in combination
with an ontology) is the evaluation of the effect (or func-
tionality) of a business process or activity. Here, the se-
mantic aspect to our proximity metric can be re-used effec-
tively. Finally, as processes may be represented at varying
levels of abstraction, we can apply the aforementioned tech-
niques to detect the part-whole relations among and within
business processes in order to initially resolve abstraction
conflicts. These three approaches to matching may be ei-
ther completely automated, involve some automation, or be
a simple guide applied to a completely manual integration.

Step 2: Business Process Integration Goals.

We firstly require a goal (describing a set of criteria) for
the integrated business process to be determined. In this
approach, the goal can be either given or determined by
merging the effect scenarios of each business process to be
integrated using an automated or semi-automated strategy.
An automated strategy might involve: conjoining consis-
tent effect scenarios; and/or, extracting the most common
effects among effect scenarios. As these strategies only

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Table 1. Example Process Effects

Accumulation Effects

[[Description Process 1

[Description Process 2

Validation of Form

In processing after receipting

In Processing

Verification of Identity

In Accounting

In Processing

Receipting of Funds In Accounting In Accounting

Auditing of Work In Processing

Update of DB After verification and validation
The correct payee is known to all (after || In Accounting In Processing

verify)

Database Updated Completed after verification

Table 2. Example Integration Effects

Accumulation Properties

Description Integration 1

| Description Integration 2

| Description Integration 3

Validation of Form

In processing

In processing

In accounting

Verification of Identity

In processing

In Accounting

In accounting

ification and verification

and validation

Receipting of Funds In Accounting In Accounting In accounting
Auditing of Work In processing In processing
Update of DB Completed if needed after ver- | Completed after verification

The correct payee is known to
all (after verify)

Account information given to
accounting after validation and
verification

Accounting passes verification
information to processing and
keeps information on their

records

lead to some approximate baseline, analysts will need to
provide input. The requirement to firstly establish the com-
mon business goal for an integration step allows us to re-
duce the complexity of ad-hoc integration, as well as sepa-
rating concerns and roles during the process. As discussed,
the integration goal can be either computed in a bottom-up
or top-down manner, and provides a concise description of
the requirements for the integrated model.

Step 3: Business Process Integration.

Business process integration involves a search through
a space of possible integration options that is directed by
our integration characteristics. One way to search for the
most proximally efficient integration, can be to follow a lo-
cal generate and test strategy. Consider an algorithm sketch:
whose input is R (a repository of SPNets to be integrated);
and, manipulates a set V' of (spn, history) pairs. The al-
gorithm would 1: V' = {(spn,())} (initialize with the
model to be manipulated (possibly the intersection of nodes
and edges among models); 2: While(!Accepted(V)) V =
Step(V, R) (step through changes until an acceptable inte-
gration is identified). An implementation of the Step func-
tion would apply a single admissible addition or removal
of a node or edge (possibly from elements of R). The his-
tory would allow: poor candidates to be forgotten; ensure
complementary operations are not applied to single models;
ensure uniqueness is maintained across models; and pro-
vide a local basis for evaluating proximity and other heuris-
tics. Firstly, termination could be an issue due to the infi-
nite (gateways) nature of R, although results are anytime.
There is also a large branching factor, although the metrics
we have defined guide search.

5 Semantic Process Net Integration: An Example

In order to demonstrate the framework described within
this paper, we will present a worked example of process in-
tegration, given two processes as in Fig. 1 and Fig.2 . Each
process describes a way in which a business completes the
task of ‘receipting cheques into the organization’. For the
two given processes each activity contributes a number of
effects that work to achieve a global organizational goal.
These Effects are shown in Table. 1.

To compute the Node Proximity Metric we consider each
node in each BPMN process diagram. Using Integration 1
from Fig. 3 we compute the delta with Process 1 from Fig. 1.
In process one there are 7 BPMN process nodes (including
events). In integration solution 1 there are 9 BPMN pro-
cess nodes (including events and gateways). We follow the
same process to compute the similarity of edges. In order
to consider values for our semantic metric we have in the
case of our example considered differences in the effect of
completing each activity as a representation as described in
Table.1 and Table.2 (this could as easily be replaced with
word average per activity name, annotations, or effects).

Once these effects have been found and listed an analyst
or automated task may then proceed to generate various in-
tegrated process schema’s. We have provided 3 possible
integration models in Fig.3. These models vary in terms
of Actors rolls and ordering. During this stage the naming
conventions have remained the same (as such there is little
semantic deviation), and relative ordering based on compli-
ance constraints have been left untouched.

35

CRPIT Volume 96 - Conceptual Modelling 2009

Table 3. Example Integration Effects: Node Proximity
[Node Proximity | Process 1 (P;) [Process 2 ()]
. ndp, (T)Andy, (9) 1 ndp, (8)Andr, (9)
Integration(/;) m =3 m = T17
i nap, nary 1 napy ndry _ 1
Integration(1) m 8 m 17
. n n 1 n n — 3
Integration(/3) W i W 3

Table 4. Example Integration Effects: Edge Proximity

Edge Proxim- || Process T (P;) Process 2 (P;)
ity
. edp, (6)Aedr, (9) 1 edp, (8)Aedr, (9) 1
fegratonh) |~ tmpnt =5 | fmmml oS
. edp edr 1 eap. ear. _ 1
Integration(/3) _ 1|(};3‘AJF|CIZQ2‘ - =13 _ 2|(1;1)|A+‘(§ZT - =9
. edp edr _ 1 eap. eay _ 1
Integration(ls) | P~ =5 | —inpmr — 3

Table 5. Example Integration Effects: Semantic Proximity

Semantic Process 1 (P;) Process 2 (P)
Proximity*
. sdp, (T)Asdr, (9) 1 sdp, (8)Asdr, (9) 1
Integration(/;) 71“31'“11 |1 =3 7"@”“[1 |1 = 1=
. sdp, (T)Asdr, (9) 1 sdp, (8)Asdr, (9) 1
Integration(/5) 71| TEAIA |2 =3 72‘ TAIERIA |2 =17
. sdp, (T)Asdr, (5) 1 sdp,(8)Asd;, (5) 3
Integration(7s) EAEEV Pmnl = s

Once these alternate integration option have been cre-
ated, we now use ratio proximity relations to compare
nodes, edges, and semantics between the original processes
and the integrated possibilities. In the tables. 3, 4, 5 we have
computed the various proximity relations in order to find an
overall solution. After analyzing the results obtained, we
have found the Integration 2 is the prime candidate for the
role of an integration of process 1 and process 2.

In this example we have shown that using proximity met-
rics across node, edge and semantic values we are able
chose an appropriate integration solution. These metrics
can be further formulated using the weighted metrics for
each candidate depending on the application. For a busi-
ness wishing to integrate processes with a goal of broader
knowledge consistency (language based), attention to struc-
tural deviation may be modulated to have a lesser impact in
the decisional stages.

6 Summary and Conclusions

The interesting element of our method is in the use of
minimal change of processes. This acts in favor of a busi-
ness implementing a change management solution in terms
of costs minimization (as it costs less to change less), and
also in the reduction of change risks. This risk is of grow-
ing concern for compliance reasons, as with strict regulative
control acting on many businesses it is assumed that broad
innovative changes to processes as the result of any integra-
tion activity may leave an organization vulnerable to breaks
in the value chain or penalties bought about by uncompleted
activity steps.

In this work we have presented an innovative method of

36

process integration using Semantic Process Networks. This
framework can be used a means to complete process inte-
gration. As a continuation of our work into this area we
would like to explore additional instantiations of our prox-
imity metrics and validate our approach in a controlled set-
ting.

References

Becker, J., Indulska, M., Rosemann, M. & Green, P. (2005),
Do process modelling techniques get better?, in ‘Pro-
ceedings of the 16th Australasian Conference on Infor-
maion Systems’.

Beynon-Davies, P., Bonde, L., McPhee, D. & Jones, C.
(1997), ‘A collaborative schema integration system’,
Computer Supported Cooperative Work (CSCW) 6, 1-18.
URL: http://dx.doi.org/10.1023/A:1008627102073

Bistarelli, S. (2001), Soft Constraint Solving and Program-
ming: a General Framework, PhD thesis, Computer Sci-
ence Department, University of Pisa.

Busygin, S., Prokopyev, O. & Pardalos, P. M. (2008),
‘Biclustering in data mining’, Comput. Oper. Res.
35(9), 2964-2987.

Ehrig, M., Koschmider, A. & Oberweis, A. (2007), Measur-
ing similarity between semantic business process models,
in ‘Proc. of the Fourth Asia-Pacific Conf. on Conceptual
Modelling’.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Fankhauser, P., Kracker, M. & Neuhold, E. J. (1991), ‘Se-
mantic vs. structural resemblance of classes’, SIGMOD
Rec. 20(4), 59-63.

Fiddaman, T. (1997), Feedback Complexity in Integrated
Climate-Economy Models, Ph.d. thesis, MIT Sloan
School of Management.

URL: http://metasd.com/papers/dissabstract.html

Ghose, A. & Koliadis, G. (2007), Auditing business process
compliance, in ‘Proceedings of the International Confer-
ence on Service-Oriented Computing’, Springer LNCS,
pp. 169-180.

URL: http://dx.doi.org/10.1007/978-3-540-74974-5_14

Grossmann, G., Ren, Y., Schrefl, M. & Stumptner, M.
(2005), Behavior Based Integration of Composite Busi-
ness Processes, Springer Berlin / Heidelberg, pp. 186—
204.

URL: http://dx.doi.org/10.1007/11538394_13

Grossmann, G., Schrefl, M. & Stumptner, M. (2004),
Classification of business process correspondences

and associated integration operators, Springer Berlin /
Heidelberg, pp. 653—666.

Morimune, K. & Hoshino, Y. (2008), “Testing homogene-
ity of a large data set by bootstrapping’, Math. Comput.
Simul. 78(2-3), 292-302.

van Dongen, B., Dijkman, R. & Mendling, J. (2008), Mea-
suring similarity between business process models, in

‘Advanced Information Systems Engineering’, Springer,
pp. 450-464.

URL: http://www.springerlink.com/content/xv3503k264370475

van Dongen, B., van der Aalst, W. & Verbeek, H. (2005),
Verification of epcs: Using reduction rules and petri
nets, in ‘Advanced Information Systems Engineering’,
Springer, pp. 272-286.

URL: http://www.springerlink.com/content/g8cpjSrgbtehbbal

Wang, G. & Miller, S. (2005), Intelligent aggregation of
purchase orders in e-procurement, in ‘EDOC Enterprise
Computing Conference, 2005 Ninth IEEE International’,
pp. 27-36.

White, S. (2006), Business process modeling notation
(bpmn),, Technical report, OMG Final Adopted Speci-
fication 1.0 (http://www.bpmn.org).

URL: http://www.springerlink.com/content/510qh8f1dnf96m93

Heinz, F. & Eder, J. (1999), Towards an automatic inte-
gration of statecharts, in ‘ER ’99: Proceedings of the
18th International Conference on Conceptual Modeling’,
Springer-Verlag, pp. 430-444.

Hinke, T. (1988), Inference aggregation detection in
database management systems, in ‘Security and Privacy,
1988. Proceedings., 1988 IEEE Symposium on’, pp. 96—
106.

Huang, Z. & Ng, M. (1999), ‘A fuzzy k-modes algorithm for
clustering categorical data’, Fuzzy Systems, IEEE Trans-
actions on 7, 446-452.

Kementsietsidis, A., Arenas, M. & Miller, R. J. (2003),
Mapping data in peer-to-peer systems: semantics and al-
gorithmic issues, in ‘SIGMOD ’03: Proceedings of the
2003 ACM SIGMOD international conference on Man-
agement of data’, ACM, New York, NY, USA, pp. 325-
336.

Lewis, D. D. (1998), Naive (Bayes) at forty: The indepen-
dence assumption in information retrieval., in C. Nédel-
lec & C. Rouveirol, eds, ‘Proceedings of ECML-98, 10th
European Conference on Machine Learning’, number
1398, Springer Verlag, Heidelberg, DE, Chemnitz, DE,
pp. 4-15.

URL: citeseer.ist.psu.edu/lewis98naive.html

Li, Q., Shan, Z., Hung, P. C. K., Chiu, D. K. W. & Che-
ung, S. C. (2006), Flows and views for scalable scientific
process integration, in ‘InfoScale *06: Proceedings of the
1st international conference on Scalable information sys-
tems’, ACM, New York, NY, USA, p. 30.

Mendling, J. & Simon, C. (2006), Business process design
by view integration, in ‘Proceedings of the BPM 2006
Workshops, Workshop on Business Process Design BPD
2006°, Vol. 4103 of Lecture Notes in Computer Science,
Springer-Verlag, Vienna, Austria, pp. 55-64.

37

CRPIT Volume 96 - Conceptual Modelling 2009

38

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Conceptional Modeling and Analysis of Spatio-Temporal Processes
in Biomolecular Systems

Andreas Schifer!

Mathias John?

I Department of Computing Science, University of Oldenburg, Oldenburg, Germany
Email: schaefer@informatik.uni-oldenburg.de

2 Department of Computing Science, University of Rostock, Rostock, Germany
Email: mjohn@informatik.uni-rostock.de

Abstract

In life science, deeper understanding of biomolecular
systems is acquired by computational modeling and
analysis. For the modeling of several kinds of reac-
tion networks, e.g. signaling pathways, information
on intracellular space, like the locations and motions
of molecules, has to be taken into account. In this
paper, we introduce Labeled SpacePi, an extension
of the m-calculus, in order to model spatio-temporal
processes in cells. The formalism is tailored to the
available data and knowledge about biomolecular sys-
tems. For the analysis, we employ model checking
techniques known from the field of safety-critical sys-
tems. To this end, we develop a translation of Labeled
SpacePi models into hybrid automata. Two use cases
- one considering the activation of a signaling path-
way and the other one concerning active transport in
cells - demonstrate our concept by making use of the
established analysis tools HyTech and HySat.

Keywords: conceptional modeling, spatio-
temporal modeling, biological data, mw-calculus, hy-
brid systems, model checking

1 Introduction

In the context of life science, intracellular processes
on a molecular level become of increasing interest, e.g.
(Polakis 2007, Thompson 1995). However, even with
the help of modern wet-lab techniques, a complete un-
derstanding of biomolecular systems is hard to obtain.
Therefore, biologists are supported on their investiga-
tions by deploying methods of computational model-
ing. To this end, the modeling needs to take spatial
information into account, because several processes
in human (eukaryotic) cells are strongly dependent
on the locations of molecules (Kholodenko 2006).

The subject of this work is to present a modeling
concept, that allows for the investigation of spatial
effects in biomolecular systems. As a first contri-
bution, based on the process algebra SpacePi (John,
Ewald & Uhrmacher 2008), we define a modeling for-
malism that can take various kinds of spatial data
into account but also avoids to require data that is
hard or impossible to collect - an essential point for

We thank Orianne Mazemondet for her support on the biolog-
ical background. This research was partially supported by the
DFG in the context of the Research Training School ”dIEM
0SiRiS”.

Copyright (©2009, Australian Computer Society, Inc. This
paper appeared at the Sixth Asia-Pacific Conference on Con-
ceptual Modelling (APCCM 2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in Infor-
mation Technology, Vol. 96. Markus Kirchberg and Sebastian
Link, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

a modeling approach, which is both, meaningful and
practical. We extend the SpacePi semantics by labels
similar to the labels known from hybrid logics (Are-
ces & ten Cate 2006). Therefore, we call our formal-
ism Labeled SpacePi. We use the labels for grouping
and syntactically identifying subprocesses of a sys-
tem that constitute individuals. The labels also carry
information on position and movement. This allows
for a clearer and more concise presentation than the
original semantics. We develop a formal verification
technique for a subset of Labeled SpacePi. It consid-
ers a system’s entire set of possible evaluations and
proceeds by constructing hybrid system models (Alur
et al. 1992). As it is a domain of active research, we
profit from the results achieved in the field of veri-
fication of hybrid systems and can make use of the
existing tools. In this paper, we employ the bounded
verification tool HySAT (Frénzle et al. 2007) and the
classical tool HyTech (Henzinger et al. 2001). Finally,
two use cases are given, that illustrate the application
of Labeled SpacePi to the spatial modeling of intra-
celluar processes. One focuses on the activation of the
Wnt signaling pathway (Polakis 2007) and the other
on active transport in cells.

For the spatial modeling of biomolecular systems, in-
put data is mainly provided in the form of molecule
locations, i.e. the spatial distribution of the differ-
ent protein sorts, including intra-cellular structures,
like membranes or microtubules. In this context, the
image analysis technique presented in (Zhao & Mur-
phy 2007) recently gained much attention. Based on
a set of microscopic images, it computes intracellular
maps, i.e. spatial models representing sets of observed
cells. Another technique, stemming from the field of
microscopy, called Fluorescence Recovery After Pho-
tobleaching (FRAP) (Meyvis et al. 1999), allows to
obtain diffusion constants that describe the spread-
ing of molecules. Databases provide the volumes of
many molecules, e.g. (Letunic et al. 2006), and dif-
ferent tools exist for predicting the three-dimensional
structure of proteins, e.g. (Zuker 2003, Rivas & Eddy
1999). Thus, a detailed image of intracellular space
can be drawn by combining data of different sources.
By contrast, only little information is given about
the interaction of proteins, i.e. their logical order
is mostly only assumed. Quantitative descriptions
in the form of rate constants are rarely given, be-
cause reaction constants are hardly observable in ex-
periments and although important for the modeling
only of marginal interest for the biologists. There-
fore, projects are planned that shall investigate the
deployment of computational methods to determine
rate constants (Takahashi et al. 2003).

The desired results of our modeling are statements
about the temporal development of the spatial dis-
tribution of molecules. In particular, it is the goal
to check, if, given some spatial topology, initial dis-
tribution of molecules, and logical order of reactions,

39

CRPIT Volume 96 - Conceptual Modelling 2009

some observed spatial distribution of molecules can
occur at a certain point in time. By this means, ex-
isting hypotheses about the system under study can
be evaluated. Additionally, it shall be possible to ap-
proximate earliest time points of specific events, e.g.
a certain number of molecules reaches some location,
and thus to suggest new experimental settings.

Our modeling describes molecules as individuals of
certain size and shape with some starting position in
real space and some motion function. Reactions are
represented by interactions of individuals resulting in
new individuals, see Sec. 2. They occur whenever in-
teraction partners are sufficiently close. It is also pos-
sible to define sets of non-interacting molecules of the
same sort (multiplicities). In this way, model com-
plexity can be reduced, such that the analysis pro-
cess is less computational costly, an important point
regarding practicability, see Sec. 5. In order to intro-
duce obstacles that interfere with molecular motion,
e.g. membranes, interactions can be marked as ur-
gent, i.e. they are performed as soon as possible. By
contrast, all other interactions can occur but do not
necessarily need to. This allows for the approxima-
tion of stochasticity as e.g. the fact, that not every
collision of two molecules is leading to a reaction.
The paper is structured as follows: in Sec. 2, the
syntax and semantics of Labeled SpacePi is intro-
duced, including the concepts of obstacles and mul-
tiplicities. Sec. 3 presents the model analysis ap-
proach that makes use of a translation of Labeled
SpacePi into hybrid automata. In order to relate
Labeled SpacePi processes to the constructed hybrid
automata, a spatio-temporal bisimilarity is defined.
Furthermore, the Sec. contains a short introduction
to the verification tools HyTech and HySat. These
are used in Sec. 4 for the analysis of the exemplary
models. In Sec. 5 an overview about related work is
given and Sec. 6 concludes the paper.

2 Labeled SpacePi

Our modeling formalism is based on SpacePi, which
is itself a derivative of the m-calculus (Milner 1999).
Therefore, it adopts the ideas presented in (Regev
& Shapiro 2002) for describing biomolecular systems.
Molecules are represented as concurrent processes and
reactions as communication channels, on which pro-
cesses can synchronize. Since communication in the
m-calculus is always performed by one sender and
one receiver, reactions are restricted to two reactants.
By contrast, there is no maximum number of prod-
ucts, since after communication, a process can pro-
ceed with any number of concurrent processes. In
general, a reaction network

T12R1+R3:>P1+"'+Pn
ro: Ry +R3= Q1+ +Qn

can be described with three processes

Ry =71().(P1|...|Pn), Re = 72().(Q1] - .. |Qn)

Ry =r1() +r2()

where + denotes the choice of a process to participate
in one of two (or more) reactions. Note, that the map-
ping from reaction networks to m-calculus models is
not unambiguous.

SpacePi extends the m-calculus by processes that have
real space positions, movement functions, and chan-
nels with distance values. Communication can only
occur, if the distance between the sender and the re-
ceiver is smaller than or equals the distance value of

40

the corresponding channel. In this section, we refine
SpacePi. Processes are now associated with shapes
and have the ability to transmit positions and move-
ment functions - a helpful feature as shown in Section
4.2. Additionally, a new, more concise, semantics is
given, which makes use of labels as known from hybrid
logics. Finally, concepts are introduced to describe
membranes (obstacles) and to represent molecule sets
as single individuals (multiplicities).

2.1 Syntax

The m-calculus employs the alphabet N, of channel
names. Channels can be used for communication
and also be communicated over other channels. As
an extension, Labeled SpacePi additionally incorpo-
rates the alphabets Ny of symbols of movement con-
straints, N, of symbols of position constraints, and N
of symbols of size constraints in order to assign spa-
tial parameters, i.e. positions, sizes, and movements,
to processes. The symbols in these alphabets are in-
terpreted by an interpretation ¢ which assigns a pred-
icate to each of the constraints. Positions and sizes
are predicates over coordinates in R™ and movements
are predicates over coordinates and their derivatives.

Example 1. A predicate t(f) =1 <32 <2A9%2=0
specifies that the agent moves with velocity 2 in x
direction and does not move in y direction.

Two agents can communicate over a channel if
their distance is lower than or equal the real number
specified by ¢ for this channel. To identify processes,
we use an alphabet N; of identification labels. The
union of all alphabets, that are assumed to be dis-
joint, is called NV, the alphabet of names. Processes
can exchange names of all these types.

Technically, we need to identify, which part of a pro-
cess definition is considered to form an agent with
an own identity, initial position, movement and size
and also to assign the corresponding spatial parame-
ters to it. To this end, we adopt the idea of labels,
which stems from the field of hybrid logics (Areces &
ten Cate 2006). The scope of the label defines, which
subprocesses “belong together” and the label itself
contains the corresponding parameters. We now de-
fine the syntax and semantics of Labeled SpacePi. We
first consider that one agent represents a single bio-
logical entity. Subsequently, we show how to extend
the model such that one agent can be interpreted as a
representative of a set of equivalent biological entities.

Definition 1 (Syntax). The set of Labeled SpacePi
processes is defined by

P = Zm.Pi}Pl | P2|1/a : 5.P|

o;(i).P | ap(p).P | ag (f).P | s (s).P | A(a) |
m : P if P does not contain a label

where 7; is an action, a € N is a name and £ is a
boolean combination of (in)-equalities for defining the
interpretation. The names p € N, f € N, s € N
are symbols for a position, movement, and size con-
straint, respectively. A is a process identifier, and a a
vector of names. We assume that for each A there is
exactly one defining equation A £ P,. An action T;
can be of one of the three following forms: Z{y), i.e.
send y over channel z, z(y), i.e. receive y over chan-
nel z, or 7,4, the silent timed action with ¢ € QU {oo}
indicating a delay of ¢ time units. The v operator is
used to create new names, i.e. bound names. Bound
names are subject to alpha conversion, such that it
is not possible to fix the interpretation ¢ for symbols

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

in beforehand. Therefore, we allow to put a defin-
ing (in)-equality £. For channels &£ is a distance €
RT, for positions and sizes a set of predicates over
coordinates € R"™, and for movements a set of predi-
cates over coordinates and their derivatives. As labels
represent the identity of agents and the three spatial
parameters, we assume that they are 4-tuples having
the form m = [;)S] where ¢ € N; is an identifier, and
f € Ng, p e N, s €N are predicate symbols for the
three spatial parameters. To increase intelligibility, a
label is denoted by a symbol m, if we do not refer to
its components. The components of a label are mod-
ified using the apply operators «. E.g. the process
A £ m :vi € Nia(i).ap(f).B | A creates a new
identifier ¢ and assigns it to af(f).B. The ays(f) ac-
tion then modifies the movement of the new agent B.
Due to the recursive definition, the process A can cre-
ate an unbounded number of new agents, each having
a movement function defined by f.

2.2 Semantics

The reduction semantics of a m-calculus process is
defined by a transition system, where each node is
a process term and each transition a possible evo-
lution. The definition is usually given in terms of
reduction rules. We adopt this technique. However,
in Labeled SpacePi, nodes not only contain process
terms but also information on the interpretation ¢ of
the predicate symbols from the alphabets Ny, ¢, and
N, the current position for each label, and a clock
for checking timeouts. In the two dimensional case,
we write the interpretation ¢ for position and size as
an inequality over the variables x and y and for the
movement as an inequality over the variables x,y, T,
and y. The dotted variables represent derivatives.
We further write (a,b) € t(p) to denote that the pair
(a,b) satisfies the predicate ¢(p). ¢(p)(a,d) refers to
the defining equality of ¢(p) in which the free variables
are substituted by a and b.

Example 2. Let [;g‘] be a label. An interpretation
t(f) =1 < @?+9? < 2 specifies that the agent labeled
with [} /] moves with a velocity between 1 and 2 and
the interpretation L(S) =-1<z<INn-1<y< -1
that the shape of the agent is a square of length 2.
Similarly, interpretation ¢(p) = -1 <z < 1A -1 <
y < —1 describes the initial position of the agent.

For each label m, we introduce three variables: a
timeout clock ¢, for the 7; action that is reset after
every reaction in which the agent is involved and two
variables .,y that represent a reference point for
the shape of the process that is identified by the label
m. The states of the transition system are composed
of a labeled process term P, an interpretation ¢, and
a real valued valuation v of the clock and the position
variables. We denote by v[c := a] the valuation that
coincides with v except that c is reset to the value a.

Similarly to the timed automata semantics
(Bengtsson & Yi 2003, Alur & Dill 1994), we dis-

tinguish two types of transitions. Delay transitions

2, model the elapsing of § time units. Actions transi-
tions — arise from communication and other reduc-
tions and do not consume time. They correspond to
the reductions of the m-calculus.

The m-calculus uses structural congruence rules for
the semantics definition. To handle the labels, we ex-
tend the structural congruence to let the labels dis-
tribute over parallel composition and restriction.

m:(Py| Py)=m: P [m:P
[;g] wcP—uac[} Pifx¢&{i, f,p s}

Furthermore, we modify the rule for alpha conversion
and allow a bound name to be alpha converted to a
name of the same alphabet.

We now define the transition rules for Labeled
SpacePi. Every process can perform a delay tran-
sition where § time units elapse, the clock values are
increased by d, and the position changes according to
the predicate. This is captured by the following rule.

(Pt v)

(P,e,v") (DELAY)

if v’ satisfies to following conditions:
1. v'(¢) = v(e) + 6 for all clocks c,

2. for all positions T[4 Y[used in labels oc-
ps ps

curing in P there is a continuous differentiable
function ¢[i }[0,5]2 — R? such that the func-

tion (;5[1 1] + (v (x[;,:), v (y[])) satisfies the pred-
icate «(f) and (v'(z; 11),0"(yp 11)) = 317 (0) +
(v(ap), vlyp 11))-

Example 3. Assume that process m : A is at po-
sition (1,2), ie. v(zy,) = 1 and v(ym,) = 2, the
clock has the value v(c,,) = 3 and the predicate
for the movement is ¢ = 1 Ay = 2. If time pro-
gresses by 2 time units, denoted by a delay transition

(m : A, ,v) 2, (m : A,,v"), the process arrives at
position (3,6), i.e., v'(x,,) = 3 and v'(y,,) = 6 and
the clock has value v "(em) = 5.

A process m : 15.P waits 5 time units and can then
perform an action transition, such that it evolves to P
without consuming time. We use the clock valuation
v(cm) to determine the elapsed waiting time of the
process m : 7¢.P. This is correct, as the clock is reset
after every reaction involving the process identified
by m and leads to the following rule:

(m :7.P+ M,1,v) — (m : P,t,v[cy, = 0])

if v(ey) =t (TAU)

Two sums labeled by m; = [;}1 ?;i] and mg = [;325}
can communicate over a common channel, if the dis-
tance between the represented agents is equal or
below the channel’s distance. The set of points
that are covered by the agent labeled m; is the set
of points satisfying the size predicate i¢(s;) trans-
lated by the current position of the reference point
(v(Zm,), V(Ym,)). The set of points covered by agent
my is defined analogously. The reaction rule reads:

x(2).Py 4+ Na, 1,v)
: P | mo: Pa{Y.},,v") (REACT)

(my1:Z(y).Pr+ N1 [ma:
— (my
£ 3(21,01) : 3(T2,P2) ¢ (T1,91) € t(s1) and (22, §2) €
(s2) and [[(Z1,50) + (0(@m,), v(Yma)) — (22,92) +
(V(Zimy)s V(Um,))|| < t(z) and where v/ = v[cy,, =
s Crmg =
The condltlon formalizes the requirement that the
first and the second agent each covers one of two
points that have an euclidean distance that equal or

below the channel distance. Additionally, it resets the
corresponding clock after communication.

Example 4. Consider two processes with the shape
of a square of size 1, ie., t(s) =0 <z <1A0<
y < 1. Let the lower left corner of m; : a(b).A be
at v(Tmy,Ym,) = (0,2) and of my : @(c).B be at
V(s Ym,) = (0, 3) and let the reaction distance ¢(a)
of the channel a be zero. Then both processes can re-
act to my : Allma : B{%.} because they share the

point (0, 3).

41

CRPIT Volume 96 - Conceptual Modelling 2009

The « operators modify the label while perform-
ing an action transition. This cannot be captured
by structural congruence as the clocks and positions
need to be updated accordingly. At first, we define
the af() operator for setting the movement.

([1] s ar(f)-Pow) = (4] s Pusv) (APPL-F)

ps
where v/ = U[c[;gx] = O,x[;g/} = w[;g],y[;g/] =

y[f]], i.e., clocks are reset and the position of the
ps

process is copied and does not change. The rule for
the change of the identifier is similar:

([Z f] s (i).Pu,v) — ([gg] : Pu,v") (APPL-I)

ps

r_ B e S —
where v’ = ’U[C[;f] = O7I[ip£] = x[;g],y[;g] : y[pg]]
The rule for the application of a new position ay,(-)
ensures that the new position satisfies the predicate

up'):
([: f] tay(p').PyL,v) — ([;,ﬂ : Pu,v") (APPL-P)

ps
where v'(c[m/g]) =0, (U(fhﬂ)w(y[%]) € u(p') and
v and v’ coincide on all other values. The a,(-) oper-
ator modifies the size component of the label, resets
the clocks and copies the position:
(L] : as(s'). Py 0) — ({;H : Pu,v') (APPL-S)

ps
where v/ = U[C[lf] = 0795[#]

ps’ ps’
yp 1)

The semantics of the v operator corresponds to the
one of the w-calculus. However, in addition, Labeled
SpaceP1i also allows for the creation of new symbols for
position, movement or size constraints. These sym-
bols are interpreted by the function ¢. Concerning
this intuition, the v operator acts as an existential
quantifier, where the interpretation of the quantified
name can change. This is captured by the following
rule:

(mq : P,t,v) — (mao: P/ 1, 0")
(vx:Emy : P/,v) — (vr: Emg - P11 0)

(RES)

where ¢ and ¢/ coincide on all values except the value

of x and the value of x satisfies £. For the definition

of the parallel composition rule, we have to consider

the case in which the domain of the valuation v of

the composite process is larger than the domain of

the valuation v of a component:

(mq : P,t,v) — (mao : P/ 1, 0v")
(my:Plms:Q,1,0) — (ma: P [m3:Q,t,0)
(PAR)

where v coincides with © on all values from the domain
of v and v’ coincides with ¢’ on all values from the
domain of v'.

The last group of rules directly corresponds to the
original reduction rules of the m-calculus.

(m: A(2),1,v) — (m : Py {2/50} , L U[em = 0])
if A(T) = Py (CALL)
(my : Pyi,v) = (mg: P'1,0"),Q=P,Q =P
(ve.my : Q,t,v) — (ve.ma : Q,1, V)

(STRUCT)

Remark 2 (Multiple dimensions). Although the se-
mantics is presented for the two dimensional case, its
generalization to more dimensions is straightforward
by adding variables and extending the valuation v.

42

2.3 Extensions

Obstacles When modeling biological phenomena,
the need arises to specify obstacles, which influence
and restrict the movement of agents. The first solu-
tion is to impose invariants on movement functions,
e.g. by specifying that a movement in z-direction
does not exceed a given threshold. However, this does
not allow for the representation of moving obstacles.
A different possibility is to model the obstacles by
agents that send a modified movement function to
the moving agents. However, this requires the trans-
mission of the new movement function and its appli-
cation to occur as soon as possible. Therefore, we
extend the model by the urgent transitions that must
fire on activation. In particular, we use the concept
of urgent channels as known from timed automata
(Bengtsson & Yi 2003). For the definition of their se-
mantics, we employ urgent transitions —,, as a third
type of transitions relation. The rules REACT and
APPL are modified to yield urgent transitions and
the composition rules are generalized accordingly.

A delay transition can only occur if no urgent tran-

sition —,, is possible, formally (P, ¢, v) LR (P, t,v+0)
only if there are no ¢’ < 4, ¢ and P’,v such

that (P,¢,v) 2, (P,t,v + ¢') and (P, t,v 4+ 0') —,
(P, 0").

For the rest of the paper, we assume, that all apply
transitions are urgent.

Multiplicities Up to now, we have focused on the
modeling of an individual agent, like one molecule.
However, it is possible to regard Labeled SpacePi
agents as representatives of an equivalence class of
non-interacting molecules, all exhibiting the same be-
havior (multiplicity). This helps to reduce computa-
tional costs of the analysis process, see Sec. 3, and
therefore raises practicability. We introduce multi-
plicities by attaching a further variable #,, to each
label m similar to the clock ¢,,, that denotes the num-
ber of represented elements. We use a predicate sym-
bol pu(#m , #.,) over the variable #,, for the old state

and the variable #/ for the new state to define evo-
lution of multiplicities. We extend ¢ to also yield the
predicate corresponding to the predicate symbol pu.
Like for the spatial parameters, we use an apply . ()
operator for setting the multiplicity predicate. The
semantics is given by the following urgent transition
rule:

(m @ ae(p).Po,v) = (m: Pey0’). (APPLY-S)
where v and v’ coincide on every value except for
and the predicate ¢(u) evaluates to true, i.e.,

(0(#m), ' (#7,)) € t(p)-

Example 5 (Circular distribution). Let an agent
start in point p representing n molecules, that dif-
fuse in all directions. A circular target of radius r
is located in distance d. The number of molecules
that will eventually arrive at the target can be ap-
proximated as follows: Consider the two tangent lines
to the circle passing through the starting point p.
The angle between both tangential lines is given by
2arctan(%). The fraction of the molecules arriving
at the target is therefore m~! arctan(%). Hence, the
number of molecules that will eventually arrive at the
target is approximated by the constraint p := #' =
. arctan(%)

2m

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

3 Verification

In order to analyze Labeled SpacePi processes, we in-
troduce a translation into hybrid automata. Thereby,
we make use of the work that has been done in the
fields of automatic verification of hybrid systems, in
particular of the tools HyTech (Henzinger et al. 2001)
and HySat (Frénzle et al. 2007).

3.1 Hybrid Automata

Hybrid automata have been introduced in (Alur et al.
1992) as an automaton model for describing the be-
havior of hybrid systems. Based on finite automata,
timed automata (Alur & Dill 1994) are equipped with
real valued clocks that guard transitions. This idea is
generalized by hybrid automata. Instead of clocks, a
set, of real valued variables is used. The evolution of
the variables is guarded by differential equations that
are associated to the states (also called modes) of the
hybrid automaton.

Definition 3 (Hybrid Automaton). We fix a set
X = {x1,...,zn} of real valued variables. A hy-
brid automaton A over X as defined in (Henzinger
et al. 1998) is a directed multigraph (Va, E4). The
states are called control modes and the transitions
control switches. To each state an invariant, i.e. a
guard on the variables, and an activity, i.e. a guard
on the derivatives of the variables, is assigned, that
are usually written as (in-) equalities. Activities are
also called flow conditions. The transitions of hy-
brid automata are guarded by predicates over the free
variables X U X’ where x € X denotes the value be-
fore the transition and z’ € X’ the value of the same
variable after the transition. Furthermore, events for
synchronization can be assigned to transitions. The
semantics is defined in terms of a transition system,
whose states are pairs of control modes and valua-
tions of the variables. As for timed automata action
and delay transitions are used.

3.2 From Labeled SpacePi to Hybrid Au-
tomata

We construct a hybrid automaton for a Labeled
SpacePi process by computing the state space. To
keep track of timeouts and the spatial positions of
each movement unit, we introduce three variables and
define flows and transition guards accordingly.

Construction of the Hybrid Automaton Let P
be a Labeled SpacePi process and ¢ be a name inter-
pretation. The state space of the corresponding au-
tomaton is the set of process terms modulo structural
congruence that are reachable from an initial state P
according to the Labeled SpacePi semantics. For each
label m occurring in the transition system, we intro-
duce a clock ¢, for handling timeouts. Additionally,
the two variables x,, and y,, are defined to capture
the actual position of the process that is identified by

the label m. For the transitions — of the hybrid au-

u

tomaton, we split the guards of the Labeled SpacePi
semantics into a condition ¢, which must evaluate to
true for the transition to fire, and an update state-
ment u defining the new values. This notation is also
used by the tool HyTech. The definition of the tran-
sitions is inductive, similar to the definition of the
Labeled SpacePi semantics.

To represent a delay in the hybrid automaton, we
use the clock ¢, corresponding to the location of
the waiting process. The automaton can perform the

transition if the clock reaches the timeout value. Af-
ter that the clock is reset.
Cm =t

m:. P+ M —— m: P

Cm =

To encode the reaction, we add the constraint on the
variables as the guard and reset the corresponding
clocks.

mi T<y>P1 +N1 ‘ mo : {,C(Z)PQ +N2

%mlzpl ‘mQ:PQ{y/Z}

where ¢ = u(s1)(Z1,81) A o(s2)(T2,52) A ((F1,91) +
(xmuyrrn) - (i27g2) + (x77l27ym2))2 < L(T)Q and u =
¢, = 0,¢,,, = 0. The notation «(s)(Z,7) denotes
the predicate, i.e., the corresponding (in)-equalities,
in which the free variables are substituted by (Z, 7).
The rules addressing the application operator mimic
the semantics and reset the corresponding clocks.

1] - ar(f).P

where u = c’[1 =0, L(p)(:v[19Y[: f])

7
ps

[if] ras(s). P —— ([Zf} : P)

pPs

Calling a process identifier does not have a condition
but resets the clock. This is necessary because the
defining equation can start with a 7; prefix.

m: A(Z) PR m : Pa{*/s}

if the identifier A is defined by A(Z) £ P4. The last
rules are needed for the inductive definition to handle
parallel composition, the new operator and structural
congruence.

c c
my1:P—maq:P’ m1:P—mq:P’ ,Q=P,Q'=P’
w w

)

(my :P|m3:Q)%>(m2:P/|m3:Q) ’ mi :Q%mz:Q’hng:Q

c
mi1:P—maq:P’
u

’
- c -
mi:veP—>mo: P’
u

For the v operator, the condition ¢’ is obtained
from ¢ by removing the conditions involving the sym-
bol z, thereby realizing the existential quantification
of the symbol x regarding the interpretation ¢. Fur-
thermore, after constructing the state space, we en-
sure by alpha conversion that the set of bound and
the set of free names are disjoint.

The activity is the same for all states. Each clock 1)

has a derivative of 1 and for each pair of variables

1], Y[1) We add the corresponding (in)-qualities

t(f). Furthermore, to minimize the model we reduce
the number of variables by reusing them when trans-
lating into the language of a model checker.

43

CRPIT Volume 96 - Conceptual Modelling 2009
3.3 Spatio-Temporal Bisimilarity

In the m-calculus, the set of processes that are reach-
able by reduction does not need to finite. However, for
finite control m-calculus processes not involving par-
allel composition under recursion, the set of reachable
states is known to be finite (Dam 1997). Therefore,
we use the same assumption of finite control for La-
beled SpaceP1i to obtain a finite state hybrid automa-
ton. To show that for finite control Labeled SpacePi
processes the corresponding hybrid automaton con-
structed above has the same behavior, we first define
(strict) spatio-temporal bisimilarity. Subsequently,
we state the correspondence theorem and provide a
proof sketch.

Definition 4. Let V; and V5 be two finite sets of real
valued variables. Let further T3 = (Q1 x R‘Vl‘,—q)
be a transition system, where the states are pairs of
states from (1 and a valuation of the variables in
V1. Let further Ty = (Q2 X R‘V2|,—>2) be a transition
system, where the states are pairs of states from Q2
and a valuation of the variables in V5.

A pair 0 = (05, 0,) is a spatio-temporal simulation
if there are constants A1,... Ay, and by, ... bjy;| such
that the following conditions are met:

1. 0, C(Q1 x RV1l) x (Qy x RIV2l) is a relation on
the states.

2. 0, C V5 x R? x Vs is a relation on the variables
involving a translation.

3. (s1,v1)04(82,v2) and vy (1) = Avg(xe) + b for all
(x1,A,b,22) € 0, and (s1,v1) — (s}, v]) implies
that there is a (s, v5) with (s2,vy) — (sh,v5),
(sh,v])os(sh,vh), and vi(x1) = Avh(za) + b for
all (z1,\,b,22) € gy

A simulation is strict iff o, C V4 x {1} x {0} x
Va. A simulation o = (0s,0,) is a spatio-temporal
bisimulation if o' = (071, 0, 1) with (29, \,b,71) €

oy Viff (21,271 —b,22) € 0y,

Note, that this definition considers a 74 statement
to be observable from the outside. Using this defi-
nition, we can relate the Labeled SpacePi process to
the corresponding hybrid automaton.

Theorem 5. Let P be a finite control Labeled
SpacePi process, i.e., a Labeled SpacePi process not
involving parallel composition under recursion and let
¢ be an interpretation of the names. Let further R
be the set of states reachable from P modulo struc-
tural congruence and let A by the hybrid automaton
constructed as described above. Then the transition
system for the semantics of P and the transition sys-
tem for the semantics of the hybrid automaton A are
strictly spatio-temporal bisimilar.

At first, we show that the set of reachable states by
the reduction relation is finite. Starting with a finite
control Labeled SpacePi process), we construct a -
calculus process P by removing labels, and replacing
the o and 7y operators by 7 prefixes. It is easy to see
that the state set of the hybrid automaton is a subset
of the set R = {P’' | P —*}/ = of m-calculus terms
reachable by reduction from P modulo structural con-
gruence. The m-calculus process is furthermore finite
control by construction. From Montari and Pistore’s
result (Montanari & Pistore 2001) follows that every
finite control process P is also finitary and therefore
the set R must be finite. Therefore, the state space of
the hybrid automaton is finite. As the construction
of the guards of the automaton encodes the Labeled
SpacePi semantics, it is clear that the semantics of
the automaton and the process are strictly bisimilar
related by the identity on the states and the variables.

44

Urgency Urgencies can be modeled by introducing
the negation of the conjunction of all guards for the
outgoing transitions as an invariant plus the bound.
For example if the outgoing edge has guard x <=5
then the invariant is * >= 5. The case x = 5 must
be allowed, because the transition does not consume
time and the invariant must be satisfied when the
transition takes place. However, in tools, invariants
are normally required to be convex, i.e., if the invari-
ant is satisfied when entering and leaving the state, it
must also be satisfied at all time points in between.
Thus, e.g. for an invariant of the type x <aVy <b
which is not convex, the state must be duplicated,
one having the invariant = < a and the other y < b.

3.4 Verification Tools

HyTech is the classical tool but is restricted to the
checking of linear hybrid automata, having only con-
junctions of linear guards as flow conditions. Starting
from a given state of the automaton and a linear con-
junction of conditions on the initial values of the vari-
ables, it iteratively computes the possible successor
states. Since this is a semi-decision procedure, ter-
mination is not guaranteed. Additionally, the tool is
very sensitive to the number of variables. However, in
contrast to the bounded model checking tool HySat,
analysis is not limited to a predetermined number of
steps, such that the entire space of reachable states
can be explored.

HySat is a bounded model checker that combines
a SAT solver with a solver for real arithmetics. Its
main advantage is that it can handle more variables
than HyTech. As it turned out in experiments, it is
also faster and thus more suitable for analyzing larger
systems with more agents. Furthermore, HySat of-
fers a richer language for specifying arithmetical con-
straints, including e.g. trigonometric functions. Yet,
analysis results only consider a bounded number of
state transitions. However, we believe that bounded
model checking is well suited for the analysis of biolog-
ical systems, where observation time is naturally lim-
ited. In HySat, the discrete state space and the tran-
sition relations are encoded in boolean formulae and
the continuous behavior in arithmetical constraints.
The SAT approach creates boolean variables for ev-
ery step of the automaton. HySat is able to deter-
mine whether a state is not reachable within a given
number of steps. However, if it determines that a
given state is reachable, this result is only an approx-
imation depending on the accuracy of the arithmetic.
The tool provides intervals for each real valued vari-
able in which a satisfying valuation is expected to be
found.

4 Examples

This Sec. gives two examples for Labeled SpacePi
models and their analysis. The first example, which
describes an initial step of the activation of the Wnt
signaling pathway, focuses on the integration of avail-
able biological data and the handling of multiplicities.
By contrast, the second example, a model of active
transport in cells, is not based on biological data. Its
purpose rather on presenting the treatment of process
communication. In the lines of Sec. 3, the two tools
HyTech and HySat are used for model analysis.

4.1 Activation of the Wnt Pathway

Signaling pathways are reaction networks that relay
signals from the cell membrane to the cell core (nu-
cleus) leading to changes in gene expression, see e.g.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Wnt3A
o
rw = rr, = 15.814 nm &
I
W
=
&
o
©
= Membrane
=}
LRP6

Figure 1: A simplistic illustration of the arrival of
Wnt3A molecules at an LRP6 receptor.

//channels
stop: 0.0
//movements
stay 1= %2432 =0
mov := %2432 < 4000 //4000 = diffusion constant
//positions
posy, := x=0 A y=0
posw = =25 < x <25 ANT725 <y < 775
//shapes
shaper, := 0 < x < 31.628 A 0 < y < 445.49
shapew := x2+y? < 15.814% //circle, radius = ryy
//multiplicities
poi=# = #arctan ()1
//processes
Wnt3A (stay) £
ap(posyy).aus(sizew).ap (mov).stop().ce (). g (stay) . Teo
LRP6() £ ap(posy,).as(sizer,).af (stay).stop(). LRP6()
//initial process
(mi1: ac(# = 100).Wnt3A(stay) | ma: LPR6())

Figure 2: A simplistic Labeled SpacePi model of the
arrival of Wnt3A at LRPG.

(Gomperts et al. 2002). In life science, they are of ma-
jor interest, since they play a key role in the cure of
e.g. cancer or Parkinson’s disease. An important step
in the Wnt signaling pathway is its activation by the
arrival of Wnt3A proteins at LRP6 receptors. In the
following, a simplistic model of this event is described,
see Figure 1. It illustrates the concept of composing
and analyzing Labeled SpacePi models, based on a
given set of biological data.

The model is given in Figure 2. Wnt3A is represented
by the process Wnt3A. Wnt3A first applies an initial po-
sition and size and then performs the diffusive motion
mov until it reaches LRP6, where it stops. The arrival
of Wnt3A at LRP6 is signalized by synchronization on
the channel stop.

The data to be integrated into the model are: the
volumes and shapes of molecules, their positions and
diffusion constants, and their numbers. Positions
and shapes are defined by boolean combinations of
(in)-equalities over the considered spatial dimensions.
They are bounded by the molecules’ possible loca-
tions and their volumes, respectively. For Wnt3A we
consider the volume Viy = 1.6566 * 10* nm?> and for
LRP6 Vi, = 3,5281 % 10° nm? (provided by (Letunic
et al. 2006)). Because of folding processes the shapes
of proteins need to be defined for each model indi-
vidually. As Wnt3A is about 20 times smaller than
LRPG, its shape has rather little impact, such that
it is abstracted as a sphere. We assume that, as a
receptor, LRP6 is rarely folded. Thus, it is repre-
sented as a cylinder. To simplify, the radius of LRP6
is set to rp, = ry = 15.814 nm, yielding the height

hp = 445,49 nm. Additionally, we reduce the system
to its two-dimensional projection. Molecular motion
is defined by combinations of (in)-equalities over the
considered spatial dimensions and their derivatives,
which are upper bounded by diffusion constants. For
Wnit3A, we assume the diffusion constant Dy, = 4000
nm? /s, which is a common value for intracellular mo-
tion. Molecule numbers are mapped to multiplici-
ties, see Sec. 5. In the initial process, the number of
Wnt3A molecules is set to 100.

4.1.1 Analysis Using HySat

We choose HySat for analysis as this tools offers
a richer variety of built-in mathematical functions.
Bounded model checking is sufficient to explore the
whole state space here as the hybrid automaton has
only two states and no loops. In the following, we first
discuss the HySAT model resulting from the transla-
tion. This also sheds additional light on the trans-
lation method in general. Subsequently, we demon-
strate how HySAT can be used to analyze the model.

We exemplify the translation from the Labeled
SpaceP1i process into the input language of HySat by
the snippet presented in Listing 1. The discrete state
space of the hybrid automaton has two states, init
and stop. The state init represents the system before
and the state stop after the communication on stop.
The continuous state space is defined by the variables
corresponding to the label m; of the Wnt3A, i.e. xml,
yml representing the spatial position, and the clock
cml1. More precisely, the variables xm1, ym1 denote
the center of the circle of Wnt3A. We further use auxil-
iary variables for the definition of the transitions and
flow conditions.

The flow condition (flow) defines how the contin-
uous variables evolve while the system is in the wnit
state. This flow represents the movement of Wnt3A to-
wards LRP6. In the HySat model, the flow condition is
indicated by the ! jump condition in the premise of the
implication. The condition cml’ = cml + dt defines
that the clock e¢ml advances by dt. The movement
of the Wnt3A in z and y direction corresponds to the
variables dxl and dyl, respectively. The constraint
(dzl*dzl+dyl xdyl) * pi <= DW % dt ensures that
Wnt3A can at maximum proceed according to the dif-
fusion rate DW. The variable mlcount models the
multiplicity.

The jump condition, indicated by jump, defines
the discrete state transitions. The second formula
encodes that stop is the only possible successor of the
state init. The third formula defines the transition
from state init to state stop when Wnt3A and LRP6
communicate over stop. This transition can only
occur if there is an overlapping of the participants.
Formally, this requires one point (zsm2,ysm2) inside
LPR6, defined by conditions (il) - (i4), that is equal
to a point (xzsml ,ysml) inside Wnt3A. The equal-
ity condition is formalized in (el) and (e2), whereas
Condition (ib) specifies that the point (zsml, zsm2)
is inside Wnt3A. Conditions (al) and (a2) calculate the
constraint on the multiplicity similar to the approach
shown in Example 5.

(!jump and init —>

init > and cml’ = cml 4 dt and xm1’= xml — dx1 and
ym1l’= yml — dyl and (dx1*xdx1l + dyl#dyl)*pi<=DWsxdt
and mlcount’ = mlcount); —— (flow)

(jump and init —> stop’);
(jump and init and stop’ —>
xsml = xsm2 ——

(
and ysml = ysm2 —— (e2)
and xsm2 > xiLPR —

45

CRPIT Volume 96 - Conceptual Modelling 2009

{ M)

Figure 3: Active transport in SpacePi - P produces
molecules M that move along static parts S.

and ysm2 > yiLPR —— (i2)
and xsm2 < (xiLPR + xsLPR) —— (i3)
and ysm2 < (yiLPR + ysLPR) —— (i4)

and (xsml — xm1)"2+(ysml — ym1)"2 < rW"2 (i5)

and cm1’=cml+dt

and sin(angle) *(yiW—ysLPR) = rWxcos(angle) —— (al)
and mlcount’spi=anglesmlcount); —— (a2)

Listing 1: Snippet of HySat Specification

We are interested in the timing behavior of the
system. The goal is to establish a bound on the time
of the interaction at LPR6. To this end, we define
the target property that the state stop is reached and
the clock is below a given value and let HySat check
this property for our model. Iteratively decreasing
the given value for the clock in the target property,
reveals that HySat cannot find a solution in which Wnt
reaches LRP6 in 17 seconds. However, for 18 seconds it
can find a solution. The analysis further yields that
on the long run 1.5% of Wnt will eventually reach
LRP6. Using different constraints for the movement
function or the constraint on the multiplicity, more
specialized models of diffusion, e.g. with the Fick-
Equations, can be modeled and analyzed in Labeled
SpacePi. This is, however, outside the scope of this

paper.

4.2 Active Transport

The term active transport addresses different sorts of
molecular motion that are performed against concen-
tration gradients and thus enable cells to overcome
equal molecular distributions. The form of active
transport, we focus on in this example, refers to the
motion of molecules along fixed intracellular struc-
tures, like microtubules, by consecutive binding to
structure parts under energy consumption. It is sig-
nificantly faster than diffusion and thus leads to an
acceleration of ongoing intracellular processes. The
main purpose of this example is to illustrate the use
of abstraction as part of the analysis process.

Figure 3 shows the basic principle of the model. The
shapes of all molecules are abstracted as circles, since
the included values are not related to experimental
data. Processes that represent moving molecules,
called M, start at process P and move along static pro-
cesses S, abstracting the structure parts. M moves be-
tween two S processes by receiving the needed move-
ment function from the first S to reach the second
one.

Figure 4 reveals more details about the model. The
three movement functions describe the movement of
M to an S above it, underneath it, and to its right,
respectively. Instances of M are produced by P with a
delay of tp. M moves from one S to the next, by re-
ceiving the appropriate movement function on trans.
In order for M and S to communicate, the arrival time
between two M at S has to be greater tg, as denoted
by 7ts. The impact of tg and tp on the model is
investigated in the analysis Sec. below.

4.2.1 Analysis

To illustrate the treatment of process communication
in more detail, we analyze the interplay of the con-
stants tp and tg defining the frequency with which

46

//channels

trans: 0

//constants investigated in analysis Sec.

tg i= ..., tp 1= ...

//shapes

shapeyy := x2+y? < 0.5%2 //circle, radius = 0.5

shapeg := x2+y? < 0.52 //circle, radius = 0.5

//movements

my = x=1, y=1

my = x=1, y=—1

mg = x=1, y=0

//processes

M() £ trans(m).af(m).M()

S(m) £ trans(m).7ys.S(m)

P() £ 7. (P()|vm.a(m).ap (py)-rf (ms). M())

//initial process

mi:(ap((0,0)).P()]ep((4,1)).5(maq)|
ap((4,5))-S(mu)|ap((6,1)).5(mq))

Figure 4: A Labeled SpacePi model of active trans-
port

new agents can be created at P and the time it takes
at each location S to handle one molecule. For a con-
cise presentation of the example, we focus on the first
instance of S located at (4,1) and check whether it is
possible that a M does not synchronize at this loca-
tion. To obtain a finite state hybrid automaton, we
underapproximate the system behavior by fixing the
number of M. This is further justified as due to the tp
delay, there can always be only a finite number of M
between P and the first S. For conciseness, we choose
to analyze two M.

HyTech The construction of the HyTech model
from the Labeled SpacePi process is very similar to
one presented in Sec. 4.1.1. However, HyTech can
only check hybrid automata in which the guards are
conjunctions of linear inequalities. Therefore, we ab-
stract the reaction radius by a rectangle. Listing 2
shows a snippet of the HyTech specification. The
state L1 represents the configuration where the first
M has been released from P. The convex invariant
4 — xml >= distT & cml <= tP in line (1) ensures
a transition as soon as either the first M labeled m1
arrives at position S or the P process has completed
the waiting time. The second line encodes the move-
ment function mg for the first M. In this expression
terms dx denote the time derivate of the variable x.
For the transition from state L1 two cases have to be
distinguished. The first case (3) is that the timeout
of P occurs first and the second case (4) is that the
reaction occurs first.

To find out if one M does not interact at the first
S, we check whether the variable xm?2 associated with
the label of the second instance of M can reach a value
right of S. This is sufficient as we only consider one
S for the analysis. The requirement is fulfilled if the
time tp is much lower than the reaction time tg at
the first S such that the second M passed the inactive
S. But it turns out that this can also occur if tp is
higher than initially expected which is due to the fact
that the first M going down after the reaction with
S can react a second time at the same S if the delay
time is smaller than the time for the molecule to leave
the reaction radius of S. This is a result which is not
directly obvious from the model.

The experiment shows, that the use of abstraction
is crucial as HyTech is otherwise not able to analyze
the whole state space. Abstraction removes poten-
tially unreachable or irrelevant states. Due to space
limitations, abstraction techniques are not discussed
in this paper. Similar to the previous example, the

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

tool HySat was also used for the analysis. It pro-
vided similar advantages as discussed above but does
not explore the whole state state. Details have to be
omitted due to space limitation.

loc L1: while xpl — xml >= distT & cml <= tP wait ——
(1)

{dxml = xmstr , dyml = ymstr, dxm2 = 0, dym2 = 0}

-—

when cml = tP
do {cml’ =0, xm2’ = xp0 , ym2’ = yp0}

goto L2; —— (3)
when xpl — distT <= xml & xml <= xpl + distT & ...
do {cmpl’=0} goto L3; —— (4)

Listing 2: Snippet of HyTech Specification

5 Related work

Different approaches have been applied to spa-
tial modeling. Differential equations support a
population-based view on systems, where species con-
centrations are of interest. Thus, detailed informa-
tion about individual molecules and their locations
cannot be taken into account. Various concepts base
on space discretization (Elf & Ehrenberg 2004, Regev
et al. 2004, Cardelli & Gordon 1998, John, Lhous-
saine, Niehren & Uhrmacher 2008), i.e. they as-
sume sub-volumes in which molecules are equally dis-
tributed. Instead of continuous functions, these ap-
proaches make us of reactions to describe movements
as events that lead to position changes. Therefore,
the process definitions of the Wnt pathway example

would read in e.g. stochastic Pi like Wnt3A() =

stop().Too, LRP6() = stop().LRP6(). Thereby,
the interaction on stop denotes that Wnt3A() has
fulfilled its movement from its initial position to
LRP6(). This more abstract view hampers the mod-
eling of important spatial effects in cells, like molecu-
lar crowding (Takahashi et al. 2005), where molecular
motion is constrained by limited space. Additionally,
methods that assume sub-volumes require reaction
rate constants, that are in general not at hand and
hard to estimate in case of complex systems. Molec-
ular and Brownian Dynamics, e.g. (Takahashi et al.
2003), provide a very detailed view on systems. How-
ever, their computational costs for large systems are
too high to cover the normal time scale of wet-lab ex-
periments spanning several hours.

Multiple approaches for the model checking of biolog-
ical systems exist, e.g. (Ciocchetta & Hillston 2008,
Calzone et al. 2006, Heath et al. 2008, Batt et al.
2005). However, they only consider spatial informa-
tion in form of compartments and do not take protein
locations and shapes or intracellular structures into
account. The spatial logics model checker (Vieira
et al. 2005) allows for the checking of a subset of
m-calculus specifications. Yet, it does not consider
physical space. Other, more recent developments for
checking the m-calculus (Meyer et al. 2008) use meth-
ods for Petri Nets. The tool MoDiShCa (Quesel &
Schéfer 2006) verifies physical mobility of systems. It
translates a Shape Calculus (Schéfer 2007) specifica-
tion into monadic second order logic and uses a tool
for this logic as verification back-end. However, the
specification of the system is declarative in a logic,
it does not allow for communication of positions and
movements and the verification in MoDiShCa is lim-
ited to discrete time and finite space.

There are also several approaches that extend process
algebras for the modeling of hybrid systems, like the ®
calculus (Rounds & Song 2003). However, as they do
not provide built-in support for describing mobility,
positions and movements have to be encoded. De-
veloped for the modeling of satellite communication,

J. C. M. Baeten and J. A. Bergstra introduce the Real
Space Process Algebra in (Baeten & Bergstra 1991),
where communication has a three or four dimensional
position. Yet, this approach neither considers the
movement of processes nor provides automatic ver-
ification.

6 Conclusion & Outlook

In this paper, we introduced Labeled SpacePi, a
formalism for the modeling of time and space in
biomolecular systems, which is tailored to the avail-
able knowledge and data. It refines the former work
in (John, Ewald & Uhrmacher 2008) by a more con-
cise reduction semantics that makes use of labels as
known from the field of hybrid logics. We believe
that the idea of using labels in process algebra can be
beneficially applied to other purposes, e.g. to spec-
ify in a m-calculus logic that agents share a common
name. Furthermore, Labeled SpacePi provides the
concept of multiplicity, i.e. sets of non-interacting
can be represent as single processes, which helps to
lower computational costs of model analysis. The pre-
sented approach for model analysis considers a sys-
tem’s entire set of possible evaluations and is based
on a translation from Labeled SpacePi to hybrid au-
tomata. The advantage of having such a translation
is that Labeled SpaceP1i allows for a simpler modeling
of biological systems than hybrid automata. This is
because, several concepts of Labeled SpacePi cannot
be directly expressed in hybrid automata, e.g. the
transmission of movement functions from one agent
to another or the creation of new independent agents
using the v operator. They can only be encoded by
building a single complex hybrid automaton for the
entire system yielding high modeling effort. By defin-
ing a spatio-temproal bisimilarity, we were able to
relate Labeled SpacePi processes to the constructed
hybrid automata. We applied our approach to two
use case studies, addressing the activation of the Wnt
signaling pathway and active transport in cells, and
presented how properties of Labeled SpacePi models
can be derived using the established tools HyTech and
HySat.

Regarding future work, we would like to develop a
logic for specifying system properties of biological sys-
tems, especially regarding spatial phenomena. This
shall be used as a querying language for model check-
ing. Another goal is to further lower the computa-
tional costs of the analysis process by additional ab-
straction techniques for obtaining state finite systems
with finitely many variables. Furthermore, we would
like to investigate how recent results on m-calculus
verification like (Meyer et al. 2008) can be used for
Labeled SpacePi.

References

Alur, R., Courcoubetis, C., Henzinger, T. A. & Ho,
P.-H. (1992), Hybrid Automata: An Algorithmic
Approach to the Specification and Verification of
Hybrid Systems, in ‘Hybrid Systems’, pp. 209-229.

Alur, R. & Dill, D. L. (1994), ‘A Theory of Timed
Automata’, TCS 126(2), 183-235.

Areces, C. & ten Cate, B. (2006), Hybrid Logics, in
‘Handbook of Modal Logics’, Elsevier.

Baeten, J. C. M. & Bergstra, J. A. (1991), Real Space
Process Algebra, in ‘International Conference on
Concurrency Theory’, Vol. 527 of LNCS, Springer,
pp- 96-110.

47

CRPIT Volume 96 - Conceptual Modelling 2009

Batt, G., Ropers, D., de Jong, H., Geiselmann, J.,
Mateescu, R., Page, M. & Schneider, D. (2005),
Analysis and Verification of Qualitative Models of
Genetic Regulatory Networks: A Model-Checking
Approach, in ‘International Joint Conferences on
Artificial Intelligence’, pp. 370-375.

Bengtsson, J. & Yi, W. (2003), Timed Automata:
Semantics, Algorithms and Tools, in ‘Lectures on
Concurrency and Petri Nets’, Vol. 3098 of LNCS,
Springer, pp. 87-124.

Calzone, L., Fages, F. & Soliman, S. (2006),
‘BIOCHAM: An Environment for Modeling Biolog-
ical Systems and Formalizing Experimental Knowl-
edge’, Bioinformatics 22(14), 1805-1807.

Cardelli, L. & Gordon, A. D. (1998), Mobile Ambi-
ents, in ‘Foundations of Software Science and Com-
putation Structures’, Vol. 1378 of LNCS, Springer,
pp. 140-155.

Ciocchetta, F. & Hillston, J. (2008), ‘Bio-PEPA: An
Extension of the Process Algebra PEPA for Bio-
chemical Networks’, ENTCS 194(3), 103-117.

Dam, M. (1997), ‘On the Decidability of Pro-
cess Equivalences for the Pi Calculus’, TCS
183(2), 215-228.

Elf, J. & Ehrenberg, M. (2004), ‘Spontaneous Sepa-
ration of Bi-Stable Biochemical Systems into Spa-
tial Domains of Opposite Phases’, Systems Biology
1(2), 230-236.

Franzle, M., Herde, C., Teige, T., Ratschan, S. &
Schubert., T. (2007), ‘Efficient Solving of Large
Non-linear Arithmetic Constraint Systems with
Complex Boolean Structure’;, J. on Satisfiability,
Boolean Modeling and Computation 1, 209-236.

Gomperts, B. D., Kramer, I. M. & Tatham, P.
E. R. (2002), Signal Transduction, 1 edn, Academic
Press.

Heath, J., Kwiatkowska, M., Norman, G., Parker,
D. & Tymchyshyn, O. (2008), ‘Probabilistic Model
Checking of Complex Biological Pathways’, TCS
319(3), 239-257.

Henzinger, T. A., Kopke, P. W., Puri, A. & Varaiya,
P. (1998), ‘What’s Decidable about Hybrid Au-
tomata?’, J. Comput. Syst. Sci. 57(1), 94-124.

Henzinger, T. A., Preussig, J. & Wong-Toi, H. (2001),
Some Lessons from the HyTech Experience, in
‘Conference on Decision and Control’, Vol. 3, IEEE
Press, pp. 2887-2892.

John, M., Ewald, R. & Uhrmacher, A. M. (2008),
‘A Spatial Extension to the Pi Calculus’, ENTCS
194(3), 133-148.

John, M., Lhoussaine, C., Niehren, J. & Uhrmacher,
A. M. (2008), The Attributed Pi Calculus, in ‘Com-
putational Methods in Systems Biology’, Vol. 5307
of LNBI, Springer, pp. 83-102.

Kholodenko, B. N. (2006), ‘Cell-Signalling Dynamics
in Time and Space’, Nature Reviews Molecular Cell
Biology 7(3), 165—-176.

Letunic, 1., Copley, R. R., Pils, B., Pinkert, S.,
Schultz, J. & Bork, P. (2006), ‘Smart 5: domains
in the context of genomes and networks’, Nucleic
Acids Research 34(Database-Issue), 257-260.

48

Meyer, R., Khomenko, V. & Strazny, T. (2008), A
Practical Approach to Verification of Mobile Sys-
tems Using Net Unfoldings, in ‘Applications and
Theory of Petri Nets’, Vol. 5062 of LNCS, Springer,
pp. 327-347.

