
Conferences in Research and Practice in

Information Technology

Volume 95

Computing Education 2009

Australian Computer Science Communications, Volume 31, Number 5

Computing Education 2009

Proceedings of the
Eleventh Australasian Computing Education Conference
(ACE 2009), Wellington, New Zealand,
January 2009

Margaret Hamilton and Tony Clear, Eds.

Volume 95 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Computing Education 2009. Proceedings of the Eleventh Australasian Computing Education Conference
(ACE 2009), Wellington, New Zealand, January 2009

Conferences in Research and Practice in Information Technology, Volume 95.

Copyright c©2009, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:

Margaret Hamilton
School of Computer Science and Information Technology
RMIT University
GPO Box 2476V
Melbourne, Victoria, 3001, Australia
Email: margaret.hamilton@rmit.edu.au

Tony Clear
School of Computing and Mathematical Sciences
Auckland University of Technology
Private Bag 92006
Auckland 1020, New Zealand
Email: tony.clear@aut.ac.nz

Series Editors:
Vladimir Estivill-Castro, Griffith University, Queensland
John F. Roddick, Flinders University, South Australia
Simeon Simoff, University of Western Sydney, NSW
crpit@infoeng.flinders.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 95.
ISSN 1445-1336.
ISBN 978-1-920682-76-7.

Printed, January 2009 by Flinders Press, PO Box 2100, Bedford Park, SA 5042, South Australia.
Cover Design by Modern Planet Design, (08) 8340 1361.

The Conferences in Research and Practice in Information Technology series aims to disseminate the results of
peer-reviewed research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Proceedings of the Eleventh Australasian Computing Education Conference
(ACE 2009), Wellington, New Zealand, January 2009

Preface . vii

Programme Committee . viii

Organising Committee . ix

Welcome from the Organising Committee . x

CORE - Computing Research & Education . xi

ACSW Conferences and the Australian Computer Science
Communications . xii

ACSW and ACE 2009 Sponsors . xiv

Keynote

Contextualized Computing Education of Programming . 3
Mark Guzdial

Invited Papers

A Perspective on the International Olympiad in Informatics for CS educators . 7
Margot Phillipps and Leon Sterling

The BRACElet 2009.1 (Wellington) Specification . 9
Jacqueline Whalley and Raymond Lister

Panel

Second Life Panel . 21
Clare Atkins, Scott Diener and Nauman Saeed

Contributed Papers

An Exploration of Internal Factors Influencing Student Learning of Programming 25
Angela Carbone, John Hurst, Ian Mitchell and Dick Gunstone

Intervention Programmes to Recruit Female Computing Students: Why Do Programme Champions
Do It? . 35

Annemieke Craig

Teaching and Assessing Programming Strategies Explicitly . 45
Michael de Raadt, Richard Watson and Mark Toleman

Quality of Student Contributed Questions Using PeerWise . 55
Paul Denny, Andrew Luxton-Reilly and Beth Simon

Easing the Transition: A Collaborative Learning Approach . 65
Katrina Falkner and David S. Munro

Losing Their Marbles: Syntax-Free Programming for Assessing Problem-Solving Skills 75
Colin Fidge and Donna Teague

Human Fallibility: How Well Do Human Markers Agree? . 83
Debra Haley, Pete Thomas, Marian Petre and Anne de Roeck

A Focus Group Study of Student Attitudes to Lectures . 93
Michael Hitchens and Raymond Lister

What Our ICT Graduates Need from Us: A Perspective from the Workplace . 101
Tony Koppi, Judy Sheard, Fazel Naghdy, Joe Chicharo, Sylvia L. Edwards, Wayne Brookes and
David Wilson

Evolution of an International Collaborative Student Project . 111
Cary Laxer, Mats Daniel, Åsa Cajander and Michael Wollowski

A Citation Analysis of the ICER 2005–07 Proceedings . 119
Raymond Lister and Ilona Box

How Students Develop Concurrent Programs . 129
Jan Lonnberg, Anders Berglund and Lauri Malmi

Issues Regarding Threshold Concepts in Computer Science . 139
Janet Rountree and Nathan Rountree

A Taxonomic Study of Novice Programming Summative Assessment . 147
Shuhaida Shuhidan, Margaret Hamilton and Daryl D’Souza

Ten Years of the Australasian Computing Education Conference . 157
Simon

Surely We Must Learn to Read before We Learn to Write! . 165
Simon, Mike Lopez, Ken Sutton and Tony Clear

A People-First Approach to Programming . 171
Donna Teague

Experiences in Teaching Quality Attribute Scenarios . 181
Ewan Tempero

Author Index . 189

vi

Preface

Welcome to the Eleventh Australasian Computing Education Conference (ACE2009). This year, the ACE2009
conference, which is part of the Australasian Computer Science Week, is being held in Wellington, New
Zealand from January 19 to January 23, 2009.

We can truly call this an international conference with 77 authors coming from Malaysia, Taiwan,
China, Finland, England, United States, Greece, Argentina, Sweden, New Zealand and Australia. The
Chairs would like to thank the Program Committee for their excellent efforts in the double-blind reviewing
process which resulted in the selection of 18 full papers from the 40 papers submitted, giving an acceptance
rate of 45%.

Our keynote speaker is Professor Mark Guzdial from Georgia Tech, author of several books including
”Introduction to Computing and Programming with Python: A Multimedia Approach.” He is currently
vice-chair of the ACM Education Board and is a prominent member of SIGCSE, being the Symposium
Co-Chair for SIGCSE 2009. For two days prior to our conference, we have organized a workshop partly
sponsored by SIGCSE on ”Contextualised Approaches to Computing Education”. The presenters, Mark
Guzdial and his wife Barbara Ericson, will cover several different contextualized approaches, including
media computation, robotics and engineering approaches to CS1.

The topics of ACE2009 papers and presentations include taxonomies, classifications, studies of novice
programming students, the use of technology in education, course content, curriculum structure, methods
of assessment, mobile, flexible, online learning, and evaluations of alternative approaches to computing
education. The high quality papers this year continue to push the frontiers of opportunities for research
and innovation in computing education, and this conference will enable these educators to meet and share
their experiences in a new forum. We will be holding a Second Life Panel where we will attempt to stream
SL to the Conference room and connect Melbourne, Auckland and Nelson to showcase SL in action.

In keeping with the ACE tradition, there will be a post-conference workshop continuing to build research
in Australasian computing education. Five years ago in Dunedin, New Zealand, we held the first BRACE
workshop, and this year, on the return to New Zealand we are continuing the tradition by holding a
BRACElet workshop.

We are grateful to SIGCSE for the grant to fund the pre-conference workshop, and for sponsoring the
Conference jointly with the ACM. We thank everyone involved in Australasian Computer Science Week
for making this Conference and Proceedings publication possible, and we thank CORE, our hosts Victoria
University Wellington, and the Australasian Computing Education Executive for the opportunity to chair
this ACE2009 Conference.

Margaret Hamilton
RMIT University, Australia

Tony Clear
Auckland University of Technology, New Zealand

ACE 2009 Programme Chairs
January 2009

vii

Programme Committee

Chairs

Margaret Hamilton, RMIT University (Australia) (senior co-chair)
Tony Clear, Auckland University of Technology (New Zealand) (co-chair)

Members

Alison Young, Unitec (New Zealand)
Angela Carbone, Monash University (Australia)
John Hamer, Auckland University (New Zealand)
Judy Kay, University of Sydney (Australia)
Judy Sheard, Monash University (Australia)
Mats Daniels, Uppsala University (Sweden)
Michael de Raadt, University of Southern Queensland (Australia)
Raymond Lister, University of Technology Sydney (Australia)
Sally Fincher, University of Kent (UK)
Simon, University of Newcastle (Australia) (senior co-chair)

Additional Reviewers

A. John Hurst, Monash University (Australia)
Alan Fekete, University of Sydney (Australia)
Alanah Kazlauskas, Australian Catholic University (Australia)
Arnold Pears, Uppsala University (Sweden)
Daryl D’Souza, RMIT University (Australia)
Dave Bremer, Otago Polytechnic (New Zealand)
Logan Muller, Unitec (New Zealand)
Martin Dick, RMIT University (Australia)

viii

Organising Committee

Co-Chairs

Dr Alex Potanin
Professor John Hine

Venues

Dr David Pearce

Operations

Dr Peter Komisarczuk
Mrs Suzan Hall
Mr Craig Anslow

Finance and Program

Dr Stuart Marshall

Communications

Dr Ian Welch
Mr Craig Anslow

Events

Professor John Hine

ix

Welcome from the Organising Committee

We would like to welcome you to ACSW2009 hosted by Victoria University of Wellington, New Zealand.
Wellington is set on the edge of a stunning harbour and surrounded by rolling hills. The earliest name

for Wellington, from Maori legend, is Te Upoko o te Ika a Maui. In Maori it means the head of Maui’s
fish. Caught and pulled to the surface by the Polynesian navigator Maui, the fish became the North Island.
Wellington is the capital city of New Zealand and home to the seat of parliament. But this vibrant and
dynamic city also has many other capital claims including Culture capital, Creative capital and Events
capital. It is a compact, walkable city waiting to be explored. The conference venue is less than fifteen
minutes walk to accommodation, Courtenay Place with its wide range of bars, and the harbour with its
restaurants and activities such as sea kayaking. The conference venue itself is in the Museum of New
Zealand Te Papa Tongarewa, offering visitors a unique and authentic experience of this country’s treasures
and stories. Over five floors, you can explore the nation’s nature, art, history, and heritage - from the
shaping of its land to the spirit of its diverse peoples, from its unique wildlife to its distinctive art and
visual culture.

Victoria University of Wellington - Te Whare Wānanga o te Ūpoko o te Ika a Māui - is over a century
old. Victoria College was founded through an Act of Parliament in 1897, the year of Queen Victoria’s
Diamond Jubilee celebrations, and named in her honour. Victoria is a thriving community of almost 25,000
people. Situated in the capital city across four campuses, Victoria can take advantage of connections and
values its relationships with iwi, business, government, the judiciary, public and private research organisa-
tions, cultural organisations and resources, other universities and tertiary providers and the international
community through the diplomatic corps. ACSW2009 coincides with the opening of the new School of En-
gineering and Computer Science as part of the Faculty of Engineering at Victoria University of Wellington
- combining a long history of research and teaching of the software engineering and network engineering
in the Computer Science department and computer system engineering and electronic engineering in the
Physics department. Professor John Hine, co-chairing ACSW2009, is the current Dean of Engineering and
the inaugural Head of School of Engineering and Computer Science.

ACSW2009 consists of the following conferences:

– Australasian Computer Science Conference (ACSC) (Chaired by Bernard Mans),
– Australasian Computing Education Conference (ACE) (Chaired by Margaret Hamilton and Tony

Clear),
– Australasian Database Conference (ADC) (Chaired by Athman Bouguettaya and Xuemin Lin),
– Australasian Symposium on Grid Computing and e-Research (AUSGRID) (Chaired by Wayne Kelly

and Paul Roe),
– Computing: The Australasian Theory Symposium (CATS) (Chaired by Prabhu Manyem and Rod

Downey),
– Asia-Pacific Conference on Conceptual Modelling (APCCM) (Chaired by Markus Kirchberg and Se-

bastian Link),
– Australasian Information Security Conference (AISC) (Chaired by Ljiljana Brankovic and Willy Susilo),
– Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by Jim

Warren),
– Australasian User Interface Conference (AUIC) (Chaired by Gerald Weber and Paul Calder),
– Australasian Computing Doctoral Consortium (ACDC) (Chaired by David Pearce and Vladimir Estivill-

Castro).

The nature of ACSW requires the co-operation of numerous people. We would like to thank all those
who have worked to ensure the success of ACSW2009 including the Organising Committee, the Conference
Chairs and Programme Committees, our sponsors, the keynote speakers and the delegates.

Dr Alex Potanin and Professor John Hine
ACSW2009 Co-Chairs
Victoria University of Wellington
January, 2009

CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2009 in Wellington. CORE, the peak body representing academic
computer science in Australia and New Zealand, is responsible for the annual ACSW series of meetings,
which are a unique opportunity for our community to network and to discuss research and topics of mutual
interest. The original component conferences – ACSC, ADC, and CATS, which formed the basis of ACSW
in the mid 1990s – now share the week with seven other events, which build on the diversity of the
Australasian CS community.

This year, we have chosen to feature a small number of plenary speakers chosen from across the disci-
pline, Ronald Fagin, Ian Foster, Mark Guzdial, and Andy Hopper. I thank them for their contributions to
ACSW’09.The efforts of the conference chairs and their program committees have led to strong programs
in all the conferences – again, thanks. And thanks are particularly due to Alex Potanin, John Hine, and
their colleagues for organising what promises to be a memorable ACSW.

In Australia, 2008 has been a busy year for academia, with the incoming Labor government instituting
major reviews in areas such as the higher education sector, research funding, postgraduate study, and
national curricula. However, while the reviews have exposed severe shortcomings in the funding of higher
education and research, they have not as yet been translated into definite action, and the sector as a whole
is shrinking. Although there is a widespread perception of a shortage of IT staff, and graduate salaries
remain strong, student interest in ICT continues to be low. Moreover, per-place funding for computer
science students has dropped relative to that of other physical and mathematical sciences. Several forums
and initiatives involving industry, government, and academia have attempted to address the issue of the
ongoing difficulties of attracting students to the discipline, but with little perceptible effect. New initiatives
that seek to address the issues of students and funding will be a CORE priority in 2009.

During 2008, CORE continued to work on journal and conference rankings, with much of the activity
driven by requests for information from the government. A key aim is now to maintain the rankings, which
are widely used overseas as well as in Australia, a challenging process that needs to balance competing
special interests as well as addressing the interests of the community as a whole. A new activity in 2008
was a review of computing curriculum, which is still ongoing, with the intention that a CORE curriculum
statement be used for accreditation of degrees in computer science, software engineering, and information
technology. ACSW’09 includes a forum on computing curriculum to discuss this process.

CORE’s existence is due to the support of the member departments in Australia and New Zealand, and
I thank them for their ongoing contributions, in commitment and in financial support. Finally, I am grateful
to all those who gave their time to CORE in 2008; in particular, I thank Jenny Edwards, Alan Fekete,
Tom Gedeon, Leon Sterling, Vanessa Teague, and the members of the executive and of the curriculum and
ranking committees.

Justin Zobel
President, CORE
January, 2009

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.

2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.

2008. Volume 30. Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACE. Australian/Australasian Computing Education Conference.
ACSAC. Asia-Pacific Computer Systems Architecture Conference (previously Australian Computer Architecture

Conference (ACAC).
ACSC. Australian/Australasian Computer Science Conference.
ACSW. Australian/Australasian Computer Science Week.
ADC. Australian/Australasian Database Conference.
AISW. Australasian Information Security Workshop.
APBC. Asia-Pacific Bioinformatics Conference.
APCCM. Asia-Pacific Conference on Conceptual Modelling.
AUIC. Australian/Australasian User Interface Conference.
AusGrid. Australasian Workshop on Grid Computing and e-Research.
CATS. Computing - The Australian/Australasian Theory Symposium.
HDKM. Australasian Workshop on Health Data and Knowledge Management.
HIKM. Australasian Workshop on Health Informatics and Knowledge Management (former HDKM).

Note that various name changes have occurred, most notably the change of the names of conferences to reflect a

wider geographical area.

xiii

ACSW and ACE 2009 Sponsors

We wish to thank the following sponsors for their contribution towards this conference. For an up-to-date overview
of sponsors of ACSW 2009 and ACE 2009, please see http://www.mcs.vuw.ac.nz/Events/ACSW2009/Sponsors.

CityLink, New Zealand,
www.citylink.co.nz

New Zealand Computer Society,
www.nzcs.org.nz

Victoria University of Wellington,
www.victoria.ac.nz

Australian Computer Society,
www.acs.org.au

CORE - Computing Research and Education,
www.core.edu.au

Xero,
www.xero.com

Security Assessment, New Zealand,
www.security-assessment.com

Catalyst, New Zealand,
www.catalyst.net.nz

Helium, New Zealand,
www.heliumnz.co.nz

ACM Special Interest Group on
Computer Science Education,

www.sigcse.org

RMIT University,
www.rmit.edu.au

Auckland University of Technology,
www.aut.ac.nz

xiv

Keynote

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

1

CRPIT Volume 95 - Computing Education 2009

2

Contextualized Computing Education of Programming

Mark Guzdial

College of Computing

Georgia Institute of Technology

Atlanta, GA.

guzdial@cc.gatech.edu

One of the most powerful tools for improving success rates in introductory computing

courses is the incorporation of context – a theme that pervades the computing lectures,

assignments, and examples which relates the content to a concrete application domain.

Contextualized computing education has even allowed us to be successful with

challenging audiences, such as the non-technical major. In this talk, we review why

Georgia Tech has chosen to teach serious computer science to every student on campus,

and then discuss research findings from several schools on the benefits and costs of

contextualized computing education.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

3

CRPIT Volume 95 - Computing Education 2009

4

Invited Papers

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

5

CRPIT Volume 95 - Computing Education 2009

6

A Perspective on the International Olympiad in Informatics

for CS Educators

Margot Phillipps

School of Mathematics,

Lynfield College, Auckland,

New Zealand

margot.phillipps@gmail.com

Leon Sterling

Department of Computer Science & Software

Engineering, University of Melbourne,

Australia

leon@cs.mu.oz.au

At the 2008 International Olympiad in Informatics held in Cairo, the Australian and New

Zealand teams had their best ever performances. This talk will give details of the

Informatics competition, and how teams are supported in Australia and New Zealand.

Some sample informatics problems will be described. We argue that Informatics is an

excellent basis for Computer Science at University and consequently it is important for

CORE educators to understand and engage with the high school competition.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

7

CRPIT Volume 95 - Computing Education 2009

8

The BRACElet 2009.1 (Wellington) Specification

Jacqueline L. Whalley
Computing and Mathematical Sciences

Auckland University of Technology
Auckland 1020, New Zealand

jacqueline.whalley@aut.ac.nz

Raymond Lister
Faculty of Engineering and Information Technology

University of Technology, Sydney
NSW 2007, Australia

raymond@it.uts.edu.au

Abstract1
BRACElet is a multi-institutional computer education
research study of novice programmers. The project is
open to new members. The purpose of this paper is to: (1)
provide potential new members with an overview of
BRACElet, and (2) specify the common core for the next
data collection cycle. In this paper, BRACElet is taking
the unusual step of making its study design public before
data is collected. We invite anyone to run their own study
using our study design, and publish their findings,
irrespective of whether they formally join BRACElet. We
look forward to reading their paper.
Keywords: BRACElet, novice programming, multi-
institutional collaboration.

1 Introduction
In any academic discipline, it takes years to become an
expert. Research across several disciplines indicates that
experts, in addition to knowing more, also organize their
knowledge into more sophisticated and flexible forms
than novices. This enables the expert to bring the most
appropriate form of knowledge to bear on solving a
specific problem. For example, when asked to memorize
chess board positions, novices tend to remember the
position of each piece in isolation, whereas experts
recognise and remember the attacking and defensive
combinations of the pieces (Chase and Simon 1973).
Results from many studies of novice and expert
programmers (e.g. Adelson 1984) are consistent with the
findings from other disciplines – novice programmers
form concrete representations based on how the code
functions whereas experts form abstract representations
based upon the purpose of the code.
The Leeds Group (Lister et al. 2004) gave students short
pieces of code and asked them to determine what the
values in the variables would be after the code had been
executed. The Leeds Group found that almost all the
students – even the ‘top’ students who answered most
questions correctly – solved the problems by hand
executing (‘tracing’) the code. In contrast, a follow up
study found that academics tended to use a more
sophisticated strategy to solve similar problems (Lister et

ode

intrinsic to developing an

ark
w

u the marks … Not all
o

t a

 that students do not understand their own code,

• for long

•
 existing bug. Ginat (2008) noted

•

 identifies the bug with a single reading of the

Copyright © 2009, Australian Computer Society, Inc. This
paper appeared at the Eleventh Australasian Computing
Education Conference (ACE2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in
Information Technology, Vol. 95. Margaret Hamilton and Tony
Clear, Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

al., 2006). Instead of tracing the code, the academics
deduced the computation being performed by the c
and then inferred the output directly from the input.
When teaching programming, lecturers frequently use
diagrams to illustrate how a piece of code works. Expert
programmers also frequently use diagrams to develop
their understanding of an unfamiliar or buggy piece of
code. In contrast, Thomas, Ratcliffe, and Thomasson
(2004) found that many of their students were reluctant to
use diagrams as an aid in tracing code, under
circumstances that encouraged the students to use
diagrams, even after students had been explicitly
instructed in how to use the diagrams. Thomas, Ratcliffe,
and Thomasson were led to conjecture that providing
students with a specific diagrammatic abstraction of the
code was not helpful because the self-development of
such abstractions is
understanding of code.
If students cannot trace through code, how can those
students write code? Traynor, Bergin and Gibson (2006)
interviewed students who had completed exercises in
both code tracing and code writing. One of the students
who did relatively better on the writing tasks than the
tracing tasks explained that the way in which writing
tasks are graded helps students to gain a passing m

ith only a weak grasp of what the code needs to do:
“… you usually get the marks for making the answer
look correct. Like if it’s a searching problem, you put
down a loop, and you have an array and an if
statement. That usually gets yo

f them, but definitely a pass”.
Student quoted in Traynor, Bergin and Gibson (2006)

The implication of the above student quote is that, when
an academic grades code written by a student, there is a
danger that the teacher will subscribe to the studen
depth of understanding that the student does not have.
In our own teaching, we have noticed behaviours
indicating
such as:

Attempting to debug code, sometimes
periods of time, by ‘random mutation’.
Introducing new bugs as they attempt a superficial
and incorrect fix to an
a similar behaviour.
Asking the teacher for help with a bug, after the
student has worked hard to find the bug, and the
teacher
code.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

9

hy is the ability to write

co are

• e, especially when there are too

nderstand/use diagrams and other

M ls are encapsulated in the

• e in

• ssess explicitly a student’s grasp of

ext iteration of work in the project. On
et, we invite
uct their own

a.

ain close to education practice.

ged from the project. These
, and readers are
 papers for a

oup (Lister et al. 2004). The

5. Analysis of the data

id least well on Analyse
questions, which was the highest level of the taxonomy
for which BRACElet participants designed questions, and
which required the most abstract reasoning (but did not
require students to write code).

• Being unable to explain their own code to the
teacher. Thomas, Ratcliffe, and Thomasson also relate
such an anecdote.

Our own teaching, and the literature on novice
programmers, has led the authors (and our collaborators
in the BRACElet project) to the belief that there is
hierarchy of skills associated with programming. At the
bottom of the hierarchy is knowledge of basic
programming constructs (e.g. what an “if” statement
does). At the top of the hierarc
non-trivial, correct code using those programming

nstructs. The intermediate levels of the hierarchy
manifested in abilities such as:

 The ability to trace cod
many variables to maintain in short term memory.

• The ability to u
abstractions of code.
ore formally, our research goa

following questions:
Are there intermediate skills and knowledg
programming? If so, then …

Is it possible to a
these intermediate skills and knowledge?

• Is it possible to teach explicitly these intermediate skills
and knowledge?

These are the research questions that have driven the
BRACElet project. In the next section, we review past
work on BRACElet. Subsequent sections of the paper
then define the n
the basis of this description of BRACEl
others to join the project, or to at least cond
related studies.

2 The Brief History of BRACElet
The BRACElet project is a multi-institutional study of
novice programmers. The project commenced in 2004
and to date 10 workshops have been held in Australasi
A useful summary of the first eight workshops has been
provided by Clear et al. (2008c) and the reader is referred
to that paper for a more detailed history of the project.
While BRACElet is a research project, the intention is
that the project should rem
Thus, most BRACElet data is collected via end–of–
semester exams that students take at the participating
educational institutions.
The following subsections summarise the evolution of the
BRACElet project, through the workshops and in the
papers that have emer
subsections only offer a brief summary
referred to the earlier BRACElet
comprehensive account.

2.1 The First BRACElet Paper
The first BRACElet workshop, in December 2004, began
with a review of the results from the then recently
published Leeds Gr
workshop participants felt that the Leeds Group study
was not sufficiently based upon learning theories or
educational models.

The workshop participants selected the revised version of
Bloom’s taxonomy (Anderson et al., 2001) as an
educational model for test question development, and
then devised several questions that mapped to different
parts of that taxonomy. None of the questions required
the students to write code, but instead tested their ability
to reason about code and also reason about associated
abstractions, such as flow charts. These questions were
then included in the end–of–first–semester exams that
students attempted at some of the participating New
Zealand institutions, in June 200
from those exams began at the second BRACElet
workshop, in July 2005. The first BRACElet paper
(Whalley et al. 2006) was a consequence of the analysis
started at that second workshop.
One of the findings reported in that paper concerned the
revised Bloom’s taxonomy. The results are summarised
in Figure 1. Students tended to do best on questions from
the Understand level of the taxonomy, which was the
lowest level of taxonomy for which questions were
designed, and which required the least abstract reasoning.
Students tended to do less well on the more abstract
Apply questions, and students d

0
2 3 4 6 1 9 5 8

20

40

60

80

100

7

%
 o

f c
or

re
ct

 a
ns

w
er

s

questions

Figure 1: Novice performance on questions classified
by Bloom’s revised category (Whalley et al., 2006).

The second workshop added another educational model
to the project, the SOLO taxonomy (Biggs and Collis
1
t
t e placed into one of five categories,
based on the SOLO taxonomy, as shown in Table 1.

 plain English, explain what the following segment of

982). This taxonomy was introduced to analyse data for
he question shown in Figure 2. The student answers to
hat question wer

In
Java code does:

bool bValid = true;

for (int i = 0; i < iMAX-1; i++){
 if (iNumbers[i] > iNumbers[i+1])

 bValid = false;
}

Figure 2. An ‘explain in plain English’ question

understand apply analyse

CRPIT Volume 95 - Computing Education 2009

10

‘explain in plain English’ question. Students in the top
t al
answer (i.e. an ans
o han stu

wer

Using the scores that the students achieved on all the
BRACElet questions in the exam, except the ‘explain in
plain English’ question, the students were broken into
four quartiles. Figure 3 shows the types of SOLO answers
that students in each of those quartiles gave to the

wo quartiles were far more likely to give a relation
wer giving a summary of the purpose
dents in the lower two quartiles.

Description of stu

f the code) t

SOLO category dent’s ans

Relational

A summary of the purpose of the
code. For example, “checks if the
array is sorted”.

Multistructural

A line by line description of all the
code. Some summarisation of
individual statements may be
included.

Unistructural

A description of one portion of the
code (e.g. describes the if
statement).

Prestruc

tural lack of
ogramming

Shows substantial
knowledge of pr
constructs or is unrelated to the
question.

Blank Question not answered.

Table 1: The SOLO Categories for the students’
answers to the ‘explain in plain English’ question

0
10
20
30
40
50
60
70

Q1 Q2 Q3 Q4

%
 o

f a
ns

w
er

s

Relational Multistructural
Unistructural Prestructural

Figure 3. Performance of students on the ‘explain in
p

I
f

rise

ucational institution than I2. If we give the
s
i
w
G and made the following
observation:

hile students at I1 might do

ents at I1 might

oice questions were used as the

heir performance on
ncerned if one of

o arriving at

lain English’ question (Whalley et al., 2006).

n the conclusion of that first BRACElet paper, the
ollowing observations were made:
It appears likely that programming educators may be
systemically underestimating the cognitive difficulty in
… [exam questions] … for assessing programming
skills of novice programmers. … The stages through
which novice programmers develop … and the time
that this development process may take… may have
been significantly underestimated ... Students who
cannot read a short piece of code and … [summa
the computation performed by that code]… are not
well equipped intellectually to write code of their own.

2.1.1 Reflection: The Two-Task Approach
BRACElet has always been focussed on identifying
aspects of novice programmers that transcend
institutional boundaries. The most obvious potential
difference between cohorts of novice programmers at
different institutions is the ability of the ‘typical’ student
at each institution. Suppose we are studying students at
two different Institutions, I1 and I2, where I1 is a more
prestigious ed
ame programming question, Q1, to students at both
nstitutions, it is likely that, on average, students from I1
ill do better on Q1 than students from I2. The Leeds
roup faced the same problem

There are trends in the data across institutions. In
general, a question that is substantially more difficult
for students at one institution is also more difficult for
students at other institutions.

Lister et al. (2004, p. 126).
The BRACElet project has taken that observation and
used it as a method of analysis, referred to as the two-task
approach. Suppose students at I1 and I2 are given two
questions Q1 and Q2. W
better on both Q1 and Q2 than students at I2, BRACElet
participants look for patterns in the relative performance
of students on the two questions. For example one pattern
may be that students at both I1 and I2 do better, on
average, at Q1 than Q2.
The two-task approach generalizes to N tasks. The first
BRACElet paper (Whalley et al. 2006) used a three task
approach when analyzing questions from different levels
of Bloom’s taxonomy. Even though stud
outperform students from I2 at each level of the revised
Bloom’s taxonomy, students within each of those
institutions will tend, on average, to perform better on
Understand questions than Apply questions, and better on
Apply questions than Analyse questions.
The two-task approach can also be used another way.
One task (or one set of tasks) is used to place students
from different institutions into two or more categories.
The students in a single category are then considered to
be equivalent, even though they come from different
institutions. All students are also given a second task (or a
second set of tasks). The statistical performance on the
second task by students in one category is compared to
the statistical performance of students in another
category. This two task approach was used to perform
the SOLO analysis of the above ‘explain in plain English’
question. Nine multiple ch
task set 1. Students were placed into four quartiles (i.e.
categories), based upon their score on those nine multiple
choice questions. The analysis then focussed on
differences between the quartiles in the frequencies of the
various SOLO levels.
The two-task approach reduces the need to collect data
describing the educational and institutional backgrounds
of students. For example, if two students are both placed
into the same category based on t
task 1, BRACElet participants are not co
those students had programmed prior t
university, and the other had not; nor are BRACElet

Bottom QuartileQuartile 2 Quartile 3 Top Quartile

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

11

 the questions

ter et al. 2006) asked
ved problems

lar to problems

 the code pieces in the other group.

e a relational

tified

through code classification
questions?

able to identify the purpose

tructure and

ort of a compiler.

 BRACElet study

D
st
e
i
e
s
r son's puzzles in assessment:

re reliable to
rtunity to test

 an ‘orange light’. If students trace code correctly
less than 50% of the time they are still at a ‘red light’ and

ral way.

task 2.

participants concerned if one of those students is from an
elite university and the other is not.

2.2 Follow up to the First Paper
A number of subsequent BRACElet papers elaborated
upon the work of the first BRACElet paper. One of those
papers (Whalley 2006) looked for any effect due to
programming language. BRACElet participants did not
teach the same programming language, so
were translated into the appropriate language for each
institution. Whalley’s analysis revealed no significant
difference between the mean total score of students at one
institution who completed the questions in the Delphi
programming language and the students at another
institution who completed the test in C++.
Another follow up study (Lis
academics to ‘think out loud’ as they sol
from the Leeds Group study that were simi
from the first BRACElet paper. That follow up study
found that academics actively seek to abstract beyond the
concrete code, whereas the Leeds Group had found that
novices did not seek to abstract.

2.3 Code Classification Questions
Thompson et al. (2006) explored a different kind of
assessment question that asked students to make explicit
statements about their understanding of code. In an exam
question, they presented students with four segments of
code. All four pieces of code contained a loop with an
“if” statement inside the loop. Two of the segments used
a ‘for’ loop and other two segments used a ‘while’ loop.
The students were not told that two of the pieces of code
found the minimum value in an array, and the other two
pieces found the maximum. Students were asked to
iteratively place the four pieces of code into two groups,
so that code pieces inside a group were similar in some
way and different from
Thompson et al. found that many students grouped the
code pieces based on syntactic features (e.g.; "uses a for
loop vs. uses a while loop", but failed to identify the more
abstract functional similarities that indicate an ability to
abstract the purpose of code (e.g. “finds the minimum vs.
finds the maximum”).
Thompson et al. also compared student responses to the
‘explain in plain English’ questions with their
performance on the new classification question.
Thompson et al. found that if a student gav
response to an explain in plain English question they
were more likely to provide responses that iden
functional similarities when answering a classification
question. It appears that both questions types are
reasonably reliable indicators of whether a student can
extract meaning from a short piece of code.
The analysis presented in this paper highlighted a number
of interesting questions for future study, including:
• Can a novice programmer’s ability to understand and

write programs be fostered through the use of
variations in code and

• Would a student who is
of a code segment (a relational classification) in one

language also recognise a code segment in a different
language that has the same logic s
achieves the same task?

2.4 Parson’s Problems
A common criticism of having students solve pen-and-
paper code writing problems in an exam is that it is a non
authentic task and it is unreasonable to expect students to
program without the supp
Parson's puzzles are an alternative to code writing. In
such puzzles, students are presented with jumbled lines of
code which they are required to place into the correct
order so that the code performs a prescribed task (Parsons
and Haden 2006). The same type of puzzle was also
developed independently for the “Head First’ textbooks
(Sierra and Bates 2005).
In more recent iterations of the
(Whalley and Robbins 2007b, Lopez et al. 2008) a simple
Parson's puzzle was used in an exam. The students
performed much better on Parson's puzzles than code
writing questions despite the fact that the students had
never seen such a problem before. The authors suggested
that Parson's puzzles might be a bridge between full code
writing tasks and code reading tasks.

enny, Luxton-Reilly and Simon (2008) furthered the
udy of student performance on Parson’s puzzles and
nlisted a student feedback loop in order to refine the way
n which Parsons puzzles are presented in an
xamination. A notable correlation between Parson's
cores and code writing scores was found. They
ecommend the use of Par
"Parsons problems are easier and mo
mark than code writing, provide an oppo
student misconceptions more specifically than code
writing, yet they appear to require the same set of
skills (as analyzed by correlation in marks achieved).
This makes them an excellent alternative to traditional
code writing questions"

2.5 The Traffic Light Conjecture
Philpott, Robbins and Whalley (2007) analysed student
responses to code tracing and ‘explain in plain English’
questions. A link was found between well developed
tracing skills and the ability to think relationally about
code. Conversely, students who were unable to arrive at
a correct answer when tracing code were unable to reason
about code segments, and instead focused on a single line
of code within code segments. These findings led to the
‘traffic light’ conjecture – that a student's degree of
mastery of code tracing tasks indicates their readiness or
ability to be able to reason about code. It was proposed
that a student has reached a ‘green light’ for relational
thinking if they have mastered the ability to trace code. If
they are able to trace reliably most of the time they have
reached

they are only able to explain code in a unistructu
This study highlights the use of the two-task approach to
study a hierarchy of programming skills. Here, tracing is
task 1, and only students who demonstrate a particular
level of competence in task 1 are capable of performing

CRPIT Volume 95 - Computing Education 2009

12

t, we intended to

 with performance on
 is not evidence of
ork to do before it

t the bottom of
erarchy were exam questions that

ore than knowledge of programming

ore likely to elicit certain doodle types.

e code rather than the question type.
ld be a
agment

 the majority of circumstances do
ipts?

motivates them

ning with Diagrams

 Thomas,
scussed in

let
us on how

2.6 The Relationship to Code Writing
From the outset of the BRACElet projec
investigate the relationship between code reading and
code writing. As educators, it was our intuition that code
tracing is easier than code writing and that the ability to
read code is a precursor to code writing, but there is little
direct evidence to support that intuition.
Sheard et al. (2008) gave students three ‘explain in plain
English’ questions in an end-of-first-semester exam, and
also required the students to write code. The level of
SOLO response to the ‘explain in plain English’
questions correlated positively
writing tasks. However, correlation
causality, and there remains much w
can be said with confidence that the capacity to answer
‘explain in plain English’ questions involves skills that
are a precursor to code writing.

2.7 The Path to Abstraction
Lopez et al. (2008) analysed student responses to an end-
of-first-semester exam, looking for evidence of a
hierarchy of programming skills. They looked for
statistical relationships between the questions in the
exam; specifically how well non-writing questions
predicted student performance on a code writing question.
A stepwise regression, with performance on code writing
as the dependent variable, was used to construct a path
diagram. The diagram suggests the possibility of a
hierarchy of programming related tasks. A
their regression hi
required little m
constructs. At intermediate levels of the regression
hierarchy were “explain in English” questions, Parson’s
puzzles, and the tracing of iterative code.

2.8 Doodles
McCartney et al. (2007) analysed student annotations on
a test sheet (‘doodles’) and investigated the relationship
between those doodles, the difficulty of the questions and
student performance. They found that students who
doodled performed better on the Leeds problem set.
Whalley, Prasad and Kumar (2007a) also looked at
student annotations using a new problem set. They used
the SOLO taxonomy to investigate the level of reasoning
that students achieved when answering a short answer
question and related this to the type and number of
annotations they made. Whalley Prasad and Kumar found
that despite encouraging students to doodle and teaching
tracing, almost two thirds of the students turned in an
exam paper on which there were no annotations. While
higher achievers were more likely to doodle there seemed
to be no relation between the use of annotations and the
SOLO responses to ‘explain in plain English’ questions.
Whalley, Prasad and Kumar also found that certain types
of questions are m
They argued that certain doodles actually arise because of
the constructs in th
For example, it could be argued that tracing wou
more appropriate strategy when the code fr
contains a loop.

This study raised several questions which have still not
been investigated:

• Why in
students not annotate their scr

• When students do doodle what
to do so?

• When students do annotate are they using
doodles that are appropriate for the question
type?

2.9 Reaso
Lister (2007) used a two-test approach to study student
performance on an end-of-first-semester exam. Task 1
comprised four multiple choice questions, in which
students were asked to determine the value in a particular
variable, after a given piece of code had finished
executing.
In the second task, students were given eight multiple
choice questions, but questions of a different nature from
those in task 1. For each task 2 multiple choice question,
students were given a set of diagrams that described an
algorithm, and they were also given code that
implemented that algorithm, with one or two lines
missing. In each of the eight questions, students had to
choose the appropriate line(s) from four options provided.
Of the students who scored a perfect 4 on Task 1,
approximately 20% scored 5 or less out of a possible 8 on
Task 2. Those 20% were accomplished concrete
reasoners about code – having scored a perfect 4 on task
1 – but those students did not manifest the more abstract
skill of relating code and diagrams. This study is
evidence that the ability to reason about algorithms
diagrammatically is a skill that is higher on the hierarchy
than the ability to trace code.
This study is consistent with the work of
Ratcliffe, and Thomasson (2004) that was di
the introduction of this paper. They found that many of
their students were reluctant to use diagrams as an aid in
tracing code – which is not surprising for any student who
cannot reason about algorithms diagrammatically.

2.10 Developing the Research Methods

The BRACElet project has made extensive use of two
taxonomies, the revised Bloom’s taxonomy and the
SOLO taxonomy. However, in doing so, BRACElet
participants have had to come to a mutual understanding
of how these taxonomies apply to the work of novice
programmers. This has not been easy – indeed BRACE
participants are yet to develop a strong consens
these taxonomies are best applied to novice programmers.
Thompson, et al. (2008) represents our best attempt thus
far to apply a consistent interpretation with concrete
exemplars of the revised Bloom’s taxonomy, and Clear,
et al. (2008b) does the same for the SOLO taxonomy.