Meyvis, T., De Smedt, S., Van Oostveldt, P. &
Demeester, J. (1999), ‘Fluorescence Recovery Af-
ter Photobleaching: A Versatile Tool for Mobility
and Interaction Measurements in Pharmaceutical
Research’, Pharmaceutical Research 16(8), 1153—
1162.

Milner, R. (1999), Communicating and Mobile Sys-
tems: the Pi-Calculus, Cambridge University Press.

Mountanari, U. & Pistore, M. (2001), History-
Dependent Automata, Technical report, Istituto
Trentino di Cultura,.

Polakis, P. (2007), ‘The Many Ways of Wnt in Can-
cer’, Current Opinion in Genetics € Development

17(1), 45-51.

Quesel, J.-D. & Schifer, A. (2006), Spatio-Temporal
Model Checking for Mobile Real-Time Systems, in
‘Theoretical Aspects of Computing’, Vol. 4281 of
LNCS, Springer, pp. 347-361.

Regev, A., Panina, E. M., Silverman, W., Cardelli,
L. & Shapiro, E. (2004), ‘BioAmbients: An
Abstraction for Biological Compartments’, TCS
325(1), 141-167.

Regev, A. & Shapiro, E. (2002), ‘Cells as Computa-
tion’, Nature 419, 343.

Rivas, E. & Eddy, S. R. (1999), ‘A Dynamic Program-
ming Algorithm for RNA Structure Prediction in-
cluding Pseudoknots’, J. Mol. Biol. 285(5), 2053~
2068.

Rounds, W. C. & Song, H. (2003), The Phi-Calculus:
A Language for Distributed Control of Reconfig-
urable Embedded Systems, in ‘Hybrid Systems:
Computation and Control’, pp. 435-449.

Schéfer, A. (2007), ‘Axiomatisation and Decidability
of Multi-Dimensional Duration Calculus’, Informa-
tion and Computation 205(1), 25-64.

Takahashi, K., Ishikawa, N., Sadamoto, Y.,
Sasamoto, H., Ohta, S., Shiozawa, A., Miyoshi, F.,
Naito, Y., Nakayama, Y. & Tomita, M. (2003), ‘E-
Cell 2: Multi-Platform E-Cell Simulation System’,
Bioinformatics 19(13), 1727-1729.

Takahashi, K., Nanda, S., Arjunan, V. & Tomita,
M. (2005), ‘Space in Systems Biology of Signal-
ing Pathways : Towards Intracellular Molecular
Crowding in Silico’, FEBS letters 579(8), 1783
1788.

Thompson, C. B. (1995), ‘Apoptosis in the Pathogen-
esis and Treatment of Disease’, Science 267, 1456—
1462.

Vieira, H., Caires, L. & Viegas, R. (2005), The Spa-
tial Logic Model Checker User’s Manual v1.0, Tech-
nical Report TR-DI/FCT/UNL-05/2005, Universi-
dade Nova de Lisboa.

Zhao, T. & Murphy, R. F. (2007), ‘Automated Learn-
ing of Generative Models for Subcellular Location:
Building Blocks for Systems Biology’, Cytometry
Part A 7T1A(12), 978-990.

Zuker, M. (2003), ‘Mfold Web Server for Nucleic
Acid Folding and Hybridization Prediction’, Nu-
cleic Acids Res. 31(13), 3406-3415.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Conceptual Application Domain Modelling

Bernhard Thalheim!

Klaus-Dieter Schewe?

Hui Ma3

! Christian-Albrechts-University Kiel, Institute of Computer Science, Kiel, Germany,
thalheim@is.informatik.uni-kiel.de

2 Information Science Research Centre, Palmerston North, New Zealand
kdschewe@acm.org

3 Victoria University Wellington, School of Mathematics, Statistics and Computer Science, Wellington, New
Zealand, Hui.Ma@mcs.vuw.ac.nz

Abstract

Application domain description precedes require-
ments engineering, and is the basis for the develop-
ment of a software or information system that satisfies
all expectations of its users. The greatest challenge
in this area is the evolution of the application do-
main itself. In this paper we address this problem by
explicit consideration of application cases that are de-
fined by user profiles and intentions and the system
environment, i.e. scope and context. User profiles
and intentions are captured through the concept of
persona. We show how the application domain de-
scription can be mapped to requirements and discuss
engineering of application domain descriptions.

1 Modelling Information and Software Sys-
tems

Information Systems are software systems with a fo-
cus on operating on data and thus the information
they provide. Typically, the engineering of Informa-
tion Systems (or software systems in general) is di-
vided into several phases, the first of which being re-
quirements engineering. However, requirements may
vary depending on the evolution of the application
itself or changes in the technical environment or the
system users.

An an example consider the classical example of
elevator control that is used in many textbooks, e.g.
(Wieringa 2003). An elevators control system coor-
dinates the movement of a number of elevator cages
that serve a number of floors. However, this prob-
lem description already contains a fundamental deci-
sion with respect to the application domain, which is
to enable easy movement of a number of users from
one floor to another one. Instead of giving prefer-
ence to an elevator solution the decision could have
been to use only stairs or escalators, or to install a
“pater noster”, i.e. a system using open boxes that
turn around continuously. In terms of throughput
and energy costs, a pater noster is significantly bet-
ter than an elevator, but for elderly people it may be
a safety hazard, and for wheelchair access it is not
suited. Nevertheless, in many old business buildings
in Northern Germany pater nosters were quite com-
mon.

A similar observation can be made for the spec-
ification of traffic control using signaling, control
by a computer, street topology, error handling, etc.

Copyright (©2009, Australian Computer Society, Inc. This
paper appeared in the the Sixth Asia-Pacific Conference on
Conceptual Modelling (APCCM 2009), Victoria University
Wellington, Wellington, New Zealand. Conferences in Research
and Practice in Information Technology, Vol. 96. Markus
Kirchberg, Sebastian Link, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

(Jackson & Sztipanovits 2006). In this case the tech-
nical solution has already been fixed prior to the elic-
itation of requirements.

This shows that different solutions envisioned in
the application domain may lead to completely dif-
ferent requirements and consequently system specifi-
cations. Which solution is the most appropriate and
which flexibility and variability is needed depends on
the application domain. Moreover, Jackson observes
that solutions based on the single-model paradigm
are not achievable and integration of different view-
points is only achievable for very simplistic situations
(Jackson & Sztipanovits 2006).

1.1 Application Domain Description and
Modelling

Bjgrner divides Software Engineering into three main
phases: application domain description, require-
ment prescriptions, and system specifications (Bjorner
2006). He calls these phases the system development
triptych. The application domain description is a
model describing the application domain, its entities,
functions, events, and behaviour. It utilises formal,
semi-formal or natural language, which permits the
formulation of a set of theorems or postulates or prop-
erties that are claimed to hold for the domain model.

Thus, application domain modelling (similarly,
but more specifically: product line engineering, enter-
prise modelling) is the first step of software develop-
ment processes, for which a large body of knowledge
has already been developed, e.g. (Boehm 2006, Lowe
2003, Maciaszek 2001, Wieringa 2003). In particu-
lar, the goal-oriented framework KAOS (Darimont
& van Lamsweerde 1996) uses an outer semi-formal
layer for capturing requirements engineering concepts
and their structuring and presentation, and an inner
formal assertion layer for their precise definition and
reasoning about them.

A theory basis for application domain languages
is currently under development, based for instance
on description logics (Lambrix & Padgham 1996),
artificial intelligence (Anh & Moore 1996), logical
calculi (Hansen & Hung 2007), ontologies (Jackson
& Sztipanovits 2006, Missikoff & Schiappelli 2005),
or formal methods (Bjgrner 2006). In the last case
the formal VDM language is used to cover most
(but not all) facets of an application domain such
as business processes, intrinsics, support technology,
management and organisation, rules and regulations,
scripts, and human behaviour, but it is insufficient for
the main facet of information systems: modelling of
information states and evolution of states.

Typically, application domain modelling is based
on the elicitation of properties of one application do-
main solution and the description of this solution.
This approach is appropriate as long as the appli-
cation domain is relatively stable and solutions do

49

CRPIT Volume 96 - Conceptual Modelling 2009

not change. There are, however, applications for
which the solutions evolve and change over time. In
this case, requirements that have been the basis for
the software system are also evolving and changing,
whereas the problem supported by the system re-
mains relatively stable. Therefore, we propose to first
model the application problem itself.

1.2 Requirements Prescription and Informa-
tion Systems Modelling

Application domain modelling can be based on fea-
tures or business events (Robertson & Robertson
2005), mission statements (Wieringa 2003), or busi-
ness use cases (Maciaszek 2001). The application
domain model is mapped to requirements that pre-
scribe further system development. A requirement
(Berztiss 2001, Gunter, Gunter, Jackson & Zave 2000)
is a verifiable statement prescribing some property
that a software system should possesses. Require-
ments are specified through declarations or remarks,
reports of facts, or opinions. Their fulfillment can be
verified or measured.

Requirement statements are compiled into a docu-
mentation which prescribes desired properties of ma-
chines, i.e. what the machine should and should not
offer regarding data, control and functions. Since ma-
chines do not operate without an environment, en-
vironment description is often included into require-
ments. Such statements can be supported by dia-
grammatic methods, e.g. UML.

Following requirements engineering the associa-
tion between the requirements model and the con-
ceptual model is well understood (Rolland 2006) and
supported by a large variety of UML diagrams or
by advanced ER models (Thalheim 2000a, Thalheim
20000). The database schema specifies the structur-
ing of the database. Functionality can be added on
the basis of the HERM algebra. Distribution is spec-
ified through extended views and services. The user
presentation system can be described on the basis of
the website specification language SiteLang (Schewe
& Thalheim 2005). Typically it is required that the
specification satisfies the requirements.

1.3 Application Solution Modelling used for
most Applications

Classical software development is based on a vision of
the solution to a number of problems to which solu-
tion the software system has been devoted. Require-
ments describe the application solution for which a
software support is going to be developed. Problem
analysis targets in development of application solu-
tions. These solution can be mapped to requirements.
Therefore, classical software engineering is devoted to
application solution engineering, and requires severe
changes within the system, if another solution is se-
lected.

Application solution modelling is the basis for a
prescription of requirements for one envisioned solu-
tion. This solution solves a problem that might have a
number of other solutions. The solution that has been
chosen for the software system has advantages over
other solutions, but may also be a less optimal one, if
the environment, the culture or the users change.

Therefore, in this paper we extend application do-
main description by a framework for application cases
that are mapped to business use cases, stories, and
portfolios. The challenge of application domain de-
scription and modelling is

e to achieve a set of languages, principles, methods,
theories and techniques,

50

e as well as a set of management practices,

e which together cover all of today’s and the im-
mediately foreseen applications, their variations
and their evolution in future,

e which by careful use and thoughtful considera-
tion support software systems during evolution
from initial development via repeated adaptive
and perfective maintenance to final disposition,
and

e which ensure software correctness as much as hu-
manly conceivable.

The grand challenge of application domain mod-
elling is the evolution of the application domain itself.
In particular, this becomes crucial for web informa-
tion systems (WISs) due to their low ’half-life’ period
and the high potential of WISs for evolution, migra-
tion and integration.

2 Specific Demands of Web Information Sys-
tems

Our framework of application cases has already been
successfully applied in the area of WISs, where a
broad coverage of solutions for the same problem can
be observed. Developing more than three-score WIS
such as infotainment, community, edutainment and
e-commerce websites we had to realise that the ap-
plication domain itself must be far better taken into
consideration than it is classically done for informa-
tion systems or for software systems. The classical
approach of assuming that the application solution is
fixed is not applicable to WIS. The application solu-
tions evolve and change over time, vary for different
regions or countries, depend on the user, are depen-
dent on the context, and must be robust for different
architectures. The treatment of the application cases
depends on the habits of users, on laws and regula-
tions of countries, on the culture of system utilisation
and on the policy and profile of supporting compa-
nies.

A given problem in the application domain has
typically more than one solution. Some of these so-
lutions might be senseless at the given moment of
time but might be preferable at another. This change
of preference is often observed when application do-
mains become a broader scope or merge with others.
Whenever users or providers are changing a different
solution must be enforced. Therefore, we also base
our modelling approach on problem models.

2.1 Web Information Systems Engineering

WIS engineering also requires description, prescrip-
tion, and specification of the presentation system.
Presentation systems generalise approaches devel-
oped for human-computer interfaces (Lewerenz 2000)
by storyboarding, by explicit treatment of portfolio
of users, by adaptation and syndication facilities, by
orchestration for different platforms, and by services
for delivery, collection and compilation of informa-
tion. User models are typically broader and must
cover a large variety of users with specific require-
ments. Web applications also require systems that
are easy and intuitively to use. Classical user-oriented
and information-intensive applications could be nowa-
days based on WIS.

Classically user interfaces are built in dependence
of the facilities the software system is supporting. In
this case, the user has to learn how the system be-
haves and must adapt his/her behaviour to the sys-
tems behaviour. We overcome this mismatch by pri-
marily considering the user worlds, the user stories,

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

and the applications. Our approach is going to be
based on application domain description. It extends
ethnographical approaches developed for software en-
gineering.

The main ingredients for application domain de-
scription for WIS are the characterisation of the user,
the determination of the kind or scope of the sys-
tem and of the context, and the description of the
subject world. The latter is described through ap-
plication cases or life case. We extract the portfo-
lio and the tasks from application cases. Context
and scope are defined in (Kaschek, Schewe, Thal-
heim & Zhang 2003) and (Schewe & Thalheim 2005)
and thus not considered in this paper. We base the
description of the profile and intention of users on
(Schewe, Thalheim & Tretjakow 2006). Task mod-
elling (Schewe & Thalheim 2005, Schewe & Thalheim
2007b) extends participatory task modelling (O’Neill
& Johnson 2004) by explicit, integrated and formal
specification of tasks into WIS specification. We,
thus, concentrate our this paper on the first dimen-
sion of the triptych, i.e. application domain descrip-
tion through application cases.

2.2 Challenges of Modern Web Applications
and of Evolving Applications

Nowadays software systems are supported by web pre-
sentation systems or are becoming web systems. They
allow to cope with more complex tasks compared with
systems of the past, with application stories in a large
variety, and with dynamic requirements from the user
and system side. They support users in their every-
day life independently from their environment, their
knowledge and skills level, their progress and their
preferences. This change of attitudes and applications
can only be satisfied if the user tasks and the user abil-
ities are taken into consideration, if systems can be
adapted on demand and on context, and if the appli-
cation domain is driving the software. Early reports
such as the Cutter Consortium report (Epner 2000)
show that most WIS projects fail in meeting user and
business needs, suffer from project delays, result in
budget overrun, lack of required functionality, and
provide poor quality of deliverables. These pitfalls
illustrate the urgent necessity of a conceptual WIS
development that is based on a severe analysis of ap-
plication domain properties.

On-demand systems support utilisation just on de-
mand, just to the right place, just for the user, just
for the content that is available and just for the appli-
cation situation that happens at the moment. These
systems support applications from an application do-
main.

EXAMPLE 1 Let us consider three situations typical
for web application systems into which development
we are or have been involved:

SeSAM parliamentarian support: The SeSAM
system! aims in supporting parliamentarians in
their everyday life as parliamentarian. The vari-
ety of applications changes with the change of
rules how groups of parliamentarians are act-
ing, with new rules that are settled after each
new election, with new situations parliamentar-
ians are involved into, and with discarding old
approaches.

Digicult scout services: Scouts are collecting con-

tent for the Digicult system?. They interview

1The system has been developed as an addendum to infotain-
ment services of cities such as www.cottbus.de, regions and counties.
It is currently extensively used, e.g. in Cottbus.

2The Digicult system is currently the museum portal of

witnesses and knowledgable people, compare
their narrations with content obtained so far, an-
notate the new content depending on the situ-
ation, and interact between each other. These
scouts are typically people that are temporarily
hired.

eGovernment ‘Fachverfahren’: Government ap-
plications are supporting the work of governmen-
tal institutions though sophisticated web-based
system. Classical system are ‘hard-wired’ in the
sense that a small number of possible variants of
governmental processes whereas much more vari-
ants are requested®. Companies such as Data-
Port are currently developing ‘generic’ processes.

These systems are oriented towards utilisation by
users with very different background, knowledge, abil-
ities and habits. Users do neither want to go through
lengthy and annoying learning of software usage nor
want to study and to study manuals. They want to
continue with their everyday life and want to use soft-
ware systems that are embedded into their application
domain.

2.3 Manifold of Possible Solutions for the
same Problem

WIS must support application solutions is a wide
range. For instance, the German government initia-
tive also targets on a proliferation and syndication of
governmental processes(‘Fachverfahren’). These pro-
cesses typically vary from county to county, from re-
gion to region and from city to city. For instance,
Schleswig-Holstein is currently heading the initia-
tive for syndication of processes supporting sovereign
rights .

ExXAMPLE 2 The illustration example in the project
is the application case relocation of a person, which
consists of

e the change of basic relocation data including the
possible removal of data on the old location,

e the change of official documents such as the pass-
port,

e the optional change of relation enhancements
such as the registration of pets, relocation of cars,

e the change of personal specific data such as fam-
ily enhancements, or relationships to religious
bodies,

e the change of data for additional relocation an-
nouncements such as tax, insurance changes, and

e specific additional tasks such as applications for
housing allowances.

The person acts in the role of an issuer. We ob-
serve that relocation is enhanced by the profile of the
issuer, by the specific tasks related to the relocation
of the issuer, by specific laws and regulations, and

Schleswig-Holstein. It is currently extended for support on de-
mand for visitors and employees of museums and for information
scouts who are collecting folklore knowledge.

3Governmental processes are of high complexity and of super-
high variability. The German book of governmental processes con-
sists of more than 40 books (more than 7.500 pages) describing in
detail any possible process and sketching possible variations. This
complexity is not supported by any system. Rather cities are se-
lecting their process bundle and are interpreting it in dependence
on their (organisational) structure, their needs and opportunities.

4The project is headed by DataPort and the author acts as a
consultant in the project.

51

CRPIT Volume 96 - Conceptual Modelling 2009

official bodies recipients
TV/radio

automated contracting —— companis
directory companies \

schools
religious organizations -\
parties

support of organization

tax

housing benefit

house owner benefit — housing allowance
housing programme social support
housing eligibility
special parking permission move life case
forwarding period
9 PENOd ™ forwarding mail
forwarding address
insuranceagencies —— associated life cases
health insurance fnsurance
bank contracting
tiradio collect charges
house number house registration —— application for registration
private people obligation of secrecy
partes,organisation == registration —— restctions

directory ————==——disclosure

accepted restrictions —— provided reasons
overruled restrictions

citzen office issuer
town clerk's ufﬂce; E passport
factory inspectorate public authorities income tax card
civil servant associated documents: —_ pseudonyms
special names fratemity
contracters
) basic changes
documentation agency agencies
ministery passport
taxoffice data protection official special support
satistics agenca dentitcation birth certificate
police degrees
aliens department
s necessary documents certificate of authority
actors

relocati

proof of moving out

from ————————
% o —
address

proof of moving in

centficaters for authorizing others

pension approval certificate

proofs special documents employment documents
marriage certificate
atizenship driving licence

child identification card

address
_potential changes —
partners

address
\ chidren ——————— Potentialchanges < 24
associated parties pets registration
supply energy,gas
watersewage

phone

employment
\ employer
employment office

vehicle documents

parking card

car
ownership < special
housing
—~

special contracts

documents from handicaped

foreign resident
special/exceptional < foreign temporary

second home —— additional taxation —— rent level

Figure 1: Facets of the relocation application case

by advanced functionality required for associating the
application case with other application cases.

The application case relocation in Figure 1 consists
of steps such as change of address data, change of data
for associated people, change of registration data for
cars, pets, etc., change of specific data, e.g. data for
public authority responsible for aliens, change of data
for social aid, etc. These steps are bundled together
due to their relationship to one person and to one ap-
plication case. The associations may be represented
by adhesion of different steps, e.g. representing the
association of steps by a hypergraph.

The application case in the example above has over-
all more than 150 variations in Germany. The general
target is the same everywhere. The treatment is very
different. We can group these variations in more than
2 dozen different solutions. About half of them are
already supported by corresponding WIS. The inte-
gration or matching of these WIS is far from being
trivial.

Moreover, the application case is associated to
more than a dozen other application cases. Some of
those cases are still only managed through paper ex-
change. This application case is one of the simplest
among the application cases for proliferation and syn-
dication of sovereign rights.

3 Application Cases and Problem Spaces for
WIS

3.1 Demands and Essentials of Application
Domain Description

Application domain description is the first dimension
of WIS development. (Bjorner 2006) describes how
the entire application domain theory can be devel-
oped. A general application domain model can be
given that describes any facet within the application.
This theory becomes huge and superficial complex.
The corresponding description might consist of hun-
dreds of VDM pages. We claim that we do not need to

52

describe the entire application domain. We describe
those parts that should be supported by the WIS.

The application domain is described by a number
of properties, phenomena and various aspects that are
desirable. A description includes designations, def-
initions, and refutable assertions. It can be formal
or informal, sets a scope and a span, and expresses
moods. Designations consist of a name, a recognition
rule which purports to designate the phenomenon,
and a general specification of the set of possible in-
terpretations. Lexical definitions state the meaning of
an expression in terms of other expressions. Ostensive
definitions point to examples. Stipulative definitions
assign a new meaning to an expression. Definitions
may set bounds. Refutable assertions are claims that
may be shown to be true or to be wrong.

The application domain description can be based
on the following major steps:

1. Define the purpose of the application domain
model

2. Select a paradigm for the application domain
model

3. Determine the specific domain, specific situa-
tions, or scope of the application domain model

4. Identify an optimal process on which to develop
the application domain model

5. Develop general criteria for goals, methods, and
conditions

6. Develop goals for the application domain model

7. Develop methods for the application domain
model

8. Identify conditions for the application domain
model

9. Create a variable taxonomy or ontology for the
application domain model

10. Finalize the application domain model prototype

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

i Profiles \
Users Intentions —Application case

T

Stories

Business
use cases

______________ -

/ Context
Scope of
the system

Portfolio

Figure 2: Elements to be specified for the application domain description

11. Formatively research the prototype application
domain model

12. Revisit the goals, methods and conditions

13. Derive plans for testing the application domain
model

14. Write up the application domain model

15. Derive requirements from the application domain
model and improve the model

Application cases are the major element of the ap-
plication domain model. They characterise something
that occurs, happens or takes place in an application
or actions or instances of occurring. They may apply
to a happening without intent, volition, or plan. They
may denote events, incidents, episodes, and circum-
stances within an application. They are associated
with the context description, the characterisation of
the kind of the system, and the user characterisation
that consists of profiles of users and of description of
their intention. The description framework depicted
in Figure 2 supports an elegant and sophisticated elic-
itation of requirements and the derivation of the pre-
sentation system specification.

The application case study combines cognitive
techniques with contextual approaches. It is ex-
tended during WIS utilisation analysis by traditional
approaches. This combination allows to avoid the
known disadvantages of the more specific elicitation
approaches.

Users are characterised (Schewe & Thalheim
2007b) through their profile and their intentions. The
profile consists of the working profile, the knowledge
and abilities profile and of the psychological profile.
The context specification allows to characterise the
entire environment of the application case. Addition-
ally, the solution may be restricted to certain systems
and platforms.

The concept of business use cases (Maciaszek 2001,
Robertson & Robertson 2005) generalises the use case
concept and reflects cases or case of basic tasks in
the reality. Context can be specified using the solu-
tion discussed in (Kaschek et al. 2003). The story-
board describes the story space that consists of all
possible stories for the given application (Schewe &
Thalheim 2005). Portfolio have been formally de-
scribed in (Schewe & Thalheim 2007b) and consist
of tasks and the supporting instruments that are nec-
essary. In the sequel we decompose the application
cases into business use cases and extract the portfo-
lio. The decomposition must be invertible by a com-
position operation. This composition operation is the
kernel of basic stories that consist of the business use
cases and their story flow.

We may condense this application domain descrip-
tion by an abstraction of users into groups depend-
ing on their general profile and their main intentions.
A group is called actor. Actors can be represented

by persona, e.g. ‘Jack-of-all-trade’ as a representa-
tion of a business man. The persona is characterized
by an expressive name, their kind of profession, their
purposes and intents, their technical equipment, their
behaviour, skills and profile, disabilities , and spe-
cific properties such as hobbies and habits. Context
and scope my be condensed to environment. We thus
might use the elements in Figure 3.

3.2 Description of Application Cases

We may extract application cases from observations
in reality, which are very useful source, whenever a
WIS is going to be developed from scratch or is re-
quired to provide a ‘natural’ behaviour. In the latter
case users are not required to learn the behaviour of
the WIS. Instead, the user can continue using a ‘clas-
sical’ behavioural pattern.

The classical principle of the six big W and one
H suffices for description of application cases: Who
will be using the system? When will the system be
used? Where is the information system used? What
is represented in the system? Why is the system used?
Which problem needs to be solved? How will the
system be used?

The WOH principle can be structured into three
dimensions: user dimension describing the ‘who’
and ‘why’, the flow dimension describing the ‘what’
and ‘how’, and the context dimension describing the
‘when’ and ‘where’. The entry dimension is the de-
scription of the purpose and the problems that should
be solved. So we shall use the formal template:

Application case: (application case name)
Purpose: (purpose description)
(

Problems: list of problems)
Characterisation: (outcome description)
Activities: list of user activities)
Background: general characterisation)
Objectives: list of objectives)
Application case flow: general description)

graph of milestones)
consumed content items)
Content produced: produced content items)
Themes: class of intents)

(
(
(
(
Milestones: (
(
E
Actors: (list of actors involved)
(
(
(
(
(
(
(
(

Content consumed:

Characterisation of actors: (general profile)

and intension description)
general collaboration)
description)

general context description)
temporality limitations)
assignment of places)
general system context)

Collaboration among actors:

Context:
Time:
Place:
System:

EXAMPLE 3 (Continuation of examples 1 and 2)

The system examples introduced for illustration
of the challenges are based on a number of complex
application cases:

- Application cases of parliamentarians are re-
lated to their official portfolio, their need in support,
their context, their technical environment, and their
life circumstances. The purpose of these cases ranges

53

CRPIT Volume 96 - Conceptual Modelling 2009

|

| |

\ Actor — Application cases <—— Environment |

\ |

| Bt !
; usiness :

\ Stories se cases Portfolio |

Figure 3: The abstractions of users, profile, intention, context and scope to actors and environment

from session support to support for contributions.
Typically, collaborations become very complex.

- The Hallig scout in the Digicult project is gather-
ing (folklore) information based on the content that
is currently available, based on the people to be in-
terviewed, based on their environments, evaluating
their beliefs and their observations, and condensing
the content produced for integration into the Digicult
database.

- A typical eGovernment application is the registra-
tion support of inhabitants. It includes a number of
basic stories such as change of address date, notifica-
tion of contractors about the change, consideration of
social etc. support, special registration for foreigners,
extended registration for dependents etc.

3.3 Problem Space Specification

The application cases describe problems for which so-
lutions may be envisioned. The same problem can
have several solutions. Therefore, we are interested
in a characterisation of problems. This characterisa-
tion is given through the problem space. This space
characterises the

The problem space specification can be given in a
natural language. We prefer a more formal approach
whenever this is possible. Consider for instance the
example depicted in Figure 1. Which solution is going
to be supported depends on the state, on the county
or on the city in Germany. The preference of one so-
lution over others is either based on official rules and
laws or on habits of the area. Therefore, we must
be very flexible in our choices that are mapped to
requirements. The same flexibility is also necessary
for systems such as the parliamentarian support sys-
tem SeSAM. The last system is used in the states of
Brandenburg and of Saxony and cannot be used in its
current form in the state Schleswig-Holstein.

A problem in an application domain may be
formally specified by four components. The fol-
lowing frame generalises the approach of (Polya &
Polya 1945) or approaches used in Al:

The state space consists of the collection of all
those states that are reachable from the initial
state. Some of the states are considered to be
desirable, i.e. are goal states. States can be
modelled through languages such as ER. State
may have properties such as suitability for cer-
tain purposes.

The actions allow to move from one state to another
state under certain conditions. We may assume
that the effect of the actions is observable to a
certain extent by the user. User may use several
actions in parallel. Actions may be blocked or
enabled depending on conditions. Actions may
be used at some cost.

The goal test determines whether a given state or
state set satisfies the goals. The goal test may be

54

defined through a set of states or through proper-
ties. The goal test may also allow to state which
quality has the state set for the problem solution.

The problem solution controller evaluates the
actions undertaken by the user. Some solutions
may be preferred over other, e.g. have less costs,
or are optimal according to some optimality
criterion. Controllers can be based on evaluators
of the pathes from the initial state to the current
state.

We assume typically that states can be observed
and distinguished from each other to a certain extent
by users.

3.4 The Algebra for Application Cases

The application case world (A, O, P) consists of
e basic application cases A, and

e algebraic operations O for computing complex
cases such as combination X of cases, abstraction
[] of cases by projections, quotient H of cases,
renaming p of cases, union U of cases, intersection
m of cases, full negation — of cases, and minimal
negation — of cases within a given context,

and
e predicates P stating associations among cases

3
such as the sub-case relation <, a statement M
whether cases can be potentially associated with

3
each other, a statement @ whether cases cannot
be potentially associated with each other, a state-

3
ment U whether cases are potentially compati-
3

ble with each other, and a statement W whether
cases are incompatible with each other.

We require that the sub-case relation is not transi-
tively reflexive. The compatibility and incompata-
bility predicate are not contradicting. The potential
association and its negation must not conflict.

We may use expressions defined by the operations
and derived predicates:

3 3
The predicate Y :=m A W is used for diverging
cases.

3 3
The predicate {:=f A W is used for isolated from
each other cases.

3 3
The predicate A :=m A U A ¥ A £, and is used
for homogenizable cases.

3 3 3
The predicate ®:=@ A U is used for heteroge-
neous cases.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Actor — pplication Cases <—— Environment
Persona //l\; Platform
: Business .

Stories Use casos Portfolio

Bundling in l Content Wﬂ Tasks
N, b Substantive Verd
arrations word fields word fields

Figure 4: The natural language representation of application domain elements

Application cases are either basic or constructed
cases. We use a number of representations for visual-
isation of the application cases within the application
domain:

Application case maps are graphs consisting of nodes
representing application cases and edges repre-
senting the sub-case relation and the combina-
tion of cases to complex cases.

Application case hierarchies are forests representing
cases and their sub-case relation.

Full application case maps are graphs consisting of
nodes representing application cases and edges
representing the sub-case relation and the com-
bination, abstraction, union, intersection, quo-
tient, full negation and minimum negation of
cases if these cases are used within the applica-
tion.

These operations form the basis for the mapping of
application cases to business use cases, to stories and
to portfolio. The extraction of business use case from
application cases is supported by five operations that
are easing the task of efficiently acquiring relevant
requirement prescriptions and of documenting them:

1. Application case projection narrows or scopes the
application case to those parts (entities or con-
cepts, axioms or invariants relating entities, func-
tions, events, and behaviours) that are of concern
for the business use cases.

2. Application case instantiation lifts the general
cases to those that are of interest within the so-
lution and instantiates variables by values which
are fixed for the given system.

3. Application case determination is used for select-
ing those traces or solutions to the problem un-
der inspection that are the most perspective or
best fitting for the system envisioned. The deter-
mination typically results in a small number of
scenarios for the application cases that are going
to be supported.

4. Application case extension is used for adding
those facets that are not given by the applica-
tion case but are given by the environment or
by the platforms which might be chosen or that
might be used for simplification or support of the
application case (e.g., additional data, auxiliary
functionality).

5. Application case are often associated, adjacent,
interact or fit with each other. Application case
join is used to combine application cases into
more complex and combined cases that describe
a complex solution.

Business use cases prescribe the “operating” part
of the application cases for actors and the supporting
system. Therefore, we determine which part of the
application cases is going to be left out, which parts
are emulated, and which solution is going to be pre-
ferred. The stories combine these business use cases
to flows of activities. The combination is determined
though the application of the five operations.

The application of these operations also allows to
extract which subcases, which functionality, which
events and which behaviour is shared among the busi-
ness use cases. These shared facilities provide cross-
cutting concerns among all business use cases and the
exchange activities or scenes in the stories. They also
hint on possible architectures of information systems
and on separation into candidate components. For
instance, entity sharing describe which information
flow and development can be observed in the appli-
cation. Functionality may be either shared by several
components or may be a part of the user interface.

The profiles are specifying tasks and obligations or
permissions of users of the system. These profiles can
be extracted from the application cases by applica-
tion of these operations. The interaction between the
users and the system can directly be mapped to mes-
sage or life sequence charts. Additionally, we can ex-
tract quality properties (Jaakkola & Thalheim 2005)
such as faithfulness, didactic behaviour, pedagogic
surveyability, physiological widgets, psychological be-
haviour and user-friendliness for the human-computer
interface.

This information is later enhanced by computer re-
quirements such as performance, dependability, main-
tenance, platform, and documentation requirements.

4 Transforming Application Cases to Re-
quirements

4.1 Mapping Application Cases to Stories,
Portfolio and Business Use Cases

Application domain engineering is based on a tight
collaboration with the customer, with the user, and
with the owners and planers. We may use diagram
techniques at that level. In this case we assume
that partners in the development process are well in-
formed and well educated. Another representation
technique is the sophisticated use of natural language
utterances. The sophistication is based on a theory
of word fields (called capsules in (Berztiss 2001)).
Word fields consist of syntactical and semantical
representations of words similar to approaches de-
veloped for WordNet (WordNet 2007). Addition-
ally a pragmatical dimension can be added to word
fields. Verb word fields can be classified into 10
word categories (Kunze 1992). A similar classifica-
tion has been developed for substantive word fields in
the RADD project (Albrecht, Altus, Buchholz, Cyri-
aks, Diisterhoft, Lewerenz, Mehlan, Steeg, Schewe &
Thalheim 1998). These theories allow to use substan-

55

CRPIT Volume 96 - Conceptual Modelling 2009
Stories

Business use cases

Portfolio

Requirements ~ ~— =~ — — - T T T
| Prescription |

' Storyboard

Non-functional Functional [
requirements requirements

Figure 5: The use of application domain information for requirements elicitation and analysis

tive and verb word fields for the verbal description of
the application. We thus support the verbal descrip-
tions for description of application cases. We also
support narrations since verbal description are often
given as real-life application stories describing real
application cases.

The mapping is based on the first three phases of
the C3S3P framework(Krogstie & Jorgensen 2004):
concept study, scaffolding, scoping, solution mod-
elling, platform integration, piloting in real projects
and performance monitoring and management. Con-
cept study uses word fields and extracts the con-
cept. The scaffolding phase is used for analysis of
the current solution to the application problem and
for envisioning other solutions. Scoping focuses on
creation of executable pilots supporting the applica-
tion case. This knowledge is used for identification
and consolidation of requirements for structuring and
functionality of the (information) system, for plat-
form plans, methodology choice and sketching these
requirements.

Word fields allow to derive generic functions and
generic content (Bienemann, Schewe & Thalheim
2006). These functions and content provide the
basis for a specification of tasks and business use
case (Robertson & Robertson 2005). Tasks are the
main element of portfolio. The action components of
business use cases are represented by verbs and the
content component is characterised by substantives.
Therefore business use cases and portfolio are tem-
plates that are used for representation of chunks of
word fields. Finally, the environment is often given
through a hint to platforms intended or requested.

4.2 Mapping Application Cases to Require-
ments

The application domain description can be used for
requirements gathering. Application cases describe
all parts of the application domain that are relevant
for the application. The application cases are subject
to peer reviews. It starts with a feasibility and com-
pleteness study. Next we check whether all activities
are represented. Additionally, we check whether ap-
plication cases are truly generic in the sense that they
do not go into detail that may apply to the present
application alone. Finally, we check whether there
are any special cases additional to those that have al-
ready listed in the application cases. Applying this
check results in a set of tasks that are integrated into
the application portfolio, in a set of business use cases
and in a set of stories.

We can now map the three results of application
domain description to properties typically used for
requirements prescription. Software engineering has
divided properties into functional and non-functional
properties, restrictions and pseudo-properties. This
separation can be understood as a separation into es-
sential properties and non-essential ones. Functional
and non-functional properties require prescription of
main data structures, of the main functionality, of
control facilities, and of collaboration of components
of a system envisioned.

If we separate the information system from the
presentation system then this separation leads to a

56

far more natural separation into information system
requirements and presentation systems requirements.
The system perspective considers properties such as
performance, efficiency, maintainability, portability,
and other classical functional requirements. Typical
presentation system requirements are usability, reli-
ability, and requirements oriented to high quality in
use, e.g., effectiveness, productivity, safety, privacy,
and satisfaction. Safety and security are also consid-
ered to be restrictions since they specify undesired be-
haviour of systems. Pseudo-properties are concerned
with technological decisions such as language, mid-
dleware, operating system or are imposed by the user
environment, the channel to be used, or the variety
of client systems.

Figure 5 depicts the mappings of elements of the
application domain description to elements used in
requirements engineering. The storyboard can be un-
derstood as a step-wise or scene-wise prescription of
how a particular actor interacts with the system.

As requirement acquisition and elicitation pro-
gresses there is likely a shift in the preferred rep-
resentation from textual and formal to graphical.
A number of approaches have been developed for
graphical representation such as storyboarding ap-
proaches (Schewe & Thalheim 2005), quality-driven
design methodologies (Jaakkola & Thalheim 2005),
and UML diagrams (use case, class, sequence, state-
chart, and activity diagrams). The storyboard is go-
ing to be mapped to a number of activity diagrams.

5 Conclusion

This paper enhances application domain modelling by
explicit consideration of application cases. These ap-
plication cases can be mapped to requirements. The
extraction of requirements is based on the C3S3P
framework. The approach reported has intentionally
been applied in about half dozen of our website de-
velopment projects. We realised that requirements
engineering is to system-focused and that we need a
formal representation of the elements at the strategic
layer. Our description of this layer led to the develop-
ment of a theory of application domain description,
to a number of formal templates that can be used
for description, and to mappings to the elements of
the requirements prescription layer. This paper sum-
marises those ideas.

Application cases are typically already based on
proposals for solutions or on a number of solutions
for which one of them is going to be preferred at
the moment. For instance, eGovernment application
cases must correspond to the expectations of users
and their needs within life situations. These life situ-
ations might be supported by application cases. Due
to the variety of users, to the variety of utilisation of
the system, to the variety of real usage, we extend the
application domain description by life cases (Schewe
& Thalheim 2007a). Life cases reflect the life situa-
tions in the complexity of everyday life. Life cases are
going to be decomposed, segmented and mapped to
application cases.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

References

Albrecht, M., Altus, M., Buchholz, E., Cyriaks,
H., Disterhoft, A., Lewerenz, J., Mehlan, H.,
Steeg, M., Schewe, K.-D. & Thalheim, B. (1998),
‘RADD - Rapid application and database devel-
opment. Readings - Main papers published in the
RADD project’, CAU Kiel, Department of Com-
puter Science, http://www.is.informatik.uni-
kiel.de/~thalheim/indeeerm.htm.

Anh, D. N. & Moore, R. (1996), Formal modeling
of large domains, in ‘APSEC’, IEEE Computer
Society, pp. 246—.

Berztiss, A. (2001), Requirements engineering, in
‘Handbook of Software Engineering and Knowl-
edge Engineering’, Vol. I, World Scientific Pub.
Co., pp. 59-70.

Bienemann, A., Schewe, K.-D. & Thalheim, B.
(2006), Towards a theory of genericity based on
government and binding, in ‘Proc. ER’06, LNCS
4215’, Springer, pp. 311-324.

Bjgrner, D. (2006), Software Engineering 3: Do-
mains, requirements, and software design,
Springer, Berlin.

Boehm, B. (2006), A view of 20th and 21st century
software engineering, in ‘Proc. ICSE’06’, ACM
Press, pp. 12-29.

Darimont, R. & van Lamsweerde, A. (1996), Formal
refinement patterns for goal-driven requirements
elaboration, in ‘SIGSOFT FSE’, pp. 179-190.

Epner, M. (2000), Poor project management number-
one problem of outsourced e-projects, Research
briefs, Cutter Consortium.

Gunter, C. A., Gunter, E. L., Jackson, M. & Zave, P.
(2000), ‘A reference model for requirements and
specifications’, IEEE Software 17(3), 37-43.

Hansen, M. R. & Hung, D. V. (2007), A theory of
duration calculus with application, in ‘Domain
Modeling and the Duration Calculus’, pp. 119-
176.

Jaakkola, H. & Thalheim, B. (2005), Software quality
and life cycles, in ‘ADBIS’05’, Springer, Tallinn,
pp. 208 220.

Jackson, E. K. & Sztipanovits, J. (2006), Towards a
formal foundation for domain specific modeling
languages, in ‘EMSOFT’, ACM, pp. 53-62.

Kaschek, R., Schewe, K.-D., Thalheim, B. & Zhang,
L. (2003), Integrating context in conceptual
modelling for web information systems, web ser-
vices, e-business, and the semantic web, in ‘WES
2003’, LNCS 3095, Springer, pp. 77-88.

Krogstie, J. & Jorgensen, H. (2004), Interactive mod-
els for supporting networked organisations, in
‘CAiSE’04’, LNCS, Springer, Berlin, pp. 1-14.

Kunze, J. (1992), Generating verb fields, in ‘Proc.
KONVENS’, Informatik Aktuell, Springer,
pp- 268-277. in German.

Lambrix, P. & Padgham, L. (1996), A description
logic for composite objects for domain modeling
in an agent-oriented application, in ‘Description
Logics’, Vol. WS-96-05 of AAAI Technical Re-
port, AAAI Press, pp. 146-149.

Lewerenz, J. (2000), Human-computer interaction in
heterogeneous and dynamic environments: A
framework for its conceptual modelling and auto-
matic customization, PhD thesis, Brandenburg
University of Technology at Cottbus, Faculty
Mathematics, Natural Sciences and Computer
Science.

Lowe, D. (2003), ‘Web system requirements: an
overview’, Requirements Engineering 8(2), 102—
113.

Maciaszek, L. (2001), Requirements analysis and de-
sign, Addison-Wesley, Harlow, Essex.

Missikoff, M. & Schiappelli, F. (2005), A method for
ontology modeling in the business domain, in
‘EMOI-INTEROP’, CEUR Workshop Proceed-
ings, CEUR-WS.org.

O'Neill, E. & Johnson, P. (2004), Participatory
task modelling: users and developers modelling
users’ tasks and domains, in ‘TAMODIA’, ACM,
pp. 67-74.

Polya, G. & Polya, G. (1945), How to solve it: A
new aspect of mathematical method, Princeton
University Press, Princeton.

Robertson, S. & Robertson, J. (2005), Requirements-
led project management, Pearson, Boston.

Rolland, C. (2006), From conceptual modeling to re-
quirements engineering, in ‘Proc. ER’06’, LNCS
4215, Springer, Berlin, pp. 5-11.

Schewe, K.-D. & Thalheim, B. (2005), ‘Conceptual
modelling of web information systems’, Data and
Knowledge Engineering 54, 147-188.

Schewe, K.-D. & Thalheim, B. (2007a), Life cases:
An approach to address pragmatics in the de-
sign of web information systems, in J. Filipe,
J. Cordeiro, B. Encarnacao & V. Pedrosa, eds,
‘Proc. WebIST’, Vol. IT (WIA), pp. 5-12.

Schewe, K.-D. & Thalheim, B. (2007b), ‘Pragmatics
of storyboarding for web information systems:
Usage analysis’, Int. Journal Web and Grid Ser-
vices 3(2), 128-169.

Schewe, K.-D., Thalheim, B. & Tretjakow, A. (2006),
Formalization of user preferences, obligations,
and rights, in R. Kaschek, ed., ‘Perspectives of
Intelligent Systems Assistents, PISA’05’, IDEA.

Thalheim, B. (2000a), Entity-relationship modeling
— Foundations of database technology, Springer,

Berlin.

Thalheim, B. (2000b), ‘Readings in fundamen-
tals of interaction in information sys-
tems’, Reprint, BTU-Cottbus, accessi-

ble through http://www.is.informatik.uni-
kiel.de/~thalheim, Collection of papers by C.
Binder, W. Clauf}; A. Diisterhoft, T. Feyer, T.
Gutacker, B. Heinze, J. Lewerenz, M. Roll, B.
Schewe, K.-D. Schewe, K. Seelig, S. Srinivasa,
B. Thalheim.

Wieringa, R. (2003), Design methods for reactive sys-
tems: Yourdan, Statemate, and the UML, Mor-
gan Kaufmann, Amsterdam.

WordNet (2007), ‘Antonym finder and synonym the-
saurus — Synonyms and definitions for english
words’, http://www.synonym.com/.

57

CRPIT Volume 96 - Conceptual Modelling 2009

58

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Conceptual Business Document Modeling using UN/CEFACT’s
Core Components

Philipp Liegl

Institute of Software Technology and Interactive Systems
Business Informatics Group
Vienna University of Technology,
Favoritenstrasse 9-11/188, A-1040 Vienna,
Email: 1iegl@big.tuwien.ac.at

Abstract

Before two businesses can engage in a business-to-
business process an agreement about the process ex-
ecution order and the business documents exchanged
in the collaborative process must be found. Al-
though several initiatives from different industries
have started standardization initiatives for business
documents a set of shortcomings still remain. (1)
The different standards do not have a common se-
mantic basis causing inter-operability problems be-
tween them. (2) Furthermore, they try to include
every possible element any industry might need into
the business document standard. (3) Moreover, most
of the standards are transfer syntax specific and do
not provide a conceptual representation mechanism.
In this article a new concept for the standardization of
business documents called UN/CEFACT’s Core Com-
ponents Technical Specification is presented which
solves these shortcomings. Using Core Components
the business document modeler can unambiguously
define documents with a common semantic basis on
a conceptual level. In order to allow for a better in-
tegration into UML modeling tools we introduce the
UML Profile for Core Components. With the UML
based core component model and an XML schema
generator the modeler can derive XML schema arti-
facts from the conceptual model.

Keywords: Business Document Modeling, Business
Document Meta Modeling, UN/CEFACT’s Core
Components

1 Introduction

If two businesses want to get involved in an auto-
mated B2B process they first have to agree upon a
common choreography uniquely defining the exchange
order of the different business documents. Several ap-
proaches for the standardization of a business chore-
ography exist nowadays e.g. (UN/CEFACT 2006b),
(Jung et al. 2004) or (Rinderle et al. 2006). While
a process choreography describes the exchange order
of business documents in detail, little to nothing is
said about the harmonization of business documents
which are being exchanged. One of the best known
approaches for the standardization of exchanged data
is UN/EDIFACT (Berge 1994) maintained by the
United Nations Center for Trade Facilitation and
Electronic Business (UN/CEFACT). The UN/EDI-
FACT standard provides a set of syntax rules used

Copyright (©2009, Australian Computer Society, Inc. This
paper appeared at the Sixth Asia-Pacific Conference on Con-
ceptual Modelling (APCCM 2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 96, Markus Kirchberg and
Sebastian Link, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

to structure business document data. The document
format uses designated symbols and letter codes as
delimiters between the different data fields.

Since XML was introduced in 1996 (W3C 2006) its
popularity has constantly increased due to its versa-
tility, flexibility and easy applicability. An additional
boost has been brought by the introduction of Web
Services and their related technologies such as WSDL
(W3C 2007b), SOAP (W3C 2007a) and UDDI (OA-
SIS 2007). In particular in the context of Web Ser-
vices the clear and precise definition of a business doc-
ument is of importance. Usually interfaces defined by
WSDL import the appropriate XML schema defining
the type of business document the interface accepts.

Given the popularity of XML as the representa-
tion format of choice for data, several initiatives have
been started in order to standardize exchanged data
using XML. An overview of different XML based stan-
dards for describing data and business documents is
given by (Li 2000). However, the transition from a
delimiter based approach such as UN/EDIFACT to
an XML based solution did not solve the interoper-
ability problems between business documents. We
address the following shortcomings in regard to busi-
ness document standardization:

(1) Standard incompatibilities. Due to the multi-
ple initiatives which have been started, several XML
based business document representation mechanisms
exist, which are competing against each other. Even-
tually this results in large incompatibilities between
the different standards.

(2) All-in-one approach. Furthermore a lot of
standards aim at the integration of every possible
element into a standardized business document, re-
sulting in a strong document overhead. E.g. a cross
industry invoice which should be applicable in any in-
dustry context has to include every possible element
any of the different industries might need. Whereas
for instance number of nights per person is critical in
a tourism context this attribute is rather unlikely to
be needed in an oil industry context. However, in or-
der to be cross-industry compatible every possible el-
ement has to be included in the standardized invoice.
A partial solution is given by so called message imple-
mentation guidelines (MIG), cutting down a standard
to a set of agreed elements which are used between a
well defined subset of business partners. However, an
extensive use of different MIGs undermines the idea
of a holistic standard and results in a multitude of
different and incompatible standard subsets.

(8) Lack of conceptual document description.
Standards such as UN/EDIFACT or XML based so-
lutions for business documents are tightly bound to
the implementation syntax. Often the document se-
mantics are defined on the logical level (e.g. XML
schema) instead of being defined on an higher, con-
ceptual level. Changes in the transfer syntax there-
fore result in re-engineering tasks for the standard,

59

CRPIT Volume 96 - Conceptual Modelling 2009

making it inflexible to future adaptations. In regard
to implementation tasks, a logical level business docu-
ment model is difficult to communicate between soft-
ware developers and other stakeholders in the imple-
mentation process.

Knowing these limitations UN/CEFACT started
the development of the so called Core Components
Technical Specification (UN/CEFACT 2003). The
idea is to develop an ontology of re-usable building
blocks for business documents. Using these building
blocks, a shared library is built from which modelers
can retrieve artifacts in order to assemble a business
document.

The development of the core components standard
started in the late nineties as part of the ebXML (OA-
SIS 20010) initiative. The main goal of ebXML was
to provide a framework allowing potential business
partners to engage in B2B processes in an interoper-
able, secure and consistent manner. One part of the
ebXML technology stack were so called core compo-
nents, used to uniquely define the exchanged data be-
tween two enterprises. UN/CEFACT’s Technologies
and Methodologies group, of which we are members
of, continued the development of core components
and today the standard is known as the Core Com-
ponents Technical Specification (CCTS). The most
recent version of the standard is 2.01 (UN/CEFACT
2003) with the development of version 3.0 (UN/CE-
FACT 2008) currently going on.

In this paper we present the UN/CEFACT Core
Component Technical Specification and a UML pro-
file which is built on the technical specification. It
will be shown how core components can help to over-
come the four limitations mentioned above and how
XML schema specifications can automatically be de-
rived from a core component model. The remainder
of this article is structured as follows: section 2 gives
an overview about related work in the field of concep-
tual XML schema modeling and section 3 introduces
the core components approach. The UML Profile for
Core Components is outlined in section 4 and an ex-
ample is given in section 5. The derivation of XML
schema artifacts from core components is shown in
section 6 and section 7 concludes the paper and gives
an overview about future work.

2 Background - Related Work

A general introduction into business document mod-
eling is given by (Glushko & McGrath 2005).
Glushko and McGrath provide a thorough and holis-
tic overview about current approaches for business
document modeling, document model interoperabil-
ity and integration into business processes.

The conceptual modeling of data has existed for
a while and forms an integral part of data engi-
neering. One of the most important methodologies
for data modeling is the so called entity relation-
ship model (Chen 1976) used to design a relational
database model. The entity relationship model (ER)
provides its own modeling methodology consisting of
entities, attributes belonging to entities, and relation-
ships between the different entities. A database mod-
eler uses the entity relationship model to derive the
appropriate data definition language (DDL) artifacts
for creating the database model. The main goal of a
database is to reliably store and retrieve information
from it. If a hierarchical business document is stored
in a database it is first broken up into the relational
model and then stored in the appropriate database
tables. Retrieving the document means querying the
database for the relevant information parts and re-
assembling the business document. The relational
database model has therefore less context than the

60

business document model because its main goal is to
store and retrieve pure information and avoid incon-
sistencies.

Both, the business document model and the rela-
tional database model serve their own purpose. On
the one hand the relational model focuses on a mul-
titude of business documents and not on a single in-
stance, since its goal is the consistent storage of nor-
malized data in the large scale. Thus, the avoidance
of large scale data redundancy is an integral part of
the relational model. In some cases business doc-
ument models must deliberately allow data redun-
dancy due to the requirements of a given business
case. As an example an invoice bundle is taken which
groups invoices of the same enterprise. The left hand
side of figure 1 shows an invoice bundle containing
multiple instances of invoices numbered 1, 2 and 3.
Each instance of the invoice contains the same tax
number (3) although all invoices are of the same en-
terprise and hence the tax number is the same for each
invoice. Since the invoice itself has to be a self con-
tained document, the tax number cannot be stored in
the embracing invoice bundle but must be part of the
invoice. In comparison the right hand side of figure
1 shows the relational model for the same scenario.
An invoice bundle groups multiple invoices of the
same enterprise. Since the data is stored normalized,
the tax number is part of the invoice bundle and not
of the invoice. It follows, that the relational model is
not well suited for business document modeling and
a more appropriate approach must be found.

Invoice Invoice
bundle bundle
O
#1 1.*
#2
TX#: 3 .
#: 3| #3 Invoice
TX#: 3
L Invoice#

Figure 1: Business document model vs. relational

model

Related work in the field of conceptual XML
schema modeling concentrates on two main fields. On
the one side research is conducted in the area of for-
ward engineering e.g. deriving XML schema artifacts
from conceptual models such as UML. On the other
side a lot of effort is invested in the reverse engi-
neering approach e.g. generating conceptual models
such as UML class diagrams from XML schema arti-
facts. An overview on research on the reverse engi-
neering of XML schemes to conceptual models such
as UML class diagrams is given in (Yu & Steele 2005).
The authors examine different reverse engineering ap-
proaches and assess their applicability. Although sev-
eral techniques for a forward engineering from con-
ceptual models to XML representations exist today,
only a few solutions are available for transformations
in the opposite direction. The generation of UML
models out of XML schema data proves to be difficult
since not all of the features of an XML schema can be
represented in a UML diagram. E.g. UML does not
support the concept of inheritance by restriction as
XML schema does. Another open issue is the ordering
of attributes which is important in an XML schema
but not supported by UML class diagrams. A thor-
ough solution for a reverse engineering approach is
presented by (Salim et al. 2004). Using a set of trans-
formation rules for the corresponding XML schema
elements, the authors present appropriate represen-
tation solutions in UML. However, the authors do

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

not address the representation of an <xs:restriction>
which cannot be demonstrated in UML.

In contrast to the reverse engineering of conceptual
UML models from XML schema several approaches
exist for the forward engineering approach. One of
the first research propositions for the representation
of XML using UML has been presented by (Skogan
1999). Built upon these research results (Combi &
Oliboni 2006) introduce the so called UXS model
(UML & XML Schema) based on UML. UXS is a
methodology for designing XML documents using a
set of graphical elements which correspond to the
appropriate XML schema components. Furthermore
a translation mechanism is introduced allowing the
generation of XML schema artifacts according to the
three well known patterns ”Russian Doll”, ”Salami
Slice”, and ” Venetian Blind” (Malik 2003).

Although several approaches for the conceptual
modeling of XML schema exist, only a few of them
consider the semantic data modeling aspects. A mu-
tation analysis model used to verify the general se-
mantic correctness of an XML schema is introduced
by (Li & Miller 2005). Using their approach (Li &
Miller 2005) compare different XML schema valida-
tors in regard to their effectiveness in finding seman-
tic errors within XML schemas. A formalization for
a data modeling approach is introduced by (Mani
et al. 2001), also taking into account the semantic
dependencies between the different elements within
an XML schema. The introduced methodology called
XGrammar allows for a precise definition of features
necessary for data modeling such as n-ary relation-
ships, generalizations etc. The application of the
Active XML Schema approach for the semantic en-
richment of XML schema documents is discussed in
(Bernauer et al. 2003). In their paper the authors ex-
amine the trade-off between semantic enrichment of
XML schema and its interoperability.

A similar approach to UN/CEFACT’s Core Com-
ponents is pursued by OASIS and has become known
as the Universal Business Language (OASIS 2006)
(UBL). UBL is a standard for XML document for-
mats based on UN/CEFACT’s core components and
provides a mapping of the syntax neutral core compo-
nents to real XML constructs. The initiative follows
a similar approach as the naming and design rules
(UN/CEFACT 2006¢) (NDR) provided by UN/CE-
FACT. In order to overcome the redundancies in re-
gard to standardization a merger of the UBL initia-
tive with the core components initiative of UN/CE-
FACT has been decided during the UN/CEFACT Fo-
rum meeting 2007 in Stockholm.

In regard to domain specific business standards
several initiatives have been started in recent years.
RosettaNet Business Documents (RosettaNet 2006)
is an initiative of the electronic components and
telecommunications industry. In the insurance do-
main the ACORD (ACORD 2007) standard plays a
significant role and CIDX (CIDX 2007) is pursing
document standardization for the chemical industry.
Other initiatives include SWIFT (SWIFT 2007) from
the finance industry, HL7 (HL7 2007) from the health
care industry, Papinet (papiNet 2007) from the forest
and paper industry, and PIDX (PIDX 2007) from the
oil and gas industry.

As outlined in this section several approaches to
the conceptual modeling of business documents and
XML and the forward and reverse engineering thereof
exist. Although applicable to the general purpose
of XML modeling, the different approaches do not
consider the business semantics and business require-
ments necessary for business document modeling.
The following section will introduce the core compo-
nents standard as a methodology of choice for the
concise modeling of business documents exchanged in

inter-organizational business processes.

3 UN/CEFACT’s Core Components

3.1 The core component meta model

Core Components form the central building blocks
of the Core Components Technical Specification
(CCTS) (UN/CEFACT 2003). By definition core
components are syntax and platform independent and
the standardization of core components is done us-
ing regular spreadsheets. If a core component is used
in a certain business context it becomes a so called
business information entity. The two packages in the
CCTS meta model in figure 2 show the two funda-
mental concepts of a core and a business context.

As shown on the left hand side of figure 2 the core
components standard distinguishes between three dif-
ferent types of core components: aggregate core com-
ponents (ACC), basic core components (BCC) and
association core components (ASCC). An aggregate
core component forms a self contained entity which
consists of several basic core components. For exam-
ple an address would be an aggregate core component
whereas the different details of an address such as
street, postal code etc. would be basic core compo-
nents. In order to build relationships between differ-
ent aggregate core components the concept of so called
association core components is used. An association
core component may for instance relate the two ag-
gregate core components person and address. A basic
core component such as postal code in address has a
certain type - a so called core data type. Core data
types are based on primitive types referred to as Core
Component Types. Core Component Types are e.g.

Integer, String.
Core Business

Core Component Type
4
Core Data Type [<---------- u Qualified Data Type
4

L
Basic Core Component l< ******* 1-=----- {Basic Business Information Entityl%

A iation Core C]]<* u { A iation Business Information Entityl
’ Aggregate Core Component l< il ol {Aggregate Business Information Entityl
’ Message Assembly "

Figure 2: CCTS meta model

Core components are standardized by UN/CE-
FACT and are independent of a specific industry con-
text or business domain. In order to derive a business
document solution for a specific business context the
business modeler takes a generic core component and
tailors it to the specific need of a business domain.
Hence core components serve as the generic basis for
industry specific document formats.

If core components are put into a specific business
context they become so called business information
entities. As shown on the right hand side of figure 2
the core components standard differentiates between
three different types of business information entities:
aggregate business information entities (ABIE), basic
business information entities (BBIE) and association
business information entities (ASBIE). Similar to the
concept of core components an aggregate business in-
formation entity forms a self contained block which

61

CRPIT Volume 96 - Conceptual Modelling 2009

consists of several basic business information entities.
For example a cargo box would be an aggregate busi-
ness information entity whereas the different details
of the cargo box such as height or weight would be
basic business information entities. A basic business
information entity has a certain type - a so called
qualified data type. A qualified data type is based on
a core data type. Similar to the relationship between
a generic core component and a business context spe-
cific business information entity, a business specific
qualified data type is based on a generic core data
type.

Using association business information entities
the modeler builds relationships between different ag-
gregate business information entities. An association
business information entity could for instance relate
the two aggregate business information entities cargo
box and cargo good in order to indicate the content of
the cargo box.

The concept of a message assembly as shown on
the lower right hand side of figure 2 is used to aggre-
gate different business information entities together,
forming the final business document.

The relationship between the core and the busi-
ness context is denoted by the four dependencies in
figure 2. As already mentioned a qualified data type is
based on a core data type. Likewise a basic business
information entity is based on a basic core compo-
nent and an association business information entity
is based on an association core component. Finally an
aggregate business information entity is based on an
aggregate core component. Since the specific depen-
dencies between core components and business infor-
mation entities are rather difficult to conceive on the
meta level a simple example will be used in order to
elaborate the basic concepts of core components and
business information entities.

3.2 A simple core component example

In order to allow for a better understanding of the
core components methodology we already use the
UML based notation in this section as specified in
the UML Profile for Core Components (UN/CEFACT
2006a). In order to give the reader a first impression
about core components figure 3 shows a simple core
component example. Aggregate core components are
modeled using UML classes and basic core compo-
nents are shown as attributes thereof. Association
core components are denoted using compositions be-
tween UML classes.

On the left hand side two aggregate core compo-
nents are shown - invoice and 1line item. In this
example an invoice consists of three basic core com-
ponents: an invoice number, a country identifier,
and a description. In a real world example the
invoice would contain more basic core components
- for presentation purposes however they have been
left out as indicated in figure 3. Furthermore an
invoice has an association core component named
item leading to the aggregate core component 1line
item. Line item in turn also has three basic core
components: identifier, net price and description.
Due to space limitations only three basic core compo-
nents are shown.

The two example core components shown on the
left hand side of figure 3 are standardized indepen-
dently of any business context by UN/CEFACT.
These generic core components are used to derive in-
dustry specific business document formats. In our
case an example from the United States tourism in-
dustry is used. On the right hand side of figure 3 the
business context with two aggregate business informa-
tion entities US invoice and US line item iS shown.

62

Core context Business context

«ACC» «ABIE»
Invoice basedOn US_Invoice
«BCC» «BBIE»
+ InvoiceNumber: Integer + InvoiceNumber: USInwoiceldentifer
+ Countryldentifer: Identifier + Description: String
+ Description: String
+ and xother attributes
«ASCC» «ASBIE»
«ACC» «ABIE»
Lineltem US_Lineltem
+itemn +US_item
em | «BCCr «BBIE»
+ Identifier: Identifier + Identifier: Identifier
D DO basedon [T Kenter et
+ Description: String + Description: String
- and xother attributes

Figure 3: Dependency between core and business con-
text

US invoice has two basic business information enti-
ties namely invoice number and description. Further-
more it has an association business information entity
named US item connecting the two aggregate business
information entities US invoice and US line item.
The aggregate business information entity US line
item has three different basic business information en-
tities: identifier, net price and description.

The relationship between core components and
business information entities is as follows. If a mod-
eler constructs a business document for a certain busi-
ness context or industry he first searches the generic
core component library for an appropriate document
representation of his business case. After having
found an appropriate core component, the modeler
restricts the core component to the specific needs of
the business domain. Thereby the core component
becomes a business information entity. A business
information entity is always derived from a core com-
ponent by restriction. Hence, a business informa-
tion entity cannot contain any attributes which are
not specified in the underlying core component. As
shown in figure 3 the aggregate business information
entity US invoice contains only two attributes namely
invoice number and description, because it restricts
the generic aggregate core component invoice to those
types needed in the specific business context. The
same applies to the aggregate business information
entity US line item and its underlying aggregate core
component 1line item. This specific relationship be-
tween aggregate core components and aggregate busi-
ness information entities is denoted by the basedOn
dependency in figure 3.

Likewise a basic business information entity is
based on a basic core component. No basedOn depen-
dencies between basic business information entities
and basic core components are shown in figure 3, since
the aggregate core components and aggregate business
information entities containing the basic core compo-
nents and basic business information entities are al-
ready connected using a basedOn dependency. The
same basedOn relationship applies to association core
components and association business information en-
tities as shown in figure 3.

As business context for the business information
entities in figure 3 we assume an example from the
tourism industry. In order to help to distinguish core
components from business information entities the
concept of qualifiers is used for aggregate business
information entities and association business infor-
mation entities. The qualifier used in figure 3 is Us_
indicating a fictional invoice from the United States
tourism industry. A qualifier can be chosen arbitrar-
ily by the business document modeler and does not
need to comply with any constraints.

Basic business information entities and basic core

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

components are of a certain type. The basic core
component invoice number of the aggregate core com-
ponent invoice is of type Integer. We refer to
data types of basic core components as core data
types (CDT). The basic business information entity
invoice number of the aggregate business information
entity US invoice is of type US invoice identifier.
We refer to data types of basic business informa-
tion entities as qualified data types (QDT). However,
please note that a basic business information entity
can also use a core data type if necessary. The exam-
ple in section 5 further elaborates this necessity.

As indicated on the left hand side of figure 3 the
basic core component invoice number of the aggregate
core component invoice is of type integer. How-
ever, the basic business information entity invoice
number Of the aggregate business information entity Us
invoice as shown on the right hand side of figure 3 is of
type US invoice number. Hence, the modeler has the
possibility to restrict the data type of a basic business
information entity to the specific needs of a certain
business context. Not shown in figure 3 is the fact,
that the modeler can also restrict which association
core components are becoming association business
information entities. It follows, that an aggregate
business information entity does not necessarily has
to have all associations like the underlying aggregate
core component.

This section has given an overview about the fun-
damental principles of the core components stan-
dard. Since core components are standardized inde-
pendently of any implementation platform or technol-
ogy a representation mechanism for core components
had to be found. The next section will introduce the
UML Profile for Core Components.

4 TUPCC - A UML Profile for Core Compo-
nents

Recent years have shown an increasing trend toward
the usage of UML in the area of business process mod-
eling and business document modeling. Several tool
vendors have developed UML modeling tools support-
ing the most recent version of the UML meta model
(OMG 2007). In order to allow for an easy integration
of the core components methodology into such tools,
a representation mechanism for core components us-
ing the UML syntax had to be found.

As indicated in the previous section, core compo-
nents are standardized independent of any business
context or specific syntax using regular spreadsheets.
The core components technical specification defines
its own MOF-like meta model as shown in figure
2. However this MOF-like meta model is entirely
independent of the UML meta model. Therefore
no unique representation mechanism for core com-
ponents in UML is given. If every modeler defines
its own UML representation mechanism the different
core component models are unlikely to match. Fur-
thermore, the storage and retrieval of core component
artifacts in a central and public accessible registry
is impossible since no commonly agreed representa-
tion format for core components is available. This
represents a strong contradiction to the initial pur-
pose of core components: cross-industry alignment
and reusability of business documents and business
information.

Therefore a unique representation mechanism for
core components in UML is necessary. The authors
of this article, together with other contributors, have
submitted a UML representation format for core com-
ponents to UN/CEFACT. Since then this proposal
has become known as the UML Profile for Core Com-
ponents (UPCC) standard (UN/CEFACT 2006a). A

UML profile customizes the UML meta model to the
specific needs of a certain application scenario. Us-
ing stereotypes, tagged values, and OCL constraints
the generic UML meta model is tailored to the spe-
cific needs of business document modeling. Figure 4
gives an overview of the different stereotypes used in
the UML Profile for Core Components. Since the full
names of the different stereotypes are rather long, ab-
breviations have been used. Stereotypes representing
modeling artifacts are presented using a black back-
ground. In UPCC modeling artifacts are structured
using the concept of packages. In the meta-model
these packages are shown with a white background.

The UPCC standard aims at a precise and unam-
biguous representation of core components in UML.
Where possible, native concepts of UML have been
used to depict core component principles. The very
basic stereotype is a primitive type (PRIM). A PRIM
is used to express basic types such as String, Integer
and is very similar to the UML concept of a type. The
core component standard defines six primitive types
partly overlapping with the types defined in UML.
In order to restrict a primitive type to a specific set
of values an enumeration (ENUM) is used. Thereby
the modeler can restrict a primitive type to a specific
set of valid values e.g. ISO 3166 (ISO 2007) for valid
country codes. In UPCC an enumeration is repre-
sented using the UML concept of an enumeration.

In contrast to an enumeration or a primitive type a
core data type (CDT) can express a more meaningful
type. A core data type is modeled using classes and
consists of multiple attributes. Thereof exactly one
attribute is stereotyped as content component (CON)
and multiple attributes can be stereotyped as supple-
mentary components (SUP). The content component
represents an atomic value and supplementary compo-
nents are used to provide meta information about the
content component. An example core data type might
for instance be measurement. The content component
would be the number 12. Additional supplementary
components could be measurement type (temperature)
and measurement unit (Fahrenheit). Hence the three
basic values are combined in order to form a more
complex type - a core data type.

UML requires, that each attribute of a class has
a certain type. In case of content components and
supplementary components the valid type is either a
primitive type (PRIM) or an enumeration (ENUM).
As already outlined in the introduction to core com-
ponents an aggregate core component (ACC) is mod-
eled using UML classes. The attributes of an aggre-
gate core components are stereotyped as basic core
components (BCC). A basic core component attribute
has a certain type - a so called core data type (CDT).
In order to build a hierarchical structure between dif-
ferent aggregate core components it is possible to use
the concept of a UML composition stereotyped as as-
sociation core component (ASCC). By definition ev-
ery association core component must have a source
and a target.

Analogue to the concept of a core data type (CDT)
a qualified data type (QDT) consists of exactly one
content component (CON) and multiple supplemen-
tary components (SUP) which follow the same pur-
pose as a core data type. Similar to the concept of
core components an aggregate business information
entity (ABIE) is modeled using a UML class. It con-
sists of several attributes which are stereotyped as
basic business information entities (BBIE). A BBIE
attribute has a certain type - a so called qualified data
type (QDT). In order to build a hierarchy of different
aggregate business information entities UML compo-
sitions stereotyped as association business informa-
tion entities (ASBIE) are used. Again it is required
that there is exactly one aggregate business informa-

63

CRPIT Volume 96 - Conceptual Modelling 2009

Library

Package
CClLibrary

Package
CDTLibrary

Attribute
SupP

basedOn

Attribute basedOn

BCC

basedOn

Association
ASCC

Assocation
ASBIE

Package
PRIMLibrary

Package
ENUMLibrary

Attribute
CON

Enumeration
ENUM

Package
QDTLibrary

Attribute
BBIE

Package
DOCLibrary

Package
BIELibrary

basedOn

Figure 4: UPCC meta model

tion entity as source and one as target.

The different modeling artifacts are aggregated us-
ing packages. Indicated by its name each package
aggregates a certain type of artifact or is itself ag-
gregated by another package. Two packages have a
particular role: DOCLibrary and BusinessLibrary. A
DOCLibrary, shown on the lower right hand side of
figure 4, is used to aggregate different business in-
formation entities forming a self contained business
document. Each DOCLibrary therefore represents ex-
actly one type of business document.

The different packages are eventually aggregated
in the so called BusinessLibrary. The business docu-
ment modeler constructs all necessary business docu-
ments of a given business collaboration in the business
library which may be integrated in a business pro-
cess model. The business process model specifies the
exact exchange order of the different business doc-
uments. However the business process perspective
and its methodology are not subject to this article.
For an integration of a business document model in
a business process model we would like to refer the
interested reader to (Hofreiter et al. 2006). Having
clarified the different stereotypes of the UML Profile
for Core Components the following section will out-
line a holistic example from the sales domain.

5 Core Components by example

In figure 5 the example package structure of a busi-
ness document model, using the UML Profile for Core
Components is shown. The scenario is taken from a
purchase order process taking place between a buyer
and a seller where the buyer sends a purchase order
to the seller. The example used in this article has
been created using the UML modeling tool Enterprise
Architect (Sparx 2008). The relevant diagrams con-
tained in the different packages in figure 5 are shown
in figure 6. Using the numbered dots the packages in
figure 5 are connected to the pertaining diagrams in
figure 6.

First the modeler searches in the existing core
component library which is maintained by UN/CE-
FACT for a core component order. The existence of
a generic aggregate core component order as shown in
(A) is assumed. The aggregate core component order
consists of several basic core components and associa-

64

] =Core Component Model= UML Profile for Core Components
= | =BusinessLibrary= Order Management
. 73 order Management
Q: _I sCCLibrary» Core Component Library
%g Core Component Library
Q _I «BIELibrary= Business Information Entities
%g Business Information Entities
G _| «D0CLibrary: Order Management
%g Order Management
Q _| «CDTLibrary= Core Data Types
- B3 Core Data Types
EI _I =()0TLibrary» Qualified Data Types
%S Qualified Data Types
G _| «PRIMLibrary= Primitive Types
%g Primitive Types
Q _I «EMUMLibrary» Enumerations
- 3 Enumerations

Figure 5: UPCC example package structure

tion core components. For the purchase order scenario
not all of the basic core components and association
core components are needed. Hence, the modeler re-
stricts the generic aggregate core component order
(A) to the business context specific aggregate business
wnformation entily purchase order (B).

As outlined in (B) the aggregate core component
charge and several basic core components from the
different aggregate core components in (A) have not
become part of the final business document model
(B). Furthermore qualifiers such as purchase. or
purchaseorder_ are used for the aggregate business in-
formation entities in (B) in order to allow for a better
differentiation between core components and business
information entities in the overall model.

In order to comply with the specific requirements
of a purchase order the modeler derives a qualified
data type purchase order identifier from the generic
core data type identifier in (D). Similar to the re-
lationship between a core component and a business
information entity a qualified data type is always de-
rived from a core data type by restriction.

The core data type identifier is used several times
in the core component model (A) as indicated by an
exemplary dotted line. For the specific needs of the
aggregate business information entity product unit_

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

i [1-0l Jo1eoIpul ‘EYRQlSel +
: [10] Joynuap| :welskg ssauisng JOpuas +
[1L"0] Joynuap| :uopjeoynuap| souUIBRY +
sessreneeee > S9POOANUNOY 1OPOD + [10l Jojeoipul :uopeljiouoody +
[10] Buis :Jaynusplowayds + Jaypusp| :uonedyRUSP| + [10]4oynuap] :wa)shs ssouisngjuaidiosy +
" =4gg : «dns» [L70lxel Juawwo) + [10l Joupuapy : +
_ g [L0lJ0)e0IpU| :pojjooURD) + [10]l swil @)eQ :UOHEOID +
smmﬂﬂ_mcwm_ o i Bumis usOD + : > «3ige» e
lelyeq = HY ; «NOD» : -
seweyeg =Sg T | S : 19pJO~aseyaingd:juswabeueyy Japio Japesy
— H «31g9v» «3J1gv»
991¢ OSI sapodAnuno) dayuap| J9pigaseyaind — —
o «uoneIaWNUDY «1.ao» : L0 L0
; : «319NSY» «319NSY»
«uQpeseq» :
1 :
/_\ :
: L
uesjoog Bus 9poD + : JepesH juswinoo(ssauisng pJepuels < abessapyisanbayiapigaseysing
«aApwd» [10] Bulis :J81JRUBPIUOISIBABWAYIS + : «RypuzuoneuLIou» Sulejuod «adh) obessapy ssauisng»
wfeee> [10] Bulng :leunusplewayds + : Q
p— [1-0] Puss :owenfousPyewayog + H juswabeuey J19pIO SSBID
« » :
«anpIwd» dns :
mc_.:w Jusjuoy + : [TR)] E:mmm__,_ "Jm_wi_mozmhow;._. +
: 10l @leq julodxel +
«NOD» : [L 0l xaL :syenbuiddiys +
m:_._«w H H [1-0l Amuenp punonpoid +
«anpiwud» J3ynuapl:g g:Aielqirad [1-0]Amuenp qunabexoed +
«Lao» H [170] 2anseay yBIOMISN +
: [10] @insespy Jyblopssol +
KL aAnlwlg sse|d e : r..otw_:_d:o é_Em:aumﬁmmmwo +
o I Iy L0l swil s)eq :payojedseq +
0°) uoisJoA sod L Bleq 340 SSE|2 H -3 [0l Joynuap] :qipaubissyianddng + [L-0l swiy ayeq :patenlpq +
: U S
: (10l oynuap| :gipaubissyieinoeinuep + [1-0lApuenp :pajig +
H «Q0g» «D0g»
ey [L"0] ewil 8yeq :payojedsaq + :
v [10] Jeynuap| Japi0aseyoind :qipaubissyialddng + [L"0]l swiy @eQ :passnleg + : Auep| fianeq
[1" 0l Jeynuap| 1api0aseyaind :gipaubissyiainoenuepy + [L-0lAmuend :pojg + : «Q0v» «QoV»
«31g9g» «319g» ~0[paddng+ 10| peyioadg
AnuspiTjun 3onpoid Kianag paig i «OSY» «QOSY»
«31gv» «31gv»
0| penddng+ v..onEownw+ : [1L-0louswnN :eousnbeg +
. N : [[1olAmueno siseghipuend + [0l epoD adkL +
«3198v» Jiasy : [1-0l40pe01pU predald + [1-0l J0)0IPU] :80UdIeN + [10] JounUSp| :UOnBOYNUSP| +
: Jaynusp| :uoneaypuapl + junowy :ebieyd + «Q0g»
[10]Joyeoipu| :8b1eyd +| "0 «DOSv» [1-0lAmueno :siseg +| 10
[0l 8poD :adhl + [1-0] Joynuap| :uogeoyUSp| + : [1-0l leweQ :uonenoed + «0g» ——«O0SY —@ way
[L0]401e01p U (90U IBN + «319g» : [L"0hunowy :siseg +| palddy+ popueNI+ «00v>»
unowy :ebieyy +|+ 0 : «00g» 201d -
[L-0lAnuenp :siseg +—«31GSY @ waj~ duIT 19pIO3seydind : e «Q0V» ."0[1onpoid+
«3199” | papusx3+ «31gv» : aoo“w «Q08V»
a91id apeuy .0[1onpoid+ %
«aav» «3198v» : [1"0] 8poD :sseusje|dwouawnoogbuiseyoing +
: [1L 0] swiL sjeQ :Juagisenbayiepnold +
: 0] 89P0 :9P0O2}SO
* : :.:ﬂo_manw, .ows._.ﬂm:_m__ H [10]l epoD :odA| Buisseoold +
: : : Jaynuap| :uonesynuUS)
[1-0] 8P0D :2P03}SO, Jaynusp| :uoyeoyjuUSPl + i el :eupauln + :..o__o«&__wc_m_zwam_cm,mew .
b 0/8P00 epooisod [L"0l KoL quswwon + : [0l ey ‘oweNAnunoD + ol el aus
[1L0] epoDAnunoy :dweNAjuNOY + . . H «0og» F—«DD SV »—@» [L0l el Juswwo)y +
<aiga» [L0lJojeoipul :po||BOUBD + [rnueuiur [1-0] JojeoIp U] :pajjouED +
|—«319SY>—@ «a1gg» p— pole1oossy+ «0og»
mmw‘_nJM__M“_“auce._. woijdiys+ J1epI0~@seyang «Oov» 19p10
«3J1gv» «QIV»
@ juswabeuey 19pIQ SSe|D 6 juswabeuel J19pIO Ssejd

65

UPCC example model

Figure 6

CRPIT Volume 96 - Conceptual Modelling 2009

identity the specialized qualified data type purchase
order_ identifier is used instead of the generic type
identifier. Hence the modeler can restrict the type
of a basic core component when transferring it to a
basic business information entity. Please note, that
some of the basic core components and their types
remain unchanged and are simply taken over from
the core component model (A) to the business in-
formation entity model (B). Where no specialization
of a data type is necessary, the basic business infor-
mation entities simply use the core data type of the
underlying basic core component. An aggregate core
component address (A) becomes a tendering. address
when used in the purchase order context. The aggre-
gate business information entity tendering address
restricts the generic aggregate core component to two
basic business information entities namely country
name and postcode. While the type of postcode re-
mains a core data type and therefore unchanged (
code), the country name becomes a qualified data type
in (B) namely country code. The qualified data type
country code is not shown in figure 6.

Primitive types (E) are used to set the type of sup-
plementary components and content components in
core data types (CDT) and qualified data types (QDT
as shown in (D). The enumeration country codes (F
is used to restrict the supplementary component code
of the qualified data type purchaseorder_ identifier as
shown in (D). Finally the business document is as-
sembled in (C). The business message is a purchase
order request message which has a standard business
document header and a regular header. Both header el-
ements carry additional meta information about the
actual business document purchase_ order. Header
and purchase_ order are connected to the purchase
order request message USIing two association messaging
business information entities (ASMBIE). The con-
cept is the same as the one of an association business
information entity, only the naming is different when
used in the context of a business message.

The business message type purchase order request
message as well as the header and standard business
document header as shown in (C) in ﬁgure 6 are form-
ing the embracing part of the actual business doc-
ument. The actual payload of the purchase order
request message iS the aggregate business information
entity purchase order and all its relating aggregate
business information entities as shown in (B) in figure
6. The next section will introduce the usage of nam-
ing and design rules in order to uniquely derive XML
schema artifacts from a core component model.

6 Deriving XML artifacts from Core Compo-
nents

The previous sections introduced the core compo-
nents methodology and the UML profile for core com-
ponents. Using the core components methodology,
the modeler can define a business document on a
conceptual level in a unique and semantically precise
manner. For the exchange of business documents be-
tween companies and B2B systems, however, a logical
level representation of business documents is needed.
This section will outline how the conceptual core com-
ponent model can be used to derive XML schema ar-
tifacts. These XML artifacts form the logical level
business document model to which every document
instance exchanged between two B2B systems must
conform to.

In order to allow for a unique representation of
core components in XML, UN/CEFACT suggests the
use of so called Naming and Design Rules (NDR)
(UN/CEFACT 2006¢). Along with each new release
of the Core Components Technical Specification and

66

its UML Profile, UN/CEFACT delivers pertaining
Naming and Design Rules.

Since a real world core component example can
easily become extensive and complex a manual trans-
formation of core components represented in UML
to the appropriate XML schema artifacts is not effi-
cient. In order to overcome the limitations of a man-
ual transformation we have built an XML schema
generator. The XML schema generator is part of a
larger set of tools, supporting the modeler in inter-
organizational business process and business data
modeling, known as the UMM Add-In (RSA 2007).
As already outlined in figure 5 a core component
model is defined using stereotyped packages which
follow a rigid structure. Using the UMM Add-In
the user simply clicks on a package and initiates the
transformation of core components to the appropri-
ate XML schema representation. The XML schema
generator automatically detects dependencies in the
core component model and generates additional XML
schema files, containing data type definitions, core
component definitions etc.

Listing 1 shows the XML schema representation
of the example model shown in (B) in figure 6. As
outlined by the dotted arrow from (B) to (C) in
figure 6 this code is attached to the final purchase
order request message in (C) The XML schema gen-
erator iterates over every aggregate business informa-
tion entity in (B) and constructs a complexType with
a sequence for each. The six complex types are shown
in line 5, 14, 22, 30, 37 and 43 in listing 1. The root
element of the business document is shown in line 4.

For each basic business information entity an el-
ement is created in the sequence of the embracing
aggregate business information entity’s complexType.
Since every basic business information entity has a
certain type (either core data type or qualified data
type) the necessary complexTypes have to be refer-
enced. As shown in figure 6 the qualified data types
and core data types are defined in a separate library to
the business information entity library. The genera-
tor automatically detects these dependencies, creates
the necessary auxiliary schemes, and imports them
into the final schema. In listing 1 the core data type
library is imported in line 2 and the qualified data type
library is imported in 3.

For each association business information entity
an element in the complexType’s sequence of the aggre-
gate business information entity is created as well. As
outlined in figure 6 the aggregate business information
entity purchase. order has two association business
information entities namely ship from (tendering.
address) and product (purchase order_ line_ item). As
shown in line 10 and 11 in listing 1 or each association
business information entity the correct complexType is
set.

Since the final business information entity schema
uses core data types and qualified data types, auxiliary
schema files have to be created for each data type li-
brary. Listing 2 shows a cut-out from the core data
type library imported in line 2 in listing 1. As out-
lined in the introduction to the UML profile for core
components every core data type and every qualified
data type consists of exactly one content component
and multiple supplementary components. As shown
in listing 2 the XML schema generator maps the con-
tent component to an extension (line 53) and the sup-
plementary components to attributes (line 54 to 56)
for the core data type code type. The core data type
schema is imported into the final business informa-
tion entity schema as shown in listing 1 and its data
types are used for several basic business information
entities (line 27 and line 46 in listing 1). The specific
data type of a content component or a supplemen-
tary component can either be a primitive type or an

20

22
23
24

25
26

27

28
29
30
31
32

33

34

35
36
37
38
39

40

41
42
43
44
45

46
47

48
49

50

51
52
53
54

55

56

57

59
60
61

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

enumeration.

Listing 1: Purchase_Order XML schema

<xs:schema xmlns:cdt="sample:cdtlibrary” xmlns:bie="

sample:bielibrary” xmlns:qdt="sample:qdtlibrary?”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
targetNamespace="sample:bielibrary”
elementFormDefault="qualified?”

attributeFormDefault="unqualified” version="
notSpecified”>

<xs:import namespace="sample:cdtlibrary” schemaLocation
="CDTLibrary_3.0.xsd” />

<xs:import namespace="sample:qdtlibrary” schemaLocation
=" QDTLibrary-3.0.xsd” />

<xs:element name=”Purchase_Order” type="

bie:Purchase_-OrderType” />
<xs:complexType name="Purchase_-OrderType”>
<Xxs:sequence>
<xs:element name=" Cancelled”
minOccurs="0" />
element name="Comment”
minOccurs="0" />

type="cdt:IndicatorType”

<xs: type="cdt:TextType”

<xs:element name="Identification” type="
cdt:IdentifierType” />
<xs:element name="ProductPurchaseOrder-Line_-Item?”

type="bie:PurchaseOrder_Line_-ItemType” minOccurs
="0" maxOccurs="unbounded” />
element name=”" ShipFromTendering_-Address?”
bie:Tendering-AddressType” />
</xs:sequence>
</xs:complexType>
<xs:complexType name="PurchaseOrder_Line_ItemType”>
<xs:isequence>
<xs:element name="ExtendedTrade_Price” type="
bie:Trade_-PriceType” minOccurs="0" />
<xs:element name=”"Identification” type="
cdt:IdentifierType” minOccurs="0"/>
<xs:element name=” SpecifiedBilled_-Delivery” type="
bie:Billed-DeliveryType” minOccurs="0"/>
<xs:element name="SuppliedProduct_-Unit_-Identity”
="bie:Product-Unit_-Identity Type”
maxOccurs=" unbounded” />
</xs:sequence>
</xs:complexType>
<xs:complexType name="Trade_PriceType”>
<xs:sequence>
<xs:element name=" Basis”
minOccurs="0" />
<xs:element name=”" Charge”
<xs:element name="Net_-Price”
minOccurs="0” />
<xs:element name="Type”
=70"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Billed_DeliveryType”>
<xs:sequence>
<xs:element name=" Billed”
minOccurs="0" />
<xs:element name="Delivered”
minOccurs="0" />
<xs:element name="Despatched”
minOccurs="0" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="Product_Unit_IdentityType”>
<xs:sequence>
<xs:element
gqdt:PurchaseOrder-IdentifierType”
>
<xs:element name="SupplierAssignedID”
qdt:PurchaseOrder_-IdentifierType”
>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Tendering_AddressType”>
<xs:isequence>
<xs:element name=" Country-Name” type="
qdt:CountryCodeType” minOccurs="0"/>
<xs:element name="Postcode” type="cdt:CodeType”
minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:schema>

<xs: type="

type
minOccurs="0"

_n

type="cdt:QuantityType”

type="cdt:AmountType” />

type="cdt:IndicatorType”

type="cdt:CodeType” minOccurs

type="cdt:QuantityType”
type="cdt:DateTimeType”

type="cdt:DateTimeType”

name=" ManufacturerAssignedID” type="
minOccurs="0"/

type="
minOccurs="0"/

Listing 2: Core Data Type Schema

<xs:schema xmlns:udt="sample:cdtlibrary” xmlns:xs="http:

//www.w3.org /2001 /XMLSchema” targetNamespace="
sample:cdtlibrary” elementFormDefault="qualified”
attributeFormDefault="unqualified” version="
notSpecified”>
<xs:complexType name="CodeType”>
<xs:simpleContent>
<xs:extension base="xs:string”>
<xs:attribute name="
ListAgencyldentifer
7 type="xs:string”
use="optional” />
<xs:attribute
ListVersionldentifier
? type="xs:string”
use="optional” />
<xs:attribute name="
ListIdentifier?”
type="xs:string?”
use="optional” />
</xs:extension>
</xs:simpleContent>
</xs:complexType>

name="

</xs:schema>

In listing 2 both, the content component and the
supplementary components, used the primitive type
string. In case a primitive type is set, the XML gen-
erator uses the built-in data type of the XML schema
specification (W3C 2001). Sometimes the definition

62

63
64

66
67

69

70
71

72

73

74

77
79
80

81
82

83

84
85
86
87
88

of a primitive type is too weak e.g. in case the mod-
eler wants to restrict the value of a supplementary or
a content component to a specific set of values. In
this case the concept of a so called enumeration is
used. Listing 3 shows the XML representation of the
enumeration shown in (F) in figure 6. In listing 3 the
XML generator creates a simpleType for each enumer-
ation (line 63) and uses the concept of a restriction
(line 64) to define a set of valid values (line 65-67).

Listing 3: Enumeration Schema

<xs:schema xmlns:qdt="sample:qdtlibrary”
sample:enumlibrary” xmlns:ccts="
urn:un:unece:uncefact:documentation:standard:CCTS:2
” xmlns:xs="http://www.w3.org/2001/XMLSchema”
targetNamespace="sample:enumlibrary”
elementFormDefault="qualified” attributeFormDefault
unqualified” version="notSpecified”>
<xs:simpleType name=" CountryCodesType”>
<xs:restriction base="xs:token”>
<xs:enumeration value="BS” />
<xs:enumeration value="BH” />
<xs:enumeration value="BD” />
</xs:restriction>
</xs:simpleType>

xmlns:enum="

—_»

..
</xsischema>

Qualified data types are used to further restrict a
core data type to the specific needs of a certain in-
dustry or business domain. Since basic business in-
formation entities can either have a core data type or
a qualified data type as designated type, an auxiliary
schema for qualified data types has to be created as
well. Listing 4 shows a cut-out from the qualified data
type schema which is imported in the final business
document model in line 3 in listing 1.

As mentioned before supplementary components
and content components can be restricted using the
concept of enumerations. Line 74 in listing 4 shows
how a qualified data type is restricted to a set of
valid values. The complexType is restricted using
the concept of a simpleContent which is based on
an enumeration (line 76 in listing 4). The necessary
enumeration is automatically detected by the XML
schema generator and imported into the qualified data
type schema (line 73 in listing 4).

In (D) in figure 6 the derivation of a qualified data
type (purchase order_ identifier) from a generic core
data type (identifier) has been shown. The XML
generator automatically detects the necessary depen-
dencies and generates a complexType for each qualified
data type. The complexType for the qualified data type
purchase order_ identifier type iS shown in line 79 to
86 in listing 4. In listing 4 the content component
of the qualified data type is depicted using an exten-
sion (line 81) and the supplementary components are
specified using attributes (line 82-83.

Line 83 shows how the generic code attribute is
restricted to a set of country codes.

Listing 4: Qualified Data Type Schema

<xs:schema xmlns:qdt="sample:qdtlibrary” xmlns:enum="
sample:enumlibrary” xmlns:xs="http://www.w3.org
/2001 /XMLSchema” targetNamespace="sample:qdtlibrary
7 elementFormDefault="qualified”
attributeFormDefault="unqualified”
notSpecified”>
<xs:import namespace="sample:enumlibrary”
schemaLocation="ENUMLibrary-3.0.xsd” />
<xs:complexType name=" CountryCodeType”>
<xs:simpleContent>
<xs:extension base="
enum:CountryCodesType” />
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="
PurchaseOrder_IdentifierType”>
<xs:simpleContent>
<xs:extension base="xs:string”>
<xs:attribute name="
Schemeldentifier”
type="xs:string”
use="optional” />
<xs:attribute name="Code
” type="
enum:CountryCodesType

” use="required” />

version="

»

</xs:extension>
</xs:simpleContent>
</xs:complexType>

0o
</xs:schema>

67

CRPIT Volume 96 - Conceptual Modelling 2009

The XML artifacts for a core component library
are constructed similarly to a business information
entity library. Due to space limitations however these
generation artifacts are not shown in this article. This
section has shown how the XML schema generator
can be used to automatically generate a 1:1 represen-
tation of the conceptual level core component model
in logical level XML schema syntax.

7 Conclusion and Future Trends

In this article we presented UN/CEFACT’s core com-
ponents technology. Using the concept of core com-
ponents business documents can be defined on a con-
ceptual and syntax independent level. In order to
allow for an integration of the core components tech-
nology into a UML modeling tool, the UML Profile
for Core Components has been developed. Using the
UML profile the modeler can retrieve existing generic
core components from a standardized library. The
generic core components are further restricted in or-
der to create industry and context specific business
information entities.

We introduced our tool based XML generator
which follows the guidelines specified in the Nam-
ing and Design Rules of UN/CEFACT. Using a single
mouse click the XML generator automatically iterates
over a complete core component model and generates
XML schema files. The schema files are used to vali-
date the exchanged business documents in an actual
B2B collaboration. Furthermore they are needed for
the definition of entry/exit points in a service ori-
ented architecture e.g. the generated schema is im-
ported into a WSDL file. If both B2B partners have
the same business document definitions the entry /exit
points of both business partners match.

The contribution of our approach in regard to
the stated shortcomings of current business document
modeling approaches is therefore as follows:

(1) Standard incompatibilities. Since core com-
ponents define a business document on a conceptual
level and not on the logical level (e.g. XML schema
file) there cannot be any inconsistencies in regard to
the representation of a specific business document.
This is a major advantage over standards based on
pure implementation logic (e.g. XML).

(2) All-in-one approach. Similar to EDI ap-
proaches UN/CEFACT defines a set of normative
core components which are defined for a whole in-
dustry domain e.g. steel industry. Due to the deriva-
tion by restriction mechanism of core components no
overhead occurs in a well defined business context.
The generic industry specific core component is tai-
lored to a business information entity for a given busi-
ness domain. Since every business information entity
has a basedOn dependency to its underlying generic
core component the common semantic basis for every
business information entity is given, hence allowing a
matching even between business information entities
from different business contexts.

(3) Lack of conceptual document description.

Core components are defined on a conceptual meta
level, independent of any transfer syntax. With ev-
ery release of the core components standard UN/CE-
FACT releases a set of well defined Naming and De-
sign rules, allowing the mapping to a logical level
implementation of core components. In case of a
change in the transfer syntax only the mapping rules
have to be altered instead of a complete standard re-
engineering.

Furthermore the UML profile for Core Compo-
nents can be used to easily assemble business doc-
uments using UML artifacts. Such models can be
handed over to other business modelers, software de-

68

velopers and stakeholders in order to communicate
the structure and semantics of specific business doc-
uments. Using such a conceptual business document
representation greatly facilitates and enhances a soft-
ware implementation process through increased legi-
bility and apprehension.

Although the current implementation of the UML
Profile for Core Components together with the XML
generator provides a solid basis for business docu-
ment modeling and schema artifact generation, sev-
eral tasks are planned for the future. On the one
hand the current UML Profile for Core Components
(UPCC) is based on the Core Component Techni-
cal Specification (CCTS) version 2.01 (UN/CEFACT
2003). Since CCTS 3.0 will be released this year, the
UML profile has to be updated to meet the require-
ments of the new core component version. Every core
component release also includes updated Naming and
Design Rules. Therefore the XML schema generator
has to be updated accordingly.

In order to further foster the dissemination of the
core component technology the usability of the UML
Profile for Core Components must be enhanced. A
first step allowing inexperienced users to use the core
components technology is the implementation of a
validation routine for the core component’s UML pro-
file.

Since the core component model of a business doc-
ument is independent of any implementation syntax
the derivation of other artifacts than XML schema
could be possible as well. Following modified Naming
and Design Rules the core component model may be
used to derive Relax NG (OASIS 2001a), UBL (OA-
SIS 2006) or EDIFACT (UN/CEFACT 2007) artifacts
as well.

References

ACORD (2007), ACORD Insurance Data Standards.

Berge, J. (1994), The EDIFACT Standards, 2 edn,
Blackwell Publishers, Cambridge, MA, USA.

Bernauer, M., Kappel, G. & Kramler, G. (2003),
Approaches to implementing active semantics with
XML schema, in ‘Proceedings of the 14th Inter-
national Workshop on Database and Expert Sys-
tems Applications DEXA03, Prague, Czech Repub-
lic, September 1-5’; Springer, Berlin, pp. 559-565.

Chen, P. P.-S. (1976), ‘The Entity Relationship
Model: Towards a unified view of data’, ACM
Transactions on Database Systems 1(1), 9-36.

CIDX (2007),
Standard.

Combi, C. & Oliboni, B. (2006), Conceptual modeling
of XML data, in ‘Proceedings of the ACM sympo-
sium on applied computing SACO06, Dijon, France,
April 23-27°, ACM, USA, pp. 467-473.

Glushko, R. & McGrath, T. (2005), Document Engi-
neering, 2 edn, Massachusetts Institute of Technol-
ogy, USA.

HL7 (2007), Health Level Seven.

Hofreiter, B., Huemer, C., Liegl, P., Schuster, R.
& Zapletal, M. (2006), UN/CEFACT’s Modeling
Methodology (UMM): A UML Profile for B2B e-
Commerce, in ‘Advances in Conceptual Model-
ing - Theory and Practice, ER 2006 Workshops
BP-UML, Tucson, United States, November 6-9’,
Springer, Berlin, pp. 19-31.

Chemical Industry Data Fxchange

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

ISO (2007), ISO 3166 List of country names and code
elements.

Jung, J.-Y., Hur, W., Kang, S.-H. & Kim, H. (2004),
‘Business process choreography for B2B collabora-
tion’, IEEFE Internet Computing Journal 8, 37-45.

Li, H. (2000), ‘XML and Industrial Standards for
Electronic Commerce’, Knowledge and Information
Systems 2(4), 487-497.

Li, J. B. & Miller, J. (2005), Testing the semantics
of W3C XML schema, in ‘Proceedings of the 29th
Annual International Computer Software and Ap-
plications Conference COMPSAC2006, Edinburgh,
U.K., July 26-28’, IEEE, USA, pp. 443-448.

Malik, A. (2003), ‘XML Schemas in an Object Ori-
ented Framework’, XML Journal .
URL: http://zml.sys-con.com/read/40580.htm

Mani, M., Lee, D. & Muntz, R. R. (2001), Seman-
tic Data Modeling Using XML Schemas, in ‘Pro-
ceedings of the 20th International Conference on
Conceptual Modeling ER 2001, Yokohama, Japan,
November 27-30°, Vol. 2224, Springer, Berlin,
pp. 149-163.

OASIS (2001a), RELAX NG Specification, Organiza-
tion for the Advancement of Structured Informa-
tion Standards.

OASIS (2006), Universal Business Language v2.0, Or-
ganization for the Advancement of Structured In-
formation Standards.

OASIS (2007), Universal Description, Discovery, and
Integration, Organization for the Advancement of
Structured Information Standards.

OASIS, U. (2001b), ebXML - Technical Architecture
Specification, Organization for the Advancement of
Structured Information Standards, United Nations
Center for Trade Facilitation and Electronic Busi-
ness.

OMG (2007), Unified Modeling Language 2.1, Object
Management Group.

papiNet (2007), papiNet.
PIDX (2007), Petroleum Industry Data Exchange.

Rinderle, S., Wombacher, A. & Reichert, M. (2006),
On the Controlled Evolution of Process Choreogra-
phies, in ‘Proceedings of the 22nd International
Conference on Data Engineering ICDE06, Atlanta,
Georiga, April 3-8, IEEE, USA, pp. 124-124.

RosettaNet (2006), RosettaNet Business Documents.

RSA (2007), The UMM Add-In 1.0, Research Studios
Austria.
URL: http://ummmaddin.researchstudio.at

Salim, F., Price, R., Krishnaswamy, S. & Indrawan,
M. (2004), UML Documentation Support for XML
Schema, in ‘Proceedings of the Australian Software
Engineering Conference ASWEC2004, Melbourne,
Australia, April 13-16’, Vol. 2, Australia, pp. 211—
220.

Skogan, D. (1999), UML - A Schema Language for
XML based Data Interchange, in ‘Proceedings of
the Second International Conference on the Uni-
fied Modeling Language UML99, Colorado, USA,
October 28-30°, Vol. 2, USA, pp. 211-220.

Sparx (2008), Enterprise Architect, Sparx Systems.

SWIFT (2007), Society for Worldwide Interbank Fi-
nancial Telecommunication.

UN/CEFACT (2003), Core Components Technical
Specification 2.01, United Nations Center for Trade
Facilitation and Electronic Business.

UN/CEFACT (2006a), UML Profile for Core Com-
ponents 1.0, United Nations Center for Trade Fa-
cilitation and Electronic Business.

UN/CEFACT (2006b), UN/CEFACT’s Modeling
Methodology 1.0, United Nations Center for Trade
Facilitation and Electronic Business.

UN/CEFACT (2006¢), XML Naming and Design
Rules 2.0, United Nations Center for Trade Facili-
tation and Electronic Business.

UN/CEFACT (2007), UN/EDIFACT D.07B, United
Nations Center for Trade Facilitation and Elec-
tronic Business.

UN/CEFACT (2008), Core Components Technical
Specification 3.0, United Nations Center for Trade
Facilitation and Electronic Business.

W3C (2001), XML Schema Language, World Wide
Web Consortium.

W3C (2006), Extensible Markup Language, World
Wide Web Consortium.

W3C (2007a), Simple Object Access Protocol, World
Wide Web Consortium.

W3C (2007b), Web Services Description Language,
World Wide Web Consortium.

Yu, A. & Steele, R. (2005), An overview of research
on reverse engineering XML schemas into UML di-
agrams, in ‘Proceedings of the Third International
Conference on Information Technology and Appli-
cations ICITA 2005, Sydney, Australia, July 4-7’,
Vol. 2, Australia, pp. 772-777.

69

CRPIT Volume 96 - Conceptual Modelling 2009

70

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Contrasting Classification with Generalisation

Thomas Kiihne

School of Mathematics, Statistics and Computer Science
Victoria University of Wellington
PO Box 600, Wellington, New Zealand,

Email: Thomas.Kuehne@mcs.vuw.ac.nz

Abstract

Classification and Generalisation are two of the most
important abstraction mechanisms in modelling, and
while they share a number of similarities, they are un-
mistakably different with respect to their properties.
Recently, a number of (meta-) modelling language
design approaches de-emphasised the differences be-
tween classification and generalisation in order to gain
various advantages. This paper aims to demonstrate
the loss in precision and the loss of sanity checks
such approaches entail. After a careful comparison
between classification and generalisation, I identify
problems associated with the above mentioned ap-
proaches and offer alternatives that retain a strong
distinction between classification and generalisation.

Keywords: classification, generalisation, strict meta-
modelling

1 Introduction

The main purpose of modelling is to reduce complex-
ity. Sometimes it suffices to simply reduce the in-
formation per element in the universe of discourse
but otherwise retain a one-to-one correspondence be-
tween these elements and model elements (i.e., creat-
ing a token model (Kiithne (2006))). However, often
there is a need to use more abstract views, in par-
ticular, to disregard particularities of individual ele-
ments and only capture the relevant universal proper-
ties, creating a many-to-one correspondence between
elements from the universe of discourse and model-
ing elements. Omne thus obtains a way to charac-
terise many individuals by referring to one repre-
sentative only. In particular, classification is used
to create types from instances, giving rise to type
models (Kithne (2006)), abstracting away from the
identity of instances and their different property val-
ues. On the other hand, generalisation is used to
create a genus (hypernym) from species (hyponyms)
(Rayside & Campbell (2000)), i.e., to create super-
types from subtypes, thus abstracting away from a
number of subtypes and their respective differences.

Today, the differences between classification and
generalisation are well understood, but this has not
always been the case. Before Frege laid the founda-
tion for a modern axiomatic logic with his “Begriff-
sschrift” (Concept Script) in 1879, there was no sys-
tematic way to avoid mistakes arising from confus-

Copyright (©2009, Australian Computer Society, Inc. This pa-
per appeared at the The Sixth Asia-Pacific Conference on Con-
ceptual Modelling (APCCM 2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in Infor-
mation Technology, Vol. 96, Markus Kirchberg and Sebastian
Link, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

ing classification with generalisation and the logical
fallacies that inevitably follow (see section 3). The
arbor porphyriana (aka, “tree of knowledge”, a con-
cept tree as inspired by Porphyrios) in the version of
Purchotius from 1730 relates a supertype (e.g., “An-
imal”) with a type (e.g, “Homo”) in the same way
as a type (“Homo”) with its instances (e.g., “Petrus”)
(Purchotius (1730)). This lack of proper distinction
between classification and generalisation could still
be observed in 1890 (see Frege (1892, page 193, foot-
note 4)). As such, this relatively modern attainment
should not be given up lightly, even when apparent
advantages seem to suggest this from a pragmatic
point of view.

A number of (meta-)modelling language design ap-
proaches have been proposed that can be regarded
as emphasising the similarities between classification
and generalisation and de-emphasising their differ-
ences in order to yield

e a simplified language design (Jackson (2006)),

e more flexibility in metamodelling
Varré & Pataricza (2003), Gitzel & Merz
2004)), and

e an increased utility of a language specification
(OMG (2004)).

In this paper, I argue that there is value in main-
taining a clear distinction between classification and
generalisation, and that alternatives to the above
mentioned approaches exist that maintain a clear dis-
tinction.

Section 2 compares classification with generalisa-
tion pointing out similarities and fundamental differ-
ences. Section 3 analyses some of the aforementioned
approaches and suggests alternative solutions. Sec-
tion 4 concludes.

2 Comparison

The characterisation of classification and generalisa-
tion in the introduction, as typically using instances
and types as their domains respectively, suggests
that these abstraction mechanisms serve very differ-
ent purposes and indeed this is the case for most com-
mon usage scenarios. However, note that classifica-
tion may also be performed on types (metamodelling,
see Kiithne (2006)) and it is possible to generalise at
the instance level as well, leading to so-called abstract
objects (Mittelstraf (1995)). In the following compar-
ison, I am hence careful to compare classification with
generalisation by applying them to the same domain
in order to avoid observing discrepancies that only
exist due to the application to different domains.

4l

CRPIT Volume 96 - Conceptual Modelling 2009

2.1 Formalisation

For the following comparison it is useful to intro-
duce the notion of a “concept” as conceived by Frege.
Using the terminology of his pupil Carnap (Carnap
(1947)), a concept C has an extension (C), all in-
stances falling under the concept C', and an intension
1(C), a predicate characterizing whether an element
belongs to the concept or not, so that

(C) ={z [(C)()} (1)

We can now state whether a concept C' classifies
an instance e, i.e. e A C, using an extensional or an
intensional viewpoint. Here’s the extensional variant:

eAC = ece(0). (2)

Using the usual interpretation of generalisation, a
concept C, is more general than another concept Cs,
ie., Oy < (4, if it includes all the instances falling
under Cj:

Cy < Cy <= £(Cy) C £(Cy). (3)

Equations 2 & 3 make it obvious that a direct
comparison between classification and generalisation
is hindered by the fact that the former’s domain! typ-
ically conmsists of instances and the latter’s domain
typically consists of concepts.

One way to enable an adequate comparison would
be to look at concepts C, and C, as instances,
i.e., instead of considering their type facets (e.g.,
their attributes), by which they define the shape
of their instances, one could consider their instance
facets (e.g., their property values), that is, proper-
ties that are associated with the concepts themselves
(Atkinson & Kiihne (2003)). For example, for the
purpose of modelling a pet store, the instance facet
of the concept “Dog” could have a tax rate property
with the value “16%” whereas the instance facet of
concept “DogFood” could have the value “7%” for the
same property.

However, this way of looking at concepts is un-
familiar to most and would also imply that we had
to use meta-concepts to classify concepts. There-
fore, I perform the comparison at the instance level
and use generalisation at the instance level by using
the notion of an abstract object (Kamlah & Lorenzen
(1996)). An abstract object represents all instances
that are considered to be equivalent to each other for
a certain purpose, e.g.,

P(lz|~) <= Vy:y~z— P(y)

The abstraction operator |-| gives us a way to make
a statement about all instances that are considered
equivalent to each other. For example, while

HasFourLegs(Lassie)

is true if the instance “Lassie” has four legs, the ex-
pression
HasFourLegs(| Lassie|,,,) (4)

is only true if all instances considered equivalent to
“Lassie” have four legs (by means of ~ 404, which here
is meant to regard all instances of subspecies “Dog”
to be equivalent with each other).

Note that |Lassie|~,,, is not a type/concept. What

we assert of | Lassie|~.,,, is asserted of an instance (and

all other instances that are equivalent to it). The
expression

NamedByLinnaeusIn1758 (| Lassie|~,,,) (5)

1The type of the left hand side element in a relation.

72

is false since Linnaeus did not name all dogs, but
the concept “Dog” (Canis lupus familiaris), i.e., the
subspecies subordinate to species “Canis lupus”.

It is of course true, though, that |Lassie|~,, im-

plicitly defines a set of instances (an equivalence
class), which could be the extension of a concept—in
particular, if the equivalence relation ~g,4 is defined
by referring to a predicate Dog(X), i.e., instances are
considered equivalent with each other if they satisfy
predicate Dog(X). Yet, |Lassie|~,, refers to all in-
stances of that set, not the set itself. In other words,
the concept “Dog” is not a collection of dogs.

If one wants to introduce an alternative name to
the notion of an abstract object like | Lassie|~,,, then
prototype would best describe its nature. An abstract
object captures what is universal about a set of in-
stances but resides at the same logical level as the
instances, much like an object in a prototype-based
language from which other objects can be cloned
(Ungar & Smith (1987)). It thus has the quality of
a type but is not (yet) a type, hence “prototype”.

Finally, note that the way we generalise from
Lassie to |Lassie|~,,, conforms to how a number of
special concepts may be generalised to a general one
(see equation 3). A general concept can be regarded
as capturing what is universal about its subconcepts.
This is true with respect to instance facet properties,
e.g., tax rate values, but also with respect to type
facet properties, e.g., attributes that require certain
properties for instances, such as “age : Integer”. If an
equivalence relation ~,,4meq considers all subconcepts
to be equivalent that feature a “name” attribute and
is used on a number of subconcepts, such as “Collie”,
“Poodle”, and “Beagle”, then |Colliel|..,, . is the gen-
eralisation of these subconcepts and could be labelled
“NamedDog”.

Because a general concept C, = |C;|~ is derived
from more specialised concepts C; (i € [1..n]) by dis-
regarding differences in the C;, every C; will at least
have the requirements on instances that C,; has, which
means that if an instance satisfies the requirements of
a Cj, it will also satisfy the requirements of Cl:

Vi, x 2 o(Ci)(2) — o(Cy)(x) (6)

Here, I am referring to the intensions of concepts since
I want to emphasise the fact that a concept can be
viewed as being independent from the instances it de-
scribes. A concept resides at a higher logical lan-
guage level than the instances within its extension,
and its intension can be used as a judge with respect
to instances that may or may not fall under the con-
cept. This view of concepts is particularly important
if one wants to deal with dynamic extensions that
may shrink/grow over time and it is the prevalent
one in modelling languages such as the UML ((OMG
(2007))) where a class / type is regarded as an inten-
sional description of its instances.

From equations 1 & 6 it follows that the extension
of the superconcept is a superset of the union of the
extensions of its subconcepts.

e(Cy) =e(|Ch]~) 2 UE(CJ (7)

In equation 7, “2” can be replaced with “=", if
Ve:ec Cy— Ji:ec

i.e., if there are no elements which are classified by
Cy but not by any C;. The latter holds for all natural
objects which always have proper type which is more
specific than a generalised type, but may not be true
in modelling or programming, where instances of gen-
eralised types may be created unless they are declared
as being “abstract”.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

2.2 Similarities

When taking a sufficiently broad view, it is indeed
possible to identify a number of similarities between
classification and generalisation.

2.2.1 Abstraction

Classification and generalisation can both be regarded
as abstraction mechanisms. By abstracting away
from individual detail they give rise to relationships
that are typically many-to-one,? i.e., many elements
are abstracted from to yield one representative. By
using the representative, i.e. the type or the gen-
eralisation,® one is able to assert facts about a large
number of elements, e.g. what relationships they may
engage in, without referring to individual elements.
Hence, both classification and generalisation help to
reduce the complexity of specifications.

2.2.2 Membership

Instances and subtypes can both be viewed as belong-
ing to or being members of their respective represen-
tative. Each instance is a member of the set char-
acterised by its type and each subtype is a member
of the subtype hierarchy of which the generalisation
forms the top.

2.2.3 Description

Obviously, the representatives can be regarded as de-
scribing their members, i.e., the members are at least
partially defined by virtue of their membership. Con-
sider aggregation, as an example for another many-to-
one relationship, that does not have such a descriptive
flavour. The whole can be used as a representative of
its parts, but does not describe the latter.

2.2.4 Reuse

Finally, both types and generalisations can be usefully
kept in libraries as they allow modellers to derive new
elements from existing ones, as instances or subtypes
respectively. They, therefore, both support reuse and
incremental development in the sense that a modeller
may reuse such library elements and only needs to
specify what is different about the new element.

2.3 Differences

While the previous section appears to suggest that
classification and generalisation have a lot in com-
mon, it actually refers to rather superficial similari-
ties which distract from the fundamental differences
between them.

2.3.1 Abstraction

Everything that has been stated in section 2.2.1 re-
garding the nature of classification and generalisation
as abstraction mechanisms regarding the reduction
of complexity can also be stated about aggregation,
leaving only their descriptive nature and utility in li-
braries as differences. The vast differences between,
say generalisation and aggregation, highlight what lit-
tle significance a commonality in terms of “supporting
abstraction” actually has.

2Many—to—many forms, known as multiple inheritance and mul-
tiple classification, exist but are not very commonly supported.

31 refrain from using “supertype” as the latter term implies that
the element obtained by generalising has a type role.

2.3.2 Membership

While types and generalisations may both be re-
garded as representatives, they are in fact at different
logical language levels with respect to each other. In
section 2.1, I used expressions 4 & 5 to demonstrate
the difference between properties at the instance level
and the type level. Note that when using an abstract
object (a generalisation) we can directly assert a prop-
erty as in expression 4. To achieve the same with a
type, we actually need to use universal quantification
as in

YV :1u(Dog)(x) — HasFourLegs(z).

This universal quantification is often left implicit,
using the pragmatic assumption that assertions are
made about instances of a type, rather than the type
itself (expression 5 being an example for the latter).

Yet, the above must not detract from that fact
that |C|~ refers to all elements within the equiva-
lence class implied by ~, whereas ¢(C) refers to the
set of all elements, i.e., the equivalence class itself
(given a corresponding ¢(C')). Hence, when associ-
ating meaning to “|C|.” and “C” by using a map-
ping “u”, “u(|C|~)" is multi-valued, i.e., here “u” is
a relation, whereas “u(C)” has a single result, i.e.,
here “u” is functional. Assuming a stratification of
values in which sets of objects rank higher than the
objects they contain (see Russell’s Theory of Types
(Whitehead & Russell (1910))) clearly, types are at
a higher logical level than their instances and hence
also at a higher level than generalisations of their in-
stances.

From the fact that the result of classification is a
set (rather than all the members of the set), it follows
that classification gives rise to a relation which is not
transitive. While we have equation 6 for generalisa-
tion, and hence transitivity, i.e.,

C1 <CyNCy < C3— Ch < (O,

for classification, obviously an element Cy with Cy €
e(Cy), need not be in an element in a set Cs, even if
e(Cy) € Cs. Figure 1 uses a 3D variant of a Venn dia-
gram to illustrate the fact that an element (Lassie) is
automatically also an (indirect) member of the super-
type of its type, but is not automatically a member
of the type of its type.

Lassie
Lassie

(a) Generalization (b) Classification

Figure 1: Differences in transitivity

In (Kithne (2006)), I argued that in contrast to
classification, generalisation cannot be used to erect
a metalevel hierarchy because of the transitivity of
the relation it implies.

2.3.3 Description

Referring to the previous section 2.2 again, it is true
that types and generalisations both have a descrip-
tive role. However, note that while a type typically
only shapes the instance facet of its instances, i.e.,

73

CRPIT Volume 96 - Conceptual Modelling 2009

controls its instances’ properties, a generalisation is
typically only used to shape the type facet of its sub-
ordinated elements, i.e., supertypes are typically used
to make subtypes inherit type facet features (such as
the attribute “age : Integer”). It is, however, possi-
ble to influence the type facet with types (see “deep
instantiation” (Kiithne & Schreiber (2007))) and influ-
ence instance facets with specialisation (see Smalltalk
“class variables” (Goldberg & Robson (1983))).

2.3.4 Reuse

As a result of their different descriptive roles, types
and generalisations have rather different purposes
when used as library elements. Types provide a vo-
cabulary that is used without being refined. There is
no specification of a “difference” to the derivable ele-
ment, but one simply provides values for the schema
made available through the type. Generalisations, on
the other hand, are refined when used by specifying
what has to be added to derive a specialised element
from a general one.

In summary, although classification and generali-
sation share some superficial properties, they are in-
trinsically and unmistakeably different.

3 Analysis of Approaches

In the following I examine a number of approaches
that see benefits in de-emphasising the differences be-
tween classification and generalisation in one way or
the other.

3.1 In the Name of Simplicity

Alloy is a language for the specification of software
systems (Jackson (2006)). Omne of the tutorials on
Alloy contains the following statement:

“Set membership and subsets are both de-
noted in.” (Seater & Dennis (2008)).

In other words, Alloy uses one “in” operator for both
“e” and “C”. This is surprising at first because of the
fundamental differences between these two relations.
As discussed earlier on, “C” (corresponding to gener-
alisation) is transitive, whereas “€” (corresponding to
classification) is not.

This apparent puzzle is easily resolved by observ-
ing that Alloy does not fully support modelling at
the instance level. The modeller is rather required to
model instances as singleton sets, as in

one sig Lassie extends Collie {}

Here the set of all collies is specialised by a single-
ton set? Lassie which is used to uniquely reference
the intended instance “Lassie”. This way the “in”
operator can be considered to only support the “C”
interpretation. Checking

Lassie in Collie

yields true, because the set Lassie indeed contains a
(unique) element which is also a member of the set
Collie.

The good news is that, hence, “in” does not really
confound the set membership and subset relations as
quoted above. This confusion may still be claimed
regarding a modeller’s intention but technically “in”
always corresponds to “C”.

The bad news is, however, that representing in-
stances as singleton sets

e can be very confusing for novices, and

4A set with exactly one and thus unique instance.

74

e denies the modeller the ability to distinguish be-
tween a singleton set and its instance.

Novices will read “in” to mean “€” in situations
like this one:

Lassie in House

when trying to check whether Lassie is at home, i.e.,
test whether “Lassie” is among the elements of the set
“House” while they are actually checking whether the
(singleton) set Lassie is a subset of the set House.

Strangely, the below expression, using some (“3)
to extract an element x from the set Lassie,

some x : Lassie | x in House

also yields true, although there is no element x in
Lassie which is a subset of House. Although this may
suggest, that here “in” is interpreted as “€” after all,
Alloy interprets the unique instance within Lassie as
the singleton set containing “Lassie”. This also takes
place when referring to generated instances, such as
“Collie$0”, which are converted into singleton sets,
e.g., “{Collie$0}”.
Furthermore,

some x : House | x in House

yields true, if the house is not empty, again strongly
suggesting that “in” is interpreted as “€”. Yet again,
however elements in House are converted to their sin-
gleton sets before the in test, so that the actual “C”
test yields the expected result.

In total, even experienced modellers need to be
very wary in order to avoid misreading Alloy specifi-
cations that involve instances. Sometimes an Alloy
expression (e.g., Lassie) appears to denote an in-
stance, as it is used to uniquely reference a certain
element, and sometimes it clearly is used as a set (as
in some x : Lassie | ...). While there is always a
consistent technical reading of “in” as “C”, some of
its usages are highly suggestive of an “€” interpreta-
tion. Understanding Alloy’s results thus requires an
understanding of its implicit conversion of elements to
their respective singleton sets. Of course, it could be
argued that the latter is not necessary and that Alloy
manages to always associate the intended meaning of
either “€” or “C” to in, but this implies that one con-
cedes to a blurring between classification and general-
isation which is potentially dangerous (the intention
could deviate from the actual meaning) and inappro-
priate for novices that have not yet been sufficiently
exposed to a proper distinction between classification
and generalisation. The latter is a problem when us-
ing Alloy in first year courses such as devised by Noble
et al. (Noble et al. (2008)).

In section 2.3, I already pointed out the difference
between properties at the instance level and at the
type level (see expression 4 versus expression 5). Due
to Alloy’s approach to representing instances with sin-
gleton sets, the modeller loses the ability to separate
these two levels of properties. Technically, it is an
error to ask an instance for its member count since
it is not a container type like a set, but an Alloy
representation of an instance will happily answer “1”.
This may be regarded as a feature rather than a bug
since it enables specifications which are agnostic as to
whether they are dealing with instances or sets. How-
ever, this convenience comes with a price because one
loses the ability to detect (i.e, type check for) erro-
neous data flows which lead instances to appear in
places where only sets should occur and vice versa.

The rationale given for Alloy’s treatment of in-
stances as singleton sets, and the corresponding ap-
parent unification of “€” and “C” to “in”, is the desire
to uniformly allow the application of a single operator

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

to both scalars (instances) and sets (Jackson (2006)).
Overall, Alloy represents a highly elegant language
design which enables very concise and readable speci-
fications. However, I believe that prioritising simplic-
ity (just one “in” operator) and uniformity (applica-
ble to both instances and sets) does not justify the
loss in expressiveness and clarity as discussed above.

One could maintain the uniformity requirement of
having just one “in” operator by overloading it, i.e.,
using the same syntax for “€” and “C” but retaining
their different meaning depending on the types of the
arguments. Yet, this would exclude the possibility
of detecting type errors resulting from an unintended
usage of a set in place of an instance and vice versa.

I claim that the difference between an element and
a set, including the set that only contains said ele-
ment, is big enough in order to abandon simplicity
and uniformity in favour of improved type checking
capabilities. With respect to Alloy’s treatment of in-
stances, I therefore propose to allow the direct mod-
elling of instances and to use two different operators
for 3 677 a,nd 3 g”‘

3.2 In the Name of Flexibility

Motivated by the necessity to define the meaning of
metalevel boundaries in metalevel hierarchies and in
order to support sanity checks for the integrety of
such hierarchies, Atkinson and Kiihne have proposed
a strict metamodelling doctrine. According to the lat-
ter it is possible to fully understand each level in a
metamodelling hierarchy as being instantiated from
only the level above it (Atkinson & Kiihne (2001)).
In order to enforce this property, the only relation-
ships allowed to cross metalevel hierarchy boundaries
are “instance-of” relationships.

Subsequently, this doctrine has sometimes been
criticised as leading to inflexible infrastructures, and
approaches have been developed that relax the strict-
ness requirement in order to provide more flex-
ible metamodelling infrastructures (Gitzel & Merz
(2004), Varr6 & Pataricza (2003)). In particular,
Varr6 and Pataricza take issue with the strict four-
layer architecture of the OMG in that it leads to
scenarios in which “...concepts are replicated both
on meta-level and model-level...” (Varroé & Pataricza
(2003, p. 191)). As a remedy they advocate the intro-
duction of “refinement” as a unification of the notions
of instantiation and specialisation, regarding the lat-
ter as being highly compatible with each other:

“As a result, two model elements can si-
multaneously be in subtype and instance-of
relations...” (Varré & Pataricza (2003, p.
194)).

Varré and Pataricza even provide a proof for this
proposition (Varro & Pataricza (2003, p.195-196)).
Their proof relies on the fact that classification and
generalisation both give rise to many-to-one relations
and that there are pairs of models which can be
viewed as being in a classification or a generalisa-
tion relation. However, while Varré and Pataricza
would read the aforementioned “or” as a logical “or”,
I maintain that it must be read as a logical “xor”.
Note that their example using “Graph” and “Bipartite-
Graph” (Varré & Pataricza (2003, Fig. 6)) excludes
attributes. If elements of “Graph” defined attributes—
e.g., “Node” could have the attribute “outDegree”—
one could clearly see that in the instantiation case
the nodes of “BipartiteGraph” would have values for
“outDegree”, whereas in the specialisation case the
nodes of “BipartiteGraph” would inherit the “outDe-
gree” attribute. An obvious solution to the “attribute”
dilemma is that nodes of “BipartiteGraph” have both

“outDegree” values and attributes, but this is most
certainly not the intended structure.

Furthermore, if one considered not only model
pairs, but deeper derivation structures, the difference
in transitivity between classification and generalisa-
tion would become apparent.

For these reasons, I consider it inappropriate to
view instantiation and specialisation as incarnations
of a unified refinement notion that may occur simul-
taneously between two models.

Gitzel and Merz also aim to reduce the
number of concepts in metamodelling hierarchies
(Gitzel & Merz (2004)). They model “JavaAccount”
as an instance of “Account” using a new form
of “instance-of” (classification) relationship which
“...is used in a similar fashion to inheritance
relationships...” (Gitzel & Korthaus (2004, p. 72)).
In essence, they are relaxing the strictness doctrine
(Atkinson & Kiihne (2001)) to allow instantiation
across several metalevel boundaries. However, as is
apparent from the “Account” / “JavaAccount” exam-
ple, their new form of “instance-of” relationship in
fact has specialisation semantics as opposed to in-
stantiation semantics. Intuitively, every instance of
“JavaAccount” should also (indirectly) be an instance
of “Account”. Also, having elements at one metamod-
elling level that are instantiated from several different
metamodelling levels higher up is incompatible with
the requirements for a metamodel hierarchy erect-
ing relation (Kiihne (2006)), and as a matter of fact,
with Russell’s Theory of Types (Whitehead & Russell
(1910)).

In ontological metalevel hierarchies
(Atkinson & Kiithne (2003)), it is obvious that
instantiation has to be anti-transitive and instanti-
ation may only occur from one level to an adjacent
one. Here is an ill-formed syllogism that violates this
rule, representing a logical fallacy:

Man is a species
Socrates is a man

.. Socrates is a species

If “species” is replaced with “mammal” then the syl-
logism works as intended because then the first “is
a” corresponds to generalisation as opposed to clas-
sification. The above ill-formed syllogism illustrates
the inappropriateness of assuming that an instance
(Socrates) could be classified by an element that
is two levels higher up in the metalevel hierarchy
(species).

Gitzel et al. appear to require certain concepts at
more than one metamodelling level since there are
metamodelling hierarchies which cannot be aligned
with each other (Atkinson & Kiihne (2001)). In such
cases, which include primitive types like “Integer”,
strictness can be maintained for the hierarchies in-
dividually, and a single hierarchy may be used multi-
ple times in conjunction with another one. I believe
that this is an acceptable form of replication since it
corresponds to “multiple usage” rather than “multiple
definition”.

Gonzalez-Perez and Henderson-Sellers also
appear to treat classification and generalisa-
tion as closely related relationships because they
let both cross metalayer boundaries in parallel
Gonzalez-Perez & Henderson-Sellers (2006, p. 88,
Fig. 20), but note that their metalayers are not
aligned with metalevels, the latter being defined
by classification relationships only. Although their
usage-oriented layering appears to blur the differ-
ences between classification and inheritance, the
underlying level hierarchy does not suffer from any
such conceptual difficulties.

Summarising, with respect to attempts to relax
the strictness doctrine, I argue that there is no value

75

CRPIT Volume 96 - Conceptual Modelling 2009

in weakening the significance of metalevel bound-
aries. On the contrary, abandoning strictness opens
the door for errors that no longer can be detected as
such. If there is value in partitioning a metamodelling
hierarchy along boundaries other than the metalevel
boundaries, such structures should be overlayed, or
offered as alternative views, but not undermine the
integrity of the metalevel boundaries themselves.

3.3 In the Name of Utility

In order to promote consistency and parsimony, the
OMG introduced a “Core” model from which both the
Meta-Object Facility (OMG (2006)) and the UML
definition (OMG (2007)) are derived. Regarding the
UML definition, note that it is both specialised® from
the Core (OMG (2004, p. 12, Fig. 7.2)) and also
ins‘gz;ntiated from the Core® (OMG (2004, p. 14, Fig.
7.4)).

Formally, we both have UML A Core (Core clas-
sifies the UML definition) and UML < Core (Core
generalises the UML definition). In section 3.2, I
have already argued that this is inappropriate, i.e.,
impossible to maintain in a sound manner. How-
ever, I was making the assumption that both mod-
els are used with an ontological interpretation, which
was appropriate regarding Varré and Pataricza’s ex-
amples. As observed by Atkinson and Kiihne, how-
ever, the OMG uses the Meta-Object Facility (MOF)
and hence by implication the Core, both as an on-
tological type model and as a linguistic type model
(Atkinson & Kiihne (2005, p. 409, Fig. 15(b))). In
the following, I will investigate under which circum-
stances it is possible for a linguistic type model to be
both the type model and a supermodel for another
model.

Formally, we are looking for elements M (UML)
and MM (Core) which fulfil the following constraint:

M € e(MM) N e(M) C e(MM). (8)

Assuming an element m (a UML model), the above
constraint with e(M) = {m} and e(MM) = {m, M},
yields

Me{m,M}AN{m} C{m, M} 9)

which fulfils the constraint. The following observa-
tions are noteworthy:

e The only way in which constraint 8 may (non-
trivially) be true is for an M that has a type
role. If M were an instance without a type role,
i.e., e(M) =, it could not meaningfully take the
place of M in constraint 8 since it would not have
an extension whose elements may also appear in
the extension of MM its extension could not be
non-trivially considered to be a subset of MM’s
extension.

e From constraint 8 it follows that e(MM) must
contain two elements which can be considered as
being in a classification relation. Formally,

Mee(MM)Ne(M) Ce(MM)Ne(M) #0 —
Im: M e e(MM)Am € e(MM)Am € e(M).

Hence, MM must (at least implicitly) define a
notion of instantiation between (some of) its el-
ements. Indeed, the Core/MOF defines instanti-
ation between its elements.

5 Actually, the term “dependent on” is used which refers to pack-
age usage which can be appropriately regarded as specialisation.

S Actually, it is instantiated from the MOF which contains the
Core.

76

e The above point implies that MM cannot only in-
stantiate M—as well as being M’s supermodel—
but also m, an instance of M. In fact, this
is the case in our example, as the MOF/Core
can (linguistically) classify UML models. This
ability is used to provide a common reposi-
tory/interchange format for UML models.

e If M and MM are chosen to be equivalent, i.e.,
(M) ~ (MM), and hence describe the same
models, ignoring the implied different logical lev-
els in a stratified scheme, then MM can be said
to be self-describing. This is useful to obtain
a self-terminating metamodelling hierarchy, such
as the OMG’s four layer architecture.

With respect to the last point, note that choos-
ing M = MM, would lead to a set that contains it-
self, i.e. an infinite regression, by expressions 8 & 9.
This is not possible assuming ZFC set theory (Kunen
(1980))), but operationally one could of course con-
struct a metamodelling hierarchy which features as
many copies of the top-level as desired. One could
use an MM -quine, i.e., an MM that contains a quoted
version of itself. Upon instantiation one would un-
quote this version and supplement it with a quoted
version again. This is the principle with which one
can write programs that replicate/output themselves.

Note that Core is used as a linguistic type model
and can instantiate itself. This makes it possible to
avoid the logical stratification problems which were
mentioned in section 3.2 as follows: The linguistic
Core type model can instantiate both the UML def-
inition and another Core instance, the latter acting
as a supermodel for the UML definition. This way
the UML definition can simultaneously be an instance
and a subtype of Core, thus being shaped in two ways,
albeit referring to two (identical) instances of Core.
In contrast to the “BipartiteGraph” example of sec-
tion 3.2, it does make sense for the UML definition
to have features for its elements—such as ‘name”—
that exist both as properties (with values) and as at-
tributes (shaping UML instances, i.e., user models).

As a (surprising!) result, it is indeed possible to
increase the utility of Core/MOF by using it both as
a repository format (linguistic type) and a language
definition supermodel (language definition supertype)
while maintaining a clean structure free of inconsis-
tencies. I propose to use the above developed inter-
pretation of the dual role of the Core/MOF as an
underpinning to its intended dual purpose.

4 Conclusion

Classification and generalisation can be regarded as
sharing a number of properties. The aim of this paper
was to demonstrate that claiming any resemblance be-
tween the two abstraction mechanisms is only mean-
ingful when taking a very broad view. Since Frege’s
pioneering work in 1879, there should be no doubt
regarding the fundamental differences between classi-
fication and generalisation and the resulting incom-
patibility regarding a simultaneous usage.