3 The BRACElet Guiding Principles
A multi-institutional collaboration like BRACElet can
only be successful if the participants have bought into the
principles on which the project is founded. In this section
we supply a brief summary of the guiding principles for
the BRACElet paper. Many of our guiding principles

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

13

s

r and Lister (2007c) and Clear et

BRACElet members b

 theory or understanding as a by-

As part of this commitment to research, BRACElet
ce, and not their folk-

 leaves each institution with many degrees of

 in this typ
rticipants were

an ‘explain in plain

R
m
a different institutions, but we see similar
p e results, we have a research outcome that

s of the BRACElet

ing or ideas phase
halley, Clear and

 of these rules is that

 use those
uch as co-authorship, to

 has been that all co-

sign

d as a permanent change to the

hat data,
probably the first paper. Note that contributing data

ethical clearance

e is little distinction

ent
and the publication protocol. Also, members need to

have their foundation in earlier multi-institutional project
(Fincher et al. 2005).
A detailed account of the practices and rules for
BRACElet collaborators are in Whalley and Robbins
(2007b), Whalley, Clea
al. (2008a). Anyone who is contemplating joining
BRACElet should read those documents.

3.1 Belief in a strong teaching–research nexus
elieve in a strong teaching–

research nexus. We see our work as an evidence-based
and research-informed way of improving our teaching.
We see BRACElet as:
“… the development of
product of the improvement of real situations, rather than the person who first uttered the idea.

application as a by-product of advances in ‘pure’
theory.”

(Carr and Kemmis, 1986, p. 28).

members debate the eviden
pedagogic intuitions.

3.2 Assessing the student always comes first
One of the core guiding principles is that assessing the
students always comes first and the research must be
conducted without compromising the course.

3.3 The Common Core
Placing the student first means that it is impossible to run
exactly the same experiment (i.e. use exactly the same
exam questions) in every participating institution.
Instead, before each data gathering phase, BRACElet
members agree upon a ‘common core’, which is a
minimal set of properties that must be present in all their
exams. For example, past common core definitions have
specified conditions like ‘all exams will contain at least
one explain in plain English question’. Such a
specification
freedom, such as what programming constructs will be in
their choice of code, how long the code will be, and
whether or not to give the students practice
question prior to the exam. BRACElet pa

e of
implies meeting the institutional

even free to use a different phrase th
English’. For example, in one exam (Sheard et al. 2008)
the students were asked to supply a meaningful name for
a method.
The specification of the common core for the next phase
of BRACElet data gathering – the 2009.1 (Wellington)
specification – is given later in this paper.

3.4 Repetition for Robustness
ather than weakening BRACElet, the common core
akes our findings more robust. When non-identical tests

re used at
atterns in th

has implications beyond the classroom
collaborators. Fincher and Petre (2004) explained the
importance of this type of repetition:

 “… repetition can show how consistent the outcomes
of a given study are across different related tasks,

across different environments, across different related
contexts.”

3.5 The Rules of Engagement
What really drives BRACElet is a set of “Rules of
Engagement” that cover the brainstorm
and the post-brainstorming phase (W
Lister, R. 2007c). The basic principle
ideas are the easy part. BRACElet recognises that the
hard graft is done gaining ethics clearance, drafting the
actual final instruments, collecting the data, doing the
analysis and writing the paper. When we meet we share
ideas freely. All meeting participants are free to
ideas, without any obligation, s

3.6 The Publication Protocol
BRACElet members are not automatically authors of any
BRACElet paper. In fact, most BRACElet papers are
written by subgroups. Our policy
authors must have made a substantial contribution to at
least two of the following four activities:

• Conception or de
• Data collection and processing
• Analysis and interpretation of data
• Writing substantial sections of the paper (e.g.

synthesising findings in a literature review or a
findings/results section)

Also, everyone who is listed as an author should be able
to defend the paper as a whole (although not necessarily
all the technical details).
With the publication of this paper, there is a relaxation of
one the above authoring requirements, which will apply
as an experiment in the next data gathering phase, after
which it will be considere
rules. The relaxation is that anyone who contributes data
that is collected in an exam from their students, but does
not contribute on any of the other points, will be a co-
author on at least one BRACElet paper that uses t

processes, adapting the questions to the specific exam,
and providing the data in a form that is useful to other
BRACElet participants.
Anyone who attended both days of the BRACElet
workshop in Sydney, in September 2008, is deemed to
have contributed to conception and design for the next
iteration of the BRACElet research cycle.

3.7 Membership / Recruitment
BRACElet welcomes new members. Indeed, the need to
repeatedly explain and justify our research to new
members actually tests and strengthens our research. At
every BRACElet meeting, ther
between reviewing the project and bringing the new
people up to speed – if we cannot explain our research to
new people, what use is that research to anyone?
Joining BRACElet obliges the new member to abide by
our guiding principles, especially the rules of engagem

CRPIT Volume 95 - Computing Education 2009

14

 but by no means all

an help.

r to

W t in
t u
dat a
to do
memb
with a
the dat
observe ce courtesies. They should:

(1)

(2)

ing
ton)

y alteration
009.1 (Wellington)

ld NOT use a new
umber to refer to their changes. We

variable updates as the student traces through code.

que
skil

alw
pro
man
be t
(1)

(2b)

hese tracing questions should be of similar

that nonsense code is

ingful variable names. Members who

y of your students are reading the

attend some of the project meetings,
meetings. Almost all members begin their membership
via attending their first meeting.
New BRACElet members must complete the appropriate
human ethics clearance processes at their institution
(known as ‘IRB’ to most Americans). For anyone who
would like to join BRACElet, but who has no prior
experience with getting such approval, we c

3.8 The Open Research Plan
Prior to the publication of this paper, BRACElet has
traditionally kept each research plan private among its
members until the data has been collected, analysed and a
paper has been written. With this paper, BRACElet
begins an experiment with a different approach, where a
specification of the research plan is published prio
data collection, analysis and publication.

ith he publication of this paper, our research plan is
he p

a,
blic domain. Anyone is free to collect their own
nalyse and publish it. In fact, we encourage people
so. Neither the authors of this paper, nor existing
ers of BRACElet, have any claim to co-authorship
nyone who does so, nor do we have any claims to
a of those people. However, we do ask that people

rtain professional

Cite and summarise this paper in their paper(s).

Not claim to be part of the BRACElet project,
unless they have our explicit approval to do so.
Instead, they should refer to their work as be
based upon the BRACElet 2009.1 (Welling
specification. We reserve all naming rights to
“BRACElet”.

(3) Be explicit in their paper(s) about an
they made to the 2
specification. They shou
version n
reserve naming rights to version numbering.

4 The 2009.1 (Wellington) Common Core
This section specifies the BRACElet 2009.1 (Wellington)
common core, which comprises three parts:

(1) Basic Knowledge & Skills
(2) Reading / Understanding
(3) Writing

These three parts are described in detail the next three
subsections.
If students complete the different parts of the common
core at different times, the elapsed time between doing
the first part and doing the last part should be no more
than 1 week. Also, record the relative times when each
part was done (e.g. ‘part 2 was done 3 days after part 1’).

4.1 Basic Knowledge & Skills
The purpose of this part of the common core is two-fold.
First, it establishes that students understand the
programming constructs (e.g. how an “if” statement or a
“while” loop works). Second, it establishes that students
have mastered relatively concrete skills, such as tracking

Ideally, BRACElet participants should use several
stions to test students on their basic knowledge and
ls.

Thus far in BRACElet, some form of tracing question has
ays been used to establish that students understand the
gramming constructs. As a guiding (but non-
datory) principal for tracing questions, there should
hree types of questions:
Non-iterative (and non-recursive) tracing questions,
where several programming constructs may be tested
in the one question;
 Iterative tracing questions, without control l(2a) ogic
within the loop, and with a very small number of
variables, perhaps no more than a loop control
variable plus one other variable. For example, a loop
that sums the elements of an array meets those
criteria (but it might be wise to avoid using a variable
called “sum”, otherwise students might guess the
answer). This type of question establishes whether
students understand the iterative construct used.
 Iterative tracing questions that have control logic
within the loop (e.g. the code in Figure 2) which
establishes whether students can track variable
updates as they trace that code. The code in at least
one of t
complexity to the code in one question from part 2 of
the common core. Also, the code in at least one of
these tracing questions should be of similar
complexity to the code in one question from part 3 of
the common core

Most BRACElet participants use multiple choice
questions for tracing questions, but free response is also
allowed.
These questions should not contain buggy code. That is,
the code should not contain simple bugs, such as a loop
that terminates either one iteration too early or too late.
As a guiding principal, if an expert programmer was to
attempt these questions hastily, they should not be tricked
by a simple bug. Note, however,
permissible (i.e. code that has no purpose that an expert
programmer could easily identify and describe).
BRACElet members are left free to decide whether the
code will use mean
use meaningful names for parts 2a and 2b are warned not
to use a piece of code for which a student might then
guess the function of the code, and thus answer the
question without tracing the code.
New BRACElet participants are encouraged to reuse
questions published in past BRACElet papers – it is
unlikely that an
BRACElet papers.
The common core does not specify on which
programming constructs the knowledge of students
should be tested – that is determined by the syllabus at
each participating institution. The common core merely
specifies that this part of the common core should test
all the programming constructs used in the other two
parts of the core.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

15

upon the earlier BRACElet work

an ethics clearance. Students
he exam paper to

 place (e.g. on the

ification protocol should
b h
u ly
approv
student

4
The p
establi
of cod
should
follow

erefore the most risky of the three types).

y reading the code. It follows th

e code as a method,
with some of the variables declared as part of the method

ding/understanding

Fo
pa e questions

4.
BR d to include several

sa
we
(a)

f similar complexity? The work by Sheard et al.

(b
 to

 level for the more

mplexity, can students

mplexity to one
), and at least one

ery student

her

 member of BRACElet, data may be
collected either through an exam given to students, or as a
paper-based test given to student volunteers, or through a
‘think out loud’ protocol with either students or

4.1.1 Anticipated Analysis
The primary purpose of this first part of the common core
is to act as task 1 in two-task analysis. However, we
would also like to build
on the doodles students make when tracing code
(Whalley, Prasad and Kumar 2007a). Therefore,
BRACElet participants should retain the exam scripts /
answer booklets of their students, and be prepared to
show those materials to other BRACElet members. This
may be an issue for hum
should be explicitly encouraged on t
show their working in a designated
same page where a question occurs in the exam paper;
perhaps in a box on that page if there is more than one
question on the page).
When collecting data an established anonymous script
scanning and data source ident

e ad
sual

ered to. All participants must follow this protocol,
 enforced by an institutions human ethics
al, which is created to safeguard the privacy of
s and institutions.

.2 Reading / Understanding
urpose of this part of the common core is to
sh whether students deduce the purpose of a piece
e from reading the code. BRACElet members
 use at least one question based on any of the
ing three question types:

(a) Explain in plain English. BRACElet members
are free to use an instruction to students other
than ‘explain in plain English’.

(b) Parson’s problems.

(c) Code Classification Questions, as in Thompson et
al. (2006). However, if a BRACElet participant
elects to use this type of question, they should use
at least one of the other question types (as this
type of question is the least evaluated and
th

Any code used for an explain in plain English question
should not have been used in a part 1 tracing question.
Otherwise, there is a danger that students might guess a
SOLO relational response from the output of the code,
when our aim is to see if they can produce a SOLO
relational response b at at

Where it is possible, collect the gender of ev
from hom data is collected.

least some of the variables in any code should be left non-
initialized; otherwise the student might trace the code.
One way of doing this is to present th

header.
The code used in at least one of these
reading/understanding questions should be of similar
complexity to at least one part 1 tracing task. Also, the
code used in at least one of these rea
questions should be of similar complexity to at least one
part 3 writing task.

r repetition and robustness, new BRACElet
rticipants are again encouraged to reus

published in past BRACElet papers.

2.1 Anticipated Analysis
ACElet participants are encourage

reading/understanding questions in their exam (of the
me type, or of different types). With multiple questions
 can examine the following issues:
 For ‘explain in plain English’ questions, do students
tend to provide responses at the same SOLO level for
code o
(2008) suggested that this was the case.

) For two ‘explain in plain English’ questions of
differing levels of complexity, do students tend
provide a response at a lower SOLO
complex code? Again, the work by Sheard et al. (2008)
suggested that this was the case.

(c) For a given level of code complexity, is there a
statistical relationship between the SOLO level of a
student response to an ‘explain in plain English’
question, and a code classification question? The work
by Thompson et al. (2006) suggested that this was the
case.

(d) For a given level of code co
who provide multistructural responses to ‘explain in
plain English’ questions solve Parson’s Problems?

4.3 Common Core 3: Writing
Most programming exams already require students to
write code, and BRACElet has only one additional
requirement for such writing questions – at least one code
writing task should be of similar co
tracing task (i.e. from part 1 of the core
code writing task should be of similar complexity to one
reading/understanding task (i.e. part 2 of the core).

4.3.1 Anticipated Analysis
BRACElet regards code writing ability as the dependent
variable. That is, if programming is indeed a hierarchy of
knowledge and skills, then code writing is at the top of
the hierarchy, and our analysis will continue our earlier
work (e.g. Lopez et al. 2008) of searching for statistical
relationships between code writing and what we believe
are precursor skills for code writing.

4.4 Other Data to be Collected

 w
Where data is collected from volunteers, record the age of
the volunteer. If data is collected via an exam given to the
class, it is only necessary to be able to describe the age
range of most students (e.g. “almost all students are
between 18 and 21 years of age”).
Where data is collected from volunteers, record the stage
they have reached in their formal study of programming
at your institution (e.g. ‘eight weeks into their second
semester of learning programming’). Also record whet
the degree is undergraduate or postgraduate.

4.5 2009.1 (Wellington) Membership
To become a

CRPIT Volume 95 - Computing Education 2009

16

a collected is to be made available to

ts have
ork more closely than is usual in
tutional boundaries, because

ements
hank their collaborators on the BRACElet

pas
SIG
Wh nt work on

to
A
C

R

ition, 10(3): 483-495.

C
R , M.C. (Eds) (2001): A Taxonomy for

B jectives. New

B

C

Chase, W. C., and Simon, H. A. (1973): Perception in
chess. Cognitive Psychology, 4: 55-81.

, Darlinghurst, Australia.

my. Proc. 21st Annual

C imon. (2008c):

Fi
. (2005): Multi-institutional, multi-national

Gi

Science Education (SIGCSE

Li

Li

n

Li

dvisory Committee on Computing

Lo
Relationships between reading, tracing and writing

colleagues. The dat
all members of BRACElet.
In cases where data is gathered as part of assessment, or
by volunteers completing a written test, data from at least
20 students is required, to enable statistical analysis.
Where it is not possible to collect data from 20 students,
BRACElet membership can be obtained by conducting
‘think out loud’ sessions, with student volunteers or with
colleagues.

5 Conclusion
Researchers who work within paradigms have agreed
approaches and standards of evidence that allow them to
work for long periods within their respective institutions.
Peer reviewed papers are their primary means of
communicating with researchers in other institutions.
Computing education research has not yet developed its
own paradigms. We do not have strong community
agreement on research approaches and what constitutes
evidence. Consequently, BRACElet participan
deliberately chosen to w
research, across insti
BRACElet is as much about devising research
approaches, and debating what constitutes valid evidence,
as it is about studying novice programmers. We invite
you to join the project. Even if you choose not to join
BRACElet itself, you are welcome to execute the
research plan we have published in this paper – our plan
is now in the public domain, so anyone is free to use it.
We look forward to reading about your results.

Acknowledg
The authors t
project, especially our co-leader Tony Clear. Some of the

t work on BRACElet has been funded by ACM
CSE Special Projects Grants awarded to Jacqueline
alley and Tony Clear. Some of the curre

BRACElet is funded by an Associate Fellowship awarded
 Raymond Lister and Jenny Edwards from the
ustralian Learning and Teaching Council (formerly the
arrick Institute).

eferences
Adelson, B. (1984): When novices surpass experts: The

difficulty of a task may increase with expertise.
Journal of Experimental Psychology: Learning,
Memory, and Cogn

Anderson, L.W., Krathwohl, D.R, Airasian, P.W.,
ruikshank, K.A., Mayer, R.E., Pintrich, P.R., Raths,
. and Wittrock

Learning, Teaching and Assessing. A Revision of
loom’s Taxonomy of Educational Ob

York, Addison Wesley Longman, Inc.
iggs, J. B., and Collis, K. F. (1982): Evaluating the

quality of learning: The SOLO taxonomy (Structure of
the Observed Learning Outcome). New York:
Academic Press.

arr, W., and Kemmis, S. (1986): Becoming critical:
education knowledge and action research. Lewes:
Falmer Press.

Clear, T., Edwards, J., Lister, R., Simon, B., Thompson,
E. and Whalley, J. (2008a). The teaching of novice
computer programmers: bringing the scholarly-research
approach to Australia. Proc. Tenth Australasian
Computing Education Conference (ACE 2008),
Wollongong, NSW, Australia. Simon and Hamilton,
M., Eds., CRPIT, 78:63-68, Australian Computer
Society

Clear, T., Whalley, J., Lister, R., Carbone, A., Hu, M.,
Sheard, J., Simon, B., Thompson, E. (2008b): Reliably
Classifying Novice Programmer Exam Responses
using the SOLO Taxono
Conference of the National Advisory Committee on
Computing Qualifications (NACCQ 2008), Auckland,
New Zealand. Samuel Mann and Mike Lopez., Eds.,
23-30.

lear, T., Philpott, A., Robbins, P., and S
Report on the Eighth BRACElet Workshop (BRACElet
Technical Report No. 01/08). Auckland: Auckland
University of Technology.

Denny, P., Luxton-Reilly, A. and Simon, B. (2008):
Evaluating a New Exam Question: Parsons Problems.
Proc. of the 2008 International Workshop on
Computing Education Research (ICER '08), Sydney,
Australia. ACM Press, New York, NY.

Fincher, S, and Petre, M. (2004): Computer Science
Education Research, Taylor & Francis.

ncher, S, Lister, R, Clear, T, Robins, A, Tenenberg, J,
and Petre, M
studies in CSEd Research: some design considerations
and trade-offs. Proc. International Computing
Education Research Workshop. Seattle, USA, 111-121.

nat, D. (2008): Learning from wrong and creative
algorithm design. Proc. of the 39th SIGCSE Technical
Symposium on Computer
'08), Portland, OR, USA, 26-30, ACM Press, New
York, NY.

ster R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer,
J., Lindholm, M., McCartney, R., Moström, E.,
Sanders, K., Seppälä, O., Simon, B., and Thomas, L.
(2004): A Multi-National Study of Reading and
Tracing Skills in Novice Programmers. SIGCSE
Bulletin, 36(4):119-150.

ster, R., Simon, B., Thompson, E., Whalley, J. L., and
Prasad, C. (2006): Not seeing the forest for the trees:
novice programmers and the SOLO taxonomy. Proc. of
the 11th Annual SIGCSE Conference on innovatio
and Technology in Computer Science Education
(ITICSE '06), Bologna, Italy, 118-122 ACM Press, NY.

ster, R. (2007): The Neglected Middle Novice
Programmer: Reading and Writing without
Abstracting. Proc. of the 20th Annual Conference of
the National A
Qualifications (NACCQ'07), Port Nelson, New
Zealand, Mann, S. and Bridgeman, N., Eds, 133-140.

pez, M., Whalley, J., Robbins P. and Lister, R. (2008):

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

17

n

M

he Fourth Finnish/Baltic Sea Conference on

P

ds., CRPIT, 78:

P

S and

S hompson,

, 209-213.

T

 results.

T

 on Computing Qualifications (NACCQ

T

W
f

tional

W

ications (NACCQ 2006), S. Mann & N.

W

(ACE 2007), Ballarat, Vic.,

W

5(1), Retrieved June 7, 2007 from
http://www.naccq.co.nz/bacit/0501/2007Whalley_BRA
CELET_Workshop.htm

Whalley, J., Clear, T. and Lister, R. (2007c): The Many
Ways of the BRACElet Project. Bulletin of Applied
Computing and IT, 5(1), Retrieved June 7, 2007 from
http://www.naccq.co.nz/bacit/0501/2007Whalley_BRA
CELET_Ways.htm

skills in introductory programming. Proc. of the 2008
International Workshop on Computing Educatio
Research (ICER '08), Sydney, Australia. ACM Press,
New York, NY.

cCartney, R., Moström, J. E., Sanders, K. and Seppala
O. (2004): Questions, Annotations, and Institutions:
observations from a study of novice programmers.
Proc. Of t
Computer Science Education, Koli, Finland, 11-19.

arsons, D. and Haden, P. (2006): Parsons’ programming
puzzles: a fun and effective learning tool for first
programming courses. Proc of the 8th Australian
Conference on Computing Education, Hobart,
Australia, D. Tolhurst and S. Mann, E
157-163.

hilpott, A, Robbins, P., and Whalley, J. (2007):
Accessing The Steps on the Road to Relational
Thinking. Proc. 20th Annual Conference of the
National Advisory Committee on Computing
Qualifications (NACCQ 2007), Mann,
Bridgeman, N., Eds, Nelson, NZ, 286.

heard, J., Carbone, A., Lister, R., Simon, B., T
E., and Whalley, J. (2008): Going SOLO to Assess
Novice Programmers. Proc. of the 13th Annual
SIGCSE Conference on innovation and Technology in
Computer Science Education (ITICSE '08), Madrid,
Spain, ACM Press, New York, NY

Sierra, K. and Bates, B. (2005): Head First Java, 2nd
Edition, O'Reilly Media, Inc.; 2nd edition.

homas, L., Ratcliffe, M., and Thomasson, B. (2004):
Scaffolding with object diagrams in first year
programming classes: some unexpected
SIGCSE Bulletin, 36(1):250-254.

hompson, E., Whalley, J., Lister, R. and Simon, B.
(2006): Code Classification as a Learning and
Assessment Exercise for Novice Programmers. Proc.
of the 19th Annual Conference of the National Advisory
Committee
2006), Wellington, New Zealand, 291-298.

hompson, E., Luxton-Reilly, A., Whalley, J., Hu, M.,
and Robbins, P. (2008): Blooms Taxonomy for CS
Assessment. Proc. Tenth Australasian Computing
Education Conference (ACE2008), Wollongong,
Australia, Simon & M. Hamilton, Eds., CRPIT, 78:
155-161.

Traynor, D., Bergin, S., and Gibson, J. P. (2006):
Automated assessment in CS1. Proc. of the 8th
Australian Conference on Computing Education -
Volume 52, D. Tolhurst and S. Mann, Eds., Hobart,
Australia, ACM International Conference Proceeding
Series, 165: 223-228. Australian Computer Society,
Darlinghurst, Australia,

halley, J., Lister, R., Thompson, E., Clear, T, Robbins,
P., and Prasad, C. (2006): An Australasian Study o
Reading and Comprehension Skills in Novice
Programmers, using the Bloom and SOLO
Taxonomies. Proc. of the 8th Australian Conference

on Computing Education - Volume 52, D. Tolhurst and
S. Mann, Eds., Hobart, Australia, ACM Interna
Conference Proceeding Series, 165: 243-252,
Australian Computer Society, Darlinghurst, Australia.

halley, J. (2006): CSEd research instrument design: the
localization problem. Proc. 19th Annual Conference of
the National Advisory Committee on Computing
Qualif
Bridgeman, Eds., Wellington, NZ, 307-312.

halley, J., Prasad, C. and Kumar, P. K. A. (2007a):
Decoding Doodles: Novice Programmers and Their
Annotations. Proc. Ninth Australasian Computing
Education Conference
Australia. Mann, S. and Simon, Eds., CRPIT, 66: 171-
178.

halley, J. L., and Robbins, P. (2007b): Report on the
Fourth BRACElet Workshop. Bulletin of Applied
Computing and IT,

CRPIT Volume 95 - Computing Education 2009

18

Panel

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

19

CRPIT Volume 95 - Computing Education 2009

20

Second Life Panel

Clare Atkins

School of Information Technology

Nelson Marlborough Institute of Technology

New Zealand

clare.atkins@nmit.ac.nz.

Scott Diener

 IT Services, Academic & Collaborative Technologies

The University of Auckland

New Zealand

s.diener@auckland.ac.nz

Nauman Saeed

Faculty of Information & Communication Technologies

Swinburne University of Technology

Australia

nsaeed@ict.swin.edu.au

There are many interesting uses of the virtual world in Second Life for Computing Education. The panel

members are involved in tertiary education and use Second Life as their medium, both for teaching and

research purposes. However, the session is an open forum, where they will demonstrate their work in

Second Life, and discuss issues and questions with the audience. Not all panel members will be present,

but we will link to them in Second Life during the panel forum timeslot.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

21

CRPIT Volume 95 - Computing Education 2009

22

Contributed Papers

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

23

CRPIT Volume 95 - Computing Education 2009

24

 An Exploration of Internal Factors Influencing Student Learning of
Programming

Angela Carbone1, John Hurst4

Faculty of Information Technology
Monash University, Australia

61 3 9903 1911
Angela.Carbone@infotech.monash.edu.au
John.Hurst@infotech.monash.edu.au

Ian Mitchell2, Dick Gunstone3
Faculty of Education

Monash University, Australia

61 3 9905 2857
Ian.Mitchell@education.monash.edu.au
Dick.Gunstone@education.monash.edu.au

Abstract
This paper explores internal factors influencing student
learning of programming. This is based on literature
relating to student learning and learning of programming.
Two dimensions: motivation and capability are used as a
framework to explore the data gathered from a study of
first year undergraduate IT programming students at an
Australian University. The authors propose that the
exploration conducted in this study is useful in assisting
academics with developing tasks to facilitate student
motivation and skills to learn programming.

1 Introduction
Literature relating to learning suggests that there are many
factors that influence cognitive engagement and the
learning process. This includes the individual, the learning
environment and the tasks set. The problem of researching
learning is that each of these factors is regarded as
important, with all having an immediate impact.
Consequently, studying any one of them in isolation from
the others carries obvious risks. On the other hand, it is
difficult, if not impossible to discuss all of them at once.
Our research does explore all these factors, but this paper
concentrates on one of the major strands, that is, individual
factors that influence student learning of programming.
This paper is part of a broader study that attempts to pull
together information in this field in a comprehensive
manner that is integrated into the broader literature on
learning.

--
Copyright © 2009, Australian Computer Society, Inc. This
paper appeared at the Eleventh Australasian Computing
Education Conference (ACE2009), Wellington, New
Zealand, January 2009. Conferences in Research and
Practice in Information Technology, Vol. 95. Margaret
Hamilton and Tony Clear, Eds. Reproduction for academic,
not-for-profit purposes permitted provided this text is
included.

The assertion made in this paper, is that there exists an
individual domain which encapsulates personal factors that
influence student learning of programming, and that these
factors can be described by a student's motivation towards
engaging in the learning activities and his/her capability to
complete these activities.

The body of this paper will tease out some of the
issues relating to student capability and motivation required
to learn to program. Of course, other factors such as the
learning environment and the task contribute to the students
learning, and once these are fully understood, one can
examine the interplay between the set of internal and
external influences on student learning of programming.
However, the external influences, although explored in the
broader study are beyond the scope of this paper.

2 Literature Review
There are many factors that influence cognitive
engagement and the learning process. Biggs (1987) groups
these factors into student based factors, teaching based
factors and the system as a whole. Helme and Clarke
(2001) frame these factors affecting cognitive engagement
as; the individual, the learning environment and the
learning tasks.

The focus of this paper is on developing a
framework outlining factors related to the individual, which
can be used to promote programming capability. With
regard to the individual, Helme and Clarke (2001) state that

“students need to have both the will (motivation)
and the skill (capability) to be successful learners.
It is the experience of teachers that students who
are motivated to learn and who think carefully
about what they are learning develop deeper
understanding of the material being covered.”
(p136).

They also state that “the individual brings to the
learning situation numerous characteristics that influence
their cognitive engagement. These include: skills,
knowledge, dispositions, aspirations, expectations,
perceptions, needs, values and goals” (p138) (Helme &
Clarke, 2001).

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

25

Both studies suggest that personal or individual factors can
be described and grouped according to student motivation
towards engaging in the learning activities and student
capability in completing these activities unspecific to any
context. The studies reviewed next therefore consider the
types of skill and motivation needed to learn programming.
Although these issues are the primary focus of this section,
most studies investigated the relationship between
academic performance and the students’ personal attributes
or predisposition factors (Katz et al, 2003; Wiedenbeck,
2005).

One multi-national, multi-institutional study that
investigated the programming competency of first year
tertiary students found that “many students do not know
how to program at the conclusion of their introductory
courses” (McCracken et al., 2001, p. 125). Other studies
have attributed programming success to factors such as the
student’s background in maths and science (Byrne &
Lyons, 2001; Wilson 2002); (Bergin & Reilly, 2005);
learning styles and problem-solving skills (Beaubouef,
Lucas, & Howatt, 2001); (Goold & Rimmer, 2000);
(Haden, 2006); prior academic experience; self-perception;
and specific cognitive skills (Bergin & Reilly, 2005). Other
predisposition factors that have been reported in the
literature include spatial visualisation skills and map
drawing styles, which both had a significant correlation
with marks (Simon et al., 2006; Simon et al., 2006;
Tolhurst et al., 2006). However, the most frequently
mentioned factor for success in programming is previous
programming experience (Bunderson & Christensen, 1995;
Byrne & Lyons, 2001; Diane Hagan & Markham, 2000;
Ramalingam, LaBelle, & Wiedenbeck, 2004; Taylor &
Mounfield, 1994; Wilson & Shrock, 2001). These factors
are listed to indicate the broad range of issues that
researchers have found to influence learning.

In terms of specific skills needed by students to
learn programming, fewer studies have been conducted.
One comprehensive study by Caspersen (2007) suggests
that students need a number of capabilities to become
competent programmers. This is because there are a
number of steps involved in writing a program. These
include: reaching an understanding of the problem to be
solved and its solution space; translating the solution into
computer terms; testing and debugging then analysing and
reflecting on the result (Winslow, 1996). As a
consequence, students need many capabilities.

One such capability includes the ability to close
track code (Perkins, Hancock, Hobbs, Martin & Simons
1986), yet studies have show that many students are weak
at tracing code (Lister et al., 2004) or do not have the
willingness to do so (Denny, Luxton-Reilly & Simon,
2008). Others include: the ability to tinker with code
effectively, break down a programming task into sub-
problems (Perkins, Hancock, Hobbs, Martin and Simons
1986); problem solving skills (de Laet, Slattery, Kuffer, &
Sweedy, 2005; de Raadt, Watson, & Toleman, 2006); and
the ability to work in a team to solve problems and write
programs in collaboration with others (Daigle, Doran, &
Pardue, 1996; Hagan, 2004).

Motivation has been found to affect students’
learning progress (Helme & Clarke, 2001; Jenkins, 2001).
Motivation is an abstract concept and there are a number of
theories about it. These include: need and drive theory,
which suggests people are motivated by their needs to
develop and achieve to their fullest potential and capacities
(Maslow, 1962); trait theory, which suggests that
motivation is a personality trait of the individual (Kassin,
2003); and other cognitive theories that seek to integrate
individual characteristics, job characteristics and
organisational characteristics. These theories of motivation
are not developed or investigated in this paper. Instead this
study determines the type of motivation that students
display when working on programming tasks using the
concepts intrinsic, extrinsic and achieving motivation
(Entwistle, 1998). Intrinsic motivation is derived from a
personal interest in the subject. Deci (1975) states that
intrinsic motivation is evident when an activity is
performed for its own sake and out of interest and curiosity.
Extrinsic motivation refers to the desire to complete the
course in order to attain some expected reward.
Achievement motivation is based on doing well and
sometimes performing better than peers (Ryan & Deci,
2000)

The broader study investigates those characteristics of
programming tasks that might cause a student’s state of
motivation to change.

3 Data Collection
This paper reports on a set of individual factors that
influence first year undergraduate ICT students learning of
programming. The factors are derived from a much larger
study that investigated characteristics of programming
tasks that influence student learning. These factors are used
to construct a framework describing the individual domain
that influences student learning of programming. This
section reports on the context and design of the study and
the participants.

3.1 Context of Study
Data was collected from undergraduate ICT students
studying first year programming at Monash University.
Two groups of students participated in this study:
• students enrolled in a Bachelor of Computer Science

degree studying CSC1011 Introductory Programming
(semester 1), and CSC1030 Data Structures and
Algorithms, and Computer Systems (semester 2), and

• students enrolled in a Bachelor of Information
Management and System (SIMS) degree studying
IMS1000 First Year Studio (full year).

CSC1011 provided students with a general
introduction to computers and covered basic programming
concepts in the C programming language. CSC1030
comprised two components: developing solutions to more
complex problems using sophisticated algorithms and data
structures; and computer systems, which involves
programming using a lower level machine language called
MIPS.

CRPIT Volume 95 - Computing Education 2009

26

IMS1000 was a full-year unit in which students studied
Visual Basic programming for six weeks of the 26-week
programme. The focus of IMS1000 was on IT Tools and
Technology. This covered introductory programming
concepts, using the Visual Basic programming language for
implementation. Other topics were also covered:
information management, system analysis, knowledge
management and computer systems.

3.2 Project design
Data were gathered from students using the following
methods:
i) Semi-structured interviews;
ii) Written descriptions of students’ engagement in a task;

Semi-structured interviews with students
The first data collection method used a sample of eight
students (four male and four female) from a cohort of 315
Computer Science students who volunteered to participate
in the study. The students were guaranteed anonymity, to
increase the candidness of interviews and quality of
conclusions (Miles & Huberman, 1994), p. 277). All
participants were under the age of 20, with programming
results ranging from Pass to High Distinction.

Semi-structured conversational interviews (Patton,
1990) were used to determine how students perceived the
tasks. The eight students were interviewed on a weekly
basis for approximately 30 minutes. Students were
approached two hours into the laboratory session. The
timing of the interview was crucial as current issues and
problems that students faced would be at the forefront of
their minds and so could easily be captured. The interview
was conducted using a conversational style or open
approach to questioning. The students were asked to
answer some specific questions as part of the interview, for
example, “So you are studying programming at university;
tell me, what was your first impression of this
programming exercise?” Follow-up telephone calls and
emails were used to clarify details where necessary.
Narrative-analytical accounts (Bassey, 1999) of each
student’s engagement in a task were transcribed and
analysed from the interviews. Once compiled, accounts
were returned to the students to be approved and corrected
as part of the consent process and to verify that the account
was an accurate reflection of what had happened.

The sense during interviews was that participants
felt pressure to return to the laboratory to finish the task,
which limited the time they had to think and respond
thoughtfully. Although some inferences could be made
about the sorts of issues affecting students’ learning of
programming by scrutinising the qualitative aspects of
student responses, students did not really elaborate on their
learning. This was a problem with the interviews. Students
did not elaborate because of time restrictions or because
they lacked the vocabulary to describe their engagement in
the tasks. Consequently an alternative data collection

method was sought to stimulate their thinking about their
learning.
Written descriptions of students’ engagement in a task;
The second data collection method, which then became the
main data collection method, sought data from students via
cases in the form of self-reports. Seven
CSC1011/CSC1030 students volunteered and all seventy
IMS1000 students submitted two written descriptions about
their engagement in a task as part of the unit requirement.

Self-reports are a primary source of data in the
social sciences. Researchers rely on such reports to learn
about individuals’ thoughts, feelings and behaviours and to
monitor societal trends (Schwarz, 1999). Self-reports are
also used to infer cognition, as it is not readily observable
(Fredricks, Blumenfeld, & Paris, 2004). Shulman (1997)
pioneered practitioner-written casebooks as a professional
development tool for teacher educators and staff
developers. She describes cases as detailed scenarios
written about the real-life experiences of teachers or
administrators. Cases reflect reality: they help teachers
learn to connect theories and concepts to the complex,
idiosyncratic world of practice. The use of cases in this
study was to provide students with an opportunity to reflect
upon, inquire and analyse their behaviours. The students’
stories provided a rich data set.

To help students write self-reports they were invited
to attend a workshop titled Learning how to learn. The
workshop had three broad aims: (1) to make students more
aware of their learning; (2) to provide students with a
conceptual framework to help them analyse and describe
their own learning; and (3) to develop a rapport between
the students and the researcher (myself), which would
encourage a more thoughtful, reflective exchange of
questions and answers. These aims were directed to
helping students express and write about their learning, and
engagement in tasks. In particular, students were asked to
write about their engagement in tasks that left them with
powerful impressions of either successful or unsuccessful
learning. Their stories also provided insights into their
perceptions of other issues that affected their learning of
programming.

3.3 Data analysis and reporting
Data was analysed according to the three broad based
themes as described in the literature: the individual
(internal domain), the learning environment (external
domain) and the programming tasks. The internal domain
encompasses personal factors unique to the student, the
external domain encompasses factors outside the student’s
control and programming tasks focuses on the
characteristics of tasks that influence a students learning of
programming. The programming tasks and external domain
are not discussed in this paper.

Student quotes were coded into categories that
represented the Poor Learning Tendencies and Good

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

27

Learning Behaviours (Baird & Mitchell, 1991; Baird &
White, 1982b; Baird & Northfield, 1995). Each category
was then investigated to determine what other factors, other
than the task, might have influenced student learning.
These were coded according to individual factors and the
learning environment. Both of these broad categories
(individual and learning environment) were then analysed
and recoded into sub-categories. This categorisation is
pictorially represented in Figure 1.

The first-level sub-categories for individual
factors that influence student learning were divided into
student motivation and student capability. Second-level
sub-categories were generated from common themes that
emerged from the data itself. As these sub-categories were
generated or “grounded” in the data provided by the
participants, this part of the analysis used a grounded-
theory approach. These sub-categories were expanded and
modified as the data was carefully compared against them.
The constant comparative method1 (Glaser & Strauss,
1967) was used as the analytical approach to capture
common themes across the data.

In the next section when data is reported a specific
method of notation is employed. For example, to denote a
student’s written descriptions of their engagement in tasks
the notation CS.1a stands for written description (a) by
student 1 in the first year computer science degree studying
C programming or MIPS. If students have written multiple
descriptions, each description is labelled a, b, c etc
consecutively. Any information that may have identified
participants has been replaced by a suitable description.

4 Research Findings
The data were analysed to identify

i) causes of shifts in students’ motivation, and
ii) a set of skills needed by first year students.

The following sections explore motivation and skills, both
technical and generic, which emerged from the data.

4.1 Motivation

This section examines the motivation students displayed
when working on programming tasks, using the concepts of
intrinsic, extrinsic and achieving motivation.

1 Constant comparative method is a strategy used to analyse
interviews. Four distinct stages are used by Glaser and
Strauss (1967). These include: (i) comparing incidents
applicable to each category, (ii) integrating categories and
their properties, (iii) delimiting the theory, and (iv) writing
the theory.

Figure 1 Representation of Internal Domain

4.1.1 Intrinsic motivation
In the programming units studied there were students who
exhibited intrinsic motivation. These students usually
undertook to learn programming in their own time,
sometimes prior to the course commencing, working hard
at developing their skills. They usually had prior
programming experience, providing them with a foundation
that enabled them to grasp another programming language
easily; they possessed a repertoire of programming skills;
and demonstrated a mastery of general programming
techniques. Their familiarity with fundamental
programming concepts allowed them to concentrate on
learning new programming paradigms and language syntax,
rather than having to master those basic concepts.

Students displaying intrinsic motivation generally
displayed higher capability. These students could apply
information presented in lectures to practical problems, and
to new situations. They engaged in programming
meaningfully and would apply what they had learnt to real
life problems, suggesting that a deep learning strategy had
been adopted. These students demonstrated a persistence to
play around with the code and used alternative resources,
not just lecture notes. They played around with the code by
making a series of small changes and tests and approached
problems methodically and reflectively as compared to
others, who approached their work in a more trial-and-error
or impulsive fashion. They persevered with compilation
and run-time errors, and showed an obvious desire to
experiment beyond the requirements of the task. They were
also able to overcome difficult challenges.

These students generally worked harder and
invested significant amounts of time to complete the task.
They often explored different resources and persisted to
learn something from the process. Students who adopted
such strategies to maximise their understanding repeatedly
spoke about a sense of personal achievement and
satisfaction when they managed to get their program
working.

Motivation
Capability

Internal Domain

- Intrinsic
- Achieving
- Low Motivation

- Ability to close track
- Effective tinkering
- Break down

programming task
- Problem-solving

strategies
- Debugging skills

- Time on task
management

- Independence
- Group work skills
- Attitude towards

programming errors

Technical Generic Skills

Programming
Tasks

External
Domain

Factors affecting learning
of programming

CRPIT Volume 95 - Computing Education 2009

28

5

4.1.2 Achieving motivation
This section reports on students driven by achieving
motives. Achievement motivation is based on doing well
and adopting whatever strategy is needed to secure the best
results in the form of the highest marks.

Some students referred to achievement as their main
motivator in their written descriptions, either to achieve a
pass, or to do as well as they could. The prominence of this
type of motivation could have resulted from the nature of
the data collected, that is, being based on short-term
outcomes, for example, how the task influenced a student’s
immediate learning. Excerpt CS.4c provides an example of
a student driven by the possibility of gaining a high grade
and excerpt CS.3b provides an illustrative example of a
student wanting to pass.

The thought of a HD on my end of year report
spurred me on. Unfortunately, what one wants and
what one gets do not always coincide. Several
more attempts at implementing the parts of the
questions which I was stuck on resulted in little.
Time was running short and I had many other
things to do … [Excerpt CS.4c]
I don’t feel like I learnt anything of value, except
that MIPS is incredibly frustrating. I knew how to
do the prac — I could see it ticking over in my
head, but I at least needed to get it working to get a
pass grade. That was also frustrating — all of my
energies went toward “marks” instead of
“learning”. It would have been an invaluable prac,
but as it was, I walked away with naught but a
headache. [Excerpt CS.3b]

These examples illustrate how high levels of
motivation are not necessarily associated with high levels
of cognitive engagement. This finding is supported by
similar observations made by Blumenfeld et al. (1992).

4.1.3 Low motivation
Few students indicated that they had low motivation. The
low number could have resulted from the method of data
collection. The computer science students volunteered to
participate in the project, and none of the participants
reported or showed signs of lacking motivation. The
students studying Visual Basic were required, as a
compulsory part of the unit, to write about their
engagement in tasks and it was in these descriptions that
the students with poor motivation were revealed. Excerpts
VB.16 and VB.63 provide two examples of students
explicitly stating that they lacked motivation to engage in a
programming task, which was purely based on a lack of
interest in the unit.

As I’ve foretold earlier, I don’t have a great
interest in VB that didn’t make me strive harder to
learn it 100%. [Excerpt VB.16]
I was too distracted and lazy to concentrate on the
learning task at hand. Independent learning
requires us, as students to want to learn and not be
forced by others to learn. Maybe I still thought I

was in high school, and expected the teacher to
come around, instructing, “Get to work! Where
are you up to? What? You should be up to here
by now … ” [Excerpt VB.63]

4.1.4 Changes in motivation
An interesting insight that emerged from this study was that
students could start off intrinsically motivated to learn, but
then, while working on a task, experience a change in their
state of motivation. Students could shift from being
intrinsically motivated to achieving or low motivation, or
move from a state of low motivation to one that was
intrinsic or achieving in nature.

In excerpt CS.2a the student originally put extra
effort into the task, but since he wasn’t rewarded for the
extra effort, he adopted a purely achieving learning
approach in which his sole aim was to acquire the marks.

It was the first prac I had for CSC1030 and I put
extra effort into it only to find that that wasn’t
required ... since that time prac, I have just done
the pracs with “marks” on my mind instead of
trying to make it more efficient and user friendly.
[Excerpt CS.2a]

In excerpt CS.5b, the student finds dealing with a
bug in the simulator too much of a challenge, and her state
of motivation changes. Unfortunately, by the end of the
laboratory session, the student had lost the motivation to
spend any further time on the task, even after the lecturer
had granted her an extension.

It really burns when someone tells you, you should
have done something and you didn’t, and you
know you should have done it. A bad mark is
even worse. And that’s what I got for this MIPS
prac I had gone to the lecturer just a little upset.
Yes, she said, I had encountered bugs in the
simulator, and she offered me some more time to
complete the prac, but I don’t think I could have
finished it anyway. All bugs and time wasted
aside, once I had walked out of that prac room, I
didn’t want to know about it. [Excerpt CS.5b]

A more serious concern than motivation changing
from an intrinsic state to an achieving one is when
motivation shifts from high to low motivation. This is
illustrated in excerpts VB.63 and CS.1b. Students can lose
interest in what they are doing quickly, and this is usually
because they have encountered difficulties in the task, or
have no way of proceeding. They can move into state
where they no longer wish to continue working on the task,
and at times this can lead them to disrupt others, as in the
case of excerpt VB.63.

The learning process was hindered in this instance
because once I realised that I was having difficulty
completing the task; I decided to spend the studio
time talking. This was a big mistake, because the
three hours in which I could have attempted to
learn something about VB applications turned into
something of a gossip session. Reflecting back on
the time, I now realise that this is a powerful

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

29

impression of unsuccessful learning as I was also
disrupting other students who may have wanted to
seriously complete their studio activity. [Excerpt
VB.63]

In excerpt CS.1b, the student encounters a problem,
and because he is unable to fix it, ends up abandoning the
task rather than persisting in order to fix it.

I had no idea how to fix this problem, and as we
only had fifteen minutes left in the prac it didn’t
look likely that I would be able to solve the
problem. So I left. [Excerpt CS.1b]

Just as students can move into a state of low
motivation, they can also move into a motivated state. The
data suggests that once students acquire the necessary
programming skills and develop a familiarity with the
programming language, they can become motivated to
learn more. So their motivation shifts and feeds on their
success. Excerpts VB.37 and VB.39 illustrate this point.

However, once I got the hang of coding it became
very addictive. I could not go to sleep if I didn’t
get the program running the way it should. Hence I
gradually developed an interest that I never
thought I would. I also became very interested in
coding every exercise in the studios. [Excerpt
VB.37]
The entire impression of successful learning
only really took full effect after I had
completed the CADAL Quiz and reviewed
my results. With persistence and consistent
hard work, I had managed to score a perfect
mark on the test. Although I did refer back to
the notes of the seminar, I was able to
remember and consequently learn a lot of the
material covered, which I put into practice
during the quiz. Even … as delighted and
happy as I was it is only now after being
presented with such a question, do I seriously
realise how that simple activities coordinated
and directed my positive impressions and
motivation to learn Visual Basic. [Excerpt
VB.39]

4.2 Capability

4.2.1 Technical Skills
The technical skills that students lacked are discussed
below.
Inability to close track
Students didn't sufficiently track their code to localise
problems accurately.

I started to do it, designed the interface for the VB
application, and wrote the codes for the simple
ones... When I wanted to use the Do … Until to
write the coding, I met the problem, I notice that
when I running the program, was not be looped as
I wished. So I knew the coding that I wrote maybe
wrong, then I rewrote the code more than fve
times, but it still got the same problem.
I had no ideas by myself, time gone so quickly,
and just left one hour to finish. So I found the tutor
and asked him how to solve this problem, and the

tutor so kindly and tell me what was wrong for my
coding, but he did not help me to rewrite the
coding, and gone away. [Excerpt VB.19]

As in the case above, the student attempted to
correct the code over five times but each repair was
incorrect so the student was unable to isolate the problem
and complete the program on his own. As a result, he
sought assistance from the tutor who was able to track the
problem and advise him on how to proceed. Although
students may demonstrate an eagerness to tinker with the
code, they fail to track errors, and rely on tutors to do that
for them.
Ineffective tinkering

I had no idea where my program was wrong; all I
could do to fix the program was try as many
different things I could. [Excerpt CS.1a]

Students often lack the ability to tinker effectively with
their code, producing error after error, and adding more and
more errors every time they make a change to the code.
Instead of rethinking how they are solving the problem and
question their understanding they continue to make minor
changes to correct the code. These students tinker without
sufficient tracking and therefore have little grasp of why
the program is behaving like it is.
Inability to breakdown a programming task

Students in this study did not to recognise the need to break
a programming problem into parts. Data shows that
students only considered breaking down the problem and
testing it in parts when the idea is suggested by the
demonstrator.

Help was required. I asked my demonstrator to
check over the code, see if they could find any
obvious errors, but they just scoffed when they
saw the mess in front of them. “Why didn’t you
break it up into sections?” they asked. “You start
with a small piece, test it, see if it works and then
move on. There could be a million things wrong
here”. .My eyes began to burn at the thought of
restarting. Instead, I attempted yet again to debug.
Hours later, which turned into days later the
problem had not shown itself. All I knew was
there was a problem with one of the loops, but
which one and where? [Excerpt CS.4b]

When students did have to break down problems in
nontrivial ways, they often faltered. Perkins et al. (1986)
claims that this strategy may be feasible for expert
programmers because they have at their disposal a well-
developed repertoire of programming plans for different
chunks of the programming task. However, for the novice,
with a scanty repertoire of programming plans, this often
leads to an unworkable breakdown of the problem. (p51)
Lack of problem solving skills

Many students would dive straight into the coding part of
programming without a clear understanding on the problem
or a systematic strategy to solve it. Students commonly
would work out a solution to a problem by trial and error,

CRPIT Volume 95 - Computing Education 2009

30

without a plan, trying to solve their problem haphazardly,
and relying totally on feedback from the compiler to correct
their errors.

We usually would work out a problem by trial and
error. That would involve responding to the many
error messages we would come across and trying
to find the problem by looking back at the lecture
notes and if possible previous VB exercises.
[Excerpt VB.1]

In most cases, the compilation process produces a
series of error messages highlighting the incorrect use of
the syntax of the language. The compilation errors can be
eliminated by an iterative process of modifying the code
and recompiling, yet students found this process
overwhelming especially when they are confronted with
many errors. Once the compilation is successful the student
runs their program to see if it executes. Sometimes further
errors are encountered during the execution of the program;
this may be the result of a logical problem (ie. divide by
zero error or the actual logic of the flow of control is
incorrect) or runtime problem.
Limited Skills in Debugging

The common practice for students was to type their whole
solution, without any testing along the way. In one case, the
student’s program produced a series of syntax errors during
compilation consisting of multiple "bad address" error
messages during execution.

I loaded the whole program to firstly weed out the
obvious syntax errors. I then, optimistically, tried
to run it. Who doesn’t check to see if its going to
work first go?
 “Bad address at …”
 “Bad address at …”
just kept scrolling down the screen. I couldn’t see
what was causing this and neither could the
demonstrator. I spent ages by myself stepping
through trying to find this bad address, but I
couldn’t see what was wrong. [Excerpt CS.5b]

This students, was a typical case, lacking basic
debugging strategies and skills in using the debugger to
help complete the task.

4.2.2 Personal Skills
The personal skills that students lacked are discussed next.
Poor Time Management

Despite efforts to manage time, many students failed to
produce a complete working system within the time
constraints. They spent all of their time on one aspect of the
problem and many were unable to progress until they
achieved a fully working, bug free, solution. Initially
students wanted to build an understanding of the problem at
hand however, once this became an excessively time-
consuming activity with limited success, students opted for
strategies that limited their learning, instead of re-

evaluating their plan of attack, and assessing what they
have learnt or whether they should continue.

Students spoke about "running out of time" and/or
the pressures of having to work within a restricted
timeframe. Students driven by achieving high grades
prioritised their activities, making conscious decisions
about what programming activities they would or would
not do.

 I had little patience to spare at the moment with
exams approaching like a mad dog to a piece of
meat and ten billion other projects/ assignments/
pracs to complete – none of which were easy,
mind you. I decided to do the best I could on this
prac, but I would not devote any large amounts of
time to problem solving or de-bugging – I just
could not afford to at the moment. [Excerpt CS.4c]
To save time, students restricted the type of learning

approach they would take. As in the case below, the student
saved on time by copying slabs of code directly from the
text book.

After a good fifteen minutes, the underlying sense
of it all was not sitting quite nicely, as I would
have hoped. The sample code seemed to be
making sense, but I was struggling to gain an
overall picture. I considered spending more time
looking at my notes. But time was running short
and I had a prac to finish. In the hope that my
actually implementing the code would concrete the
concept, I dove straight into it… but hit the ground
very quickly. Now I was getting impatient. “That’s
it”, I thought, “I will do this the crude way. I will
copy the notes.” So that is precisely what I did.
[Excerpt CS.4b]

Interviews with students revealed that students who
copied slabs of code to complete their task didn’t search for
a deep understanding, they were happy to apply their
attention superficially and succeed regardless.
Independence

A common theme emerging from the data was the tendency
of students to seek assistance from friends when they ran
into difficulty tackling a task. Assistance was provided by
friends who were commonly in a senior year level having
more programming experience. Although, friends acted as
valuable resource, vital in getting students out of situations
when they became stuck, students would rely and act on
their friend’s suggestions, regardless of whether or not they
understood the consequences of their suggestion.

 When my friend told me to write a piece of code,
I did it. When the code involved pointers, I leant
heavily on his suggestions, making little effort to
really figure out their background or implications.
There was just not enough time, I told myself. The
code was working and that was all I cared about.
[Excerpt CS.4a]

Sometimes, students seeking assistance from friends
were left feeling rather inadequate, or in an utter state of
confusion.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

31

Groupwork skills

The productivity of the team, in part, depends on students’
interpersonal skills. The group dynamics can improve via
their social interactions (communication, consultation and
meetings) yet, there are risks involved when students lack
the skills needed to contribute to the team.

During the group activity, I was a bit shy, didn’t
participate a lot and I let my group members do all
the work. [Excerpt VB.26]

Group members who fail to participate in group
discussions inhibit the facilitation of social interactions that
are necessary for successful learning.
Attitude towards programming errors

Students showed a variety of attitudes to handling
programming errors. It was common for students to deal
with errors by either stopping altogether and moving onto
the next problem or repeatedly trying something different
without reflecting on what had been done. These types of
strategies are referred by Perkins et al. (1986) as extreme
stopping and extreme moving respectively, with the
students labelled as stoppers or movers.

As one example, the student in excerpt CS.4b
illustrates the case of extreme stopping. The student did not
know the answer to the problem and was unwilling to
explore it any further, so promptly moved onto to the next
task.

Almost instantly, another problem hit me. How on
earth was I suppose to implement that in MIPS
code? “Stuff it” was my almost definite answer,
and moved promptly onto the next problem of the
“a[i]”. [Excerpt CS.4b]

In the next case, the student never for a moment
stops to reflect on what has been done. The students goes
around in circles, retrying approaches that have already
proven unworkable, yet instead of dealing with the
mistakes and the information they might yield, ignores
them and continually moves on to keep themselves busy
without pausing to think about what might be causing the
problem at hand.

I was going around in circles. Maybe if I run it
again it will work …? I’ll just run it another time
to see if it will work … I had got to the point
where I wasn’t doing anything constructive.
[Excerpt CS.5b]

Perkins labelled students as stoppers or movers.
However, this study revealed that students can behave
differently in when working on different tasks. The
important point is that students sometimes do not see their
error messages as vehicles for insight or learning. When
students adopt an extreme stopping type behaviour they
give up all hope of progressing and are reluctant to make
any further changes. This has implications for their
motivation. Extreme moving should also be criticised as in
this case students are not reflecting on the meaning of the

errors generated, and/or are failing to interpret the errors
correctly, thereby making changes without any systematic
plan. At least these students are still motivated to try
different things, although not behaving metacognitvely.

5 Discussion and Conclusion
Motivation appears labile, that is, it moves easily and is
sensitive to other factors. Reasons that explain why
students start with an intrinsic motivation, and then change,
are offered by Jadud (2006). Throughout this paper,
examples have been presented of how students moved
between different states of motivation. Students who were
intrinsically motivated to learn could move to an achieving
state, depending on the challenges they faced. It appears
that to sustain intrinsic motivation there needs to be some
success achieved otherwise students may resort to a focus
on marks or other signs of external achievement.

In this study there were very few students who
spoke about having low motivation. Most students wanted
to learn and to understand. Rather, the problem was the
skills they lacked to complete the task at hand, which
dampened their motivation. The lack of skills influenced
motivation in a negative direction and the presence of
programming skills appeared to increase motivation. It is
the academic’s role to exemplify, nurture and facilitate that
desire and to move motivation in the “right” direction.

Deficiencies in five technical skills emerged: the
inability to closely track code; ineffective tinkering; the
inability to breakdown a programming task; lack of
problem-solving skills; and limited debugging skills. The
generic personal skills that students lacked were time
management; working independently; group work skills;
and a positive attitude towards dealing with programming
errors.

Three of the five technical skills — tinkering,
close tracking and debugging — are interdependent. If
students can close track their code, localising their
problems and understanding the issues they can make
informed changes. As a consequence, their modification to
the code would not be a tinker but an informed and well-
planned action. However, where students localise the
problem but do not fully understand it, a change to a code
would be considered a tinker, because the effect of the
change on the output could not be predicted. At least if
students tinker they have not given up altogether, but in
order to tinker, students have to want to make changes, that
is, they need the right attitude to deal with programming
errors and to be motivated to do so. Although motivation
plays an important part in preventing students from giving
up and feeling defeated, less complex tasks in which
students experience successes could encourage them to
continue until they solve the problem.

The two other technical skills; breaking down a
programming task and problem-solving skills were also
interdependent. Students cannot break down large and
complex programming tasks if they lack problem-solving
skills. Studies into problem solving in programming,

CRPIT Volume 95 - Computing Education 2009

32

which originally started in the mid 1980s, are now being
revisited by researchers as this is a prominent concern.

The generic skills that students lacked have also
been highlighted. In the university context, the
development of generic skills has not been seen as part of
the Information and Communication Technology charter.
In the primary and secondary school system there have
been a range of attempts to teach generic personal skills;
they are now part of curriculum reform. However, recently
industry and governing bodies (IEEE/ACM, ACS, DEST
and employer reports) have recognised the importance of
these non-programming skills in programming.

A number of issues related to the social
organisation of the task were raised in the individual
domain that relate to group work skills, communication,
and being a team player. Finally, students’ attitudes to
dealing with programming errors would seem to be
influenced by the challenges they face which arise from the
task.

Throughout this paper various issues have been
raised, but only some possible solutions have been
provided. These issues need further investigation. For
example, if tinkering and breaking down tasks is important,
then some tasks need to be set at the undergraduate level
that have less emphasis on implementation and more on
practising these skills. Teaching considerations should
include how students are expected to learn these skills. Are
these skills to be acquired from tutors who are typically
untrained in teaching or should students be expected to
learn these skills for themselves? If students could improve
their capabilities then learning the key features of the
language would be a much faster and more self-directed
process. Some of these issues may be beyond the normal
curriculum or outside the awareness of educators, yet they
raise implications for teaching and for both course and task
design. The next phase of the research investigates external
influences.

6 References
Baird, J. R., & Mitchell, I. J. (1991). Some theoretical

perspectives on learning, teaching, and change.
Journal of Science and Mathematics Education in
Southeast Asia, 14(1), 7-21.

Caspersen, M. (2007) Educating Novices in The Skills of
Programming. PhD Dissertation. University of
Aarhus, Denmark.

Baird, J. R., & White, R. T. (1982b). Promoting self-control
of learning. Instructional Science, 11, 227-247.

Baird, R. J., & Northfield, R. J. (1995). Learning from the
PEEL experience. Melbourne, Australia: The
Monash University Printing Services.

Bassey, M. (1999). Case Study Research in Educational
Settings. Buckingham, United Kingdom: Open
University Press.

Beaubouef, T., Lucas, R., & Howatt, J. (2001). The
UNLOCK system: Enhancing problem solving

skills in CS-1 students. ACM Special Interest
Group Computer Science Education (SIGCSE)
Bulletin, 33(2), 43-46.

Bergin, S., & Reilly, R. (2005). Programming: factors that
influence success. Paper presented at the Thirty-
sixth SIGCSE technical symposium on computer
science education, St. Louis, Missouri, USA.

Bunderson, E., & Christensen, M. (1995). An analysis of
retention problems for female students in
university computer science programs. Journal of
Research on Computing in Education, 28(1), 1-18.

Byrne, P., & Lyons, G. (2001, 25-27 June). The effect of
student attributes on success in programming.
Paper presented at the Sixth Annual Conference
on Innovation and Technology in Computer
Science Education (ITiCSE 2001), University of
Kent, Canterbury, United Kingdom.

Daigle, R. J., Doran, M. V., & Pardue, J. H. (1996).
Integrating collaborative problem solving
throughout the curriculum. Proceedings of the
Twenty-seventh SIGCSE Technical Symposium on
Computer Science Education, 28(1), 237-241

Denny, Luxton-Reilly and Simon, (2008). Evaluating a
New Exam Question: Parsons Problems.
Presented at the Fourth International Computing
Education Workshop, Sydney, Australia,
September 2008.

de Laet, M., Slattery, M. C., Kuffer, K., & Sweedy, K. E.
(2005). Computer games and CS education. Paper
presented at the Thirty-sixth SIGSCE Technical
Symposium on Computer Science Education, St.
Louis, Missouri, USA.

de Raadt, M., Watson, R., & Toleman, M. (2006). Chicken
sexing and novice programmers: Explicit
instruction of problem solving strategies. Paper
presented at the Eighth Australasian Computing
Conference (ACE 2006), Hobart, Tasmania,
Australia.

Deci, E. L. (1975). Intrinsic Motivation. New York, USA:
Plenum.

Entwistle, N. (1998). Motivation and approaches to
learning: Motivation and conceptions of teaching.
In S. Brown, S. Armstrong & G. Thompson (Eds.),
Motivating Students. London, United Kingdom:
Kogan Page.

Fredricks, A. J., Blumenfeld, C. P., & Paris, H. A. (2004).
School engagement: Potential of the concept, state
of the evidence. Review of Educational Research,
74(1), 59-109.

Jadud, M. (2006). Methods and Tools for Exploring Novice
Compilation Behaviour. ICER’06, September 9–
10, 2006, Canterbury, United Kingdom.

Glaser, B., & Strauss, A. (1967). The Discovery of
Grounded Theory: Strategies for Qualitative
Research. New York, USA: Aldine.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

33

Goold, A., & Rimmer, R. (2000). Factors affecting
performance in first-year computing. ACM Special
Interest Group Computer Science Education
(SIGCSE) Bulletin, 32(2), 39-43.

Haden, P. (2006). The incredible rainbow spitting chicken:
Teaching traditional programming skills through
games programming. Paper presented at the
Eighth Australasian Computing Education
Conference (ACE 2006), Hobart, Tasmania,
Australia.

Hagan, D. (2004). Employer satisfaction with ICT
graduates. Paper presented at the Sixth
Australasian Computing Education Conference
(ACE 2004), Dunedin, New Zealand.

Hagan, D., & Markham, S. (2000). Does it help to have
some programming experience before beginning a
computing degree program? ACM Special Interest
Group Computer Science Education (SIGCSE)
Bulletin, 32(3), 25-28.

Helme, S., & Clarke, D. (2001). Identifying cognitive
engagement in mathematics classroom.
Mathematics Education Research Journal, 13,
133-153.

Kassin, S. (2003). Psychology. USA: Prentice Hall.
Katz, S., Aronis, J., Allbritton, D., Wilson, C., Soffa, M.

L., (2003). A Study to Identify Predictors of
Achievement in an Introductory Computer Science
Course . Proceedings of the 2003 SIGMIS
conference on Computer personnel research.,
April 10-12, 2003, Philadelphia, Pennsylvania.

Lister R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J.,
Lindholm, M., McCartney, R., Moström, E.,
Sanders, K., Seppälä, O., Simon, B., Thomas, L.,
(2004) A Multi-National Study of Reading and
Tracing Skills in Novice Programmers, SIGCSE
Bulletin, Volume 36, Issue 4 (December), pp. 119-
150.

Maslow, A. (1962). Towards a psychology of being.
Princeton, New Jersey, USA: Van Nostrand.

McCracken, M., V. Almstrum, D. Diaz, M. Guzdial, D.
Hagen, Y. Kolikant, C. Laxer, L. Thomas, I.
Utting, T. Wilusz, (2001) A Multi-National, Multi-
Institutional Study of Assessment of Programming
Skills of First-year CS Students. SIGCSE Bulletin,
33(4). pp 125-140.

Miles, M. B., & Huberman, M. A. (1994). Qualitative Data
Analysis: A Sourcebook of New Methods (2nd
Edition ed.). Thousand Oaks, California, USA:
Sage Publications Inc.

Patton, M. Q. (1990). Qualitative Evaluation and Research
Methods (Second Edition). Newbury Park,
California, USA: Sage Publications.

Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004).
Self-efficacy and mental models in learning to
program. Paper presented at the Ninth Annual
SIGCSE Conference on Innovation and

Technology in Computer Science Education
(ITiCSE 2004), Leeds, United Kingdom.

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic
motivations: classic definitions and new
directions. Contemporary Educational
Psychology, 25(1), 54-67.

Schwarz, N. (1999). Self-reports: How the questions shape
the answers. American Psychologist, 54(2), 93-
105.

Shulman, J. (1997). Teaching Cases: New approaches to
teacher education and staff development.
http://www.ed.gov/pubs/triedandtrue/teach.html
Accessed 1 May 2006.

Simon, Cutts, Q., Fincher, S., Haden, P., Robbins, A.,
Sutton, K., et al. (2006). The ability to articulate
strategy as a predictor of programming skill.
Paper presented at the Eighth Australasian
Computing Education Conference (ACE 2006),
Hobart, Tasmania, Australia.

Simon, Fincher, S., Robbins, A., Baker, B., Box, I., Cutts,
Q., et al. (2006). Predictors of success in a first
programming course. Paper presented at the
Eighth Australasian Computing Education
Conference (ACE 2006), Hobart, Tasmania,
Australia.

Taylor, H., & Mounfield, L. (1994). Exploration of the
relationship between prior computing experience
and gender on success in college computer
science. Journal of Educational Computing
Research, 11(4), 291-306.

Tolhurst, D., Baker, B., Hamer, J., Box, I., Lister, R., Cutts,
Q., et al. (2006). Do map drawing styles of novice
programmers predict success in programming? A
multi-national, multi-institutional study. Paper
presented at the Eighth Australasian Computing
Education Conference (ACE 2006), Hobart,
Tasmania, Australia.

Wiedenbeck, S. (2005). Factors Affecting the Success of
Non-Majors in Learning to Program. ICER’05,
October 1–2, 2005, Seattle, Washington, USA.

Wilson, B. (2002) A Study of Factors Promoting Success in
Computer Science Including Gender Differences.
Computer Science Education, Vol. 12, No. 1-2, pp.
141-164.

Winslow, L. E. (1996, Sept 1996). Programming pedagogy
-- A psychological overview. Paper presented at the
Twenty-seventh SIGCSE Technical Symposium
on Computer Science Education, Atlanta, Georgia,
USA.

CRPIT Volume 95 - Computing Education 2009

34

Intervention Programmes to Recruit Female Computing Students:
Why Do the Programme Champions Do It?

Annemieke Craig
School of Information Systems

Deakin University
Pigdons Road, Geelong 3217, Victoria

acraig@deakin.edu.au

Abstract
This paper looks at intervention programmes to improve
the representation of female students in computing
education and the computer industry. A multiple case
study methodology was used to look at major intervention
programmes conducted in Australia. One aspect of the
research focused on the programme champions; those
women from the computing industry, those working
within government organisations and those in academia
who instigated the programmes. The success of these
intervention programmes appears to have been highly
dependent upon not only the design of the programme but
on the involvement of these strong individuals who were
passionate and worked tirelessly to ensure the
programme’s success. This paper provides an opportunity
for the voices of these women to be heard. It describes
the champions’ own initial involvement with computing
which frequently motivated and inspired them to conduct
such programmes. The research found that when these
types of intervention programmes were conducted by
academic staff the work was undervalued compared to
when the activities were conducted by staff in industry or
in government. The academic environment was often not
supportive of academics who conducted intervention
programmes for female students.

Keywords: Recruitment, computing students, female.

1 Introduction
Since the turn of the century there have been fewer
students studying computing at all levels of secondary
and tertiary education in Australia. In 2007 in Victoria
for example, there are significantly less students studying
computing at senior secondary school level (see Figure 1)
than in 2001. Equally in 2007 there is a reduced number
of Victorian secondary schools that offer computing
education than in 2001 (see Table 1). The demand from
industry for qualified computer graduates however is high
and a subsequent skills shortage has seen the Australian
Government include computer professionals on the
Australian Migration Occupations in Demand List
(MODL 2008).

Copyright © 2009, Australian Computer Society, Inc. This
paper appeared at the Eleventh Australasian Computing
Education Conference (ACE2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in
Information Technology, Vol. 95. Margaret Hamilton and Tony
Clear, Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

T

E
as a
liter
eng
dow
wid
und
lack
issu
indu
incl
and
Gal
Cur
stud
Info
Con

N
In

In

In

In

In

In

Senior Secondary Computing Students in Victoria 2001-2007

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2001 2004 2007

Year

N
u

m
b
e
r
o
f
S

tu
d
e
n
ts

IT1

IT2

IP&M3

IP&M4

IS3

IS4

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand
Figure 1: Students satisfactorily completing senior
able 1: Number of providers of senior secondary
computing in Victoria 2001-2007 (VCAA, 2008)

ncouraging younger students to consider computing
future career may help to ease this situation. The

ature argues that different strategies are required to
age different groups of students. Even before the
nturn in enrolments in computer courses became
espread female students were recognised as an
errepresented group within computer education. The
of women studying and working in computing is an

e that has been long recognised by academics, the
stry and governments in many western countries

uding Australia (see for example Kay, Lublin, Poiner
Prosser 1989; Clarke 1990; Edwards and Kay 2001;

pin 2002; Adam, Howcroft and Richardson 2004).
rently female students represent less than 19% of all
ents Australia wide, enrolled in undergraduate
rmation Technology courses (DEST, 2008).
sequently numerous intervention programmes

umber of Providers 2001 2004 2007

fo. Technology 1 463 409 345

fo. Technology 2 464 413 343

fo. Processing & Management 3 463 405 322

fo. Processing & Management 4 463 404 322

fo. Systems 3 188 174 126

fo. Systems 4 188 174 126

computing subjects 2001-2007 (VCAA, 2008)

35

specifically aimed at encouraging young females have
been designed and implemented (see for example Craig,
Fisher, Scollary and Singh 1998; Clayton and Lynch
2002; Goral 2006)

While much has been written about the need for such
programmes and the way they may operate little has been
heard about the women (and few men) who undertake the
task of designing and implementing the programmes.
What is their history with the computing discipline and
what are the consequences of their involvement with such
programmes?

2 Methodology
For this research a collective case study of 14 individual
intervention programmes was undertaken. Each of these
cases was a concentrated inquiry into a particular
intervention programme. Data was collected via detailed
document and artefact analysis and by in-depth
interviews with the instigator/leader of each of the
programmes. Each case was investigated individually to
try to understand its complexities (Stake 2000). Within
the context of research in the computing discipline, the
number of case studies is consistent with other research
(Orlikowski and Bardoudi 1991). Myers (2002) queries
why more than one case is actually necessary but Miles
and Huberman (1994) suggest cross-case analysis
enhances generalisability as a multiple-case design will
deepen the understanding and ability to explain what has
occurred. Herriott and Firestone (1983 as cited in Yin
1994, p. 45) suggest that the evidence from multiple cases
is more compelling and therefore the study will be more
robust then one of single-case design.

Miles and Huberman (1994) suggest that a multiple-
case study requires clear choices about which cases to
include within the study. The intervention programmes
which became the case studies for this research were
selected on the following basis:

 One of the programme’s objectives was to
increase the number of females who were part of
the computing field.

 The programme could be made up of one or
more projects however the programme needed to
be a sustained activity.

 The principal champion/instigator of the
programme was prepared to participate in this
research.

 The programme and projects could be completed
or be ongoing.

 The programmes were chosen to provide
diversity in location and focus.

 The length of time in operation and range of
influence of the programme and projects were
also considered.

Intervention programmes have been conducted by
three different types of entities; educational institutions,
government bodies and industry groups. A total of
fourteen cases were selected (eight from universities,
three from government bodies and three from industry
groups). A greater number of case studies were chosen
from the university sector than the other sectors due to the
proliferation of such activities in this sector.

A total of 19 interviews were conducted. For each
case study the programme leader or a major contributor
was interviewed. However additional interviews were
conducted for five of the case studies either because there
were joint programme leaders or another major
contributor was available and willing to be interviewed.
For four of the case studies two people were interviewed
and in one instance a third person was interviewed.
Interview times ranged from approximately 60 minutes to
100 minutes in duration. The interview participants are
identified by pseudonyms and will be referred to as the
programme’s champion in further discussion.

3 Focus of the Programmes
The UNDR report (2004, p. xii) advocates that the
‘critical starting point for achieving gender in the ICT
sector is tertiary level education’. Work by Clayton,
Cranston, Crook, Egea, Lynch, Orchard, Robinson and
Turner (1993) however, has provided a broader
framework which identifies three stages where it is
possible to influence the participation by females in
computing. The three stages of the framework are as
follows:
1. PRE-TERTIARY stage: Where the focus is to encourage

females to develop the necessary pre-requisite skills
and to enrol in computing courses.

2. TERTIARY stage: Where the focus is to decrease the
attrition rates for female students.

3. POST-TERTIARY stage: Where the aim is to equip
females with the necessary skills and contacts to
obtain positions in the computing profession. (Clayton
et al. 1993, p.16):
Eight of the case study entities conducted projects at

all three stages (see Table 2), five conducted intervention
projects at two stages with only Uni7’s focus remaining
on just one stage. It is interesting to note that all groups
conducted activities at the pre-tertiary stage. Initially
involvement by academia and industry commenced with
a focus on only one of Clayton’s three stages, with a
growing awareness of the magnitude of the issues the
programmes evolved to incorporate interventions at more
stages.

Pre Tertiary Post

Uni1  

Uni2    Legend

Uni3     Major Focus

Uni4     Minor Activity

Uni5   No Activity

Uni6   

Uni7 

Uni8  

Gov1  

Gov2   

Gov3   

Table 2: Focus of
Intervention
Programmes

Ind1  

Ind2   

Ind3   

CRPIT Volume 95 - Computing Education 2009

36

This paper reports on the findings from this research
regarding the champions behind the programmes. All of
these champions were women.

4 The Programme Champions
Success of the intervention programmes appears to have
been highly-dependent upon not just the design of the
programme but on the involvement of strong individuals
who were passionate and worked tirelessly to ensure the
programme’s success. The programme champions were
ardent supporters of the cause to encourage more female
participation in computing. Their personal involvement
with the computing discipline and the intervention
programmes are described in the following sections. This
involvement was a career barrier for many of the women,
though not for all.

4.1 The Journey into Computing for the
Champions

While computing for a few of the interviewees was an
interest that they had had for a long time, for example
Clair received her first Atari at a young age, the majority
came to computing by ‘accident’;

I don’t have a degree in this area. I haven’t got
an IT background as such; I fell into it in the
telecom’s game twelve years ago. My background
was definitely not in IT. (Cheryl_Ind1)

They said “Do you want to reorganise the library-
it’s a mess?” and I said (because I liked
organising things) “Yeah, I would.” So I had the
card index system going with everything labelled
and David came in one day and he said “Why
don’t you put that on the computer?” and I said
“What?” He said “Why don’t you put it on the
computer and then people could come in and look
it up on the computer VDU.” And I said “I don’t
know anything about computers.” And he said
“We could do it together.” And I said “No, there
is no way. I’m not any good at maths.” And at
the time I was also doing Aran knitting ... and
David said …“If you can follow that pattern to
create a jumper, you can work computers as it is
just another type of code.” So I thought okay, so
he got my attention with that. I still thought I was
going to have to add things up. So we sat down
together and he did the programming bit of it but I
watched him do it and just created a front-end
menu, this was on the green screen, and behind it
was my card index system basically which was
already, as he pointed out, you already have the
logic in the card index system. It was just a case
of doing that bit together. So I was hooked. I said
“Oh my god. This is how they work?” It
demystified it for me and I said “I want to learn
more about this”. (Bev_Ind1)

... it was a complete accident, I fell into it, it bit me
and I loved it and that was it and I just stayed.
(Lesley_Ind2)

Ending up in computing without having planned it was
not only something that happened to these women
themselves but they had also seen this happen with
others. Sarah (Uni3) had discovered that a number of her
female students ‘fell into the [computing] course by
chance. Or despite the fact the careers teacher said there
is no point in applying for that’. This has led Megan
(Uni1) to conclude that;

… to a large extent, women's lives in Computing
… are governed by serendipity. They don't plan
their careers. They look for interesting jobs.
Perhaps there really are cultural differences
between men and women and no amount of
intervention will alter their perceptions of
computing careers.

4.2 Motivation for the Programmes
The original impetus for the intervention programmes
that were the subject of this research varied depending on
the sector. For the university staff involved, the stimulus
for the programmes was often a lack of female students
within their own classes. Individual staff realised that
there were few, if any, girls within their own computing
classes and this led to the development of interventions
particularly focused on retaining the current girls or
raising awareness amongst secondary girls:

We didn’t have many women in the course and we
wanted to keep the ones that we had.
(Alison_Uni5)

It was primarily to raise [school girls’] awareness
of what a course in IT and working in IT might
involve. To get over the stereotypes of it being a
nerdy, back-room occupation which did not
involve working with people. (Nikki_Uni2)

Their aim was relatively modest with the desire to
increase the number of girls within their own courses a
key factor.

What we are doing is hopefully going to make a
difference and get more girls to consider IT at
[Uni3]. (Sarah_Uni3)

The motivation for the industry groups also emerged
from their own circumstances; individual women, seeing
the results of a lack of women in computing in their own
workplace saw the need to create networking
opportunities for women in the industry.

We were all in similar positions in an IT company
in that we were all starting to hit the glass ceiling
... Hitting glass ceilings and also the decline in
numbers of women in the industry. So we started
our group as a response to that ... to create a
network where [women] could get to hear about
opportunities and hear about trends in the
industry and what was happening so that you
were ahead of the game and not behind it all the
time. (Stacey_Ind3)

The government organisations were a little more
pragmatic and they adopted a more holistic view point:

I guess everything that frames what we are
involved in is around a government policy
document … So many different organisations are
doing things to engage girls in ICT but we are not
getting the full benefit when every man and his

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

37

dog is doing something little. It is a bit of a
hodge-podge. We wanted to develop future plans
for working together. (Clair_Gov1)

The aim was broader for the government sector with
their endeavours intended to change attitudes and practice
of primary and secondary school girls, their parents and
educators, in relation to computing careers and study
opportunities, as well as increasing the engagement of the
school girls with computing.