Apart from recalling this important lesson learned,
this paper makes a number of contributions:

First, I used the notion of an abstract object to
define generalisation on instances, i.e., avoiding the
usual view of specialisation as extending type facets.
This provided an unusual interpretation of supertypes
as generalising the instance facets of their subtypes as
well as their type facets. First and foremost, however,
it allowed an adequate comparison between classifi-
cation and generalisation which focussed on intrinsic
differences rather than on discrepancies that result
from different usage scenarios.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Second, I pointed out some conceptual problems
and inconsistencies of approaches which use a uni-
fying view on classification and generalisation, de-
emphasising their differences. Whenever needed and
possible, I offered a logically consistent view, restoring
an adequate separation of classification versus gener-
alisation. To the best of my knowledge, in particular
the formal investigation into whether the OMG’s view
of the Core/MOF as both a repository format and a
language definition supermodel has a sound interpre-
tation, is novel.

Third, T argued that acknowledging the differences
between classification and generalisation—e.g., by
complying with the “strict metamodelling” doctrine—
one gains an opportunity for sanity checks regarding
the integrity of metamodelling hierarchies that other-
wise would not exist. Detecting incorrect dataflow in
specifications becomes possible if instances and types
are not substitutable for each other. Logical fallacies
that are introduced by crossing multiple metalevel
boundaries at once or introducing circular definitions
are impossible, if metalevels are stratified according
to Russell’s Theory of Types. Finally, a metamodel
can be defined to have a dual purpose in a sound
manner, if it features elements that can classify each
other.

Ultimately, there is no single correct way of design-
ing languages and in particular Alloy’s prioritisation
of flexibility over safety can certainly be defended.
Also, I am aware that the authors of the work which
I subjected to some critical remarks may take differ-
ent definitions for classification and generalisation as
a basis and hence arrive at different conclusions re-
garding their compatibility, maintaining internal con-
sistency.

However, I hope that the observations made in this
paper may be of use for future language designers.
While they may not choose to subscribe to the most
rigorous treatment I have suggested, they will at least
be in a position to consciously deviate from it, ex-
plicitly rationalising as to why a non-strict treatment
should be preferred and whether it is worth accept-
ing the resulting loss in precision and loss of sanity
checks.

Acknowledgements

I would like to thank Lindsay Groves for his very help-
ful comments on a draft of this paper.

References

Atkinson, C. & Kiihne, T. (2001), ‘Processes and
products in a multi-level metamodeling architec-
ture’, International Journal of Software Engineer-
ing and Knowledge Engineering 11(6), 761-783.

Atkinson, C. & Kiihne, T. (2003), ‘Rearchitecting the
UML infrastructure’, ACM Transactions on Mod-
eling and Computer Simulation 12(4), 290-321.

Atkinson, C. & Kiihne, T. (2005), Concepts for com-
paring modeling tool architectures, in L. Briand,
ed., ‘Proceedings of the ACM/IEEE 8" Inter-
national Conference on Model Driven Engineer-
ing Languages and Systems, MoDELS / UML’,
Springer Verlag, pp. 398—413.

Carnap, R. (1947), Meaning and Necessity: A
Study in Semantics and Modal Logic, University of
Chicago Press.

Frege, G. (1892), Uber Begriff und Gegenstand (On
Concept and Object), in ‘Vierteljahrsschrift fiir

wissenschaftliche Philosophie’, Vol. XVI, Fues’s
Verlag, pp. 192-205.

Gitzel, R. & Korthaus, A. (2004), The role of meta-
modeling in model-driven development, in ‘Pro-
ceedings of the 8" World MultiConference on
Systemics, Cybernetics and Informatics’, Vol. IV,
pp. 68-73.

Gitzel, R. & Merz, M. (2004), How a relaxation of the
strictness definition can benefit MDD approaches
with meta model hierarchies, in ‘Proceedings of the
8th World Multi-Conference on Systemics, Cyber-
netics and Informatics’, Vol. IV, pp. 62—67.

Goldberg, A. & Robson, D. (1983), Smalltalk-80: The
Language and its Implementation, Addison-Wesley,
Reading, MA.

Gonzalez-Perez, C. & Henderson-Sellers, B. (2006),
‘A powertype-based metamodelling framework’,
Software and Systems Modeling 5(1), 72-90.

Jackson, D. (2006), Software Abstractions: Logic,
Language, and Analysis, The MIT Press, Cam-
bridge, Mass.

Kamlah, W. & Lorenzen, P.
Propddeutik, Metzler.

Kiihne, T. (2006), ‘Matters of (meta-) modeling’,
Software and Systems Modeling 5(4), 369-385.

Kiihne, T. & Schreiber, D. (2007), Can programming
be liberated from the two-level style? — Multi-
level programming with DeepJava, in ‘Proceedings
of the 22" annual ACM SIGPLAN conference on

Object oriented programming systems and applica-
tions’, ACM, NY, USA, pp. 229-244.

Kunen, K. (1980), Set Theory: An Introduction to
Independence Proofs, Elsevier. ISBN 0-444-86839-
9.

Mittelstra®, J., ed. (1995), Enzyklopdidie Philosophie
und Wissenschaftstheorie, Verlag J. B. Metzler.

Noble, J., Pearce, D. J. & Groves, L. (2008), Introduc-
ing Alloy in a software modelling course, in ‘ETAPS
2008 Workshop on Formal Methods in Computer
Science Education (FORMED)’.

OMG (2004), Unified Modeling Language Infrastruc-
ture, Version 2.1.2. OMG document formal/2007-
11-04.

OMG (2006), Meta Object Facility (MOF) 2.0 Core
Specification. OMG document formal/2006-01-01.

OMG (2007), Unified Modeling Language Superstruc-
ture Specification, Version 2.1.1. OMG document
formal /07-02-05.

Purchotius, E. (1730), Institutiones philosophicae I,
in ‘Tomus primus, Complectens Logicam & Meta-
physicam’, Apud Joannem Manfreé.

Rayside, D. & Campbell, G. T. (2000), An Aris-
totelian understanding of object-oriented program-
ming, in ‘Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages, and
Applications’, ACM Press, pp. 337-353.

Seater, R. & Dennis, G. (2008), ‘Tutorial for Alloy an-
alyzer 4.0, http://alloy.mit.edu/alloy4/tutorial4/.

Ungar, D. & Smith, R. B. (1987), Self: The power
of simplicity, in ‘Proceedings of the Conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications’, ACM press, pp. 227—
242.

(1996), Logische

77

CRPIT Volume 96 - Conceptual Modelling 2009

Varr6, D. & Pataricza, A. (2003), ‘VPM: A visual,
precise and multilevel metamodeling framework for
describing mathematical domains and UML’, Jour-
nal of Software and Systems Modelling 2(3), 1-24.

Whitehead, A. N. & Russell, B. (1910), Principia
Mathematica, Suhrkamp, Frankfurt.

78

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Extracting and Modeling the Semantic Information Content of Web
Documents to Support Semantic Document Retrieval

Shahrul Azman Noah', Lailatulqadri Zakaria' & Arifah Che Alhadi’
'Faculty of Information Science & Technology
Universiti Kebangsaan Malaysia
43600 UKM Bangi Selangor MALAYSIA

*Department of Computer Science
Universiti Malaysia Terengganu
21030 Kuala Terengganu, Terengganu, MALAYSIA

samn@ftsm.ukm.my,

Abstract

Existing HTML mark-up is used only to indicate the
structure and lay-out of documents, but not the document
semantics. As a result web documents are difficult to be
semantically processed, retrieved and explored by
computer applications. Existing information extraction
system mainly concerns with extracting important
keywords or key phrases that represent the content of the
documents. The semantic aspects of such keywords have
not been explored extensively. In this paper we propose
an approach meant to assist in extracting and modeling
the semantic information content of web documents using
natural language analysis technique and a domain specific
ontology. Together with the user’s participation, the tool
gradually extracts and constructs the semantic document
model which is represented as XML. The semantic
models representing each document are then being
integrated to form a global semantic model. Such a model
provides users with a global knowledge model of some
domains.

Keywords: ontology, information retrieval, semantic
document retrieval, semantic information extraction.

1 Introduction

Accessing and extracting semantic information from web
documents is beneficial to both humans and machines.
Humans can browse and retrieve documents in a
semantically manner whereas machine can easily process
such structured representations. Furthermore integrating
extracted information from multiple documents can
provide users with a global knowledge model of some
domains. Due to the structure of human knowledge, the
tasks of extracting semantic information in web
documents, however, proved to be difficult. The vision of
Semantic Web (Berners-Lee et al, 2001) offers the
possibility of providing the meanings or semantics of web

Copyright (c) 2009, Australian Computer Society, Inc.
This paper appeared at the Sixth Asia-Pacific Conference
on Conceptual Modelling (APCCM 2009), Wellington,
New Zealand, January 2009. Conferences in Research and
Practice in Information Technology, Vol. 96. Markus
Kirchberg and Sebastian Link, Eds. Reproduction for
academic, not-for profit purposes permitted provided this
text is included.

laila@ftsm.ukm.my, arifah_hadi@umt.edu.my

documents in a machine readable manner. However, the
vast majority of 1.5 billion web documents are still in
human readable format, and it is expected that this form
of representation will still be the choice among content
creators and developers due to its simplicity. Due to this
phenomenon and the desire to make the Semantic Web
vision a reality, two approaches have been proposed (van
Harmelen & Fensel, 1999): either furnish information
sources with annotations that provide their semantics in a
machine accessible manner or write programs that extract
such semantics of Web sources.

This research falls into the latter category, whereby
the intention is to develop a semi-automated tool meant to
assist in extracting and modeling the semantic
information content of web documents using the natural
language analysis (NLA) technique and a domain specific
ontology. In this approach a set of candidate concepts
(key phrases or keywords) is automatically extracted
from web documents using heuristic rules. Sentences
which relate with these concepts are then analyzed and
compared with the domain ontology to construct the
semantic information content. This process might be
performed with the user’s participation depending on the
domain ontology. Each semantic domain model of a
domain is then integrated together to form the global
semantic document model. The approach discussed here
might be very much similar to another of our work on
semantic document retrieval (Noah et al, 2005).
However, the focus of this paper is more on the extraction
aspect to represent the semantic information of a web
document.

This paper is organized into the following sections.
The next section provides the background and related
research. Section 3 explains the approach employed in
extracting and modeling of the semantic information
content of web documents. Section 4 and 5 respectively
present the testing results and the conclusion that can
drawn from our work.

2 Background and Related Research

The aim of information extraction (IE) is to collect the
information from large volumes of unrestricted text. IE
isolates relevant text fragments, extracts relevant
information from the fragments, and pieces together the
targeted information in a coherent framework (Cowie &
Lehnert, 1996). IE problems have been popularly deal
with NLA techniques. However, a few research have

79

CRPIT Volume 96 - Conceptual Modelling 2009

considered using domain ontology (Uren et al., 2006;
Villa et al., 2003). We provide some background
knowledge of NLA and ontology; and then proceed with
some related works.

2.1 NLA and the Semantic Web

NLA is the study of understanding human natural
language such that it can be understood and correctly
processed by machines. Within the vision of Semantic
Web, although, NLA contributions are not directly
explicated (Berners-Lee et al., 2006), the technology can
do play an important in this very slow but progressing
semantic technology. NLA for instance can automatically
create annotations from unstructured text that provides
data which semantic web applications require (Pell,
2007). Research has also been done on providing an NLA
type of interface for describing a semantic content which
is then translated into one of the Semantic Web enabling
technology i.e. Resource Description Framework (RDF)
and Web Ontology Language (OWL) (Schwitter, 2005).
Another potential application of NLA to Semantic Web is
in terms of annotation. Interestingly there are two very
different types of annotation process involving NLA, one
is annotating natural language document such HTML
documents with a pre-specified domain ontology
(Vargas-Vera et al., 2002) and the other is annotating
document (can be natural language documents or
semantic web documents) with natural language (Katz &
Lin, 2002). The work by Vergas-Vera et al. (2002)
involves pre-processing of HTML documents and semi-
automatically annotate the identified concepts with
domain ontology. They developed a tool called MnM.
The work by Katz and Lin (2002) on the other hand allow
users to augment RDF schema with natural language
annotations to in order to make RDF more friendly to
human instead of machine alone. The work reported in
this paper falls into the earlier approach.

2.2 Ontology

Ontologies are widely used in knowledge engineering,
artificial intelligence; as well as applications related to
knowledge management, information retrieval and the
semantic web. Among the first definition of ontology was
provided by Neches et al. (1991); which said that “an
ontology defines the basic terms and relations comprising
the vocabulary of a topic areas as well as the rules for
combining terms and relations to define extensions of the
vocabulary”. However, the most quoted definition of
ontology is based from Gruber (1993); which defined it
as “an explicit specification of a conceptualization”.
Although, there has been no universal consensus for the
definition of ontology; the aim of ontology is very clear
as put forward by Gomez-Perez et al. (2004) that is “fo
capture consensual knowledge in a generic way, and that
they may be reused and shared across software
applications and by groups of people”.

Ontology is considered as the backbone for the
Semantic Web and received great attentions from
researchers working in this area. Ontology has also been
gradually seen as an alternative to enhance information
retrieval task. However, the majority of efforts in
information retrieval are limited to query expansion and

80

relevance feedback by exploiting the so-called linguistic
ontology such as the WordNet (Miller, 1995). In this
paper, we extend the use of ontology into a mediator for
mapping concepts extracted from documents and to
establish the semantic relationships among the concepts.

2.3 Related Work

We briefly discuss three research works which are very
related to ours, which are the work by Embley et al.
Embley (2004) and Embley et al. (1999); Brasethvik and
Gulla (2001, 2002) and Alani et al. (2003).

The work by Embley (2004) use object relationship
model, data frames and lexicon (which forms an
ontology) to assist in data extraction from web
documents. Brasethvik and Gulla (2001, 2002) employ
NLA technique and a conceptual model to support the
task of document classification and retrieval. In this case,
the conceptual model is constructed by a committee from
a set of sample documents by identifying the concepts
and relationships. This model is then wused for
classification and retrieval. Alani et al. (2002) on the
other hand develop Artequakt which is an information
extraction system for extracting information about artist
and artifacts using a domain ontology.

Our work is towards the development of a framework
for extracting and modeling the semantic information
content of web documents. Our work differs from those
of Embly which mainly concerns on extracting ‘data’ that
can be queried similar to SQL-like statement. Our work
also differs to the work of Alani et al. (2003) which
basically concerns with semantic annotation of web
documents. Our work, however, share some similar
‘motivation’ with the work Brasethvik and Gulla (2001,
2002). The difference is that instead of using a conceptual
model, we used existing domain ontology and allow
interactive user-tool refinement in constructing the
semantic model.

3 The Approach

Our approach to semantic information extraction of web
documents involves constructing a semantic document
model representing each processed documents. To
support this process, the approach employs the natural
language analysis (NLA) technique and a set of domain
specific ontology. Both are used to perform the task of
textual analysis which results not only in the
identification of important concepts represented by the
documents but also the relationships between these
concepts. This approach, therefore, follows the general
approach to building semantic index as illustrated by
Desmontils and Jacquin (2001).

Figure 1 illustrates the overall process involved in
constructing the semantic document model. As compared
to the Brasethvik and Gulla (2001, 2002) approach which
relies on the conceptual model previously constructed by
a selective of personnel, our approach utilise existing
ontology of the chosen domain, i.e. the medical domain.
A detail discussion of the process therefore follows.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Document
Preprocessing &
Analysis
Sentence Word F
Recognition & | ----e-| VOrd Frequency
Analysis Analysis
List of
candidate :
+ BT
Apple Pie Linguistic
lj\> Analysis
Domain |:1‘> Document > gsg&?g;
Ontology Semantic Analysis
Model
Semantic
Integration

Global
Semantic

Document
Model

Figure 1. The construction of semantic document
model

3.1 Document Pre-processing and Analysis

Every HTML documents sent for processing will firstly
be decoded to generate ASCII document files type that
are free from any HTML tags. The documents’ content
extracted from this process are the document’s metadata
such as the document’s title, URL, description and
keywords. The textual content of the documents is also
extracted.

These documents will then undergo a word analysis
process which involved document’s filtering and words
frequency calculation. In document’s filtering, all stop
words will be eliminated and selected concepts will be
stemmed to their root words. These concepts or words
will be sorted according to the frequency of appearance
within the document. The sentence analysis and
recognition on the other hand will divide the documents
into paragraphs, which are in turn broken down into
sentences and stored in the document sentences
repository. A set of concepts with high frequency
previously obtained from the word analysis process will
be matched with the sentences stored in the repository in
order to select the candidate sentences to be used in the
next NLA process. According to Luhn (1958), extracted
words with high frequency can represent document’s
content. The selection of sentences that contains high
frequency concepts is entirely based on the heuristic
which suggest that such sentences are best describe the
content of documents. This heuristic also removes the
needs to analyse all possible sentences found in the
document which can jeopardize the processing
performance of the system.

An example of a document pre-processing and analysis
process is as illustrated in Figure 2. As can be seen, the
results of this process is a list of potential candidate
concepts (for building the semantic document model)
sorted according to the number of occurrences — as well
as a list of potentially rich information sentences in which
the candidate concepts were found.

List of candidate concepts Preprocessed documents

URL oy

:34 word :valves ==> valve
:34 word :valve ==> valve

:30 word :heart ==> heart

:10 word :defective ==> defect
:10 word :defect ==> defect

:10 word :defects = defect

:7 word :congenital ==> congenit
:6 word :blood ==> blood

16 word :open ==> open

16 word :close ==> close

2a(chid u

FhoEh HhHh H Fh H b b

Extraction of
sentences
containing the

List of selected sentences

[1] Blood is pumped through the chambers, aided by four heart valve.

[2] The valves open and close to let the blood flow in only one direction.

[3] The heart has four chambers.

[4] What are the four heart valves?

[5] The tricuspid valve is between the right atrium and right ventricle.

[6] The pulmonary or pulmonic valve is between the right ventricle and the pulmonary artery.
[7] The mitral valve is between the left atrium and left ventricle.

Figure 2. An example of the document analysis process

3.2 Natural Language Analysis

The natural language analysis process can be divided into
two subsequent stages: the morphology and syntactic
analysis; and the semantic analysis. The main aim of this
process is to generate a local semantic document model
representing each processed document The morphology
and syntactic analysis process will analyse the input
sentences previously stored (sentences that contains
candidate concepts) in the sentences repository into a
parse tree using the Apple Pie Parser (Sekine, 2006). The
parser is a bottom-up probabilistic chart parser which
finds the parse tree with the best score by best-first search
algorithm. The grammar used is a semi context sensitive
grammar with two non-terminals and was automatically
extracted from Penn Tree Bank, syntactically tagged
corpus made at the University of Pennsylvania (Sekine,
2006).

The process of morphology and syntactic analysis is
considered to be domain independent. For example the
input sentence of “Blood is pumped through the
chambers, aided by four heart valves”, is being parse to
the following parse tree.

S
(NPL Blood)
(VP is
(VP pumped
(PP through
(NP
(NPL the chambers) -COMMA-
(VP aided
(PP by
(NP
(NPL four heart) valves)))))))

-PERIOD-)

The semantic analysis on the other hand performs the
task of extracting the semantic relationships between the
selected concepts. This is perform either by the use of
domain specific ontology or by exploiting the semantic
structure of the analysed sentences with the help of the

81

candidate concepts.

CRPIT Volume 96 - Conceptual Modelling 2009

user. The interactions from user at this stage is seen
acceptable as fully-automated approach to semantic
analysis is not possible due to the requirement for deep
understanding of the domain in concern (Snoussi et al.,
2002). Figure 3 illustrates the overall process of this stage
which indicates that the two main activities involved are
the identification of concepts and the relationships
between these concepts. Detail discussion of these
activities therefore follows.

(S (NPL Blood) (VP is (VP pumped (PP through (NP (NPL the chambers) -
COMMA- (VP aided (PP by (NP (NPL four heart) valves))))))) -PERIOD-).

Natural Language
Analysis Module

_________ Domain
ontology

r
[}
[}
1 [}
¥ i
‘ Concept Analysis } #} Concept Confirmation }47 1
[}
[}
| i
I e — '
L L oo,
. . Relationship
Relationship Analysis ‘ r‘ Confirmation ‘

pumped_through (heart , chamber)

Figure 3. The natural language analysis process

Noun phrases and verb phrases are good indications
of concepts to be included in the semantic documents
model. Therefore, every noun phrases and verb phrases
extracted from the analysed sentences are represented as
concepts. These noun phrases will be analysed to filter
determiners (such as the, a and and) that usually occur in
word phrases.

For example, the parsed sentences of “Blood is
pumped through chambers aided by four heart valves” in
the form of (S (NPL Blood) (VP is (VP pumped (PP
through (NP (NPL the chambers) -COMMA- (VP aided
(PP by (NP (NPL four heart) valves))))))) -PERIOD-),
will resulted in the extraction of the concepts: ‘blood’,
‘the chambers’ and ‘four heart’. The determiner ‘the’ and
the stopword ‘four’ will be removed from the identified
concepts.

The confirmation (in terms of the correctness) of the
filtered concepts is performed in two ways; either
automatically endorsed by referring to the domain
ontology if the mapping between the concepts and the
domain ontology existed; or from user intervention in the
case where no such mapping found existed. Figure 4
illustrates a portion of the domain ontology used by the
tool.

82

vascular diology
diseases 4, cardiology
S
%
%

o
&

heart valve
diseases
Location of

Figure 4. A segment of the heart domain ontology

Relationship recognition identified during the
previous phase (concept recognition and confirmation)
against concepts within the is done by comparing
candidate concepts and concepts which were domain
ontology. If a pair of concepts found matched with the
domain ontology, the relation of these concepts is
automatically defined by referring to the domain ontology
if such a relation existed. If a relation does not exist, a
suggestion is provided based upon the syntactic sentence
structure of the associated concepts, of which the user
will define it manually. Similarly, for those concepts not
presented in the domain ontology, the tool will first
provide a list of concept candidates which can best be
linked based upon the analysis of the chosen sentences.
Once the desired concepts have been selected, the tool
will provide the suggestion of possible relationships
between these concepts.

Figure 5 illustrates an example of a HTML document,
a fraction of medical domain ontology and the output
generated by the semantic document modeling tool. As
can be seen from this example, the semantic relationships
of “mitral valve part-of heart’, ‘“heart valve part-of
heart” and “mitral valve is-a heart” are all extracted from
the domain ontology whereas the other concepts and
relationships are extracted by means of text analysis with
the wuser’s participation. The generated semantic
document model is an XML representation of the
concepts, relationships as well as the URL of the selected
documents. Example below is part of the generated XML
representation. This model is then stored in the Semantic
Document Model.

<?xml version="1.0" encoding="UTF-8" ?>
<DocumentInfo>

<MetadataInfo>

<Title>Heart Valves</Title>
<Url>http://www.americanheart.org/presenter
.jhtml?2</Url>
<Keywords>heart valves

, heart , mitral

valve , aorta , blood , chambers , wvalves ,
blood flow , valve , flaps ,</Keywords>
</MetadataInfo>

<Semantic_Content>
<Concept>
<ConceptDescription>

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

<String>heart valves</String>
</ConceptDescription>
<ConceptRelationship>
<part_of>
<String>heart</String>

</part_of>
</ConceptRelationship>
</Concept>
<Concept>

<ConceptDescription>
<String>mitral valve</String>
</ConceptDescription>
<ConceptRelationship>
<is_a>
<String>heart valves</String>
</is_a>
<part_of>
<String>heart</String>

</part_of>
</ConceptRelationship>
</Concept>
<Concept>

<ConceptDescription>
<String>aorta</String>
</ConceptDescription>
<ConceptRelationship>
<part_of>
<String>heart</String>

</part_of>
</part_of>
</ConceptRelationship>
</Concept>

</Semantic_Content>

<t -- saved from ur1=(00600hTTR: A wew, aner {canheart, orgpresenter, jhrmi™ dentifier=4t
/TITLE>

CHTHL > «HEADS cTITLE>HEArt valw
META http-equiveContent-Type content="text bl

3 charset-windows-1292"

<META content="heart valves] defective heart valve; heart valves; defective heart wi
META Content="The heart has four chambers, Blood 1s pumped Through the chambers, ai

£/ HEAD>
<TASLE <&11spacing=0 cellPadding-0 width=770 barder-0x
<TBODT >

TR
| =70 walign=top=
SFONT <liss=contentaming:
The heart has four chambers,
ne upger Ten are the right and left atria. The lower wwo are the right

="hEtpe et wd . o g/l 998051 SFarmat s

direction.

«afwhat are the four heart valvesTe/fs

<L
sLIzThe tricuspid valve is between the right atrium and right
wenteicle,

The puimanary or puimonic valve is between the right

ventricle and the pulmonary artery.

sLI>The mitral walve 13 between the Tefr atrfus and left

wertricle,

eLI>The aortic valwe 15 batween the left ventricie and the aorta

</ LIn i
<FrEach valve had a set of flaps {also <alled Teaflets o cuspild. when
work ing Dfoqer]v. the heart valves open and <lose fully. </F:
«PsHRArT walves don't always work as they should, A persom can be borm

with an abnarms] hesrt valve, a type of congenits] heart defest. alse, a

valve <an become dastaged by</Fs

<L
sLIxInfections such as infective endocarditis.

Input Document

&
and left wantricles. EBlood 15 pumped through the chambers, aided by four
hesre valves, The valves open and <lose to Tet the bloed Flew in anly ane

heart valve
diseases

Location o

Heart
valve

Part of

|ocation O
Cardiopulmol
ry bypass

4

intrathorac

organ infarction

Domain Ontology

SEMANTIC DOCUMENT
MODELLING TOOL

Sl

Is
Heart Valves Part
of
Pdrt
H

of as

! i Pumped

S rough

Ha: let

‘ Blood Flow

Part
of

Output: Semantic Document Model

Figure 5. Constructing the semantic document model

83

CRPIT Volume 96 - Conceptual Modelling 2009

3.3 Integration of Semantic Document Model

The stored semantic document models will then undergo
an integration process which results in the creation of a
global semantic document model. The global semantic
model is meant to be used for semantic retrieval and
browsing.

The semantic integration is an uncomplicated process
requiring insertion of a new semantic document model to
the existing global semantic document model. The
process will remove aspects of redundancies and
documents that belong to the same semantic concept are
clustered together. A set of simple object type and
mismatch rules which was mainly derived from the
theory and technique of automatic conceptual modeling
integration process (Batini et al., 1986); Noah &
Williams, 2004) have been used. The rules are mainly for
binary relationships as the semantic document model
represented are binary in nature. At the moment aspects
pertaining to the concepts of generalization, aggregations
and associations of a semantic model are being
considered. Naming conflicts such as synonyms and
homonyms however are not being considered by the
rules.

4 Results

Evaluation was done by comparing the extracted concepts
in semantic document model with keywords in <META>
tag provided by authors. Our assumption was that
<META> tags provide key information or phrase
reflecting document content. A similar method of
evaluation has been conducted by Witten et al. (2000)
and Song et al. (2004) which compare the extracted
concepts with those human-generated keywords or key
phrase in order to evaluate the performance of KEA and
KPSpotter respectively.

The main inherent problem with this evaluation
approach is the lack of web pages that provide <META>
tags keywords which resulted in the limited number of
available testing document collection. We have
performed hundreds of document analysis but only 50
web documents were acceptable and sufficient enough for
testing. Table 1 shows the result of average ‘correct
concepts’ corresponding to the concepts assign by author
(extracted from <META> tags).

Table 1 lists the average number of matched candidate
concepts, system extracted concepts and concepts from
the generated semantic document model for the 50 test
web documents. Candidate concepts referred to concepts
used for selecting potentially rich information sentences
during the document analysis process. Ontological-based
extracted concepts are concepts extracted from the
domain ontology and used to generate portion of the
semantic document model. The semantic document
model concepts are concepts presented in the final
generated semantic document model. In other words the
semantic model concepts are the composition of matched
concepts derived from the domain ontology and concepts
confirmed from the activities of user interactions.

84

Average number of concepts matched with

Concepts <META> tags
extracted Candidate Ontology- Concepts in
Concepts based generated
extracted semantic
concepts document
model
1 0.75 0.52 0.56
2 1.6 1.14 1.18
3 2.32 1.48 1.64
4 3.14 1.66 1.96
5 4.18 1.84 2.26
6 4.93 1.92 2.48
7 5.93 1.98 2.76
8 6.72 2.06 3.12

Table 1: Overall Performance.

As can be seen, the average numbers of system
extracted concepts with wuser interactions (that
corresponds to the concepts assigned by authors) is 3.12.
Therefore, system extracted concepts with user
interventions capable of extracting one to three ‘correct
concepts’. System-extracted concepts achieved one to
two correct concepts which is 2.06 in average. System
extracted concepts depends fully on domain ontology for
concepts identification and extraction limits to the stored
information. Our implementation of domain ontology
only stores 24 related concepts which actually represent a
small fraction of the 22,997 terms listed in the Medical
Subject Heading (MeSH) Concepts assigned by authors
cover a wider range of concepts in domain ontology and
sometimes go beyond the domain ontology itself. Adding
more information/concepts into domain ontology may
increase system efficiency in performing concepts
identifications. System extracted concepts with user
intervention achieved a better result because it allows
user to describe web document content based on their
understanding of the domain.

Based on the testing, our approach capable of
extracting at between one to six correct candidate
concepts. In other words for the first eight concepts an
average of six concepts matched with those of authors’
concepts (i.e. meta tags). However, for every eight
concepts extracted of which six were selected as
candidate concepts, only about three concepts were
presented in the generated semantic document model.
This difference is resulted by the following possibilities.

e The candidate concepts do not matched with any
of the ontological domain concepts.

e The candidate concepts and the ontological
domain concepts were not used to construct the
semantic document model because their presence
are not inherent in the filtered sentences.

Having one to three ‘correct concepts’ in the
generated model does not indicate that other concepts are
not representative of the domain. Our testing result,
however, is higher than those reported by KEA and
KPSpotter that respectively shows 1.8 and 2.6 extracted
key phrases in average that match with author key

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

phrases. This technique of evaluation, however, does not
consider semantic relationships between extracted
concepts. Such ‘correctness’ of relationship is best judge
independently by human beings.

The results of our testing might also be influenced by
the way authors describe their respective documents with
<META> tags, which may be summarize as follows:

¢ Authors do not always choose the best keywords
or key phrases to reflect the content of their
documents. In some cases, authors apply the same
set of keywords for different documents.

e Authors, instead of using the same keyword or key
phrases that they use in their documents, they
replace them with other concepts which are similar
or synonyms. As a result, some of those keywords
are not available within their document.

4 Conclusions and Future Works

Domain ontology plays an important role in supporting
the tasks of document classification and organization. In
this paper, we have presented how a domain ontology
combine with a natural language analysis technique can
be exploited not only to extract important concepts from
documents but also to construct the semantic content of
web documents.

Although, controlled vocabulary has been used in
information retrieval systems (Embley, 1999), the
vocabulary tends to be a list of terms that are
syntactically matched with terms in documents. The
inherent meanings or structures of the terms in the
vocabulary are not used to represent the semantic
meanings of documents, and users are still left with a
syntactic approach to information retrieval. While
ontologies for Semantic Web have been focus to support
machines looking for information instead of human,
semantic document model is intended to support human
communication, which requires a human readable
notation. In our case the constructed semantic document
model is rather meant for later retrieval by human instead
of machines or software agents. Our current research
work is to enhance aspects of global semantic document
integration by considering further integration aspects
such as synonyms, homonyms and inheritance
mechanisms which are very well established within the
context of database conceptual modeling. Testing and
evaluation of the approach presented in this study are also
currently being carried out.

4 References

T. Berners-Lee, J. Hendler, and O. Lassila, The Semantic
Web. Scientific American, May, pp. 35-43, 2001.

F. van Harmelen, and D. Fensel, Practical knowledge
representation for the Web. IJCAI Workshop on
Intelligent Information Integration, 1999.

S. A. Noah, A. C. Alhadi. and L. Zakaria, A semantic
retrieval of web documents using domain ontology.
International Journal of Web Grid and Services, pp.
151-164, 2005.

E. Desmontils and C. Jacquin, Indexing a web site with
terminology oriented ontology. International
Semantic Web Working Symposiums (SWWS),
Stanford University, California, 2001.

J. Cowie and W. Lehnert, Information Extraction.
Communications of the ACM, 39(1), pp. 80-91, 1996.

V. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vargas-
Vera, E. Motta and F. Ciravegna, Semantic annotation
for knowledge management: Requirements and a
survey of the state of the art. Journal of Web
Semantics, 4, pp. 14-28, 2006.

R. Villa, R. Wilson, and F. Crestani, Ontology mapping
by concept similarity. International Conference on
Digital Libraries, pp. 666-674, 2003.

T. Berners-Lee, W. Hall, J.A. Hendler, K. O’Hara, N.
Shadbolt, N. and D.J. Weitzner, A Framework of
Web Science. Foundations and Trends in Web
Science, 1(1), pp 1-25, 2006.

B. Pell, POWERSET - Natural Language and the
Semantic Web. The 6th International Semantic Web
Conference and the 2nd Asian Semantic Web
Conference, 2007.

R. Schwitter, A Controlled Natural Language Layer for
the Semantic Web. Al 2005: Advances in Artificial
Intelligence, pp. 425-434, 2005.

M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A.
Stutt, and F. Ciravegna, MnM: Ontology Driven
Semi-Automatic and Automatic Support for Semantic
Markup. Proc. of EKAW 2002, pp. 379-391, 2002.

B. Katz, and J. Lin, Annotating the Semantic Web Using
Natural Language. Proceedings of the 2" Workshop
on NLP and XML, Taipei, September 200, pp. 1-8,
2002.

R. Neches, R.E. Fikes, T. Finin, T.R. Gruber, T. Senator
and W>R. Swartout, Enabling Technology for
Knowledge Sharing. Al Magazine 12(3), pp. 36-56,
1991.

T.R. Gruber, A Translation Approach to Portable
Ontology Specification. Knowledge Acquisition 5(2),
pp. 199-220, 1993.

A. Gomez-Perez, M. Fernandez-Lopez and O. Corcho,
Ontological Engineering. Berlin: Springer-Verlag,
2004.

G. Miller, WordNet: A Lexical Database for English.
Communications of the ACM 38(11): pp. 39-41, 1995.

D.W. Embley, Toward Semantic Understanding — An
Approach Based On Information Extraction
Ontologie. Proceedings of the 15th Australasian
Database Conference, 2004, (ADC’04), Dunedin,
New Zealand, pp. 3-12, 2004.

D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle,
D.W. Lonsdale, Y.K. Ng and R.D. Smith,
Conceptual-model-based data extraction from
multiple-record Web pages. Data and Knowledge
Engineering, pp. 227-251, 1999.

T. Brasethvik, and J.A. Gulla, A Conceptual Modelling
Approach to Semantic Document Retrieval. Advanced
Information Systems Engineering, 14th International
Conference, pp.167-182, 2002.

T. Brasethvik and J.A. Gulla Natural language analysis
for semantic document modeling. Data and
Knowledge Engineering, pp. 45-62, 2001.

85

CRPIT Volume 96 - Conceptual Modelling 2009

H. Alani, S. Kim, D. Millard, M. Weal, W. Hall., P.
Lewis, P. and N. Shadbolt, Ontology knowledge
extraction from web documents. IEEE Intelligent
Systems, 18(1), pp. 14-21, 2003.

H.P. Luhn, The automatic creations of literature abstracts.
I.LB.M. Journal of Research and Development, 2(2),
pp- 159-165, 1958.

S. Sekine Proteus Project - Apple Pie Parser (Corpus
based Parser). http://nlp.cs.nyu.edu/app (accessed on
15 September 2006)

S. Sekine and R.A. Grishman, Corpus-based Probabilistic
Grammar with Only Two Non-terminals, Fourth
International Workshop on Parsing Technology, pp.
216-223, 1995.

H. Snoussi, L. Magnin and J.Y. Nie, Towards an
ontology-based web data extraction. The AI-2002
Workshop on Business Agents and the Semantic Web
(BASeWEB), pp. 26-33, 2002.

C. Batini, M. Lenzerini and S.B. Navathe, A comparative
analysis of methodologies for database schema
integration, ACM Computing Surveys, 18(4), pp. 323-
364, 1986.

S.A. Noah and M. Williams, Intelligent object analyzer
for conceptual database design, Jurnal Teknologi, 3,
pp. 27-44, 2004.

LH. Witten, G.W. Paynter, E. Frank, C. Gutwin and C.G.
Nevill-Manning, KEA: Practical automatic keyphrase
extraction, Working Paper 00/5, Department of
Computer Science, The University of Waikato, 2000

M. Song, 1.Y. Song and X. Hu, An efficient keyphrase
extraction system using data mining and natural
language processing techniques. First International
Workshop on Semantic Web Mining and Reasoning,
pp. 58-65, 2004.

86

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Extracting Conceptual Graphs from Japanese Documents for Software
Requirements Modeling

Ryo Hasegawa' Motohiro Kitamura

Haruhiko Kaiya?® Motoshi Saeki'

!Dept. of Computer Science, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan
Email: saeki@se.cs.titech.ac.jp
2Dept. of Computer Science, Shinshu University
Wakasato 4-17-1, Nagano 380-8553, Japan
Email: kaiya@cs.shinshu-u.ac.jp

Abstract

A requirements analysis step plays a significant role on the
development of information systems, and in this step we
produce various kinds of abstract models of the systems
(called requirements models) according to the adopted
development processes, e.g. class diagrams in the case
of adopting object-oriented development. However, con-
structing these models of sufficient quality requires high-
est intellectual tasks and skills of human requirements an-
alysts. In this paper, we develop a computerized tool to ex-
tract from a set of Japanese text documents conceptual in-
formation, called conceptual graph, which can be used as
intermediate representation to generate software require-
ments models. More concretely, by applying the variation
of text-mining techniques that we have developed, we ex-
tract significant words from text documents referring to
the same problem domain and identify relevant relation-
ships among them. The extracted words can be consid-
ered as concepts and they are constituents of a conceptual
graph in the domain. This constructed graph can be used
for generating requirements models, e.g. object oriented
models, feature model, and even as a domain ontology that
can be utilized during requirements analysis activities. We
have made experimental analyses of our tool. This paper
also includes the discussion on how the extracted concep-
tual graph can act as an object-oriented model, a feature
model and a domain ontology, in order to show its wide
applicability.

Keywords: Conceptual Graph, Requirements Modeling,
Text mining, NL processing

1 Introduction

Since a requirements analysis step is the first one in in-
formation systems development processes, the quality of
the artifacts that are produced in this step greatly affects
on the quality of a final artifact, i.e. an information sys-
tem. If we constructed an artifact of lower quality in this
step, for example an incomplete and/or inconsistent one,
we might re-do our activities after completing the final ar-
tifact and as a result we might spend much effort and the
development cost might exceed an estimated budget.

In this requirement analysis step, we produce abstract
models of the information system according to the adopted
development process style. For example, when we use
object-oriented (OO) development process, we produce
a class diagram as an object-oriented model. If we de-
velop a product belonging to a certain family and adopt

Copyright (©2009, Australian Computer Society, Inc. This paper ap-
peared at the Sixth Asia-Pacific Conference on Conceptual Modelling
(APCCM 2009), Wellington, New Zealand, January 2009. Conferences
in Research and Practice in Information Technology, Vol. 96. Markus
Kirchberg and Sebastian Link, Eds. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

Feature-Oriented Analysis technique, we should produce
a feature oriented model. Thus we can produce various
kinds of model in a requirements analysis step according
to the adopted development process. We call these mod-
els, i.e. abstract models of the system that produced in
a requirements analysis step, requirements models. We
should construct a requirements model of high quality as
early as possible to reduce development costs and efforts.
However, human engineers are required to perform highly
intellectual and complicated activities and to have distin-
guished skills in order to construct a requirements model
of high quality. In addition, they should be experts to var-
ious modeling techniques that can be adopted. A current
status is that a limited number of domain experts are in-
volved in requirements modeling in their domains, spend-
ing their large efforts. We need some supporting tech-
niques to assist human engineers in constructing various
types of requirements models of higher quality with less
effort.

On the other hand, it is a rare case that we construct
a requirements model whose domain is quite new and
does not appear before. If we had reusable assets help-
ful for requirements modeling, we could get the model
efficiently. However, we have not accumulated sufficient
reusable assets of requirements models in a certain domain
yet. Rather, we can get many text documents referring to
the domain, including the electronic texts lying over In-
ternet. In fact, the experts to modeling frequently use the
documents regarding to the topics relevant to the problem
domain so as to get important information. Thus, it can
be considered as a promising support technique to extract
from the documents information necessary for require-
ments modeling. These documents are written in natural
language, and the constituents that a requirements model
should have, e.g. concepts and their relationships appear
in the documents as words and their co-occurrences in a
suitable abstraction level, because of the abstractness of
natural language descriptions. The words that commonly
appear in the documents of a domain, except for general
words such as be-verbs, prepositions, particle, etc., can be
considered as the representation of significant concepts in
the domain. In addition, the usages of theses words such
as co-occurrence and modification relationships suggest
the relationships between the concepts that the words de-
note. Thus we focus on the extraction of these words and
relationships from the documents.

To generate various kind of requirements model, we
extract an intermediate representation from a set of text
documents by using the combination of natural-language
(NL) processing and text-mining techniques so that it can
be (semi-)automatically transformed into various require-
ments models. Our intermediate representation is called
conceptual graph, which includes concepts and their re-
lationships extracted from the documents. Furthermore
requirements analysts can use this graph to make up for
their lack of domain knowledge during their requirements
elicitation activities. Figure 1 shows the overview of our

87

CRPIT Volume 96 - Conceptual Modelling 2009

\

Syntactic Analysis

— Concept Extraction —
> ord Extraction
(E = Relationship
= Extraction
Graph

NL Processing
including text mining

-y

Documents

Conceptual

OO Model

Translator | =)

Feature Model

7

| — R E—
Translator | C—) j;%
L] []
L] L]
° ® 292 Model
% Translator | =)

as domain knowledge

Requirements » <
[Elicitation & Modeling} @

Artifacts
(Requirements Specs.)

Figure 1: Overview of Our Approach

approach. In this paper, we have developed a computer-
ized tool for extracting conceptual graphs from a set of
documents. As will be discussed in the section of Related
Work, we can find many studies to extract specific require-
ments models such as OO models from a single document.
Unlike these studies, we use a set of documents as inputs
so that we can get stable and reusable conceptual informa-
tion. It is very significant which information we should
extract from documents. Since our target is information
systems, we adopt the concepts and their relationships that
we frequently use in modeling them, e.g. Object, Func-
tion, Is-a relationship (generalization) and Has-a (aggre-
gation), etc., and construct from them a meta model of the
conceptual graphs.

The rest of this paper is organized as follows. In the
next section, we explain the basic idea and show the log-
ical structure of the conceptual graphs, i.e. meta model.
We extract from Japanese documents information based
on this meta model. Section 3 presents the process for ex-
tracting conceptual graphs and the computerized tool us-
ing NL processing and the text mining technique that we
have proposed. Since our conceptual graphs have more
specific conceptual types and relationship ones rather than
usual thesauruses, we should develop newly a text min-
ing technique. Section 4 includes experimental results on
the effectiveness of our developed tool. In section 5, we
discuss how to get software requirements models from the
constructed conceptual graph in order to show its wide ap-
plicability. In sections 6 and 7, we discuss related work
and our current conclusions together with future work, re-
spectively.

2 Meta Model of Conceptual Graphs

2.1 Requirements to a Meta Model

As mentioned in section 1, we have a variety of notations
for requirements models such as Entity Relationship Dia-
gram and UML (Class Diagram etc.), and they have dif-
ferent meta concepts for description. In the case of Class
Diagram, it has meta concepts Class, Attribute, Operation,
Association, etc. Therefore, we need to clarify the struc-
ture of conceptual graphs, i.e. a meta model of conceptual
graphs so that we can extract Classes, Attributes, Opera-
tions, Associations etc. from the conceptual graph after-
ward. Our meta model should 1) have extensive meta con-
cepts so that we can derive various requirements models,
even reusable assets such as feature model of FODA [1],
from a conceptual graph that is its instance, 2) have useful

88

meta concepts specific to the area of information system,
and 3) be based on the information that can be automati-
cally gathered from text documents.

2.2 Meta Model of Conceptual Models

In order to satisfy the requirements to the meta model
mentioned in section 2.1, we analyzed the existing soft-
ware requirements modeling methods, referring to UML’s
meta model [2], Method Engineering meta model [3],
Method Common Meta Model [4], etc. and have got the
meta model shown in Figure 2. Our meta model consists
of concepts and relationships among the concepts, and it
has several subclasses of “concept” class and “relation-
ship”. In the figure, “object” is a subclass of a concept
class and a relationship “apply” can connect two concepts.
Concepts and relationships in Figure 2 are adopted so as
to easily represent the semantics in information systems.
Intuitively speaking, the concepts “object”, “function”,
“environment” and their subclasses are used to represent
functional aspects of the systems. On the other hand, the
concepts “constraint” and “quality” are used to represent
non-functional aspects. The concept “constraint” is useful
to represent numerical ranges, e.g., speed, distance, time
expiration, weight and so on.

1 -
Concept (irdered) Relationship < apply
AN
= ‘ ‘ ‘
‘ contradict }—’D{ symmetric ‘ ‘ reflective ‘ ‘ transitive <
Lenvironmen [
. as-a
(aggregate)

Figure 2: Meta Model of Conceptual Graphs

Figure 3 shows an example of a conceptual graph of
the problem domain of “making estimates”, an instance
of the meta model of Figure 2, which is depicted in the
form of Class Diagram, and it is a screenshot of our tool.
Note that our tool is for Japanese only and the figures of
tool screens have been produced by translating Japanese
words into English directly. A concept and its type are
depicted as Class and a stereo type respectively in the fig-
ure. Readers can find the concepts of type object, “esti-

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

ction for Requirements Elicitation

File Edit Format Miew GConstruction Help

=10l x|

|| 8| | o # &) o

x[m [a[=[a]] o[x[[a[a[a]]=]]

I Relation Extraction - |

I~ o| 2| .~2| 4] 2] 2| 2]|.2].2].2] | &

Concept Information zll g ql »

[, £l
==ohbject==

= Classification : Iobject ‘l
iard 2 Imate sheet

==ghjact== ==phject== r<require=q=constraint=

beyond within

\ =<requires=

==function==

tax-free limit input

==function== =<apply==
make estimate sheet oK | Gancel |
5 d
Kg, Relation of “estimate sheet”
equipegsrequifesereguire== E&) Has_aRelation
E}--@) estimate sheet
address
\@) customer name
- dat
==object=> ==phject== ==phject== ==phject== <=phject=> ==phject== ==ohject=> ____@)gz;s
tax quantity price goods date address custorner name {8} price
) quantity

py>x</axiy>x7/zs<app = ==appl

tax
Elﬁg RequireRelation
=H{#) estimate sheet

‘@) goods
(@) price
==phject== <=ghject=> ""@)quaptity
. EIQ.. ApplyRelation
home address business address EH} make

: @)estimate shest

Figure 3: A Tool Screenshot of Relationship Extraction: An Example of a Conceptual Graph

99 ¢ LEIT3

mate sheet”, “goods”, “tax”, etc, and “input” and “make”
of type function. There are two relationships between “es-
timate sheet” and “goods”; one is the relationship of type
“require” and another is of “has-a” !. Since an estimate
sheet should have some columns on goods, their prices
and their quantity information, we use the combination of
these two types (require and has-a) of relationships be-
tween the estimate sheet and them. The concept “input” of
type “function” is applied to “goods”, “quantity”, “prices”
etc. in order to input these data, and thus we can have the
relationships of type “apply” to them.

3 A Supporting Tool for Extracting Conceptual
Graphs

In this section, we focus on the technique to extract con-
stituents of a conceptual graph from Japanese text docu-
ments. The quality of a conceptual graph greatly depends
on the quality of used text documents. If we use a docu-
ment of lower quality, we also get a graph of lower qual-
ity. There are no formal techniques to validate the quality
of the extracted conceptual graph. We consider that the
quality of the conceptual graph can be validated by so-
cial consensus of domain experts and by its usability to
our applications. We can consider that concepts and re-
lationships commonly appearing in many documents on a
domain have established social consensus. The larger the
number of documents is, the higher the quality of the ex-
tracted graph can be, because the concepts appearing in
the many documents are widely accepted in this domain.
As for the usability to our applications, we will discuss it
in section 5.

Basically, nouns and verbs included in the documents
correspond to the object concepts and functions of Figure
2 respectively, and adjectives and adverbs modifying ob-
jects or functions represent the concepts of quality. Thus
the essential parts of our process for extracting a concep-
tual graph are 1) Word extraction for extracting from doc-

'We use the same notation as UML Class diagram to represent “has-a”, i.e.
aggregation relationship.

uments the important words that can be considered as use-
ful concepts and 2) Relationship extraction for discovering
the relationships among the extracted words, as shown in
Figure 4.

1
Word Extraction
Calculation
of Parameters | .pg
Pre-processing *TDF*IDF
l «Entropy
«C-value
Selection
Modification
Morphological Analysis|
Dependency Analysis l
Relationship Extraction
Selection & Modification|.co.occurrence frequency

Classification

«Inclusion Relationship
«Specific Words

+Co-sine Similarity
i) «Dependency Structure

Part of Speech
(Lexical Category)

Figure 4: Process for Extracting a Conceptual Graph

3.1 Word Extraction

After morphological analysis and dependency analysis,
we identify part-of-speech categories of the meaningful
words appearing in the documents such as noun, verb, ad-
jective etc. These steps can be performed automatically
using the natural-language processing tool called Cabocha
(dependency structure analyzer for Japanese)®>. By us-
ing part-of-speech information of words, we classify the
words into the types of the concepts shown in Figure 2
such as object, function and quality. For example, “esti-
mate sheet” is a noun and is classified into an object con-
cept. In the next step, our tool calculates various measure

2http://chasen.org/faku/software/cabocha/

89

CRPIT Volume 96 - Conceptual Modelling 2009

ES Thesaurus Construction for Require ments Elicitation

File Edit

EaHE v

View Construction Help

R |8

s hE Re AJlOX|REQSQ IV

CEX

| Word Extraction v |

UbjECtlfunction quality | actor | platform | constraint

h, Adoption Word {ohject)

Word
estimate sheet

F
208

TF = IDF
20s.0

Entropy

]

Cvalue
412 ~

customer

145

1450

F41

142 =

data

117

7o

4.31

114

ECIEEn

0.0

458

button

030

415

merchandize

=70

462

file

700

R.e2

infor mation

670

204

humber

54.0

ekt

bill

condition

3.5

605

2.5

4.25

MEnU

250

£az2

contents

220

el

input screen

220

290

address

220

et

zlip

H0.3

N

date

e}

27

price

IHEOROOOOECOCOOOOEOEE

£z20

.79

trade name

247

e.7a

Figure 5: A Tool Screenshot of Word Extraction

parameters of the words so that we can filter out unimpor-
tant words from the classified words. The parameters that
we use are based on word frequency, i.e. the number of
times a word appears in documents, and are shown below.

1. TF (term frequency): the number of times a word
appears in the documents.

2. TF x IDF (term frequency x inverse document fre-
quency) : the term frequency of a word weighted with
its importance degree. The importance degree results
from the number of the documents the word appears.

3. Entropy: logarithmic value of the term frequency of a
word weighted with its entropy [5]. Intuitively speak-
ing, an entropy value of the word A comes to be
lower if A appears uniformly throughout all docu-
ments.

4. C-value : the term frequency of a word weighted
with its length and its occurrences as a part of multi-
words. This value is for the characteristic of Japanese
texts that they frequently include many occurrences
of multi-words. A multi-word is a combination of
several words.

Figure 5 shows an example of the result of word ex-
traction. As shown in the figure, the words are measured
and sorted in descending order of the measure values. A
user of the tool can select the important words denoting
concepts in a conceptual graph of a problem domain, by
checking boxes on the sorted list of the measured words.
In the example of the figure, the user has manually se-
lected the words “estimate sheet”, “customer”, “tax”, “ad-

dress”, “date” and “price”.

3.2 Relationship Extraction

After selecting the words, the user proceeds to the step of
relationship extraction. As shown in Figure 4, the tool cal-
culates the number of times a pair of words included in a
sentence in the documents, i.e. co-occurrence frequency
(CF) of two words and cosine similarity (CS) of the fre-
quency of co-occurrence vectors, in order to find the se-
mantically relevant word pairs. If the two words co-occur
frequently, we can consider the two concepts denoted by
them are semantically related to each other.

The calculation method of cosine similarity of co-
occurrence vectors is as follows. Suppose that the words

90

Y1, -+, Yn frequently co-occur with the word = in the
documents. We can define a co-occurrence vector V,
of the word z as (c¢(x,y1), -, c(x,yn)) where c(x,y;)
is the number of times in which the words x and y;
co-occur. Thus we can calculate cosine similarity (CS)
of the co-occurrence vectors of the words w and w as
Vi - V) /(Vul| - [Vw]). If the cosine similarity is suffi-
ciently higher, we can consider that the words v and w are
used in a similar way in the documents and that they have
a certain semantic relationship.

After calculating CFs and CSs, pairs of words whose
CF and CS are higher than certain thresholds are basically
selected as candidates of the relationships to be included
in a conceptual graph. Based on types of words (e.g. ob-
ject, function and quality) and dependency structures in
the sentences, the tool suggests the types of the concept
relationships. Figure 6 shows the detailed process to ex-
tract relationships and to identify their types. Suppose that
we focus on the words A and B, as shown in the figure.
If A and B co-occur in a sentence and they also co-occur
with a specific word such as “require”, “contradict”, “such
as”, etc., we decide that A and B has a relationship of
types “require”, “contradict” or “is-a”, respectively. If A
is a precisely right-side substring of B, we consider the
relationship as “is-a”. For example, the word “new esti-
mate” (shinki-mitsumori-sho in Japanese) is an “estimate”
(mitsumori-sho), because the word mitsumori-sho appears
in shinki-mitsumori-sho as its right-side substring. If the
CF value of A and B is higher, we check the dependency
structure of the sentences where they co-occur and by their
types and their syntactic roles such as subject and object
etc., we decide the type of their relationship. For exam-
ple, suppose that the types of A and B are “object” and
“function” respectively. In addition, if A is an object in
grammatical sense and B is its verb in a sentence, the tool
suggests an “apply” relationship between A and B. “Ap-
ply” relationship between object A and function B means
that the function B is applied to the object A. CS values
are used to detect require and has-a relationships.

Figure 3 shows an example of the detected concepts
and their relationships in a class diagram-like form. The
tool users can modify the detected relationships and edit
the diagram to make it more complete and precise as a
conceptual graph.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

A,B

ere is a specific word 1
a sentence where A and
B co-occur

yes if (A requires B ...) — require(A, B)
if(A contradicts B ...) — contradict(A, B)
if(A such as B...) — is-a(A,B)

is-a(A, B)

no

if B is verb & type(B)= function —
if A is an object & type(A)=object — apply(A,B)
if A is a subject & type(A)=actor — perform(A, B)

otherwise

type(A) = type(B)

yes

A and B are merged
a nonym

type(A) = type(B)

A
require(A, B)

no relationships between A and B

yes if(Entropy(A) < Entropy(B))
has-a(A, B)
otherwise has-a(B,A)

Entropy(A) : the entropy value of A, see section 4.2.
non-uniformity of occurrences of A
CF(A,B): co-occurrence frequency of A and B
the number of times A and B co-occur in the same sentence
CS(A,B) : co-sine similarity of A and B
o :concatenation of two strings

t1,t2,t3 : Threshold values

Figure 6: Relationship Extraction Process

4 Experimental Results

To assess our tool, we made several experiments, and in
this section we discuss these experimental results.

4.1 Aims of Our Experiments

The essential aim of our experiments is to show that our
tool allows any requirements analyst, who has a skill and
domain knowledge in a certain level, to derive efficiently
conceptual graphs of high quality. For these experiments,
we had several subjects who had experiences in software
development of more than 5 years including requirements
analysis and software design. They had also actually de-
veloped software of the problem domains that we adopted
in the experiments. Thus we can consider all of them had
skills of requirements modeling and domain knowledge in
a certain level. And we set threshold values of t1, t2 and
t3 of Figure 6 to 3, 0.75 and 0.9 respectively.

We can decompose the above aim into the following
items;

1. Any analyst® can construct conceptual graphs effi-
ciently. Basically, we observe how long it took our
subjects to complete their conceptual graphs.

2. Any analyst can get the same results, i.e. the same
conceptual graphs, if they use the same documents as
inputs to the tool. We have two subjects having the
same skills and knowledge, more concretely having
similar experiences, and make them construct con-
ceptual graphs from the same documents by using
our tool. After their constructing graphs, we com-
pare their results and check how many parts of their
constructed conceptual graphs are the same.

3In the context of this section, as mentioned above, “analysts” have sufficient
skills, experience and domain knowledge like our subjects.

Table 1: Results on Feed Readers and POS systems

[Problem Domain | Spent Time | Concepts | Relationships |

Feed Reader 180 min. 178 270
POS System 160 min. 226 252

3. Any analyst can construct conceptual graphs of high
quality. In fact, it is difficult to measure the quality
of a conceptual graph. Thus we pay attention to the
following two points to estimate the quality of con-
ceptual graphs;

(a) how many constituents of her graph the subject
should modify so as to get to the graph at the
quality level that she could be satisfied.

(b) whether the conceptual graph that the subject
constructed could be transformed to require-
ments models and be used as domain knowl-
edge in requirements elicitation processes.

The second point is related to the application of con-
ceptual graphs and it is very significant to show that
they graph can be used for requirements analysis
tasks. This point will be discussed in the section 5.

4.2 Spent Time for Constructing Conceptual Graphs

We picked up specific problem domains and investigated
how long and how large our subjects constructed concep-
tual graphs, in order to show that they could do efficiently.
We selected the two domain Feed Reader and POS (Point
of Sales) systems. Their results are shown in Table 1. For
example, the subject of Feed Reader finally constructed
the graph having 178 concepts and 270 relationships in
180 minutes. In this experiment, we gave 17 documents

91

CRPIT Volume 96 - Conceptual Modelling 2009

Table 2: Results on Making Estimates

[Spent Time | Concepts | Relationships |

260 min. 218 432
180 min. 201 363

for the subject of Feed Reader and 14 documents for the
subject of POS system. The lengths of the documents that
we used were from 3 to 23 pages of A4 paper size. Al-
though their tasks included manual activities to modify
the graphs, we consider that our tool is helpful to construct
conceptual graphs of practical size within reasonable labor
time. In addition, our subjects pointed out that they could
know which parts they had to concentrate on for their un-
derstanding because our tool suggested significant words
in these domains.

4.3 Similarity of the Constructed Graphs

We had two subjects and each of them developed a con-
ceptual graph using our tool from the 8 documents refer-
ring to “making estimates” domain. The result is shown
in Table 2. Although our two subjects spent different
time (260 and 180 minutes respectively) in constructing
their conceptual graphs, the sizes of the graphs were sim-
ilar. They extracted 218 and 201 concepts respectively as
shown in the table, and 147 of them were quite the same.
Thus about 70% of the extracted concepts were commonly
included in the graphs that different persons constructed,
and we consider that any analyst can reasonably construct
a conceptual graph at a certain level.

4.4 Quality of Conceptual Graphs: Modification Ef-
forts

In the third experiment, we investigated the quality of the
constructed conceptual graphs by measuring how much
effort the subjects should modify manually the graphs that
the tool derived. We selected a domain of “a record man-
agement system in a school (for storing and managing
records of students’ scores and credits)”. We used 8 man-
uals for existing software for record management systems.
Our subject, a skilled domain expert created a conceptual
graph for “a record management system in a school” by
using our tool. As shown in Table 3, he finally got 74
concepts and 202 relationships and these can be consid-
ered as the graph of high quality, because the distinguished
expert manually modified and completed the graph. The
tool automatically extracted 68 (64 + 4) and 64 of 68 were
used without any modifications. 4 of 68 extracted con-
cepts were modified and 6 concepts were newly added
by the expert. As for the relationships, the tool automati-
cally recognized 76 + 62 relationships and 76 were used
without any modifications. From this table, our tool could
create totally more than 60% of concepts/relationships in
the graph. In almost of 62 modifications of the relation-
ships, the expert manually modified has-a and is-a rela-
tionships to require relationship, because our technique of
Figure 6 could not distinguish correctly require relation-
ship from has-a and is-a relationships. From this experi-
ment, although the tool could not necessarily extract the
conceptual relationships accurately, it could do concepts
satisfactorily. Human efforts were necessary to get more
complete relationships. However, the time spent in modi-
fying and adding concepts and their relationships was less
than 2 hours and thus in a tolerable range.

Note that the goal of this tool is not to automate
completely the creation of a precisely correct conceptual
graph, but to support human activities and produce a use-
ful graph for our application. In the application of model-
ing the requirements of an information system, it is more
important to include concepts and relationships as many

92

Table 3: Results on a Record Management System

Concepts Relationships
Used without any modifications 64 (86.4%) 76 (36.7%)
Modified 4 (5.4%) 62 (30.6%)
Added 6 (8.1%) 64 (31.6%)
Total number 74 (100%) 202 (100%)

as possible, in order to avoid lacking requirements. Thus
our tool tries to show many candidates of concepts and re-
lationships. By using our tool, a requirements analyst se-
lects appropriate ones out of the candidates, and replaces
their types into correct ones if their types are inappropri-
ate.

5 Applications of a Conceptual Graph

In this section, to show the wide applicability of the con-
ceptual graphs constructed using our approach, we ex-
plain how to derive an object oriented model and a fea-
ture model from an extracted graph. And we show an-
other application where the conceptual graph can be used
as domain knowledge for software requirements elicita-
tion processes. By showing the wider applicability of the
constructed graph, we can estimate its quality.

5.1 Transforming a Graph into an Object Oriented
Model

One of the most popular modeling techniques in software
engineering is object oriented modeling and we use class
diagrams to represent them. As shown in Figure 2, our
conceptual graphs are based on an object oriented model-
ing technique. Therefore, an object oriented model can be
derived from our conceptual graph straightforward. The
outline of derivation rules is as follows. For simplicity, we
call each subclass of a concept or a relationship in Figure
2 as XX-concept or Y Y-relationship. For example, we call
“function” subclass of a concept “function-concept”. An
object-concept in our conceptual graph corresponds to a
class in an object oriented model, and function-concepts
related to the object-concept with an apply-relationship
become methods of the class. Constraint-concepts related
to the object-concept become attributes of the class. Is-
a-relationships and has-a-relationships in our conceptual
graph simply correspond to inheritance and aggregation
relationships in the object oriented model.

Figure 7 shows a class diagram (an object oriented
model) derived from a conceptual graph in Figure 3 by
using the above rules. Object-concepts such as “estimate
sheet”, “goods” and “price” become classes in the class
diagram, and has-a-relationships in the conceptual graph
become aggregation relationships. An aggregation rela-
tionship between “estimate sheet” and “goods” is a typi-
cal example in Figure 7. A function-concept “input” in the
conceptual graph has apply-relationships to several object-
concepts as shown in Figure 3. Therefore, classes corre-
sponding to the object-concepts in the class diagram has a
“input” method as shown in Figure 7. For example, a class
“goods” has a method “input”.

5.2 Transforming a Graph into a Feature Model

Feature modeling was developed by Kang et al, and
reusable assets in a product line development can be rep-
resented in the model. A definition of a feature is given in
[1] as “a prominent or distinctive user-visible aspect, qual-
ity or characteristic of a software system or a system”. A
feature model has a hierarchical (normally tree) structure
among features, which are inherent concepts of a product
family, and it is normally depicted in the tree-like diagram

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

estimate sheet

customer name

tax make

input E\ input
date address
price goods input input

uantit tax—free limit
input

input
home address] l business address]
I 1 |]
L 1L 1
beyond m
—
1

Figure 7: Deriving a Class Diagram

called feature diagram. To specify a model of a product
in a product family, features in a feature diagram are cho-
sen in a top down manner, i.e., sub-features are chosen
after their super-feature was chosen. When a sub-feature
has a mandatory relationship to its super-feature, this sub-
feature should be chosen, i.e. the product should have this
sub-feature. There are other kinds of relationships among
features such as optional, alternative, exclusive and so on.

A conceptual graph can be derived from documents
about a product family, and concepts in the graph corre-
spond to features in a feature model. Has-a-, is-a-, apply-
and perform-relationships in the graph correspond to re-
lationships between super- and sub-feature relationships.
In the case of is-a-relationship, the derived relationship
between a super- and a sub-feature should be alternative
relationships. In addition, since the properties of a super
concept are inherited to its sub concepts in our conceptual
graph, we consider that the concepts related to the super-
concept would be also related to all of its sub concepts.

In Figure 8, we show a feature diagram derived from
the conceptual graph in Figure 3. All concepts in the graph
are transformed into features at first. Since the features
such as “make”, “tax” and “goods” have “has-a”, “is-a”
or “apply” relationships with a feature “estimate sheet”,
these features become sub-features of the feature “esti-
mate sheet”. A sub-feature “goods” is a mandatory fea-
ture of its super-feature “estimate sheet” because “goods”
has a “require” relationship to its super-feature “estimate
sheet” as well as a “has-a” relationship. Suppose that
an apply-relationship between a function-concept and an
object-concept is included in our conceptual model. The
function-concept corresponds to a sub-feature of a fea-
ture corresponding to the object-concept. In addition, this
sub-feature becomes a mandatory feature if the apply-
relationship is only one between the function and the ob-
ject, because it is the only one function that can manip-
ulate the object. A sub-feature “make” in Figure 8 is a
typical example of this kind of mandatory features and
“make” is the only one that can manipulate “estimate
sheet” according to the conceptual graph shown in Fig-
ure 3. As shown in the figure, object-concepts “home ad-
dress” and “business address” are the sub-classes of an
object-concept “address” because these concepts have is-
a relationships to “address”. These two concepts become
alternative sub-features of a feature “address” as shown in
Figure 8. In addition, these two features has a sub-feature
“input”, because a function-concept “input” has an apply-
relationship to the object-concept “address” and two con-
cepts “home address” and “business address” are the sub-
classes of the object-concept. By applying these kinds of
transformations, the feature diagram of Figure 8 can be
derived from Figure 3.

In a feature diagram, several kinds of relationships
among features, e.g., a dependency relationship among
features and an exclusive relationship between features,
are allowed in addition to the tree-like hierarchy of fea-
tures. When there is only a require-relationship between
two concepts in our conceptual graph, we have a de-
pendency relationship between the two features corre-
sponding to these concepts. When there is a contradict-

relationship among concepts in a conceptual graph, there
is an exclusive relationship between the features corre-
sponding to the concepts. An example of exclusive re-
lationships appears between features “tax” and “within”
in Figure 8. An example of dependency relationships ap-
pears between features “tax-free limit” and “within”.