4.3 The Need for Interventions
All of the programme champions were passionate about
their commitment to girls and computing initiatives and
consider it an important issue to be involved with.
Indicative responses of what they saw were the
continuing need for such intervention programmes
follow;

… we all passionately believed that the sort of jobs
we were doing were great and being girls, we
wanted to share it, and get other girls involved
and give [them] opportunities in. (Lesley_Ind2)

I think it was always the same need which was to
ultimately increase the proportion of women
actively working in and shaping what ICT’s
products and ways of operating were in the
community. Ultimately if the community is slightly
more than 50% women, you should reflect that in
the ICT product services etc, to get relevance. It
was driven by everyone’s energy and enthusiasm.
(Nikki_Uni2)

.. every one of them also appreciates that there is a
need to encourage other women into the industry.
Women I think over a male position is that they
have got more of that social conscience and more
of that desire to do some community good even
though we are overloaded with various things ... I
think I have noticed over time that there is more
altruism from that point of view and more desire
to do something for the career of IT. (Stacey_Ind3)

Personally I think that IT benefits enormously
from the diversity that women and people from
other cultural backgrounds bring. The more
viewpoints the better as far as I am concerned and
I firmly believe that, I walk it, and I talk it.
(Bev_Ind1)

The views of the programme champions were that
with a more diverse workforce in computing, the culture
of the computing organisation, and the products it makes,
might be quite different;

I think that we would probably have less system
failures. I think we would have systems that were
designed better, more with the user in mind.
(Alison_Uni5)

For diversity, for every logical reason ... Because
it is an untapped resource, it is untapped pool of
talent, because girls see things through different
eyes to boys. Because Asians see things through
different eyes to Australians. We need diversity.
(Sarah_Uni3)

I have seen a lot of women who are also valuable
members of the team because they are able to
support each other, the men and the women. They
are able to ask different questions about what they
are developing, they are able to bring probably
the same skills, that is the programming skills but
they look at things differently and bring different
concepts. They see relationships differently within
the application and the abstract aspects. They
complement. Often highly-analytical abstract
thinkers (say they are men) can be working with
highly-analytical abstract women but women are
seeing things from different metaphors or different
structures so the two come together and create a
better application or a better programming
outcome. (Stacey_Ind3)

However there are many assumptions and stereotypes
that will need to be broken down before that will occur;

I found a job working for an oil and gas company
... When I went there I was introduced around to
all of the management team and one chap,
Andrew, I’ll never let him forget this. The
personnel woman was bringing me around and
she said “This is Bev, our new IT lady.” And
Andrew misheard her and said “Finally.” and I
thought “I wasn’t expecting that from the
operations manager.” And he said “We’ve finally
got a tea lady.” (Bev_Ind1)

It was recognised by the programme champions
however that diversity must be managed well if the
benefits are to be realised otherwise it may cause conflict
and even a decrease in cohesiveness within an
organisation.

4.4 Support for the Programmes
Designing and implementing intervention programmes
specifically for women in computing does not
automatically get support from others in the organisation
or community. Support for some intervention
programmes was strong and came in the form of the
provision of resources and/or an advocate:

It was a priority of the Head of School, ... he has
set up that supportive environment for them … I
think it was certainly embedded into the culture …
This is a school where it was considered perfectly
reasonable to do an honours thesis on something
to do with female participation in IT and women’s
roles.(Helen_Uni4)

Great financial support from the Strategic
Initiative Grant. Time release from teaching was
purchased, and the freedom to pay for functions
for the students from our own budget.
(Sarah_Uni3)

Thank god we have got the [support of the]
university because we have got all the facilities, it
is just fantastic. The Executive Dean in the
Division of Arts is a supporter. He believes in
diversity and he was great at the launch [of the
intervention]. (Bev_Ind1)

CRPIT Volume 95 - Computing Education 2009

38

Getting support at all was problematic for some with
several programme champions having to contend with
continually justifying the need for the programmes, or
defying opposition to the programmes;

It was interesting when I first proposed it which
was probably in the late 1990s ...it didn’t get
department support until I agreed to have a boy’s
day and a girl’s day. (Kerrie_Uni7)

That is the other thing too you have got to
convince people that it is a worthwhile thing to do
... It would be really good if instead of having an
intervention programme that was run by a couple
of interested people, the whole department took it
on and said this is important. (Alison_Uni5)

The industry and government entities comprised
mostly of women. The staff from the university sector
however were conducting the intervention programmes
for girls, through the context of their schools or
departments, which were mostly made up of men. Many
of the university groups had to counter opposition rather
than receiving support:

The unintended was the backlash that we got from
the boys about why no men’s programs. And a
degree of defensiveness which I am not sure how
much we broke down. (Nikki_Uni2)

We have got a male chauvinist pig in as Head of
School who basically denigrates us at any
possible chance that he could. Basically criticised
our whole courses, the female strong courses,
saying are they easier? …. From then it is just a
really bad feeling around the place … The
[percentage of students who are female] has
gotten much less this year. It is the lowest it has
ever been … (Fiona_Uni)

Some of the male students did not support the
initiatives either:

Some of the male double degree students wanted
to come along [to the support community for
females] because they thought the other female
double degree students had an advantage …
There was just a tiny level of snide comments etc
and different comments like that. …. They would
just say “Your girly stuff” or whatever. It was
certainly more than balanced by males who were
supportive. But actually thinking about it some
were actually supportive in a patronizing way.
(Anne_Uni5)

While the male staff at some of the universities did not
support the initiatives this was not the case at all of them:

We had a Dean that supported it. We nominated
Jack for the equity manager award two years ago
for a very good reason; he has always been
supportive of women in IT. When we wanted to
become a corporate member of WIT, no questions
asked. Any of the things that I have tried to do he
has always supported. (Jodie_Uni6)

4.5 Issues with Conducting Interventions
The most common difficulty facing all the women
involved with these intervention programmes was the

need to invest large amounts of time which detracted
from their other responsibilities. Debbie (Gov3)
indicated that her involvement with intervention
programmes was ‘a huge cost in time’. Even the women
of the largest of all the case study entities had trouble
balancing the time involved, though they were the most
successful in terms of being able to share the load;

The financial controller I mentioned last night she
got married in August last year. I had recruited
her on the steering committee. She was really
enthusiastic and did a big event in August but she
got married in September and now she has
realized realistically that her new lifestyle is not
going to mean that she has got the time available
to do this then. You have to be magnanimous
about this and you also have to have a pool of
people that is available and up and coming and
interested. (Stacey_Ind3)

The time it takes to be involved and to be able to do
things well was by far the most common difficulty faced
by all the programme champions with regard to their
involvement with girls and computing initiatives, keeping
in mind that all were also working full-time and most
were mothers and wives as well. Furthermore there was a
real concern regarding ‘burnout’;

Again why I haven’t really been involved this year
is because last year just killed me; it was just so
much work… (Fiona_Ind2)

Even when you get government funding for all
these programs… We have never had federal
government funding but when you get state
funding, you are not allowed to pay for the project
management and the organisation behind it. Isn’t
that bloody ridiculous? ... Yeah, every one of
those, we have had to put in voluntary… and
massive amounts of time. (Lesley_Ind2)

We were starting to do mentoring but it is like
everything else, when push comes to shove you
just don’t have time to do it … I must admit I am a
bit naughty I had seen the emails come out
[regarding another possible project] and I just
thought I haven’t got time for it. (Kim_Uni4)

I found when I went back to state A this time, [the
women in computing group] has virtually vanished
because the key people involved had burnt out,
others had moved on … (Helen_Uni4)

Then Josephine decided she was going to put her
toe in the water and do [a role model day]. She
did and it nearly killed her. I am sure you have
heard the story. We thought we should do it, but it
nearly killed Josephine and she nearly lost her
business. How are we going to cope? … The end
result was that it was a mind-blowing experience.
… After we did that we thought well it nearly
killed us and by this time Josephine was saying
“No way am I doing it again ever.”
(Cheryl_Ind1)

Nevertheless Josephine, Cheryl and Bev have gone on to
organise similar events again;

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

39

I am coming up to the third one and each time it is
like having a child, when we have a child you
think “I will never do this again” and then two or
three years later here you are pregnant again
going through the same issues again. That
moment that that child is placed on your tummy is
the most special moment you could ever have, you
can’t replace it with anything. Similarly I think
when we had the first [event] and we were there
and we were just surrounded by the young girls
13-14 year olds with all the hype and all the
energy and all the stress level that got you there
and then the day was over and you came back and
you thought “What an accomplishment. What a
feeling of absolute pure adrenaline pump.” … We
[recently] played the DVD and it still brings tears
to my eyes because I look at the girls and the
excitement and I look at the speakers and I look at
everything and sometimes I have to pinch myself to
realise that we were just a bunch of women who
had a passion, who wanted to make a change and
a difference, and coming together and say we can
do this. All we have is energy and nothing else,
and a belief that it is needed. You look at this
DVD and think “We created this. This was us.
We did it.” It makes you feel so good, it really
does. That moment! (Cheryl_Ind1)

The amount of time it takes to be involved with
programmes was a key factor in the scaling back, or
closure, of intervention programmes in the university
sector. Changing environments in universities across
Australia has resulted in more students and greater
demands upon staff. Kim (Uni4) explained ‘we are all
being pressured with heavier teaching loads and more
commitments’. For the university women the lack of
value placed on this work by colleagues was another
major difficulty. Therefore when this type of work does
not come within a person’s job description, is not seen to
be important and therefore is rarely supported with
adequate funding; it becomes difficult to justify or
sustain;

We tried to share the costs by also engaging the
Computer Science School and with TAFE. The
idea was that we would rotate the organisation
between those units. The reality was that no-one
picked it up. I think eventually we just spat our
dummies as it was all extra work, above and
beyond, for those who were doing the work.
(Nikki_Uni2)

I was actually spending too much time [on
intervention programmes]and not keeping up to
date with my own area of research which is object
oriented systems and development. In the end I
needed to make decisions about where most of my
time was spent as it can be an all-consuming one
and I do tend to get a little obsessive about it.
(Anne_Uni5)

For the women in the university sector their work with
girls and computing initiatives was regarded as
‘peripheral’ to their main job. Legitimacy for
participating in ‘women and computing’ interventions for
university staff could come through it being seen as

‘recruitment of students’ or via a publication record,
however it was seen by many colleagues as not real work
and not important;

I am in a school in a university that doesn’t have
many women or female staff members and we are
not very well regarded by our male staff members
in terms of our research, particularly our research
of women in IT. … We have been criticised many
times that our research is frivolous, it is
meaningless and why do we bother? That it is not
important. …. ‘We do much more important
research. We are talking about robots, it is much
more important’. In that way it hasn’t been so
nice and I know I get the impression that we are
looked at as the feminist group I guess whereas I
don’t really think we are feminists as such. I think
it is just that we want equity for everyone. I think
that is what it is … (Fiona)

Being labelled as feminists by work colleagues was
not an isolated incident;

Probably the biggest challenge is that sense that
you are a butch feminist pushing an agenda which
is not relevant ... You think, boys go and meet a
rabid feminist and then meet us! Because it is not
where we are coming from. We are not after
dominance, we are after equality. We are after the
outcome where it is no longer an issue.
(Nikki_Uni2)

Having got a reputation for conducting interventions
has also led to an expectation that you could do more.
After a very large role model event for secondary girls the
state minister suggested that Cheryl’s group should run
some activities for teachers as well;

As we said to the minister it would be nice if we
could look after everybody but we can’t. It is like
George, he wants us to do a showcase … he wants
us to do it for boys as well. We can’t be
everything to everybody because we then won’t be
successful for anything. (Cheryl_Ind1)

As mentioned previously by Kerrie at one university
the ‘Girls in Computing days’ were only able to be
conducted if there were also ‘Boys in Computing days’.
At another university it was suggested that the
programme champion could also be involved in creating
intervention activities for other groups too;

In fact I had one lecturer say to me, “Well we have
got an issue with non-English speaking
backgrounds, why aren’t you helping there?”
…and my reaction to him was “You’re supporting
this issue, why don’t you do something about it? I
haven’t got the time to do both” and he backed off
very strongly. But it was a shame because I would
have liked to have seen some of those issues
addressed … Those sorts of issues have to be
carried through but one person can’t address them
all. (Jodie_Uni6)

4.6 Effect on Own Career
For the women from the university sector being involved
in girls and computing initiatives was often not seen as a
good career move, with their research output often
suffering from the amount of time used up by the
intervention programmes. In the university sector a

CRPIT Volume 95 - Computing Education 2009

40

strong research profile is necessary for credibility and
therefore promotion;

Doing all those sorts of things certainly did not
help my research because if I was doing those, I
was not doing research. It did, I suppose, get me a
reputation for knowing something about it, which
in some ways probably did help….. I suppose I
have had some interesting invitations to speak
because of it, but it did take a lot of time from my
research, yes. There were times when I got a bit
sick of being “Miss Women-in-Computers”, when
I actually wanted to get on with doing something
else. (Megan_Uni1)

It has not just been women-in-computing but
student support. I suppose I have been involved in
student support when other people have been of
doing their PhDs. From that point of view if I had
got a PhD earlier I would have finished it. I also
would have been promoted earlier. (Jodie_Uni6)

It is not an enabler. It is funny with my
background [as] a secondary school teacher,
education specialist, moving into IT. So I have
never really been a solid IT, which is fine because
I have never really wanted to be a solid IT. I
suppose now I am moving into Information
Systems a bit more. I have always looked with a
bit of humour at the status. The more technical,
the more status, regardless of your education
experiences. There are young bucks who have
redesigned the whole technical degree with very
little educational background. They are allowed
to do it because they are the programming
specialists. Women in IT is not an enabler.

I would never have it as my mainstream research
area. Because I don’t believe that people take it
seriously as a main research area. … I have
spoken to people like Sally, she has done a little
bit of gender stuff too but she would never do it as
her main thing. She is interested in it and
sympathetic but she knows that if you want to be
accepted in the mainstream that it is a bit of a
problem. (Alison_Uni5)

While the work was not seen as an enabler for an
academic career it did have some benefits, as publications
could come out of the work and it did make possible
contact with influential people in government and
industry;

I think for me it has given me a lot of opportunity;
it has given me access to a lot of people that I
probably wouldn’t have had access to before. I
have had people like the IT Minister, his PA came
out and talked to me saying ‘What are you doing
for girls in IT?’ ….we are the people they are
coming to. (Fiona_Ind2)

The effect on the women’s careers from industry and
government entities was not nearly as negative;

No I can’t say that it has had negatives. My family
suffered because they don’t see me but they are so
proud of what I am doing, and I am doing
something that is making a difference. I am not

doing it for me and it is not a selfish motivation
that is pushing me forward, it is because I believe
in it. (Cheryl_Ind1)

The disadvantages are that you tend to get tarred
with a brush and people think that that is all you
are interested in and that is all you do. If people
have heard of me, and obviously not many have
but if they have, that would be why and they think
that is what you do when you actually have a
whole heap of interests and this is just one of them
but it is one that I am very passionate about so I
don’t like getting put on the shelf and “This is who
you are.” At the same time I also fight to keep
doing this because I think it is so important and I
don’t think it would get picked up if it got dropped.
That worries me. … I really enjoy being part of
something that is part of the State and being able
to have that influence. (Clair_Gov1)

4.7 Were these Programmes Successful?
How successful were the intervention projects,
implemented by the case study entities, from the
perspective of the programme champion?

Fantastic, incredibly successful. (Debbie_Gov3)

The end result was that it was a mind-blowing
experience. It was a fantastic effort by all, we just
did the unimaginable and pulled it off and we had
1500 girls by the end and we were able to pay our
expenses and still manage to do very well. We put
together the questionnaire and the feedback just
came back from the girls “Fantastic, want it
again.” … and then as time went on the schools
started calling and saying “Are you doing this?
We had such a positive experience.” … It started
building its own momentum. The fact that we have
already got 1800 girls registered for the third
showcase speaks volumes. (Cheryl_Ind1)

Results of the survey show that the intervention
project achieved its objective in that it was
successful in improving the participants'
awareness of the tasks required of a 'typical
computing professional'. (Uni7_documents)

All the interviewees, when asked whether they
considered their programmes a success, said ‘Yes’ though
a number of the respondents then qualified their answer;

Were the conferences successful? Very much so. I
probably would have liked more people at the
second one. No, I think they were great.
(Kim_Uni4)

Yes. We tried to measure it quantitatively and we
couldn’t. We couldn’t relate anything really to the
program but our qualitative work tells us that
women students perceived that the program was
just great and that is enough for me.
(Alison_Uni5)

Almost all of the respondents talked about individual
instances of having made a difference in one persons’ life
and that this was enough to make the programme a
success;

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

41

Yes. I know that I personally have touched lots of
women’s lives from that point of view. That
satisfies me but does it really justify the amount of
time and effort that I have put into it? I don’t
care. Really you cannot always measure things by
the direct and tangible benefits so to me if we
supported an activity and it made the difference
between no girls going into a course and one girl
going in I would be quite satisfied with it, I don’t
think it is an issue. (Stacey_Ind3)

While nobody described any of the projects or
programmes as failures or unsuccessful, not all responses
were completely positive:

There is no doubt that the success of the
intervention programme depended largely on the
personalities and qualities of the senior women
students. Naturally some were better at the task
than others. (Uni5_documents)

Partial only. I doubt if I move on that it will last
independently. The paradox of the majority
gender taking no ownership of the issue persists in
this Faculty. We have not been able to affect staff
perceptions - the plan for a gender unit has failed,
there has been no gender awareness training.
(Sarah_Uni3)

4.8 Were the Efforts Worthwhile?
Designing and implementing intervention programmes
for most of the women was a voluntary task which was
not their main ‘job’. For many of the women it was a
passion which took an incredible amount of time and
effort. But these efforts were all worthwhile if it made a
difference even to only one participant;

Just seeing the girls faces. There was this one
moment, I think we were in [Place X] and there
was the robots and stuff and they were
programming the robots and this girl was sitting
there and she just couldn’t get the words out and
she was almost shaking because she wanted to say
something, she was just so exciting. It was just
like “that is awesome”, just that moment that is
what we are here for. It just makes everything
worthwhile. I believe it is making a difference
and I think if nothing else it makes me feel good
but I think it does actually help and even if it helps
one girl that is what matters to me. (Fiona_Ind2)

Almost all the interviewees related stories of having
made an impression with some girls that really
encouraged them to continue with this work;

We had a set of two girls from a government
school who were at our 2004 showcase and we
had another two girls from a catholic college who
were there. They got up and spoke about the
fantastic showcase and how they got so much out
of it. “Sincere thanks to the organisers. We
would love to see it again and although we are
going to be Year 12 next year we are hoping that
they will allow us to attend.” And I had tears in
my eyes. I went afterwards to thank them and I
just couldn’t. They just really touched my heart.
(Cheryl_Ind1)

Even Clair (Gov1), whose principal job did involve
girls and ICT activities, considered that the efforts were
worthwhile and admitted to spending considerably more
time working on these initiatives than what she was paid
for;

I think so. I think if I didn’t feel that I couldn’t
come to work. Sometimes it is frustrating but it is
more at an anecdotal level. I have seen that kid
go off who you know wouldn’t have known
anything about an IT career and wouldn’t have
even considered it, going and doing an IT
traineeship because she was involved in the girls’
computer club and those sorts of things … Seeing
the light switch on for teachers as well and just
looking at what they can do and that sort of thing
… I know in my case anyway it is part of my job
and I will do extra hours over and above and it is

still quite demanding. (Clair_Gov1)

While there was no doubt in most interviewees’ minds
that their efforts had been worthwhile there was a
disappointment that all the efforts had not brought about
more change; that while touching the lives of some girls
was really great, the statistics of girls in computing
courses were not improving, nor for women in the
industry.

One of the most disappointing and frustrating
things in writing this has been the realisation that
despite the Australian Government's national
objective very little has changed in the last ten
years and if anything we seem to be going
backwards. Participation of women in IT degrees
in Australia [is] still nowhere near the objective
of 40% … Only 13% of the commencing students
in our computing degree programs in 2002 are
women. The time effort and money we have put
into producing promotional materials and liaison
with secondary schools over the years appears to
have made little difference. (Uni5_documents)

Despite various initiatives aimed at attracting and
retaining more females over many years, the
figures [now] are little different. (Gov2_
documents)

4.9 Feelings of Despondency
For all the enthusiasm and commitment for the
intervention programmes there was an undertone of
despondency amongst the programme champions.

Anne (Uni5) stopped working on intervention projects
for a number of years, due to a lack of funding and
support and because ‘I also didn’t think I had any answers
anymore. I quite literally thought no this is too big a
question to be solving. I just didn’t have any answers’.
Though she still does not believe she has the answers to
the wider problem of females and computing, Anne has
begun to be involved in intervention projects again. Jodie
(Uni6) also feels that the answer to the ‘bigger problem’
eludes her:

I have been bashing my head against a brick wall
for 20 years, I don’t know. It is an attitudinal
change, very much, and it is not just the kids. It is
the parents and the whole society. I think that

CRPIT Volume 95 - Computing Education 2009

42

there is something wrong in our society for a start
that we have such a problem with that dichotomy
between males and females and what we do and
what we can’t do. The reality is so far from the
image. (Jodie_Uni6)

Sarah (Uni3) was concerned about her programme and
that it may not ultimately be as successful as she would
like:

Making no change is a big risk ... Then being
ridiculed, “You have had all this money, where
are our extra girls? You put your neck on the line
… I was very optimistic in 1996 when I started,
when I got my teaching fellowship and I thought
we were making a difference… I think we are
moving forward, yes, in that we are moving away
from the ‘deficit model’ to the ‘let us look at IT’. I
think we have moved forward in that. We are
looking at what IT is. We are asking the
questions, the women in Computing. It is only the
women asking the questions, very few men take
this on board. It is really difficult. When we go to
the Women in Computing conference and you
preach to the converted. Until blokes see that
(WinC Conferences etc) as mainstream it is not
going to happen. It is just not going to happen. ….
Until it is seen as an issue for all [lasting change
won’t happen]. (Sarah_Uni3)

There were concerns expressed about whether, for the
individual female who did venture into computing, the
discipline would be a good place be:

Why would a girl consider choosing computing as
a career? If she is happy to go against the
mainstream. (Alison_Uni5)

5 Conclusion
It was the passion, commitment and vast amounts of
unpaid time contributed by the programme champions
which was the driving force behind the majority of
intervention programmes operated by industry,
governments and the educational sector.

The success of these programmes was investigated
from the perspective of the programme champions as well
as via the formal and informal evaluation performed. All
the programmes were considered to be successful.
Almost all of the programme champions talked about
individual instances of having made a difference in one
persons’ life and that this was enough to make the
programme a success. There was disappointment
expressed by many of the women however that the
incredible time and effort needed to sustain these
programmes (most of which was of a voluntary nature)
had not brought about more change, with the overall state
and national statistics showing little improvement.

The value placed upon the work of designing and
implementing intervention programmes varied by sector.
When this work was undertaken by academic women in
universities the work was frequently undervalued
compared to when the activities were conducted by staff
in industry or in the government sector. The academic
environment was often not supportive of academics who
conducted intervention programmes for female students.

With the current poor number of students who are
attracted to computer courses it can only be hoped that

the need to encourage young boys as well as young girls
into computing may see this work more highly valued.
The recruitment and retention of computing students right
throughout the educational pipeline should not just be left
to the women and a few men. If more computer
professionals engaged in recruitment activities then the
work may not only become more valued but may help
stem the fall in enrolments in computer courses.

6 References
ADAM, A., HOWCROFT, D. and RICHARDSON, H.

(2004). A decade of neglect: Reflecting on gender
and IS. New Technology, Work and Employment,
pp. 222 - 239.

CLARKE, V. (1990). Sex Differences in Computing
Participation: Concerns, Extent, Reasons and
Strategies. Australian Journal of Education, Vol.
34(1), pp. 52 - 66.

CLAYTON, D., CRANSTON, M., CROOK, M., EGEA,
K., LYNCH, T., ORCHARD, R., ROBINSON, P.
and TURNER, A. (1993). Strategies to Increase
Female Participation in Computing Courses. In
Networking for the Nineties-The Second Women in
Computing Conference 1993. (Ed: FISHER, J.),
Victoria University, Melbourne, pp. 14 - 20.

CLAYTON, D. and LYNCH, T. (2002). Ten Years of
Strategies to Increase Participation of Women in
Computing Programs - The Central Queensland
University Experience: 1999-2001. Inroads
SIGCSE Bulletin, Vol. 34(2), pp. 89 - 93.

CRAIG, A., FISHER, J., SCOLLARY, A. and SINGH,
M. (1998). Closing the Gap: Women Education
and Information Technology Courses in Australia.
Journal of Systems Software, pp. 7 - 15.

DEST (2008). Department of Education, Science and
Training, Statistical publications, accessed August
22, 2008 from www.dest.gov.au/sectors/higher
_education/publications_resources/statistics/public
ations_higher_education_statistics_collections.htm
#studpubs

EDWARDS, J. and KAY, J. (2001). A Sorry Tale-A
Study of Women's Participation in IT Higher
Education in Australia. Journal of Research and
Practice in Information Technology, Vol. 33(4),
pp. 329 - 335.

GALPIN, V. (2002). Women in Computing Around the
World. Inroads SIGCSE Bulletin, Vol. 34(2), pp.
94 - 100.

GORAL, C. (2006) How to Increase Women’s Impact on
Technology - Changing Culture, Curriculum and
Technology, Anita Borg Institute for Women and
Technology.

HERRIOTT, R. and FIRESTONE, W. (1983) Multi-site
qualitative policy research: Optimising
descriptions and generalizability. Educational
Researcher, Vol 12(2) pp. 14-19

KAY, J., LUBLIN, J., POINER, G. and PROSSER, M.
(1989). Not Even Well Begun: Women in
computing courses. Higher Education, Vol. 18(5),
pp. 511 - 527.

MILES, M. B. and HUBERMAN, A. M. (1994). An
Expanded Sourcebook; Qualitative Data Analysis

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

43

(Second Edition), Thousand Oaks: Sage
Publications.

MODL (2008) The Australian Migration Occupations in
Demand List available from www.workingin-
australia.com/info/46 released 17th May 2008,
accessed August 2008.

MYERS, M. D. (2002). Qualitative Research Workshop.
Faculty of Computing. Presented at Monash
University 2002.

ORLIKOWSKI, W. and BAROUDI, J. (1991). Studying
Information Technology in Organizations:
Research Approaches and Assumptions.
Information Systems Research, Vol. 2(1), pp. 1 -
28.

STAKE, R. E. (2000). Case Studies. In Handbook of
Qualitative Research. (Eds: DENZIN, N. and
LINCOLN, Y.) Thousand Oaks, California, Sage
Publications, pp. 435 – 454

UNDR: UNITED NATIONS DEVELOPMENT
REPORT (2004). Bridging the Gender Digital
Divide: Report on Gender and ICT in Central and
Eastern Europe and the Commonwealth of
Independent State. UNDP Regional Centre for
Europe and the CIS / UNIFEM Central and
Eastern Europe.

VCAA (2008) Victorian Curriculum and Assessment
Authority: VCE Subject Statistics Accessed
August 2008 from www.vcaa.vic.edu.au/
vce/statistics/subjectstats.html

YIN, R. (1994). Case Study Research Design and
Methods. London, Sage Publications.

CRPIT Volume 95 - Computing Education 2009

44

Teaching and Assessing Programming Strategies

Explicitly
Michael de Raadt, Richard Watson
Department of Mathematics and Computing

University of Southern Queensland
Toowoomba, Qld, 4350, Australia

{deraadt, rwatson}@usq.edu.au

Mark Toleman
School of Information Systems

University of Southern Queensland
Toowoomba, Qld, 4350, Australia

markt@usq.edu.au

Abstract

This paper describes how programming strategies were

explicitly instructed and assessed in an introductory

programming course and describes the impact of this curricular

change. A description is given of how strategies were

explicitly integrated into teaching materials and assessed in

assignments and examinations. Comparisons are made

between the outcomes of novices under the new curriculum

and results of novices‟ learning under the previous implicit-

only strategy curriculum, measured in an earlier study. This

comparison shows improvement in novices‟ strategy

application under the new curriculum.

Keywords: Strategies, introductory programming, curriculum.

1. Introduction
It is possible to distinguish programming knowledge from

programming strategies. Knowledge involves the declarative

nature (syntax and semantics) of a programming language,

while strategies describe how programming knowledge is

applied (Davies, 1993). Programming strategies involve the

application of programming knowledge to solve a problem. A

literary survey that defines these terms and highlights this

distinction is given by Robins, Rountree, & Rountree (2003).

Programming strategies can be plans as described by Soloway

(1985), or patterns (Wallingford, 1996), algorithms, etc.,

together with the associated means of incorporating these into

a single solution. Soloway suggests programming knowledge is

not a “stumbling block” (1986, p. 850) for novices and

suggests teaching should reach beyond a focus on syntax and

target programming strategies. Robins et al (2003) also

suggest that the key to novices becoming effective lies in them

learning programming strategies rather than acquiring

programming knowledge.

Another distinction relevant to this study is found between

programming comprehension (the ability to read and

understand the outcomes of an existing piece of code) and

generation (the ability to create a piece of code that achieves

certain outcomes). Whalley et al. contend that “a vital step

toward being able to write programs is the capacity to read a

piece of code and describe it” (2006, p. 249) meaning that a

novice must be able to comprehend a solution (and the

knowledge and strategies within it) before they can generate a

solution at the same level of difficulty. According to Brooks

(1983), expert and novice programmers can be distinguished

by how they undertake comprehension. During program

generation an expert can rely on a tacit body of programming

plans developed through solving past problems (Soloway,

1986), while novices are traditionally expected to conceive and

apply plans, with varying degrees of success (Rist, 1991).

The Leeds group (Lister et al., 2004) attempted to isolate the

cause of poor novice results measured by the McCracken

group (McCracken et al., 2001). The Leeds group reported that

many instructors attribute poor results to poor problem-solving

ability in novices. The group attempted to create programming

questions that required no problem-solving ability to answer. If

novices succeeded in the test it would confirm that novices can

successfully acquire programming knowledge and instructors

could put this issue aside and focus their attention on

improving strategy instruction. If novices failed this test, it

would indicate a failure in programming knowledge. Results of

the Leeds group study, and the BRACElet project (Whalley et

al., 2006) that followed, showed that many novices exhibit a

fragile programming knowledge and very few can demonstrate

programming strategy understanding in a comprehension

exercise. It is therefore important to consider both

programming knowledge and strategy together in curricula.

When considering the problems novices are expected to solve

in an introductory programming course, de Raadt, Toleman

and Watson (2006) use a scale of problems with three levels

being “system”, “algorithmic” and “sub-algorithmic”. The

simplest of these is sub-algorithmic level problems, with

solutions that do not involve algorithms or system design.

Examples of problems of this scale include avoiding division-

by-zero, achieving repetition until a sentinel is found, and so

on. Strategies used to solve problems at this level are

particularly relevant to novices in their initial exposure to

programming, yet these strategies are also a fundamental part

of solving problems at any level.

1.1 Previous Work

1.1.1 Initial Study
A previous study (de Raadt, Toleman, & Watson, 2004) found

weaknesses in a traditional curriculum used in teaching an

introductory programming course to novices where strategies

were not taught explicitly. Instead, students were expected to

learn strategies implicitly by seeing examples and solving

problems. Students who participated in the study were asked to

create a solution to a simple averaging problem. A number of

common flaws were detected when students' solutions were

scrutinised under Goal/Plan Analysis (Soloway, 1986).

Participating students were not consistently able to:

 initialise sum and/or count variables,

 use a correct looping strategy for the given problem,

 guard against events such as division by zero, or

 merge plans that should be achieved together.

Students, on average, were only able to demonstrate

application of 57% of the strategies required for a complete

solution. These flaws implied weaknesses in the curriculum

being delivered to the students at the time.

Copyright © 2009, Australian Computer Society, Inc. This paper appeared at the

Eleventh Australasian Computing Education Conference (ACE2009), Wellington,

New Zealand, January 2009. Conferences in Research and Practice in Information

Technology, Vol. 95. Margaret Hamilton and Tony Clear, Eds. Reproduction for

academic, not-for-profit purposes permitted provided this text is included.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

45

1.1.2 Pilot Study
Educational research experiments (Biederman & Shiffrar,

1987; Reber, 1993) have shown that explicit instruction can be

more powerful than implicit-only instruction, so it was

proposed that programming strategies be taught explicitly. A

number of attempts have been made to represent sub-

algorithmic strategies in a form that can be presented to

novices; with most recent studies focussing on patterns

(Muller, Haberman, & Ginat, 2007; Porter & Calder, 2003;

Wallingford, 2007). For this study plans were chosen as they

can be used with multiple paradigms, including the object

paradigm. Plans can be expressed simply, particularly at a sub-

algorithmic level. de Raadt, Toleman and Watson (2006)

showed that plans suitable for novice instruction at a sub-

algorithmic level can be identified in solutions produced by

expert programmers. Although plans were chosen as a strategy

representation, the focus of this study is on instruction of

strategies, and this could be tested with any form of strategy.

Before introducing programming strategies in a full

introductory programming course, a pilot study was

undertaken (de Raadt, Toleman, & Watson, 2007). A

controlled experiment was conducted that compared two

curricula: one including programming strategies explicitly and

a traditional curriculum that required students to learn

strategies implicitly. Each curriculum was delivered over a

weekend with students who had no programming experience.

The experiment showed that it is possible to incorporate

strategies explicitly into a curriculum. At the end of the

weekend, participants were asked to generate solutions to three

problems including the averaging problem used in the initial

study and two similar problems. Experimental participants,

who had been exposed to explicit strategy instruction, used

strategies in their solutions, although no significance was

proven as the number of participants was small. After the

weekend courses, control and experimental participants were

interviewed to probe their understanding of the strategies they

were exposed to, either implicitly or explicitly. Participants

were asked to describe their understanding of the problem

statements. They were asked to lead the interviewer through

their solution, describing each part. Participants were also

asked say if they felt their solution would solve the problem.

Participants exposed to explicit strategy instruction used

terms from a strategy vocabulary to describe their solutions

and showed greater confidence than those exposed to a

traditional curriculum.

After the pilot study strategies were introduced into an actual

introductory programming course held over a semester. A

larger set of programming strategies was expressed and

incorporated into teaching materials, lectures, formative and

summative assessments and the examination.

The main testing approach used to gauge strategy application

in previous studies was Goal/Plan Analysis (Soloway, 1986).

With novices, this approach is limited to analysing solutions

generated at or near the end of an introductory programming

course. After the pilot study it was proposed that analysis of

strategy skill should be conducted in more flexible ways

throughout the course by taking the ideas inherent in

Goal/Plan Analysis and using them to assess student work in

assignments and examinations. The following are ways

strategies were incorporated in assignments and examinations.

 Encouraging students to use particular strategies

when generating solutions for assignments

 Awarding credit for application of strategies in

assignment marking criteria

 Using problems that focus on programming

strategies as part of the final examination

 Analysing examination solutions in a Goal/Plan-

Analysis-like manner

Awarding credit for applying strategies in assessments was

also done to encourage students to value this component of

programming and devote more effort to learning it.

1.2 Participants and Setting
Participants in this study were novices studying in a first-year

introductory programming course. The course is delivered to

students on-campus (approximately 40% of the student cohort)

and students studying externally (via distance education,

potentially anywhere in the world). On-campus students are

expected to attend two one-hour lectures followed later in the

week by a one-hour tutorial (in a normal classroom) and a two-

hour practical class with computers. External students study

independently by reading the same written materials, accessing

lectures online, and undertaking tutorial and practical

exercises. The course runs twice a year, each year, but this

study will focus on the results of three particular cohorts.

Table 1. Cohorts involved in the study

Semester N Student Location Strategies

2003 42 on-campus implicit-only

2005 36 on-campus, external explicit

2007 45 on-campus, external explicit

Table 1 shows which cohorts were the focus of comparisons in

this study. The initial study, reported in (de Raadt, Toleman, &

Watson, 2004), was conducted 2003 in class with on-campus

students only. The later cohorts also included students

studying externally as testing was conducted as part of the

examination; this also kept participant numbers consistent

between comparisons during a period of decline in student

numbers. In each cohort, participants included school leavers

and mature-aged students. Students were from a range of

discipline areas but were primarily IT and Engineering

students. The entry standard was consistent throughout the

period of study. The mix of students has varied with more non-

computing students undertaking the course in later years.

Apart from the inclusion of explicit strategy instruction

(described in detail in section 0) the curriculum was

unchanged between the offerings listed above. The course

follows a procedural paradigm using the C programming

language teaching topics including functions, data storage,

selection, iteration, arrays, I/O and recursion. The instructor

was the same in all instances.

1.3 Research Questions
This section is divided into two parts related to two

perspectives (integration and impact) taken when conducting

this study. This two-perspective structure is mirrored in the

Methodology, Results and Discussion sections of this paper.

1.3.1 Integration Questions
The first two questions consider the possibility of instructing

and assessing programming strategies explicitly. Although this

was established on a smaller scale in the pilot, it needs to be

tested with a complete curriculum in a full-scale introductory

programming course.

RQ1. Can instruction of programming strategies be

explicitly incorporated into instruction in an actual

introductory programming course?

RQ2. Can programming strategy skill be measured as

part of the assessment in an actual introductory

programming course?

CRPIT Volume 95 - Computing Education 2009

46

1.3.2 Impact Question
The third question relates to the effect of introducing explicit

programming strategies to novice programmers. This question

will be answered by analysing novice performance on

assessments in the course and comparing this to the baseline

performance described by the initial study (de Raadt, Toleman,

& Watson, 2004).

RQ3. What is the impact on novice programmers of

incorporating programming strategy explicitly into

instruction and assessment?

2. Integrating Strategies
Over the two-and-a-half-year period between the second half

of 2005 and the end of 2007, programming strategies have

been incorporated into the curriculum of an introductory

programming course.

Programming knowledge was presented in a similar manner to

the traditional curriculum used. Strategies are interwoven

through the course in an explicit manner. In the beginning of

the course the distinction between knowledge and strategies is

presented. Figure 1 shows an initial description of plans as

strategies within a description of the programming process.

Strategies are a part of the curriculum and testing students‟

strategy skills forms part of the assessment. Students are

informed of this at the outset.

 Written materials provided to students include notes for each

module of the course and exercises for each week. Students are

encouraged to read the written materials before attending or

listening to lectures provided online (with audio for external

students). The lectures complement the written materials and

allow opportunities for questions and further explanations.

Each week students are expected to undertake written and

computer-based exercises, in tutorials and practicals, to

reinforce the material for the week.

 The following sub-sections describe how programming

strategies were explicitly incorporated into written materials,

lectures, weekly exercises, assignments and in the course

examination.

2.1 The ‘Strategy Guide’
The major component of written material provided to novices

in the course is referred to as a „Study Book‟. More detail

about the Study Book modules is given in section 2.2 below.

At the end of the Study Book two appendices are given: one is

a syntax guide and the other collects together all the strategies

that are covered in the course. This „Strategy Guide‟ is

available online (de Raadt, 2008).

The Strategy Guide begins by defining how strategies can be

integrated. Abutment, nesting and merging are discussed in

this introduction. Each strategy is then described as either a

plan or, in the case of some later strategies, as a basic

algorithm. An example is given in Figure 2. The programming

knowledge required to apply each plan is stated at the

beginning of each plan description. Examples and diagrams

are provided for most strategies. The Strategy Guide forms a

resource for novices studying in the course, and possibly after

they have completed the course. All strategies assessed in

assignments and the examination can be found in this guide;

students are told this at the beginning of the course and again

before the examination. Strategies are addressed individually

in context within the modules of the Study Book and lectures.

1.6.1 Design

An expert programmer will take time to

properly design a solution. It is tempting to

jump to implementation, but often, without a

reasonable design, a programmer can waste

time correcting a poor implementation and

take far longer than if they had spent a small

amount of time on design first.

From a problem statement a programmer will

identify the goals that need to be achieved.

These goals can usually be found through a

careful reading of the problem statement.

When the goals of the problem have

been identified, a programmer can

choose appropriate plans that satisfy

goals. A plan is a small, independent

strategy that the programmer has

applied in a past solution. During this

course we will be covering

programming knowledge and also the

strategies that you can use to apply

this knowledge. Look for the

STRATEGY sidebar to differentiate parts of this book that cover strategies.

Once plans have been identified they need to be combined together to form a solution. Plans

can be combined together in three possible ways.

 Abutment

Placing the plans one after another in the correct sequence that will solve the

problem.

 Merging
Integrating plans so that common parts are performed together

 Nesting
Placing one plan inside another plan

Depending on the scale of the solution a programmer will design a solution in their head, on

paper or using some computerised tool. The solution will show the programmer how to

implement the program.

S
T

R
A

T
E

G
Y

Problem

Goal Goal Goal…

Plan Plan Plan…

Solution

Figure 1. Introduction to strategies from the Study Book

Plan 6. Triangular Swap Plan

This plan requires an understanding of variables and the assignment operator.