In deriving object oriented models and feature models,
their derivation rules can be formally defined, and these
derivations can be automatically achieved. However, the
quality of derived models cannot be guaranteed without
the inspection of human experts. Thus such derivation
rules play a role of guidelines only. This kind of derivation
should be achieved interactively, and the finally derived
models should be improved by manual.

estimate
sheet

tax] [Cmamity} [price J [g(\ods] [date J [addressJ [ﬁ:;ﬁ?ﬂer}
: alterngfie

|

[beyond H within J [input } [{iar);hfree][input M le:g(rlrl“ccss] [ggg‘r&:ﬂ [input J

Figure 8: Deriving a Feature Diagram

5.3 Using as a Domain Ontology

Knowledge on a problem domain where an information
system is operated (simply, domain knowledge) plays an
important role on eliciting system requirements of high
quality. For example, to develop e-commerce systems,
the knowledge on marketing business processes, supply
chain management, commercial laws, etc. is required as
well as internet technology. Although requirements ana-
lysts have much knowledge of software technology, they
may have less domain knowledge. As a result, lack of
domain knowledge allows the analysts to produce require-
ments specification of low quality, e.g. an incomplete re-
quirements specification where mandatory requirements
are lacking. Although interviews with domain experts
are one of the solutions to avoid this problematic situa-
tion, communication gaps between the analysts and the
domain experts resulted from their knowledge gaps [6].
Thus, the techniques to provide domain knowledge for the
analysts during their requirements elicitation and comput-
erized tools based on these techniques to support the ana-
lysts are necessary.

We have proposed how to use domain ontologies for
requirements elicitation [7] where domain ontologies are
used to make up domain knowledge to requirements an-
alysts during requirement elicitation processes. In this
framework, how to create domain ontologies of high qual-
ity efficiently is a crucial issue. Our tool for extracting
conceptual graphs can be used to create domain ontolo-
gies for supporting requirements elicitation processes.

In this section, we present the basic idea how to use
our conceptual graph as domain knowledge to detect lack-
ing requirements and inconsistent requirements. Below,
let’s consider how a requirements analyst uses a concep-
tual graph of a certain domain for completing require-
ments elicitation. Suppose that a requirements document
initially submitted by a customer is itemized as a list. At
first, an analyst should map a requirement item (statement)
in a requirement document into concepts of the conceptual
graph as shown in Figure 9. For example, the item “bbb”
is mapped into the concepts A and B and an aggregation
relationship between them. The requirements document

93

CRPIT Volume 96 - Conceptual Modelling 2009

may be improved incrementally through the interactions
between a requirements analyst and stakeholders. In this
process, logical inference on the graph suggests to the an-
alyst what part she should incrementally describe. In the
figure, although the document S includes the concept A at
the item bbb, it does not have the concept C, which has a
require-relationship to A in the conceptual graph G. The
inference resulted from “C has a require-relationship to A
(i.e. C is required by A)” and “A is included” suggests
to the analyst that a statement having C should be added
to the document S. The details of this technique are out
of scope of this paper, and the readers who have a great
interest to it can see [7].

To assess this technique, we used the conceptual graph
of Feed Reader in section 4.1 and made comparative ex-
periments of requirements elicitation of a specific feed
reader system. As a result, subjects with less domain
knowledge could get the same results as a domain expert,
more concretely they could elicit requirement of the same
quality as the domain expert did. The details of the ex-
periments and their results are shown in [8]. This result
means that our conceptual graph is applicable as domain
knowledge for requirements elicitation processes.

A Requirements Document ““S”
(consists of req. items.)

1. aaa

bbb
3. ccc
/ F;,: mapping function

Conceptual Graph (in class diagram form) “G”

Figure 9: Mapping from Requirements to a Conceptual
Graph

6 Related Work

In the area of requirements analysis and software speci-
fication, some studies to extract requirements models by
applying NLP techniques to natural-language documents
exist [9]. In particular, many of them derive OO mod-
els, e.g. class diagrams [10, 11, 12, 13] for software sys-
tems. Their techniques are basically to focus on nouns
and verbs that are indicators of classes and of operations
or relationships respectively, and their success greatly de-
pends on the quality of an input document. For exam-
ple, if mandatory descriptions are lacking from the doc-
ument, the corresponding part of the model cannot be
extracted. Since our approach uses multiple documents
as inputs, our approach can mitigate these shortcomings.
Furthermore they did not consider the extracted models as
reusable assets like feature models. And, since we have
adopted a variety of types of concepts and their relation-
ships in our meta model of conceptual graphs so as to have
wide applications for requirements analysis, we have de-
veloped a newly devised text-mining technique fit to our
meta model in order to achieve the construction of the
graphs from documents. In the area of database systems,
a lot of work has also been done to derive a family of En-
tity Relationship (ER) models from natural-language doc-
uments and their major aims are designing a data schema
[14, 15, 16, 17, 18]. They focused on the extraction of
entities, attributes, relationships and inheritance ones, but
did not consider the other constructs such as require re-

94

lationships, which are necessary for requirements elicita-
tion. Furthermore, an ER model can be derived from our
conceptual graph in the same way as section 5.1, and in
this sense, our resulting conceptual graph includes rich in-
formation for requirements modeling. CM builder, devel-
oped by Harmain et. al. [19], uses the domain knowledge,
that has been made ready beforehand, to analyze seman-
tically documents. More precisely, in their approach, the
domain knowledge is extended to a more specific model
by means of adding the extracted classes to it. Although
our conceptual graph plays the same role on their domain
knowledge of CM builder’s technique, they did not discuss
the technique how to construct the domain knowledge, i.e.
conceptual graphs.

In research community of Ontology, many comput-
erized tools for supporting ontology creation using text-
mining techniques have been developed. Text2Onto of
KAON [20, 21] is a computerized tool having a text-
mining functions based on TF x IDF measure so that
words frequently appearing can be extracted from text
documents. In fact, our tool uses the same quantification
techniques for word extraction. In [22], the author applied
to software documents of a certain domain the technique
similar to Text2Ont to extract the terminology that soft-
ware developers, domain experts and other stakeholders
could commonly use during software development pro-
cesses. OntoLearn [23] adopted a kind of pattern match-
ing technique to disambiguate words in the semantic anal-
ysis for word extraction. DODDLE [24] is also a tool to
mining English texts for concept extraction based on term
frequency, and it uses WordNet [25] and EDR dictionary
[26] as a general-purpose ontologies. Although these tools
developed by ontology communities have some functions
to make our tool more elaborated, all of them cannot clas-
sify the extracted concepts and relationships into the types
specific to requirements models as shown in Figure 2, e.g.
“Class”, “Function”, etc. for concepts and “apply”, “re-
quire”, “perform”, etc. for conceptual relationships. They
are just for extracting concepts with no types and too gen-
eral relationships such as “is-a”, “has-a” and “synonym”
etc. as general-purpose ontology or thesauruses, not nec-
essarily suitable for requirements analysis. Their aim is
different from ours and they are not immediate supports
to requirements modeling. Our conceptual graphs have a
variety of types of concepts and of relationships in order to
apply to requirements modeling and elicitation, and these
existing techniques could not classify the extracted con-
cepts and relationships into these types. To support seam-
lessly requirements modeling, these techniques should ex-
tract not only concepts and their relationships but also
their types that lead to the elements of requirements mod-
els.

As for the quality of input documents, [27] suggested
several guidelines of writing natural-language sentences
that could be used for extracting requirements models. Al-
though they are for German, some of them could be useful
to improve the quality of input documents for our tool.

7 Conclusion

In this paper, in order to support requirements modeling,
we presented a computerized tool for extracting concep-
tual information from Japanese documents, and made sev-
eral experiments to show the usefulness of our tool. Al-
though our experiments mentioned in section 5 were too
small in the sense of practical setting to argue the general-
ity of the experimental findings, we could find the possi-
bility of supporting the construction of useful conceptual
graphs. According to the results of interviews to our sub-
jects, the user interface of our tool should be improved.
None of conceptual graphs that our tool suggested in-
cluded contradiction relationships, and our subjects added
them by manual. The reason was that the documents we
used did not contain any specific words denoting contra-

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

diction. We should explore more elaborated mining tech-
niques together with good samples of documents.

Although our current approach is based on the fre-
quency of words in documents, frequent words are not
always important in general. Comparing different doc-
uments [28, 29] is one of the ways to complement this
frequency based approach. Another way to create a con-
ceptual graph of higher quality is the integration of many
existing ontologies, including WordNet and EDR dictio-
nary.

In sections 5.1 and 5.2, we illustrated how to derive
two types of requirements models from our conceptual
graphs. Formalization of these derivation rules using a
graph rewriting system [30] and its automation are also a
future work.

In section 5.3, we used our conceptual graph as do-
main knowledge. There are several excellent techniques
and Meta CASE tools to generate domain specific mod-
eling languages such as MetaEdit+ [31] , Metaview [32]
and GME [33]. Our conceptual graph can be an input to
these Mata CASE tools to produce domain specific mod-
eling environments. This is one of the most interesting
applications of our technique.

References

[1] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Pe-
terson. Feature Oriented Domain Analysis (FODA):
Feasiblity Study. Technical Report CMU/SEI-90-
TR-21, 1990.

[2] OMG. Unified Modeling Language Specifi-
cation, Version 1.4. http://www.omg.org/cgi-
bin/doc?formal/01-09-67.

[3] F. Harmsen. Situational Method Engineering. Moret
Ernst & Young Management Consultants, 1997.

[4] M. Saeki. A Meta-Model for Method Integration.
Information and Software Technology, 39:925 — 932,
1998.

[5] T. Tokunaga. Information Retrieval and Natural
Language Processing (in Japanese). University of
Tokyo Press, 1999.

[6] Haruhiko Kaiya, Daisuke Shinbara, Jinichi Kawano,
and Motoshi Saeki. Improving the detection of re-
quirements discordances among stakeholders. Re-
quirements Engineering, 10(4):289 — 303, Dec.
2005.

[71 H. Kaiya and M. Saeki. Using domain ontology
as domain knowledge for requirements elicitation.
In Proc. of 14th IEEE International Requirements
Engineering Conference (RE’06), pages 189-198,
2006.

[8] M. Kitamura, R. Hasegawa, H. Kaiya, and M. Saeki.
An Integrated Tool for Supporting Ontology Driven
Requirements Elicitation. In Proc. of 2nd Interna-
tional Conference on Software and Data Technolo-

gies (ICSOFT 2007), pages 73-80, 2007.

[9] L. Goldin and D. Berry. AbstFinder, A Prototype
Natural Language Text Abstraction Finder for Use in
Requirements Elicitation. Automated Software Engi-
neering Journal, 4(4):375 - 412, 1997.

[10] R. Abbott. Program Design by Informal English De-
scriptions. Commun. ACM, 26(11):882-894, 1983.

[11] M. Saeki, H. Horai, and H. Enomoto. Software De-
velopment Process from Natural Language Specifi-
cation. In Proc. of 11th International Conference on
Software Engineering, pages 64-73, 1989.

[12] S. Overmyer, B. Lavoie, and O. Rambow. Con-
ceptual Modeling through Linguistic Analysis Us-
ing LIDA. In Proc. of 23rd International Conference
on Software Engineering (ICSE’01), pages 401-410,
2001.

[13] A. Montes, H. Pacheco, H. Estrada, and O. Pastor.
Conceptual Model Generation from Requirements
Model: A Natural Language Processing Approach.
In Lecture Notes in Computer Science (NLDB 2008),
volume 5039, pages 325-326, 2008.

[14] R. Hausser. Database Semantics for Natural Lan-
guage. Artificial Intelligence, 130(1), 2001.

[15] A. Min Tjoa and L. Berger. Transformation of Re-
quirement Specifications Expressed in Natural Lan-
guage into an EER Model, 1994.

[16] P. Chen. English Sentence Structure and Entity-
Relationship Diagrams. Information Science, 29(2-
3):127-149, 1983.

[17] S. Hartmann and S. Link. English Sentence
Structures and EER Modeling. In Proc. of 4th
Asia-Pacific Conference on Conceptual Modelling
(APCCM2007), pages 27-35, 2007.

[18] E. Buchholz, H. Cyriaks, A. Dusterhoft, H. Mehlan,
and B. Thalheim. Acquiring Complex Information
from Natural Language for EER Database Design. In
1st International Workshop on Applications of Natu-
ral Language to Data Bases (NLDB’95), 1995.

[19] H. Harmain and R. Gaizauskas. CM-Builder: An
Automated NL-based CASE Tool. In Proc. of 15th
IEEE International Conference on Automated Soft-
ware Engineering (ASE’00), pages 45-53, 2000.

[20] P. Cimiano and J. Volker. Text2onto : A framework
for ontology learning and data-driven change discov-

ery. In Lecture Notes in Computer Science, volume
3513, pages 227-238, 2005.

[21] KAON Tool Suite. http://kaon.semanticweb.org/.

[22] L. Kof. Natural Language Processing for Require-
ments Engineering: Applicability to Large Require-
ments Documents. In Proc. of the Workshops,
19th International Conference on Automated Soft-
ware Engineering, 2004.

[23] R. Navigli, P. Velardi, and A. Gangemi. Ontology
learning and its application to automated terminol-
ogy translation. IEEE Intelligent Systems, 18(1):22—
31,2003.

[24] T. Morita, N. Fukuta, N. [zumi, and T. Yamaguchi.
DODDLE-OWL: A Domain Ontology Construction
Tool with OWL. In Lecture Notes on Computer Sci-
ence (ASWC2006), volume 4185, pages 537-551,
2006.

[25] WordNet: A Lexical Database for the English Lan-
guage. http://wordnet.princeton.edu/.

[26] Japan Electronic Dictionary Research Institute. EDR
Home Page. http://www.jsa.co.jp/EDR/index.html?

[27] G. Fliedl, C. Kop, W. Mayerthaler, H. Mayr, and
C. Winkler. Guidelines for NL-Based Requirements
Specifications in NIBA. In Lecture Notes in Com-
puter Science (NLDB 2000), volume 1959, pages
251-264, 2000.

[28] Renaud Lecceuche. Finding Comparatively Im-
portant Concepts between Texts. In The Fifteenth
IEEE International Conference on Automated Soft-
ware Engineering (ASE’00), pages 55-60, Grenoble,
France, Sep. 2000.

95

CRPIT Volume 96 - Conceptual Modelling 2009

[29]

[30]

[32]

[33]

96

Akira Osada, Daigo Ozawa, Haruhiko Kaiya, and
Kenji Kaijiri. Modeling Software Characteristics and
Their Correlations in A Specific Domain by Com-
paring Existing Similar Systems. In Kai-Yuan Cai,
Atsushi Ohnishi, and M. F. Lau, editors, QSIC 2005,
Proceedings of The 5th International Conference on
Quality Software, pages 215-222, Melbourne, Aus-
tralia, Sep. 2005. IEEE Computer Society.

G. Taentzer, O. Runge, B. Melamed, M. Rudorf,
T. Schultzke, and S. Gruner. AGG : The At-
tributed Graph Grammar System. http://tfs.cs.tu-
berlin.de/agg/, 2001.

S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+
: A Fully Configurable Multi-User and Multi-Tool
CASE and CAME Environment. In Lecture Notes in
Computer Science (CAiSE’96), volume 1080, pages
1-21, 1996.

P. Sorenson, J. Tremblay, and A. McAllister. The
Metaview System for Many Specification Environ-
ments. /IEEE Software, 2(5):30-38, 1988.

A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Gar-
rett, C. Thomason, G. Nordstrom, J. Sprinkle, and
P. Volgyesi. The Generic Modeling Environment. In
Proc. of WISP’2001, 2001.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Modelling Web-Oriented Architectures

Gunnar Thies

Gottfried Vossen

European Research Center for Information Systems (ERCIS)
University of Muenster
Leonardo-Campus 3, 48149 Muenster, Germany
Email:{guth|vossen}@wi.uni-muenster.de

Abstract

Service-oriented architectures (SOAs) provide the
basis of distributed application frameworks where
software components are provided as modular and
reusable services. Until today there is no generally
accepted method for conceptual modelling of a SOA.
Rather, there exist several procedural methods which
are used in practice. On the other hand, recent devel-
opments in the context of what is commonly termed
“Web 2.0” show how easy it can be to link or compose
(“mesh”) IT components dynamically, so that origi-
nal SOA goals like flexibility, reusability, or reduction
of complexity can indeed be achieved by relatively
simple means. An interesting concept in this con-
text is the Web-oriented architecture (WOA), which
represents a specialization of SOAs obtained by us-
ing simple Web 2.0 technologies and standards (e.g.,
HTTP, SSL, XML). This paper introduces a method-
ology for designing WOAs, where the big picture fol-
lows existing SOA models. In particular, this WOA
methodology comprises conceptual as well as realiza-
tion issues and breaks WOA design down into three
distinct phases.

Keywords: Web-oriented architectures, conceptual
modelling, design methodology

1 Introduction

Service-oriented architectures (SOAs) provide the
basis of distributed application frameworks (W3C
2004b) where software components are provided as
modular and reusable services. The benefits of a
SOA are seen in the flexibility of business processes
which consist of loosely coupled services, and the re-
sulting potential cost decrease, complexity reduction,
reusability potential, and high flexibility. Concep-
tual modelling is an important factor here, as it not
only refers to data modelling, but also needs to take
process design into consideration. Indeed, having to
deal with all kinds of (legacy) systems and databases
makes the development of a complex and business-
ready SOA a major challenge. Until today there is no
generally accepted method for the conceptual mod-
elling of a SOA or for converting other concepts into
a SOA. Rather, there exist several procedural meth-
ods, including those from IBM (Ganci 2006) and SAP
(Woods & Mattern 2006), which are used in practice.
Moreover, the various standards for “easing” the cre-
ation of a SOA (e.g., Web services, UDDI, SOAP)

Copyright (©2009, Australian Computer Society, Inc. This
paper appeared at the Sixth Asia-Pacific Conference on Con-
ceptual Modelling (APCCM 2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in Infor-
mation Technology, Vol. 96. Markus Kirchberg and Sebastian
Link, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

typically make the realization of a SOA more com-
plicated (Vossen 2006). Indeed, the large number
of standards reflects an “over-standardization” which
makes SOAs difficult and complex to implement. Nu-
merous individual aspects of Web Services are defined
by over 70 distinct specifications, yet some of them
(like UDDI) are barely used (Hagemann et al. 2007).

On the other hand, recent developments in the
context of what is commonly termed “Web 2.0” show
how easy it can be to link or compose (“mesh”)
IT components dynamically, so that original SOA
goals like flexibility, reusability, or reduction of com-
plexity can indeed be reached by relatively sim-
ple means. Examples include mashups based on
Google Maps (like www.housingmaps.com) or appli-
cations like Yahoo!Pipes (pipes.yahoo.com); these
are based on Web Application Programming Inter-
faces (Web APIs), which allow using the function-
ality of a Web application by a simple (most com-
monly REST-based) service layer. An interesting and
emerging concept in this context is the Web-oriented
architecture (WOA), which represents a specialization
of a SOA obtained by emphasizing the use of simple
Web 2.0 technologies and standards. Its important
aspect is the fact that no additional standards have
been defined, but existing ones such as HT'TP, SSL,
or XML are employed. Since, as mentioned, there are
no generally accepted modelling techniques available
for a WOA, this paper introduces a methodology for
conceptual WOA design which builds upon existing
SOA models. In this context the Business Process
Modelling Notation (BPMN) is used for the defini-
tion of relevant processes in every phase. To this end,
the BPMN specification' is extended by several addi-
tional artifacts.

To motivate our approach, a case study originally
presented in previous work (Thies & Vossen 2008) is
briefly reviewed here; we will later use it for an il-
lustration of our methodology. Our case considers an
enterprise that has so far only run stationary shops
and now plans to extend its sales operation beyond
regional borders. To this end, it wants to move its
operation to the Web, but in such a way that avail-
able legacy systems can be incorporated into the new
IT landscape. Moreover, core business processes need
to be captured and implemented, where some parts
can be processed automatically, others only semi-
automatically.

The core business of the enterprise is the im-
printing of textiles and other merchandise with user-
defined templates. Customers are offered a wide va-
riety of imprintable articles, which can be decorated
with writings or graphics. Orders handled can range
from small (e.g., for individuals or clubs) to large
quantities (e.g., for companies). Up to now the en-

1Since no standard metamodel is defined in the specification of
BPMN, a coarse overview of the elements is shown later.

97

CRPIT Volume 96 - Conceptual Modelling 2009

external
Web APIs
Payment)
Amazon FPS J Browser
Data Mining J L Y,
Google Analytics >\
~——— 1
- N f ()
C:?M System) E Integrator »Order item
| Salesforce.com |7 »Order processing
.
Data Warehouse 7N g
DabbleDB ¥ N\
. 1 OSave order
.......................... & send job to machine control
_ J
[I | |
s K3 N ¥ v ¥
Web Shop ERP System Inder?t Machine
= == (Supplier) Control
_ _J o Y,

Figure 1: Case study using WOA solution.

terprise runs an ERP system for warehouse and prod-
uct management. Lithographs are developed together
with the customer within a vector graphics applica-
tion. Moreover, the enterprise runs several machines
for printing as well as for flock coating, which are
controlled by a central server. The server software is
able to accept print commands via a Web service call
over the company’s intranet. Since machine capacity
is not fully used, but the company wants to expand,
the business model is to be extended to the Internet
and in particular to the Web; consequently, it is to be
supported by a new IT system.

The target system is expected to process customer
product designs and orders entirely over the Web, so
that the customer base can be enlarged considerably.
After a transition period, it is even planned to aban-
don the stationary business completely. Thus, the
goal is to implement and run a Web shop alongside
the existing ERP system. A possible WOA solution
is shown in Figure 1.

As will be seen, the enterprise intends to use
as much service offerings from the Web as possible.
While this may amount to the design and implemen-
tation of a SOA, it has been decided to take a dif-
ferent route: A SOA would typically require a design
at several layers of abstraction (Vossen 2006), also
indicated in Figure 1, where the infrastructure is low-
est, individual services are next, which are topped by
service compositions; ultimately business processes as
seen by end users are built from these compositions.
As Figure 1 shows, a WOA will typically break up
this strict division of layers, as individual services ob-
tained over the Web may be employed either as in-
dividual service, as a replacement or provisioning of
a complex service, or as part of a process. These
occurrences may need the help of an integrator com-
ponent, yet they show that a different design method-
ology is needed. While SOA design can either follow
a bottom-up approach, a top-down approach, or a
combination of both (“meet in the middle”), a WOA
design can no longer simply follow either of them. A
methodology that can be used in WOA design is the
subject of this paper.

It should be noted that the fact that a WOA typ-
ically breaks up the layer division of a SOA has the

98

consequence that a certain amount of programming
will be needed during the development of a WOA. In
other words, the model of a WOA that reflects its
architecture and composition and that results from a
development process will not be entirely conceptual;
instead, it will actually be a hybrid model that com-
prises both conceptual as well as physical issues. We
consider this a kind of “price to pay” for the fact that
a WOA is much easier to develop and deploy than a
SOA.

The remainder of this paper is organized as fol-
lows: In Section 2 we give an overview of related work
in the field of conceptual SOA modelling. In Section 3
we then present our methodology which extends and
derives from already known methods, in order to meet
the requirements for an appropriate WOA methodol-
ogy. This motivates Section 4, where parts of the case
study will be realized using the novel WOA method-
ology. Finally, in Section 5 we discuss open challenges
and future work.

2 Related Work

Service-oriented architectures (SOAs) have been dis-
cussed intensively in science and industry since their
first appearance in the mid-90s. However, even to-
day there is no generally accepted method for mod-
elling a SOA. The various approaches that have been
described in the literature aim at methodologies for
planning and implementing a SOA, but none has be-
come a “standard” yet. We review available methods
next.

First of all there is the Web Service Architecture
(WSA) of W3C (2004b), where a system of Web
Services and their relations to each other are con-
ceptually described. Here, specific aspects are con-
sidered: the Service Model, the Message Oriented
Model, the Resource Oriented Model and the Policy
Model. This approach mainly aims at the usage of
Web Services and therefore is less general than our
approach. Another approach inspired by WSA comes
from the EU project Service Centric Systems Engi-
neering (SeCSE) where Colombo et al. (2005) are fo-
cusing more on some clarification in addition to the
WSA model e.g., relationships between the concepts

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

of service description, semantics, and service inter-
face. This approach is also focused on Web Services
and not as generic as our approach.

More into a semantic approach is OWL-S as out-
lined in W3C (2004 a), which describes a service and
its metadata in detail. Here the focus lies more on
the semantic description of a single Service within an
ontology than on a whole system. Also used for the
semantic description of a service is the Web Service
Modeling Ontology which currently exists as a final
draft only, see WSMO Working Group (2006). Since
we are focusing on the whole architecture, these ap-
proaches are only relevant as far as functional descrip-
tions are concerned.

Another important approach is the Service Ori-
ented Modelling and Architecture proposed by IBM
(cf. Arsanjani & Allam (2006)) where modelling of a
SOA is divided into three phases. The first phase
deals with Component Business Modelling (CBM) for
describing all business processes within an enterprise.
The second phase is used to connect processes with
services, and the third phase deals with the imple-
mentation of the found services within a SOA. This
conceptual view is, among others, the basis of the ap-
proach described in this paper. Furthermore, we pro-
vide a brief description of a conceptual process model
which deals with the creation of a WOA from scratch.

More specific is the approach by Mos et al. (2008),
which is a method for designing a SOA with the goal
of using an Enterprise Service Bus (ESB) and there-
fore Java Business Integration. This method is re-
stricted to a Java environment, but the three phases
of the (top-down) method are a good starting point
and close to the IBM approach: First discover and de-
scribe the processes via Business Process Execution
Language (BPEL) or BPMN by a Business Process
Designer, then create a Service Component Architec-
ture descriptions by a Software Architect and finally
implement and deploy the various services within the
ESB by a Technology Team.

Another approach by Quartel et al. (2007) named
COnceptual Service MOdelling (COSMO) focuses on
basic concepts to represent essential, elementary, and
generic service properties. Here processes are de-
scribed within three levels of abstraction: as a single
interaction, as choreography, and finally as orchestra-
tion. For the description of services and their inter-
actions the Interaction System Design Language and
other languages like OWL, SPARQL, and Java are
used. This in a sense contradicts the general idea be-
hind a WOA, which is to use simple and commonly
known Web techniques. On the other hand, the divi-
sion of the provider on the one side and the consumer
on the other side and their connection pattern within
a process is close to the differentiation of services by
a “pool” in our approach.

A more programmatic approach uses the Uni-
fied Modeling Language (UML) for modelling a SOA
(Lépez-Sanza et al. 2008). It defines a UML profile for
the design of PIM-level SOA-based architecture mod-
els. In contrast to our approach, processes are less
important; not only service providers and services are
defined within the SOA metamodel, but also so-called
Active Components, which handle service request and
responses and interact with the frontend. These com-
ponents are implicitly visible in our approach as well,
namely as tasks within the pool named “integrator”
of a process model.

3 The Approach

In this section we describe our approach to concep-
tual WOA design. We start out by collecting vari-
ous requirements and setting several goal. After that

we present the methodology, which is comprised of
three phases: process modelling, refinement, and im-
plementation. Each phase will be described in neces-
sary detail.

3.1 Requirements and Goals

The existing methodologies for designing a SOA
mostly focus on Web Services as the core connection
element. In contrast, a WOA uses Web services as
well as RESTful services, i.e., services that can be
invoked via REST. As a consequence, a WOA ap-
proach is not bound to a specific technology. While
Web services can be described by a WSDL document
cf. W3C (2007)) for RESTful services (cf.Fielding
2000)) there is no explicit standard for their descrip-
tion. However, a reasonable solution for the time
being is the Web Application Description Language
(WADL) which is much simpler than WSDL, yet al-
lows the description of important features of a REST-
ful service such as resource, input, output, and even a
textual description, see Hadley (2006). Most services
today come with textual descriptions only (as can be
seen, for example, at www . programmableweb. com), so
no matching algorithm can be specified. Therefore,
most services have to be “discovered” by the software
architects themselves. This can be done in different
ways, but our approach currently assumes that the
search for suitable services is done by hand in the sec-
ond phase. As long as no accepted semantic service
description is available and used for a large portion of
the services offered on the Web, according to experi-
ence no reasonable registry mechanism will work.

One of the important points of our approach is
the usage of well-known and well-understood formal
languages in every phase, including BPMN for pro-
cess descriptions and WSDL as well as WADL for the
functional description of individual services.?2 The ad-
vantage of BPMN is that it is easy to read and still
allows for a powerful visual design of processes.

The following simplified steps are identified to
model, construct, and implement a WOA:

e Development a set of inter-connected business
process models;

e refinement of these process models with func-
tional details of each service task;

e provisioning of the process models with explicit
data flow (especially a specification of which data
is used as input for a service request);

e implementation of the defined process models (in
a development environment or workflow engine).

Similar to approaches that have been described in the
literature (e.g., the SOMA method of IBM Arsanjani
& Allam (2006) or Mos et al. (2008)) the basis of
our approach is built upon three different roles and
has three main phases (see Figure 2). These roles
are the Process Designer, the Software Architect and
the Technology Team. In a small enterprise these
roles will often be overlapping and assigned to the
same person. Otherwise, communication is obviously
needed between those with one of these roles assigned.

3.2 The Methodology

We go through the three phases of our design method-
ology next.

2Plans for the near future contain the implementation of a
WSDL2WADL tool which is able to convert service descriptions
between these two description languages without loss of informa-
tion.

99

CRPIT Volume 96 - Conceptual Modelling 2009
3.2.1 Process Modelling Phase

In the first phase the Process Designer has to define
the process models for a specific domain. We propose
the usage of BPMN because of its readability (even
for non-technologists), its widespread usage, and the
good tool support. A standard-conforming BPMN
model basically consist of the following components
(compare Object Management Group (2008)):

e Flow Objects: Event, Activity (Task), and Gate-
way

e Connecting Objects:
Flow, and Association

Message Flow, Sequence

e Artifacts: Data Object, Group, and Annotation

A process contains at least one “pool” representing
an organization or a role in the process. “Lanes” can
be defined within a pool to sub-divide a pool (e.g.,
according to different roles or sub-systems).

In this first phase the Process Designer has to
model each business process of the enterprise with
non-functional descriptions. The following steps
should be carried out for each particular business
case:

1. Identify the systems comprised (e.g., ERM or
CRM system) and add a new pool for each.

2. Analyze the business case, whether there are dif-
ferent roles or parts of a system and add as many
lanes as needed within the specific pool.

3. Construct the process following the BPMN spec-
ification.

4. Mark each task which requests a service as “ser-
vice task”. These tasks will later be refined by a
Software Architect.

After the first phase, all process models will be defined
and give an overview of all systems and roles used
within the enterprise. The result can now be com-
pared, for example, to a Component Business Matrix
of the IBM methodology. The lane Process Designer
in Figure 2 shows this step as the first task of the
methodology process (also designed in BPMN).

3.2.2 Refinement Phase

The second phase is carried out by a Software Ar-
chitect, since now the tasks of a process, which have
been identified as service tasks in the first phase, will
be described in detail. This phase is divided into two
main actions:

1. First, the appropriate services for a service task
are searched for, and their functional specifica-
tion and behavior is described in an adequate
way. For a Web Service WSDL will be used,
while a RESTful service will be described using
WADL. In this phase the resource URL, the in-
put and output parameters as well as the service
description are defined.

2. The data flow within the process models is de-
scribed for each service. Any (specific) mapping
of data from one service to another will be de-
scribed with regard to the functional description
of the service (meaning an exact overview of in-
and outflow of data).

In the first part of this phase some kind of service
repository can be employed. This could be a reposi-
tory like www.programmableweb.com or any other in-
ternal or external repository of the given enterprise

100

(see Hagemann et al. (2007) for an overview). A cer-
tain difficulty obviously lies in searching for an ad-
equate service which optimally fits the purpose of
the business process. Notice that in SOA models,
often a repository based on UDDI is proposed, which
has once been designed for an automatic matching
of services to a given description. The various prob-
lems that arise while detecting a suitable service for a
SOA (not limited to UDDI) have been investigated in
Letz (2007), and as shown in Hagemann et al. (2007),
repositories based on UDDI are no really in use any-
more.

So far the most complete service directory for
RESTbased services is www.programmableweb.com.
If that is not sufficient, either a formal description
needs to be connected with a service task (done by
the Process Designer) which can be understood by
a Software Architect, or the Process as well as the
Software Designer need to communicate while refin-
ing the processes. In some cases, these two roles will
be combined in one person. Also, the Software Ar-
chitect should have a broad knowledge of the inter-
nal IT systems and hence be able to specify any ser-
vice parameter. If a service task can be linked to a
real service, the process model needs to be adapted.
Therefore, adding or changing a pool or a lane within
the process is needed to show the sequence flow from
system to system. A pool called “Integrator” will
always exist, from which all requests made by ser-
vices will be started and their responses computed.
To support the addition of functional descriptions to
a task, the underlying BPMN metamodel needs to be
extended with an artifact element called “functional
description”. An instance of this element can then be
connected to a task.

In the second part of the refinement phase, the
data flow within a service is described. Through the
information of the given WSDL and WADL descrip-
tions, the parameters needed to call a service are out-
lined. Data objects can be used to define data that
is saved or available throughout the process. Be-
sides the sequence flow of a BPMN process, which
defines the deterministic flow of the process, the mes-
sage flow shows when and between which tasks of dif-
ferent pools messages are exchanged. Therefore, to
define which parameter is used for a service request
additional information is defined for the message flow
connector. Even if our approach is designed to be
technology independent, here the BPEL construct of
assigning data to an activity will be used (see OASIS
(2007)). We do so because on the one hand this con-
struct supports the possibility to convert BPMN pro-
cess models to BPEL processes and on the other hand
because of the small footprint in contrast to other al-
ternatives (like the Web Service Flow Language which
builds heavily onto WSDL (Leymann 2001)).

Listing 1 shows how the assignment of parameters
is defined for a message flow connector in XML nota-
tion. The container attribute in the from tag refers
to a data object of the underlying process, where the
part points to attributes within a data object. The
to tag, in contrast, refers to a service task.

<assign>
<copy>
<from
container="Session Data"
part="customerId" />
<to
container="Check Id"
part="id" />
</copy>
<copy>
</assign>

Listing 1: Assignment of data.

. </copy>

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

: J
c
2
0
o)
% Create and define | Process
4 process models <" models
9 via BPMN
o
"ready-to-
) Service refinement 3 implement”
3 % Refine (service) Model the data E .| process
O c Service tasks via ': models
-8 i Repository WADL / WSDL _ Process :
- - 1
O © (external + models :
£ |2 internal) with functional i
-‘(TJ' o description '
= i
<
: J
Implement / configure /
1 deploy processes —>O
E (services)
S i)
k<]
2 |
< Fully working
3 process
= instances

Figure 2: The three phases of our WOA methodology.

We mention that this phase is equivalent to the second
step of the IBM method where services are bound to
processes of the CBM matrix. The result of this phase
are process models with a functional description of the
specific services and their data flow.

So far there is no specific graphical representation
for defining a functional description or a data flow ele-
ment in a BPMN process, besides the normal artifact
description. Therefore Figure 3 shows a prototypical
construction of a process part, where a service task
is refined with a WADL description and an in-going
data flow from another task.

Since the BPMN specification explicitly allows the
extension of BPMN models by artifacts, the necessary
data flow element as well as the functional description
are added as an artifact type. Additionally, the data
flow artifact can only be bound to a message flow.
In Figure 4 an overview of all the BPMN elements
is shown including the gray elements for use in the
second phase as extensions to the standard.

3.2.3 Implementation Phase

The third phase finally brings the WOA to life. The
result of the two preceding phases are fully defined
processes with the specific services and the integrator
as a coordinating platform. One of the great hopes
in service computing has always been a fully auto-
matic code generation where a process is “designed,
not programmed”. In some cases this is indeed pos-
sible, e.g., for a process which has no manual task
in it and which uses mainly external services where
the logic inside the integrator is minimal. Therefore,
the BPMN process should be either directly run by
an engine which can handle data in data objects, can
send requests to any Web-based service (described by
WADL or WSDL), and understands the flow logic of
the integrator, or the process should be translated
into a common workflow format like BPEL and then
run in a workflow engine.

Since BPMN has no underlying metamodel, there
are no generic workflow engines which could run a
BPMN process. However, some tools are able to sim-
ulate a process. The latter approach has been inves-

tigated by Ouyang et al. (2006), and even the spec-
ification of BPMN addresses a conversion of BPMN
patterns into BPEL4WS. Unfortunately, a standard
BPEL process is not able to handle RESTful services
out of the box, so the “RESTful BPEL” approach
propagated by Overdick (2007) can be helpful in this
respect. In most cases, however, the technology team
has to integrate external services into the process flow,
either by programming a wrapper for a service (in
case that there is only something like a JavaScript
API) or by taking a look at the Service Level Agree-
ments (SLAs) of the service. Our approach aims
at a WOA, so the integrator component should be
a Web-based platform. This could be providers of
Platform-as-a-Service solutions like bungee Connect or
force.com, or other integrating components.
Basically, the following steps are required for each
process which is not automatically processable:

e Check for every pool that is not the integrator
pool whether the services described are reachable
and also whether or not the functional descrip-
tion is correct.

e Check the given SLAs and verify the guarantees
if possible.

e Test the services and consider alternatives (think
about load balancing and redundancy scenarios).

e Write the code needed for the integrator compo-
nent and bind the services to the process.

e Conduct test runs of the finished processes.

These steps are closely related to a standard soft-
ware engineering process, where the business cases
are implemented, tested, and then enabled for pro-
duction use. There is also a similarity to the third
step of the IBM method, where the services are de-
ployed in a SOA environment, or to the model of Mos
et al. (2008), where the software components are fi-
nally deployed in an ESB.

101

CRPIT Volume 96 - Conceptual Modelling 2009

5 Check customer Compute

= data Something

—

o0 Start event : Ts End with sending

b= H | : email confirmation
Session
Data _j

I

2

=

—_

[}

@ Check ID

3

n

w

2

Figure 3: Refined process model after second phase.

Message Flow

1

Functional description

[Sequence Flow|-{> Connecting Object|{> Element K} Artifact K

Association

Data Object

Flow Object
/\

| Ev;nt ||Act£vity||Gat¢;way|| Pool || Lane |

Figure 4: Extended BPMN object model.

4 Applications

We now employ our WOA design methodology using
the payment for items in the Web Shop which has
been presented in detail in Thies & Vossen (2008) as
a case study. The starting point of the methodol-
ogy is the creation of a process model in the Process
Modelling Phase. So the Process Designer models the
Order process (at a coarse level). Ounly the “integra-
tor” pool is modelled in the first place, where all the
process steps take place. The process covers the fol-
lowing action:

“A customer chooses items from the web shop (so
there is a filled shopping cart) and clicks on a “pay”
button. If the customer is logged in, the “payment
process” task is starting, otherwise he/she is for-
warded to a login page. The task returns either a
positive or a negative response. The latter case re-
sults in handling an error and end the process. If the
payment is successfully done, the “order” task is start-
ing, where the items in the shopping cart are saved as
order in a CRM system. The process ends with an
email notification to the customer.”

Two tasks are identified as services by the Process
Designer and marked as “service tasks:”

1. Payment process service
2. Create and save order service

Both tasks are placeholders for a Web or RESTful
service which will later be designed in the Refinement
Phase. Figure 5 shows the final process of the first
phase.

102

The following step in the Refinement Phase is to
extend the process and hence to find suitable pro-
cesses for the identified service tasks. For the pay-
ment process the Amazon Flexible Payments Service
(FPS) is a candidate, the order process is covered by
an imaginary test system (to show how a RESTful
service would look like). First, two additional pools
are created by the Software Architect, one for each ex-
ternal service, and each pool gets a task, which stands
for the specific Web or RESTful service. After that
the message flow is designed to reach the specific task
within each new pool. For a better understanding
of the process, the Software Architect adds grouping
artifacts to the process, so that a former single task
(like the payment process) is graphically outlined.

The important part now is to describe the tasks
with functional descriptions. For the payment pro-
cess, the WSDL document provided by Amazon is
connected to the task. The order process gets a func-
tional description via a WADL document. Both de-
scription are indicated by a small black rectangle in
the task symbol, which displays the special type of
service description.

The final step in this phase is to define the data
flow between the different pools in the process. As
shown in Figure 6, the data flow is displayed as a
data flow artifact connected with the message flow.
It shows a (green) checkmark if the data flow is al-
ready defined; otherwise it shows a (red) cross. In
our example, the data flow from task “Save order”
to task “Create and save order” is not defined yet.
We assume that the WADL definition of the order
process needs parameters apiKey, customerId, and
shoppingCart as input (see the param tags in lines

W N =

00 ~J O U i~

20
21
22
23

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

./' S
Shopping cart & \.\ Web Shop
is filled and customer N Data
clicked on "pay". Vs

Payment error

.

handling
5 Get customer
E status
oo
9 Start payment [Service task
c process Uy = =y | Ty -
Payment
process
Send confirmation
Payment successful to customer
Figure 5: Order process after first phase.
Shopping cart
is filled and customer o " |web Shop
clicked on "pay”. { Session Data
= Go to Login page f.
Get customer Payment error
§ status handling
g Start payment ayment process
Qo process User logged in? d 5
£ :
Send payment Return state
data evaluation Save order
|
— \—— Ol I o
Payment successful | ‘Send confirmation
J H | | to customer
— |] |
\ T) : |
(7] |
o o I
s | K - |
§ Payment i N (|
8 i o w
I
< i } | I
T T t t
E T - ’
2 i |
]
> | |
z \
s |
o l |
O

Figure 6: Extended order process during the second phase.

10, 13, and 14 of Listing 2). These parameters are der”, where the parameters of the session data are
held by the data object “Web Shop Session Data” in mapped to the parameters of the RESTful service.
the integrator pool. Every parameter is copied via the from tag to the des-
tination, the “Create and save order” task. With the
data now defined, the service request can be imple-
mented later by the Technology Team without know-
ing details about the business case.

<?xml version="1.0" 7>

<application targetNamespace="urn:crmsystem"

xmlns:crm="http://api.testsystem.org/
namespaces/">

<doc xml:lang="en" title="documentation">

. - . <assign>
Simple service for creating an order. <copy>
</doc> <from
. container="Web Shop Session Data"
<resources base="http://api.testsystem.org/ part="apiKey" />
Order/V1/"> <to
<resource path="{apiKey}/createOrder"> container="Create and save order"
<param name="apiKey" style="query"/> part="apikey" />
<method name="GET" id="search"> </copy>
<request> <copy>
<param name="customerId" type=" <from

xsd:string" required="true"/>

<param name="shoppingCart" type=" container="Web Shop Session Data"

part="customerId" />

crm:shoppingcart"> <to
</param> container="Create and save order"
</request> part="custId" />
<response> </co
. . . py>
<representation mediaType="text/plain"/> <copy>
<fault status="400" mediaType="text/ <from
‘plain" /> container="Web Shop Session Data"
</response> part="shoppingCart" />
</method> <to
</resource> container="Create and save order"
</resgurC§S> part="shoppingCart" />
</application> </copy>
Listing 2: WADL description for the “Create and save </assign>
order” service. Listing 3: Assignment of data flow.
Listing 3 declares the data flow between “Save or- The final Implementation Phase is not described in

der” and the CRM system task “Create and save or- detail here. Basically, the integrator platform needs

103

CRPIT Volume 96 - Conceptual Modelling 2009

to hold a data object with the session data of the Web
Shop (therefore the Web Shop provides interfaces for
reading and writing session data). The Technology
Team also has to implement one Web Service request
to Amazon FPS and a RESTful service request to the
CRM system.

5 Conclusions and Future Work

In this paper we have presented a WOA design
methodology which abstracts from technology and
complex standards and only uses simple Web stan-
dards like HTTP, SSL, and XML for communication.
In addition, the usage of the SOAP protocol is also
needed in cases of Web Service-based systems. For the
definition of a service we propose WADL (or WSDL
for Web Services) and a simple data flow syntax to
describe data mappings for any request within a pro-
cess. No further standards are needed to describe a
fully working WOA.

Our methodology comprises three phases, which
are partially also reflected in some of the approaches
for the construction of a SOA (as outlined in Sec-
tion 2). Every phase addresses a distinct role, so
that different kinds of knowledge about the processes
of an enterprise can be covered. BPMN is used for
all phases to define and model the respective busi-
ness processes, because the benefit of BPMN is the
readability and the extensibility. The usage of ser-
vice descriptions is proposed and with WADL a high
degree of technological independence is possible, since
WADL is not bound to a specific service or protocol
format.

As mentioned in the Introduction, we have seen
that our methodology is not just purely conceptual,
but rather a hybrid one that meshes conceptual as
well as physical aspects of a WOA. We consider this
a consequence of the fact that a WOA no longer needs
to follow the strict layering of a SOA, but we believe
that it is exactly this aspect what will make them
more successful than SOAs.

One important aspect of services provided over the
Web are SLAs, which define the guaranteed benefits
of a provided service. SLAs are an agreement between
a service customer and a service provider and often
contain information about the availability, stability,
and — most importantly — costs of a service. In this
paper SLAs have not been considered, but in future
work they will be discussed in detail in the context
of the Refinement Phase of our methodology. This
will lead to the possibility of estimating overall cost
of a service, which will be helpful for a return on
investment (ROI) calculation.

Tool support is another important factor for the
use of a methodology. After some testing, we have
chosen a plug-in called SOA Tools Platform Project
(STP) for the Eclipse IDE, which allows for the mod-
elling of BPMN processes. Choosing an Eclipse plug-
in also makes it possible to extend the plug-in in the
future. So all the added artifacts (and maybe more
for SLA usage) to the BPMN metamodel can be con-
structed and used to create a WOA modelling tool in
eclipse.

Another interesting part will be an elaboration of
the integrator functionality. Besides existing plat-
forms like bungeeConnect or force.com, which are so
called Platform-as-a-Service providers, there is much
space for the development of a BPMN workflow en-
gine which is able to run and administrate BPMN
processes directly.

Acknowledgement. The authors are grateful to
the reviewers of this papers, whose comments have
led to several improvements over an earlier version.

104

References

Arsanjani, A. & Allam, A. (2006), Service-oriented
modeling and architecture for realization of an soa,
in ‘2006 IEEE International Conference on Services
Computing (SCC 2006), 18-22 September 2006,
Chicago, Illinois, USA’, IEEE Computer Society,
p- 512.

Colombo, M., Di Nitto, E., Di Penta, M., Distante, D.
& Zuccal, M. (2005), Speaking a common language:
A conceptual model for describing service-oriented
systems, in ‘ICSOC 2005’, Springer Verlag Berlin
Heidelberg 2005, pp. 48-60.

Fielding, R. T. (2000), Architectural Styles and the
Design of Network-based Software Architectures:
PhDThesis, PhD thesis, University of California,
Irvine.

URL: hitp://www.ics.uci.edu/ fielding/pubs/dis-
sertation/top.htm

Ganci, J. (2006), Patterns: SOA foundation ser-
vice creation scenario, IBM Redbooks, 1st ed.
edn, International Technical Support Organization,
Poughkeepsie NY.

Hadley, M. J. (2006), ‘Web application description
language (wadl)’.
URL: https://wadl.dev.java.net/wadl20061109.pdf

Hagemann, S., Letz, C. & Vossen, G. (2007), Web
service discovery — reality check 2.0, in ‘Proc.
3rd International Conference on Next Generation
Web Services Practices (NWeSP), Seoul, Korea’,
pp. 113-118.

Letz, C. (2007), Web Service Detection in Service-
oriented Software Development: A Semantic
Syntactic Approach, PhD thesis, Westfilische
Wilhelms-Universitat, Miinster.

Leymann, F. (2001), ‘Web services flow language’.
URL: http://zml.coverpages.orq/WSFL-Guide-
200110.pdf

Loépez-Sanza, M., J. Acunaa, C., Cuestaa, C. E. &
Marcosa, E. (2008), Modelling of service-oriented
architectures with uml, in ‘Electronic Notes in The-
oretical Computer Science Vol. 194 Issue 4, Pro-
ceedings of the 6th International Workshop on the
Foundations of Coordination Languages and Soft-
ware Architectures (FOCLASA 2007)’, pp. 23-37.

Mos, A., Boulze, A., Quaireach, S. & Meynier, C.
(2008), Multi-layer perspectives and spaces in soa,
i ‘SDSOA 08, May 11, 2008, Leipzig, Germany’,
ACM 2008.

OASIS (2007), ‘Web services business process execu-

tion language version 2.0’.

: http://docs. oasis-
open.org/wsbpel/2.0/08 /wsbpel-v2.0-0S.pdf

Object Management Group (2008), ‘Business process
modeling notation, v1.1°.
URL: http://www.omg.org/docs/formal/08-01-
17.pdf

Ouyang, C., van der Aalst, W. M., Dumas, M. &
ter Hofstede, A. H. (2006), ‘Translating bpmn to
bpel’.

URL: http://is.tm.tue.nl/staff /wodaalst/
BPMcenter/reports/2006/BPM-06-02.pdf

Overdick, H. (2007), Towards resource—oriented bpel,
in ‘2nd Workshop on Emerging Web Services Tech-
nology’, Aachen.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Quartel, D. A., Steen, M. W. A., Pokraev, S. &
van Sinderen, M. J. (2007), Cosmo: A conceptual
framework for service modelling and refinement.

Thies, G. & Vossen, G. (2008), Web-oriented architec-
tures: On the impact of web 2.0 on service-oriented
architectures (to appear), in Proc. 2008 IEEE Asia-
Pacific Services Computing Conference, Yilan, Tai-
wan.

Vossen, G. (2006), Have service—oriented architec-
tures taken a wrong turn already?, in ‘IFIP TC 8
International Conference on Research and Practical
Issues of Enterprise Information Systems (CONFE-
NIS 2006), Vienna, Austria’, pp. xxiii—xxix.

W3C (2004a), ‘Semantic markup for web services’.
URL: http://www.w3.orq/Submission/2004/SUBM-
OWL-5-20041122/

W3C (2004b), ‘Web service architecture’.
URL: http://www.w3.org/ TR /ws-arch/wsa.pdf

W3C (2007), “‘Web services description language 2.0’
URL: http://www.w3.org/TR/wsdl20-primer/

Woods, D. & Mattern, T. (2006), Enterprise SOA:
Designing IT for Business Innovation, O’Reilly
Media, Inc.

WSMO Working Group (2006), “Web service model-
ing ontology’.
URL: http://www.wsmo.org/TR/d2/v1.3/20061021/

105

CRPIT Volume 96 - Conceptual Modelling 2009

106

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Multi-Level Domain Modeling
with M-Objects and M-Relationships

Bernd Neumayr

Katharina Griin

Michael Schrefl

Department of Business Informatics - Data & Knowledge Engineering,
Johannes Kepler University Linz, Austria
E-Mail: {neumayr,gruen,schrefl} @dke.uni-linz.ac.at

Abstract

Using traditional semantic data modeling, multi-level
modeling can be achieved by representing objects
in different abstraction hierarchies, namely classifica-
tion, aggregation and generalization. This, however,
leads to accidental complexity, complicating mainte-
nance and extension. Several modeling techniques,
like deep instantiation, powertypes and materializa-
tion, have been proposed to reduce unnecessary com-
plexity in modeling objects at multiple levels. Multi-
level objects (m-objects) and multi-level relationships
(m-relationships) build on these results and provide
a natural, intuitive representation of the concretiza-
tion of objects and relationships along multiple lev-
els of abstraction. By integrating aspects of the dif-
ferent abstraction hierarchies in a single concretiza-
tion hierarchy, they improve readability and simplify
maintenance and extension as compared to previous
approaches. The discussion on conceptual modeling
is complemented by a brief presentation of M-SQL,
a data manipulation and query language for work-
ing with m-objects and m-relationships in an object-
relational setting.

Keywords: Conceptual Modeling, Multi-Level Model-
ing, Multiple Abstraction

1 Introduction

Modeling domain objects at multiple levels of abstrac-
tion has received increased attention over the last
years. It is nowadays also referred to as ontologi-
cal multi-level modeling to contrast it from linguis-
tic meta-level modeling, which relates to representing
modeling language constructs in one or more higher
levels, or meta models. Note that multi-level model-
ing is often associated solely with multiple classifica-
tion levels, while this paper concerns, more generally,
levels in classification, generalization and aggregation
hierarchies.

Objects are frequently organized in hierarchies
consisting of multiple levels. Examples are prod-
uct hierarchies, dimension hierarchies in data ware-
houses, and taxonomies in general. KE.g., a prod-
uct catalog may consist of three levels, category,
model, and physical entity. Sample instances of these
levels could be car, porsche9l1CarreraS, and my-
Porsche911CarreraS, respectively.

Conceptual modeling of such hierarchies is
straightforward if objects at each level are uniform,

Copyright (©2009, Australian Computer Society, Inc. This
paper appeared at the Sixth Asia-Pacific Conference on Con-
ceptual Modelling (APCCM 2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in Infor-
mation Technology, Vol. 96. Markus Kirchberg and Sebastian
Link, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

i.e. have the same structure. As information systems
grow in size or previously independent systems are
integrated across related domains, the need to handle
levels of similar, yet non-uniform objects arises. Ob-
jects at the same level in different subhierarchies may
differ from each other. E.g., product models have a
listprice, but car models (i.e., objects at level model
belonging to car, an object at level category) have an
additional attribute maxSpeed.

Non-uniformity may go beyond having differently
described objects at the same level. Sub-hierarchies
beneath two objects at the same level may differ from
each other in that they introduce different additional
levels. E.g., our product catalog may contain a prod-
uct category car, which is described by an additional
level brand (with objects like porsche911) between
levels model and physical entity.

Such non-uniform hierarchies of domain objects
at multiple levels of abstraction can be modeled us-
ing general modeling languages like UML through a
combination of aggregation, generalization and clas-
sification (see left side of Fig. 1 for a simplified UML
representation in which additional level brand is omit-
ted). While, from a static perspective, this UML rep-
resentation does not involve unnecessary or acciden-
tal complexity, the accidental complexity becomes ap-
parent when introducing new domain concepts. Intro-
ducing a single domain concept (such as new product
category car) requires next to introducing an instance
Car:CarCategory to add multiple classes, (in our case
CarCategory, CarModel, CarPhysicalEntity) as well
as associated aggregation, generalisation, and instan-
tiation relationships. Moreover, the same kind of
classes need to be added for each new product cate-
gory entered into our product catalogue. The redun-
dancy and fragmentation caused by following such a
modeling approach complicates maintenance and ex-
tension.

Several modeling techniques have been proposed
in recent years to reduce accidental complexity in
modeling domain objects at multiple levels of ab-
straction. The prevailing techniques are materi-
alization (Goldstein & Storey 1994, Pirotte et al.
1994, Dahchour et al. 2002), powertypes (Odell 1998,
Henderson-Sellers & Gonzalez-Perez 2005, Gonzalez-
Perez & Henderson-Sellers 2006), and deep instantia-
tion (Atkinson & Kiihne 2001, Kiithne & Schreiber
2007). While these techniques simplify multi-level
modeling and support deep characterisation, they do
not support (or at least do not directly support) non-
uniform sub-hierarchies. Materialization provides for
modeling concrete objects of category objects differ-
ently and comes with a very powerful concept for
property definitions and propagations along the ma-
terialization hierarchy. The powertype approach pro-
vides for describing the common properties of sub-
classes of a class, i.e., one level of the generalization
hierarchy, by powertypes. Ontological meta modeling

107

CRPIT Volume 96 - Conceptual Modelling 2009

ProductCatalog

Product : ProductCatalog

——Product
:catalog ~

-desc : String

desc = 'Our Products'

P
(_-desc:String = 'Our Products')

I

:catego
? -taxRate : Integer caeg ry—‘

ProductCategory CarCategory

Car : CarCategory

" N :model
-listprice : Float —‘

-taxRate : Integer

taxRate = 20

:physical enti
-serialNr : String physical en I‘y—‘

I I

ProductModel CarModel
-listprice : Float -maxSpeed : Integer

UOIOBIISAY JO S|PAST] ——— >

l [ProductPhysicalEntity CarPhysicalEntity |

|-seriaINr : String |

|-mileage : Integer |

)

:category ~

—
[-taxRate = 20)

:model
-maxSpeed : Integer —‘
:physical enti
-mileage : Integerp ysicalen |ty—‘

Figure 1: Basic Idea of Multi-Level Objects (simplified), Left: UML, Right: M-Objects

with deep instantiation provides for multiple levels
of classification whereby an object at one level can
describe the common properties for objects at each
instantiation-level beneath that level.

Multi-level objects (m-objects) and multi-level re-
lationships (m-relationships), introduced in this pa-
per, build on these approaches and provide a natural,
intuitive presentation of the concretization of objects
and relationships along multiple levels of abstraction.
The basic ideas of our approach are (i) to encapsu-
late the different levels of abstractions that relate to
a single domain concept (e.g., the level descriptions,
catalog, category, model, physicalEntity that relate
to single domain concept, product catalog) into a sin-
gle m-object (cf. Product with these levels at the
right hand side in Fig. 1), and (ii) to integrate as-
pects of the different semantic abstraction hierarchies
(aggregation, generalization, and classification) in a
single concretization hierarchy. Note that we use the
term aggregation in a broad sense referring to ab-
straction levels both with a typical whole-part flavor
(e.g. city-county-state) or with a materialization fla-
vor (e.g. physical entity-model-category). Further-
more our approach provides a naming scheme to ad-
dress and query meta™-classes which are implicitly in-
troduced with the levels of abstractions of a m-object.

A concretization relationship between two m-
objects does not reflect that one m-object is at the
same time an instance of, component of, and subclass
of another m-object as a whole. Rather, a concretiza-
tion relationship between two m-objects, such as Car
and Product in Fig. 1, is to be interpreted in a multi-
faceted way. M-object Car is an instance of m-object
Product with respect to that m-object’s second-top
level, category, and gives values for attributes of that
level, e.g., taxRate. M-object Car is a component of
m-object Product considered as an object of that m-
object’s top-level, catalog. Each level of m-object Car
can be seen as a subclass of the corresponding level
of m-object Product.

Relationships between m-objects are likewise de-
scribed at multiple levels, associating one or more
pairs of levels of the linked m-objects, and are, thus,
called m-relationships. M-relationships can again be
interpreted in a multi-faceted way, once as relation-
ship occurrence (or sometimes also called relationship
instance or link) and once as relationship class (or
sometimes also called relationship type, or set), or
also as meta-relationship class. They take on these
multiple roles depending on what pairs of linked lev-
els one considers and on whether one considers the
linked m-objects in an instance or a class-role. M-
relationships may be concretized along the concretiza-
tion hierarchy of linked m-objects. The richness of
this concise, powerful modeling concept is discussed
in detail in the paper.

The paper is organized as follows: Section 2 de-
fines requirements for multi-level modeling based on
a sample problem. Section 3 presents the concept

108

of m-objects and their consistent concretization in
concretization hierarchies. Section 4 introduces m-
relationships. Section 5 outlines a data definition and
manipulation language M-SQL for m-objects. Section
6 gives an overview of related work and compares it to
our approach. Finally, Section 7 concludes the paper.

2 Sample Problem and Requirements

In this section, we present our running example
and discuss requirements for multi-level modeling ap-
proaches.

Example 1 (Sample Problem). A sample online-
store buys and sells products, which are described
on at least three levels of abstraction: physical en-
tity, model, and category. Each product category
has associated a tax rate, each product model has a
list price. Book editions, i.e. objects at level model
that belong to product category book, additionally
have an author. Our company keeps track of phys-
ical entities of products (e.g. copies of book Harry-
Potter4), which are identified by their serial num-
ber. In addition to books, our company starts to sell
cars, i.e. it introduces car as a new product cate-
gory. Cars differ from books in that they are de-
scribed at an additional level, namely brand, and in
that they have additional attributes: maxSpeed at
level product model and mileage at level physical en-
tity. As our sample-online-store specializes on selling
cars of brand Porsche 911, it wants to be able to reg-
ister physical entities of this car brand at the Porsche
911 club. Our company further keeps track of com-
panies that produce these products. Companies are
likewise described at multiple levels: industrial sec-
tor, enterprise, and factory. Producers of cars belong
to a specific industrial sector, namely car manufac-
turer. To track quality problems, our company also
associates with each physical entity of category car
the factory at which it was produced. Thereby, this
factory must belong to the enterprise, which produces
the car model.

To model domains, such as described in Example
1, multi-level modeling approaches may be bench-
marked against how they support the following re-
quirements:

o Multiple levels of abstraction: It should be pos-
sible to describe objects at different levels of ab-
straction. For example, products are described
at levels category, model, and physical entity.

o FEuxtensibility: Multi-level modeling should of-
fer extensibility to model non-uniform sub-
hierarchies, i.e. to add levels, attributes or re-
lationships. For example, cars are described by
an additional level, namely brand, and have ad-
ditional attributes, like maxSpeed.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

o Awvoid fragmentation and redundancy: Every in-
formation concerning one domain object should
be described local to that object to avoid frag-
mentation and redundancy. E.g., when introduc-
ing product category car, its information should
be described in one object, which avoids dis-
tributing information along various objects and
redundant modeling of relationships (cf. Figure

1).

e Relationships: The modeling approach should
support relationships between objects and their
specialization at different levels of abstraction.
For example, it should be possible to associate
products with companies and to further special-
ize this relationship by specifying that cars can
only be produced by car manufacturers.

e Queries: To work with multi-level models, sup-
port for queries and navigation between levels is
required. Queries can refer to different levels and
objects, e.g. to retrieve all car models (i.e. all ob-
jects at level product model belonging to product
category car). To determine e.g. the taxRate ap-
plying to myPorsche911CarreraS, navigation be-
tween levels of abstraction is necessary.

3 Multi-Level Objects

Based on multi-level modeling requirements presented
in Section 2, we introduce, exemplify and formally de-
fine m-objects and their concretization in this section.
We first describe m-objects and how one m-object
can concretize another m-object. We then look at
the roles which a m-object plays in such a concretiza-
tion. Building on a formal definition of m-objects
we specify rules for consistent concretization of m-
objects and for consistent concretization hierarchies.
Note that the basic concepts of m-object hierarchies
could alternatively be described by providing a map-
ping to UML and OCL, or to the Higher-order Entity-
Relationship Model (HERM) (Thalheim 2000). Our
concise definitions are independent of a specific con-
ceptual modeling language and well suited for defin-
ing consistency rules and operators for working with
m-objects (cf. Section 5).

A m-object encapsulates and arranges abstraction
levels in a linear order from the most abstract to the
most concrete one. Thereby, it describes itself and the
common properties of the objects at each level of the
concretization hierarchy beneath itself. A m-object
that concretizes another m-object, the parent, inher-
its all levels except for the top-level of the parent. It
may also specialize the inherited levels or even intro-
duce new levels. A m-object specifies concrete values
for the properties of the top-level. This top-level has a
special role in that it describes the m-object itself. All
other levels describe common properties of m-objects
beneath itself.

Definition 1 (M-Object). A m-object o =
(Loy Aoy Poyloy do, vo) consists of a set of levels L,
taken from a universe of levels L and a set of at-
tributes A,, taken from a universe of attributes A.
The levels L, are organized in a linear order, as de-
fined by partial function parent p, : L, — L,, which
associates with each level its parent level. FEach at-
tribute is associated with one level, defined by function
lo: Ay, — Ly, and has a domain, defined by function
d, : A, — D (where D is a universe of data types).
Optionally, an attribute has a value from its domain,
defined by partial function v, : A, — V, where V is
a universe of data values, and v,(a) € d,(a) iff vo(a)
is defined.

We alternatively represent the order of levels by
parent relation P, C (L, x L,), where (I',1) € P, iff
po(l") = I; and denote its transitive closure by P;F and
its transitive and reflexive closure by P;. We denote

the top-level by I, and the set of attributes associated

with the top-level by A, . Further, we say that a m-
object is at level [if [is its top-level. We denote by O
the set of m-objects. M-objects, levels, and attributes
have names, defined by function n: OULUA — N,
where NN is the universe of names. Levels of the same
m-object must have distinct names. The names of
attributes that are associated with the same level of
a m-object must be unique as well.

Example 2. Consider m-object Product of Figure 2,
which consists of four levels with one attribute each.
Level category is the parent level of level model. At-
tribute taxRate is associated with level category, has
domain Integer and does not define a value. The m-
object is at level catalog as this level is its top-level.
The top-level defines attribute desc of domain String
and specifies value ‘Our Products’ for this attribute.

A m-object can concretize another m-object,
which is referred to as its parent. A concretize-
relationship comprises classification-, generalization-
and aggregation-relationships between the levels of a
m-object and the levels of its parent, as follows:

e Classification - Instantiation: Each m-object
can be regarded as an instance of its parent m-
object. In particular, the top-level of a m-object
is an instance of the second top-level of its parent
m-object. A m-object must adopt all levels from
its parent except for the parents top-level and it
can specify values for its attributes.

e (Generalization - Specialization: The level de-
scriptions of a m-object correspond to subclasses
of the corresponding levels of its parent. The m-
object can define new levels or add attributes to
levels. Thereby, a m-object must not change the
relative order of levels it inherits from its parent.

e Aggregation - Decomposition: The concretization
path between m-objects of different levels ex-
presses an aggregation hierarchy at the instance
level. At the schema level the aggregation hierar-
chy is given by the order of levels of a m-object.

Example 3 (concretization). M-object Car con-
cretizes m-object Product in Figure 2. The con-
cretization relationship expresses classification: m-
object Car is instance of level category of m-object
Product because level category, which is the first non-
top-level of m-object Product, is its top-level. It also
specifies a value for its attribute taxRate. M-object
Car specializes m-object Product by introducing a
new level brand and adding attribute maxSpeed to
level model and attribute mileage to level physical
entity. The level model of m-object Car can be re-
garded as a subclass of level model of m-object Prod-
uct. Cars are further categorized into brands, models
and physical entities. These levels define the aggre-
gation hierarchy.