Consider how you swap two items. Imagine two pencils in front of you. To swap their positions you

would pick up one with one hand, the second with your other hand and then place each in their new

positions.

A computer can only perform one action at a time. Now, imagine that you only have one hand; how

would you swap the positions of the two pencils now? Keep in mind also that when a variable is

assigned a new value, the old value is replaced and cannot be accessed later. Attempting to swap

using the above method will result in two copies of the same value.

To achieve a swap a temporary position is needed. One of the pencils could be moved to the

temporary position; the second pencil could be moved to its new location; finally the first pencil could

be moved from the temporary position to its new position.

Here is an example in the context of a full program.

#include <stdio.h>

int main() {

 int firstPosition = 5; // First position containing value to swap

 int secondPosition = 6; // Second position containing value to swap

 int tempPosition; // Temporary position for swap

 // Output the numbers after the swap

 printf("Before Swap...\n");

 printf("First: %i, Second: %i\n", firstPosition, secondPosition);

 // Swap the two numbers in a triangular swap

 // 1. Copy the value from the second position to temp

 tempPosition = secondPosition;

 // 2. Copy the value from the first position to the second

 secondPosition = firstPosition;

 // 3. Copy the value from the temp position to the first

 firstPosition = tempPosition;

 // Output the numbers after the swap

 printf("After Swap...\n");

 printf("First: %i, Second: %i\n", firstPosition, secondPosition);

}

Here is the output of the above program.

Before Swap...

First: 5, Second: 6

After Swap...

First: 6, Second: 5

The above results show the values are swapped and not duplicated.

Position 1 Position 2

Temp Pos

Position 1 Position 2

1
Temp Pos

Position 1 Position 2

2

Temp Pos

Position 1 Position 2

3

Figure 2. An example of a plan from the Strategy Guide

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

47

The Strategy Guide contains 18 strategies ranging in scale

from very simple plans such as finding an average, through

several sub-algorithmic plans such as a triangular swap (see

Figure 2 for this example), and on to some algorithmic

strategies such as sorting. The strategies currently in the

Strategy Guide are listed below.

1. Average plan

2. Divisibility plan

3. Cycle Position plan

4. Number Decomposition plan

5. Initialisation plan

6. Triangular Swap plan

7. Guarded Exception plans (including Guarded

Division plan)

8. Counter-Controlled Loop plan

9. Primed Sentinel-Controlled Loop plan

10. Sum and Count plans

11. Validation plan

12. Min/Max plans

13. Tallying plan

14. Search algorithm

15. Bubble Sort algorithm

16. Command Line Arguments plan

17. File Use plan

18. Recursion plans (single- and multi-branching)

2.2 Explicit Incorporation in Written Notes
Within the 12 modules of the Study Book, programming

strategies are introduced after presenting the programming

knowledge applied in each strategy. In this context the

strategies show immediately how the knowledge can be

applied, which, in its purest sense, is the nature of a strategy.

This is followed by a code example showing the plan applied.

For instance, the Triangular Swap plan is shown after students

cover variables and assignment as programming knowledge

components. This takes place in the third module, covered

during the third week of the course. This plan is discussed in

lectures, reinforced in tutorial and practical exercises and

assessed in assignments and in the examination. The

Triangular Swap plan appears again when the Bubble Sort

Algorithm is presented in a later module of the course. This

demonstrates how identifying strategies and creating a

vocabulary for strategies allows instructors to use this

vocabulary, and in doing so, reinforce strategies when they

appear later in the course.

In the Study Book a sidebar down the left is used to visually

distinguish parts covering programming strategy from other

parts of the Study Book.

2.3 Explicit Incorporation in Lectures
During lectures, strategies are presented and discussed after

relevant programming knowledge content had been covered.

Lectures are presented in person to a class of on-campus

students. The lecture is also recorded and the slides and audio

are presented together and placed on the course website.

Figure 3. Example of a lecture slide showing the Guarded

Division plan

The example shown in Figure 3 is one of a number of related

slides that discuss the Guarded Division plan. On the left of

the slide the outline of the lecture is shown and the current

topic, „Guarded Division‟, is highlighted. Observe that much

of the previous content of the lecture has covered

programming knowledge. Before a guarded division can be

applied, novices must be aware of the if statement and the

division operator (covered in a previous module). Students are

shown how to apply this plan. This strategy is reinforced in the

tutorial class held later that same week and is assessed in

assignments and has been assessed in the examination.

2.4 Strategies in Tutorial and Practical

Exercises
Programming is practiced in tutorial and practical classes.

Exercises for these classes are listed in the Study Book

following the content of each module. Prior to adding strategy

content explicitly, the following exercise was given as an

example.

Write a program that will allow the user to enter

words. Use the %s format sequence in a scanf()

call to capture each word one at a time. Find the

length of each word using strlen(). To end the

user input, the user will enter the string “end”. At

the end of the program, output the count of words

and the average length of the words.

This example demonstrates how novices were expected to

learn programming strategies implicitly in order to solve

problems. The problem statement describes what needs to be

achieved, but does not suggest how a solution should be

constructed, and no strategy to solve the problem had been

given in previous instruction.

CRPIT Volume 95 - Computing Education 2009

48

Computer Exercises

8 Write a program that will allow the user to enter words. Use the %s format sequence in

a scanf() call to capture each word one at a time (this will skip whitespace between

words). You don't have to keep the user inputs in memory; you only need to deal with

each word one at a time. Create an array with 256 characters for the input word. Set the

maximum word size as a constant.

Find the length of each word using strlen(). To end the user input, the user will

enter the string "end" (you will have to use strcmp() to test for this). You will need

to include string.h to use these functions. Set the sentinel word as a constant.

At the end of the program, output the count of words, the total number of letters and the

average length of the words. Be sure to use a sentinel controlled loop and guard the

calculation of the average word length. Keep all numeric values as integers.

Your program should work if several words are entered before the sentinel, or if the

sentinel is entered as the first input. Test your program by entering "end" as the first

word. Try entering more than one word per line of input.

Figure 4. Example exercise requiring the Sentinel-

Controlled Loop and Guarded Division plans. Highlighting

(added for this figure only) shows strategy content

As a contrast, a new version is shown in Figure 4 above. In the

new version students are given the same initial requirement

with a few programming knowledge embellishments (such as

the size of an array). Following this, in the third and fourth

paragraphs of the problem statement, strategy instructions are

given. Students are expected to use a Primed Sentinel-

Controlled Loop to achieve repetition; this plan is named and

its use is directed. The students are also reminded to guard the

division when calculating the average. At this stage students

are expected to know what a sentinel-controlled loop is and

how to achieve a guarded division. This problem relies on

students possessing a vocabulary that includes the term

„sentinel‟, which is used to define the value that, when

encountered, will stop the repetition.

13. Fill in the blanks in the following code which swaps the values of two character variables
and then outputs the variables new values.

#include <stdio.h>

int main() {

 char letter1 = 'a'; // First letter

 char letter2 = 'b'; // Second letter

 char temp = '-'; // Temporary position

 // Swap the two letters in a triangular swap

 // Output the letters

}

Figure 5. Example exercise from Module 3 requiring

Triangular Swap plan

The example shown in Figure 5 requires students to apply a

Triangular Swap plan to swap two character values. The plan

name is mentioned explicitly in the code (in a comment) and

three blanks imply the use of the triangular swap. Later in the

course this strategy is used again in an exercise where students

write a function that takes two pointers and orders the values

to which they point.

Computer Exercise s

6. Copy the Guarding Division function example from page 15 that will calculate an

average. Add a main() function that will call the average() function. It should still

work when the value passed to count is zero.

6.1 Remove the guarding if-else statement so all that remains in the function is the

return statement. Now test the function sending zero as the value of count.

When the program is compiled and run, the operating system should shut the
program down and display an error.

6.2 Restore the guard to the function and test that it works correctly again.

Figure 6. Example exercise from Module 5 testing the

Division by Zero plan

Figure 6 contains an example of an exercise that asks students

to experiment with the Guarded Division plan. This exercise

encourages novices to experience the consequences (a program

crash) resulting from dividing by zero. Through this, novices

will hopefully come to appreciate the necessity of protecting

the division with a guard.

Students are deliberately led to practise application of

particular strategies for these problems in the same way that an

instructor might encourage students to use a particular

language construct, such as a for loop. In the examination,

students are expected to apply required strategies without

being led in this manner.

2.5 Assignment Instructions
As well as being introduced explicitly into instructional

materials, programming strategies also became assessable in

the course. Sections 2.5 to 2.8 describe how programming

strategies have been included in assignment instructions and

marking criteria as well as how examinations have been

designed and marked to include testing of strategy-related

abilities.

When teaching strategies explicitly, the challenge for

instructors is to create problems that focus on particular

programming strategies. Achieving this allows novices to

demonstrate specific strategies in assignments and the

examination.

 In your program, create the following functions.

…

void decryptEncryptLine(int shift);

 This function will shift alphabetic characters by the amount of the shift. The

function performs in the same manner for encryption and decryption. If the

shift is a positive amount, this will shift characters forward (encrypt

characters) and if negative it will shift them back (decrypt characters).

 The function will input and process each character one at a time until a

newline character is detected. Use a primed sentinel controlled loop. Do not

try to store or process entire lines.

Figure 7. Extract from assignment instructions highlighting

the requirement for a specific programming strategy

In assignment instructions students are given tasks that require

them to apply specific programming strategies. Figure 7 above

is an extract from an assignment‟s instructions where students

are asked to use a Primed Sentinel-Controlled Loop to input

characters entered by a user until the end-of-line is

encountered.

2.6 Assignment Marking Criteria
As well as requiring specific strategies to be applied in the

creation of solutions, the marking schema used to evaluate

solutions also explicitly includes references to specific

strategies.

In the course described here students participate in electronic

peer-review as part of each assignment. Marking schema are

constructed well in advance and released as part of the

assignment instructions. Students are therefore aware of how

their submission will be judged before they submit. They can

see that they will receive marks for applying specific

programming strategies. Being involved in peer-review,

students are also expected to be able to judge if a peer-student

has correctly applied a specific strategy where required by a

criterion.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

49

…

Check that no variables are declared outside functions. This does not include

global constants.

 A Primed Sentinel Controlled Loop is used to process menu options in the

main() function

The function should contain a priming input before the loop and a subsequent

input at the end of the loop. If the user enters the quit option in the first instance,

the loop body should not be entered.

 A Primed Sentinel Controlled Loop is used to gather characters for input

until the end of a line in the decryptEncryptLine() function

The function should contain a priming input before the loop and a subsequent

input at the end of the loop. If the user enters a blank line, the loop body should

not be entered.

 Code is indented consistently and no line is longer than 80 characters

…

Figure 8. Extract from the marking scheme showing

strategies are required in the solution for a programming

assignment

Criteria relating to programming strategies are mixed with

other criteria in each marking scheme. Figure 8 is an extract

from the marking scheme for the same assignment that was

used in the previous section.

2.7 Examination Questions
Questions in the examination are designed to separate ability

in knowledge from strategy and ability in comprehension from

generation. By combining these aspects, four types of question

can be defined as shown in Figure 9.

Knowledge
Comprehension

Knowledge
Generation

Strategy
Comprehension

Strategy
Generation

Knowledge

Strategy

G
e
n
e
ra

tio
n

C
o
m

p
re

h
e
n
s
io

n

Figure 9. Four types of examination questions

based on novice instruction aspects

Targeting questions to one of these four areas is not always

simple. Some questions may stray over the boundaries between

areas. The focus of the question can be reinforced by criteria

used to award marks (see section 2.8).

2.7.1 Knowledge-Comprehension Questions
To test knowledge and comprehension, an examination

question must focus primarily on language syntax skills but

not ask the novice to generate any code. The question should

test that the student understands an example shown to them,

possibly by simulating how the code would be executed. A

knowledge-comprehension examination question is shown in

Figure 10.

QUESTION 1 (10 marks, 12min)

What will the following output?

#include <stdio.h>

int testFunc(int *ptr, int num);

int main() {

 int x=7, y=3, z=5;

 printf("%i %i\n", x, y);

 z = testFunc(&y, x);

 printf("%i %i %i\n", x, y, z);

}

int testFunc(int *ptr, int num) {

 int temp;

 printf("%i %i\n", *ptr, num);

 temp = num;

 num = *ptr;

 *ptr = temp;

 printf("%i %i\n", *ptr, num);

 return num + (*ptr);

}

Figure 10. A Knowledge-Comprehension examination

question

2.7.2 Knowledge-Generation Questions
Knowledge-generation questions should require novices to

generate code but not solve a problem requiring any

programming strategies. The question should instead prompt

the novice to create code that demonstrates their understanding

of specific language constructs. An example of such a question

is given as Error! Reference source not found..

QUESTION 4 (10 marks, 17min)

Write a main() function that input an integer from a user and then use a switch statement to respond to

the user’s input with one of the following outputs:

Where 0 is entered, output hello

Where 1 is entered, output bye

Where any other value is entered, output invalid

Figure 11. A Knowledge-Generation examination question

2.7.3 Strategy-Comprehension Questions
Strategy-comprehension questions are perhaps the most

difficult to define. These questions must test the strategy

potential of a novice without asking them to generate any

code. Possible ways to achieve this include the following.

 Asking novices to identify or describe strategies

used in a given solution

 Asking novices to relate common strategies applied

across multiple solutions

 Asking novices to identify how a strategy has been

incorrectly applied in, or is absent from, a solution

In Figure 12 we see an example of a strategy-comprehension

question that asks the novice to identify the strategy-related

error in the code and state how the error could be corrected.

The error can occur when the argument count has a value of

zero, which would cause a division by zero. There is no guard

to protect against this. To remedy this problem the student

should apply a guard against division by zero. The exact

„Guarded Division‟ terminology is not critical if the novice can

express this solution using other words.

QUESTION 5 (5 marks, 18min)

The following function contains a logic error. In a few words, describe what the error is

and how you would remedy the error. Do not re-write the whole function.

int getAverage(int sum, int count) {

 return sum/count;

}

Figure 12. A Strategy-Comprehension examination

question

2.7.4 Strategy-Generation Questions
Strategy-generation questions are probably what most

instructors think of when they write a generation question for

an examination. Such problems were designed to allow

CRPIT Volume 95 - Computing Education 2009

50

novices to apply specific strategies they have learned in the

course.

Figure 13 gives an example of two questions that formed a

series from the S2, 2007 examination. The first question asks

the novice to demonstrate a Validation plan. The Validation

plan involves a Sentinel-Controlled Loop plan where a valid

input is the sentinel. The second question in Figure 13 is

essentially the same classic averaging problem, defined by

Soloway (1986), and used in the initial study (de Raadt,

Toleman, & Watson, 2004). This question requires novices to

apply the following plans, each of which is covered explicitly

in the course.

 Primed Sentinel-Controlled Loop plan

 Sum plan

 Count plan

 Guarded Division plan

 Average plan

 Output plan

2.8 Marking the use of Strategies in the

Examination
When assessing the use of strategies in an examination it is

critical that the marking scheme does not fall back on

syntactical measures. The marking criteria for strategy related

questions should seek the application of specific strategies or

comprehension of those strategies. Strategy-generation

questions should target specific strategies and the marking

scheme for these questions should award marks where the

required strategies have been applied, rather than for

syntactical correctness.

Distinguishing how knowledge-related and strategy-related

questions are marked forces a greater focus on particular areas

from Figure 9 at the beginning of section 2.7.

3. Methodology
The comparison described in this paper can be considered

from two perspectives, which can be related back to the

research questions stated earlier:

 to test the possibility of explicitly incorporating and

assessing programming strategies in an actual

introductory programming course (RQ1 and RQ2);

and

 to measure the impact of explicit programming

strategy instruction and assessment on novices by

comparing results produced under the new

curriculum with benchmark measurements from the

initial study (RQ3).

The method for achieving these aims is described in the

following sub-sections.

3.1 Integration
The first and second research questions (RQ1 and RQ2) raised

in section 1.2 consider the possibility of integrating strategy

content into an actual introductory programming course. The

success of this integration, drawing on examples presented

earlier, is discussed in section 4.1. Observations are made on

student response to the newly incorporated materials and

assessment.

3.2 Impact
The third research question (RQ3) seeks to measure impact of

the new curriculum relative to curriculum measured in the

initial study (de Raadt, Toleman, & Watson, 2004). Students

who participated in the initial study had studied using a

curriculum that required them to learn strategies implicitly. In

the initial study students were asked to create a solution to a

classic averaging problem. Several strategy gaps were detected

in student solutions indicating flawed understandings of the

required strategies. Of particular interest was the lack of

application of the Guarded Division plan.

Comparison of performance under the new curriculum with the

benchmark performance was achieved through two

examination questions. One question was included in the

examination that followed the first integration of explicit

programming strategy instruction in the second half of 2005

and another from an examination at the end of 2007. Results of

these two examination question comparisons are shown in

section 4.2.

3.2.1 Guarded Division Problem (2005

Examination)
One of the major flaws in novice strategy skill, detected in the

initial study, was poor use of guarded division. A 2005

examination question shown as Figure 12 (section 2.7.3) is a

strategy-comprehension question that targets the Guarded

Division plan. This question yields either a correct or incorrect

response. Student responses to this question were analysed and

compared to application of Guarded Division in the initial

study.

3.2.2 Averaging Problem (2007 Examination)
A 2007 examination question shown as Question 8 in Figure

13 (section 2.7.4) was a strategy-generation question that

repeated the averaging problem given to novices in the initial

study. Solutions to this question were analysed using the same

approach as used in the initial study. Eight features were

analysed in student solutions: seven plans, and the correct

merging of plans. The presence or absence of each of these

features was checked in all attempts. The features measured

were as follows.

 Initialisation of a sum variable

 Initialisation of a count variable

 A Sum plan in a Primed Sentinel-Controlled Loop

 A Count plan in a Primed Sentinel-Controlled Loop

 A guard against division by zero

 An Average plan

 An Output plan

 Merging of the Sum and Count plans inside the

Primed Sentinel-Controlled Loop

Strategies were judged as being either present or absent in

solutions. For more detail on how these features can be

QUESTION 7 (20 marks, 24min)

Write a function, using the following prototype, which will prompt the user and read in a

valid positive integer. If the user enters invalid input, or a negative integer, the function

will tell them their input was invalid and prompt them to enter another value. The function

will repeat this until the user enters a valid input.

int getValidPositiveInteger();

For your reference, the following lines of code will clear the standard input stream.

scanf("%*[^\n]");

scanf("%*c");

QUESTION 8 (20 marks, 24min)

Write a main() function that will read in integers and output their average. Input will be

gathered using the getValidPositiveInteger() function as described above (do not re-

write that function). Stop reading when the value 99999 is entered (this is not to be used as

an input).

Figure 13. A Strategy-Generation examination questions

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

51

identified in a solution, see (de Raadt, Toleman, & Watson,

2006).

The circumstances surrounding the initial testing were slightly

different to a final examination. The initial study was

conducted under examination-like conditions (students were

not permitted to talk to each other or use resource materials),

but in tutorial classes during the course. Final examinations are

held at the end of the course, giving students more time

between exposure and testing of the necessary plans. These

differences need to be kept in mind when comparing

performance between these tests.

3.2.3 Avoiding Bias
Neither of these two specific questions had been used in the

course prior to the examinations. The closest problem

resembling the averaging problem was the average word length

exercise given in practicals and shown in Figure 4 (section

2.4). The course materials covered each of the required

strategies. Students had opportunities to practice each of the

required strategies. These strategies were not emphasised

more than any other strategies taught in the course.

In the two examination questions, students are not led to use

any specific strategies; they are expected to have learned

which strategies to apply at this stage (during the exam).

4. Results
Results are presented below, again divided by the two

perspectives used earlier. First the success of integrating

programming strategies in an actual introductory programming

course is discussed. Specific strategy-related responses elicited

under the traditional and new curriculum are then compared.

4.1 Integration
Integrating explicit strategy instruction and assessment into an

actual introductory programming course was achieved. The

examples of curricular materials and assessment items shown

in section 0 demonstrate how this was achieved.

Although it is not scientific, some observations can be made.

Perhaps the most arduous part of integrating strategies

explicitly was in conceiving well focused assessment items. It

is challenging to create problems that required students to

apply specific plans, while maintaining interesting problems.

Even so, a set of problems was developed to assess strategy

skill in assignments and examinations.

Students accepted the new instruction as part of the course; no

student protested against the inclusion of strategies as

legitimate content. As each new cohort undertook the new

curriculum, they were not aware that it was different to the

traditional curriculum that preceded it. Students did not protest

against having their strategy skills assessed. As mentioned

earlier (see section 2.6), assignments involved peer review, so

students were being asked to evaluate the work of their peers.

Students were asked to complete reviews that required them to

judge the presence or absence of strategies in the work of their

peers.

4.2 Impact
Two specific questions were used to compare strategy skill

under the previous and new curricula. The questions were

drawn from two examinations, one which took place at the end

of 2005 after the first instance of the course to include explicit

strategy instruction, and one in the most recent instance at the

end of 2007.

4.2.1 Guarded Division Problem (2005

Examination)
During the initial study a particularly poorly applied plan was

the Guarded Division plan, with only four students out of 42

applying this plan. In the S2 2005 examination, under the new

curriculum, the strategy-comprehension question given as

Figure 12 (section 2.7.2) was used to specifically target

comprehension of the Guarded Division plan after explicit

instruction. This question showed a function used to calculate

an average; however, there was no guard around the division

so it was susceptible to failure if the count of values was zero.

Students were asked to identify the flaw and suggest a remedy.

Table 2. Change in Guarded Division application

 Correct Proportion

Application in generation study

before explicit strategy instruction
4 of 42 10%

Comprehension in 2005 exam

under new curriculum
25 of 36 69%

Results from Table 2 show the poor application of the Guarded

Division plan under implicit-only strategy instruction and the

potential of students to comprehend this plan after explicit

instruction. After explicit strategy instruction, correct answers

to the Guarded Division were provided by 25 of 36 students.

This indicates that most students had learned and could

comprehend the Guarded Division plan, knowing where it

should be applied.

Testing comprehension of a strategy (as in this problem) is not

directly comparable to generation of that strategy (as with the

initial study). However, knowing that 69% of students

comprehend the Guarded Division plan should be kept in mind

when considering the results of a comparison using a

generation task in the next subsection.

4.2.2 Averaging Problem (2007 Examination)
During the examination from S2 2007 the questions shown in

Figure 13 (section 2.7.4) were used. From this figure Question

8 repeats the averaging problem used in the initial study (de

Raadt, Toleman, & Watson, 2004).

CRPIT Volume 95 - Computing Education 2009

52

Solutions to this problem were analysed under Goal/Plan

Analysis, with the same list of plans sought. Figure 14

distinguishes results between the initial test, where novices

learned programming strategies in an implicit-only manner

and attempted the problem in class in the second last week of

semester, and the examination question under the new

curriculum that included programming strategies explicitly.

Results show consistent improvement in all plans except one.

The Guarded Division plan is still the most poorly applied

plan, with only 38% of participants using this plan even after

explicit instruction; however, this is a significant increase

(χ2≈9.47, p≈0.002), almost fourfold from the initial study, and

this level is higher than the level demonstrated by experts (de

Raadt, Toleman, & Watson, 2006). There was also a

significant increase in use of the Sentinel-Controlled Count

Loop plan (χ2≈4.98, p≈0.03).

Figure 15 compares the completeness (use of all expected

plans) from the initial study and results from the averaging

question in an examination under a curriculum with explicit

programming strategies. Under the new curriculum, the

proportion of correct solutions increased from 2% (1 of 42) to

31% (14 of 45) which is a significant increase (χ2≈12.56,

p≈0.0004). If the most poorly applied plan, Guarded Division,

is ignored the proportion of complete (and near-complete)

answers has increased from 20% (10/42) to 49% (22/45) which

is also a significant increase (χ2≈5.88, p≈0.02).

Table 3. Improvement between cohorts

Exam
Average Plan

Application

Implicit-only (2003) 4.0 of 7 plans (57%)

Explicit (2007) 4.8 of 7 plans (69%)

There was an improvement in the average proportion of

application of the seven expected plans between the student

cohorts. As shown in Table 3, prior to explicit instruction of

programming strategies, students applied 57% of the expected

plans on average. With explicit instruction of programming

strategies, this increased to 69% of the expected plans on

average. Using a two-sample t-test (one-tailed) there is

evidence of a statistically significant improvement between the

two cohorts (df=85, t≈1.66, p≈0.02).

5. Discussion
In this section we use the results from section 4 to answer the

research questions posed in section 1.3.

5.1 Integration
RQ1. Can instruction of programming strategies be

explicitly incorporated into instruction in an actual

introductory programming course?

While it did take some time and effort to transform a

traditional curriculum, adding explicit strategy content, this

was shown to be possible. The amount of strategy content is

not necessarily fixed and needs to be further refined. Sharing

these strategies with other instructors will allow this

development. It is useful to reiterate that strategies can be used

with most imperative and object-oriented languages so they

would suit the majority of introductory programming courses,

requiring little change for different languages.

RQ2. Can programming strategy skill be measured as

part of the assessment in an actual introductory

programming course?

It is possible to measure programming strategy ability in

novices with tests that address both comprehension and

generation. A number of different forms of assessment have

been demonstrated for programming assignments and

examinations, providing additional instruments, beyond

Goal/Plan Analysis for gauging strategy skill. Most assessment

methods used in the new curriculum resemble traditional

curriculum assessment items, but with careful problem design

and objective criteria for evaluation, assessment items can be

used to focus testing of knowledge and strategies

independently.

5.2 Impact
RQ3. What is the impact on novice programmers of

incorporating programming strategy explicitly into

instruction and assessment?

The results show students‟ use of strategies under a curriculum

where strategies are covered explicitly is better compared to

those results achieved under an implicit instruction curriculum.

There is a strong improvement in overall completeness of

solutions to the averaging problem tested between the initial

study (de Raadt, Toleman, & Watson, 2004) and an

examination under the new curriculum. There is a specific

improvement in the use of the most poorly applied strategy,

the Guarded Division plan, although its application is still

relatively low.

However, the results shown here are clearly retrospective and

do not definitively prove the benefits of explicit strategy

instruction. The results are consistent and the sample sizes

62%

64%

45%

43%

71%

10%

88%

88%

67%

78%

62%

67%

82%

38%

82%

91%

Initialise Sum

Initialise Counter

Sentinel
Controlled Sum

Loop Plan

Sentinel
Controlled Count

Loop Plan

Merged with
PSCIL plan

Guard Against
Div. By Zero

Average Plan

Output Plan

Implicit-only (2003)

Explicit (2007)

Figure 14. Comparison of plan use in the averaging problem

between implicit-only and explicit strategy instruction

2%

20%

31%

49%

All Plans

All Except Guarded
Div

Implicit-only (2003)

Explicit (2007)

Figure 15. Comparison of complete and near-complete

correctness in averaging problem before and

after explicit strategy instruction

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

53

provide confidence in the result. However, with two disparate

cohorts separated by four years, student capability and

individual differences make it difficult to definitively claim

that improvement in this very specific task is attributable to the

change of teaching method. There is still a need for a more

direct comparison to isolate the impact of such instruction.

6. Conclusions and Future Work
This study has shown that it is possible to instruct and assess

programming strategies. Teaching programming strategies in

this way creates a vocabulary that can be used in teaching and

assessment, and reused and reinforced after they are presented.

This study has also shown that strategies can be a valid part of

assessment and can therefore be a valuable part of an

introductory programming curriculum that aims to train novice

programmers to apply programming strategies. The methods

of strategy skill assessment used can be applied to both

comprehension and generation exercises and conducted

throughout a course. Strategy-related questions in

examinations can elicit results consistent with questions that

assess programming knowledge skill. Strategy skill testing can

also be achieved in regular assignments. With a more precise

vocabulary for defining a complete solution to a problem,

instructors can avoid vague terms such as „elegance‟ and

‟connoisseurship‟ when assessing the work of a novice;

instead, instructors can point out what strategies are absent or

misapplied in novices‟ solutions.

Students seem to learn and apply programming strategies more

consistently when they are presented in an explicit manner

than when they are learned implicitly. However, further

experimentation is required to isolate the effects of this

approach on the development of novices.

With a well defined distinction between programming

knowledge and strategies in an introductory course, there is

potential to investigate programming strategies as possible

threshold concepts (Boustedt et al., 2007; Entwistle, 2007).

7. References
Biederman, I., & Shiffrar, M. M. (1987): Sexing Day-Old

Chicks: A Case Study and Expert Systems Analysis of a

Difficult Perceptual-Learning Task. Journal of

Experimental Psychology: Learning, Memory and

Cognition, 13(4):640 - 645.

Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E.,

Ratcliffe, M., Sanders, K., & Zander, C. (2007):

Threshold concepts in computer science: do they exist and

are they useful? Proceedings of the 38th SIGCSE

technical symposium on Computer science education,

Covington, Kentucky, USA 504 - 508, ACM Press.

Brooks, R. E. (1983): Towards a theory of the comprehension

of computer programs. International Journal of Man–

Machine Studies, 18:543 – 554.

Davies, S. P. (1993): Models and theories of programming

strategy. International Journal of Man-Machine Studies,

39(2):237 - 267.

de Raadt, M. (2008) Strategies Reference,

http://www.sci.usq.edu.au/staff/deraadt/research/dissertati

on/Strategies%20Reference.pdf. Accessed November 24

2008.

de Raadt, M., Toleman, M., & Watson, R. (2004): Training

strategic problem solvers. ACM SIGCSE Bulletin,

36(2):48 - 51.

de Raadt, M., Toleman, M., & Watson, R. (2006): Chick

Sexing and Novice Programmers: Explicit Instruction of

Problem Solving Strategies. Australian Computer Science

Communications, 28(5):55 - 62.

de Raadt, M., Toleman, M., & Watson, R. (2007):

Incorporating Programming Strategies Explicitly into

Curricula. Proceedings of the Seventh Baltic Sea

Conference on Computing Education Research (Koli

Calling 2007), Koli, Finland 53 - 64.

Entwistle, N. (2007): Conceptions of Learning and the

Experience of Understanding: Thresholds, Contextual

Influences, and Knowledge Objects. In S. Vosniadou, A.

Baltas & X. Vamvakoussi (Eds.), Re-Framing the

Conceptual Change Approach in Learning and

instruction (pp. 123 - 143): Elsevier, in association with

the European Association for Learning and Instruction.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J.,

Lindholm, M., McCartney, R., Moström, J. E., Sanders,

K., Seppälä, O., Simon, B., & Thomas, L. (2004): A

multi-national study of reading and tracing skills in

novice programmers. ACM SIGCSE Bulletin, 36(4):119 -

150.

McCracken, M., Wilusz, T., Almstrum, V., Diaz, D., Guzdial,

M., Hagan, D., Kolikant, Y. B.-D., Laxer, C., Thomas, L.,

& Utting, I. (2001): A multi-national, multi-institutional

study of assessment of programming skills of first-year CS

students. ACM SIGCSE Bulletin, 33(4):125 - 180.

Muller, O., Haberman, B., & Ginat, D. (2007): Pattern-

Oriented Instruction and its Influence on Problem

Decomposition and Solution Construction. Proceedings

of the 12th Annual Conference on Innovation and

Technology in Computer Science Education (ITiCSE

2007), Dundee, Scotland.

Porter, R., & Calder, P. (2003): A Pattern-Based Problem-

Solving Process for Novice Programmers. Proceedings of

the Fifth Australasian Computing Education Conference

(ACE2003), Adelaide, Australia 20:231 - 238,

Conferences in Research and Practice in Information

Technology.

Reber, A. S. (1993): Implicit Learning and Tacit Knowledge.

New York, USA: Oxford University Press.

Rist, R. S. (1991): Knowledge Creation and Retrieval in

Program Design: A Comparison of Novice and

Intermediate Student Programmers. Human-Computer

Interaction, 6:1 - 46.

Robins, A., Rountree, J., & Rountree, N. (2003): Learning and

Teaching Programming: A Review and Discussion.

Computer Science Education, 13(2):137 - 173.

Soloway, E. (1985): From problems to programs via plans:

The content and structure of knowledge for introductory

LISP programming. Journal of Educational Computing

Research, 1(2):157-172.

Soloway, E. (1986): Learning to program = learning to

construct mechanisms and explanations. Communications

of the ACM, 29(9):850 - 858.

Wallingford, E. (1996): Toward a first course based on object-

oriented patterns. Proceedings of the twenty-seventh

SIGCSE technical symposium on Computer science

education, Philadelphia, PA USA 27 - 31, ACM Press,

New York, NY, USA.

Wallingford, E. (2007) The Elementary Patterns Home Page,

http://cns2.uni.edu/~wallingf/patterns/elementary/.

Accessed 19th November 2007.

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robins, P.,

Kumar, P. K. A., & Prasad, C. (2006): An Australasian

Study of Reading and Comprehension Skills in Novice

Programmers, using the Bloom and SOLO Taxonomies.

Proceedings of the Eighth Australasian Computing

Education Conference (ACE2006), Hobart, Australia

52:243 - 252.

CRPIT Volume 95 - Computing Education 2009

54

Quality of Student Contributed Questions Using PeerWise

Paul Denny
Computer Science

University of Auckland
Private Bag 92019, Auckland,

New Zealand
paul@cs.auckland.ac.nz

Andrew Luxton-Reilly
Computer Science

University of Auckland
Private Bag 92019, Auckland,

New Zealand
andrew@cs.auckland.ac.nz

Beth Simon
Computer Science and Engineering
University of California, San Diego

La Jolla, CA
USA

bsimon@cs.ucsd.edu

Abstract
PeerWise is an online tool that involves students in the
process of creating, sharing, answering and discussing
multiple choice questions. Previous work has shown that
students voluntarily use the large repository of questions
developed by their peers as a source of revision for formal
examinations – and activity level correlates with
improved exam performance.
In this paper, we investigate the quality of the questions
created by students in a large introductory programming
course. The ability of students to assess question quality
is also examined. We find that students do, very
commonly, ask clear questions that are free from error
and give the correct answers. Of the few questions we
examined that contained errors, in all cases those errors
were detected, and corrected by other students. We also
report that students are effective judges of question
quality, and are willing to use the judgements of their
peers to decide which questions to answer. We include
several case studies of questions that are representative of
the kinds of questions in the repository and provide
insight for instructors considering use of PeerWise in their
classrooms.

Keywords: PeerWise, MCQ, contributing student,
question test bank, peer assessment, self assessment.

1 Introduction
PeerWise is an online tool that enables students to create
multiple choice questions with appropriate distracters and
an accompanying explanation [1]. When these questions
are submitted, they become part of a pool of questions
that are shared by the entire learning community. Other
students in the same course can use the questions for self-
assessment, learn from the explanations, evaluate the
quality of the questions they answer (using a 6 point, 0-5
scale), and leave comments on questions.

Copyright © 2009, Australian Computer Society, Inc. This
paper appeared at the Eleventh Australasian Computing
Education Conference (ACE2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in
Information Technology, Vol. 95. Margaret Hamilton and Tony
Clear, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

Earlier studies of PeerWise show that students answer
many more questions than they are required to, and
voluntarily use the PeerWise system during the
examination study period as a revision resource [2].
Additionally, students who engaged more actively with
PeerWise performed better than their less active peers on
a final exam [3].

Since students use and seem to benefit from the
content generated by other students, we wanted to
investigate the quality of the questions that were being
produced. Specifically, we wanted to know “Were the
questions created by students of high quality?”

The most important definition of quality for us, as
instructors, is whether the questions are an effective and
efficient tool for helping students learn what they need to
know for a course – and specifically for a portion of a
written exam featuring multiple choice questions. The 0-
5 rating scale in PeerWise was designed to allow students
to express something similar. Assuming they give higher
ratings to questions they find most valuable for revision
and/or learning, these ratings will be a somewhat
subjective measure of overall quality.

In a review of the literature on peer review, Topping
[6] reported that almost three-quarters of the studies that
compared grades assigned by students with the grades
assigned by teachers showed a high degree of consistency
between student and teacher assigned grades.
Sitthiworachart and Joy [5] reported that grades assigned
by Computer Science students engaged in peer review
activities had a significant and substantial correlation
with the grades assigned by tutors. Although it is clear
that students are capable of evaluating the quality of work
produced by their peers, we wanted to investigate
whether the ratings assigned by students using PeerWise
were consistent with the quality assessment of staff. To
compare our evaluation of quality with the overall ratings
assigned by students using the rating system supported by
PeerWise, we rated a sample of questions on the same 0-5
scale.

We found that our subjective ratings did not answer
questions we had about more objective characteristics of
the student created questions. To be certain that students
were not wasting their time or being frustrated by “poor”
questions, we wanted to determine whether the great
majority of questions were “good” in that they were
clearly worded, were free of errors, had a reasonable set
of distracters, and provided good explanations. To
investigate this, we used a simple rubric for classifying
questions according to these characteristics.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

55

Finally, we were interested in studying the quality of
the questions as it relates to their representativeness for
multiple choice style examinations. Here we categorise
the structure of the contributed questions in five ways: (a)
is there code in the stem, (b) is there code in the answer
choices, (c) is there code in both the stem and answer
choices, (d) did the question require computing or
matching output, and (e) did the question require
identification of an error. In previous work, the Leeds
group [4] reported on a large study of questions involving
code in the stem only (fixed code problems) or code both
in the stem and the answer choices (skeleton code
questions). In that study, students scored lower on
skeleton code questions than fixed code questions. We
were interested to see if students generated questions with
similar characteristics. Specifically, we were interested if
student generated questions would be skewed towards the
types of fixed code questions students answered more
correctly in the Leeds study.

In this paper we seek to answer these questions.
Essentially we want to know how capable students are of
creating questions to be used as a learning resource, what
the characteristics of those questions are, and how
capable students are of recognizing high quality
questions.

2 Methodology
This study is based on a repository of 617 questions

collected from a standard Java based CS1 course taught
in the first semester of 2008 at the University of
Auckland. There were 407 students who attempted the
final exam for this course, and 366 of these students had
contributed at least one question to PeerWise during the
semester. These questions were answered a total of
11,189 times.

Each time a question is answered, the student is given
an opportunity to rate the question on a 6 point scale,
from 0 to 5. This allows the student to apply their own
judgements and make a subjective measure of the overall
quality of the question. Figure 1 plots the number of
responses each question received against the average
rating assigned to that question by the students who
answered it.

2.1 Overall quality ratings
Our methodology was driven by an observation we

made from Figure 1. It is clear from the figure that
poorly rated questions do not receive a large number of
responses. Given a large number of questions from
which to select, students prefer to choose those that are
more highly rated. This is supported in PeerWise as
students are able to list all of their unanswered questions
in decreasing order of rating. This provides evidence that
students do value the ratings that are assigned to
questions by their peers, as they use those ratings to help
determine how to spend their time revising.

This observation motivated the first aspect of our
study. Given that students clearly value the ratings of
their peers, we wanted to measure the accuracy of these
ratings. We examined a sample of 61 questions,
approximately 10% of the repository, by selecting every
10th question in chronological order. For each question in
the sample, each author of this paper assigned a

subjective quality score to the question using the same 6
point scale (0 to 5) that the students used. In this paper,
we will refer to these ratings as "instructor ratings". Our
only agreement was that we would define

• 0 “complete nonsense”
• 1 “pretty poor”
• 2 “some merit, but not that useful”
• 3 “average question, learned something”
• 4 “good question, not quite exam quality”
• 5 “good enough for an exam (or almost)”

We expected differences in our application of this
scheme, likely based on content areas stressed in the
questions. We report on each instructor’s ratings in
comparison with each other and with student ratings.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0 20 40 60 80 100 120

Number of responses to question

St
ud

en
t r

at
in

g
of

 q
ue

st
io

n

Figure 1: The number of ratings and the number of

responses for each of the 617 student questions

2.2 Objective quality ratings
Our overall quality ratings measure the quality of a

question as a whole. There are also certain individual
characteristics of the questions that we would like to
evaluate. The goal here is to improve our understanding
of these different elements in order to identify common
problems. Ultimately, such an understanding may allow
us to help guide students in designing better questions,
which would in turn lead to questions receiving higher
overall quality ratings in the future.