When organizing m-objects in a hierarchy, the
name of each m-object, given by function n : O — N,
must be unique within the direct descendants of its
parent. M-objects organized in a concretization hi-
erarchy inherit properties and functions from their
parent m-objects and, thus, may only be partially de-
fined. A child m-object o' inherits from its parent
m-object o all properties, i.e. levels, attributes (and
relationships, cf. Section 4), and function definitions

109

CRPIT Volume 96 - Conceptual Modelling 2009

Product

-desc:String ='Our Productﬂ
:category
-taxRate : Integer

:catalog

— :model

-listprice : Float T
:physical entity

-serialNr : String —‘

Book i Car

e cat -
\\ -taxRate = 15 category |

: |
-author : String mode —‘

’7 :physical enli!y—‘

——HarryPotter4
S model"
-listprice = 11.50
-author = 'J.K.Rowling'

’7 :physical entity—‘

-taxRate = 20
:brand
-marketLaunch : Date T

Product
Catalog

Product

:category Category

:model
-maxSpeed : Integer —‘

- :physical entity
-mileage : Integer —‘

_______________________ Ao

—— Porsche911
—
|_-marketLaunch = 1964)

I :model]

:brand —

-porsche911club : Booleanj

:physical entity

—— Porsche91 1CarreraSL

~——————————:model
-listprice = 91.838
-maxSpeed = 293 km/h

Porsche911GT3

:model
-listprice = 108.083
-maxSpeed = 310 km/h

Product
Model

’7 :physical entity—‘

’7 :physical emi(y—‘

—— myCopyOfHP4 i

:physical entity —

(-serialNr = 'A121212)

—— myPorsche911CarreraS—
:physical entity

-mileage = 100000

P
-serialNr = 'C3333333' J

Y -porsche911club = true

Product
Physical Entity

Figure 2: Concretization hierarchy of a product catalog along multiple levels (inherited attributes not shown)

beyond the parent’s top-level. The inherited prop-
erties are available in all function definitions of the
child (po, lor, dor, Vo). These functions, if only par-
tially specified at the child, are extended for unde-
fined arguments using the corresponding functions of
the parent (po, lo, do, Vo). In the following definition
of a consistent concretization, we assume that par-
tially defined m-objects have already been extended
as just described.

Definition 2 (Consistent Concretization). A m-

object o’ is a consistent concretization of another m-
object o iff

1. Each level of o, except for the top-level, is also a
level of o': (Lo \ {lo}) C Ly (level containment)

2. All attributes of o, except for the attributes of

the top-level, also exist in o, (A, \ AO) C A,
(attribute containment)

3. The relative order of common levels of o and o
is the same: 1,I' € (Ly N L,) : (I,I') € P} —
(1,I') € P (level order compatibility)

4. Common attributes are associated with the same
level, have the same domain, and the same value,
if defined: Fora € (Ay NA,):

(a) lp(a) =l (a) (stability of attribute levels)

(b) do(a) = do(a) (stability of attribute do-
mains)

(c) vo(a) is defined — v,(a) = vy (a) (compat-
ibility of attribute values)

Example 4 (consistent concretization). M-object
Car is a consistent concretization of m-object Prod-
uct in Figure 2. Except for the top-level catalog,
each level of Product also exists in Car (level contain-
ment). The same is true for all attributes, i.e. Car

110

only misses attribute desc, which is a top-level at-
tribute of Product (attribute containment). The lev-
els have the same order in both m-objects, e.g. in
each m-object level category comes before level model
(level order compatibility). Both m-objects associate
attribute taxRate with level category (stability of at-
tribute levels) and define domain Integer for this at-
tribute (stability of attribute domains). If m-object
Product defined a value for this attribute, the value
would need to be 20 to ensure compatibility of at-
tribute values.

M-objects do not only inherit levels and attributes
from their parents, but can also introduce new levels
and add attributes to levels. M-objects use names
instead of numeric potencies to identify levels, which
enables introducing additional levels without affecting
existing navigation paths.

Example 5 (extensibility). In Figure 2, m-object
Car inherits levels category, model and physical en-
tity from m-object Product. It adds level brand
to define that cars are further categorized by their
brand. Note that the additional level brand applies
only to descendant m-objects of Car and not to other
sub-hierarchies such as descendants of Book. Addi-
tionally, m-object Car extends level definitions of m-
object Product by adding attribute maxSpeed to level
model and attribute mileage to level physical entity.

By concretizing a set of m-objects, the m-objects
form concretization hierarchies. There do not only ex-
ist consistency criteria for individual concretizations,
but also for such hierarchies, which are explained in
Definition 3.

Definition 3 (Consistent Concretization Hierarchy
of M-Objects). A concretization hierarchy of a set of
m-objects O is defined by an acyclic relation H C O x
O, which forms a forest (set of trees). Let 0,0 € O,
then o' is said to be a direct concretization of o or

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

o' concretises o, if (0',0) € H, and to be an indirect
concretization of o if (o/,0) € H'. A concretization
hierarchy H of a set of m-objects O is consistent, iff

1. Each o € O is a m-object according to Definition
1.

2. For each pair of m-objects (o',0) € H, o is a
consistent concretization of o according to Defi-
nition 2.

3. Each attribute and level is introduced at only one
m-object:

(a) a € (A, NAy,) : 30 € O : (0,0) € HA
(o',0) € H ANa € A5 (unique induction rule
for attributes)

(b) le(L,NLy):36€ O :(0,0) € HA(J',0) €
H Al € Ls (unique induction rule for levels)

Example 6 (concretization hierarchy). In Figure 2,
m-object Porsche911 is a direct concretization of m-
object Car and an indirect concretization of m-object
Product. M-objects Book and Car have a common
attribute taxRate. To be consistent, these m-objects
must have a common ancestor in the concretization
hierarchy, which also defines this attribute, namely
m-object Product in the example.

Each m-object plays multiple roles with regard to
the classical semantic abstraction hierarchies: (i) A
m-object can be regarded as an aggregate object of its
children m-objects. (ii) It represents for each level of
direct or indirect descendants the class of descendant
m-objects of that level. Therefore it plays multiple
class roles in multiple generalization hierarchies. (iii)
Concerning classification hierarchies, it plays multi-
ple class and meta™ class (meta, meta-meta class, ...)
roles: For a given n, where n is less than the num-
ber of levels of descendants, a m-object plays multiple
meta™ class roles for various combinations of levels of
descendants. We discuss this in the remainder of this
section.

A m-object represents for each level of direct or in-
direct descendants the class of descendant m-objects
of that level. The notion of class refers first to the
common structure (often referred to as type of a class)
and second to the set of descendant m-objects at a
specific level (often referred to as extension or mem-
bers of a class). To refer to the set of m-objects at
level | beneath m-object o, we write o{l). For exam-
ple, car{model) refers to the set of m-objects at level
model beneath m-object Car.

Definition 4 (Class Extension). The class of m-
objects of m-object o € O at level | € L,, denoted
as o{l), is defined by

o(l) « {o' | (0/,0) € H* Ny =1}

Example 7 (Class extension). M-object Product
possesses the following classes:

Product(catalog) = {Product}

Product(category) = {Book, Car}

Product(model) = {HarryPotter4, Porsche911Carrera$S,
Porsche911GT3}

Product(physical entity) = {myCopyOfHP4,
myPorsche911CarreraS}

A m-object does not only define a class for each of
its levels, but also, implicitly, multiple meta™-classes.
In this paper we limit the discussion on meta™-classes
on their extensional role, i.e. a meta-class considered
as a set of classes, and do not deal with the structural
role of meta-classes (meta-types).

Definition 5 (Meta-Classes and their Extensions).

1. For each m-object o and each pair of levels
(lo,11) € Pt meta-class o{ly(ly)) is defined as
the set of classes containing for each m-object o
that is a descendant of o at level 1y class o' (lp),

i.e.
olla(lo)) = {0'(lo) | o € olln)}.

2. For o € O and ly € L, meta-class o{{lp)) is the
set of all classes containing m-objects at level [
and that are descendants of o, i.e.,

o{ (o)) = {'(lo) | (¢/,0) € H*}

Example 8 (meta-classes and their extension). The
following meta-classes are based on m-object Prod-
uct, as given by Figure 2 (Singleton-meta-classes like
Product{catalog(category)) are omitted):

Product(category(model)) = {Car(model), Book(model)}

Product(category(physical entity)) = {Car(physical entity),
Book(physical entity)}

Product(model({physical entity)) = {HarryPotter4(physical
entity), Porsche911CarreraS(physical entity),
Porsche911GT3(physical entity) }

Product({model)) = {Product(model), Car(model),
Book(model), Porsche911(model)}

Product(({physical entity)) = {Product(physical entity),
Car(physical entity), Book(physical entity),
HarryPotter4(physical entity), Porsche911(physical
entity), Porsche911CarreraS(physical entity),
Porsche911GT3(physical entity) }

Definition 6 (Meta"-Classes and their Extensions).

1. For each m-object o and (n+1)-tuple of

levels (lo,l1,...,1,), where n>1 and for
i=l.n : (l—1,l;) € P, meta"-class
olly(ln—1...{lo)...)) is defined as the fol-

lowing set of meta™ -classes:

{/(" ey Plp)...) | o €0(ly)}.

2. For each m-object o and each levelly € L, meta™-
class (n > 1) is the following set of meta™ !-
classes
{0/(" Uy ... (Cl)...) | (0,0) € H* N (Vi €
1.n-1: (liflyli) S P:,_)}

Example 9 (meta”-classes and their extensions).
The following meta2-classes are based on m-object
Product, as given by Figure 2 (Singleton-meta™-
classes like Product{catalog(category(model))) are
omitted):

Product{category(model(physical entity))) =
{Car(model(physical entity)), Book(model(physical
entity))}

Product({(physical entity))) = {Product(category(physical
entity)), Product(model(physical entity)),
Car(brand(physical entity)), Car(model(physical entity)),
Book(model({physical entity))}

4 Multi-Level Relationships

In this section we introduce, exemplify and formally
define multi-level relationships (m-relationships) as a
high-level modeling primitive for modeling relation-
ships at multiple levels of abstraction. We exem-
plify that, when using traditional modeling and con-
straint languages (e.g. UML with OCL), dependen-
cies between different abstraction levels of a relation-
ship have to be modeled explicitly and specifically for
each such relationship. We therefore advocate the
use of m-relationships as a generic alternative. We
show how m-relationships connect m-objects at mul-
tiple levels, how they can be concretized, and we look

111

CRPIT Volume 96 - Conceptual Modelling 2009

ProductCategory

producedBy

1 1
context ProductModel inv:
self.enterprise.industrialSector->forall(x |
self.productCategory.industrialSector->exists(y | x = y))

producedBy

Prod d

1 context ProductPhysicalEntity inv: 1
self.factory.enterprise->forall(x |
self.productModel.enterprise->exists(y | x = y))

e | ducedB
ProductPhysicalEntity producedby

IndustrialSector
Pr tM | Enterprise [:>

Factory

Produc Compan

catalog & root————>
- ——industrial sector—
- —enterprise —
C—physical entity—- [- - - - -- > - - - - -T——factory———

Figure 3: Basic Idea of Multi-Level Relationships (simplified), Left: UML and OCL, Right: M-Relationships

at the roles which they can play in concretizations.
Finally, we define rules for consistent concretization
of m-relationships. For simplicity, we consider only
binary relationships in this paper and do not consider
cardinality constraints.

So far we have shown how to reduce accidental
complexity by describing domain-objects at multiple
levels of abstraction through m-objects. Similarly, re-
lationships occur at multiple levels of abstraction. We
exemplify this below.

Example 10 (Sample Problem continued). Consider
our sample product catalog (Example 1). It describes
products at three levels of abstraction (physical en-
tity, model and category) and it describes the com-
panies in which products are produced at three lev-
els as well (factory, enterprise, and industrial sector).
Relationship producedBy between levels physical en-
tity and factory can be abstracted to product model
and enterprise and further to product category and
industrial sector. The following dependencies exist
between these abstraction levels of relationship pro-
ducedBy: (1) A physical entity can only be produced
at a factory that belongs to an enterprise that pro-
duces the corresponding product model. (2) A prod-
uct model can only be produced at an enterprise that
belongs to an industrial sector that produces the cor-
responding product category. Specifically, product
category Car is produced by industrial sector Car-
Manufacturer, each model of car brand Porsche911
is produced by Porsche Ltd and physical entity my-
Porsche911CarreraS is produced by factory Porsche
Zuffenhausen.

Using standard UML (without OCL) one could
specialize an association (e.g. producedBy between
PhysicalEntity and Factory) for each specialization of
the associated classes (e.g. Porsche911PhysicalEntity
and PorscheFactory). But it is not possible to ex-
press implicitly through UML modeling primitives
alone the above identified dependencies between the
different abstraction levels of a relationship (e.g. that
a physical entity can only be produced by a factory
that belongs to an enterprise that produces the cor-
respondent product model).

Dependencies between abstraction levels of a re-
lationship could be expressed explicitly using a con-
straint language like OCL. Thereby the relationship
has to be split into multiple associations (each repre-
sentig one abstraction level). Then, the dependencies
can be modeled by explicit and relationship-specific
constraints that are imposed from a higher to a lower
level of abstraction of the producedBy relationship
(cf. left part of Figure 3). In HERM (Thalheim 2000)
dependencies between relationships are defined more
concisely by path inclusion constraints, but still have
to be defined explicitly and relationship-specific.

The basic idea of m-relationships is to provide a

112

high-level modeling primitive that (1) encapsulates
different abstraction levels of a relationship (cf. right
part of Figure 3), (2) implies extensional constraints
between different abstraction levels of a relationship
(as exemplified above), (3) supports heterogenous hi-
erarchies (e.g. additional level brand at category
Car), and (4) can be exploited for navigating and
querying. This leads to application models that are
easier to define, understand, and maintain.

The use of a high-level modeling primitive for m-
relationships is favorable over modeling multiple as-
sociations with associated explicit constraints; such
as modeling a composition in UML is favorable
over modeling a simple association and defining its
composition-semantics using OCL. This approach is
in line with the aim of semanic data models to ”pro-
vide high-level modeling primitives to capture the se-
mantics of an application environment” (Hammer &
McLeod 1981).

M-relationships are analogous to m-objects in that
they describe relationships between m-objects at mul-
tiple levels of abstraction. M-relationships are bi-
directional. To facilitate referencing objects involved
in binary relationships, we take, however, a (poten-
tially) arbitrary directional perspective by consider-
ing one object in the source role and the other ob-
ject in the target role of the relationship. Each m-
relationship links a source m-object with a target m-
object. Additionally, it connects one or more pairs of
levels of the source and the target. These connections
between source- and target-levels constitute the ab-
straction levels of a m-relationship. They define that
m-objects at source-level are related with m-objects
at target-level. (Remember that a m-object is at a
certain level if this level is its top level.) We note
that the generic roles source and target, which we in-
troduced here for simplicity, may be easily replaced
by relationship-specific role names.

Definition 7 (M-Relationship). Let O denote a uni-
verse of m-objects. A m-relationship r = (s, t.,C;)
consists of two m-objects, s, € O and t, € O, linked
by m-relationship r. M-relationship r connects lev-
els of source m-object s,, Ls, C L, to levels of target
m-object t,, Ly C L, as specified by C\. C (Lg, X Ly,).

We denote by R the set of m-relationships. Each
m-relationship r € R has a name defined by function
n : R — N where the name must be unique only
between the m-objects it links.

Example 11 (m-relationship). To model that car
models have a designer, Figure 4 introduces a re-
lationship designedBy between source m-object Car
and target m-object Person. More precisely, it links
source-level model of m-object Car to target-level in-
dividual of m-object Person. While relationship de-
signedBy only links one source-level with one target-
level, relationship producedBy between Product and

Person:

root_———— >

C———individual—/——+ -

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

—designedBy >—]

—Product———
catalog

[category——— [~~~
P
| — oo [=Y [p— S

——physical entity— -

~Car———m———mM8M8M8m8 ™
category———

C———prand——— [- P

-+ model ——+-|

—Company:

[¢ root—————
- - ——industrial sector—
-1{-t————enterprise———
[S— 1 (o Y A—

e

—CarManufacturer-

|- <——industrial sector—
-1-———enterprise———
- :factory:l

A

Mr.Black:

——physical entity——

—Porsche911
————brand——
—— model —— - ->L
[——physical entity——+ -

—Porsche911CarreraS—

A

Porsche Ltd
—— enterprise
- factory————

A

F:individual::

model

——physical entity——

myPorsche911Carrera$
———physical entity—— |- -

Porsche Zuffenhausen—]

< producedBy >— factory:

Figure 4: Product catalog modeled with m-objects and m-relationships

Company specifies multiple source- and target-levels.
The relationship expresses that product categories are
produced by industrial sectors, product models by en-
terprises and physical entities by factories.

Multiple pairs of source-target-levels express that
the relationship exists at multiple levels of abstrac-
tion. To be consistent, a m-relationship must only
specify source levels and target levels that exist in
the source object and target object, respectively. Ad-
ditionally, the relative order between source- and
target-levels must be the same. Informally, this
means that connections between source- and target-
levels must not cross, a property which we call multi-
level coherence.

Definition 8 (Multi-Level Coherence). A m-
relationship r is multi-level coherent iff for (Is,1;) €
Cr, (I3,11) € Cp — (((Is, 1) € PE NI, 1}) € PE)V

(1%, 15) € Py N(13, 1) € PY)).

Example 12 (multi-level coherence). Looking at m-
relationship producedBy between Car and CarManu-
facturer of Figure 4, multi-level coherence is fulfilled
because the relative order of pairs of source-target-
levels (category to industrial sector, model to enter-
prise, physical entity to factory) complies with the
relative order of target-levels (industrial sector, en-
terprise, factory) at target m-object Company.

Like m-objects, m-relationships can be con-
cretized. Concretizing a m-relationship means to sub-
stitute its source or its target for a direct or indirect
concretization. The concretizes-relationship between
two m-relationships expresses instantiation and/or
specialization.

Example 13 (concretization). Consider m-
relationship designedBy between m-objects Car and
Person in Figure 4. M-relationship designedBy be-
tween m-objects Porsche911CarreraS and Mr.Black
concretizes this m-relationship. In this case, the
concretization solely represents an instantiation,
i.e. no further concretization is possible. Now look
at m-relationship producedBy between m-objects
Product and Company. M-relationship producedBy
between Car and CarManufacturer concretizes this
m-relationship, expressing that cars can only be
produced by car manufacturers. This concretization
further defines that each car model must be produced
by enterprises that belong to the car manufacturer
sector. Similarly, each physical entity of cars must
be produced by a factory of the car manufacturer
sector.

Dependent on the levels which a m-relationship
connects, it can play various roles:

e Relationship class: A relationship that links a
non-top-level of the source m-object with a non-
top-level of the target m-object can be regarded
as a relationship class. It defines that m-objects
at the source-level may or must — depending on
whether the relationship is optional or manda-
tory, a distinction which we do not discuss in
this paper — have a relationship with m-objects
at the target-level, which are concretizations of
the target m-object. A m-relationship that links
n pairs of non-top-levels, with n > 2, can further
be seen as a meta” ! relationship class because
these links constrain how this relationship has to
be further concretized.

Relationship occurrence: A m-relationship that
links the top-level of the source m-object with
the top-level of the target m-object can be seen
as relationship occurrence.

Shared relationship: A m-relationship that links
a non-top-level with a top-level is shared with
lower levels, i.e. it is applicable to m-objects
at this non-top-level. It cannot be further con-
cretized by m-objects that still possess that non-
top-level, but only by more concrete m-objects
beneath.

Example 14 (roles of m-relationships). In Fig-
ure 4, the relationship designedBy between source
car model and target person individual can be re-
garded as a relationship class, defining that each
car model may or must (see above) have a rela-
tionship with an individual person. In our exam-
ple, there is such a relationship between the car
model Porsche911CarreraS and the individual person
Mr.Black. This relationship represents a relationship
occurrence. Similarly, relationship producedBy be-
tween Product and Company connects source-level
model of m-object Product with target-level enter-
prise of m-object Company, which is a relationship
class. There is no explicit relationship occurrence
between m-object Porsche911CarreraS and m-object
Porsche Ltd. But there is a shared relationship be-
tween m-objects Porsche911 and Porsche Ltd at the
respective levels. This relationship defines that each
Porsche911 model, i.e. including Porsche911CarrerasS,
is produced by Porsche Ltd. It also takes the role of a
relationship class, constraining the producers of phys-
ical entities of Porsche911 to factories of Porsche Ltd.

113

CRPIT Volume 96 - Conceptual Modelling 2009

The relationship cannot be further concretized by m-
object Porsche911CarreraS, which still possesses the
(former) non-top-level model, but only at m-object
myPorsche911CarreraS.

M-relationships can be concretized like m-objects.
This is achieved by concretizing source and target
objects. For a consistent concretization of a m-
relationship to a more concrete m-relationship, both
relationships must connect the same levels with re-
gard to their common levels.

Definition 9 (Consistent Concretization of M-Rela-
tionships). A m-relationship ' is a consistent con-
cretization of m-relationship r iff

1. ' concretizes the source object or the target ob-
ject of r, or concretizes both objects related by
r: ((sp,8:) € HY A (tpr,t,) € H)V ((847, 8r) €
H* A (tyr,t,) € HT) (source and/or target con-
cretization)

2. v and r’ connect the same source-target levels for
the levels shared between its source and target
objects: Iy € (Ls, N Ls,),ly € (Ly, N Ly,) —
(s, 1) € Cr < (I5,1;) € C,) (stability of source-
target levels)

Example 15 (consistent concretization). M-
relationship producedBy between Car and Car-
Manufacturer is a consistent concretization of
m-relationship producedBy between Product and
Company in Figure 4. Its source Car concretizes
Product and its target CarManufacturer concretizes
Company (target and/or source concretization).
Both relationships have the same pairs of source-
target-levels (category to industrial sector, model to
enterprise, physical entity to factory) and thus fulfill
stability of source-target levels.

Like m-objects, m-relationships are organized in
a concretization hierarchy, defined by an acyclic re-
lation Hgr C R x R, which forms a forest (set of
trees). A concretization hierarchy Hp of a set of
m-relationships R is consistent, iff for each pair of
m-relationships (r',r) € Hg, r’ is a consistent con-
cretization of r.

5 Working with M-Objects

In this section, we show how to create and query m-
objects and m-relationships, which can be achieved
by extending existing data manipulation and query
languages. As sample language, we briefly sketch
multi-level SQL (M-SQL), which is a homogenous,
light-weight extension to SQL-3, by examples. A full
presentation of the language is beyond the scope of
the paper. We first demonstrate how to create m-
objects and m-relationships and then define upward
navigability, and navigation along m-relationships as
basis for querying m-objects and m-relationships.

To create multi-level models, M-SQL introduces
an operator to create resp. concretize m-objects and
m-relationships. Figure 5 exemplifies how to create
m-object Product and its concretization Car using M-
SQL. It also shows how to create the m-relationship
producedBy between Product and Company, and its
concretization to relationship producedBy between
Car and CarManufacturer.

Upward navigation allows direct and stable ac-
cess from a m-object o to its ancestor m-object at
a specific level [, denoted by o[l]. For example, to
navigate from m-object myPorsche911CarreraS to its
ancestor at level category, i.e. Car, we write my-
Porsche911CarreraS[category].

114

CREATE M-0BJECT Product
(catalog (desc STRING),
category (taxRate INTEGER),
model (listPrice FLOAT),
physicalEntity (serialNr STRING)),
SET desc = "QOur Products";

CREATE M-RELATIONSHIP producedBy

BETWEEN Product AND Company

CONNECTING (category TO industrialSector,
model TO enterprise,
physicalEntity TO factory);

CREATE M-OBJECT Car UNDER Product
ADD LEVEL brand UNDER LEVEL category
(marketLaunch DATE),
ALTER LEVEL model ADD (maxSpeed INTEGER),
ALTER LEVEL physicalEntity ADD
(mileage INTEGER),
SET category.taxRate = 20;

CREATE M-RELATIONSHIP producedBy BETWEEN
Car AND CarManufacturer UNDER
producedBy BETWEEN Product AND Company;

Figure 5: Creating m-objects Product and Car and
m-relationships producedBy as shown in Figures 2
and 4

Definition 10 (Upward Navigation). The ancestor
m-object of m-object o € O at level l € L,, denoted as
o[l], 1s defined by

o[l] ey (0,0') € H* Ay =1.

Navigation along multi-level relationships is simi-
lar to dereferencing references in SQL-3. But, navi-
gation in the context of concretization hierarchies of
m-relationships is multi-faceted and expresses that all
concretizations of a given m-relationship are to be tra-
versed that lead to a m-object at some specified level.

Definition 11 (Navigation along m-relationships).
The set of target m-objects (source m-objects) at level
I reached by traversing a concretization of relationship
r from source m-object (from target m-object, resp.)
o, denoted as o->r(l) (o<-r(l), resp.), is defined by

o=>r(l) o {0 €0 | eR:(r,r)e HyANsp =
oMty =0 Aly =1}

(o<-r(l) € {o' € O | I € R: (v',r) € Hy Aty =
oA Sy =0 Ny =1}).

Class extension, upward navigation and naviga-
tion along m-relationships serve as basis for extending
SQL-3’s select-statement to support querying multi-
level models. Identifiers of classes of m-objects of
the form o(l) can be used where SQL-3 allows table
names, primarily in the FROM-part of select state-
ments. Upward navigation of the form o[l] is al-
lowed where SQL-3 allows dereferencing references,
primarily in the select- and where-part of select state-
ments. Navigation along m-relationships is allowed
where dereferencing of references is expected.

SELECT c.maxSpeed, c.listPrice *
(1 + c[category].taxRate)) AS grossPrice
FROM Car<model> c
WHERE c->Car-producedBy-CarManufacturer<enterprise>
= Porscheltd;

Figure 6: M-SQL query retrieving information about
car models

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Example 16 (M-SQL query). Figure 6 demonstrates
how to query all car models (class Car(model)) that
are produced by car manufacturer PorscheLtd (nav-
igation along concretisations of m-relationship pro-
ducedBy between Car and CarManufacturer, iden-
tified by Car-producedBy-CarManufacturer, to m-
objects at level enterprise), retrieving their maxSpeed
and their grossPrice (using upward navigation).

Variables can be used in place of object names in
class or meta”-class identifiers to refer to classes or
meta™-classes in queries. Such identifiers can be used
wherever table names are expected in SQL-3.

1)SELECT m.name, c.taxRate, m.listPrice
FROM Product<category> c, c<model> m
WHERE c.taxRate > 15 AND m<physicalEntity>.COUNT > 10

2)SELECT mp.name, mp.COUNT
FROM Product<model<physical entity>> mp

Figure 7: Querying members of members and meta-
classes

Example 17 (Querying members of members).
Query 1 in Figure 7 retrieves the name, the tax rate
and the list price of each product model that belongs
to a product category with a taxRate higher than 15
and which have more than 10 members at level physi-
cal entity. Query 2 retrieves for m-object Product the
size of each class of physical entities at level model,
i.e. in our running example: (HarryPotter4(physical
entity),1), (Porsche911CarreraS(physical entity),1),
(Porsche911GT3(physical entity),0).

6 Related Work

Several approaches have been presented in recent
years to model domain objects at multiple levels of
abstraction. The prevailing techniques are materi-
alization (Goldstein & Storey 1994, Pirotte et al.
1994, Dahchour et al. 2002), powertypes (Odell 1998,
Henderson-Sellers & Gonzalez-Perez 2005, Gonzalez-
Perez & Henderson-Sellers 2006), and potency-based
deep instantiation (Atkinson & Kithne 2001, Kiihne
& Schreiber 2007). Note that each approach has been
developed with a different focus in mind and that
therefore the approaches complement one another. In
this section, we compare these approaches with re-
gard to the requirements presented in Section 2. For
a detailed comparison of these different approaches
see (Neumayr & Schrefl 2008). We conclude with an
overview of further related work. For a comprehensive
introduction to meta-modeling and multi-level mod-
eling we refer to (Olivé 2007).

To the best of our knowledge, modeling of relation-
ships at multiple levels of abstractions, as presented
in this paper, has not been studied so far. To some
extent, type parameters provided by some object-
oriented languages can be used as a work-around (for
an overview see (Bruce 2002)). In the absence of a
modeling primitive for m-relationships in traditional
conceptual modeling, multiple associations and ex-
plicit constraints between these associations have to
be used to represent relationships at multiple levels
of abstraction. In UML, these dependencies can be
defined using the object constraint language (OCL)
(cf. Figure 3). Similarly, in the Higher-order Entity-
Relationship Model (HERM) (Thalheim 2000), these
dependencies can be defined using path inclusion con-
straints.

Materialization (Goldstein & Storey 1994, Pirotte
et al. 1994, Dahchour et al. 2002) is a generic relation-
ship type, which can be regarded as a special kind of

aggregation (aggregation in its broader sense as used
in this paper). Each materialization relationship con-
nects two object classes, a more abstract with a more
concrete one. In this respect, this approach supports
multiple levels of abstraction. To add attributes to
non-uniform objects (e.g. book vs. car), it provides
a very flexible and powerful attribute propagation
mechanism. Propagation of attribute definitions over
more than one materialization level could be accom-
plished by composing attribute propagation types T1
and T3 (as sketched in (Neumayr & Schrefl 2008)),
however this might harm readability of models. Ma-
terialization is not suited for adding additional levels
to certain sub-hierarchies and it does not offer special
support for relationships and querying.

Powertypes were introduced by Odell (Odell 1998)
and are further investigated by Henderson-Sellers and
Gonzalez-Perez (Henderson-Sellers & Gonzalez-Perez
2005, Gonzalez-Perez & Henderson-Sellers 2006), es-
pecially as a basis for software engineering methodol-
ogy. The powertype approach also offers support for
ontological multi-level modeling as discussed in this
paper. A powertype describes common properties of
direct subclasses of the class it is associated with. A
cascaded setup of multiple powertypes can be used to
describe more than one level beneath some class, i.e.
common properties of indirect subclasses on a specific
level of the generalization hierarchy. By specializing
powertypes, this approach supports extensibility but
does not completely avoid fragmentation and redun-
dancy.

Ontological metamodeling with potency-based deep
instantiation was introduced by Atkinson and Kiihne
(Atkinson & Kiihne 2001). They also introduced the
distinction between ontological and linguistic meta-
modeling (Atkinson & Kiithne 2003). Later, Kiihne
extended this approach to programming with multi-
level models (Kiihne & Schreiber 2007). Deep instan-
tiation supports unbound classification levels. Con-
sidering the examples given by Kiihne in (Kiihne
& Schreiber 2007), they would model our sample
problem by combining deep instantiation and sub-
classing. Deep instantiation enables to define at-
tributes of objects not only in their class, but also
in a meta”-class. With regard to extensibility, it
supports adding attributes, levels and relationships.
However, new classification levels apply to all sub-
hierarchies, which complicates modeling non-uniform
sub-hierarchies. Concerning fragmentation, deep in-
stantiation cannot avoid multiple unconnected model
elements on different classification levels. While this
approach supports relationships and their specializa-
tion, it does not consider multi-level relationships.
As a work-around, similar results could be achieved
by using type parameters as shown in (Kiihne &
Schreiber 2007).

In the field of database design and conceptual
modeling, starting from the classical work on se-
mantic data models (for an overview see (Schrefl
et al. 1984, Hull & King 1987, Peckham & Maryan-
ski 1988)), a lot of research has been centered around
classification, generalization and aggregation. Con-
cerning multiple classification levels, Klas and Schrefl
provided an approach to deep instantiation for multi-
level object-oriented databases (Klas & Schrefl 1995).
Telos (Mylopoulos et al. 1990) and its successor Con-
ceptBase (Jarke et al. 1995) allowed unbound classifi-
cation levels. Troyer and Janssen embed schemas into
Schema Object Types and discuss its implication on
subtyping (Troyer & Janssen 1993).

115

CRPIT Volume 96 - Conceptual Modelling 2009

7 Conclusion

Applications of m-objects and m-relationships are
manifold. As information systems grow in size or pre-
viously independent systems are integrated across re-
lated domains, the need to handle levels of similar, yet
non-uniform objects arises. This need arises not only
for conceptual models as such, but also and especially
for data warehouses. Data warehouses that aggregate
data from multiple organisations or enterprises with
heterogenous information systems have to deal with
heterogenous dimension hierarchies. M-object hierar-
chies can be used to cope with these heterogenities.
Take for example a sales cube, modeled using the Di-
mensional Fact Model (Golfarelli et al. 1998), with
three dimensions, product, location and date, where
the product dimension consists of two levels, namely
model and category. Using the basic Dimensional
Fact Model, it is not possible to define that some
product categories have additional levels, like in our
sample problem (see Example 1), products of cate-
gory car have an additional level, namely brand. In
order to support modeling of such heterogenous di-
mension hierarchies in an extended Dimensional Fact
Model one can simply replace the dimension product
by m-object product and reuse its heterogenous level
structure.

Apart from domain and data warehouse modeling,
m-objects and m-relationships can serve as a basis for
corresponding extensions of object-oriented program-
ming languages, object-oriented and object-relational
databases as well as for customizing information sys-
tems.

M-objects and m-relationships constitute a novel
approach to multi-level domain modeling, which sup-
ports modeling objects and relationships at multi-
ple levels of abstraction. The concretization hi-
erarchy of m-objects combines aspects of the dif-
ferent abstraction hierarchies classification, gener-
alization and aggregation, which avoids fragmenta-
tion and redundancy in modeling. Extending m-
objects along the concretization hierarchy enables to
model non-uniform objects as well as non-uniform
sub-hierarchies. M-relationships link m-objects at
multiple levels of abstraction and can be specialized
along the concretization hierarchy. Working with m-
objects and m-relationships is supported by M-SQL,
which extends SQL-3 to create and query multi-level
models.

References

Atkinson, C. & Kiihne, T. (2001), The essence of mul-
tilevel metamodeling, in M. Gogolla & C. Kobryn,
eds, ‘Proceedings of the 4" International Confer-
ence on the UML 2000, Toronto, Canada’, LNCS
2185, Springer Verlag, pp. 19-33.

Atkinson, C. & Kiihne, T. (2003), ‘Model-driven de-
velopment: A metamodeling foundation.’, IFEFE
Software 20(5), 36-41.

Bruce, K. B. (2002), Foundations of Object-Oriented
Languages: Types and Semantics, The MIT Press,
Cambridge, Massachusetts.

Dahchour, M., Pirotte, A. & Ziméanyi, E. (2002), ‘Ma-
terialization and its metaclass implementation.’,
IEEE Trans. Knowl. Data Eng. 14(5), 1078-1094.
0605.

Goldstein, R. C. & Storey, V. C. (1994), ‘Material-
ization’, IEEE Trans. Knowl. Data Eng. 6(5), 835—
842.

116

Golfarelli, M., Maio, D. & Rizzi, S. (1998), ‘The
dimensional fact model: A conceptual model for

data warehouses’, Int. J. Cooperative Inf. Syst. 7(2-
3), 215-247.

Gonzalez-Perez, C. & Henderson-Sellers, B. (2006),
‘A powertype-based metamodelling framework’,
Software and System Modeling 5(1), 72-90.

Hammer, M. & McLeod, D. (1981), ‘Database de-
scription with sdm: a semantic database model’,
ACM Trans. Database Syst. 6(3), 351-386. 0605.

Henderson-Sellers & Gonzalez-Perez (2005), ‘Con-
necting powertypes and stereotypes’, Journal of
Object Technology 4, 83-96.

Hull, R. & King, R. (1987), ‘Semantic database mod-
eling: survey, applications, and research issues’,
ACM Comput. Surv. 19(3), 201-260.

Jarke, M., Gallersdorfer, R., Jeusfeld, M. A. &
Staudt, M. (1995), ‘Conceptbase - a deductive ob-
ject base for meta data management.’, J. Intell. Inf.
Syst. 4(2), 167-192.

Klas, W. & Schrefl, M. (1995), Metaclasses and Their
Application - Data Model Tailoring and Database
Integration, Springer.

Kiihne, T. & Schreiber, D. (2007), Can programming
be liberated from the two-level style: multi-level
programming with deepjava, in R. P. Gabriel, D. F.
Bacon, C. V. Lopes & G. L. S. Jr., eds, ‘OOPSLA’,
ACM, pp. 229-244.

Mylopoulos, J., Borgida, A., Jarke, M. & Koubarakis,
M. (1990), ‘Telos: Representing knowledge about
information systems’, ACM Trans. Inf. Syst.
8(4), 325-362.

Neumayr, B. & Schrefl, M. (2008), Comparison crite-
ria for ontological multi-level modeling, Technical
Report 08.03, Department of Business Informatics
- Data & Knowledge Engineering, Johannes Kepler
University Linz, Austria.

URL: http://www.dke.jku. at/papers/TRO803. pdf

Odell, J. J. (1998), Advanced Object-Oriented Analy-
sis & Design Using UML (also published as James
Odell: Power Types. JOOP 7(2): 8-12 (1994)),
Cambridge University Press, chapter Power Types,
pp- 23-32.

Olivé, A. (2007), Conceptual Modeling of Information
Systems, Springer.

Peckham, J. & Maryanski, F. (1988), ‘Semantic data
models’, ACM Comput. Surv. 20(3), 153-189.

Pirotte, A., Zimanyi, E., Massart, D. & Yakusheva,
T. (1994), Materialization: A powerful and ubiqui-
tous abstraction pattern., in J. B. Bocca, M. Jarke
& C. Zaniolo, eds, ‘VLDB’, Morgan Kaufmann,
pp- 630-641. 0605.

Schrefl, M., Tjoa, A. M. & Wagner, R. (1984),
Comparison-criteria for semantic data models, n
‘ICDE’, IEEE Computer Society, pp. 120-125.

Thalheim, B. (2000), Entity-Relationship Modeling:
Foundations of Database Technology, Springer.

Troyer, O. D. & Janssen, R. (1993), On modularity
for conceptual data models and the consequences
for subtyping, inheritance & overriding, in ‘ICDE’,
IEEE Computer Society, pp. 678-685.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Reverse Engineering of XML Schemas to Conceptual Diagrams

Martin Necasky

Department of Software Engineering
Charles University, Prague, Czech Republic
Email: necasky@ksi.mff.cuni.cz

Abstract

It is frequent in practice that different logical XML
schemas representing the same reality from different
viewpoints exist. There is also usually a conceptual di-
agram modeling the reality independently of the view-
points. It is important to keep the XML schemas and
conceptual diagram consistent as they are both utilized
for different purposes. In practice, this is however rarely
the case. In this paper, we propose a reverse engineering
method as a solution to this problem. We provide a semi—
automatic algorithm that produces mappings of compo-
nents of the XML schemas to components of the concep-
tual diagram. The method only provides suggestions for
the mapping and manual participation of a domain expert
is therefore required.

Keywords: xml schema, conceptual model, reverse engi-
neering.

1 Introduction

Without any doubt, XML is currently a de-facto standard
for data representation. Its popularity is given by the fact
that it is well-defined, easy-to-use and, at the same time,
enough powerful. With a growing popularity of XML,
there is also a growing need for effective methods and
tools for designing XML data. In recent research, there
has appeared several approaches that concentrate on so
called forward engineering methods. These approaches
usually apply the ER model (such as (Dobbie et al. 2000),
(Mani 2004)) or UML class model (such as (Routledge
et al. 2002) or (Bernauer et al. 2003)). They suppose de-
signing a conceptual diagram of the problem domain first.
After that, a representation in an XML schema language is
derived automatically from the conceptual diagram. Usu-
ally, the applied XML schema language is XML Schema
(Thompson et al. 2004). There exist recent surveys of
this area, e.g. (Necasky 2008, Dominguez et al. 2007,
Bernauer et al. 2004).

However, these approaches have not considered a cru-
cial fact that information systems usually do not apply
only one XML format but several (e.g. for sending pur-
chase orders, browsing product catalogs, viewing sales re-
ports, etc). These XML formats represent different views

This paper was supported by the Grant Agency of Czech Republic
(project 201/09/0990) and by the Ministry of Education of the Czech
Republic (grant MSM0021620838).

Copyright (©2009, Australian Computer Society, Inc. This paper ap-
peared at the Sixth Asia-Pacific Conference on Conceptual Modelling
(APCCM 2009), Wellington, New Zealand, January 2009. Conferences
in Research and Practice in Information Technology (CRPIT), Vol. 96,
Markus Kirchberg and Sebastian Link, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

<order-request

issue-date="20/06/2008">
<ship-addr>
<street>X</street>
<postcode>X</postcode>
<city>X</city>
</ship-addr>
<pill-addr>
<street>Y</street>
<postcode>Y</postcode>
<city>Y</city>
</bill-addr>

<distribution
product-code="P475">
<rgn name="CZ">
<purchase no="3820192"
amount="5"/>
<purchase no="3820199"
amount="2"/>
</rgn>
<rgn name="SK">
<purchase no="3820298"
amount="4"/>
</rgn>

<messenger mno="M45"/> </distribution>

<ol product-code="P475">
<price>458</price>
<quantity>3</quantity>

</order-request>

Figure 1: Purchase Request and Product Distribution
XML Documents

on the data in a system. It is natural since there are dif-
ferent groups of users who view the data (e.g. about
customers, products or purchases) from different perspec-
tives. Therefore, one concept can be represented in vari-
ous XML formats in different ways.

Example 1 demonstrates the situation. There are two
XML documents. The XML document on the left demon-
strates an XML format for purchase requests. The other
represents an XML format for product sales reports. Both
formats represent products, customers and purchases but
in different XML structures, i.e. with different XML ele-
ments and attributes.

Current approaches are not sufficient for designing
such XML formats since they automatically translate a
conceptual diagram into an XML schema. Therefore, this
leads to augmenting a conceptual diagram for the needs of
the corresponding XML format. It means enriching the di-
agram with syntactical constructs that model hierarchical
structure (since XML is hierarchical in its nature), decid-
ing whether a given part of the data should be represented
as an XML element or attribute, etc. In the result, there
is a separate conceptual diagram for each XML format.
However, a conceptual diagram should be abstracted from
the details of a concrete logical model (e.g. XML) and
from a particular user view (e.g. XML format).

In our previous work (Necasky 2007, 2008), we have
developed a conceptual model for XML that overcomes
the disadvantages of the existing approaches. We present
the model briefly later in this paper. We can anticipate the
main idea standing behind the model. It is a division of the
conceptual modeling process to two steps. In the first step,
a conceptual diagram describing a problem domain inde-
pendently of its representation in various XML formats is
designed. In the second step, required XML formats are
designed on the base of the conceptual diagram.

In this paper, we further extend our conceptual model
with so called reverse engineering capabilities. We are
motivated by a common situation in current information
systems. As we have already discussed, there are usually

117

CRPIT Volume 96 - Conceptual Modelling 2009

several XML formats each described by an XML schema.
Usually, there also exists a UML class diagram or ER
diagram, that describes the data at the conceptual level.
This conceptual diagram is usually developed at the be-
ginning of the development process but never used later.
Consequently, the XML schemas are designed separately
from the conceptual diagram and are therefore not explic-
itly mapped to the conceptual diagram. A common con-
sequence is that the XML schemas are inconsistent with
the conceptual diagram as well as with each other. This
makes not only their design but also their maintenance
harder (e.g. their evolution, change impact analysis, etc.).
Suppose for example that we need to make a change in an
XML schema, e.g. to remove an XML element declara-
tion. This change can cause additional changes in other
XML schemas as well to keep them consistent with each
other. Today, it is necessary to make these additional
changes manually which is time—consuming and error—
prone. If we had a conceptual diagram and each XML
schema was mapped to the conceptual diagram, we could
propagate the change to the conceptual diagram first and
from here to the other XML schemas automatically. This
would automate the evolution process significantly.

Reverse engineering of XML schemas, as we under-
stand it in this paper, means to map existing XML schemas
to an existing conceptual diagram. Because manual re-
verse engineering would be time—consuming and error—
prone activity, we try to find a semi—automatic method,
i.e. a method that is still performed by a domain expert
but supported by a computer.

Related Work. There exist several approaches to re-
verse engineering of XML schemas to UML class di-
agrams such as (Jensen et al. 2003)(Yang et al. 2006).
There is also a recent survey in (Yu & Steele 2005). Their
common characteristics is that they automatically translate
an XML schema to a corresponding UML class diagram.
However, the following facts, that we consider crucial for
a reverse—engineering method to be successfully applica-
ble in practice, have not been addressed yet:

1. UML class diagram modeling data at the conceptual
level usually exists. Often, it is created during initial
phases of the development process and rarely used
later during system maintenance.

2. Several XML schemas describing different XML for-
mats applied in the system exist. These formats re-
flect different perspectives of particular users. How-
ever, the XML schemas are mostly designed sepa-
rately from the UML class diagram.

If we apply existing approaches on a set of XML
schemas, we get a set of separate UML class diagrams
each being the result of an automated reverse engineer-
ing of the respective XML schema. These UML class
diagrams are not interrelated neither with each other nor
with the existing UML class diagram. Therefore, we can
not utilize the reverse engineered UML class diagrams for,
e.g. XML schema maintenance mentioned earlier.

Contribution In this paper we try to overcome the de-
scribed disadvantages of existing approaches to reverse
engineering of XML schemas. For this purpose, we apply
the Model-Driven Architecture (MDA) (Miller & Mukerji
2003) which considers two types of models. Platform—
Independent Model (PIM) enables one to model data in-
dependently of any representation in any concrete data
model. Platform—Specific Model (PSM) allows one to
model representation of data modeled by the PIM diagram
using constructs of a selected data model such as XML.

In our approach, a PIM diagram is a UML class dia-
gram that models data independently of its representation
in XML, i.e. it is a conceptual diagram of the data. A PSM
diagram is also a UML class diagram but models how the
data is represented in a particular XML format. It mod-
els an XML schema of this XML format at the conceptual
level. At this point, it is important to stress explicitly that

118

an XML schema and its PSM diagram represent a partic-
ular view on the system while the system is described in-
dependently of this view by the PIM diagram. The XML
schema represents the view at the logical level, without
any connection to the PIM diagram, while the PSM dia-
gram represents the view at the conceptual level, with an
explicit mapping to the PIM diagram.

In this paper, we consider an existing PIM diagram
and a set of XML schemas. We suppose that the XML
schemas were designed manually without any explicit re-
lationship to the PIM diagram. The XML schemas could
also be imported to the system, e.g. because of needs of
communication with other systems. This is a common sit-
uation in practice. Instead of automatic translation of each
XML schema to a separate UML class diagram, we pro-
pose a semi—automatic method that maps components of
the XML schemas to components of the PIM diagram. For
each XML schema, the method constructs a PSM diagram
that models the XML schema at the conceptual level and
describes the semantics of its components in terms of the
PIM diagram. The result is that the XML schemas are
mapped to the PIM diagram. In other words, the PIM dia-
gram integrates the XML schemas at the conceptual level.
This facilitates maintenance of the XML schemas as well
as other related tasks (e.g. their integration, data storage,
etc.). For example, if a new user requirement appears, cor-
responding changes are made in the PIM diagram and are
automatically propagated through the reverse engineered
PSM diagrams to the XML schemas. A change can also
be done in an XML schema or its PSM diagram and au-
tomatically propagated through the PIM diagram to the
other XML schemas.

Reverse engineering of XML schemas with an ex-
ploitation of an existing PIM diagram has not been stud-
ied yet to our best knowledge. This brings a new chal-
lenge of exploitation of semi-automatic schema mapping
techniques ((Shvaiko & Euzenat 2005) (Chiticariu et al.
2007)) in reverse engineering techniques.

2 XML Schema

In this section we briefly describe the XML Schema lan-
guage (Thompson et al. 2004) as it is an essential tech-
nology for this paper. It describes syntactical structure
of XML documents, i.e. what XML elements and at-
tributes can be used. XML Schema is an XML dialect, i.e.
schemas are XML documents. An example XML schema
is depicted in Figure 2. Since XML Schema provides a
lot of constructs, we consider only basic ones to keep the
complexity of the paper acceptable.

The basic construct is element declaration. It is speci-
fied by an element element and declares elements with
a given name. An element declaration has a simple or
complex type. A simple type specifies that the declared
elements contain text values. A complex type specifies
that the elements have attributes and contain child ele-
ments. E.g., there is an element declaration with a name
order-request at line 02 in Figure 2. It has assigned
a complex type OrderRequest and declares elements
order-request with attributes and child elements de-
fined by the complex type. An element declaration with
a name street has assigned a simple type string. It
declares elements st reet containing a string value.

Attribute declaration is specified by an element
attribute and is used to declare attributes. It has a
name and a simple type specifying values of the declared
attributes. E.g., there is an attribute declaration with a
name issue-date atline 13.

Each simple or complex type is described by an XML
Schema construct called type definition. It is specified
by an element simpleType or complexType, respec-
tively. A type definition has a name that identifies the type

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

01 <schema xmlns="http://www.w3.0rg/2001/XMLSchema">
02 <element name="order-request" type="OrderRequest"/>
03 <complexType name="OrderRequest">

04 <sequence>

05 <element name="ship-addr" minOccurs="0"
type="Address"/>

06 <element name="bill-addr" minOccurs="0"
type="Address" />

07 <choice>

08 <element name="messenger" type="Messenger"/>

09 <element name="van" type="Van"/>

10 </choice>

11 <element name="ol" type="OL"
maxOccurs="unbounded" />

12 </sequence>

13 <attribute name="issue-date" type="date"/>

14 </complexType>
15 <complexType name="Address">

16 <sequence>

17 <element name="street" type="string"/>
18 <element name="postcode" type="string"/>
19 <element name="city" type="string"/>

20 </sequence></complexType>
21 <complexType name="Messenger">

22 <attribute name="mno" type="string"/></complexType>

23 <complexType name="Van">

24 <attribute name="vno" type="string"/></complexType>
25 <complexType name="OL">

26 <sequence>

27 <element name="price" type="decimal"/>

28 <element name="quantity" type="integer"/>

29 </sequence>

30 <attribute name="product-code" type="string"/>
31 </complexType></schema>

Figure 2: XML Schema

in the XML schema!. In this paper we are interested only
in complex types. E.g., there is a complex type definition
OrderRequest at line 03. A complex type definition
contains so called content model which defines child el-
ements. It further contains a set of attribute declarations
that define attributes. Even though XML Schema pro-
vides several constructs for defining content models, we
consider only a construct sequence. It contains a list of
element declarations and models an ordered sequence of
child elements. It can also contain choice constructs. A
choice contains one or more element declarations and
models that only one of them can appear among child ele-
ments in a parent element.

3 Conceptual Model

In this section, we briefly introduce our MDA-based
conceptual model for XML. For its full description see
(Necasky 2008).

3.1 Platform-Independent Model

As a platform—independent model (PIM), we use UML
class diagrams. Even though UML provides more con-
structs, we consider only classes with attributes and binary
associations. As we mentioned in the introduction, a PIM
diagram describes the problem domain independently of
a representation of the domain in a concrete data model
such as relational or XML.

Example 1 Figure 3 shows a PIM diagram of a com-
pany. A class Purchase models purchases. It has attributes
purchase-no and date modeling relevant purchase charac-
teristics. An association connecting Purchase and Item
models that purchases contain items. Associations can
have labels that explicitly specify the semantics for the
reader. For example, Purchase and Address are associated
by two associations with labels ship and bill, respectively.

!There can also be anonymous definitions but we omit them in this paper

Region Messenger Van
- name - messenger-no - van-no
1 0.1 0.1
0.* 0.* 0.*
bill
Part Address Purchase Item
0.1 0.1 11
- part-no - street ship_|- purchase-no - amount
- name - postcode - unit-price
" 0.1 0.1|-date
1 - city 0.*
0.1]_. 0.1
offers o 0.1 ship 0.4/ bil 1
= 0.* *
Supplier o Supply = ProductSet o] Product
- supplier-no " |- amount _ amount " | product-code
- email - supply-date - completion-date - title
- phone - unit-price - unit-price
- description

Figure 3: PIM diagram

order-request

Purchase

- date AS issue-date

0.1 0.1 1.1
ship-addr _ bill-addr &£ messenger,

- |
Address
|5

| Address | | Messenger
- messenger-no | |- van-no AS vno |
- street AS mno
- PfiSiCOde 1.1 / - unit-price
- city AS price
Product _ amount
- product-code AS quantity

Figure 4: Purchase PSM diagram

3.2 Platform—Specific Model

As a platform—specific model (PSM), we use UML class
diagrams extended with some constructs for modeling
XML specific details. A PSM diagram models a given
XML format. There can be more PSM diagrams derived
from a PIM diagram each modeling a separate XML for-
mat. The PSM diagram describes not only the structure
of the format but also its semantics in terms of the PIM
diagram since it uses its classes and associations.

Example 2 Figure 4 depicts a PSM diagram derived from
the PIM diagram depicted in Figure 3. It models the XML
format for purchase requests demonstrated by the XML
document depicted in Figure 1 on the left.

A PSM diagram is a tree. It can be translated to a rep-
resentation in an XML schema language (see (Necasky
2008)). Basic PSM building blocks are UML classes and
directed binary UML associations.

A PSM class Cln, represents a PIM class C' and spec-
ifies how instances of C' are represented in the modeled
XML format. Cpp, has the same name as C' and zero or
more attributes of C. For an attribute Attr, an expression
Attr AS a specifies that Attr is assigned with an alias a.
We use an alias if we want an attribute to be represented
in the XML format with a name different from its origi-
nal name. C)y, further contains an ordered list of zero
or more PSM associations going from Csy,. This list is
called content of Cpep,.

A PSM association Apsy, goes from a parent class to
a child class. It represents a construction called nesting
Jjoin that describes the semantics of A, in terms of com-
ponents of the PIM diagram. We introduce nesting joins
later in this section. Here, we anticipate that a nesting join
specifies nesting of instances of PIM classes represented
by the PSM classes connected by A, g,.

A PSM class Cpgm, that represents a PIM class C,
models that an instance of C' is represented in XML docu-
ments as a set of XML attributes and sequence of XML el-
ements. The XML attributes are modeled by the attributes
of Cpsm. An attribute Attr models an XML attribute with
a name given by an alias of Attr or name of Attr (if Attr

119

CRPIT Volume 96 - Conceptual Modelling 2009

does not have an alias). The XML elements are modeled
by the content of Cpep,. Let Apsp, be a PSM association

in the content going to a PSM class Cj,,, that represents

a PIM class C’. A, models that the XML code repre-
senting an instance ¢’ of C’ is contained in the XML code
representing an instance c of C'if ¢ is nested in ¢ by A,p,.

Cpsm can have assigned a label called element label.
It is displayed above Cpsyy,. If Cpsp, has an element label
[, the XML elements and attributes modeled by C),s.,, are
enclosed in an XML element named [. Otherwise, they are
propagated to the closest ancestor with an element label.
An existence of such an ancestor is ensured since each root
PSM class must have an element label.

PSM further contains constructs for modeling XML
syntactic details. An attribute container can be contained
in the content of a PSM class Cp,, and contains one or
more attributes of Cl,,,. It models that the attributes are
represented as XML elements not attributes. A content
choice can also be contained in the content of a PSM class
Cpsm and models variants in the content of Cpsyy,. It con-
tains two or more PSM associations going from C,,, and
specifies that only one of them can be instantiated for each
instance of Cley,. A structural representative Ry, is a
PSM class that inherits attributes and content of another
PSM class Cpgm. Both Ry, and Cpsp, must represent
the same PIM class. R, can have its own element label.

Example 3 Assume again the PSM diagram depicted in
Figure 4. Its root Purchaseps,, represents Purchase. It
has an element label order-request. Further, it has an at-
tribute date with an alias issue-date. The other attribute
purchase-no of Purchase is not represented. The con-
tent of Purchaseys,, contains a PSM association going
to a PSM class Addresspsm and PSM association going
to a structural representatzve of Addresspsm. A structural
representative is displayed as a class but with a dashed
line. The associations are followed by a content choice. It

PSM associations going to Messenger sy, and V anygm.
It specifies that each purchase has only a messenger or
van but not both. Finally, there is a PSM association
going to Itempsp,. It nests items in corresponding pur-
chases. The diagram also contains attribute containers.
E.g., Addressysm has its attributes street, postcode and
city separated to an attribute container.

An XML document depicted in Figure 1 on the left is an
XML representation of a purchase as modeled by the PSM
diagram in Figure 4. Because the root Purchasepsm,
has the element label order-request, the XML represen-
tation of the purchase is enclosed in an XML element
order—request. Its attribute date with the alias issue-
date specifies that a purchase date is represented as an
XML attribute i ssue—date of order—-request.

The PSM association going to Addresspsm with the
element label ship-addr specifies that a ship address is
nested in the purchase. The XML representation of the
ship address is modeled by Addressysy,. It is enclosed
in an XML element ship—addr because of the element
label. Similarly, the XML representation of a bill ad-
dress is enclosed in an XML element bill-addr. Be-
cause the attributes of Addressy,s,, are separated to the
attribute container, the XML elements ship-addr and
bill-addr have child elements st reet, postcode
and city.

The PSM association going to Itemysy, with element
label ol specifies that items are nested in the purchase. An
XML representation of each item is enclosed in an XML
element ol. The PSM association going from Itemy,spn,
to Product,sm, specifies that each item has nested a pur-
chased product. Because Product,s,, does not have an
element label, the XML representation of the product,
which is XML attribute product—code, is not enclosed
in a separate XML element but propagated to the upper
XML element o1.

120

3.3 Nesting Joins

Each PSM class represents a PIM class. It means that se-
mantics of the PSM class is specified by the PIM class.
In this section, we propose a formalism for specifying se-
mantics of PSM associations. Informally, semantics of a
PSM association specifies what child instances are nested
in a given parent instance.

Basically, semantics of a PSM association A, can be
specified by a PIM association A,;,,. Assume that A,
goes from a PSM class C,,, to a PSM class C,,,, where

psm
the PSM classes represent PIM classes C and C’, respec-
tively. The semantics of A, can be specified by A,
if Ap;m connects C' and C’. In that case A, nests an
instance of C” in an instance of C if the instances are con-
nected by Ay,

Since PSM diagrams represent views on PIM dia-
grams, we need a more advanced mechanism to specify
semantics of PSM associations. The first generalization
discussed in this paper is specification of semantics by a
path in a PIM diagram instead of PIM association. The
principle is similar to the previous case since a PIM asso-
ciation can be comprehended as a path of length 1. Infor-
mally, a path goes from a PIM class C' to a PIM class C’. If
the semantics of a PSM association A, is described by
this path, A,,, nests an instance of C" in an instance of C
if the instances are connected by the path. We define paths
in PIM diagrams formally in the following definition.

Definition 1 A PIM path P is an expression C1—- - -—C,
where C1, ..., C, are PIM classes and for each 1 <i<
n, there is a PIM association connecting C; with Cz+1
If there are two or more associations connecting C; and
Cit1, we need to distinguish the required association by
its name | and write (1, C;11) instead of C; 1. We say that
P goes from C1 to C,,. C,, is called terminal class of P.

Consistency between a PIM diagram and derived PSM
diagrams is ensured by the following definition.

Definition 2 If a PIM path Cy —- - - — C,, specifies the se-
mantics of a PSM association Apsy,, we say that Apem
represents the PIM path. A,s,, can represent the PIM
path only if Cpep, represents Cy and Cpsm represents C,,.

Formally, the semantics of a PSM association repre-
senting a PIM path is defined by the following definition.

Definition 3 Let A, be a PSM association represent-
ing a PIM path Cy —---—C,,. Let ¢, and c,, be instances
of Cy and C,, respectively. A, nests ¢, in cy if ¢, €

c[Ci—--—Cy]. a1[C1—---—C,] denotes a set that is
defined recursively as follows:
C; [[Ci—. . _Cnﬂ :Uci+1€Ci (Cis1) Ci+1 [[Ci+1_~ . .—Cnﬂ,

Cn [[Cnﬂ :{Cn}

where ¢;(C;11) is a set of all instances of C; 1 connected
wzth ¢; by the respective PIM association. If ¢, € c1[C1—
--=C4], we say that c,, is accessible by P from c;.

Example 4 The semantics of all PSM associations de-
picted in Figure 4 can be specified by PIM associations
depicted in Figure 3. For example, the PIM association
named ship connecting PIM classes Purchase and Address
specifies the semantics of the PSM association going from
Purchaseyy, to Addressysm,.

On the other hand, there can be PSM associations
whose semantics can not be described simply by a PIM
association. Suppose for example a PSM diagram de-
picted in Figure 5 on the right. There is a PSM association
going from Product, sy, to Region,s,,. However, there is
no PIM association in the PIM diagram in Figure 3 con-
necting Product and Region. We need to specify that the
PSM association nests in each product a list of regions

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

from where the product was purchased. This semantics
is specified in terms of the PIM diagram by a PIM path
Product—Item— Purchase—(bill, Address)—Region.

We further propose a generalization of PIM paths for
describing semantics of PSM associations. This general-
ization is called nesting join. Suppose again a PSM associ-
ation A, with semantics specified by a PIM path going
from a PIM class C to C’. This semantics can also be in-
terpreted as a grouping of instances of C’ by A,,.,,. More
precisely, instances of C’ form a group if they are nested
by Apem in the same instance of C. Therefore, each in-
stance of C' has a nested group of instances of C’. This
group is defined by A,,,. We can extend this mechanism
to grouping instances of C’ not only by its parent but also
one or more ancestors. The best way to explain this is to
show an example.

Example 5 Suppose a PSM diagram depicted in Figure 5
on the left. There is a PSM class Supply,sm. It has ances-
tors Supplierysy,, Partysy, and ProductSety,sp,. Supplypsm
represents a PIM class Supply which models supplies of
parts. Parts are supplied by suppliers. A product set is
produced from supplied parts. For each supply, we there-
fore have its supplier, supplied part, and product set. In
the PSM diagram, we want to model an XML structure
where supplies are grouped by suppliers, parts and prod-
ucts sets. More precisely, supplies form a group if they
have the same supplier, part and product set. To repre-
sent this grouping in the required hierarchical structure,
the PSM association going from Supplierysy, to Part,ey,
must nest a part in a supplier if there is a supply of the
part by the supplier. Further, the PSM association going
Sfrom Party,, to ProductSet,s,, must nest a product set in
a part, that is nested in a given supplier, if there is a supply
of the part to the product set by the supplier. Finally, the
PSM association going from ProductSetysy, to Supplypsm
must nest a supply in a product set, that is nested in a given
part and supplier, if the supply is supplied by the supplier
and supplies the part to the product set. We can also say
that a supply is nested in a product set in the context of a
part and supplier.

We use nesting joins to describe such semantics. A
nesting join must specify a grouped PIM class (e.g. Sup-
ply), joined PIM classes (e.g. Supplier with Part, Part
with ProductSet, or ProductSet with Supply, respectively),
and PIM classes that form the context for the grouping
(e.g. empty context for the former PSM association, Sup-
plier for the second, and Supplier and Part for the other,
respectively).

In the rest of this section, we introduce nesting joins
formally. Before this, we define some auxiliary terms.

Definition 4 We say that a PIM path is direct if it does not
contain the same PIM class twice or more times. The only
exception is the beginning and end of the path.

Definition 5 Let P be a PIM path. rev(P) denotes P in
the reversed direction. It goes from Cy, to Cy through the
same PIM associations as P.

Now, we are ready to define nesting joins formally.

Definition 6 A nesting join is described by an expression
CPI’”"P’C[PHQ]

C'is a PIM class whose grouping is described by the nest-
ing join. Py, ..., Py are direct PIM paths that go from
C to PIM classes that form a context for the grouping. P
and @ are direct PIM paths that go from C. P and Q)
are called parent and child of the nesting join. The arrow
between P and Q) specifies an orientation of the nesting
Jjoin. To simplify the expression, we can leave the starting
C from Py, ..., P, PandQ), since they must start with C
anyway.

supplier-report product-distribution

Supplier Product
- supplier-no - product-code
supplied-part + 0- rgn + 0-
Part Region
- part-no - name

prodset +1 B

ProductSet
- amount
o %
Supply Product

- amount - product-code

Figure 5: Supplier Report and Product Distribution PSM
Diagrams

Consistency between a PIM diagram and derived PSM
diagrams is ensured by the following definition.

Definition 7 If a nesting join CTvPx [P — Q] specifies
the semantics of a PSM association A,sy,, we say that
Apsm represents the nesting join. Let /fpsm goes from a
PSM class Cpsp, to C) ., that represent PIM classes C

psm
and C', respectively. A, can represent the nesting join
only if the following conditions are satisfied:

(J1) C and C’ are terminal classes of P and Q, respec-
tively

(J2) if K > 0, there is a PSM association that
goes to Chs, and represents a nesting join

CPl,...,Pk,l [Pk N P]

This ensures that PIM classes that form the context of
CPrPr[P — Q) are also represented in the PSM di-
agram as ancestors of the parent of A,,. Formally, the
semantics of a PSM association representing a nesting join
is given by the following definition.

Definition 8 Ler A, be a PSM association represent-
ing a nesting join Ctv-Fx[P — Q]. For each k-tuple
P1, - .. Pk, Where p; is an instance of the terminal class
of P;, Apsm nests an instance q of the terminal class of
Q in an instance p of the terminal class of P if there is
an instance c of C such that p € c[P], ¢ € ¢[Q], and
V1 <i <k :p; € c[P;]. We say that q is nested in p in
the context of p1, - . ., Pk-

Example 6 Assume again the PSM diagram depicted in
Figure 5 on the left. As we explained before, its hierar-
chical structure represents grouping of instances of Sup-
ply. Therefore, we need nesting joins to specify the se-
mantics of PSM associations forming this structure. The
PSM association going from Supplierysm, to Part,sy, nests
in each supplier a list of supplied parts. Formally, it nests
an instance part of Part in an instance supplier of Sup-
plier if there exists an instance supply of Supply such that

supplier € supply| Supply-Supplier || and part € supply[
Supply—Part]. This semantics is specified by a nesting join

Supply[Supply — Supplier — Supply — Part]

We can also leave the grouped class Supply, i.e. we can
write
Supply[Supplier — Part]

The PSM association going from Part,g, to
ProductSet,s,, nests in each part a list of product
sets to which the part was supplied. Moreover, the
superior supplier has to be considered, i.e. the part
contains only the product sets to which it was supplied by
the supplier. Such semantics is specified by

121

CRPIT Volume 96 - Conceptual Modelling 2009

<supplier-report
supplier-no="Ss1">
<supplied-part
part-no="P121">
<prodset amount="1200"
product—-code="PR47">
<supply amount="800"/>
<supply amount="1600"/>
</prodset>
</supplied-part>
<supplier-report>

<supplier-report
supplier-no="52">
<supplied-part
part-no="P121">
<prodset amount="2000"
product-code="PR32">
<supply amount="1500"/>
</prodset>
</supplied-part>
<supplier-report>

Figure 6: Supplier Report XML Documents

Supply PPl [Part — ProductSet]

Formally, for each superior instance supplier of
Supplier, the PSM association nests an instance
productset of ProductSet in an instance part of
Part if there exists an instance supply of Supply
such that supplier € supply[Supply — Supplier],
part € supply[Supply — Part], and productset €
supply[Supply — ProductSet]. In other words, it joins
ProductSet instances with Supplier and Part instances
on the described conditions and groups the result by
Supplier and Part.