The rubric we defined and applied to the sample of 61
questions (defined in Section 2.1) is described in Table 1.

One of the elements of this rubric assesses the
"correctness" of a question. The correctness of student
created questions is likely to be of great importance to
instructors. A repository of questions in which a high
proportion are not correct would be of little value and it
could be argued may even be misleading to students.

2.3 Quality in relation to exams
The nature of PeerWise specifically targets students in

preparing and revising for formal examinations. We
therefore wanted to evaluate the repository of student
produced questions in relation to various “real” exam
questions. Previously, the Leeds study [4] had identified
two types of problems typically found in CS1
examinations: fixed code problems (which had code only
in the question stem) and skeleton code questions (which
had code in both the stem and the answer choices).

CRPIT Volume 95 - Computing Education 2009

56

Table 1. Objective Quality Rubric
Clarity of question

0: No, had something that made it hard to understand
1: Yes, could understand what was being asked

Error free question

0: No, it contained minor errors, including grammatical errors in the stem or minor syntax
 errors in code presented in the question
1: Yes

Distracters feasible 0: Less than 2 distracters feasible (of correct type, and could be justified)
1: At least 2 (but not all) distracters feasible
2: All distracters feasible (note: not necessarily “a perfect set” of distracters, such as one

 might devise for an exam)
Explanation

0: Poor or missing
1: Good, explained why the correct answer was correct
2: Explained not only the correct answer, but included some discussion of common

 mistakes/misconceptions or explicit analysis of distracters
Correctness 0: Answer indicated by the author of the question was not correct

1: Answer indicated by the author of the question was correct

Analysis of the student produced questions led us to

define a more detailed set of structures common to
questions including: code appearing in the question stem,
code appearing in the alternatives, code appearing in both
the stem and alternatives, questions requiring computing
or matching output of code, and questions addressing
errors, such as syntax errors. We coded all n = 617
questions from PeerWise, coded the 12 Leeds study
questions, and coded all multiple choice questions from
all 10 formal exams and tests since 2004 from the
University of Auckland’s CS1 course.

3 Results
Here we present the results of the analyses described

in the corresponding sections of the methodology.

3.1 Do students’ ideas of quality match those of
staff?

As evidenced in Section 2.1, students do value the
quality ratings assigned to questions by their peers –
those questions with the highest response rates were rated
highly by students. Given that this is the case, the
accuracy of these ratings is of some importance. To
measure the “accuracy” of the student ratings, we
compared them with the staff ratings of the same
questions. For a meaningful comparison, we considered
only those questions (42 of the 61 in our sample) that had
at least 5 student ratings.

Two of the authors teach this course at the institution
on a regular basis (and one taught the term these student
questions were gathered). The other author regularly
teaches a quite similar course, but in another educational
and cultural context.

Table 2 shows the averages and standard deviations
for the three authors’ codings. Table 3 reports the
correlation between each author’s coding and the student
ranks and also the pairwise correlation between the three
author’s codes.

Table 2. Differences in Overall Staff Quality
Assessment

Staff Coder Average Rating Standard
Deviation

Coder A 2.8 1.2
Coder B 2.1 0.9
Coder C 3.4 1.2

Table 3. Correlation between Staff Coders and
Students

Students 0.58 0.22 0.52 1
C 0.52 0.47 1
B 0.42 1
A 1
 A B C Students

Figure 2 shows a plot of the average instructor rating

and the average student rating for each of these 42
questions using the same 0-5 scale. The correlation
between the average instructor and student ratings is 0.54,
and a positive trend is visible in the chart.

It appears as though students not only value the ratings
that have been assigned by their peers, but these ratings
are also reasonably effective at assessing the overall
quality of a question. When assigning our overall quality
ratings, we took into account the clarity and correctness
of the question, the plausibility of the distracters and the
quality of the explanation. It is likely that students have
taken some of these elements into account as well, and it
would be interesting to know which of them the students
regard as most important.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

57

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Student rating

In
st

ru
ct

or
 ra

tin
g

Figure 2: Comparison of the instructor and student

ratings, on a 0-5 scale, for 42 questions from our
examined sample with at least 5 student ratings

3.2 Objective Quality
Table 4 summarises our classifications of the 61

questions in our sample according to the objective quality
rubric presented in Table 1.

We can see that almost all questions were clear and
that 80% were error free in the question wording and
code (not counting the cases where questions were
seeking to have students find errors). Somewhat
surprisingly 87% of questions gave distracters that were
all feasible. In our definition of feasible, we applied a
metric which meant that the answer could be possible
from the code – even if it wasn’t the “perfect” or even
thoughtfully chosen distracter.

Table 4. Object quality classifications

Category Option Percentage
0: No 6.6% Clarity of

question 1: Yes 93.4%
0: No 19.7% Error free

question 1: Yes 80.3%
0: < 2 3.3%

1: >= 2 9.8% Distracters
feasible 2: All 86.9%

0: Poor 42.6%
1: Good 32.8% Explanation

2: Good+ 24.6%
0: No 11.5% Correctness 1: Yes 88.5%

Explanations were an issue of great interest to the

authors – as we hoped they were for the students. We
would like students to be able to learn directly from the
explanation provided in PeerWise – and certainly we
would like explanations not to be incorrect – which
would certainly lead to frustration among the students.
Unfortunately we ranked 43% of the explanations as poor
– they either did not explain the answer clearly or were
missing. 33% of the explanations were good in that they
explained clearly why the correct answer was correct.

One of the benefits of multiple choice style questions
is that students can be directly confronted with
misconceptions or alternatives that may be as or more

instructive than a simple comparison of the correct
answer. We were pleased that 25% of the questions not
only featured explanations of the correct answer but
specifically discussed either the reasons the various
distracters were wrong or in some way addressed a
common misconception that may have affected students
in answering the question.

3.3 Quality in Relation to Exams
Another objective measure of quality is to describe the

structure of the question. Particularly, this analysis draws
on the work of the Leeds Working Group which gave a
common set of CS1 exam questions to students around
the world (n = 556). Those questions fell into two basic
categories. First are questions with code in the question
stem – called “fixed code” questions in the Leeds study.
These problems required reading and tracing of the code
– in the Leeds study the answers were either of int type or
array type and asked “what’s the value of variable <x>
after the code is executed.” The Leeds study found that
performance on fixed code problems was generally
similar and well differentiated student performance.

The second type of question in the Leeds study was a
skeleton-code type where code in the multiple choice
answers was required to fill in some code in the stem to
produce a program meeting certain output requirements.
In the Leeds study, fixed code questions were notably
easier for students (answered correctly by 68% of
students) than skeleton code questions which were
correctly answered by 53% of students

We wondered if students’ greater ease at answering
fixed code questions might translate into a greater
propensity to write fixed code questions. The student
created questions considered in this study show a greater
variety of types than those in the Leeds study, so a strict
analysis of fixed code and skeleton code questions would
be inappropriate. We broke down question style into 5
more basic components (shown in Table 5), which can be
combined to describe the Leeds question styles. We then
applied these simple component analyses to both the
PeerWise questions and the Leeds questions. It should be
noted that none of the “fixed code” Leeds questions
actually asked students to identify the output of the code
after execution – instead they asked for the value that
would be in a particular variable. The 33% (4 questions)
of Leeds questions that involved output were in skeleton
code questions where skeleton code was filled in to match
a desired, described output.

Among student-produced questions, we see that the
majority fall in the category of having only code in the
stem. Almost all of these are questions that follow the
form “what is the output of this code”. Approximately
20% of the questions had code in the answer choices, and
only 7% had code in both the questions stem and answer
choices. Additionally, we note that most of the questions
which had code in them involved finding or matching
output in some way. In problems where there was code
in the answer choices, a common question format might
be to ask which of the following pieces of code outputs a
certain value. In questions with code in both the stem and
the answer choices, a common thing to ask is which of
the following "for" loops will produce the same output as
this "while" loop.

CRPIT Volume 95 - Computing Education 2009

58

Table 5. Objective Question Quality by Style

Question Style Leeds
Study

PeerWise AU
Exam

Code in question stem 100% 82% 82%
Code in answer choices 42% 20% 33%
Code in both stem and
choices

42% 7% 17%

Find or match output 33% 78% 55%
Identify error 0% 13% 13%

In addition, we can also compare the student created

questions to the structure of the questions traditionally
given on exams and tests of the CS1 course in our study.
In total, 191 questions from ten exams and tests spanning
the last four years were analysed.

The proportion of questions with code in the stem and
questions which require the identification of an error
appear in identical proportions in the 617 student
questions and 191 formal test and exam questions. The
students wrote a greater proportion of questions that
involved finding or matching output, which is likely to be
explained by the fact that this style of question is easier to
write.

4 Discussion
The correlation between student judgement of quality and
instructor judgement of quality (shown in Table 3) gives
us confidence that students can distinguish between good
questions and poor questions.

4.1 Question Case Studies
In this section, we present four case studies of

questions that are representative of several of the kinds of
questions in the repository. These case studies are drawn
from the entire repository.

Good questions

To highlight the quality of the student generated
content, we present here one example of a good question
which received an excellent rating from students. There
were 75 questions in the repository that had been rated
more than 30 times, and of these, six questions had an
average rating greater than 3.9. These six questions were
contributed by five different students. The question we
present here was answered more times than the others
(108 responses), and was contributed by the student with
two of the top six questions. The distracters were good,
receiving a fairly even spread of responses, and the
explanation was very detailed and clear.

Which of the following loops could you use to cycle
through all elements of the following array without
going out of bounds and causing the program to
crash?
 int[] array = new int[15];
Assume that in all cases, array[i] will be used without
any other math operating inside the square brackets
(dereferencing operator).

Each of the distracters for this question are listed
below. The parentheses denote how many students
selected each distracter.

A (selected by 5 students):
 int i = 0;
 while (i <= array.length) {
 i++;
 // code
 }

B (selected by 22 students):
 for (int i = 0; i <= array.length; i ++) {
 // code
 }

C (the correct alternative, selected by 46 students):
 for (int i = array.length - 1; i >= 0; i--) {
 // code
 }

D (selected by 17 students):
 for (int i = array.length - 1; i > 0; i--) {
 // code
 }

E (selected by 18 students):
 int i = 1;
 while (i < array.length) {
 i++
 // code
 }

The explanation provided for this question not only

explained the correct answer, but considered each
distracter and explained why it was incorrect. The
complete explanation for this question is given below:

When dealing with arrays, there are a few things to

remember. When created, the value used inside the
square brackets indicates the length of the array, or how
many elements it can contain. The length counts from a
starting point of 1. The INDEX however, begins at 0.
Meaning that in this case, where we created our integer
array with a length of 15, the valid index values are 0-14.

 (C) is the correct answer because:
i = array.length - 1, evalutes to 14. The last index of

the array. The conditional statement will go down to
AND include 0, the first index of the array, but will not
pass this point and go out of bounds. i-- means subtract 1
from i every time it goes around, so every number from
14 to 0 will be a value of i during the loops lifespan.

Why are the other's incorrect?

 (A) This loop would crash at the end. i = 0, this is

fine, it is the first value of the index and is correct. BUT
The conditional inside the while loop is: i <=
array.length, which means it can be less than OR equal to
array.length, which is 15. The last index is 14, thus when
it attempted to find index 15 of the array, it would crash
with an out of bounds error.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

59

 (B) This suffers the exact same problem as A, but has

been rendered in 'for' loop format.

 (D) The loop shown for D would not crash, but nor

would it completely cycle through all values of this array.
int i = array.length - 1 as discussed above will result

in 14 which is correct for the last index of our array.
However, the conditional: i > 0 will not ever allow this
loop to check index 0. It will stop after cycling through 1.

 (E) This loop again will not crash, but will notcycle

completely through all values of this array. int i = 1
means that 0 will not be evaluated. the conditional inside
the while loop will stop the cycle correctly at 14 to
prevent the crash. i++ means that it will increment the
index until the conditional stops this loop.

Poor (but useful) questions
As illustrated again later in Section 4.2, even questions

containing errors can end up being useful learning
resources thanks to the comments written by other
students. We have selected an example of a poor
question, but one which has actually benefitted not only
other students but the author themselves. Generally,
questions with poor ratings do not get a large number of
responses. The primary reason for this is that students are
able to sort the unanswered questions by rating, and so
tend to answer questions with good ratings while
avoiding questions with poor ratings. Figure 1, which
plots the number of responses a question has received
against the rating it has been given by students, shows
this trend clearly.

The question below was answered by 14 students and
rated by 10 of them, and was given an average rating of
0.4. This was the very worst rated question of all
questions with at least 10 ratings.

What is the appropriate boolean variables need to be
stored in A and B if the following returns false:
!A || B && !B || A

Although there are some grammatical errors in the

question stem, the concept for the question is fine.
However, the author had misunderstood the order of
precedence of the boolean operators and the suggested
alternative was not correct. This was pointed out in
several of the comments to the question, two examples of
which are shown below:

"Check this page. && is higher than ||.
http://java.sun.com/docs/books/tutorial/java/nutsandb
olts/operators.html
so the equation becomes A + !A, which always
evaluates to true. So it doesnt matter what values you
put into A and B, the expression is never going to be
false."

"As explained by the person above me who linked to
the sun page, as that expression stands, it cannot be
false. In bracket form it would look like: (!A || B) &&

(A || !B). Of the answers you gave, none of the above
is the correct one. :P "

Despite the error in the question, there is evidence that

the associated comments and link to Sun's website has
transformed it into a useful learning resource. Not only
has this question helped other students, but it even
corrected the misunderstanding that existed with the
author of the question. One student, who answered the
question incorrectly, wrote:

Wow that actually helped me alot lol. Totally forgot
about the order of && and ||

The question author responded to one of the comments

stating:

Sorry everyone..thanx for the reply..i've posted the new
version of this question. Feel free to check it out n
comment on it (i've 'repaired' my understanding, i
hope i got it right this time :D)

Complex questions
From an instructor perspective, good questions are

often those which isolate a concept to identify where
misconceptions are occurring. Such questions inform the
instructor about student performance and thus are useful
for summative assessment purposes. From a student
perspective, a complex question that involves many
concepts can be useful for determining their
understanding of a diverse range of topics. This can be
valuable for self-assessment, as the student will know
where they had problems, and the explanation will help
them to understand where they went wrong. We present
below one example of such a question:

What is the output of the following code?

public class Peerwise {

 public void start() {
 int value = 2;
 int x, y, z;
 String output = "";
 x = 3;
 y = x*2;
 z = value++;
 if (methodOne(x, y)) {
 output += "1";
 z++;
 }
 if (methodTwo(x, y, z)) {
 output += "2";
 } else {
 output += "3";
 }
 while (output.length() > 0) {
 System.out.print(output);
 output = output.substring(1);
 }
 }

CRPIT Volume 95 - Computing Education 2009

60

 public boolean methodOne(int y, int x) {
 return y - 3 == x;
 }

 public boolean methodTwo(int x, int y, int z) {
 x++;
 y += y;
 double d = ((y / x) + 1.0) % z;
 return d == 2.0 || d == 0.0;
 }
}

The distracters for this question were effective with

four out of five of them receiving at least one response.
The explanation was also good, and stepped through most
of the lines of code. For summative assessment purposes,
this question would be of little value to instructors as it
would be hard to determine the source of any
misunderstanding from an incorrect answer. To a
student, answering correctly provides positive feedback
about their understanding of a multitude of topics. With
the associated explanation, if a student answers
incorrectly, they should be able to identify their error.
There was one comment written about this question:

That was an awesomely awesome question

It is hard to tell whether this is sarcastic or an

exaggeration, but the comment was agreed with by
another student and the question received a very good
rating (3.75).

Good questions, improved by others
There are several examples in the repository of good

questions except for the fact that they lack quality
explanations. We note that even questions submitted
without a good associated explanation can still be a
valuable learning resource thanks to the comments left by
other students. The last of our case studies highlights one
such example. Consider the following question:

What is the output?

Point[] pts = new Point[3];
pts[0] = new Point(100, 300);
pts[1] = new Point(200, 200);
pts[2] = new Point(300, 100);

pts[1] = pts[2];
pts[2] = pts[0];
pts[0] = pts[1];

System.out.println(pts[0].x + " , " + pts[0].y);
System.out.println(pts[1].x + " , " + pts[1].y);
System.out.println(pts[2].x + " , " + pts[2].y);

This question was well answered, with 74% of 27

students answering correctly. The explanation given by
the author of this question was:

 pts[1] = pts[2]; pts[1] --> 300 , 100.
 pts[2] = pts[0]; pts[2] --> 100 , 300.
 pts[0] = pts[1]; pts[0] --> 300 , 100.

This does attempt to show the references from the

array elements to the Point objects, but it does not discuss
the details of reference variable assignment. Another
student submitted the following comment as an attempt to
clarify this:

The explanation is lacking. It should be made quite

explicit that when you make an assignment of one object
equalling another object, that the pointer value is copied
exactly at that moment in time. It does NOT create a link
to whatever the object on the right side of the expression
happens to equal after the expression took place. i.e, If
we say that:

Pts[0] points to memory address starting at AA0000
Pts[1] points to memory address starting at BBAA00
Pts[2] points to memory address starting at CCBBAA
Then when we perform the expression: Pts[0] =
Pts[2]. we are saying copy the memory address in
Pts[2] RIGHT NOW. So Pts[0] is now equal to
CCBBAA. If we then say Pts[2] = Pts[1], then Pts[2]
changes memory address to: BBAA00.

The author of the question posted a reply to this

comment, thanking the contributor of the explanation for
the improvement:

Thanks for the detailed explaination! Hopefully this

helps the other members that are still confused after my
pretty vague explaination (sorry! XD)

4.2 Error discovery and correction
As mentioned in Section 4.1, the correctness of the

student generated questions is of great importance to
instructors. A repository of questions in which a high
proportion are not correct would be of little value and it
could be argued may even be misleading to students. We
randomly selected 61 questions, approximately 10% of
the repository, and examined each for correctness. We
found 89% (54 out of 61) of these questions to be without
error and indicating the correct answer. While this is a
positive result, we felt it was important to investigate in
more detail the seven questions that were found to be
incorrect. In particular, we were interested in the ability
of the students using PeerWise to detect, and correct,
these errors.

We discovered that in all seven cases the errors were
discovered and commented on by students. In addition,
where a correct alternative was available, in each case it
was the most popular one selected by students.

While our sample of 61 questions represents only 10%
of the repository, the results we have seen give us
confidence in the students’ ability to detect and discuss
errors in the small percentage of questions that contain
them.

The average rating given to these seven questions by
the students was 1.7, considerably lower than the average
rating in the repository. The low ratings assigned to these
questions reduces their prominence in the repository, as

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

61

we have previously noted that questions with low ratings
are answered less often.

We include here one of the seven questions that
contained an error and the comment from a student that
identified the error and offered a correct explanation.

This question was on method tracing, and asked for
the output of the following code:

public void start () {
 int number = 3;
 calculation(number);
 System.out.println ("1: " + number);
}

private void calculation (int number) {
 number = number + 5;
 System.out.println ("2: " + number);
}

A set of plausible distracters was offered:

A B C D
1: 8
2: 8

2: 8
1: 8

1: 3
2: 8

2: 8
1: 3

The question author’s error was in selecting C rather

than D as the answer. The most popular alternative was
in fact the correct response D, which was chosen by 42%
of the 12 who answered this question. There was also an
excellent comment, which was agreed with by another
student, pointing out the error and clarifying with an
example:

Sorry, but you are incorrect in the order. While your
numbers are correct, 2 will print before 1. The
calculate method will run in it's entirety (because
there are no early return points) BEFORE the rest of
the calling point's code is execute. If you were to write
that block of code inline, it would look like this:

public void start () {
 int number = 3;
 // replacing the calculate method call:
 System.out.println ("2: " + (number + 5));
 System.out.println ("1: " + number);
}

4.3 Question styles
The structure of the questions written by students

mirrored the questions used by academic staff in their
local context (i.e. in the tests and exams of the
institution). Furthermore, the subjective quality ratings
assigned by the students correlate well with the overall
quality rating of the instructors involved in teaching the
course.

However, other teaching contexts are different. The
Leeds study used questions with a different characteristic
structure. The correlation between the staff rating of
quality and student rating of quality was lowest when the

staff member was not involved in teaching the course. It
appears that students adapt to the context in which the
course is taught and create questions that have similar
structure and focus on similar topics to questions that
they have seen during class and in tests and exams.

We expect that if PeerWise was used in a different
teaching context, then students in that environment would
mirror the structure and focus emphasised by the teaching
staff in that local context. To verify this prediction, we
could replicate this study at a different institution with
different teaching staff. If we don’t see similar trends,
then it might show that students are having difficultly
understanding what the instructor wants them to learn, or
alternatively, it might be related to the construction of
MCQs themselves (i.e. it might be easier to create MCQs
about particular topics, and it might be easier to create
questions that have a particular structure such as asking
“what is the output of the following code?”).

Further investigation of the question style and quality
in different teaching contexts is required to better
understand how students decide to structure their
questions.

5 Conclusions
Students are capable of writing questions that faculty
judge to be of high quality. The best questions have well
written question stems, good distracters and detailed
explanations that discuss possible misconceptions.

Although the questions created by students do vary
widely in quality, students are quite capable of making
accurate judgements of quality and rate the questions
appropriately. Student judgements of quality correlate
well with faculty when overall subjective judgement is
required. Since students use the rating to determine
which questions they answer, we are confident that
students view the high quality questions more frequently
than the low quality questions.

Inspecting a sample of the questions more closely
revealed that most of the questions were clear and
unambiguous, free from grammatical or other minor
errors, had a high number of feasible distracters and had a
good explanation.

The structure of the questions written by students is
generally similar to that of the questions written by
faculty teaching the course (i.e. for examination purposes
in mid-semester tests and final exams), suggesting that
students are sensitive to the local teaching context and
will create questions appropriate for the style of the
questions presented in the course.

The majority of questions have correct solutions (i.e.
the answer suggested by the author is the correct answer),
and in the cases where the solutions are incorrect, other
students are able to identify the errors and offer a correct
solution or explanation. This suggests that most learning
experiences with PeerWise should be error free for
students.

6 Future work
We plan to further investigate the issue of question

quality by replicating the study at a different institution
where the instructor has a different teaching style and
focus.

CRPIT Volume 95 - Computing Education 2009

62

No instruction has been given to students with respect
to the creation of MCQs. It would be interesting to
investigate whether formal instruction about creating
questions, choosing appropriate distracters and the
importance of an explanation has an affect on the quality
and structure of the questions. Altering the assessment
criteria for the contributed questions to explicitly require
an explanation might reduce the number of questions that
lacked explanations entirely and may generally improve
the quality of the explanations produced.

7 References
[1] P. Denny, A. Luxton-Reilly, and J. Hamer. The

PeerWise system of student contributed assessment
questions. In Simon and M. Hamilton, editors, Tenth
Australasian Computing Education Conference (ACE
2008), volume 78 of CRPIT, pages 69-74,Wollongong,
NSW, Australia, 2008. ACS.

[2] P. Denny, A. Luxton-Reilly and J. Hamer. Student use
of the PeerWise system. In ITiCSE '08: Proceedings of
the 13th annual conference on Innovation and
technology in computer science education, pages 73-
77, Madrid, Spain, July 2008. ACM.

[3] P. Denny, J. Hamer, A. Luxton-Reilly, and H.
Purchase. Peerwise: students sharing their multiple
choice questions. In ICER'08: Proceedings of the 2008
international workshop on Computing education
research, pages 51-58, Sydney, Australia, 2008.

[4] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J.
Hamer, M. Lindholm, R. McCartney, J. E. Mostrom,
K. Sanders, O. Seppala, B. Simon and L. Thomas. A
multi-national study of reading and tracing skills in
novice programmers. SIGCSE Bulletin, Volume 36,
Issue 4 (December 2004), pp. 119 - 150. ACM.

[5] J. Sitthiworachart and M. Joy. Computer support of
effective peer assessment in an undergraduate
programming class. Journal of Computer Assisted
Learning (2008), 24, 217–231

[6] K. Topping. Peer assessment between students in
colleges and universities. Review of Education
Research (1998), 68 (3), 249-276

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

63

CRPIT Volume 95 - Computing Education 2009

64

Easing the Transition: A Collaborative Learning Approach

Katrina Falkner David S. Munro

School of Computer Science
University of Adelaide,

Adelaide, South Australia 5005,
Email: {katrina.falkner,david.munro}@adelaide.edu.au

Abstract

Engaging first year students is a difficult problem, as
students must develop independent study skills while
concurrently mastering their chosen topic. At the
same time, they find themselves in an alien environ-
ment, removed from their peer group and anonymised
by University structures. Retention is of particular
concern within ICT as across Australia, and globally,
we have seen a recent dramatic drop in number of stu-
dents applying for ICT degrees, and poor progression
and retention rates.

Collaborative learning is a strategy that involves
the students themselves in the ownership and direc-
tion of their learning; each student is responsible for
not only their own learning but of the learning of
the group. In this paper we describe our approach
to student engagement based on applying a range of
collaborative learning techniques within an introduc-
tory Computer Science course, addressing specifically
the task of collaborative problem solving. Results
from three years of adopting this change in teaching
methodology indicate increased student confidence,
participation and student ability.

Keywords: Computer Science Education, CS1, Tran-
sition, Collaborative Learning.

1 Introduction

Engaging first year students is a difficult and well-
recognised problem, as students must combine the
development of independent study skills with mas-
tery of their chosen topic. Although already a diffi-
cult prospect, this is further complicated by the tran-
sition to University education, requiring most stu-
dents to enter an alien education system, consisting
of large classes, a de-personalised administrative sys-
tem and separation from their peer group. Studies
indicate that students feel “part of an anonymous
mass” (White 2006) and indicate that one of the
most common reasons for leaving the University ed-
ucation system is a feeling of isolation and loneli-
ness (Burns 1991). Our classrooms are increasing
in diversity (Biggs & Tang 2007), further compli-
cating this issue by presenting us with an “unprece-
dentedly broad spectrum of student ability and back-
ground” (Ramsden 2003). In addition, students have
increased expectations on their ability to co-ordinate
study, part-time work and external activities (Krause
et al. 2005), requiring mature time management and

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the Eleventh Australasian Computing Educa-
tion Conference (ACE2009), Wellington, New Zealand. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 95, Margaret Hamilton and Tony Clear, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

study skills. Forming of bonds within the peer group
at the commencement of University education ad-
dresses a common cause of transition distress. 30% of
students who continue with their studies report that
the establishment of a peer group was the significant
contributing factor (Cameron 2007).

We have observed three interrelated issues that im-
pact upon a student’s initial success at University: en-
gagement, transition concerns and attendance. These
issues are strongly connected: students suffering from
transition are likely to miss classes and be distracted
in those that they do attend. Missing classes impacts
upon engagement directly, as students who fall behind
can easily become disillusioned about their ability to
succeed at University. Conversely, students who par-
ticipate and engage in the classroom are more likely
to form bonds with their peers, overcoming transi-
tion issues and encouraging them to continue with
their studies (McInnis et al. 2000). Increasing stu-
dent engagement and attendance has the benefit of
decreasing attrition, but has a perhaps more signif-
icant impact on student performance. Studies have
shown a strong correlation between attendance and
student performance, both within traditional didactic
lecture style courses, and courses based around active,
or collaborative learning principles (Urban-Lurain &
Weinshank 2000).

Engagement of first year students is of particular
concern within the ICT discipline - within Australia,
and globally, we have seen a recent dramatic drop
in applications for ICT degree program, accompa-
nied by poor progression and retention rates (Sheard
et al. 2008). The understanding of programming
poses many challenges for first year students, as a
large number enter ICT programs with little or no
prior experience. Novice computer science students
are required at an early stage to develop a diverse
range of skills: problem analysis, problem solving,
code development and testing, and then integrate
those skills within the software development process.
Studies show our students continue to struggle with
this task, even though it is common for Universities
to dedicate a disproportionate amount of resources
towards their learning (McCracken et al. 2001, Lis-
ter et al. 2004). Lack of performance in programming
has been seen to impact other facets of their study, in-
cluding their overall program progression, confidence
and study habits, all factors that affect engagement
and retention.

A further issue is the decreasing percentage of fe-
male students seeking to study ICT. Despite increas-
ing resources dedicated to this problem, numbers con-
tinue to decline, leading to low, and decreasing, num-
bers of women seeking employment in the ICT in-
dustry. During their studies, lack of confidence has
been identified as a significant challenge for female
students, leading to deferral to their male peers and
a reluctance to experiment (Trajovski 2006). Differ-

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

65

ences can also be seen in technical success - a recent
study reports that the highest failure rates for female
students within ICT are in technical courses (Lang
et al. 2007), although overall study completion times
are similar (Ilian & Kordaki 2006).

In this paper we describe the use of Collaborative
Learning principles (Smith & MacGregor 1992) in the
teaching of an introductory Computer Science course.
Collaborative learning defines a range of educational
approaches that involve group work, with students
being responsible for not only their own learning but
also that of the group. In these approaches, the em-
phasis is constructivist, and based on the student’s
experiences in application of course content rather
than in their observation of course content. Collabo-
rative learning is well established as having significant
social benefit beyond that of academic development,
with involvement in learning relationships with other
students and academics having a significant impact
upon student engagement and attrition (MacGregor
1991, McKinney & Denton 2006).

We explore collaborative learning techniques in the
following ways:

• Structured collaboration initiated within lecture
and tutorial classes based around the task of
problem solving in programming.

• Peer-based support structures designed to extend
collaborative learning approaches outside of the
classroom, and foster the formation of learning
communities.

Many students - and some academics - are believ-
ers in the idea of the super programmer: that exper-
tise at programming is an inherent skill that can not
be learnt. A lack of success in their early attempts can
thus be debilitating for first year ICT students. How-
ever, to the contrary, research indicates that expertise
corresponds to the repeated application of theory and
repeated practice, even among elite performers (Erics-
son et al. 1993). Further, cooperation with colleagues
- working as a group rather than alone - is evidenced
as key requirement for expertise in software develop-
ment (Sonnentag 1998). Working collaboratively is
an integral part of being an ICT professional.

We employ the action research methodology (Hop-
kins 1985, Carr & Kemmis 1986) in the construction
of this project: an iterative research process that in-
volves research with - rather than on - the partici-
pants. This paper describes our results over two it-
erations of the research process, encompassing three
years of experimentation with collaborative learning
techniques.

2 Collaborative Learning

Collaborative Learning encompasses a range of con-
structivist learning techniques where students work
in groups, sharing and constructing their knowledge
within a common aim. Collaborative learning is
known to be effective in academic development, as
students are more engaged with the subject matter,
but also supports community and social development.
It is seen as a particularly relevant technique in first
year education, in that it addresses transition con-
cerns by increasing deeper learning and a sense of
belonging (McKinney & Denton 2006).

Collaborative inquiry is supportive of learning for
all parties involved, not simply through the sharing of
knowledge but in the elaboration and discussion that
ensues. Glasser draws a distinction between learn-
ing by observing and learning by doing and being in-
volved:

”Students learn 10% of what they read,
20% of what they hear,
30% of what they see,
50% of what they see and hear,
70% of what is discussed with others,
80% of what they experience personally, and
95% of what they teach to someone else”

(Glasser 1990)

Examples of collaborative learning include coop-
erative learning (Slavin 1983, 1991), problem-based
learning (Barrows 1986), discussion groups (Chris-
tensen et al. 1991) and peer teaching (Jenkins &
Jenkins 1987). Cooperative learning is a heavily
structured form of collaborative learning, where stu-
dents participate in groups with a significant empha-
sis on interpersonal skills and assessment of manage-
ment roles. This approach adopts cooperative in-
centive structures, where the success for the individ-
ual depends on the success of the group as a whole.
Problem-based learning involves the immersion of
students in complex, real-world problems where they
must work together to both identify what they need
to learn in order to solve the problem, and undertake
this learning collaboratively. Again, this approach
emphasises teamwork and problem solving skills, and
may involve role play or simulations.

Discussion groups can be either formal or informal
and involve a discussion led by both the teacher and
the students around a specific topic. The aim here
is to open dialogue and explore an open-ended dis-
cussion, enabling each student to express their views
and for students to debate and learn from each other’s
opinions. Peer Teaching, perhaps better named cross-
age teaching, involves more advanced students acting
as experts employed to instruct and mentor novice
students. Although not strictly peers, the two stu-
dents are generally close in age and share in the same
experiences. There is no boundary of authority be-
tween the two, with no threat of assessment, leaving
the novice able to openly express their concerns. Men-
toring programmes, particularly in academic settings,
act as informal peer teaching approaches.

The broadest application of collaborative learning
is the development of learning communities, where
curriculum are restructured to form collaborative stu-
dent groups that cross course boundaries, leading
towards the development of a Community of Prac-
tice (Wenger 1998). Learning communities build co-
herence within individual programmes, and foster in-
formal generation of peer teaching programs.

A successful collaborative learning structure does
not impose structures based on ability or previous
experience, but instead supports individuality and
diversity. Academics work with students on set-
ting goals and tasks, with the outcomes of individual
groups used in the coordination of topics and discus-
sion. An essential aspect of a collaboration is the
authenticity of the task that they are attempting to
solve, and the process by which they solve it. Mu-
tual engagement requires that each member have a
genuine motivation for being part of the collabora-
tion, and that learning be associated with a task or
problem that the group has to solve. We have se-
lected problem solving as the task around which we
construct our collaborations.

What does it mean to teach an authentic prob-
lem solving process? The development of software is
a creative process, requiring design, innovation and
communication skills. Software developers commonly
start with a partially defined problem, and must com-
municate with clients and colleagues in determining
the full problem specification. This is just the begin-
ning, however, as what follows is an extensive process

CRPIT Volume 95 - Computing Education 2009

66

of creation, partial solutions and experimentation to
determine the final solution. Introductory classes in
Computer Science, however, tend to take the opposite
approach; we focus on learning syntax and semantics,
and the problem solving process as one of immedi-
ate success. Very rarely do introductory Computer
Science texts elaborate examples that illustrate that
solving problems most commonly starts with failure.
This is detrimental for our students, as studies indi-
cate that students tend not to vary their approach to
problem solving, instead persisting in applying the
same techniques regardless of their success (Ginat
2001).

Further, our approaches to teaching introductory
programming commonly place an emphasis on learn-
ing the application of single programming concepts,
using known-answer assignments as demonstration.
As such, these kinds of problems are valuable, as they
enable students to observe and practice the applica-
tion of individual concepts. However, this ignores the
skill of the problem solving process itself, and does not
provide students with a realistic illustration of soft-
ware development. Indeed, this approach constrains
us further in that it does not provide opportunities for
exploring variations of problems and how the problem
solving process might apply in these new situations.

As software developers we do not solve problems
on our own, or attempt to solve problems that we al-
ready know there is an answer to. However, we expect
our students to learn how to develop software by do-
ing just that. If we hide the problem solving process
away as something we do between lectures, then stu-
dents stand little chance of learning it from us. Our
approach consists of exposing, and forming learning
communities, around the problem solving process.

3 Establishing Computer Science Learning
Communities

A comprehensive programme of collaborative learn-
ing techniques has been introduced in an introductory
computer science class in order to address the issues
of student engagement and transition concerns. This
changes the style of education from the traditional
didactic lecture style to a more interactive, student-
driven approach.

We employ a range of collaborative learning tech-
niques within the course activities and associated sup-
port systems. The course of approximately 200-250
students contains a mixture of domestic and interna-
tional students (approximately 50% of each), and is
taken by students from a broad range of disciplines,
including Computer Science, Engineering, Commerce
and Arts. The majority of students who take this
course are entering University straight from the sec-
ondary education system and are new to the pro-
cess of adult, or self-directed, learning. Students are
taught the fundamentals of programming and an in-
troduction to the object-oriented paradigm using the
Java programming language.

We employ the action research methodology in our
approach - this paper describes two iterations of the
research process over a duration of three years.

3.1 Research Methodology

Action Research is an iterative research methodology
that involves the subjects of the research as active
participants - the research is done with, rather than
on, the participants (Hopkins 1985, Carr & Kemmis
1986). According to Carr and Kemmis (Carr & Kem-
mis 1986), action researchers “see the development of
theory or understanding as a by-product of the im-
provement of real situations, rather than application

as a by-product of advances in ‘pure’ theory’. In other
words, action research is research directed towards the
improvement of practice.

Action research involves repeated application of
stages of planning, action and observation, and re-
flection (see Figure 1), with the perceptions of the
participants included in the reflective exercise. It is
an appropriate research methodology for use when a
problem has been identified, an initial plan has been
constructed and further strategies that may be em-
ployed depend upon the success, or impact, of the
initial strategy.

Reconstructive Constructive

DISCOURSE
among participants

PRACTICE
in the social context

1. Plan4. Reflect

3. Observe 2. Act

Figure 1: Action research spiral (Carr & Kemmis
1986)

An important aspect of action research is that the
participants are informed of the research, its motiva-
tions and rationale. The participants are then able
to reflect, along with the researcher, on the success
of the research project. In order to engage the stu-
dents in the learning approach, the course starts with
a discussion of learning styles, and the benefits of col-
laborative learning, discussing the work of Glasser
(1990) and Slavin (1983).

3.2 Iteration 1: Authentic Learning Prac-
tices

Our initial plan was based around the introduction
of a range of collaboration learning activities, utilis-
ing a variety of collaborative learning techniques con-
structed around the task of problem solving. In an in-
troductory Computer Science class we wish students
to learn the different programming concepts, how to
apply each and how to compose them to solve a larger
problem. Problem solving skills are used both in the
identification of the specific programming concepts to
use in solving a problem, and in directing how pro-
gramming concepts should be composed.

Our initial application occurred in 2006, subse-
quent to having been involved in the instruction of
this course since 2004, and involved the following ac-
tivities:

• Discussion-driven Problem Solving Lectures

• Collaborative Tutorials

• Cross-Age Teaching Support Systems

Lecture classes are an hour in duration, held three
times a week and include all students in the class.
In addition, students attend weekly practical sessions
that are two hours in duration, and weekly tutorial
classes (one hour in duration). Lecture classes adopt a
combination of observation using known-answer ques-
tions, and experiential learning. These are designed
to encompass the spectrum of the problem solv-
ing process: observation of application of program-
ming concepts and authentic problem solving pro-
cesses, and discussion driven problem solving activ-
ities. Problems are chosen representing the spectrum
from known-answer to open-ended, enabling practice

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

67

as well as exploration of the problem space. A funda-
mental element of all lectures is the use of computer-
assistance, demonstrating the application of concepts
and the development of solutions using the same lab-
oratory environment and tools that the students will
use themselves.

We demonstrate the problem solving process
through the integration of Problem Solving and
Worked Examples lectures at key stages where stu-
dents must learn to compose programming concepts,
and to solve more abstract problems. These lec-
ture models provide two different styles of discussion
driven collaboration; problem solving lectures empha-
sise demonstration and provide more scaffolding of
the problem solving process, while worked examples
lectures are more under the control of the students,
enabling them to lead the discussion.

In Problem Solving lectures, the stages of the
problem solving process are demonstrated: elabora-
tion of the problem, identification of key elements
in the solution, and identification of key classes and
their responsibilities and necessary algorithms. The
lecturer leads whole-class discussion in each stage,
with individual students contributing questions and
design ideas at requested points. An important as-
pect of these lectures is to explore the potential prob-
lem space, rather than focusing on one planned path-
way. Multiple solutions, based on the inputs of the
students are presented; two or more potential solu-
tions are then taken from the design phase through
to implementation, enabling discussion of the nega-
tives and benefits of each selected solution.

The process in these lectures is to start with a
high level, and incomplete, problem specification, for
example:

We have been contracted to develop a new
mobile phone. We decide to build a software
simulation in Java of how it is going to work.

A common design aspect targetted by the stu-
dents is the design of an Address Book. Figure 2 il-
lustrates two common designs identified by students.
Figure 2(a) illustrates a simple design, where an ad-
dress book consists of a set of (name, phone number)
pairs; Figure 2(b) presents a slightly more compli-
cated model, where an address book consists of a set
of entries that model a person, while a person may
have a set of phone numbers. The second design is
more elaborate, but has the advantage that multiple
phone numbers that belong to the same individual
are easily identified, making subsequent computation
simpler.

*0..1
Add
Delete
Search

MaxElements
CurrentNumber

Address Book

PhoneNumber
Name

Entry

Add
Delete
Search

MaxElements
CurrentNumber

Address Book MaxNumbers
Name

Person

Number
Location

PhoneNumber

0..1

*

0..1

*

(a)

(b)

Figure 2: Alternative Designs

In Worked Examples lectures, students are pre-
sented with a small set of problems that they must
solve as a group. Adopting similar processes to the
problem solving lectures, the students work through
the different stages of understanding and solving the

problems (typically simpler than those used in the
problem solving lectures). A key distinction between
these lecture styles is that within worked example lec-
tures, the students drive the process with the lecturer
acting as scribe.

Not only correct solutions are educational; explor-
ing poor design choices, such as inappropriate data
type selection or class design, enables students to ob-
serve the impact of such choices. This not only assists
them in identifying their own poor design choices, but
enables them to observe failure and recovery as a nor-
mal part of the software development process. Ex-
ploring wrong directions and the results of failure can
be important in establishing a starting point for di-
vergent thinking, which stimulates creativity (Ginat
2008).

To extend our example, students commonly dis-
covered problems with their design when discussing
appropriate data representation for a phone number.
Many students initially suggest an integer representa-
tion; once they work through an example illustrating
the representation of the number, however, they soon
realise that that is inappropriate.

In addition to discussion driven collaborative lec-
tures, we also introduced collaborative tutorial ses-
sions, and collaborative support services. Weekly tu-
torials are held in a similar style to the discussion
driven lectures. Students are expected to submit an-
swers to a set of tutorial questions prior to the tu-
torial, which are then assessed by the tutor. Within
the tutorial session, the students work in small groups
to elaborate on their answers with each group work-
ing on a different problem. Each group then presents
its solution to the rest of the tutorial class. We intro-
duced a training program for all casual academic staff
involved in first year tutorials and practical sessions
in 2006, providing an introduction to collaborative
learning and small group teaching techniques. The
structure of the training programme adopts collabo-
rative learning techniques itself, in that participants
learn and reflect on their teaching skills through the
use of small group role play sessions. All tutors and
practical supervisors must attend this program, re-
gardless of previous attendance. This provides further
opportunity for reflection for the experienced partici-
pants, and the opportunity for cross-age teaching for
the novices.

It can be difficult to provide appropriate support
services for first year University students, as many are
shy and lacking in confidence. Beder reports that first
year students are simply not aware of support services
on offer, and do not take advantage of them (Beder
1997). We introduced the Computer Science Learn-
ing Centre as a dedicated space for cross-age teach-
ing. The learning centre is a space positioned within
the first year laboratory environment where novices
may go for help on any aspect of studying Computer
Science. The Learning Centre is staffed by senior un-
dergraduate students who have undergone the same
small group and cooperative learning training as our
tutors. The Learning Centre staff act as informal
tutors, providing help and advice on topics ranging
from Java fundamentals to exam study techniques.
The Computer Science Learning Centre is now the
focal point for students within the School, with se-
nior students often volunteering their time, beyond
their scheduled hours.

Webb (1989) identifies six conditions that are
needed for successful, and thus educational, cross-age
teaching: (1) The tutor must provide relevant help
which is (2) appropriately elaborated, (3) timely, and
(4) understandable to the target student; (5) the tutor
must provide an opportunity for the tutee to use the
new information; and (6) the tutee must take advan-
tage of that opportunity. As we are focusing on the

CRPIT Volume 95 - Computing Education 2009

68

very practical discipline of problem solving and pro-
gramming, we have constructed the learning centre
to reflect the laboratory environment of the student’s
normal practical sessions. The space is divided into
two sections: one section containing computers that
provide an identical laboratory environment, and the
other a general study and discussion area. This model
enables novices to move between teaching and appli-
cation phases without leaving the space, and the care
of the expert.

Student perceptions of ability, success and under-
standing are indicators of their confidence and en-
gagement. Qualitative analysis of student percep-
tions of the introductory computer science course us-
ing student experience surveys indicate little or no
change in student opinion on issues such as motiva-
tion to learn, feeling part of a group and enthusiasm
for learning. Table 1 illustrates the results of surveys
taken from 2005 to 2006 showing broad agreement
with a series of 7 point Likert style questions over
this period, where broad agreement is the percent-
age of students who have responded positively (not
neutrally) to the question. Although students indi-
cated in these surveys that they were actually less
enthusiastic about their learning, a significant num-
ber made positive comments regarding the new col-
laborative learning activities. 25% of the comments
describing the best aspects of the course related to its
approach to problem solving, for example:

The worked examples are a good idea. Get
to see the concepts used in a practical sense.

The demos. Give us something to look at
and see what the program does.

Problem solving to complete what is re-
quired in the pracs and seeing a working pro-
gram.

Question 2005 2006
Q1: I feel part of a group committed
to learning

39% 43%

Q2: This course stimulates my en-
thusiasm for further learning

68% 57%

Q3: I am motivated to learn in this
course

59% 60%

Q4: This course helps me develop
my thinking skills (eg. problem solv-
ing, analysis)

77% 79%

Q5: I understand the concepts pre-
sented in this course

61% 64%

Table 1: Student survey results from 2005 and 2006.

Figure 3 illustrates the practical examination per-
formance from 2004 to 2006 (the time of the first iter-
ation). The first practical examination assesses fun-
damental computer awareness skills and the ability to
use the practical laboratory. Questions in this exam-
ination are relatively simple: requiring correction of
some simple syntax errors, and demonstration of the
ability to edit and compile source code, and the use of
various tools required to execute the compiled code.
Failure in this examination is used as an indicator of
a lack of confidence in using the laboratory facilities,
and of requiring assistance in understanding instruc-
tions, and does not address problem solving. We see
the improvement in average performance in the first
practical examination as a result of incorporating live
demonstration, including experimentation and exam-
ples of failure.

Figure 3 also demonstrates results for the second
practical examination (PE2), which assesses problem

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

PE1 PE2

2004

2005

2006

Figure 3: Practical Examination performance 2004-
2006 (after first iteration).

solving skills and the application of programming con-
cepts. At this stage, no significant improvement in
problem solving skill was indicated by the practical
examination results.

Figure 4 illustrates attendance rates for practi-
cal classes and lecture classes, and attrition rates for
2004-20061. As can be seen, no significant impact can
be seen across the course offerings.

0

10

20

30

40

50

60

70

80

90

100

2004 2005 2006

%

Practical

Lecture

Attrition

Figure 4: Attendance and attrition rates from 2004-
2006 (after first iteration).

In our initial application of discussion driven prob-
lem solving, we adopted a co-lecturing approach with
two lecturers engaging the class in discussion to ex-
plore the problem space. Students indicated in their
reflections that they enjoyed these lectures, and found
the collaborative problem solving useful in demon-
strating real-world problem solving processes. How-
ever, we felt that the students were still acting as
observers rather than collaborative participants and
did not naturally take a leadership role in driving the
problem solving. We observed that there was no in-
creased incentive for them to attend, and engage in,
lectures as they were not truly involved in the prob-
lem solving processes and had no interdependence on
their peers. Further, we had created stronger peer
relationships outside of lectures, through our modi-
fications to tutorials classes and the introduction of
the learning centre.

3.3 Iteration 2: Cooperative Learning Prac-
tices

In our second iteration (2007-2008), we retained the
collaborative learning activities provided by tutorials

1As tutorial attendance is a compulsory component of course
assessment it is not relevant as an indicator of student engagement.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

69

and the learning centre, and refined those offered in
lecture classes to move towards a cooperative model
rather than a discussion driven model. In cooperative
learning, there is incentive on students working to-
gether - this incentive can be formal, and can include
an assessment component, or it can be informal, and
driven by a sense of social responsibility. We have
adopted the latter approach.

From the first lecture class, we reorganised stu-
dents into small groups of 3 or 4 students. Worked Ex-
amples lectures then involved allocating 2 or 3 prob-
lems across the individual groups. Groups were then
asked to discuss the problem to make sure that each
member of the group understands what was being
asked, to design a solution and to start to develop a
software implementation of their design. The role of
group scribe is rotated within the group throughout
the course, giving every student a chance - and the
responsibility - to lead the process.

An example problem that we employ here is the
design and implementation of a testing interface for
the phone simulation introduced in the previous sec-
tion. Students must discuss what features require
testing, and how they will test them. They must
also design an interface that will support their tests.
Working in groups enables students to share their
ideas and their assumptions on how their software
should be tested, and enables them to explore this
phase of the software development process in a way
which is not associated with the pressure of obtaining
a working solution for assessment.

In these classes, the lecturer spends their time
moving between groups, advising them and answer-
ing their questions. This stage enables the lecturer
to observe common problems, and to gather exam-
ples of different solutions. The last 10 minutes of the
lecture is then led by the lecturer, summarising any
common issues and presenting one or two example de-
signs. Multiple solutions to the problem were posted
to the electronic bulletin board following each lecture
to enable the class to continue its discussion.

This stage enables the lecturer to make personal
contact with each student (over the semester), and
helps identify students who need additional assis-
tance. We were able to identify individual students
who required the help provided by the Learning Cen-
tre or individual consulting provided by the lecturers
outside of class. Private, and informal, discussions
could be held between individual groups and the lec-
turer. In our discussion, students reported that they
felt more comfortable in asking questions and arguing
their positions in their groups than they felt in larger
classes with a tutor or lecturer. They also indicated
that they obtained a clearer picture of where they
stood relative to their peers, providing sufficient in-
centive for some students to seek further help outside
of class in order to catch up.

Interestingly we found that students remained in
their initial groups for the remainder of the semester,
regardless of whether they were undertaking group or
independent work. We feel this is of wider benefit
in an introductory class; forming of bonds within the
peer group at the commencement of University ed-
ucation addresses a common cause of transition dis-
tress (Krause 2005, Cameron 2007).

Student perceptions on their ability and engage-
ment with the course altered significantly subsequent
to the adoption of cooperative learning activities
within lecture sessions. Table 2 shows the result of
the same student survey referred to in Table 1 for
2008 showing broad agreement with a series of 7 point
Likert style questions, where broad agreement is the
percentage of students who have responded positively
(not neutrally) to the question. (Data is shown for
2005, for comparison, with 2008 data).

Question 2005 2008
Q1: I feel part of a group committed
to learning

39% 58%

Q2: This course stimulates my en-
thusiasm for further learning

68% 74%

Q3: I am motivated to learn in this
course

59% 71%

Q4: This course helps me develop
my thinking skills (eg. problem solv-
ing, analysis)

77% 88%

Q5: I understand the concepts pre-
sented in this course

61% 80%

Table 2: Student survey results from 2005 and 2008.

Student comments indicate that they appreciate
the opportunity to work together within lectures,
with the accompanying realisation of the application
of programming theory, identifying the best aspects
of the course as:

Worked examples because they are good, es-
pecially in small groups.

Inclusion of students into lectures.

Worked examples lectures are extremely
helpful in allowing students to see the theory
being put into practice.

Figure 5 illustrates the change in broad agreement,
along with the provisional variation from aggregated
data for all courses within the University for 20082.
This data demonstrates the improvement resulting
from the adoption of cooperative learning techniques,
and demonstrates that student satisfaction is within
range, or more typically, higher than University ag-
gregate data.

‐10

‐5

0

5

10

15

20

25

Q1 Q2 Q3 Q4 Q5

Difference
between 2008
and 2005

Varia8on of 2008
BA and University
Aggregates

Figure 5: Comparison of survey results from 2005
and 2008, and variation of 2008 survey results from
University aggregate data.

Figure 6 shows practical examination performance
from 2004-2008. Unsurprisingly, performance in the
first practical examination does not change signifi-
cantly, as students are still engaged in the same au-
thentic problem solving and live demonstration pro-
cesses. However, after initiating cooperative learning
techniques within lecture, performance in the second
practical examination, which requires greater prob-
lem solving skill, is significantly improved. Figure 6 il-
lustrates continued improvement across the two years
of the second iteration of our study. In 2008, our sec-
ond application of cooperative learning, we provided
more structure in terms of identifying roles within the
groups and also demonstrated the process of problem

2Aggregated data from 2007 was used for provisional compari-
son.

CRPIT Volume 95 - Computing Education 2009

70

solving cooperatively by combining discussion-driven
segments within the worked examples lectures. This
scaffolding provided additional incentive and knowl-
edge for student groups that were struggling with ei-
ther group dynamics or the problem solving process.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

PE1 PE2

2004

2005

2006

2007

2008

Figure 6: Practical Examination performance 2004-
2008 (after second iteration).

Figure 7 illustrates attendance rates at practical
classes and lectures from 2004-20073, combined with
course attrition rates. Minor, but steady, increases
can be seen in attendance at practical classes, but a
significant increase in lecture attendance can be ob-
served in 2007 upon the introduction of cooperative
learning techniques.

0

10

20

30

40

50

60

70

80

90

100

2004 2005 2006 2007

%

Practical

Lecture

Attrition

Figure 7: Attendance and attrition rates from 2004-
2007 (after second iteration).

Out-of-class consulting is provided in each offer-
ing of the course, through in-office consulting hours
for lecturers, and an on-line discussion forum. Since
the introduction of the cooperative learning activi-
ties, students have engaged more with the course both
within, and outside of, class. The number of students
active on the discussion forums has increased from
44% to 93%, and the number of accesses averaged per
student has increased from 4.9 to 191. Students have
adopted the principles of cooperative and collabora-
tive learning to create their own learning communities
outside of the classroom, including establishing online
problem solving forums where students set their own
problems and rules for success, such as fastest execu-
tion time or earliest correct submission. Interestingly,
both cohorts of students independently developed a
variation on these forums in response to exposure to
cooperative learning approaches.

3Attendance figures for 2008 are unavailable.

3.4 Summary

This paper presents two action research cycles de-
signed to address student engagement through the
adoption of collaborative learning approaches, con-
structed around the topic of problem solving. Both
action research cycles adopted multiple collaborative
learning strategies, designed to provide multiple op-
portunities for student engagement, and recognising
that a single approach to engagement is unlikely to
be successful with current diverse intakes into first
year University courses. Two collaborative activities,
collaborative tutorials and cross-age teaching support
systems, were retained across both action cycles, with
the in-lecture collaborative activities forming the fo-
cus of change. Table 3 presents a summary of the
in-lecture collaborative activities, and their relative
successes, employed in each action cycle.

Cycle 1 Cycle 2
Problem
Solving

Discussion-driven
with lecturers driv-
ing the discussion
and demonstra-
tion.

Discussion-driven
with both lectur-
ers and students
driving the devel-
opment process.

Worked
Examples

Discussion-driven
with the students
together driving
the development
process.

Cooperative with
students working
in small groups,
followed by open
class discussion.

Table 3: In-lecture collaborative activities across both
action research cycles.

The significant change from the first to second cy-
cle is a change in teaching philosophy - students may
be engaged with the lecturer when the lecturer is en-
thused and entertaining, however they will be engaged
with the subject matter when they are themselves in-
volved in the learning process. This is not a new
observation - indeed, it is the basis underpinning col-
laborative learning - however, it does require rethink-
ing the way we teach, and the way that we structure
lectures.

3.5 Discussion

Our introductory computer science class typically
contains a broad mixture of students in terms of their
previous programming experience. Surveys taken
in 2007 indicated that 53% of students had prior
programming experience with a high level language,
while 55% had studied Information Technology at sec-
ondary school. 35% had no prior exposure at all.
Since commencing instruction of this course in 2004,
we have noticed a general trend of poor attendance
by the stronger students, particularly those that have
previous programming experience. After the intro-
duction of cooperative learning activities, we noticed
that these students continued to attend lectures, even
through they also continued to report a degree of
boredom with the course content. Students indicated
that they enjoyed working in groups, and found the
lectures more entertaining even if the material was
not challenging for them. We have also found, both in
lectures and in the Learning Centre, that the stronger
students enjoyed the process of peer and cross-age
teaching.

Students that have been involved in these collab-
orative learning activities have subsequently intro-
duced their own learning communities that extend
beyond the introductory computer science course. In
2008, students introduced a computer science student
club, whose primary activities are associated with
providing cross-age teaching opportunities for other

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

71

students across all of our programmes and year lev-
els. Since its creation, the club has run a series of
orientation events, examination preparation sessions
for new students, and a series of technical training
seminars associated with learning software tools that
are useful in student projects.

Employing a range of collaborative learning tech-
niques has not been without its costs, however. Es-
tablishment of the Computer Science Learning Cen-
tre was assisted through a University Learning and
Teaching Grant, and in-kind contributions from hard-
ware suppliers. This enabled us to run a year-long
pilot study creating a dedicated space for cross-age
teaching. The supportive reaction of students, both
experts (tutors) and novices, involved in the pilot
study led us to adopt the Learning Centre as part
of our core practice in first year teaching.

Restructuring the curriculum around collaborative
learning places an emphasis on regular, sustained con-
tact within the collaborative groups. One lecture ev-
ery two weeks, at a minimum, is set aside for collab-
orative work. However, we found that this did not
require us to remove any course content. Instead, we
were able to explore topics such as problem specifica-
tion, design and problem solving using collaborative
approaches, rather than as didactic lectures. In order
to provide more opportunities for sustained collabo-
ration, we doubled the number of tutorials to one per
week for the course duration. This enabled us to have
multiple tutorials dedicated to significant conceptual
issues, such as object-oriented programming, provid-
ing time to discuss not only the conceptual issues but
also the problem solving concerns.

Each semester we undertake training of all prac-
tical supervisors, and tutors in collaborative learning
models, requiring time from all staff participating in
the instruction of the course. Extensive preparation
of a wide range of examples is also required - in ad-
dition to the setting of assessment for each course
offering, new examples must be introduced in order
to keep both the course content and the presentation
fresh.

Supporting learning communities introduced an
unexpected cost, however, as by including students
more openly in the learning process, they then de-
mand more inclusion in other activities. The ex-
panded usage of the discussion forums, and the in-
troduction of the student’s own problem solving fo-
rums, required significantly more moderation time.
Working with the student club, in providing facilities
for club activities and staff time associated with as-
sisting with training sessions organised by the club
also requires additional staff resources. However,
this demand is an indication that students under-
stand and appreciate the teaching methodologies in-
troduced. Supporting these activities is an acknowl-
edgement from the staff that participation from the
students in cross-age teaching is valid and appreciated
as a general concept, not just within a course.

Adopting such a significant change in our approach
to teaching introductory computer science required
dedicated time and resources allocated to exploring
the pedagogical basis for collaborative learning. Time
required to prepare to teach such a course requires
not only the development of technical resources, lec-
tures and examples, but also preparation in appro-
priate techniques for the chosen teaching style. This
required the commitment and engagement of all staff
involved in the course, from the Head of School (in
terms of allocation of free time to develop and re-
search appropriate techniques) and all academic staff
involved in the delivery of the course.

4 Related Work

Learning communities and collaborative inquiry have
been explored in many different education areas, both
in terms of professional development of academics,
and within the classroom. Many studies exist within
the different collaborative learning styles; a survey of
the different styles, and their main examples is pro-
vided by Smith & MacGregor (1992). Guidelines for
collaborative learning activities within software devel-
opment are provided by Yerion & Rinehart (1995).

Teague and Roe describe a study of the poten-
tial positive effect on learning outcomes by adopting
a collaborative learning approach to teaching pro-
gramming (Teague & Roe 2008). This study is an
analysis of student learning preferences and concerns
expressed by students as they learn to programme.
Although at an early stage and thus without a dis-
cussion of its implementation, this study highlights
students perceptions that collaborative learning ap-
proaches are beneficial and engaging.

In addition, Teague and Roe (Teague & Roe 2008)
provide a recent overview of collaborative learning,
focusing on cooperative learning, within the ICT dis-
cipline. Of note are the results of McKinney & Den-
ton (2006) and (Williams & Kessler 2000). McKin-
ney & Denton (2006) describe a laboratory-based ap-
plication of cooperative learning, involving students
in team-based problem solving, project planning and
pair programming, and included early instruction of
team skills. The authors find a significant increase in
team skills, and in the engagement of their students.
(Williams & Kessler 2000) describe a similar attempt
at laboratory-based pair programming, with the in-
teresting result that teacher workload was reduced as
students were able to rely on their pair colleague for
technical support and advise.

Allan & Kolesar (1997) describe their experimen-
tation with a preparatory course in problem solv-
ing skills taken before the first programming course.
They emphasise that for students without prior pro-
gramming experience, and from non-computer science
majors, a first course in programming can be daunt-
ing with the majority of students focusing on learning
syntax and ”getting the program to run” (Allan &
Kolesar 1997) rather than on the more abstract task
of problem solving. Their results support our move
towards a problem solving approach to programming,
although we integrate that with the teaching of pro-
gramming concepts.

Peer teaching programmes are numerous in the
University sector, with examples seen in pair pro-
gramming in the ICT discipline (as discussed earlier),
and cross-age teaching, although little research has
been done in the area of cross-age teaching within
ICT. D’Souza et al. (2008) discuss a cross-age men-
toring programme, where mentors volunteer their
time to assist novice programmers in developing their
skill. Similar studies have been undertaken by (Miller
& Kay 2002) and (Miliszewska & Tan 2007). Al-
though mentoring is provided as a broad experience,
with no specific requirement to focus on programming
skills, these studies have found that assistance with
programming and problem solving are the key issues
concerning novice students involved in the mentoring
relationships. Peer teaching and mentoring both as-
sist in the creation of learning communities, as they
cross course boundaries and form bonds between stu-
dents that persist outside of an individual course of-
fering.

Strazdins reports on the use of the community of
practice model within postgraduate project courses,
designed to build research skills in small communities
of approximately 10 postgraduate students undertak-
ing research courses (Strazdins 2008). In this study, a

CRPIT Volume 95 - Computing Education 2009

72

community was constructed around the development
of general research skills, and resulted in significant
improvement of the research experience of those stu-
dents involved in the community, and improvement
in research skill.

5 Conclusions

In this paper we have described the application of col-
laborative learning techniques within an introductory
computer science course. Our aim was to increase stu-
dent engagement and student ability in problem solv-
ing through integrating a range of collaborative learn-
ing activities throughout the course structure, includ-
ing lectures, tutorials and support services. Collabo-
rative learning activities have been recognised as in-
creasing both technical ability, but also as providing
opportunities for the development of social support
structures. Identifying a peer group and maintaining
confidence are well established indicators of ongoing
engagement and reduced attrition.

Our first attempt at this approach consisted of
a combination of discussion driven lectures, based
around demonstrating and participating in the prob-
lem solving process, collaborative tutorials and cross-
age teaching. Demonstration of the problem solv-
ing process, with its emphasis on authentic demon-
stration using an equivalent laboratory environment,
proved successful in engaging students in exploring
the laboratory environment and increasing their con-
fidence at early stages in the course. However, our dis-
cussion driven lectures appeared to provide no further
increase in student engagement or ability, although
the students did report an appreciation for these ex-
amples.

Our second attempt at integrating collaborative
learning activities replaced the discussion driven lec-
tures with cooperative problem solving processes, in-
volving the students in small groups working through
a set of small problems. This activity appeared to
impact both the social aspect of the course, in that
students were able to quickly develop a peer group,
and also their ability to problem solve. The benefits of
our integrated approach to collaborative learning can
be seen both in terms of increased student confidence
and perception of ability, and in increased student
ability to complete problem solving activities.

Of interest is whether students continue to remain
engaged in their subsequent courses, and whether
their confidence remains high. We are currently in-
vestigating, though surveys of student satisfaction in
subsequent courses, whether there are any long term
changes in student perception as a result of learning
community support.

References

Allan, V. & Kolesar, M. (1997), ‘Teaching computer
science: A problem solving approach that works’,
ACM SIGCUE Outlook 25(1-2), 2–10.

Barrows, H. (1986), ‘A taxonomy of problem-based
learning methods’, Medical Education 20, 481–486.

Beder, S. (1997), ‘Addressing the issues of social and
academic integration for first year students: A dis-
cussion paper’, Ultibase Articles .

Biggs, J. & Tang, C. (2007), Teaching for Quality
Learning at University, 3rd edition, The Society for
Research into Higher Education.

Burns, R. (1991), ‘Study and stress among first year
students in an australian university’, Higher Edu-
cation Research and Development 16, 61–77.

Cameron, H. (2007), Assessment and feedback in
higher education: Key links in the learning chain,
in ‘Proceedings of the 2nd Education Research
Group of Adelaide Conference (ERGA 2007)’.

Carr, W. & Kemmis, S. (1986), Becoming Critical.
Education, knowledge and action research, Lewes:
Falmer.

Christensen, C., Garvin, D. & Sweet, A. (1991), Ed-
ucation for Judgement: The Artistry of Discussion
Leadership, Harvard University Business School.

D’Souza, D., Hamilton, M., Harland, J., Muir, P.,
Thevathayan, C. & Walker, C. (2008), Transform-
ing learning of programming: a mentoring project,
in ‘Proc. Tenth Australasian Computing Education
Conference (ACE 2008)’, pp. 75–84.

Ericsson, K. A., Krampe, R. T. & Tesch-Romer, C.
(1993), ‘The role of deliberate practice in the acqui-
sition of expert performance’, Psychological Review
100(3), 363–406.

Ginat, D. (2001), Misleading intuition in algorith-
mic problem solving, in ‘Proceedings of the 32nd
SIGCSE Symposium’, pp. 21–25.

Ginat, D. (2008), Learning from wrong and creative
algorithm design, in ‘Proceedings of SIGCSE’08’.

Glasser, W. (1990), The Quality School: Managing
Students without Coercion, 1st edition, New York:
Harper Collins, ISBN: 006055200X.

Hopkins, D. (1985), A teacher’s guide to classroom
research, Philadelphia: Open University Press.

Ilian, A. & Kordaki, M. (2006), ‘Undergraduate stud-
ies in computer science and engineering: gender is-
sues’, ACM SIGCSE Bulletin 38(2), 81–85.

Jenkins, J. & Jenkins, L. (1987), ‘Making peer tutor-
ing work’, Educational Leadership 44(6), 64–68.

Krause, K. (2005), ‘Serious thoughts about dropping
out in first year: Trends, patterns and implications
for higher education’, Studies in Learning, Evalua-
tion, Innovation and Development 2(3), 55–67.

Krause, K., Hartley, R., James, R. & McInnis, C.
(2005), The First Year Experience in Australian
Universities: Findings from a decade of national
studies, Canberra: DEST.

Lang, C., McKay, J. & Lewis, S. (2007), ‘Seven fac-
tors that influence ict student achievement’, ACM
SIGCSE Bulletin 39(3), 221–225.

Lister, R., Adams, E., Fitzgerald, S., Fone,
W., Hamer, J., Lindholm, M., McCartney, R.,
Mostrom, E., Sanders, K., Seppala, O., Simon, B.
& Thomas, L. (2004), ‘A multi-national study of
reading and tracing skillls in novice programmers’,
SIGCSE Bulletin 36(4), 119–150.

MacGregor, J. (1991), ‘What difference do learn-
ing communities make?’, Washington Center News,
Washington Center for Undergraduate Education
6(1).

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagen, D., Kolikant, Y., Laxer, C., Thomas, L.,
Utting, I. & Wiusz, T. (2001), ‘A multi-national,
multi-institutional study of assessment of program-
ming skills of first-year cs students’, SIGCSE Bul-
letin 33(4), 125–140.

McInnis, C., James, R. & Hartley, R. (2000), Trends
in the first year experience in australian universi-
ties, Technical report, DETYA, Canberra.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

73

McKinney, D. & Denton, L. (2006), Developing col-
laborative skills early in the cs curriculum in a lab-
oratory environment, in ‘Proceedings of SIGCSE
2006, Symposium on Computer Science Educa-
tion’.

Miliszewska, I. & Tan, G. (2007), ‘Befriending
computer programming: A proposed approach
to teaching introductory programming’, Issues
in Informing Science and Information Technology
4, 278–289.

Miller, A. & Kay, J. (2002), A mentor program in
cs1, in ‘Proceedings of ITiCSE 2002, Aarhus, Den-
mark’.

Ramsden, P. (2003), Learning to Teach in Higher Ed-
ucation, RoutledgeFalmer, London.

Sheard, J., Carbone, A., Markham, S., Hurst, A.,
Casey, D. & Avram, C. (2008), Performance and
progression of first year ict students, in ‘Proceed-
ings of the Tenth Australasian Computing Educa-
tion Conference (ACE 2008)’.

Slavin, R. (1983), ‘When does cooperative learning
increase student achievement?’, Psychological Bul-
letin 94(3), 429–445.

Slavin, R. (1991), ‘Synthesis of research on coopera-
tive learning’, Educational Leadership pp. 71–82.

Smith, B. & MacGregor, J. (1992), What is Collabora-
tive Learning?, National Centre on Postsecondary
Teaching, Learning and Assessment, Pennsylvania
State University.

Sonnentag, S. (1998), ‘Expertise in professional soft-
ware design: A process study’, Journal of Applied
Psychology 83(5), 703–715.

Strazdins, P. (2008), Applying the community of
practice approach to individual it projects, in ‘Pro-
ceedings of the Tenth Australasian Computing Ed-
ucation Conference (ACE 2008)’.

Teague, D. & Roe, P. (2008), Collaborative learning -
towards a solution for novice programmers, in ‘Pro-
ceedings of the Tenth Australasian Computing Ed-
ucation Conference (ACE 2008)’.

Trajovski, G. (2006), Diversity in Information Tech-
nology Education: Issues and Controversies, Idea
Group Inc (IGI).

Urban-Lurain, M. & Weinshank, D. J. (2000), Atten-
dance and outcomes in a large, collaborative learn-
ing, performance assessment course, in ‘Annual
Meeting of the American Educational Research As-
sociation (AERA)’.

Webb, N. (1989), Peer Interaction and Learning in
Small Groups, New York: Pergamon Press, pp. 21–
29.

Wenger, E. (1998), ‘Communities of practice. learning
as a social system’, Systems Thinker .

White, N. R. (2006), ‘Tertiary education in the
noughties: the student perspective’, Higher Edu-
cation Research & Development 25(3), 231–246.

Williams, L. & Kessler, R. (2000), The effects of ”pair
pressure” and ”pair-learning” on software engineer-
ing education, in ‘Proceedings of the 13th Confer-
ence on Software Engineering Education & Train-
ing’.

Yerion, K. & Rinehart, J. (1995), ‘Guidelines for
collaborative learning in computer science’, ACM
SIGCSE Bulletin 27(4), 29–34.

CRPIT Volume 95 - Computing Education 2009

74

Losing Their Marbles: Syntax-Free Programming for Assessing

Problem-Solving Skills

Colin Fidge and Donna Teague
Faculty of Information Technology,

Queensland University of Technology,

Brisbane, Australia

{c.fidge, d.teague}@qut.edu.au

Abstract

Novice programmers have difficulty developing an

algorithmic solution while simultaneously obeying the

syntactic constraints of the target programming language.

To see how students fare in algorithmic problem solving

when not burdened by syntax, we conducted an

experiment in which a large class of beginning

programmers were required to write a solution to a

computational problem in structured English, as if

instructing a child, without reference to program code at

all. The students produced an unexpectedly wide range of

correct, and attempted, solutions, some of which had not

occurred to their teachers. We also found that many

common programming errors were evident in the natural

language algorithms, including failure to ensure loop

termination, hardwiring of solutions, failure to properly

initialise the computation, and use of unnecessary

temporary variables, suggesting that these mistakes are

caused by inexperience at thinking algorithmically, rather

than difficulties in expressing solutions as program code.

Keywords: Learning to program; syntax-free

programming; algorithms; problem solving.

1 Introduction

ITB001, Problem Solving and Programming, is the core

introductory programming unit presented by the Faculty

of Information Technology at the Queensland University

of Technology. In it students are introduced to the skills

required to solve computational problems and implement

solutions in a programming language. Python is the

language of choice for this unit, as it has a simple syntax

and is easy to use. Students are not distracted with

difficult installation tasks, nor do they need to master a

complex development environment. As a freely-available

scripting language, Python encourages experimentation

by students to reinforce conceptual material (Zelle 2007).

Students of ITB001 are expected to devise a plain

English “algorithmic” solution to each programming

problem prior to implementation of their solution in

program code. Stepwise refinement of abstract

requirements to executable code is also encouraged, as a

way of helping students develop programs incrementally.

Marks awarded for assignments give almost as much

Copyright (c)2009, Australian Computer Society, Inc. This

paper appeared at the Eleventh Australasian Computing

Education Conference (ACE2009), Wellington, New Zealand,

January 2009. Conferences in Research and Practice in

Information Technology, Vol. 95. Margaret Hamilton and Tony

Clear, Eds. Reproduction for academic, not-for profit purposes

permitted provided this text is included.

weight to algorithms as programs, in an attempt to

encourage methodical program development, rather than

‘hacking’. In the teaching materials we used the term

prosecode, borrowed from Zobel (2004), as a means of

describing “syntax-free” algorithms, because we felt that

most pseudo-code notations in the literature were still too

“program-like” for our needs.

In Semester 1, 2008 we conducted an experiment

involving 313 students sitting the final end of semester

exam in this unit. Most of these students were first-year

Information Technology students, although there was also

a large number of second-year double-degree students.

The unit assumes that students have no prior

programming experience (although many students have

some programming experience from high school or other

university units).

While most of the exam questions emphasised

traditional program code comprehension and writing

skills, one exam question required students to write a

natural language algorithm only, in order to test their

ability to solve algorithmic problems independently of the

specifics of any particular programming language. Here

we examine the outcomes of this experiment by analysing

the variety of algorithms produced by the students to see

what they reveal about the students’ underlying problem

solving skills. We also compared the students’ outcomes

for this exercise in “syntax-free” programming against

their solutions to a traditional program code writing exam

question, to see whether students’ skills at devising

algorithms correlate strongly to their programming skills.

2 Related Work

Bornat (in Bruce et al. 2002) introduced the concept of

“syntax-free” programming to separate the notions of

programming from coding because of what he saw as the

‘damage’ caused by the introduction of a programming

language while learning to program. Bornat clearly

distinguished learning to program from learning to code

in his book designed to teach programming outside an

electronic environment. Our experiment tries to evaluate

problem solving skills separately from coding in order to

determine any correlation between the two.

Of course, many educators have used “explain in plain

English” style questions to test students’ program

comprehension skills (Lister et al. 2006), but our

experiment is different because it studies students’ plain

English writing, rather than reading skills.

Dierbach and others (2005) designed a preparatory

course for novice programming students which sought to

develop their ability for algorithmic problem solving

rather than knowledge of any particular programming

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

75

language. They found that students in this course

performed on average at a higher level in subsequent

programming units than students with any other type of

programming background. They also reported that the

confidence levels of students completing the preparatory

course were affected positively, and they suspect this

contributed to their success in further programming

courses. This supports the notion that confidence is a

contributing factor to success and retention in

programming courses (Fisher et al. 2002; Katz et al.

2006).

Others have suggested separating algorithm

development from implementation of code and have

drawn parallels between mastering algorithm

development skills and successfully learning to program

(DuHadway 2002; Faux 2003). Mendes et al (2005)

suggested that a significant problem for students learning

to program is their inability to develop an algorithm to

solve a problem, which is one of our motivations for

trying to study the two skill sets separately.

Reporting on a series of projects investigating what

they termed ‘common sense computing’, Simon et al

(2006) and Chen et al (2007) suggested that prior to

commencement of computer science studies, students

already have considerable problem solving and algorithm

writing skills, but found that those skills actually

deteriorate with fragile programming knowledge.

In terms of code implementation, Parsons and Haden

(2006) observed that novice programmers repeatedly

made the same syntactical errors. They developed an

interactive puzzle-like tool where students drag-and-drop

portions of code to form a complete solution. The

puzzles allow students to identify errors they make in

choosing inappropriate lines of code, and provide a fun

way to rote learn syntactic constructs.

Finally, Little and Miller (2008) acknowledge the

difficulties associated with language-specific syntax and

are currently working towards syntax-free programming

by developing a parser that generates code from a plain-

English set of instructions. Such a utility, although not

helpful to a student struggling to learn a specific

language, could be useful in building problem solving

and algorithm development skills.

3 The Question

The final exam question used in our experiment was as

follows:

Assume that you have a five-year old niece to whom

you have just given a paper bag full of marbles, each

of which has a unique number printed on it. Write a

detailed set of step-by-step instructions (i.e., an

algorithm) for your niece to follow which will allow

her to find the two marbles with the smallest and

largest numbers in the bag, respectively.

You may assume that she can recognise whether or not

one number is larger than another, but that she cannot

understand vague instructions like “find the marble

with the largest number”. (Don't worry about whether

or not your niece can read — an adult can read out

the instructions to her if necessary.)

The style of this question should not have been a

surprise to the students. Developing natural language

algorithms before writing code was emphasised

throughout the semester in both weekly workshop

exercises and assessable assignments. During the

semester students were expected to write an abstract

English description of their problem solving strategy,

prior to coding a solution. This was then repeatedly

refined until a concise set of non-ambiguous instructions

was developed which solved the task. Extensive

illustrative examples documenting this step-wise

refinement process from abstract algorithm to code were

supplied to students each week.

Also a similar question involving counting playing

cards by suit, to confirm the integrity of a second-hand

deck, appeared on the practice exam presented in the final

lecture. The ploy of requiring the algorithm to be written

for a small child was used on the practice exam too, as a

way of promoting the idea that each step in the algorithm

must be very simple. A solution was provided for the

corresponding practice exam question, clearly showing

the style of answer expected. Students should have been

quite familiar with the concept of collections (lists), as list

processing, operations and comprehension formed a

major part of the semester’s work.

4 The Expected Answer

The answer we expected to the exam question above was

something along the following lines:

1. Draw two circles on a piece of paper and label one

“largest” and the other “smallest”.

2. Take two marbles from the bag and put the one with

the smaller number in the circle labelled “smallest”

and the other one in the circle labelled “largest”.

3. While there is still a marble left in the bag:

a. Take a marble from the bag.

b. If the marble has a smaller number on it

than the one in the circle labelled

“smallest”, put it in place of that marble in

the circle.

c. Otherwise, if the marble has a larger

number on it than the one in the circle

labelled “largest”, put it in place of that

marble in the circle.

d. Otherwise, just put the marble aside.

4. When there are no more marbles left in the bag, the

one left in the circle labelled “smallest” is the one

with the smallest number and the one in the circle

labelled “largest” is the one with the largest number.

This set of instructions is a prosecode paraphrase of

Berman and Paul’s (2005) ‘MaxMin2’ algorithm for

efficiently finding the largest and smallest numbers in an

array.

Although independent of any particular programming

language syntax, note that this algorithm has all the

features of basic imperative program code. The

numbering of the steps represents sequential composition

of actions. Step 1 in effect declares two named variables

CRPIT Volume 95 - Computing Education 2009

76

and Step 2 initialises them via assignment. Step 3

represents pre-tested iteration. Steps 3b–3d model a

conditional statement. Finally, Step 4 represents the

action of returning the computation’s result.