The PSM association going from ProductSetysy, to
Supplypsm nests in each product set a list of supplies sup-
plied by the superior supplier and supplying the superior
part. This semantics is specified by

Supply S Prtier-Part| prodyct Set —]

Two example XML documents modeled by this PSM di-
agram are depicted in Figure 6. The left—hand side XML
document is for a supplier with number ’S1’ and the right—
hand side is for a supplier with number 'S2°. We can
see that both supplied the same part with number 'P121"°.
However, the part has nested in each XML document dif-
ferent product set depending on the superior supplier. This
is modeled by the context of the PSM association going
Sfrom Partyey, to ProductSet,sp,.

Example 7 We can also use longer PIM paths in nest-
ing joins. Assume the PSM diagram depicted on the right
hand side of Figure 5. The PSM associations in the dia-
gram represent respectively the following nesting joins:

Purchase[Item—Product — (bill,Address)—Region]
Purchaseltem=Froduct|[(pill Address)— Region —)]

The former specifies that the PSM association going
Sfrom Product,sm to Region,sy, nests an instance region
of Region in an instance product of Product if there exists
an instance purchase of Purchase such that product &
purchase[Purchase — Item — Product] and region €
purchase| Purchase—(bill, Address)— Region]. Infor-
mally, it connects to each product a list of regions from
where the product has been purchased. The latter speci-
fies that the PSM association going from Region,sm, to
Purchasepsm connects to each region the list of pur-
chases from the region that purchase the superior product.

We unify the proposed mechanisms for specifying se-
mantics of PSM associations (i.e. PIM associations, PIM
paths and nesting joins). We comprehend a PIM associa-
tion as a PIM path of length 1. Further, we comprehend a
PIM path P going from a PIM class C to C’ as a nesting
join

C'[rev(P) — C]

Both are equivalent since P nests instances of C” in in-
stances of C. In other words, it groups instances of C”
and nests the groups to corresponding instances of C'. This
grouping is described by the nesting join.

122

Example 8 Assume the PSM diagram in Figure 4.
The PSM association going from Purchaseys, to
Addresspsy, with an element label ship-addr represents
a nesting join

Address|(ship, Purchase) —)|

Formally, it nests an instance a of Address in an instance
p of Purchase if there exists an instance a' of Address
such that p € a'[Address— (ship, Purchase)] and a €
a'[Address] = {a'}, i.e. a = d'. Informally, it nests in
each purchase its ship address. The other PSM associ-
ations represent the following nesting joins respectively:
Address|(bill, Purchase) —], Messenger|Purchase
— |, Van|[Purchase — |, Item|[Purchase — | and
Product[Item —].

4 XML Schema Reverse Engineering

The conceptual model proposed in the previous section
can be used for modeling XML schemas as follows. We
first design a PIM diagram and model each XML schema
as a PSM diagram derived from the PIM diagram. The
PSM diagram can then be mechanically translated to an
XML Schema representation. In this paper, we are in-
terested in the reversed process that starts with one or
more XML schemas. We suppose that a conceptual PIM
diagram already exists and we need to construct PSM
diagrams that model the XML schemas in terms of the
PIM diagram. Since doing this manually would be time—
consuming and error—prone task, we show how to semi—
automate this process. We suppose XML Schema as a
language for syntactical description of XML schemas.

Formally, the problem is given as follows. We have
an XML schema S,,; and a PIM diagram Sp;,,. We
need to construct a PSM diagram S, that models the
same XML format as S, and is derived from Spy,.
In other words, PSM classes from S, must represent
PIM classes from Sy, and PSM associations from Sy,
must represent nesting joins specified over components of
Spim. We separate the process to two steps. In a first step
a first approximation of the target Sy, is mechanically
derived from the XML schema. We call the result of the
first step initial PSM diagram. In a second step the first ap-
proximation is refined by mapping components of S, to
components of Sp;,,. We describe both steps in detail in
the following subsections.

There can be situations that go beyond the scope of
the paper. First, we suppose that a given PIM diagram
and XML schemas model the same data. If not, it can be
impossible to fully map an XML schema to the PIM dia-
gram since a required attribute, class or association can be
missing. This requires a refinement of the PIM diagram
which is not considered in this paper. Second, we sup-
pose only basic constructions for mapping, i.e. mapping
a PSM attribute/class to an equivalent PIM attribute/class
and mapping a PSM association to an equivalent nesting
join. However, there can be more complex situations that
require, e.g. to map a concatenation of more PSM at-
tributes to one PIM attribute. This situations are not there-
fore covered by this paper. On the other hand, it is only
a technical problem to extend the proposed solution with
such mapping constructs.

Our solution can not automatically provide the right
solution of the mapping problem. We only look for a good
approximation. It means that we estimate a mapping of a
given component of an XML schema to components of
the PIM diagram. However, the final decision about the
mapping is left to a domain expert.

4.1 Initial PSM Diagram Construction

The translation of S;,,; to an initial PSM diagram starts
with global element declarations in S,,,,;. Only those hav-
ing assigned a complex type are considered. The transla-

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

order-request

OrderRequest

- issue-date

0.1 1.1 1.1 1
bill-addr messenger, van ol

—2Rader &
I Address : Messenger Van oL

[

0..
ship-addr

Address
I

-mno -vno - product-code

- street

- postcode

- price
e

Figure 7: Initial PIM Diagram

tion continues recursively to declarations of their child el-
ements. To simplify the algorithm for the purposes of this
paper, we suppose that all complex types are defined glob-
ally in the XML schema (locally defined complex types
can be transformed to global declarations by assigning
auxiliary names). Moreover, we do not work with vari-
ous simple types that can be defined with XML Schema
constructs. We consider all of them as they were the basic
XML Schema simple type st ring.

Let E be an element declaration with a name [and
complex type 1. We need to translate ¥ and 7'. Since,
there can be more element declarations sharing 7', it is
possible that T' has already been translated during the
translation of another element declaration. Therefore, the
translation of £ depends on whether 7" has been translated
or not. Formally, F is translated as follows:

(E1) If T has not been translated yet, F is translated to a
PSM class Cp,, with an element label {. The name
of Cpsrm, is given by the name of 1" (because it is de-
fined globally, it must have a name). Moreover, Cpm
is set as so called base class of T'. T is translated as
we describe in a while ((T1-3) below).

(E2) If T has already been translated during the transla-
tion of another element declaration E’, it has a base
class C),,,. Cy,, is the result of the translation of

E’ according to (E2). In that case E is translated to

a structural representative of Cy,.. The structural

representative has an element label [.

If T has not been translated yet, we need to trans-
late its attribute declarations and content model. A dec-
laration of an attribute A with a name [is translated to
a PSM attribute of C),,, with a name [. The content
model of T" can be defined by various XML Schema con-
structs. As we mentioned in Section 2, we consider only
sequence. A sequence can contain element declara-
tions and choice constructs. A choice construct can
contain element declarations. The components of the con-
tent model of 7" are translated as follows:

(T1) Element declaration £’ with a name [and simple
type T" is translated to a PSM attribute with a name .
The cardinality of the new attribute is set according to
minOccurs and maxOccurs of E’. The attribute
is placed into an attribute container assigned to C,y,.
If there are more sibling element declarations with a
simple type, the resulting attributes are coupled into
one attribute container.

(T2) Element declaration E’ with a complex type T’ is
translated to a PSM class or structural representative
C’;SW according to (E1-2). A PSM association A,
going from Cpsp, to C),,, is created. The values of
minOccurs and maxOccurs of F’ are used as the

minimal and maximal cardinality of Czl)sm in Apgm.

(T3) choice is translated to a content choice assigned
to Cpsm. The element declarations in the choice
are translated recursively according to (T1-2) but as-
signed to the content choice instead of Cl,,.

Example 9 Assume the XML schema depicted in Fig-
ure 2. It is translated to an initial PSM diagram
depicted in Figure 7. There is one global element
declaration order-request with a complex type
OrderRequest. Because OrderRequest has not
been translated yet, order—request is translated ac-
cording to (El) to a PSM class Order Request sy, with
an element label order-request.

Further, OrderRequest is translated. The attribute
declaration issue-date is translated to a PSM at-
tribute issue-date of OrderRequest,s,,. The content
model of OrderRequest is translated as follows.

The element declaration ship-addr has a complex
type Addressand (T2) is applied. ship-addris trans-
lated according to (EI) because Address has not been
translated yet. The result is a PSM class Addresspsm
with an element label ship-addr. A PSM association
going from Order Request,gy, to Addresspsy is cre-
ated. The cardinality constraint of Addressysm in the
PSM association is 0..1. Within the scope of the trans-
lation of ship-addr, Address is translated. It has
no attributes and its content model contains element dec-
larations street, postcode and city with simple
types. They are translated according to (T1) to an attribute
container assigned to Address,s, with PSM attributes
street, postcode and city, respectively.

The element declaration bill-addr has a complex
type Address and (T2) is applied. Because Address
has already been translated, bill-addr is translated
according to (E2) to a structural representative of the base
class of Address which is Addressysm. The structural
representative has an element label bill-addr. A PSM as-
sociation going from Order Requestpsp, to the structural
representative is created.

The choice is translated according to (T3) to a con-
tent choice in Order Requestysy,. The element declara-
tions messenger and van are translated according to
(T2) to PSM classes Messengerysm and Vanysy, with
element labels messenger and van, respectively.

The element declaration ol has a complex type OL
and (12) is applied. (El) is further applied because the
complex type has not been translated yet. A PSM class
OLygnm is created with an element label ol. The decla-
ration of the attribute product—code is translated to a
PSM attribute product-code. The declarations of the ele-
ments priceand quant ity are translated according to
(T1) to PSM attributes price and quantity in an attribute
container assigned to O Lps,.

4.2 PSM Diagram Semantics Refinement

An initial PSM diagram captures structure of S,.,,,;. How-
ever, we also need to describe semantics of S,.,,,; in terms
of the PIM diagram S,;,,,. It means to map components
of Sgmi to components of Spim. A naive solution is to let
a domain expert to map the components manually. How-
ever, this is an error—prone and time—consuming task.

In this section, we propose an algorithm for semi-
automatic mapping of Sz t0 Spim. It is semi-automatic
since it just provides with mapping suggestions but still
requires a participation of a domain expert. In the first
two subsections we describe complementary algorithms
for measuring similarity of strings and PIM paths weight-
ing. In the third subsection, we describe the mapping al-
gorithm in detail.

4.2.1 String Similarity

We will need to compute the similarity between two
strings s1 and s5. We could utilize various widely known
algorithms for measuring syntactical and semantical sim-
ilarity (see (Shvaiko & Euzenat 2005) for their survey).
For simplicity, we utilize only the longest common sub-
string of s; and sy since advanced algorithms for mea-

123

CRPIT Volume 96 - Conceptual Modelling 2009
01 weightPaths (PIMClass C,
02 int[] result;

03 for each PIM path P going from C to C’
04 result [P] := w(P,S)
05 return result

PIMClass C’, String[] S)

Figure 8: PIM Path Weighting Algorithm

suring string similarity are not in our main interest in this
paper. The similarity between s; and so is computed as

I(s1,52)
maz{l(s1),1(s2)}

where [(s1, s2) denotes the length of the longest common
substring of s; and s2 and [(s) denotes the length of s.

We will also need to measure the similarity between
two sets of strings S7 and Ss. It is computed as a sum of
pairwise similarities of strings from S; with strings from
S2 normalized by the number of pairs:

sim(s1, s2) =

Zsl €81,52€8 sim(sy, s2)
|S1]|S2]

ssim(Sy, Se2) =

4.2.2 PIM Paths Weighting

We will also utilize an auxiliary algorithm weightPaths
that weights direct PIM paths going from a PIM class C'
to a PIM class C’. The algorithm is depicted in Figure 8.
It has C and C"’ as parameters. The third parameter S is a
set of strings that influences the weight of the PIM paths.
A weight of a given PIM path P is a number from the
interval (0,1) (including 0 and 1). It decreases with the
growing length of P and increases with the similarity of
the labels of the PIM associations and names of the PIM
classes along P with the strings from S.

Formally, the weight of a given direct PIM path P =
C1 — ... — (), is computed as follows:

n—1 .
1+ ssim({ai, cit1}, S) 1
PS)= —
w(P.)= (3 : -
where for each i € [1,n], ¢; is the name of the PIM class
C; and for each i € [1,n — 1], a; is the label of the PIM
association connecting C; and C; 41 in P.

4.2.3 Semi-automatic Mapping Algorithm

In this section we propose a semi—automatic algorithm
classMap that maps components of an initial PSM dia-
gram Sg,y,; to components of a PIM diagram Sp;y,. The
algorithm is depicted in Figure 11. We start by applying
classMap on the root PSM class S,,,,;. It maps the root
to a corresponding PIM class and follows recursively to
the descendants. According to the classification proposed
in (Shvaiko & Euzenat 2005), the proposed algorithm be-
longs to the class of structural schema—based mapping
techniques that measure similarity of the schema compo-
nents on the base of children in a combination with string
based techniques.

For an actual PSM class Cpp, from Sy, classMap
proceeds in the following steps:

e Class Mapping Estimation computes a similarity of
Cpsm Wwith each PIM class C. The similarity is a
combination of a similarity of names and attributes
of both classes as well as a similarity of children of
Cpsm Wwith neighbors of C. Therefore, it does not
use only basic syntactical similarity but also struc-
tural similarity of the neighborhood of C),s,,, with the
neighborhood of C'.

124

01 attrSim (PIMClass C,
02 int[][] result;

03 for each PIM attribute Attr
04 PIMClass C’ := Attr.class;

PSMAttribute Attrpsm)

05 int sim := sim(Attrpsm.name, Attr.name);

06 if C = C’

07 result[Attr][.] := sim;

08 else

09 string labels[] := {Attrpsm.name};

10 result[Attr] := weightPaths(C,C’, labels);

11 for each direct PIM path P going from C to C’
12 result[Attr|[P] := result[Attr][P] * sim;

13 return result;

Figure 9: Attribute Similarity Algorithm

e Class Mapping Specification is performed by the do-
main expert who selects a PIM class for mapping of
Cpsm from the list of PIM classes ordered by their
similarity with C),, computed in the previous step.

e Association Mapping performs mapping of a PSM
association going to Cjy,, if there is any. Since a

parent C,,, of the PSM association as well as its

child Cs,,, are mapped to PIM classes C’ and C, re-
spectively, the algorithm offers the list of PIM paths
connecting C’ and C ordered by their weights (see
weightPaths algorithm depicted in Figure 4.2.2).
The domain expert selects the right PIM path from a
list of the PIM paths ordered by their weights. From
the selected PIM path, an equivalent nesting join is
constructed for mapping of the PSM association.

e Subtree Mapping performs mapping of attributes of
Cpsm and recursive mapping of the subtree of Cpspy,.

Example 10 Figure 4 shows the resulting PSM diagram
after applying classMap on Order Request sy, from the
initial PSM diagram depicted in Figure 7.

If Cpsm is a structural representative of C/,

psm> it must
represent the same PIM class as Cj,, (lines 02-05,

Cpsm-pim denotes the PIM class represented by Cpspm).
Otherwise, the four steps are performed. In the rest of this
sections, we describe each step in detail.

(1) Class Mapping Estimation. The first part of the
classMap algorithm (lines 06—15) estimates mapping
of Cpsp. It measures a similarity of C),,, with each PIM
class C'. First, it computes a string similarity of a name of
Cpsm with a name of C' and similarity of an element label
of Cpsm with the name of C'. The maximum of the two
values is stored to initSim (line 08).

Next, classMap estimates mapping of the PSM at-
tributes in Cpsy, and in attribute containers assigned to

sm (lines 09-11). It assumes that Cy,, is mapped to
C’p The estimation itself is computed for each PSM at-
tribute Attrpsm of Cpsm at line 11 by calling attrSim
depicted in Figure 9. attrSim takes C' and Attrpém as
parameters and computes a 2-dimensional matrix called
attribute similarity matrix. The matrix is computed as
follows. Attrys, can be mapped to any PIM attribute
Attr. Attr can be an attribute of C' or an attribute of
another PIM class C’. In the former case, the similar-
ity of Attrys, with Attr is computed as a similarity of
their names (line 07). In the latter case, the similarity
is moreover influenced by direct PIM paths connecting C'
and C’. This corresponds to a natural intuition. Attrys,,
is a PSM attribute of Cly,,. We consider that Cps,y, is
mapped to C. If Attrysy,, is mapped to Attr of C’, Cpsp,
represents a join of C' and C’. Therefore, there must be a
direct PIM path connecting C' and C’ otherwise the join
can not be performed. Because there can be more direct
PIM paths connecting C' and C’, we assign a weight to
each of them by calling weightPaths (line 10) with pa-
rameters C', C" and {A,s,,.name}. The weight of a given

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

01 childSim (PIMClass C, PSMClass C’)

psm

02 int[][] result;

03 for each PIM class C’

04 int sim := nfbam(sim(C’ngm.narne),C'.name)7
sim(C,,, -label, C'.name));

05 string labels[] := {C;'mm.name,C;Sm.label};

06 result[C’] := weightPaths(C, C’, labels);

07 for each direct PIM path P going from C to C'

08 result[C’][P] := result[C'|[P] * sim;

09 return result;
Figure 10: Child Similarity Algorithm

direct PIM path P increases with a decreasing length of P
and with a growing similarity of names and labels along
P with the name of Attr,,,. The resulting similarity of
Attrpem with Attr for a given PIM path P is the weight
of P multiplied by the string similarity of the names of
Attrpem and Attr (line 12). attrSim returns the simi-
larity of Attrps,, with each PIM attribute Attr for each
direct PIM path connecting C and C” where C" is the PIM
class of Attr. Note that . at line 07 denotes an empty PIM
path and is added to suit the structure of the result.

The algorithm classMap does not consider the whole
attribute similarity matrix for C' and A, to estimate the
mapping of Cpsp,. It uses only the maximal value in the
matrix (line 11) which is added to the variable attrSim.
The whole matrix is used later to suggest mapping of at-
tributes to the domain expert.

Finally, classMap estimates mapping of children of
Cpsm (lines 12-14). It considers that Cps,, is mapped to
C. The estimation of a mapping of a given child C,,,, is

computed by childSim depicted in Figure 10. It has C'
and C},,, as parameters and returns a 2-dimensional ma-
trix called child similarity matrix. C,,, can be mapped
to any PIM class. For an actual PIM class C’, the sim-
ilarity of Cj,, and C’ is measured as follows. First,

the similarity of the name and element label of Cj,,

with the name of C’ is computed (line 04) and stored
to sim. Second, PIM paths connecting C' and C’ are
weighted by weightPaths with parameters C, C’ and
{C! o-name, C? - label} (line 06). This corresponds

psm psm
. ps S .
to a natural intuition. Cpsm is a child of Cpem. Cpem

can be

is mapped to C' (consideration). Therefore, C’;,sm

mapped to C” if there is a PIM path connecting C' and
C’. There can be more such PIM paths. The weight of a
given PIM path P increases with a decreasing length of P
and with a growing similarity of names and labels along
P with the name and element label of C},,,. Finally, we
multiply the weight of a each PIM path connecting C' and
C’ by sim (lines 07-08). childSim returns the similar-
ity of C! ., with each PIM class C’ for each direct PIM

psm
path connecting C' and C".

The result of childSim is utilized by classMap at
line 14. Only its maximum is considered and is added to
the variable childSim. The whole matrix is used later for
mapping PSM associations.

The estimated similarity of Cy,, with C' is computed
as an avg of initSim, attrSim and childSim (line 15).

Example 11 Assume classMap applied on Order-
Requestys,. The first part of the algorithm estimates map-
ping of OrderRequest, sy, by computing its similarity with
each PIM class. We show how the similarity of Order-
Requestys,, with Purchase is computed.

Similarity of the name, resp. element label, of Order-
Requestyg,, with the name of Purchase is computed first
and the maximum of both is taken. The result is 0.08 since
their common substring has length 1.

Next, the algorithm estimates mapping of the attributes
of Order Requestpsy,. For each of the attributes, the at-

01 classMap (PSMClass Cpsm)
02 if Cpsm 1is structural representative of C}'mm

03 Cpsm.-pim := Césm.pim;

04 Cpsm.name := C}Qsm.name;

05 return;

06 int[] estimatedSim;

07 for each PIM class C

08 int initSim := mazx(sim(Cpsm.name, C.name),
sim(Cpsm-label, C.name));

09 int attrSim := 0;

10 for each Attrpsm € Cpsm.atirs

11 attrSim := attrSim + maz(attrSim(C, Attrpem));

12 int childSim := 0;

13 for each C;sm € Cpsm-childClasses

14 childSim := childSim 4+ maz(childSim(C, Césm));

15 int estimatedSim[C] :=

initSim+tattrSim-+childSim .
Ttsize(Cpsm.attrs)tsize(Cpsm .children)’
16 show PIM classes ordered by estimatedSim in

descending order;
17 wuser selects a candidate C for mapping of Cpsm;
18 Cpsm.pim := C;
19 if Cpsm is not a root

20 Apsm := PSM association going to Cpsmi

21 C;":;, := Cpsm.parentClass;

22 CcPar .= ng;L.pim;

23 string labels[] := {Cpsm.name, Cpsy .label};

24 weights := weightPaths(C??", C, labels);

25 show PIM paths going from CP?" to C ordered by
weights in descending order

26 user selects a PIM path P from the list

for mapping of Apsmi
:= Clrev(P) — C);
€ Cpsm-childClasses

27 Apsm.pim
28 for each C!

psm

29 classMap(C,,,);
30 for each Attrpsm € Cpsm.atirs

31 attrMap (Attrpsm);
Figure 11: Class Mapping Algorithm

tribute similarity matrix is computed by attrSim with a
consideration that Order Request, s, is mapped to Pur-
chase. The matrix contains a field for each PIM attribute
Attr and each direct PIM path going from Purchase to
the PIM class of Attr.

Assume the matrix for the PSM attribute issue-
dateys,,. We show the computation of the similarity of
issue-date,s, with the following three PIM attributes:

e date of Purchase: sim(issue-date,date) = 0.40 is
computed and line 07 is applied.

e completion-date of ProductSet: sim(issue-date,
completion-date) = 0.33 is computed and lines
09-12 are applied. weightPaths with parame-
ters Purchase, ProductSet and string issue-date
is called. It finds each direct PIM path going
from Purchase to ProductSet and computes its
weight. There are several PIM paths. For exam-
ple, the weight of Purchase — (ship, Address) —
(ship, Supply) — ProductSet is 0.34. The result-
ing similarity of issue-date,,s,, with completion-date
for this PIM path is therefore 0.33 * 0.34 = 0.11.
All other PIM paths have a lower weight and are not
therefore considered for the estimation.

e supply-date of Supply: Analogously, we get 0.21.

The similarity of issue-dateys,, with other PIM at-
tributes is insignificant. We return back to classMap.
The algorithm takes only the maximal value 0.40 from
the matrix, i.e. the mapping of issue-date,y, to the PIM
attribute date of Purchase is considered. The vari-
able attrSim summarizing the maximal similarities of
the attributes of Order Requestys,, with PIM attributes
is therefore increased by 0.40.

125

CRPIT Volume 96 - Conceptual Modelling 2009

|| issue-date || ship-addr | bill-addr | messenger van | ol | init || est
Purchase 0.40 0.74 0.74 0.75 0.75 0.07 0.08 || 0.50
da (sh,Ad) (bi,Ad) Me Va (bi,Ad)-(bi,Su)
Supply 0.46 0.74 0.74 0.38 0.35 0.07 0.08 || 0.40
su-da (sh,Ad) (bi,Ad) (sh,Ad)-(sh,Pu)-Me (sh,Ad)-(sh,Pu)-Va (sh,Ad)-Re
ProductSet 0.33 0.45 0.45 0.30 0.29 0.08 0.08 || 0.28
co-da Su-(sh,Ad) | Su-(bi,Ad) | Su-(sh,Ad)-(sh,Pu)}-Me | Su-(sh,Ad)-(sh,Pu)-Va Pr
Table 1: Evaluation of Order Request,,, Mapping Estimation
After the estimation of mapping of the attributes of || product-code | price | quantity || init || est
OrderRequestysy, the algorithm classMap estimates Item 0.64 0.5 0.25 |1 0.00 || 0.35
mapping of the children of Order Request,spm,. It com- Pr.pr-cd un-pr am
. ’ . Address 0.33 0.30 0.14 0.00 || 0.19
putes for each child Cy,,,, of Order Requestys,, the child posteode Suan-pr

similarity matrix by calling childSim (line 14) with
a consideration that OrderRequestys,, is mapped to
Purchase. The matrix contains a field for each PIM class
C" and direct PIM path going from Purchase to C'.

Assume the computation of the child similarity ma-
trix for the child Addressysy, with the element la-
bel ship-addr. childSim computes the similarity of
Addresspsm with each PIM class C' for each PIM path
going from Purchase to C'. An interesting PIM class
is Address. childSim computes the string similar-
ity of the names of Address,sy, and Address which
is 1 (line 04). The similarity of the element label of
Addresspsy, with the name of Address is lower. Fur-
ther, PIM paths going from Purchase to Address are
weighted by weightPaths with parameters Purchase,
Address and strings ’address’ and ’ship-addr’. There
are two such PIM paths: Purchase — (ship, Address)
and Purchase — (bill, Address) with weights 0.74 and
0.68, respectively. The string ’ship-addr’ influences the
weight of the former because there is a label ship along
the path which has non-zero similarity with ’ship-addr’.
The weights are then multiplied by sim = 1.

The similarity of Addressysm, with other PIM classes
is insignificant. After the matrix for Addresspsy, is com-
puted, we return back to classMap where we take only
the maximal value from the matrix, i.e. 0.74.

Finally, the estimated similarity of Order Requestpsm
with Purchase is computed. The result is depicted in Ta-
ble 1 in the last column (see Example 12 for details).

Example 12 Table 1 shows the estimated similarity
of OrderRequestys,, with PIM classes Purchase,
Supply and ProductSet in the last column est.
These PIM classes have the highest similarity with
Order Request,gm. For each PIM class, we show the
maximal value from the attribute similarity matrix for the
attribute issue-dateysy,. We also show the correspond-

ing PIM attribute for which the similarity was computed”.
For example, the column (Supply,issue-date) shows the
maximum from the attribute similarity matrix for issue-
datey,sn, and Supply. It was computed for the PIM at-
tribute supply-date of Supply. We further show the max-
imal value from the child similarity matrix for each child
of Order Requestpsm. We show the corresponding PIM
path for each value. For example, the cell (Supply,
messenger) shows the maximal value from the child
similarity matrix for the child Messengery,sm, and PIM
class Supply. It also shows the PIM path for which the
value was computed, i.e. Supply — (ship, Address) —
(ship, Purchase) — Messenger.

Table 2 shows the estimated similarity of the PSM class
OLysm with PIM classes Item and Address. The simi-
larity with other PIM classes is insignificant. It shows that
we can estimate the similarity even though the name and
element label of the PSM class have nothing in common
with the names of the PIM classes.

(2) Class Mapping Specification. The second part of
classMap (lines 16-18) performs the mapping of Csy,

2PIM paths and attributes in the table are abbreviated — for each step and at-
tribute only the first two characters are shown

126

Table 2: Evaluation of OL,,, Mapping Estimation

with a participation of the expert. It shows the list of PIM
classes ordered by their estimated similarity with Cpp,
(line 16) in descending order. The expert selects a PIM
class C (line 17) and Cpsp, is mapped to C' (line 18).
This completes the mapping of Cpem.

Example 13 After the estimation of mapping of Order-
Requestyg,, in Example 11, we show the list of all PIM
classes ordered by their estimated similarity with Order-
Requestys,y,. The first three PIM classes are shown in Ta-
ble 1. The expert selects Purchase. OrderRequestysy, is
therefore mapped to Purchase.

(3) Association Mapping. The third part of the
classMap algorithm (lines 19-27) performs the map-
ping of the PSM association A, going to Cpsp, if Cpsm
is not a root. Let A, go from Cp . We need to
find a nesting join that describes the semantics of Apgp,.
We already have that Cy,,, is mapped to a PIM class C”
and Cpsm to C. We need a direct PIM path going from
C’ to C as the base of the nesting join. The right PIM
path must be selected by the domain expert. The algo-
rithm only suggests suitable possibilities by weighting the
PIM paths (line 24). Afterwards, the expert selects a
PIM path P from the list of PIM paths ordered by their
weights (lines 25-26) and A, is mapped to a nesting
join C[rev(P) — C] (line 27). Furthermore, it can be
necessary to add a context to the nesting join. We describe
this possibility later in Section 4.2.4.

Example 14 We have OrderRequestys,, mapped to
Purchase. Assume that we have its child Address,sm
with the element label ship-addr mapped to Address.
We need to map the PSM association going from
OrderRequestysy, to Addresspsm. The algorithm
weights direct PIM paths going from Purchase to
Address by calling weightPaths with parameters
Purchase, Address and strings ’address’ and ’ship-
addr’. The PIM paths were already weighted during the
estimation of mapping of OrderRequest,s,, in Exam-
ple 11. We can therefore utilize the results. The algo-
rithm shows the PIM paths ordered by their weight in de-
scending order. The expert selects the path Purchase —
(ship, Address) and the PSM association is consequently
mapped to Address|(ship, Purchase) — |. If the as-
sociations connecting Purchase and Address were dis-
tinguished by labels with the same similarity with 'ad-
dress’ and ’ship-addr’, the PIM paths would have the
same weight and we could not suggest the right mapping.

(4) Subtree Mapping. Finally, classMap maps the
PSM attributes of Cp,, to PIM attributes and child PSM
classes of Csp, to PIM classes (lines 28—31). Each child
is mapped recursively by classMap (line 29). Each at-
tribute is maped by an algorithm attrMap (line 31) de-
picted in Figure 12. It maps a PSM attribute Attrp,,, in
Cpsm or in an attribute container assigned to Cpsp,. Cpsm

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

01 attrMap (PSMAttribute Attrysm)

02 C := Attrpsm.class.pim;

1= attrSim(C, Attrpsm);

04 show an ordered list of PIM attributes,

the order of A is given by the maximal

03 sim

value in sim[A] (descending order);
05 wuser selects a PIM attribute Attr to be
mapped to Attrpsmi;
06 Attrpsm.alias
07 Attrpsm.pim
08 C’
09 if C <> C'
10 PSM class C]’)Sm is created;
11 C;S,m.psm 1= C';C;S,m.
12 move Attrpsm to C;;sm"
13 PSM association ApSm is created;

:= Attrpsm.name;
= Attr;
:= Attr.class;

’
name := C'.name;

14 Apsm-parent := Apem.class;
15 Apsm.child := C;')S"L;
16 show PIM paths going from C to C’

ordered by sim[Attr] in descending order;
17 user selects a PIM path P for mapping to Apsm;

18 Apsm.pim := C'[rev(P) — CJ;
Figure 12: Attribute Map Algorithm

was mapped with C' in the previous part. attrMap starts
with computing the attribute similarity matrix for Attrs,,
and C' (line 03). The matrix was computed during the es-
timation of mapping C),,, and can be reused. The algo-
rithm shows an ordered list of PIM attributes (line 04) in
the descending order. The order of a PIM attribute Attr is
given by the maximal value in sim[Attr]. The expert se-
lects a PIM attribute Attr from the list and Attr is mapped
with Attrps,.

If Attr is from C, we are done. If Attr is not from C
but another PIM class C’, Attr,s, can not stay with its
PSM class C), because a PSM class representing C can
have only attributes of C. We therefore create a new PSM
class C7,, representing C’ (lines 10-11) and Attrysy, is

psm
moved to Cy,,, (line 12). Cy,,, must be added as a child
of Cpsm. Therefore, a PSM association A, is created

psm
with Cpep, as parent and C{Dsm as child. A, must repre-

sent an appropriate nesting join. Therefore, we need to de-
termine an appropriate PIM path P going from C'to C’. P
is selected by the domain expert from the list of PIM paths
ordered by their weight in sim[Attr] (lines 16-17). Fi-
nally, A, is mapped to the nesting join C’[rev(P) —|.

Example 15 Assume that the PSM class OLys,, from
the initial PSM diagram was mapped to the PIM class
Item and we are mapping its PSM attribute product-
codepsy,. attrMap gets the attribute matrix similarity
for product-codeys,, and Item. It was computed dur-
ing the estimation of mapping of OLypsm,. The algorithm
shows the list of PIM attributes ordered by their maxi-
mal estimated similarity with product-code,y,. The PIM
attribute product-code of the PIM class Product is the
most similar PIM attribute to product-code, sy, as shown
in Table 2 in the cell (Item,product-code). The expert
selects product-code to be mapped to product-codepsy,.
Because product-code is from Product and not Item, a
child PSM class Productys,, mapped to Product is cre-
ated and product-codeysy, is moved here. Moreover, a
PSM association going from OLygy to Product,gy, is
created. attrMap displays the list of PIM paths going
from Item to Product ordered by their weights. The user
selects Item — Product and the new PSM association is
mapped to Product[Item —|.

4.2.4 Setting Class Context

-~ y
Assume a PSM association A, whose parent C,,,, rep-

resents a PIM class C’ and child C,,, represents C. The

algorithm classMap automatically maps A, s, to a nest-
ing join C[P — C] where P is a PIM path going from C
to C’. The nesting join specifies that an instance c of C'is
nested in an instance ¢’ of C’ if ¢ € ¢[P], i.e. C instances
are joined with C” instances and grouped by C”’. However,
this semantics can be wrong because it can be necessary
to add a context to the nesting join.

Since it is very hard to determine the context automat-
ically, we need a domain expert to decide. It should be as
easy as possible for the domain expert. We propose the
following procedure. After the semiautomatic mapping,
the expert selects a non-root PSM class C),,,,, representing
a PIM class C. There is a PSM association A, going
t0 Cpsm. Apsm represents a nesting join C[P — C]. The
expert can add PIM classes represented by one or more an-
cestors of the parent of C),,, to the context of the nesting
join. To satisfy the conditions (J1) and (J2) introduced in
Section 3.3, if an ancestor C},,, is considered, each PSM

class on the path from C,,, to the parent of C),,,, must be
considered too. Therefore, it is enough when the domain
expert specifies a number of the ancestors that should be
considered. Let k denote this number. For each of the an-
cestors, we need to add to the context the right PIM path
going from C' to the PIM class represented by the ancestor.
Moreover, we also need to change the nesting joins repre-
sented by the PSM associations connecting the ancestors
because the conditions (J1) and (J2) introduced in Section
3.3 must be satisfied.

Formally, let C} psm, - .., Chky2,psm be PSM classes
such that Cri2 pem = Cpsm and Cj pem is the parent
of Cit1psm for each i € [1,k + 1]. Let C; pspm, rep-
resent a PIM class C; for each i € [1,k 4+ 2] (Cgi2
= C). Let A1 psms - --» Ak+t1,psm denote PSM associa-
tions where A; psp, goes from C; sy, 10 Ci 1 pem for each
i€ 1, k+1] (Ak+1,psm = Apsm). Let A; ,q., represent a
nesting join C;11[P; — C; 1] where P; is a PIM path go-
ing to C; for each i € [1, k + 1]. Finally, we suppose that
for each ¢ € [1, k] the following conditions are satisfied:

(C1) P; contains a step which is the PIM class C, i.e.
P, =P —C — P, 3 (F;1 and P; > can be empty),
(C2) Piy1,2=rev(P; 1) — Ciy1 where rev(P) denotes P
in the reversed direction (we put Py 2 = Pyy1).

If (C1-2) are not satisfied, the context can not be set.
Each PIM path C — P, o determines a PIM path that we
need to put to the context. We therefore need to add the
PIM paths P, o, ..., Py 2 to the context of the nesting join
represented by Apgm (= Agq1,psm). The nesting joins
represented by A1 psm, ..., Ak psm must be updated as
well to satisfy the conditions (J1) and (J2).

For each i € [1, k] we need A, ,,, to represent a nest-
ing join C[P; 2 — P;41,2] instead of C;11[P;qy — C —
P, 5 — Ciy1]. We show that the semantics described by
both nesting joins is the same. The former nests an in-
stance c;+1 of C; 1 in an instance ¢; of C; if the following
condition (S1) is satisfied:

(E'C S [[C]])(Ci+1 S C[[C — Pi+1’2ﬂ N € CHC — Pi’g]])

i.e. if there is an instance c of C such that ¢; 1 is accessi-
ble from c by the PIM path C' — P, 1 5 and ¢; is accessible
from c by C — P; 5. The latter nests ¢;1 in ¢; if the fol-
lowing condition (S2) is satisfied:

¢ € ¢iy1[Ciy1 — Pin — C — Py 5]
i.e. if ¢; is accessible from ¢; 1 by Cj11 — P;1 —C — P 5.
We show that (S1) and (S2) are equivalent. Assume
that (S2) is satisfied for ¢;4; and ¢;. It is equivalent to

(e € [C])(c € ¢it1[Cip1—Pi1 —C]A¢; € c[C—P;2])

127

CRPIT Volume 96 - Conceptual Modelling 2009

i.e. (S2) is satisfied if and only if there is an instance c of
C such that c is accessible from ¢; 1 by Ci11 — P51 — C
and ¢; from ¢ by C' — P, 5. This is further equivalent to

(e e [CDH(cit1 €]C = rev(P; 1) — Ciya]
Cc; € C[[C — Piﬁgﬂ

because if c is accessible from ¢; 41 by C;11 — Py — C
then ¢;4; must be accessible from c by the reversed PIM
path C' — rev(P; 1) — C;11. Because (C2) is satisfied, we
can change rev(P; 1) — C;11 with P14 and we get (S1).
Therefore, we have that (S1) is equivalent with (S2).

Now, we can set the required context and ensure that
the conditions (J1) and (J2) from Section 3.3 are satisfied.
We set A, to represent a nesting join

CPI,Q,--»7PA:,2 [Pk+1,2 — C]
and for each i € [1, k] we set A; ,sm, to represent
Cpl,‘Zv---vPifl,Q [372 N Pi+1,2]

Example 16 We demonstrate the proposed technique on
a simple example. Assume the PSM diagram depicted on
the left side of Figure 5. It was reverse engineered from
an XML schema that we do not display. Its components
were mapped to components from the PIM diagram in Fig-
ure 3 by classMap. The ancestors of Supplypsm are
Jjoined by PSM associations that represent nesting joins
Part[Supply — Supplier — |, ProductSet|Supply —
Part — | and Supply[ProductSet —], respectively.
However, these joins do not describe the true semantics
of the PSM associations. The true semantics is that sup-
plies are considered in the context of suppliers, parts and
product sets as we showed in Example 6. Therefore, the
domain expert selects the PSM class Supplypsm and puts
k = 2 to specify that Supply instances are not grouped
only by ProductSet but also by the two ancestors Part
and Supplier. We can easily verify that the conditions
(C1-2) are satisfied. Both paths Supply — Supplier and
Supply — Part contain a step Supply and (C1) is there-
fore satisfied. We have the following P11 = ., P g =
Supplier; Py1 = ., Poo = Part; P35 = ProductSet
where rev(.) — Part = Ps 5 and rev(.) — ProductSet =
Ps o and (C2) is therefore satisfied as well. We can there-
fore update the nesting joins represented by the PSM as-
sociations according to the proposed technique as follows
(respectively):

Supply[Supplier — Part]
Supply®“PPler [Part — ProductSet]
SupplySverlier:Part[Prodyct Set —)

5 Conclusions

We studied reverse engineering of XML schemas. We
supposed a set of XML schemas and an existing concep-
tual diagram. We proposed a semi—automatic method that
finds semantic interrelations between the XML schemas
and the conceptual diagram.

Currently, we are developing a tool for testing the pro-
posed method in practice. We plan to extend the proposed
algorithms with parameters for tuning them to fit real sce-
narios. It will be also necessary to further expand some
technical details of the algorithms. We presented only a
part of the conceptual model. The full model, that was
proposed in (Necasky 2008), contains some technical ex-
tensions that allow to model more advanced XML features
and therefore need to be considered for reverse engineer-
ing as well. Further, some more advanced algorithms for
measuring not only syntactical but also semantical simi-
larity of strings could be utilized. Last but not least is an
optimization of the proposed algorithms.

128

References

Bernauer, M., Kappel, G. & Kramler, G. (2003), Repre-
senting XML Schema in UML - An UML Profile for
XML Schema, Technical report.

Bernauer, M., Kappel, G. & Kramler, G. (2004), Repre-
senting XML Schema in UML - A Comparison of Ap-
proaches, in N. Koch, P. Fraternali & M. Wirsing, eds,
‘ICWE’, Vol. 3140 of Lecture Notes in Computer Sci-
ence, Springer, pp. 440-444.

Chiticariu, L., Hernandez, M. A., Kolaitis, P. G. & Popa,
L. (2007), Semi-Automatic Schema Integration in Clio,
in C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivas-
tava, K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan,
V. Ganti, C.-C. Kanne, W. Klas & E. J. Neuhold, eds,
‘VLDB’, ACM, pp. 1326-1329.

Dobbie, G., Xiaoying, W., Ling, T. & Lee, M. (2000),
ORA-SS: An Object-Relationship-Attribute Model for
Semi-Structured Data, Technical Report TR21/00, Dpt.
of Computer Science, National University of Singa-
pore.

Dominguez, E., Lloret, J., Pérez, B., Rodriguez, A., Ru-
bio, A. L. & Zapata, M. A. (2007), A Survey of UML
Models to XML Schemas Transformations, in B. Be-
natallah, F. Casati, D. Georgakopoulos, C. Bartolini,
W. Sadiq & C. Godart, eds, “WISE’, Vol. 4831 of Lec-
ture Notes in Computer Science, Springer, pp. 184—-195.

Jensen, M. R., Mgller, T. H. & Pedersen, T. B. (2003),
‘Converting XML DTDs to UML diagrams for concep-
tual data integration’, Data Knowl. Eng. 44(3), 323—
346.

Mani, M. (2004), EReX: A Conceptual Model for XML,
in Z. Bellahsene, T. Milo, M. Rys, D. Suciu & R. Un-
land, eds, ‘XSym’, Vol. 3186 of Lecture Notes in Com-
puter Science, Springer, pp. 128—142.

Miller, J. & Mukerji, J. (2003), MDA Guide
Version 1.0.1, Object Management Group.
http://www.omg.org/docs/omg/03-06-01.pdf.

Necasky, M. (2007), XSEM - A Conceptual Model for
XML, in J. F. Roddick & A. Hinze, eds, ‘Fourth
Asia-Pacific Conference on Conceptual Modelling
(APCCM2007)’, Vol. 67 of CRPIT, ACS, Ballarat,
Australia, pp. 37-48.

Necasky, M. (2008), Conceptual Modeling for XML, PhD
thesis, Charles University. http://kocour.ms.
mff.cuni.cz/-necasky/dw/thesis.pdf.

Routledge, N., Bird, L. & Goodchild, A. (2002), UML and
XML Schema, in X. Zhou, ed., ‘Australasian Database
Conference’, Vol. 5 of CRPIT, Australian Computer So-
ciety.

Shvaiko, P. & Euzenat, J. (2005), ‘A Survey of Schema-
Based Matching Approaches’, J. Data Semantics
6, 146-171.

Thompson, H. S., Beech, D., Maloney, M. & Mendelsohn,
N. (2004), XML Schema Part 1: Structures (Second
Edition), W3C. http://www.w3.0rg/TR/xmlschema-1/.

Yang, W., Gu, N. & Shi, B. (2006), Reverse Engineering
XML, in J. Ni & J. Dongarra, eds, ‘IMSCCS (2)’, IEEE
Computer Society, pp. 447-454.

Yu, A. & Steele, R. (2005), An Overview of Research
on Reverse Engineering XML Schemas into UML
Diagrams, in ‘ICITA (2)’, IEEE Computer Society,
pp. 772-777.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Synthesis of Orchestrators from Service Choreographies

Stephen Mcllvenna®, Marlon Dumas®*, Moe Thandar Wynn*

'Faculty of Science and Technology, Queensland University of Technology
GPO Box 2434, Brisbane, Queensland 4001, Australia

{s.mcilvenna, m.wynn}@qut.edu.au

*Institute of Computer Science, University of Tartu, Estonia

marlon.dumas@ut.ee

Abstract

Interaction topologies in service-oriented systems are
usually classified into two styles: choreographies and
orchestrations. In a choreography, services interact in a
peer-to-peer manner and no service plays a privileged
role. In contrast, interactions in an orchestration occur
between one particular service, the orchestrator, and a
number of subordinated services. Each of these topologies
has its trade-offs. This paper considers the problem of
migrating a service-oriented system from a choreography
style to an orchestration style. Specifically, the paper
presents a tool chain for synthesising orchestrators from
choreographies. Choreographies are initially represented
as communicating state machines. Based on this
representation, an algorithm is presented that synthesises
the behaviour of an orchestrator, which is also represented
as a state machine. Concurrent regions are then identified
in the synthesised state machine to obtain a more compact
representation in the form of a Petri net. Finally, it is
shown how the resulting Petri nets can be transformed
into notations supported by commercial tools, such as the
Business Process Modelling Notation (BPMN).’

Keywords: service composition,
orchestration, Petri nets, BPMN.

choreography,

1 Introduction

A Service-Oriented Architecture (SOA) is a software
architecture where the basic elements are services,
meaning entities offer some functionality to other entities,
which themselves can be services. At the implementation
level, an SOA manifests itself in the form of a collection
of software services that exist at certain endpoints and
exchange messages according to certain contracts. A
software service is called a Web Service (WS) if it
applies Web standards such as eXtensible Markup
Language (XML), Web Service Description Language
(WSDL), and/or SOAP.

A typical approach to design an SOA is to identify
basic services and then to compose them into larger
services, or conversely, to identify larger services and to
then decompose them into smaller services. In either case,
the cornerstone for SOA design is the definition of

Copyright © 2009, Australian Computer Society, Inc. This paper
appeared at the Sixth Asia-Pacific Conference on Conceptual
Modelling (APCCM 2009), Wellington, New Zealand, January
2009. Conferences in Research and Practice in Information
Technology, Vol. 96. Markus Kirchberg and Sebastian Link, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

compositions of services. This work is concerned with
how these compositions of services are modelled, and
specifically, how different perspectives for modelling
such compositions of services can be reconciled.
Depending on their interaction topology, service
compositions are usually classified into two styles:
choreographies and orchestrations (Peltz 2003). In a
choreography, no service plays a privileged role (peer-to-
peer topology), whereas in an orchestration, interactions
occur between one particular service, the orchestrator,
and a number of other subordinated services (hub-and-
spoke topology). For example, Figure 1 illustrates a
business-to-business choreography involving a buyer, a
supplier and a shipper, while Figure 2 shows the

corresponding orchestration.

Figure 1: Choreographed composition

orchestrator

Figure 2: Orchestrated composition

The choice between a choreographed and an
orchestrated service composition approach may be driven
by a number of factors, often of an organisational nature.
With reference to the above example, it may be that
initially, the supplier deals with a single shipper for all
orders. The buyer interacts with the supplier in order to
agree on the purchase order and to pay for the goods, but
when it comes to delivery issues, the buyer needs to
interact directly with the shipper. Subsequently, the
supplier may decide that in order to provide a more
uniform customer experience and to closely monitor the
performance of its shippers, it is desirable to have a single
point of interaction with the customer (the ‘orchestrator’

129

CRPIT Volume 96 - Conceptual Modelling 2009

in Figure 2). This orchestrator would handle interactions
related to the purchase order, payment and also delivery.
Having done that, it becomes possible to introduce
additional value-added services in the orchestrator, such
as providing the buyer with the possibility to choose
between making a single payment for the goods and for
the delivery, or making separate payments, or choosing
between different delivery modes.

From the technical perspective, this change in
topology requires that an orchestrator is developed and
deployed and that all the interactions between the services
in the composition be channelled through the
orchestrator. This paper provides a technique to automate
the development of such an orchestrator from a given
choreography.

Choreographies are initially represented using Finite
State Machines (FSMs). Based on this representation, an
algorithm is presented that synthesises the behaviour of
an orchestrator, which is also represented as a state
machine. The synthesised state machine may be rather
large and unreadable, because the interactions that an
orchestrator needs to manage tend to occur in any order
or in parallel, and this parallelism leads to state explosion.

Accordingly, concurrent regions are identified in the
synthesised state machine in order to obtain a more
compact representation in the form of a Petri net. This is
achieved using existing results from the field of theory of
regions (Cortadella, Kishinevsky et al. 1998). The paper
then shows how the resulting Petri nets can be
transformed into notations supported by commercial
tools, such as the Business Process Modelling Notation
(BPMN) (Object Management Group 2008). The result is
a skeleton of an orchestrator. This skeleton can be
extended and refined using existing business process
modelling tools and used as a basis to generate code in
executable languages such as the Business Process
Execution Language (BPEL).

The entire tool chain for orchestrator synthesis is
depicted in Figure 3. The specific contributions of the
paper are: (i) a technique for synthesising orchestrators
from choreography specifications using state machines as
a specification language, and (i) a technique for
transforming Petri nets into BPMN diagrams. The tool
chain, starting from a choreography specified as FSMs,
has been implemented and tested on a number of
scenarios with varying degrees of complexity.

orchestrations

» Petri nets with » BPMN /
concurrency BPEL

choreographies W {

BPMN /
BPEL »

state

machines

Figure 3: Composition viewpoints bridged by
orchestrator synthesis with state machines

The rest of the paper is structured as follows. Section 2
provides some background on service behaviour
modelling. Section 3 presents the proposed orchestrator
synthesis algorithm. Section 4 shows how Petri nets
representing the resulting orchestrator can be transformed
into BPMN diagrams. Section 5 describes the validation
of the approach and Section 6 discusses related work.
Conclusions are drawn in Section 7.

130

2 Background: Modelling service behaviour
Choreographies can be described as a set of interface
FSMs, where an interface FSM defines both the message
exchanges in which a given participant can engage, and
their message control-flow dependencies.

In an environment where messages can be buffered
and transmission is not instantaneous, unbounded queues
can be problematic for compatibility verification (Bultan,
Su et al. 2006). Reasoning with protocols can be
simplified by either bounding the queue length (Berardi,
Calvanese et al. 2005), or removing queues entirely
(Benatallah, Casati et al. 2006).

An assumption sometimes taken (Yellin and Strom
1997; Benatallah, Casati et al. 2006) is an environment
where message transmission is instantaneous, meaning
the FSMs of the sender and receiver for any given
interaction advance in synchrony. While this assumption
is not in line with some communication protocols which
support asynchronous message transfer, it appears
solutions developed under the assumption of synchronous
messaging may be transposable to asynchronous
environments as referred to in Section 6. Thus, we make
this assumption of synchronicity to simplify orchestrator
synthesis.

Having made this assumption about the
communication medium, we also need to adopt a
language for capturing service behaviour. Languages
such as BPMN and BPEL could be used to for this
purpose. However, these languages are complex in terms
of the number of constructs they support, hindering their
suitability as a basis for reasoning about service
behaviour. Also, these languages are meant for capturing
service-oriented business processes rather than capturing
the behaviour that one service exposes to other services.
For example, both languages allow one to capture internal
actions and decisions that a service-oriented process
makes during its execution. However, when capturing
service behaviour for orchestrator synthesis purposes, we
are only interested in capturing the externally visible
behaviour that each service exposes.

In light of this, we adopt FSMs as the language for
capturing service behaviour. This choice is in line with
previous work on component and service behaviour
specification (Yellin and Strom 1997; Benatallah, Casati
et al. 2006; Berardi, Calvanese et al. 2005). Accordingly,
a choreography is captured as a collection of
communicating state machines. This design choice is
further justified in Section 6.

Specifically, we rely on the notion of interface FSM,
which is essentially an FSM where the transitions are
labelled with communication actions — either sending or
receiving a message. To ensure protocols describe only
external behaviour, the FSMs we deal with are
deterministic, meaning that every state is labelled, and for
any given state there are no two outgoing transitions with
exactly the same label. In order to deterministically
model choices based on message content, we use Boolean
guards expressed in terms of message content. For
example to capture the requirement that depending on the
content of a message of type OrderResponse, the FSM
should follow one transition or another, we append
expressions like [processed=true] and [processed=false]
to the message type. Hence, one transition could be

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

labelled with ‘OrderResponse[processed=true]” and
another with ‘OrderResponse[processed=false]’.

The orchestrators synthesised by the algorithm
presented later in the paper, typically perform message
forwarding, and we found that representing a message
forwarding action as separate receive and send transitions
leads to cumbersome models. To simplify the
specification of orchestrators, message exchanges are
represented as a quadruplet Exchange = (pgom : Party,
Po : Party, msg: MessageType, forwarding : Boolean).
This tuple specifies the initial sender of the message, the
final recipient of the message, the type of the message,
and whether the message is directly exchanged between
the two parties or it is received from one party (by the
orchestrator) and forwarded to the other.

Formally, an interface FSM is a tuple (S, s, E, 9)
where:

e S is a set of states. A state is labelled with an
identifier in the case of an elementary state, or a
tuple, possibly with other nested tuples, in the case
of a composite state derived during the merging of
two or more other interface FSMs.

e s, € S is the initial state.

e E is a set of message exchanges specified as
quadruplets, as previously discussed.

e §:SxE— S is a transition function to connect
states via message exchanges.

A behavioural interface is defined as a combination
of an interface FSM and the set of parties the FSM
represents, the pair (P : {Party}, sm : FSM). Normally,
the set of parties P of a behavioural interface will contain
only one element, because a behavioural interface
represents the behaviour that one party exposes to one or
several parties. But in the case of an orchestrator service,
the behavioural interface represents the aggregated
behaviour of multiple subordinated services and P will
contain multiple parties. For convenience, we will use the
term orchestrator interface, as shorthand to refer to the
behavioural interface of an orchestrator service.

Behavioural interfaces of the choreography
participants in our working example are shown in Figures
4 to 6.. These interfaces are based on the Voluntary Inter-
industry Commerce Standard (VICS) for order
management (GS1 US 2007).

buyer

(buyer — supplier,

Order, false)
(supplier — buyer,
OrderResponse[processed=false],
false)

(supplier — buyer,
OrderResponse[processed=true],

(supplier — buyer,
Invoice, false)

(shipper — buyer,
DeliveryNotice, false)

Figure 4: Behavioural interface of the buyer

supplier

(buyer — supplier,

Order, false)

(supplier — buyer,
OrderResponse|[processed=true],
false)

(supplier — buyer,
OrderResponse[processed=false],
false)

(shipper — supplier,

ShippingUpdate, false) ‘e

Figure 5: Behavioural interface of the supplier

| shipper

(supplier — shipper,

(shipper —» supplier. ShippingRequest, false)

ShippingUpdate, false)
(shipper — buyer,
DeliveryNotice, false)

Figure 6: Behavioural interface of the shipper

3 Orchestrator synthesis

The goal of orchestrator synthesis is to generate a
behaviourally compatible message forwarding service
capable of intercepting messages within a given
choreography. In this paper, we propose a synthesis
algorithm which merges interface FSMs from any
number of parties in a choreography to produce an
orchestrator. The algorithm comprises three main
functions and makes use of the following auxiliary
functions:

e For any ordered list L, enqueue(L, n) adds n to the
end of L, and dequeue(L) removes the first
element from the front of L. If n is a list, each
element is added in order to the end of L.

e For a message exchange e, fromParty(e),
toParty(e), msg(e), forwarding(e), retrieve the
corresponding components.

e For a state machine sm, states(sm) returns all
states, initialState(sm) the initial state, and
finalStates(sm) the set of final states, which is
derivable by finding all states having no outgoing
transitions.

e For a composite state ¢, s1(c) and s2(c) return the
two contained states.

e For a transition t, exchange(t) returns the message
exchange, and source(t) and target(t) the source
and target states respectively.

For better logic clarity, d is also characterised as a set
of Transition objects, each composed of a message
exchange, one source and one target state. Also,
unordered sets are denoted by {} and ordered lists by [].

131

CRPIT Volume 96 - Conceptual Modelling 2009

3.1 Synthesis of multiple interfaces

Our algorithm is capable of synthesising any number of
behavioural interfaces forming a choreography into a
single orchestrator interface. The approach used is to
fully merge two of the input interfaces, then merge the
result with a third interface, and so on in pairs, until all
input interfaces have been synthesised into the
orchestrator. This high level processing of taking all input
interfaces and synthesising the orchestrator is performed
by Function 1, synthesise(), and is visualised in Figure 7.
If a deadlock condition is detected while synthesising any
interface pair, synthesise() immediately indicates
synthesis is not possible.

Function: synthesise
Input: I : [Interface]
Output: Interface U Deadlock
Preconditions: [I;| > 2
Variables: synthesised : Interface U Deadlock
begin
synthesised := synthesiselnterfacePair(
dequeue(l,;), dequeue(l,))
if synthesised is Deadlock
return synthesised
end if
while I, # []
synthesised := synthesiselnterfacePair(
synthesised, dequeue(l,))
if synthesised is Deadlock
return synthesised
end if
end while
return synthesised
end

Function 1: synthesise()

Input interfaces must be ordered according to the role
of each interface in the choreography. It is assumed only
one interface FSM can send a message from the initial
state — the others start their execution by receiving a
message. In the case of the choreography involving a
buyer, a supplier and a shipper, the buyer would start the
choreography. The two interfaces exchanging the first
message must be the first two in the input list to ensure
the synthesised orchestrator interface captures the
choreography from start to end. Subsequent interfaces in
the list must appear in the order they come into the
choreography. The effect of this ordering on the working
example is shown in Figure 7.

or or

buyer supplier
| |
Y

| buyer, supplier |

| shipper |

| | |
Y

| buyer, supplier, shipper |

Figure 7: Synthesis of interface pairs showing the
ordering of the input list

132

3.2 Synthesis of an interface pair

A pair of interfaces can be completely merged by
Function 2, synthesiselnterfacePair(), depicted in
Figure 8. This function synchronously traverses the two
input interfaces to build the orchestrator interface by
performing a breadth-first search of the two input FSMs,
and combining the lists of parties represented by both
interfaces. The input FSMs are searched in synchrony by
looking at state pairs where a state pair is composed of a
state from each FSM. Merging a pair of interfaces is
realised with a visitor pattern (Palsberg and Jay 1998) to
perform the breadth-first search.

?

enqueue
first state

v

find ‘must synthesise’
transitions

v

- dequeue
next state

v

obtain transition
pairings

+ for each transition pairing

Q

compute next
composite state
by synchronous
traversal

v

remove traversed
transitions from
‘must synthesise’
transitions

has
next composite
state not been processed,
& is not queued,
& is not
final?

enqueue state

i

is queue
empty?

were all

‘must synthesise’
transitions

synthesised?

return synthesised
interface

é e

Figure 8: Overview of synthesiselnterfacePair()

return deadlock

The root node for performing a breadth first search is
the composite state derived from the two initial states of
input FSMs. This state is the initial state of the
synthesised FSM, and is placed in a queue of states to be
processed. Only composite states are placed in this queue,

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

and each time one is dealt with, it is placed into a pool of
states which have already been processed. Each state is
visited only once. Synthesis of the input pair is complete
when all states have been visited and the queue of states
to visit is empty.

After the initial state has been removed from the
queue, another function attempts to find pairs of message
exchanges that can occur between the two input FSMs. A
match is apparent when both FSMs can synchronously
exchange a message and advance to their next respective
states.

As seen in Function 3, transitionPairings() explores
which messages can be sent or received from the states
currently being processed from each input FSM, and
attempts to find matches. If a match is found, the pair of

transitions is added as a tuple to a set of pairings. If a
match for a transition is not found, it is added to a tuple
with the other element empty, representing that the
interaction cannot yet be orchestrated, which is a normal
situation if the party with which this transition should be
paired has not yet been dealt with. A tuple indicating that
a transition could not be matched is only added to the set
of pairings if the exchange is orchestrated, or is related to
an interface not yet considered for orchestrator synthesis.
Otherwise, the inability to match a given transition with
at least one other transition means that one party can send
a message while the other is not in a state to receive it, or
vice-versa. In some cases, if there is no other way to
progress to a new pair of states from the current pair of
states, this situation indicates a deadlock.

Function: synthesiselnterfacePair

Input: i, = (P,, sm, = {S,, 8¢ a, Ea, 85}) : Interface, i, = (Py, sm, = {Sy, ¢ b, Ep, Op}) : Interface

Output: Interface U Deadlock
Preconditions: Vs € S, , s is ElementaryState
Variables: sy m , Seurrent » Snew » Stoadd : CompositeState
Siovisic - [CompositeState], Syisieq : {CompositeState}
SMy, = {Sw, S0 m> Em, Om} : FSM
t217111ustSynlhesise : {TranSition}7 tbimustSymhesise : {Transition}
€new - Exchange
TP,y : {(Transition, Transition)}
begin

S0 m := (S0_a» S0 b)

states(smy,) = {So m}

enqueue(slo\/isit’ SOim)

Pknown = Pa U Pb

ta mustsynthesise *= 1t € 8, ; € € exchange(t) | fromParty(e) € Pyyown ; toParty(e) € Pyyown ; ~forwarding(e) o t}
th_mussynthesise = {1t € Op ; € € exchange(t) | fromParty(e) € Pynopn ; toParty(e) € Pyown ; —forwarding(e) o t}

Whlle StoVisit 7£ {}
Scurrent = dequeue(slovisil)
Svisited = Svisited U {Scurrent}
TP,y = transitionPairings(i,, $1(Scurrent)s 1bs S2(Scurrent))
for each (t,, t,) in TP,y
if t, # NULL A t, # NULL
Snew = (target(t,), target(ty))

enew = (fromParty(exchange(t,)), toParty(exchange(t,)), msg(exchange(t,)), true)

else if t, = NULL
Snew = (Sl(scurrent)’ target(tb))
€new = exchange(ty)
else
Snew = (target(ta)a sz(scurrent))
€new = exchange(t,)
end if
states(sm,,) := states(sm,) U {Spew}
exchanges(sm,,) := exchanges(sm,,) U {€ucy}
tm = t'm U {(Scun'ema enew) - Snew}
taﬁmustSynthesise = taﬁmustSynthesise \ {ta}
tbimuslSymhesise = tbirnustSymhesise \ {tb}

if Spew & Suisited N\ Snew & Siovisic A 1(S1(Spew) € finalStates(sm,) A s2(s,e,,) € finalStates(smy))

enqueue(slo\/isit’ Snew)
end if
end for
end while
if taimustSynthcsisc 7£ {} \ tanuslSynthcsisc: 75 {}
return Deadlock
end if
return Interface(P, U Py, smy,)
end

Function 2: synthesiseInterfacePair()

133

CRPIT Volume 96 - Conceptual Modelling 2009

Function: transitionPairings
Input: i, = (P,, sm, = (S,, So_a» Es, 8,)) : Interface,
s : State, i, = (P, sm, = (Sp, So b, Eb,) : Interface,
sy : ElementaryState
Output: {(Transition, Transition)}
Preconditions: s, € S,; s, € S,,
Variables: T, : {(Transition, Transition)}
Toutﬁa > Toutib > Tdoneia > Tdoue) : {TranSition}
Pknown : {Party}
begin
Tou 2 = {t € T, | source(t) = s,}
Tou b = {t € Ty | source(t) = s,}
for each t, in Ty ,
for each t, in Ty b
if exchange(t,) = exchange(t,)
Tpairs = Tpairs u {(taa tb)}
Tdoneia = Tdouej U {ta}
Tdoneib = Tdoneib U {tb}
end if
end for
end for
Pknown:=PaU Pb
for each t, in Toy ,
if t, & Tyone o« A (fromParty(exchange(t,)) & Pinown V
toParty(exchange(t,)) € Pyaown) V
forwarding(exchange(t,))
Tpairs = Tpairs u {(tas NULL)}
end if
end for
for each t, in Toy »
if t, & Tyone b A (fromParty(exchange(ty)) & Piuown V
toParty(exchange(t,)) € Piuown) V
forwarding(exchange(t))
Tpairs = Tpairs U {(NULL7 tb)}
end if
end for
return Tpyirs
end

Function 3: transitionPairings()

With respect to the working example, when merging
the pair of behavioural interfaces (buyer, supplier), and
when the pair of states being processed is (buyer 4,
supplier 4) the message exchange (supplier — buyer,
Invoice, false) is not added to the pairings as it is known
this exchange cannot yet occur with the supplier, since
the supplier first needs to send a ShippingRequest to the
shipper. Therefore, for the state (buyer 4, supplier 4) the
pairing function only returns the tuple (NULL,
(supplier — shipper, ShippingRequest, false)) indicating
one non-orchestrated interaction be added to the
orchestrator interface.

If it occurs that the set of message exchange pairings is
empty, then there are no messages that can be
synchronously exchanged in the respective states of the
composite state being processed. Therefore, deadlock is
declared and orchestrator synthesis is terminated. The
partially synthesised orchestrator could also be preserved
if desired. If message exchange pairings are found, they
are added to the orchestrator interface, such that matching
exchange pairs are added as orchestrated exchanges,
where forwarding=true, and others as non-orchestrated
exchanges, where forwarding=false. Based on the result
of pairing message exchanges, a new message transition

134

is added to the synthesised FSM along with a composite
state representative of the synchronous advancement
performed. This new composite state is then queued for
processing, but only if the state has not already been
processed or queued for processing, and is not final.
Synthesis of the two input FSMs is complete once both
have been completely traversed.

With respect to the working example, the composite
state (buyer 4, supplier 4) causes the pairing function to
return (NULL, (supplier — shipper, ShippingRequest,
false)). The non-orchestrated interaction is added to the
orchestrator and the next state leading on from
(buyer 4, supplier 4) is computed. This next state will
involve the same buyer state (buyer 4) since the first
element of the pairing tuple is NULL, and will involve
the next supplier state (supplier 5). The state
(buyer 4, supplier 5) is then added to the queue of states
to visit.

The product of synthesising the buyer and supplier
interfaces is shown in Figure 9, where each state (buyer x,
supplier y) is shortened to (by,sy). All interactions
involving the buyer and supplier are orchestrated since
these parties are fully represented in the orchestrator.
Before the shipper is processed, it is not possible to know
whether its interface FSM is compatible with that of the
other services in the choreography, so interactions
involving the shipper remain non-orchestrated.

Finally, synthesise() processes the shipper interface
and the interface where P = {buyer, supplier} to produce
the complete orchestrator P = {buyer, supplier, shipper}.

| buyer, supplier |

(buyer — supplier,
Order, true)

(supplier — buyer,
OrderResponse[processed=false], true)

(supplier — buyer,
OrderResponse[processed=true], true)

(supplier — shipper,

(shipper — supplier. ShippingRequest, false)

ShippingUpdate, false)
(supplier — buyer,
Invoice, true)

(shipper — buyer,
DeliveryNotice, false)

Figure 9: Result of merging the buyer and
supplier interfaces

The synthesiselnterfacePair function performs a depth-
first search over a graph whose nodes represent pairs of
state — one state from each interface being synthesised.
Each of these ‘state pairs’ is visited at most once.
Similarly, every pair of transitions (one transition from
each of the original state machines) is visited at most
once. Thus the wost-complexity of the algorithm is
O(N*N, + E{*E;) where N; and N, are the number of
states in each of the two interfaces, and E; and E, are the
number of transitions.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

3.3 Deadlock detection

The synthesis algorithm detects deadlock within
synthesiselnterfacePair() by identifying non-synthesised
transitions in both input interfaces which block
synchronous advancement and cause any transition to not
be added to the synthesis product. With respect to our
working example, let’s try to synthesise the interface pair
from Figure 9 and Figure 10. The set of known parties for
this synthesis is {buyer, supplier, shipper} meaning the
synthesised product captures the combined behaviour of
these three parties, and therefore all interactions between
these three parties must be captured as orchestrated
interactions in the synthesised interface.

shipper |

(supplier — shipper,

(shipper — supplier, ShippingRequest, false)

ShippingUpdate, false)
(shipper — supplier,
DeliveryNotice, false)

(shipper — buyer,
DeliveryNotice, false)

Figure 10: Shipper interface with an interaction
causing deadlock

The synthesis algorithm proceeds normally until the
shipper attempts to send a DeliveryNotice to the supplier
(the interaction highlighted in Figure 10). At this stage,
the supplier’s behaviour is already fully captured in the
interface with which the shipper’s interface is being
merged (the interface shown in Figure 9), and it is known
that the supplier can never be in a state where it can
receive a message of type DeliveryNotice. Prior to
attempting synthesis of the interfaces in Figure 9 and
Figure 10, this troublesome transition in the shipper’s
interface is earmarked as being a ‘must synthesise’
transition because it is non-orchestrated and involves only
synthesised parties. Since the transition cannot be
traversed during the synthesis, it remains marked as ‘must
synthesise’, along with any subsequent, unreachable
transitions and other untraversed transitions from the
interface in Figure 9. Deadlock is therefore detected if
any ‘must synthesise’ transition cannot be synthesised.

4 Orchestrator modelling

Synthesised orchestrators provide the grounding for
migrating choreographies to orchestrations, which can
then be augmented with additional functionality, such as
lower-level multi-party message adaptation, or higher-
level value-adding.

While state machines provide a practical bridge
between the two service composition viewpoints, they are
not very readable or maintainable due to state explosion,
a drawback encountered where multiple messages may be
exchanged in any order. In such a scenario, each possible
sequence of message exchanges must be explicitly
represented, leading to verbose FSMs, which although
executable, are not easily maintainable.

Petri nets provide a graphical language capable of
expressing concurrent interactions, and consist of place
nodes, transition nodes, and directed arcs. They have
been used for high level workflow management (van der
Aalst 1998) and on a more detailed level for modelling
process behaviour (Hinz, Schmidt et al. 2005).

4.1 State machines to Petri nets

We leverage the theory of regions (Cortadella,
Kishinevsky et al. 1998) to identify regions of
concurrency in FSMs, and replace these regions with
their concurrent equivalents. The techniques derived from
this theory are implemented in the Petrify tool
(Cortadella, Kishinevsky et al. 1997). By reusing this
tool, we can transform interface FSMs into free-choice
Petri nets with concurrency.

A Petri net is said to be free-choice if and only if for
every two transitions, if they share any input place, they
share all input places (Chrzastowski-Wachtel, Benatallah
et al. 2003). We enforce this restriction to prevent mixing
of choice and synchronisation, which is difficult to
represent in a higher level modelling language. Once
orchestrators are represented as Petri nets, logic is easier
to read, but the model clarity can be further improved for
business users or developers if displayed in a recognised
modelling language such as BPMN or BPEL. We
identified value-adding augmentation as a potential use of
orchestrators, so we developed a technique to translate
Petri nets into BPMN diagrams, so value can be added at
a business level by altering the logic in the diagrams.

4.2 Petri nets to BPMN

We developed a set of rules to transform Petri nets into
BPMN diagrams. These rules are summarised in
Figure 11, where each rule identifies a pattern in the
graph to be replaced by the output specified in the rule.
Dependencies between rules are introduced in order to
reduce the complexity of pattern definitions. An overview
of the rule patterns and outputs is presented in Figure 12,
taking snippets from an extended version of our working
example.

The rules are only concerned with the logic inside the
BPMN pool artefact representing the orchestrator. Other
pools and connecting message flows are not generated by
the rules as they do not affect the control-flow logic.

1: Add start events

2: Add end events

3: Remove places
XOR decisions
4: Map places to XOR merges

9: Map transitions
5: Map places to tg e :
event-based XOR decisions

Figure 11: Rules and their dependencies

6: Add AND forks 7: Add AND joins

8: Map data-based

135

CRPIT Volume 96 - Conceptual Modelling 2009

buyer — supplier
Order

buyer — supplier
Order

L. m O

supplier — buyer O
N OrderResponse[processed=false] €59

supplier — buyer
OrderResponse[processed=false]

~O

Zo.

shipper — airline O shipper — airline N shipper — buyer
@7 FreightPriorityRequest FreightPriorityResponse b a-»| Shipper — buyer 2 DeliveryNotice
DeliveryNotice
c » c
airport — airline K .
shipper — airline shipper — airline b SecurityClearanceResponse b—>| _aerOn — airline
a-» FreightPriorityRequest [| FreightPriorityResponse >b Y i SecurityClearanceResponse
airline — shipper b b airline — shipper > b P b
DeliveryDetails[confidential=true] DeliveryDetails[confidential=true] a-] shipper — airline N shipper — airline
FreightBooking Na ¢ FreightBooking
i hi i hi c
airline — shipper airline — shipper c
S DeliveryDetails[confidential=false] | > C» 2 * DeliveryDetails[confidential=false] [©
shipper — airline d shipper — airline > q a
FreightPriorityRequest FreightPriorityRequest a N
shipper — buyer b ¢ shipper — buyer > ¢
A DeliveryNotice DeliveryNotice
b

supplier — buyer

OrderResponse[processed=true] >b

a
supplier — buyer

OrderResponse[processed=false] >c

processed=true

b
forward 0
» a—» OrderResponse 0
from supplier to buyer;
PP y c a-»

processed=false

b

forward
Order
from buyer to supplier

buyer — supplier
Order

+b»a

Figure 12: Petri net to BPMN transformation rules

We chose to model all message interactions with
BPMN tasks without any BPMN message event elements
to reduce the repetition that is prevalent with message
forwarding, where a message is sent immediately after it
is received. Tasks are therefore used for modelling
message receiving, sending, and forwarding. The
example cases in Figure 12 consider only orchestrated
interactions which forward messages, but the rules are
equally applicable to Petri nets describing interactions of
individual parties, such as the buyer or the supplier. In
such instances, tasks are for sending and receiving only.

5 Validation

We developed tooling to validate the synthesis algorithm
and rule-based transformations. Utilising the Eclipse
Modelling Framework (EMF) we created a graphical
editor to design interface FSMs, which were used by an
implementation of the algorithm to produce models
readable in the same editor. We extracted around two
dozen sample choreographies from two industry
standards for business-to-business interactions, namely
the XML Common business Library (xCBL) (xCBL.org
2000) and the Voluntary Inter-industry Commerce
Standard (VICS) (GS1 US 2007). The examples had
between two and four participants, arranged in different
topologies and with varying numbers of states and
transitions per interface FSM. By altering the FSMs of
choreography participants, we also generated sample
choreographies with deadlocks that the tool was able to
detect.

We noticed state machine orchestrators involving four
parties became very verbose, as pairs of services may
interact independently, thereby confirming the value of
representing orchestrators in a higher-level language such
as BPMN.

The tool for transforming Petri nets into BPMN
diagrams utilises ProM (van Dongen, de Medeiros et al.
2005), a framework for process mining and analysis,

136

which provides a Petri net object model and an API for
invoking the Petrify tool. BPMN diagrams are created
through API and then imported into the BPMN modeller
included in the SOA Tools Platform Project’.

We tested an implementation of the transformation
rules using the collection of choreographies mentioned
above, and successfully automated the generation of
correct BPMN diagrams for orchestrators, and for
individual choreography participants.

6 Related work

The language for service behaviour modelling
proposed in this paper is directly inspired from work in
the area of behaviour specification for software
components and services (Yellin and Strom 1997;
Benatallah, Casati et al. 2006). Our assumption of
synchronous communication is also inspired from this
prior work. Although this assumption may be seen as
inapplicable in some cases, it has been shown that under
some conditions, it is possible to transpose results
obtained under the synchronous communication
assumption to an asynchronous communication medium
(Yellin and Strom 1997; Bultan, Su et al. 2006).

Standard notations for specifying orchestrations and
choreographies include BPMN and BPEL. BPMN is
intended for modelling business processes involving
human tasks and/or automated tasks. Automated tasks in
BPMN are typically delegated to external services. A
BPMN model that includes only service tasks is
essentially an orchestration. BPMN has also been shown
to be suitable for modelling choreographies (Decker and
Barros 2008). BPEL on the other hand, is primarily
intended to model orchestrations. However, it is also
possible to use BPEL for specifying business protocols
(an alternative term for designating behavioural
interfaces), and extensions to BPEL have been proposed

" http://www.eclipse.org/stp/

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

to make it usable for capturing choreographies (Decker,
Kopp et al. 2007).

Both BPMN and BPEL can be translated to Petri nets
using existing techniques. A transformation from BPEL
to state machines is implemented by the WS-Engineer
toolset (Howard, Emmerich et al. 2007). We are not
aware of direct transformations from BPMN to state
machines, but transformations exist from BPMN to Petri
nets (Dijkman, Dumas et al. 2008), which under certain
assumptions can then be expanded into state machines.

A transformation from FSMs to BPEL has also been
proposed (Zhao, Bryant et al. 2005), however this
transformation does not attempt to identify concurrent
regions in the FSM in order to obtain a simpler BPEL
process definition. Instead, the generated BPEL process
definitions are fully sequential (no ‘parallel flow’
activities). Thus, if the original FSM is complex due to
concurrent message exchanges being represented as
interleaved sequences of message exchanges, the
resulting BPEL process definitions will mirror this
complexity.

In this paper, we use techniques from the theory of
regions (Cortadella, Kishinevsky et al. 1998) to transform
state machines to Petri nets. We then show how these
Petri nets can be transformed to BPMN diagrams. Once a
BPMN diagram is obtained, other existing techniques can
be applied to transform these diagrams into BPEL for
implementation purposes (Ouyang, Dumas et al. 2008).

The work presented in this paper can also be related
to work on controllability analysis of service protocols
(Lohmann et al. 2008). Controllability analysis 1is
concerned with the following question: given a service
protocol P, is there a partner protocol P' such that the
choreography consisting of P and P' possesses certain
characteristics such as proper termination? Meanwhile, in
our work we take a choreography as a starting point, and
we derive an orchestrator that is able to interact with all
the existing parties in the choreography in order to
mediate between all their interactions.

7 Conclusion

We have presented a tool chain for synthesising the
behaviour of an orchestrator from a service choreography.
This tool chain effectively provides a basis for altering
the topology of a service-oriented system composed of
services that engage in long-running conversations with
one another.

The tool chain starts with the assumption that
choreographies are represented as communicating FSMs,
and that the communication medium is synchronous. We
argued that state machines provide a suitable starting
point for this tool chain, pointing out that, under
reasonable assumptions, it is possible to transform
choreographies specified using standard languages such
as BPMN and BPEL into FSMs. We also argued that the
assumption of synchronous communication provides a
suitable basis for studying the problem of synthesising
orchestrators from choreographies. Nonetheless, it would
be interesting in future work to study the implications of
relaxing this assumption.

At the core of the proposed tool chain lies an
algorithm that takes as input a choreography captured as a
collection of inter-connected FSMs, and synthesises an

orchestrator, also captured as an FSM. Acknowledging
that FSMs do not provide a suitable basis for capturing
orchestrator interfaces, the tool chain reuses an existing
technique to transform the synthesised FSM into a Petri
net. We then provide a rules-based transformation from
Petri nets to BPMN, thus enabling orchestrator synthesis
from choreographies using standard notations.

The proposed tool chain, including the algorithm for
orchestrator synthesis and the transformation from Petri
nets to BPMN, has been implemented and tested against
choreographies extracted from industry standards.

As discussed in Section 1, orchestrators provide a
single entry point into a service composition, and as such,
they can facilitate the introduction of added value into a
service composition. In particular, orchestrators can act as
single points of payment or as entry points for tracking a
service composition. A direction for future work is to
study the organisational implications and the
opportunities opened by the possibility of changing the
topology of a service composition from a choreographed
style to an orchestrated style.

Acknowledgment: This work was partly funded by an
ARC Linkage Project (LP0669244) co-sponsored by SAP
and Queensland Government.

8 References

Benatallah, B., Casati, F., et al. (2006): Representing,
analysing and managing web service protocols. Data
Knowledge Engineering 58(3):327-357.

Berardi, D., Calvanese, D., De Giacomo, G., Hull, R. and
Mecella, M. (2005): Automatic composition of
transition-based semantic web services with
messaging. Proc. 31st VLDB Conference, Trondheim,
Norway, 613-624, VLDB Endowment.

Bultan, T., Su, J., et al. (2006): Analyzing conversations
of web services. IEEE Internet Computing 10(1):
18-25.

Chrzastowski-Wachtel, P., Benatallah, B., Hamadi, R.,
O’Dell, M. and Susanto, A. (2003): A top-down Petri
net-based approach for dynamic workflow modeling.
Proc. Business Process Management 2003,
Eindhoven, The Netherlands, 336-353, Springer-
Verlag.

Cortadella, J., Kishinevsky, M., Kondratyev, A. Lavagno,
L. and Yakovlev, A. (1997): Petrify: A tool for
manipulating concurrent specifications and synthesis
of asynchronous controllers. IEICE Transactions on
Information and Systems: 3(E80-D):315-325.

Cortadella, J., Kishinevsky, M., et al. (1998): Deriving
Petri nets from finite transition systems. |EEE
Transactions on Computers 47(8): 859-882.

Decker, G. and Barros, A. (2008): Interaction Modeling
using BPMN. In Business Process Management
Workshops, Lecture Notes in Computer Science,
4928:208-219, Springer-Verlag, Germany.

Decker, G., Kopp, O., Leymann, F. and Weske, M.
(2007): BPEL4Chor: Extending BPEL for modeling
choreographies. Proc. International Conference on
Web Services, Salt Lake City, Utah, USA, 296-303,
IEEE.

137

CRPIT Volume 96 - Conceptual Modelling 2009

Dijkman, R. M., Dumas, M. and Ouyang, C. (2008):
Semantics and analysis of business process models in
BPMN. Information and Software Technology, To
appear.

GS1 US: Voluntary Interindustry Commerce Standard
(VICS), http://www.uc-
council.org/ean_ucc_system/stnds and tech/vics_edi.
html. Accessed 18 October 2007.

Hinz, S., Schmidt, K. and Stahl, C. (2005): Transforming
BPEL to Petri nets. Proc. International Conference on
Business Process Management, Nancy, France, 220—
235, Springer-Verlag.

Howard, F., Emmerich, W., Kramer, J., Magee, J.,
Rosenbalum, D. and Uchitel, S. (2007): Model
checking service compositions under resource
constraints. Proc. ESEC/FSE’07. Cavtat near
Dubrovnik, Croatia, 225-234, ACM.

Lohmann, N., Massuthe, P., Stahl, C. and Weinberg, D.
(2008): Analyzing interacting WS-BPEL processes
using flexible model generation. Data Knowledge
Engineering 64(1):38-54.

OASIS (2007): Web Services Business Process Execution

Language Version 2.0, http://docs.oasis-
open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.pdf.
Accessed 4 February 2008.

Object Management Group (2008): Business Process
Modeling Notation, vl.1,
http://www.omg.org/docs/formal/08-01-17.pdf.
Accessed 24 March 2008.

Ouyang, C., Dumas, M., ter Hofstede, A. H. M., van der
Aalst, W. M. P. (2008): Pattern-based translation of
BPMN process models to BPEL web services.
International Journal of Web Services Research
5(1):42-61.

Palsberg, J. and Jay, C. (1998): The essence of the visitor
pattern. Proc. 22nd IEEE International Computer
Software and Applications Conference, Vienna,
Austria, 9-15, IEEE.

Peltz, C. (2003): Web services orchestration and
choreography. IEEE Computer 36(10):46-52.

van der Aalst, W. M. P. (1998): The application of Petri
nets to workflow management. Journal of Circuits,
Systems and Computers 8(1):21-66.

van Dongen, B., de Medeiros, A., Verbeek, H., Weijters,
A., and van der Aalst, W. (2005): The ProM
framework: A New Era in Process Mining Tool
Support. Proc. 26th International Conference on
Application and Theory of Petri Nets (ATPN), Miami,
Florida, 444-454, Springer-Verlag.

xCBL.org (2003): XML Common Business Library,
http://www.xcbl.org/xcbl40/documentation.shtml.
Accessed 12 September 2007.

Yellin, D. M. and Strom, R. E. (1997): Protocol
specifications and component adaptors. ACM
Transactions on Programming Languages and
Systems 19(2):292-333.

138

Zhao, W., Bryant, B.R., Cao, F., Bhattacharya, K. and
Hauser, R. (2005): Transforming Business Process
Models: Enabling Programming at a Higher Level.
Proc. IEEE International Conference on Services
Computing (SCC), Orlando, FL, USA, 173-180.
IEEE.

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Towards Accurate Conflict Detection in a VCS for Model Artifacts:
A Comparison of Two Semantically Enhanced Approaches

Kerstin Altmanninger

Gabriele Kotsis

Department of Telecooperation
Johannes Kepler University Linz, Austria
Email: [kerstin.altmanninger|gabriele.kotsis]@jku.ac.at

Abstract

In collaborative software development the utilization
of Version Control Systems (VCSs) is a must. For
this important task some graph-based VCSs for model
artifacts already emerged. Optimistic approaches,
which are nowadays the designated ones, allow paral-
lel editing of one resource and therefore changes can
result in conflicts and inconsistencies. To be flexi-
ble for the ever increasing variety of modeling envi-
ronments and languages VCSs should be independent
of the modeling environment and applicable on any
modeling language. Those VCS characteristics impli-
cate a lack of information for the conflict detection
method by virtue of firstly receiving solely the state
of an artifact without concrete editing operations and
secondly due to unavailable knowledge about the se-
mantics of a modeling language. In such VCSs incon-
sistencies would even arise more often. Hence, accu-
rate conflict detection methods are indispensable for
the realization of optimistic, environment and lan-
guage independent VCSs. This can be achieved by
providing some understanding about the models’s se-
mantics which is possible by specifying machine inter-
pretable formal semantics. Therefore, in this work, a
comparison of two semantically enhanced conflict de-
tection approaches is presented with respect to their
suitability for the integration in an optimistic, envi-
ronment and language independent VCS for model
artifacts to achieve more accurate conflict reports.

Keywords: Version Control System, parallel model
development, model evolution, model comparison,
conflict detection, model consistency, model-driven
engineering.

1 Introduction

The shift from code-centric to model-centric software
development places models as first class artifacts in
model-driven engineering (MDE). A major prerequi-
site for the wide acceptance of MDE is the availabil-
ity of proper methods and tools for traditional soft-
ware development, such as build tools, test frame-
works or Version Control Systems (VCSs). Consid-
ering the latter, VCSs are particularly essential to
enable collaborative editing and sharing of model ar-
tifacts like UML, ER or domain specific modeling lan-
guages (DSML) models.

Different systems use different strategies to pro-
vide collaborative editing. With the utilization of

Copyright (©2009, Australian Computer Society, Inc. This
paper appeared at the Sixth Asia-Pacific Conference on Con-
ceptual Modelling (APCCM 2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 96, Markus Kirchberg and
Sebastian Link, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

pessimistic VCSs, model developers can work on the
same set of model artifacts. Parallel editing of the
same artifact is prevented by locking. Optimistic
VCSs instead are crucial when the development pro-
cess proceeds in parallel. Those systems enable each
model developer to work on a personal copy of a
model artifact, which may result in conflicting mod-
ifications. Such conflicting modifications need to be
resolved and finally merged by appropriate techniques
for model comparison, conflict detection, conflict res-
olution and merging.

Ceneric VCSs like CVYTor Subversion?] are not ap-
plicable to model artifacts since they apply text-based
comparison in a line-based manner and therefore can-
not provide adequate conflict reports. Graph-based
techniques instead need to be utilized to preserve the
logical structure of model artifacts.

Most current optimistic, graph-based VCSs for
model artifacts are coupled to a specific modeling en-
vironment e.g., the IBM Rational Software Architect
(RSA)E Since modelers evolve models for different
system stages and application areas they also utilize
different modeling environments e.g., for each pur-
pose or language the most appropriate or preferred
one. Environment specific VCSs are not widely ap-
plicable and modelers are bounded to a specific mod-
eling environment. Hence, the kind of coupling of
the version control functionalities to a model envi-
ronment is essential. Therefore, standalone VCSs, so-
called environment independent VCSs, like Odyssey-
VCS (Murta et al.[|2008) are preferable. Such sys-
tems allow modelers to use their modeling environ-
ment of preference for editing their model artifacts
which leads to a better acceptance of the VCS.

In view of the fact that MDE is not only about
UML and in the light of a growing number of DSMLs,
VCSs which are solely applicable on specific model-
ing languages are often not usable. E.g., approaches
of VCSs like |Cicchetti et al. (2008), |Oda & Saeki
(2005) and RSA provide solely versioning capabilities
for UML models. Hence, the number of supported
modeling language is an important characteristic of a
VCS. A modeling language independent (e.g., MOF-
based) VCS like Odyssey-VCS (Murta et al.|[2008)) is
desirable. Summing up, the utilization of an environ-
ment and language independent VCS is of interest for
model developers since they can choose their preferred
modeling environment for editing model artifacts and
furthermore can use the VCS for a number of model-
ing languages.

To achieve a merged, consistent model artifact an
accurate conflict detection method is essential. To
find out the accuracy of the conflict detection method
the definition of [Leser & Naumann| (2006]) to deter-

1 http://www.nongnu.org/cvs/

Zhttp://subversion.tigris.org/

3http://www-306.ibm.com/sof tware/awdtools/architect/
swarchitect/

139

http://www.nongnu.org/cvs/
http://subversion.tigris.org/
http://www-306.ibm.com/software/awdtools/architect/swarchitect/
http://www-306.ibm.com/software/awdtools/architect/swarchitect/

CRPIT Volume 96 - Conceptual Modelling 2009

mine the effectiveness of the method can be applied.
Therefore, the results gained of the conflict detection
method and the actual perception in the reality are
considered. With the result true-positive, a conflict
has been detected by the conflict detection method
and in reality. Accordingly, the result true-negative
states that a conflict has neither been detected by
the method nor in reality. Those two results corre-
spond to the best case for accurate conflict detection.
The accuracy of the method can be reduced by false-
positive and false-negative results. Those are conflicts
reported by the method which are actually no con-
flicts in reality or those which have not been detected
by the method.

For dealing with concurrent modifications on mod-
els, in an environment independent and language in-
dependent VCS, the concentration on the reduction
of false-negative and false-positive results is partic-
ularly essential and more challenging. Firstly, envi-
ronment independent VCS can only operate on the
state of a model artifact whereas environment spe-
cific VCSs can trace the modification performed by
the developers. Since environment specific VCSs re-
ceive a editing history those systems dispose of more
information for the conflict detection method than
environment independent VCSs (Antkiewicz & Czar-
necki|[2007), Dig et al.[2008). Secondly, VCSs for spe-
cific languages can provide language specific conflict
reports and therefore gain more accuracy in conflict
detection opposed to language independent VCS ap-
proaches. For language independent VCS the method
to detect conflicts must be general for any modeling
language and therefore can not rely on the model lan-
guages’ semantics. Hence, it is necessary not only to
consider the logical structure of models in terms of a
graph-based representation but also to “understand”
the model’s semantics in order to provide more accu-
rate identification of conflicts. This can be achieved
with different techniques by specifying the modeling
languages semantics for semantic conflict detection
between concurrently edited model versions.

The remainder of this paper is structured as fol-
lows: Section [2] motivates the need for semantic spec-
ifications in order to provide an accurate conflict de-
tection method. In Section [3] a case study is given
which depicts two elaborated semantically enhanced
conflict detection approaches by means of a concrete
example. Further on, the findings gained out of the
case study are discussed. Sectionépresents related
work and finally a conclusion and future prospects is
given in Section

2 Semantics for Accurate Conflict Detection

Conflict Detection. In the following, a scenario
in ¢ VCS in which two developers concurrently edit
a copy of one and the same model artifact is consid-
ered. Thus, the developer who submits the edited
model first can proceed with the check-in without
any additional effort. The developer who submits the
edited model version to the VCS secondly, needs to
go through the basic VCS phases (comparison, con-
flict detection, conflict resolution and merge). After
accomplishing this task (s)he can check-in a merged
version of the edited model versions.

Because the history of editing operations is not
available in an environment independent system the
changes performed by the developers need to be iden-
tified in the first phase. In other words, the structural
features of the model artifacts, namely the attributes
and references of a model element, are inspected by
applying a 3-way-comparison (Mens|2002). Therefore
the differences between the model artifact (V') which
is going to be checked-in and its ancestor version (V)

140

and the differences between the last revision (V') in
the VCS repository and V' are calculated. The input
for the comparison phase constitutes a XMI serializa-
tion of the three different versions of the model arti-
facts. The result of this comparison phase, based on
identifying attributes designated in the metamodel, is
a structural diff comprising added, deleted, and
updated elements (Altmanninger|2008]). In the sec-
ond phase, conflict detection, techniques to detect
conflicting situations on basis of the two structural
diffs resulting from the 3-way comparison phase are
provided. Conflicts, however, are presented through
concurrent operations of one and the same model ele-
ment like update-update or update-delete operations.
Furthermore concurrent create-create operations may
also lead to a conflict if they differ in their properties.
Those conflicts, also called syntactic conflicts (Alt-
manninger| 2008) because they are detected through
a structural comparison of the syntax of the model
artifacts, need to be resolved by the model developer.
Otherwise the model versions cannot be merged and
stored in the repository.

Problems. Since editing operations between model
versions are not available in an environment indepen-
dent VCS and the method is not aligned to a specific
modeling language, some conflicts between different
model artifacts may remain hidden or are no actual
conflicts in reality. This insufficiency can be ascribed
to the fact that the conflict detection method has too
little information about the meaning of the model ar-
tifacts under comparison.

For example, if a false-positive result is received
it means that a conflict has been detected by the
method which does not constitute a conflict in real-
ity. The reason for such a result is raised by structural
modifications performed by developers on model ar-
tifacts, which do not actually change the meaning of
a model. More concrete, some modeling languages
offer different ways to express one and the same cir-
cumstance. For example, in UML activity diagrams,
decision nodes as well as conditional nodes are two
equivalent ways to express alternative branches in a
process, which could in fact result in a conflict if
two developers edit a model concurrently by using
different, semantically equivalent modeling concepts.
Hence, to avoid a false-positive result, a mechanism is
needed to express the semantics of those constructs to
identify them as equivalent concepts. If an equivalent
concept, however, has been detected the model devel-
oper has to be informed about this circumstance and
should be able to store both “semantically equivalent
concepts”.

Moreover, the situation can occur that the method
does not detect a conflict which is actually one in real-
ity (false-negative). For example, concurrent modifi-
cations on a model may not result in an obvious con-
flict when syntactically different parts of the model
(e.g., different model elements) were edited. Never-
theless, they may interfere with each other due to side
effects (Thione & Perry| 2005, [Shao et al.|2007, [Mens
2002)), thus yielding an actual conflict, which, with-
out considering the model’s semantics, would remain
hidden. Reasons could be, firstly, the violation of
constraints, relationships or context conditions (static
semantics) which cannot be operated on by utilizing
a solely structural difference computation algorithm.
Secondly, also concurrent changes of the behavior of
a model artifact could affect a merged model arti-
fact not incorporating behavioral side-effects (behav-
ioral semantics). Such, also called semantic conflicts
(Altmanninger|2008) should additionally be reported
to the model developer. Opposed to syntactic con-
flicts, semantic conflicts do not need to be resolved

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

[yes] [no]
() [reexamination]
5}
23 Hold
=0 Correct)[Determine Consultation
5 < & Banh i P o L@
no
; Notify
Students
B
s e ST T T T T \
E Revision 0: $ © Revision 1: 9 *Check_in 1 Revision 2: Q H
5 % ‘ Q |
= Exams | :
1 Determine Exams : Determine Marks 1
e Marks i L :
e check-in (Send Marks to the |
1= vV Marks [yes] Quality Assurance fves]| !
E ;4 1 Department !
=N] Hold ¢7_j..E!E::§;—————————jL i
' & St’\li%téf%/ls Consultation ! w#\b '
; Hours [Notify][Hol_d Consul—] [re- ! Notify) (Hold Consul| [restany | !
i L Students J (tation Hours J - inasg 1 [Students] tation Hours] inﬁ ;
E T — [no] 3 + [no]
o Hold
» © Consultation
o Send Marks Hours
) o Correct | [Determinel\| to the Quality @
< f Exams Marks Assurance
T o Department Notify
= Students

Figure 1: VCS check-in process of UML activity diagram versions.

by the model developer since the model versions can
be merged if no syntactic conflict has been detected.
Semantic conflicts, therefore, serve as additional no-
tification mechanisms to model developers that the
consistency of the resulting model version after the
merge cannot be guaranteed without resolving the se-
mantic conflict(s).

As described, to reduce false-positive and false-
negative results to achieve an accurate conflict detec-
tion method, some understanding about the model’s
semantics is essential. Concretely, as identified previ-
ously, the specification of the three semantic aspects
(Altmanninger et al|2007), namely equivalent con-
cepts, static, and behavioral semantics, of modeling
languages need to be provided. In order to achieve
this goal, a VCS needs an enhancement to cope with
these issues. An algorithm, which checks the model
versions for semantic interferences with pairwise com-
parison, would solve the previously mentioned issues
to achieve more accurate conflict detection. This
technique, however, is not feasible since it may need a
lot of computing power if working on large and com-
plex models. Moreover a more abstract approach is
desirable to ease the maintenance of the conflict de-
tection method.

Solution. To enhance the conflict detection method
the meaning about the models semantics need to be
specified in a formal manner. Neither implicit se-
mantics, which are not formalized at all, nor informal
semantics, solely understandable by humans, can be
taken into account for conflict detection in a VCS
since they cannot be processed by machines. Instead,
formal semantics, with which it is possible to define a
semantic mapping which is a functional or relational
definition that relates both, the elements of the syn-
tax and the elements of the semantic domain, need
to be considered. Many different kinds of formal se-

mantics evolved according to various application ar-
eas and disciplines (Harel & Rumpe 2004} [Uschold|
2003), [Sheth et al| 2005, [Sheth & Gomadam]| 2007,
Slonneger & Kurtz|[1995). Those different kinds of
formal semantics vary mainly in the used formalism
to express the semantic domain and the according
mapping. Therefore, two possibilities to express se-
mantics exist, which can also be found in a mixed
presentation, namely in pure mathematics (Broy et al.
2006) or in the metamodeling language (Clark et al.
2008)). Depending on the purpose of the semantic
description, mathematics are utilized when the mod-
eling language, for which semantics should be defined,
does not conveniently provide the appropriate mech-
anisms ones need (e.g., Formal Semantics for UMIJ*).
To enable more accurate conflict detection both for-
malisms (mathematics and metamodeling languages)
can be utilized.

3 Case Study

The case study was conducted solely on behavioral
modeling languages since only those are capable to
cover all three semantic aspects mentioned before.
Therefore, the DSML Web Services Business Pro-
cess Execution Language (WSBPEL) (OASIS|
|Altmanninger et al.[2007) and a subset of the gen-
eral purpose language L activity diagram have
been deployed. To receive comprehensive comparison
results of the applicability of the two semantic for-
malisms both modeling languages have been applied
and examples for all three semantic aspects have been
established.

In the following, an extract of the case study is pre-
sented in terms of an UML activity diagram example.
To start with, the environment and language inde-
pendent comparison and conflict detection method is

“http://www.cs.queensu.ca/~stl/internal/uml2/

141

http://www.cs.queensu.ca/~stl/internal/uml2/

CRPIT Volume 96 - Conceptual Modelling 2009

V' ... Sally’s edited version

IN
. 12 [reexamination]
MN1 ?%
9

Correct
Determine

V ... source version

IN $
1
Correct

V" ... Harry’s edited version

IN 3
1
Correct

2 2

Determine Determine
3 3

4 4%5 N Send Marks to the
FK1 3 Aeces | e, N AN5 | Quality Assurance
10 4 ! i N
< CO | ; Hold ‘co 3 Department
4 5 opy: Notify | |consultation| ana L,,Py/ 13

5 AN4 | Students Hours 4 K1

. Hold 6 I_\l rl 7 4\ Vv 5
AN3 Notify | |consultation -

Students Hours IN1 Notif Hold

!,8 AN3 Studer%lts Consultation| AN4
7 Hours

S

[no reexamination]

®
J

\l/_|7

JN1 T LT TTTTTTTTTTTmTTTTmT T ToTTToTToToTToToTooToTooooTooooog JN1 T
CIN ... InitialNode FK ... ForkNode MN ... MergeNode | 8

8
EN @ ! AN ... ActionNode

JN ... JoinNode FN ... FinalNode

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, i " @

Tn

Figure 2: UML activity diagram versions with their according element names.

applied on the UML activity diagram model artifacts.
Subsequently, two different semantically enhanced ap-
proaches are explained. Both of them can detect
an additional semantic conflict between the parallel
edited UML activity diagram model artifacts. To
elaborate the advantages and disadvantages of those
approaches the findings out of the case study are dis-
cussed.

3.1 Environment and Language Independent
Conflict Detection

Fig. [I]illustrates a scenario for a typical check-in pro-
cess of a VCS where two developers (Sally & Harry)
concurrently edited copies of an UML activity dia-
gram. The UML activity diagram in the scenario en-
capsulates the procedure for assessment of examina-
tions. Sally edits her personal working copy by adding
an additional DecisionNode reexamination. If a re-
examination for the examination is provided, the con-
trol flow edge’s target is a new inserted MergeNode
in front of the first activity in the procedure. Other-
wise the control flow edge’s target is the JoinNode
at the end of the procedure. Sally submits her edited
working copy (V') first to the repository. Since the
last version in the repository (V') is the one she cre-
ated a working copy of the check-in process can pro-
ceed. Harry has edited his personal working copy
by adding an ActionNode after the determination
of marks. Harry, then wants to check-in his version
(V). Since Sally submitted her version first, Harry
needs to apply the VCS check-in phases to obtain a
finally merged version. The conflict detection method
operating on the abstract syntax of the model versions
is not capable to understand the semantics e.g., of a
control flow, concurrency or data flow which can be
expressed by UML activity diagram. Hence, no con-
flict is reported and the editing operations of both
developers are merged.

In Fig. abbreviations for the ControlNodes
and ActionNodes and numbers for the names of the
ActivityEdges of the UML activity diagrams are in-
troduced for the description of the environment and
language independent comparison and conflict detec-
tion method.

In Listing 1 the differences and according con-
flict sets between the three different versions of
the UML activity diagrams are stated. Therefore
the method described in previous works (Altman-
ninger| 2008, |Altmanninger et al. |2007)) is applied.
The structural differences between the source ver-
sion (V) and the edited versions (V’, V) are com-

142

puted in the sets Creates, Deletes and Updates.
The computed sets of differences then serve as in-
put to detect conflicts (Con) which origin through
concurrent create-create (CrCon), update-update
(UpdCon) and delete-update (DelCon) editing op-
erations.

Creates '={V’—V}={MN1,9,10 ,DN1,11,12}

Updates '={V—>select (e|e.isUpdated (V,V’))}
={1(REFS) ,AN1(ROL) ,FK1(REFS) ,JN1(ROL)}

Deletes '={V-V’}={}

Creates”={V’—V}={AN5,13}

Updates”={V—>select (e|e.isUpdated (V,V"))}
={3(REFS) ,FK1(ROL) }

Deletes”={V-V"}={}

CrCon={Creates '—>intersection (Creates”)
—>select (e|e.areNotEqual (V' ,V"))}={}

UpdCon={Updates ’—>intersection (Updates”)
—>select (e|e.areNotEqual(V’ ,V”))}={}

DelCon={(Updates '—>intersection (Deletes”))
—>union (Updates”—>intersection (Deletes’))}={}

Con={UpdCon—>union (CrCon—>union (DelCon))}={}

Listing 1: Conflict detection between the UML activ-
ity diagram versions.

Between the edited model versions of Sally &
Harry no conflict could be detected, with the struc-
tural difference computation and conflict detection
method, despite the fact that semantically interfer-
ences exist. A semantic conflict should be reported in
order to make Harry aware of the situation that the
source and the set of targets of FFK1 have been con-
currently edited. This means, if the two versions of
Sally & Harry are merged, the resulting UML activity
diagram provides a ForkNode which has been con-
currently updated (update-update conflict) by both
developers. The model developer needs to obtain a
notification about this semantic conflict in order to
be able to react appropriately to prevent an incorrect
merging of model versions as it would be the case for
this example. Hence, a technique which incorporates
the comparison of the control flow is essential. In
the following two approaches to tackle this task are
presented.

3.2 Semantically Enhanced Conflict Detec-
tion

Mathematical-based Approach: [Dingel et al.
(2006) present in their work a basic abstract syn-
tax for activity diagrams using simple set-theoretical

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Subset of the UML Activity Diagram Metamodel

——@| ActivityDiagram [@—————
+edges 4 4 *nodes : GanttChart
* * ‘
¥ +incoming +arget 1]
ActivityEdge ActivityNode
* i 1
+outgoing +source i 1
N NamedElement
I T] ; +asks —{>+name
ObjectNode ControlNode ActionNode
Y .
[I T 1 1 :
FinalNode | | JoinNode InitialNode MergeNode ForkNode | ! Task —
1 +UID
$ *
1 1
ActivityFinalNode FlowFinalNode DecisionNode +predecessors

V' ... Sally’s edited version

V ... Gantt chart source version

V" ... Harry’s edited version

Initial State Initial State Initial State
[Correct Exams [Correct Exams [Correct Exams
s Betermine Marks‘\ ,1 Determine Marks b Betermine Marks\

K oty Sudens)e—{— < copy’

Hold Consultation
Hours J

—| Reexamination?
Final State

Notify Students

Hold Consultation
Hours

Send Marks to the Quality
Assurance Department

Notify Students

Hold Consultation
Hours

Final State

Final State

Figure 3: UML activity diagram and Gantt chart metamodels and according transformation to obtain the

Gantt chart model versions.

Table 1: Mathematical instances of the UML activity
diagram versions.

Sally’s edited Source Harry’s edited
version version version
(1,IN,AN1) (1,IN,AN1) (1,IN,AN1)
(2,AN1,AN2) (2,AN1,AN2) | (2,AN1,AN2)
(4,AN2,AN3) (4,AN2,AN3) | (3,AN2,AN5)—cr
(5,AN2,AN4) (5,AN2,AN4) | (4,AN5,AN3)—upd
(6,AN3,FN) (6,AN3,FN) (5,AN5,AN4)—upd
(7,AN4,FN) (7,AN4,FN) (6,AN3,FN)
(10,AN2,DN1)—cr (7,AN4,FN)
(11,DN1,FN)—cr

(12,DN1,AN1)—cr

notation. To detect the conflict between the con-
currently edited model versions of Sally & Harr
the definition for the control flow from
(2006) can be utilized but need to be modified for
the sake of detecting additional conflicts. A con-
trol flow is defined as an ActivityEdge that starts an
ActivityNode after the previous one is finished. Nei-
ther objects nor data may pass along a control flow
edge. Therefore, cf € ControlFlow is defined as a
3-tuple cf = (name, source, target) where

1. name € String is the name/identifier of this
ActivityEdge.

2. source € InitialNode U DecisionNode U
ActionNode is the source of this control flow
ActivityEdge.

3. target € FinalNode U DecisionNode U
ActionNode is the target of this control flow
ActivityEdge.

Applying the definition for the control flow on the
three different model versions the results stated in Ta-
ble[l|can be identified. A conflict detection algorithm
computed on those 3-tuple instances of the mathe-
matical definition can now detect a create-create con-
flict on basis of concurrent specified different targets
for control flows for the source node AN2.

Metamodel-based Approach: To detect a se-
mantic conflict due to concurrent updates of the con-
trol flow the problem domain can also be abstracted
by means of a metamodel (e.g., a Gantt chart) and
according transformation.

In the top of Fig. [3| both metamodels are stated
with an associated transformation which maps the
root ActivityDiagram element to the GanttChart
element, the InitialNode element to a Task with-
out predecessors and each FinalNode, DecisionN ode
and ActionN ode element to a T'ask with their accord-
ing predecessor elements.

Creates ’={DN1}

Deletes '={}

Updates >={AN1(REFS) ,FN(REFS) ,AN2(ROL)}
Creates”={AN5}

Deletes”={}

Updates”={AN3(REFS) ,AN4(REFS) ,AN2(ROL) }
CrCon=DelCon={}

UpdCon={AN2(ROL) }

Con={AN2(ROL) }

Listing 2: Conflict detection between the Gantt chart
model versions.

Applying the transformation on the UML activ-
ity diagram versions (cf. bottom of Fig. the
conflict detection method, as given in Listing 1 on
the UML activity diagram versions, can now be de-
ployed on the Gantt chart models (cf. Listing 2).

143

CRPIT Volume 96 - Conceptual Modelling 2009

Since those model versions make explicit the control
flows between the actions/tasks consequently an addi-
tional semantic conflict can be reported. Specifically,
the conflict occurred through a concurrent update of
both developers of the references pointing to the node
AN2.

This kind of semantic specification for more accu-
rate conflict detection has been realized in preceding
work in SMoVer, the “Semantically Enhanced Model
Version Control System”| (Altmanninger|2008). De-
pending on the type of conflict, which should be
avoided or detected, various “semantic view defini-
tions” (target metamodels and transformations) can
be specified. Each semantic view definition provided
by SMoVer belongs to one of the three semantic as-
pects and holds a unique name which briefly describes
the purpose. How complex and explicit such defini-
tions are designed fully relies on the liability of the
SMoVer administrator. He/She has to define a set
of semantic view definitions for a specific modeling
language all at once when setting-up the VCS or evo-
lutionary so that a group of developers can collabo-
rative edit model artifacts.

3.3 Discussion

As experiences and the above mentioned example
showed, conflict detection is not restricted to mere
structural difference detection, but with sophisticated
methods also conflicts on a semantic level can be
avoided and additional ones detected.

Comparison of the different approaches. For
the comparison of the suitability of the approaches for
the integration in an optimistic, environment and lan-
guage independent VCS four important dimensions
could be identified (cf. Table [2)).

Starting with the first dimension, both approaches
for semantically enhanced conflict detection are ca-
pable to define all three semantic aspects impor-
tant for conflict detection in order to avoid conflicts
due to the definition of equivalent concepts and to
detect additional static and behavioral semantic con-
flicts. To tackle this task, mathematics can be uti-
lized. Those are often called as more precise because
people who communicate using mathematical termi-
nology and notation tend to define things mathemat-
ically and therefore precise as well (Harel & Rumpe
2004, [Broy et al.||2006). Nevertheless, sometimes
mathematical techniques are not quite intuitive and
thus need readers to cope with it. In the contrary, the
utilization of transformations to different metamod-
els for the definition of semantics allows to directly
execute those transformations using existing mech-
anisms. Furthermore no knowledge about a differ-
ent notation for VCS administrators and model de-
velopers is needed. VCS administrators can spec-
ify new metamodels and according transformations
to guarantee more accurate conflict detection with
well known techniques (metamodels & transforma-
tions) and is therefore fast adaptable in an evolutional
manner.

In order to be able to compute semantic con-
flicts, for the mathematical-based approach, an in-
terpreter of the defined rules has to be developed. By
transforming the source model versions in a differ-
ent probably more abstract representation, with the
metamodel-based approach, the target models pro-
vide essential advantages compared to the mathemat-
ical approach. With this approach, the same compar-
ison and conflict detection method as utilized for the
source model versions can be applied on the target

Shttp://smover.tk.uni-linz.ac.at/

144

Table 2: Comparison of the two semantic specification
approaches.

Z

218 2. 2

) =] f o =

< &8 2¢g &

g A ARG -

o S 21828 5|8 2|8 =a

g 2 2| £|= 8 @

o = s | s 3|8 E|8&

2 e g E +| @ &S| =2 &

= 5] o 5]) . o) (5] o

< A »n|lwn A|» Ok o
Mathematical-based + — — partially
Metamodel-based + + + partially

models. Moreover, the conflicts computed between
the target model versions can be simply traced back
to the source models by the model elements IDs.

For the mathematical-based approach a presen-
tation of the conflicting situation as visualized in
Table [I] would not be sufficient for model developers
because it cannot be assumed that all model devel-
opers understand the mathematical instances of the
model artifacts. Therefore an additional technique
need to be developed to present the reason of the
detected semantic conflict. In the metamodel-based
approach, the model developers benefit from the auto-
matically received presentation of the model versions
in the semantic views which can be displayed to the
developers without enormous additional effort. The
model versions are represented in an abstract manner
in each semantic view and therefore serve addition-
ally for a better understanding about the conflicting
situation.

For the definition of the semantic aspects for accu-
rate conflict detection formal mathematical semantic
specification, like those from |Dingel et al.| (2006]) and
Broy et al. (2006)), can be reused to some extent as
visualized in the preceding example. Reuse can also
be enabled for the metamodel-based semantic specifi-
cation approach. For instance, examples of the Atlas
Transformation Language (ATL) Websiteﬁ (Allilaire
et al.[2006]), a metamodel of a dependency graph (Alt-
manninger et al.2007), a object life cycle (Ryndina
et al.[2000) or Petri Nets (Farooq et al.|2007)) can
be applied for the purpose of making explicit specific
aspects of a modeling language. In the UML activit
diagram example out of the case study (cf. Section [3))
e.g., the transformation of a UML activity diagram in
a MSProject model of the ATL Transformation Web-
site has been slightly adapted and reused for a differ-
ent purpose, for making explicit the control flow for
the sake of conflict detection.

Summing up, the metamodel-based approach, to
gain accurate conflict detection, can be identified as
less time-consuming and complex to implement. No
additional comparison and conflict detection algo-
rithm has to be invented for the models in the se-
mantic view. Furthermore, the representation of the
conflicts can be visualized on the models in the se-
mantic view and can also be easily traced back to the
original model versions contrary to the mathematical-
based approach. Moreover, the model developers gain
more support by the metamodel-based approach since
they can view the detected semantic conflicts in the
according semantic views, without the need of addi-
tional knowledge like the understanding of mathemat-
ical rules.

Expedient employment of the semantically en-
hanced approaches. The case study on different
modeling languages (DSMLs and a subset of UML)

Shttp://www.eclipse.org/m2m/atl/atlTransformations/

http://smover.tk.uni-linz.ac.at/
http://www.eclipse.org/m2m/atl/atlTransformations/

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

has revealed that different modeling languages pro-
vide different results of the conflict detection method
without incorporating the semantics of a model. For
a small DSML with few concepts like a metamodel
of a Gantt chart (comprising tasks and references on
predecessor tasks) no equivalent concepts can be de-
fined to avoid conflicts and the abstraction level of
the metamodel cannot be raised to find additional
conflicts. Hence, the conflict detection method al-
ready computes almost solely true-positive results
and therefore cannot be made more accurate. In the
opposite if utilizing a language independent VCS with
e.g., the general purpose language UML, the effec-
tiveness of the language independent conflict detec-
tion method may not be satisfactory. UML, com-
pared to DSMLs, provides much richer concepts and
is more ambiguous. The more concepts a languages
provides the more likely it is to have equivalent con-
cepts. Furthermore constraints need to be considered
to control the models conforming to the language.
Consequently, an effective conflict detection method
for complex DSMLs or UML models needs informa-
tion about the models’ semantics unlike for simple
DSMLs.

4 Related Work

Besides SMoVer currently no optimistic, environment
and language independent VCS with semantic en-
hancements for more accurate conflict detection on
model artifacts exists.

Only two optimistic, environment independent but
language specific approaches support semantically en-
hanced conflict detection to gain more accurate con-
flict reports. In the area of model engineering, |Cic-
chetti et al.| (2008) present an approach, which has not
yet been implemented, for providing semantic aware-
ness for the conflict detection method for UML mod-
els. Concretely, |Cicchetti et al.| (2008) propose to
leverage conflict detection and resolution by adopt-
ing design-oriented descriptions endowed with cus-
tom conflict specifications. Hence, several conflict-
ing situations, which can not be captured by a priori
structural conflict detection mechanism can be spec-
ified that they refer to as “domain specific conflicts”.
The developers, however, are forced to enumerate all
wrong cases in form of weaving models, which nega-
tively affects the usability and scalability of the ap-
proach. Therefore, in the work of |Cicchetti et al.
(2008), each modification, which is not allowed to
preserve a design pattern and the design pattern it-
self have to be specified in a weaving pattern (as they
exemplified for the singleton design pattern). The ap-
proach of |Cicchetti et al.| (2008]) focuses on the detec-
tion of previously undiscovered conflicts in terms of
domain specific conflicts only, whereas behavioral se-
mantic conflicts and the detection of previously falsely
indicated conflicts as provided by SMoVer are not
considered.

In the area of ontology engineering, Sem Version
(Volkel |2006]) performs semantic difference calcula-
tions on the basis of the semantics of the used on-
tology language. SemVersion is based on the Re-
source Description Framework (RDF), proposing the
separation of language specific features (e.g., seman-
tic difference) from general features (e.g., structural
difference or branch and merge). Therefore, assuming
using an RDF Schema as the ontology language and
two versions (A and B) of an RDF Schema ontology,
Sem Version uses RDF Schema entailment on model
A and B and infers all possible triples. Now, a struc-
tural difference on A and B can be calculated in order
to obtain the semantic difference. Sem Version, how-
ever, is limited to RDF based languages and therefore

does not provide the flexibility of being reused in the
modeling domain.

5 Conclusion and Future Work

In this paper, different semantically enhanced conflict
detection approaches (for an optimistic, environment
and modeling language independent VCS) which are
capable to reduce the occurance of false-positive and
false-negative results have been elaborated, exempli-
fied, and discussed.

The case study showed that the metamodel-based
opposed to the mathematical-based approach needs
less effort for implementation and also provides ad-
equate support for model developers. In more de-
tail the advantages of the metamodel-based approach
opposed to purely mathematical specification of for-
mal semantics are firstly the utilization of well known
MDE constructs (metamodels & transformations) for
the semantic enhancement. Secondly, the use of
one and the same comparison and conflict detection
method for the model versions in the syntax as well
as semantic views. Thirdly, as a consequence of this
transformation, developers are provided with a graph-
ical presentation of the model versions in the respec-
tive semantic views. Hence, the conflict resolution
phase can be completed by model developers with a
better understanding about the conflicts detected.

Future work in this area will focus on a comprehen-
sive evaluation of the effectiveness of the conflict de-
tection method in terms of accuracy, which makes use
of metamodel-based semantic specifications, realized
in SMoVer. Therefore SMoVer is going to be com-
pared to other VCSs for model artifacts like Odyssey-
VCS (Murta et al.|[2008) and RSA. Since the com-
parison of the effectiveness of the conflict detection
method of SMoVer to other VCSs for models should
be applied on as many tools as possible the subset
of the general purpose modeling language UML ac-
tivity diagram was chosen for the evaluation. Firstly
because the majority of language specific VCSs pro-
vide versioning support for UML and secondly UML
activity diagrams belong to behavioral languages and
therefore all three semantic aspects, proposed in the
context of semantically enhanced versioning (Altman-
ninger et al. [2007), can be exploited. Furthermore,
it will be investigated in realizing a second release
of the implementation of SMoVer which encapsulates
an advanced representation of the result of the con-
flict detection phase. This is done by tracing back
the falsely indicated syntactic conflicts and semantic
conflicts from the semantic views.

In a longer prospect, it is planned to integrate
the functionality to version a model in different lan-
guages (Storrle|[2007) and support for metamodel ver-
sioning in SMoVer. Moreover, research in the area
of VCSs for model artifacts will focus on building
a VCS called AMOR (Adaptable Model Versioning)
which comprises the characteristics of SMoVer and
additional mechanisms (Altmanninger et al.| [2008).
Firstly, to further improve the accuracy of the con-
flict detection method, AMOR will provide supple-
mentary to semantically enhanced conflict detection
an operation-based conflict detection mechanism with
which logged operations can be imported to the envi-
ronment independent VCS. Secondly, AMOR will also
support intelligent conflict resolution support, specif-
ically aiming at techniques for the representation of
differences between model versions and relieving mod-
elers from repetitive tasks by suggesting proper res-
olution strategies, thus enhancing productivity and
consistency of versioning.

145

CRPIT Volume 96 - Conceptual Modelling 2009

References

Allilaire, F., Bézivin, J., Jouault, F. & Kurtev, I.
(2006), ATL — eclipse support for model transfor-
mation, in ‘Eclipse Technology eXchange workshop
(eTX) at the ECOOP 2006 Conference, Nantes,
France’.

Altmanninger, K. (2008), Models in conflict — towards
a semantically enhanced version control system
for models, in H. Giese, ed., ‘Models in Software
Engineering, Workshop and Symposia at MoD-
ELS 2007, Nashville, TN, Reports and Revised Se-
lected Papers’, number 5002 in ‘LNCS’, Springer,
pp. 293-304.

Altmanninger, K., Bergmayr, A., Kotsis, G. &
Schwinger, W. (2007), Semantically enhanced con-
flict detection between model versions in SMoVer
by example, in ‘Int. Workshop on Semantic-Based
Software Development in conjunction with the Int.
Conf. on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA)’.

Altmanninger, K., Kappel, G., Kusel, A., Rets-
chitzegger, W., Schwinger, W., Seidl, M. & Wim-
mer, M. (2008), AMOR - towards adaptable model
versioning, in ‘lst Int. Workshop on Model Co-
Evolution and Consistency Management (MCCM)
at the ACM/IEEE 11th Int. Conf. on Model Driven
Engineering Languages and Systems (MoDELS)’.

Antkiewicz, M. & Czarnecki, K. (2007), Design space
of heterogeneous synchronization, in ‘Submitted to
post-proceedings of Summer School on Generative
and Transformational Techniques in Software En-
gineering (GTTSE)’.

Broy, M., Crane, M. L., Dingel, J., Hartman, A.,
Rumpe, B. & Selic, B. (2006), 2nd UML 2 se-
mantics symposium: Formal semantics for UML,
in T. Kiithne, ed., ‘MoDELS 2006 Workshops’, Vol.
4364 of LNCS, Springer, pp. 318-323.

Cicchetti, A., Ruscio, D. D. & Pierantonio, A. (2008),
Managing model conflicts in distributed develop-
ment, in K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl
& M. Vélter, eds, ‘Model Driven Engineering Lan-
guages and Systems, 11th International Confer-
ence, MoDELS 2008, Toulouse, France, September
28 - October 3’, number 5301 in ‘LNCS’, Springer,
pp. 311-325.

Clark, T., Sammut, P. & Willans, J. (2008), Applied
Metamodelling: A Foundation for Language Driven
Development, second edition edn, Ceteva.

Dig, D., Manzoor, K., Johnson, R. & Nguyen, T.
(2008), ‘Effective software merging in the presence
of object-oriented refactorings’, IEEE Transactions
on Software Engineering 34(3), 321-335.

Dingel, J., Crane, M. L. & Diskin, Z. (2006), Activ-
ity diagrams: Abstract syntax and mapping to sys-
tem model, Technical report, School of Computing,
Queen’s University, Kingston, Ontario, Canada.
Draft — Version 0.0.

Farooq, U., Lam, C. P. & Li, H. (2007), Trans-
formation methodology for UML 2.0 activity di-
agram into colored petri nets, in ‘3rd Int. Conf.
on Advances in Computer Science and Technology
(ACST), Phuket, Thailand’, ACTA Press, pp. 128
133.

Harel, D. & Rumpe, B. (2004), ‘Meaningful modeling:
What’s the semantics of “semantics”?’, Computer
37(10), 64-72.

146

Leser, U. & Naumann, F. (2006), Informationsin-
tegration: Architekturen und Methoden zur In-
tegration verteilter und heterogener Datenquellen,
Dpunkt Verlag.

Mens, T. (2002), ‘A state-of-the-art survey on soft-
ware merging’, IEEE Transactions on Software En-
gineering 28(5), 449-462.

Murta, L., Corréa, C., Prudéncio, J. & Werner, C.
(2008), Towards Odyssey-VCS 2: Improvements
over a UML-based version control system, in ‘Int.

Workshop on Comparison and Versioning of Soft-
ware Models (CVSM)’, ACM, pp. 25-30.

OASIS (2007), ‘Web Services Business Process Execu-
tion Language (WSBPEL) Standard Version 2.0°,
http://docs.oasis-open.org/wsbpel /2.0 /wsbpel-
v2.0.pdf.

Oda, T. & Saeki, M. (2005), Generative technique of
version control systems for software diagrams, in
‘21st IEEE Int. Conf. on Software Maintenance’.

Ryndina, K., Kiister, J. M. & Gall, H. (2006), Con-
sistency of business process models and object life
cycles, in T. Kiihne, ed., ‘Models in Software En-
gineering, Workshop and Symposia at MoDELS
2006, Genova, Italy, Reports and Revised Selected
Papers’, number 4364 in ‘LNCS’, Springer, pp. 80—
90.

Shao, D., Khurshid, S. & Perry, D. E. (2007), Evalu-
ation of semantic interference detection in parallel
changes: an exploratory experiment, in ‘23rd IEEE
Int. Conf. on Software Maintenance, Paris, France’.

Sheth, A. P. & Gomadam, K. (2007), The 4x4 se-
mantic model: Exploiting data, functional, non-
functional and execution semantics across business
process, workflow, partner services and middleware
services tiers, in ‘9th Int. Conf. on Enterprise Infor-
mation Systems, Volume DISI, Funchal, Madeira,
Portugal’, pp. 5-12.

Sheth, A., Ramakrishnan, C. & Thomas, C. (2005),
‘Semantics for the semantic web: The implicit, the
formal and the powerful’; Int. Journal on Semantic
Web & Information Systems 1(1), 1-18.

Slonneger, K. & Kurtz, B. (1995), Formal Syntax
and Semantics of Programming Languages: A Lab-
oratory Based Approach, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Storrle, H. (2007), A formal approach to the cross-
language version management of models, in ‘Nordic
Workshop on Model Driven Engineering’.

Thione, G. L. & Perry, D. E. (2005), Parallel changes:
Detecting semantic interferences, in ‘29th Annual
Int. Computer Software and Applications Conf.
(COMPSAC)’, Vol. 1, IEEE Computer Society,
pp. 47-56.

Uschold, M. (2003), ‘Where are the semantics in the
semantic web?’, AI Magazine 24(3), 25-36.

Volkel, M. (2006), ‘D2.3.3.v2 SemVersion — version-
ing RDF and ontologies’, http : //www.aifb.uni —
karlsruhe.de/Publikationen/showPublikation?
publ;d = 1163.

Alhadi, Arifah Che, 79
Altmanninger, Kerstin, 139

Chen, Xing, 7
Dumas, Marlon, 129
Fagin, Ronald, 3

Ghose, Aditya K., 29
Griin, Katharina, 107

Hasegawa, Ryo, 87
Hausser, Roland, 17

John, Mathias, 39

Kiithne, Thomas, 71
Kaiya, Haruhiko, 87
Kirchberg, Markus, iii
Kitamura, Motohiro, 87
Kiyoki, Yasushi, 7
Koliadis, George, 29
Kotsis, Gabriele, 139

Proc. 6th Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand

Author Index

Liegl, Philipp, 59
Link, Sebastian, iii

Ma, Hui, 49

Mcllvenna, Stephen, 129
Menzies, Alex, 29
Morrison, Evan D., 29

Necasky, Martin, 117
Neumayr, Bernd, 107
Noah, Shahrul Azman, 79
Saeki, Motoshi, 87
Schéfer, Andreas, 39
Schewe, Klaus-Dieter, 49
Schrefl, Michael, 107

Thalheim, Bernhard, 49
Thies, Gunnar, 97

Vossen, Gottfried, 97
Wynn, Moe Thandar, 129

Zakaria, Lailatulqadri, 79

147

CRPIT Volume 96 - Conceptual Modelling 2009

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 67 - Conceptual Modelling 2007
Edited by John F. Roddick and Annika Hinze.
January, 2007. 978-1-920682-48-4.

Volume 68 - ACSW Frontiers 2007
Edited by Ljiljana Brankovic, Paul Coddington,
John F. Roddick, Chris Steketee, Jim Warren
and Andrew Wendelborn. January, 2007. 978-1-
920682-49-1.

Proc. Fourth Asia-Pacific Conference on Conceptual Modelling (APCCM2007), Ballarat, Vic-
toria, Australia, January 2007.

Proc. ACSW Workshops - The Australasian Information Security Workshop: Privacy Enhancing
Systems (AISW), the Australasian Symposium on Grid Computing and Research (AUSGRID),
and the Australasian Workshop on Health Knowledge Management and Discovery (HKMD),
Ballarat, Victoria, Australia, January 2007.

Volume 69 - Safety Critical Systems and Software 2006

Edited by Tony Cant. February, 2007. 978-1-
920682-50-7.

Volume 70 - Data Mining and Analytics 2007
Edited by Peter Christen, Paul Kennedy, Jiuy-
ong Li, Inna Kolyshkina and Graham Williams.
December, 2007. 978-1-920682-51-4.

Volume 72 - Advances in Ontologies 2006
Edited by Mehmet Orgun and Thomas Meyer.
December, 2006. 978-1-920682-53-8.

Proc. 11th Australian Conference on Safety Critical Systems and Software, August 2006, Mel-
bourne, Australia.

Proc. 6th Australasian Data Mining Conference (AusDM 2007), Gold Coast, Australia. Decem-
ber 2007.

Proc. Australasian Ontology Workshop (AOW 2006), Hobart, Australia, December 2006.

Volume 73 - Intelligent Systems for Bioinformatics 2006

Edited by Mikael Boden and Timothy Bailey. De-
cember, 2006. 978-1-920682-54-5.

Volume 74 - Computer Science 2008
Edited by Gillian Dobbie and Bernard Mans.
January, 2008. 978-1-920682-55-2.

Volume 75 - Database Technologies 2008
Edited by Alan Fekete and Xuemin Lin. January,
2008. 978-1-920682-56-9.

Volume 76 - User Interfaces 2008
Edited by Beryl Plimmer and Gerald Weber.
January, 2008. 978-1-920682-57-6.

Volume 77 - Theory of Computing 2008
Edited by James Harland and Prabhu Manyem.
January, 2008. 978-1-920682-58-3.

Volume 78 - Computing Education 2008
Edited by Simon and Margaret Hamilton.
January, 2008. 978-1-920682-59-0.

Volume 79 - Conceptual Modelling 2008
Edited by Annika Hinze and Markus Kirchberg.
January, 2008. 978-1-920682-60-6.

Proc. Al 2006 Workshop on Intelligent Systems for Bioinformatics (WISB-2006), Hobart, Aus-
tralia, December 2006.

Proc. 31st Australasian Computer Science Conference (ACSC2008), Wollongong, NSW, Aus-
tralia, January 2008.

Proc. 19th Australasian Database Conference (ADC2008), Wollongong, NSW, Australia,
January 2008.

Proc. 9th Australasian User Interface Conference (AUIC2008), Wollongong, NSW, Australia,
January 2008.

Proc. 14th Computing: The Australasian Theory Symposium (CATS2008), Wollongong, NSW,
Australia, January 2008.

Proc. 10th Australasian Computing Education Conference (ACE2008), Wollongong, NSW, Aus-
tralia, January 2008.

Proc. 5th Asia-Pacific Conference on Conceptual Modelling (APCCM2008), Wollongong, NSW,
Australia, January 2008.

Volume 80 - Health Data and Knowledge Management 2008

Edited by James R. Warren, Ping Yu, John Year-
wood and Jon D. Patrick. January, 2008. 978-1-
920682-61-3.

Volume 81 - Information Security 2008
Edited by Ljiljana Brankovic and Mirka Miller.
January, 2008. 978-1-920682-62-0.

Volume 82 - Grid Computing and e-Research
Edited by Wayne Kelly and Paul Roe. January,
2008. 978-1-920682-63-7.

Volume 83 - Challenges in Conceptual Modelling
Edited by John Grundy, Sven Hartmann, Al-
berto H.F. Laender, Leszek Maciaszek and John
F. Roddick. December, 2007. 978-1-920682-64-4.

Proc. Australasian Workshop on Health Data and Knowledge Management (HDKM 2008), Wol-
longong, NSW, Australia, January 2008.

Proc. Australasian Information Security Conference (AISC 2008), Wollongong, NSW, Australia,
January 2008.

Proc. Australasian Workshop on Grid Computing and e-Research (AusGrid 2008), Wollongong,
NSW, Australia, January 2008.

Contains the tutorials, posters, panels and industrial contributions to the 26th International
Conference on Conceptual Modeling - ER 2007.

Volume 84 - Artificial Intelligence and Data Mining 2007

Edited by Kok-Leong Ong, Wenyuan Li and Jun-
bin Gao. December, 2007. 978-1-920682-65-1.

Proc. 2nd International Workshop on Integrating AI and Data Mining (AIDM 2007), Gold
Coast, Australia. December 2007.

Volume 86 - Safety Critical Systems and Software 2007

Edited by Tony Cant. December, 2007. 978-1-
920682-67-5.

Volume 87 - Data Mining and Analytics 2008
Edited by John F. Roddick, Jiuyong Li, Peter
Christen and Paul Kennedy. November, 2008.
978-1-920682-68-2.

Volume 90 - Advances in Ontologies
Edited by Thomas Meyer and Mehmet Orgun.
September, 2008. 978-1-920682-71-2.

Proc. 12th Australian Conference on Safety Critical Systems and Software, August 2006, Ade-
laide, Australia.

Proc. 7th Australasian Data Mining Conference (AusDM 2008), Adelaide, Australia. December
2008.

Proc. Knowledge Representation Ontology Workshop (KROW 2008), Sydney, September 2008.

	e_Kuehne.pdf
	Introduction
	Comparison
	Formalisation
	Similarities
	Abstraction
	Membership
	Description
	Reuse

	Differences
	Abstraction
	Membership
	Description
	Reuse

	Analysis of Approaches
	In the Name of Simplicity
	In the Name of Flexibility
	In the Name of Utility

	Conclusion

	l_Altmanninger.pdf
	Introduction
	Semantics for Accurate Conflict Detection
	Case Study
	Environment and Language Independent Conflict Detection
	Semantically Enhanced Conflict Detection
	Discussion

	Related Work
	Conclusion and Future Work