Also note that this particular solution implicitly relies

on an assumption that there are at least two marbles in the

bag (which seems reasonable given that the question says

the bag is “full of marbles”).

5 Solutions Produced

To analyse students’ responses to this question we

categorised them by the type of algorithm produced, by

the assumptions their algorithm makes about its inputs

(i.e., the minimum number of marbles required), and by

how successfully the algorithm was expressed. We

considered an attempt at describing an algorithm to be

‘unsuccessful’ if the instructions were impossible to

follow because they were either wrong, incomprehensible

or too vague for even an intelligent child to understand.

Overall, a surprisingly wide range of solutions were

produced, some of which did not occur immediately to

the teaching staff, and some of which actually improved

on our solution by avoiding our assumption about the

minimum number of marbles required. The anticipated

solution described above is essentially a searching

algorithm, and most students’ answers were of this

nature. However, a sizeable percentage of students

produced solutions based on sorting the marbles, in order

to find the smallest and largest ones. Although this

strategy works, it is inefficient because there is no need to

sort the marbles to solve the problem. (Nevertheless,

efficiency is not a marking criterion for this unit, so

students were not penalised for suggesting such

solutions.) Ultimately the algorithms were divided into

13 distinct categories, as shown in Table 1.

Category % Students

Attempting

% Students

Unsuccessful

Single pass search,

minimum 2 marbles

35.5 3.2

Two pass search,

minimum 2 marbles

17.9 1.9

Partial sort 9.5 1.9

Ill-defined total sort 9.3 9.3

Total insertion sort 6.4 3.5

Single pass search,

minimum 1 marble

6.1 1.3

Recursive sieve 4.5 3.2

Digit based sort 3.2 3.2

Two pass search,

Minimum 1 marble

2.2 0.6

Unique/Incomprehensible 2.2 1.6

Total bubble sort 1.3 1.3

No answer 1 1

Single pass search,

Minimum 3 marbles

1 0.6

Table 1 Algorithm Categories

Below we discuss interesting aspects of each specific

category of algorithm produced.

Single pass search, minimum of 2 marbles [111/313

= 35.5% of answers attempted; 10/313 = 3.2% deemed

unsuccessful]. This was the expected algorithm,

described in detail above, so it was pleasing to discover

that it was by far the most common solution.

Two pass search, minimum of 2 marbles [56/313 =

17.9% of answers attempted; 6/313 = 1.9% deemed

unsuccessful]. A less-efficient, but equally effective,

variant of the expected algorithm, this solution involves

searching through the bag of marbles twice, firstly to find

the one with the smallest number and then to find the one

with the largest number. Most students recognised that

having found the marble with the smallest number in the

first pass, this particular marble could be excluded from

the second.

‘Partial sort’ [30/313 = 9.5% of answers attempted;

6/313 = 1.9% deemed unsuccessful]. This commonly-

suggested algorithm piqued our interest because it is quite

unlike any examples or exercises studied in the unit. It

begins by selecting two marbles and placing them in a

line with the smaller on the left. Each of the remaining

marbles is then compared with the marbles at the ends of

the line. If its number is smaller than the one on the far

left it is placed further to the left. If its number is larger

than the one on the far right it is placed further to the

right. Otherwise, it is placed “in the middle”. When the

bag of marbles is emptied the ones with the smallest and

largest numbers can be found at the extreme ends of the

line. Intriguingly, this process produces a partial

ordering of the marbles.

At one level the algorithm can be viewed as merely a

slight variant of our expected one, with the additional

feature that marbles that are not candidates for largest or

smallest are retained rather than discarded. However, the

interesting feature is that the degree of sorting achieved

depends on how the student explained what was meant by

putting a marble “in the middle”. In some cases “the

middle” was clearly intended to be an unordered pile. In

others, however, it was said to be a “line” (sequence). In

this latter case different sorting outcomes can be achieved

by putting a marble destined for “the middle”

immediately beside a marble at the end of the line versus

putting it in the exact centre of the sequence. Both of

these alternatives were commonly suggested. (Of course,

none of these variants make any difference to the overall

answer produced by the algorithm.)

Ill-defined total sort [29/313 = 9.3% of answers

attempted, all deemed unsuccessful]. A large percentage

of students recognised that the problem could be solved

trivially if the marbles were sorted, but did not know how

to achieve this. Their algorithms therefore said, in

essence, “sort the marbles and then choose the ones at the

end”. All such algorithms were considered unacceptably

imprecise.

Total insertion sort [20/313 = 6.4% of answers

attempted; 11/313 = 3.5% deemed unsuccessful]. Many

students attempted to describe an algorithm which

involved totally sorting the marbles and then returning the

ones at the ends. (Inevitably such an algorithm will be

unnecessarily inefficient because there is no need to

totally order the marbles to solve the problem.) Most of

these solutions used an insertion sort-like algorithm. A

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

77

line of marbles is maintained in left-to-right ascending

order and each newly-selected marble is placed in its

appropriate place by searching from the left until a

marble with a larger number is encountered, in which

case the new marble is placed to its left, or the end of the

line is reached, in which case the new marble is placed at

the far right.

Although this algorithm is straightforward, it is

awkward to explain in precise step-by-step detail. Most

students had difficulty describing the process for

searching for the location at which to insert each new

marble, which is why many attempts were deemed

unsuccessful. (Sorting algorithms are considered too

difficult for students in this unit, so it was surprising that

so many students attempted this approach.)

Single pass search, minimum of 1 marble [19/313 =

6.1% of answers attempted; 4/313 = 1.3% deemed

unsuccessful]. Whether by accident or design, a large

number of students produced solutions which improved

on our expected algorithm by requiring only one marble

as a minimum. However, this considerably complicated

their algorithms. Typically the first marble selected was

placed in the container labelled “largest”. The loop for

processing the remaining marbles, if any, then needed an

extra conditional statement to check whether or not the

container labelled “smallest” is occupied. If not, then the

newly-selected marble is placed in the container labelled

“smallest” if its number is less than that of the marble in

the container labelled “largest”, otherwise the marble in

the “largest” container must be moved to the “smallest”

one, and the new marble is placed in the “largest”

container. In effect, the first and second (if there is one)

marbles taken from the bag must both be treated as

special cases.

A weakness of this strategy is that if there is only one

marble in the bag then the result returned has a “largest”

outcome but no “smallest” one. However, five students

managed to overcome even this problem by writing down

(or in one case memorising) the numbers on the marbles,

rather than using the marbles themselves as ‘values’.

This allowed them to initialise their algorithm by

recording the number on the first marble as both

“smallest” and “largest”. This solution was the most

efficient and general of all algorithms produced. (A sixth

student recognised the problem and attempted to solve it

by writing an initial value of zero for both the smallest

and largest numbers, but failed to take into account that

‘0’ may be a legitimate number on a marble.)

‘Recursive sieve’ [14/313 = 4.5% of answers

attempted; 10/313 = 3.2% deemed unsuccessful]. This

interesting group of, largely unsuccessful, attempts was

again entirely unexpected by the teaching team. Each

began with the same initial steps: “Take marbles out of

the bag two at a time and put the one with the largest

number in a pile on the right and the other one in a pile on

the left”.

This process will, of course, create a pile known to

contain the marble with the smallest number, and another

pile known to contain the marble with the largest one, but

we still don’t know which marble is which! Having thus

painted themselves into a corner, the students’ algorithms

then differed depending on whether or not they saw a way

out. Many students’ attempts simply trailed off with a

vague instruction to “keep going”.

The best attempts recognised that a recursive problem

had been created and attempted to explain the need to

repeatedly apply the process to each of the piles.

However, this was awkward to express without having

named subroutines to call and, in any event, the whole

process was far more complicated than our “five-year

niece” could be expected to follow. Also, although

recursive algorithm design had been covered in the unit,

most of these algorithms failed to clearly identify a ‘base

case’ to ensure termination.

Another obvious weakness of this approach, even

when described relatively successfully, is that it relies on

the bag containing an even number of marbles. None of

the attempts explained what to do if the number of

marbles in the bag was odd.

‘Digit-based’ sorting [10/313 = 3.2% of answers

attempted, all deemed unsuccessful]. Perhaps the most

disappointing group of attempts were those which tried to

sort the marbles’ numbers one digit at a time, e.g.,

hundreds, tens and units, or based on the number of digits

the numbers contained. The reason for adopting such an

awkward process, rather than just comparing the numbers

on the marbles directly, was never explained. Some

grouped the marbles by digits, or ranges of values, and

then proceeded to perform a linear search through the

groups anyway, making the initial grouping phase

redundant.

Many of these algorithms were doomed to failure

because a sufficient spread of numbers was not catered

for. For instance, some said, “put all the marbles with a

single digit in a pile and then select the smallest of these”,

ignoring the possibility that there may be no marbles with

single-digit numbers.

All of these algorithms were inefficient, confusing and

complex, and certainly beyond the capabilities of our

“five-year niece”.

Two pass search, minimum of 1 marble [7/313 =

2.2% of answers attempted; 2/313 = 0.6% deemed

unsuccessful]. This algorithm was a variant of the ‘two

pass’ algorithm outlined above, but took greater care to

consider the possibility that there is only one marble in

the bag. Again two searches are made through the

collection of marbles, but the result of the first pass is

written down and the chosen marble returned to the bag,

thus allowing the same marble to also emerge from the

second pass.

Unique and/or incomprehensible solutions [7/313 =

2.2% of answers attempted; 5/313 = 1.6% deemed

unsuccessful]. A small number of attempts defied

classification. Notable examples were as follows.

� One student began by dividing the marbles into

two piles as described in the ‘recursive sieve’

algorithm above. The algorithm then proceeded

to totally sort each of the piles before selecting the

marbles of interest. (Although grossly inefficient,

this strategy could succeed.)

� Another suggested sorting the marbles into piles

of marbles whose number ends with the same

digit and then searching through each of the piles

CRPIT Volume 95 - Computing Education 2009

78

for the smallest and largest in that pile. (It was

unclear how the algorithm was meant to

terminate.)

� Another described in detail how to count the

marbles but only briefly mentioned the issue of

finding the ones with the largest and smallest

numbers.

� Undoubtedly the strangest algorithm of all

involved drawing a 10 × 10 matrix with rows and

columns numbered with the digits from 0 to 9.

(The numbers on the marbles were apparently

assumed to all have two digits.) The marbles

were then placed in the cells in the matrix

according to their numbers’ first and second

digits. The assumption was then that the marble

with the smallest number would be “closest” to

the top left and the one with the largest number

would be closest to the bottom right.

Unfortunately, of course, there is nothing to

prevent two or more marbles from being

equidistant to the corners.

Total bubble sort [4/313 = 1.3% of answers

attempted, all deemed unsuccessful]. A small number of

students attempted a solution which involved sorting the

marbles using a swapping-based algorithm similar to the

traditional bubble sort. (Although sorting algorithms are

not covered in the unit, a bubble sort was used as an

illustration of an inefficient algorithm in a tutorial on

complexity analysis, so the students may have had vague

memories of this.) Unfortunately none of the attempts

managed to describe the multiple passes needed to sort

numbers in this way with sufficient clarity.

No answer [3/313 = 1.0% of students]. Only a few

students failed to provide any answer at all to the

algorithm question, unlike the code-oriented questions on

the exam which was not attempted by 11 students. This

might indicate that students sitting the exam considered

the prosecode question to be easier than those involving

programming language code.

Single pass search, minimum of 3 marbles [3/313 =

1% of answers attempted; 2/313 = 0.6% deemed

unsuccessful]. This rarely-suggested approach is not a

distinct algorithm, but a poorly-initialised version of our

expected one. It begins by designating spaces for the

“smallest”, “largest” and “discarded” marbles. The next

step then (unnecessarily) involves removing three

marbles from the bag, to populate each of these three

spaces. There is, of course, no need to initialise the

“discarded” pile in this way.

5.1 Analysis of Students’ Answers

Overall a clear majority of students produced a search-

based solution as expected. Various linear searching

algorithms for processing lists had been used throughout

the semester as lecture examples, workshop exercises and

assignment problems, so this outcome was not

unexpected.

However, the large number of students who attempted

some kind of (unnecessary) sorting algorithm was

surprising. Sorting algorithms per se were not covered in

this unit, apart from a lecture demonstration of an

algorithm for separating negative and non-negative

numbers from a list, and workshop exercises comparing

algorithm efficiency using supplied sorting modules.

Exposure to these modules was limited, with most

students blindly calling the supplied code, so it is unlikely

to have been particularly influential on students

answering the exam question. One explanation for so

many students using a sorting algorithm is, simply that

knowledge of sorting is a pre-existing skill. Chen et al

(2007) found in an experiment involving writing natural

language solutions that prior to commencement of

studies, students were able to articulate coherent versions

of insertion, selection, bubble and other sorting

algorithms.

Also, as mentioned above, many of the students’

attempts surprised us. The ‘partial sort’ algorithms were

a pleasant surprise because this is an elegant variant on

the expected answer. However, the ‘recursive sieve’

algorithms sit at the other extreme. It is not clear why so

many students adopted this obviously complex and

awkward approach. We have observed that a small

number of students work more confidently with recursive

problems than even the simpler looping constructs of for

and while statements. It is not unreasonable to expect

that, under exam conditions, with virtually unlimited

scope, students would choose an approach they were

comfortable with. Although recursion is not now a huge

part of the curriculum for this unit, in previous semesters

the programming language used was Scheme, and

recursion was the only tool available for expressing

repetition. The experiment was conducted in a semester

with a high percentage of repeating students who may

have been exposed, at least to some degree, to the

recursion-intensive predecessor introductory

programming unit.

Similarly, the various ‘digit-based’ attempts were very

disappointing. Students had previously completed a

workshop exercise which required them to calculate the

number of digits in a given integer, so their recall of this

activity may have influenced their approach to solving the

exam question. Other studies have similarly found that a

large number of students treated numbers as strings of

digits rather than as primitive types in order to describe a

sorting algorithm and concluded that this was probably

because they focused at school on the fact that digits were

the basic parts of a number (Simon et al. 2006; Chen et al.

2007).

6 Coding Errors Evident in the Algorithms

Even though the algorithms were written in English, it

was interesting to note that many novice programming

errors could be discerned in them. Notable examples

included the following.

Incomplete or incorrect initialisation. A handful of

students failed to include a loop initialisation step in their

algorithm and thus started attempting to compare newly-

selected marbles without creating initial candidates for

largest and smallest. A couple of students, apparently

trying to allow for the possibility of there being only one

marble in the bag, accidently created an ‘uninitialised

variable’ problem by not having initial values for both the

biggest and smallest numbers. More subtly, two students

incorrectly initialised their single-pass search by

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

79

discarding one of the first marbles taken from the bag, in

a way that meant it was never considered as a candidate

for either largest or smallest. (These could be difficult

bugs to detect in the corresponding program!)

Inadequate declaration. Most students followed the

lead of the algorithm on the practice exam and introduced

clearly labelled ‘variables’ in which to put the selected

marbles. Sometimes these were pieces of paper labelled

“biggest” and “smallest” but, given the propensity of

marbles to roll, most students had the foresight to suggest

labelling bowls, bags or other containers. However, a

small number of students just suggested allocating certain

unlabelled ‘places’ to put the marbles. Since these

anonymous ‘places’ had no names, the remainder of the

student’s instructions then struggled to distinguish them,

introducing awkward phrases such as “the place where

you put the biggest marble” or, in one memorable

example, “space 1”, “space 2” and “space 3”, creating

considerable scope for confusion. Evidently these

students had not absorbed our frequent admonitions to

choose meaningful variable names.

Unnecessary temporary variables. Several students

introduced the equivalent of ‘variables’ into their

programs that were entirely unnecessary. In a few cases

students suggested writing down the largest and smallest

numbers seen on marbles so far, rather than just retaining

the marbles themselves. These students lost sight of the

fact that this exercise was in essence to return the marbles

with the smallest and largest numbers, not the values on

those marbles.

Even stranger, two students suggested writing down

the numbers from all the marbles on separate pieces of

paper first and then searching through the pieces of paper

instead of the marbles. Odder still, one student suggested

counting all the marbles as the first step, even though this

total was never used subsequently. Another student

described a partial sort which involved writing down the

number on every marble examined so far and, worse,

searching through all these numbers for each newly-

selected marble. (At the other extreme, only one student

suggested using the niece’s own memory to keep track of

the smallest and largest numbers seen so far.)

Failure to ensure loop termination. A particularly

obvious error in a few algorithms was failure to ensure

that the loop made progress towards termination. In our

situation this typically manifested itself as an instruction

to return each marble examined to the bag from whence it

came! (One student did say “choose another marble”

from the bag after returning the marble just examined, but

offered no specific advice on how to keep track of which

ones had already been considered.)

Hardwiring of solutions. The standout cases in this

category were the various ‘digit-based’ attempts, all of

which suffered from a need to know the range of numbers

written on the marbles. A few attempted solutions

seemed to assume that the numbers were in an ‘obvious’

range, such as 1 to 100, although they didn’t state this.

Of course, the only real requirement for the numbers on

the marbles is that they are totally ordered.

Failure to return a value. A minor issue with many

algorithms is that they did not clearly say where the

‘result’, i.e., the marbles with smallest and largest

numbers, could be found. This was not a problem when

the marbles of interest were placed in clearly labelled

containers, but some students chose to label their

‘variables’ with different colours, e.g., a red and a green

bowl to hold the marbles selected.

7 Problem Solving Versus Coding Skills

Directly following the algorithm development question

on the exam, the students were required to complete a

traditional program coding question:

Define a Python function called twinned which

accepts a list of items and returns a list of those items

that occur exactly twice in the given list. Each such

item may occur in the returned list once only. Hint:

Python’s count method for lists, which returns the

number of times a particular item occurs in a list,

simplifies the solution.

Again, this question should not have been a surprise to

the students as they were shown a similar example in a

lecture, which tested if all items in a given list are unique.

The solution to the question above is straightforward and

involves iterating over the items in the given list and

adding each one to a new list only if the item appears

twice in the original list and not in the new one.

Students who answered this question generally did

fairly well. The most common mistake was forgetting to

ensure that the returned list of items does not contain

duplicates.

Figure 1: Student marks for algorithm and coding

questions

For each of the students who sat the exam we thus had

a marked “algorithm” and “coding” question, allowing us

to do a direct correlation analysis between the two, to see

if students’ skills at writing algorithms translate to skills

at writing program code. For this analysis we removed

students who had failed to provide an answer to either or

both of the exam questions. There are any number of

reasons why questions go unanswered on exam papers,

and no presumption can or has been made about the level

of competence or otherwise of students providing little or

no written clues. Two students answered neither

question, and ten others failed to answer one of them, so

this comparison focused on 301 student marks. A

standard Pearson’s correlation coefficient analysis, to

produce a result ranging from −1 (inverse correlation) to

+1 (positive correlation), for those 301 students produced

CRPIT Volume 95 - Computing Education 2009

80

a correlation of r = +0.446, showing little linear

relationship between students’ ability to answer the

algorithm question and the coding question.

The scatter plot in Figure 1shows each student’s mark

for the algorithm question against their mark for the

coding question. Since there are many duplicates, the

density of each point is an indication of the number of

students with the same algorithm and coding marks.

We also tried grouping the solutions to the algorithm

question into the three main categories, searching

algorithms, sorting algorithms, and the much smaller set

of unusual solutions. Table 2 shows the distribution of

marks within each category, including the mean and

standard deviation, as well as the distribution of marks

the same students received for the coding question.

 Algorithm Mark Coding Mark

Algorithm

Category

Mean StDev Mean StDev

Searching 5.7 1.6 3.7 1.4

Sorting 4.2 1.6 3 1.6

Other 2 1.4 2 1.9

Table 2 – Mark Distribution

The correlation coefficient, scatter plot (Figure 1) and

mark distribution (Table 2) all show little correlation

between students’ ability to develop algorithms and to

write code. Our original hypothesis was that students’

algorithmic problem solving skills would be a strong

indicator of their coding skills. The weakness of the

correlation could be explained by two factors:

1. Some students who performed adequately on the

algorithm question did poorly on the coding

question. Although this is the most obvious

explanation, this trend did not stand out

dramatically during marking. (The same marker

marked both questions.) Assignments gave

similar weight to algorithms as code, and students

were especially encouraged to concentrate on

problem solving process and documenting their

algorithm if they lacked the confidence or ability

to produce working code. In the exam this type of

student may have had ample experience at

producing algorithms, but not programs, and

therefore out-performed in the algorithm question.

Another explanation is that those students who

developed a habit of producing algorithms before

code, finding no requirement to first produce an

algorithm for the coding question in the exam,

struggled to problem-solve directly to code.

2. Some students who did well on the coding

question did poorly on the algorithm question.

There were a few obvious cases of students who

could write code but couldn’t express themselves

in English. One overseas student in particular

achieved near full marks on the code-related

questions but failed to write a comprehensible

algorithm. Four students wrote Python code on

the back of the page for the algorithm question!

This is consistent with evidence that many

students dislike documenting their problem-

solving process and when forced to produce both

algorithms and code for assessment, choose

(contrary to instructions) to write the code first,

then attempt to convert that into an algorithm. We

suspect this to be the case more particularly for

students with at least some prior programming

experience.

Overall we believe the first of these explanations was

the dominant one. It seems inevitable that many students

who can express their solutions satisfactorily in plain

language will have difficulty with the additional

requirement to translate their algorithms into program

code. The scatter plot is consistent with this explanation

as evidenced by the slightly more dense concentration of

data points in the bottom right hand corner than the top

left.

8 Discussion

The way in which the exam question was worded, asking

the students to direct their instructions towards a small

child, worked far better than we expected. Previously we

have always had difficulty explaining to students that we

want algorithms expressed as a sequence of simple

mechanical steps. Typically they produce monolithic

paragraphs of confusing explanations, or steps that are far

from “simple”. The “five-year old niece” motivation

seemed to solve this problem immediately. Although

some algorithms were poorly explained, all of the exam

question responses were closer to our ideal of an

executable algorithm than most of their attempted

algorithms in assignments.

Another pleasing side-effect of the experiment was the

way in which students engaged with the spirit of the

algorithm question. Many students included small asides

in their solutions directed at the imaginary “five-year old

niece”. Some gave her a name, several advised her to

spread the marbles out on carpet to prevent them rolling

away, one warned her not to swallow the marbles, one

promised her “cake” as a reward for finishing the

algorithm, one used a picture of a mouse to indicate

“smallest” and an elephant to indicate “largest”, one said

that the niece could write the labels needed for the

algorithm in permanent pen on the kitchen bench

“provided mummy is not around”, and one even advised

her not to take up drugs later in life! No such light-

heartedness was evidenced in the more traditional

programming questions.

It was also interesting to note that almost all students

answered the “syntax free” question, unlike the code

comprehension and writing questions, which many

students failed to answer. Only three out of 313 students

failed to provide any answer at all to the algorithm

question, suggesting that students considered this an

“easier” task. (Nevertheless, many students still

performed badly on the question, despite generous

marking.)

A practical disadvantage was the difficulty of marking

the question, however. Given the wide range of

responses, and the different forms of expression used by

the students, each answer had to be read and assessed

carefully. The algorithm question took twice as long to

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

81

mark as the equivalent code writing question, which

produced a more consistent style of response.

9 Conclusions
Successful computer programming involves two tasks,

developing an algorithmic solution to the problem and

then expressing this solution in the target programming

language. To see if the first of these skills could be

assessed separately from the second we conducted a

large-scale experiment in which students’ ability to write

“syntax-free” algorithms and program code were both

examined. We were surprised by the wide variety of

solutions produced by the students, when freed of the

requirement to express themselves in a specific

programming language. It was also interesting to

discover that many common coding errors (inadequate

initialisation of variables, failure to guarantee loop

termination, etc) could be seen clearly in the students’

natural language algorithms. Nevertheless, the weaker

than expected correlation between students’ marks for the

algorithm and coding questions means that a syntax-free

programming question cannot be used as a complete

substitute for a traditional code writing question.

10 Acknowledgements

We wish to thank our teaching colleagues, Fiona Cleary,

John Hynd, Andrew Craik, Annabel Poppleton, Jason

Wimmer, Matthew Brecknell, Neil Muspratt and Frederic

Maire for their invaluable assistance and camaraderie

throughout the semester in which this research was

conducted.

11 References

Berman, K. A. and Paul, J. L. 2005. Algorithms:

Sequential, Parallel and Distributed, Thomson.

Bruce, C. and McMahon, C. 2002. Contemporary

Developments in Teaching and Learning

Introductory Programming: Towards a Research

Proposal. Faculty of Information Technology

Teaching and Learning Report 2002 – 2. D. P.

Bancroft. Brisbane, QUT.

Chen, T.-Y., Lewandowski, G., McCartney, R., Sanders,

K. and Simon, B. 2007. Commonsense

Computing: using student sorting abilities to

improve instruction. Proceedings of the 38th

SIGCSE technical symposium on Computer

science education, Covington, Kentucky USA,

ACM.

Dierbach, C., Taylor, B., Zhou, H. and Zimand, I. 2005.

Experiences with a CS0 Course Targeted for

CS1 Success 36th SIGCSE technical symposium

on Computer science education St Louis,

Missouri, USA, ACM.

DuHadway, L. P. 2002. Separating Fundamental

Concepts from Language Syntax in an

Introductory Computer Science Course. Logan,

Utah, Utah State University.

Faux, R. J. 2003. Impact of a Pre-Programming Course in

a Computer Science Curriculum, The Union

Institute and University.

Fisher, A. and Margolis, J. 2002. "Unlocking the

clubhouse: the Carnegie Mellon experience "

ACM SIGCSE Bulletin 34(2).

Katz, S., Allbritton, D., Aronis, J., Wilson, C. and Soffa,

M. L. 2006. "Gender, Achievement, and

Persistence in an Undergraduate Computer

Science Program." ACM SIGMIS Database

37(4).

Lister, R., Simon, B., Thompson, E., Whalley, J. and

Prasad, C. 2006. Not seeing the forest for the

trees: Novice programmers and the SOLO

taxonomy. Eleventh Annual Conference on

Innovation Technology in Computer Science

Education (ITiCSE'06), Bologna, Italy, ACM.

Little, G. and Miller, R. 2008. "Syntax-free

Programming." Retrieved 1/09/08, 2008, from

http://groups.csail.mit.edu/uid/projects/keyword-

commands/index.html.

Mendes, A. J., Gomes, A. and Esteves, M. 2005. "Using

simulation and collaboration in CS1 and CS2."

ACM SIGCSE Bulletin 37(3): 193-197.

Parsons, D. and Haden, P. 2006. "Parson's Programming

Puzzles: A Fun and Effective Learning Tool for

First Programming Courses." Eighth

Australasian Computer Education Conference

(ACE2006) 52: 157-163.

Simon, B., Chen, T.-Y., Lewandowski, G., McCartney,

R. and Sanders, K. 2006. Commonsense

Computing: What students know before we

teach (Episode 1: Sorting). Proceedings of the

2006 international workshop on Computing

education research.

Zelle, J. 2007. "Python as a first language." from

http://mcsp.wartburg.edu/zelle/python/python-

first.html.

Zobel, J. 2004. Writing for Computer Science. London,

Springer.

CRPIT Volume 95 - Computing Education 2009

82

��������		
�
	
�
��������		��������������������������
��������	�
������������������
��������������������� ��

��������	��
�	���
��	����������������
��������������	
����

�������������������������
����� !!����
��������	
���
�������
��������
�������������������������

�
������ ��
��	"�	� #��
� ��$� �����
�
������ �	�� %�$����
���� �
�
�	�#���
� ��� ����
���$� �
� �

�

����&�'�	���
� ��
��������
�
����� ���� ��� ������ �� �	������� �
�
����$� ��$� ����� ���	$�
��	"���� ��� �	������
��	��

&���%���	��%��%�	�� �#��� ���

��$���	������������$������	����	����������$�����	���	�
���
�
������
����#������ ��� (�
��
�� �����

�	����$��)���
���
�*�$�
��	"���&����
�����	�
���
����������#���	���$��������	�
���
�
�
� �� ��	��+
�����
��$�� ����� �����	�$� ,� ������ ��	"�	
�
��	"���� -.� $�

�	���� /��
����
� ����� %���� ,0�
��$����
��
%�	
� ��� ����
���$� �
� �������	� 1������&� ����
��$��

���$� ����� ���� ������ ����	+	���	� 	����#������ 23��4� 	����$�
#	��$��� #���� ���	� �� ��	������	� /��
����� ��$� ���	� ���� -.�
/��
����
&� ���
� ����	� �
�
� ���� 5%��� !�-�
����
���� ���
���
�	����������	+	���	�	����#�������
�,���	"�	
&�
����
��$�� %�
� ��������$� #�� ���� $�
�	�� ��� �

�

� ����
����	���� �
� �� �������	� �

�
��$� �

�

����� 2�!!4�

�
����%���	��$���������&�������������������!!�
�
����
$��
� ���� ���$� ��� #����	�� ����	���� �������������	"�	
&�
���
��%�����$�$����/�����
����%�����	������������	"�	
�
�	�&�&�
�������	
� � �

�

������ ��	"�	� 	����#������� ��	"�	� #��
��
����	+	���	� 	����#������� 5%��� !�-�� �������	� �

�
��$�
�

�

����&�

!� "����#� �
�����#����
$��
���%����������#
�
1�#
������
� -&-� ��$� -&*�
��%� ����� �$�����	
� #�������
�

�

����� �
� ����	����� ��$� ��
���� ��$� ����� ���
�� �%��

����	
� ����� ��$� ��� ���	��
���� ����	�
�� ��� �������	�
!

�
��$�!

�

�����2�!!4&������
������	�������/��
����
�
�#���� �!!�
�
���
� �
6� ��%� $�� ���� ���
�	�� �����
����	���� �
� �� �!!�
�
���7� ��� #������� ����� �� �!!�

�
������
�������
���������	�����
���
�	�
���
���	���%����
�����
��
�%�����
������
���	���%�������������	&����
�����
�
�����

�	����������	����#���
���	�
��������������	+	���	�
	����#������ 23��4&� !�������� ���� ����	���	�� ��"�
� �����
�
�#�����������"��
����$�������3����%�������#�������#���
���
��$����$����&����
�����	��	���$�
�	�
���
��
���
��$�����
$���	����� ������ 3��8� ���
�� 	�
���
� ���� #�� �
�$� %����
�

�

������������	�����
����!!�
�
���&�

!&!� "�'����� ���%������������
��!������2*00*��&�94�����
� ����
����%����$�
�	��������
�
�

�

����6��
�� �������������������
����	����� :� *00.�� !�
�	������ �������	� 1�������� 3��&� � ���
�
����	� �����	�$� ��� ���� ;�������� !�
�	���
���� ����������
;$�������� ���
�	����� 2!�;*00<4�� ������������ =�%� >�����$&��
���
�	����
� ��� ��
��	��� ��$� ?	������� ��� 3�
�	�������
������������'��&�<,&���	��	��������������$����������	��;$
&�
���	�$�������
�	� ���$������ ���+
�	+�	�
��� ��	��
�
� ��	�����$�
�	���$�$����
���)���
������$�$&�

@� � &&&�

�

����� �
� ��
�	�� �
�
�������������&����
���������������
���� #�� ��� �� ��	����� �
�
��	��
�� ���

��$���
�2
��$#��"��������	����	����4��
��� ���� �����	�	� 2
��$#��"� ��� ����	�
��������4�����������		�������$�
����	�
2
��$#��"� ��� ���� ��		������4� ���
�$����
�	���	
� 2
��$#��"� ��� ���� �
��
�
� 	�
��	��
4� ��$� ��� �������	
�
2/��������
�(�#����������
4&A�

�
!

�

����� �
� @�� �	������� ���������
�	� ���� �����	
����
A��

2�������B�C�����*00*���&�-D+-94���$�@���	���
����$��#�A�
�#������
�����	������2C	�%���C����B�?��$��#�	���-<<���&�
�4&� �!

�

����� �
� @%�$���� 	���	$�$� �
� ������
�� �	�������
�������� �
� ���	����A� 2��	#�	����B��������� *00D4&�����
	�
��	���	�������$� �@E�������
�� ����	����� ������%��$��

�	� ��	�
��$���
� �
� ��� �

�

� ����	� %�	"A� 2������ -<<,4&�
���� 	��
���
�	� ���� ����	������ �
� �

�

����� ������ #��

���	��� 	�
��	���	
� �
� ����� �

�

����� ���� ����� ��
�	����
�

���� ���
��$���� ���	����� 2C	�%��� C���� B� ?��$��#�	���
-<<�8�C�	����$��-<<<��&�D 98�F�����
��C�	����$��?��	
�B�
G�����	�� *0094&� C	�%��� C���� B� ?��$��#�	�� 2-<<�� �&� �4�
������$�
��$���
����	��#�
��%����
	�/������

�

�������$�
	���$�
��$#��"� ��$� �$$�$� ����� ���� 	��
��� �

�

����� �
�

������	������
����������	�����������
��

�

������������$�
���$����	����	�����2-<<���&�*94&�

!&(� ����� ������� �%�
��������
��)��'�����
���
���#������������*)��+�

�������	� !

�
��$� !

�

����� 2�!!4� �
� �

�

�����
$�����	�$� ��$H�	� ��	"�$� %���� ���� ��$� �
� �������	
�
2������� B� C����� *00*4&� !� *00*�
��$�� 	���	��$� ���
���	��
���� ����	�
�� ��� ��$� �
�� �
� �!!� ��� ���� �	���$����

�������	
�2C�������������F���
���������F��
���B�1�����	��
*00*4&� ���� ���#�	� �
� ����	
� ��#��
��$� ��� ���� �������
�!!� ���
�	����
� ��� I����#�	����� �����	
����
����	�
�
����*00*�
��$�&��������#�	���
��	�%��
	���*0� ���-<<<�
2���� ���	$� ���	� �
� ���� ���
�	����� ��$� ����
�	
�� ���	�
�	�
%�����
���	�
� �	�� ������#��4� ��� 90� ��� *00��
2%%%&������
�	����&���4� %���� ��� ���	���� �
� �#���� D��
����	
������	&�

C	�%���C����B�?��$��#�	�� 2-<<�� �&� 904� ������$� �����
���� ���	��
�$� ����	�
�� ��� �

�

����� ��� ���� �	�����
� ����
���	
� @�	�
�
�
	��� ���� JC	���
�K� ����	�����L
� �����	�
��������� �
� ��
�
����� ����� M/������L�%����� ��� ����
����
����� 	�$������ ����� ��
�
A� ��$� �	�$���� @
�	���	� ���
� ���
	�
��	��
A8�������������� DN����������	�
��$����	�
��	��
�

�����-<�D�2-<<���&�*,,4&�

���"���
� B����"
� 2*00*� �&� D-*4� ��	��$�%���� C	�%���
C���� B� ?��$��#�	�� 2-<<�4�
�	� ���� ���	��
���� ����	�
�� ���
�!!� O� $��	��
���� 	�
��	��
� ��	�
��$���� 	�/��	�� �� ��
��

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

83

�����
��%���������#�������$�#��$��	��
��������	���	"����
����&� !� *00D�
�	���� 2��	��	�� !��+���"��� G����	�� F��"��
;����
��� G���� B� 1���	$4� ����� �� 	�����$� 	��
���
�	� ����
����	�
�� ��� �!!6� ���	��
���� ��	������&� ����� ����$� ����
���	��
���� ���#�	� �
� 3���1;� 23����	������ �����������
������������	�1�������;$�������4�����	
��
����$�����
�	�
�������	��
�$�����	�
������!!&��

!&,� ��#� �� ������� �
��� ��#�
�'��$��
 ���
����
��

3���$$��������������)�����$���
�+
�����
������������
��
����
�!!� �
� ��� 	�$������	"�	�#��
���$� ���	�������
�
�����&�
���
�
�#
������� �	���$�
� ���$����� �������	"�	� #��
� ��$�
�����
�
�������
������������
����	�#���&�1������
�D���$�9�
�	���$�������
����
���	"�	������
�
�����&�

���� ����	
� ����$��
�$� ���� ��	�
� #��
� ��$� ���
�
������
%������� $�
������ ����&� 3�� ����
����%���� ��	��	���
�� %��
�

���� ����� #��
� �
� �� �	�(�$���� �����	�
�	� �	� �����
�� ��

��$������$���������
�
�������
���#	��$�	���	��	�
�		�������
	������#�������
�	�
���
������������	��$�����������	�#��
��	�
������ �		�	� 2�&�&� �$$���� ��	"
� �	� �	��
�	�#����
����		��������	�$�

�	����(�$�����
4&�

G���	�� -� �
� �� ����	��
� $��������� �
� ��%� ������

����#�������������
����	"�	�#��
���$����"��
����
�
�����&��

��	�
���� 2*00D4� ����� �� ����	����
���� ��
�� �
� ���
�
�
���$���� ��� ���"� �
� ���
�
�����&� 2!�������� ��	�
����
�������
� �

��
�� ��
� �������
� ����	���P�� ���
��	��
��
%�	
�� %����� �
� ����
���
� �
� ���
� ����	&4� ���� ������

�	����)�����
��
�
�����
����
��
����	
&�
�
@���������	"���� �
� �	���� ���
���	��� �$��	
��
�#(�������

����	
��
�����
6�
�� ������������
�������

����
�� ����
�P���
������

���
����
�� �����

��L
��������������
�/�������
������

��
�#�����

��	"�$��
�� ���� /������� �
� ���� ��
��
�%� �

��
���	"�$� �

�������

���� ��	"� �%�	$�$� ��� ���� �

��� ��		������ #�����
��	"�$��

�� ���� �

���� �
� ���� �

���
�L
� ����#���	�� ��$� �		�	
�
2
����������$��	����	4����������	"�	��

�� ������	"�	L
����$��������������
���	"����
�� ��	"�	L
� �)���������
� �
� ���� �

���
��� ��$� �
� �����

�

���
�&A�
�
!��������
�������	�$�
��

������
�	�������#��
�21�#�	��

*00*4� 	���	��$� ����� �$�����	
� ������� �� %�$�� 	����� �
�

�������
� ��� ���� �	�#���� �
� ��%� ��� 	�
����� �

�

�����
$�

�������
� �	�
����
	���
����	���
��� �����������
��"��%��$����������#�/������
���

�#���#��
������	"���&��

����
��$��
���$�#��
�������������	"����$������@����	+
����	���� �	� ���	�+����	���� ��	"���� ��	������
A� 21�����
��
���$%����� ���
"��
� B� C	�

�� -<<�4&� ����� ������$� �����
	�$������ #��
� %���$� ����� #���� @�)�	������ $�

�����A�
%�����������	��!!�$������������	������#�	��
�����	
���$�
����� ��
�� �
� ����	� ����	
� @%���$� ����� ��	��$�
	��� ����
��	"����
�����A&� ���
�� �!!� ��$� ��� ��	�� ���
�
�����
��	"���&��

���� $�������	
� �
� �� �!!�
�
���� ����$� �����$��
2C��
�	$�� C�	"��� G�)���� B� ������
�� -<< 4� 	���	��$�
���	��
�$����
�
�������
��������	��!!6�

�
@E� ���$� ��	"���� �
� ����
�	�� �
�
���	
�%�	"� ���� ���$� ��� ��
��$���� #�����
�	����$���

�
��	������������	
&�G�	���
�������
���	
�%�	"� ��	"�$� #�� ��	�� ����� ����
��	
��� %���� ���$� ��� �����
�
������
� ���
��	"
� �%�	$�$� $��� ��� $�

�	���� �$��
� �
�
%���� ���� ��		���� ��
%�	�
����$� #�&� ���
�
������$� %���� ����	� �	�#���
�
���� �
�
	���
���
�)�
����$�
����	���
���������$����
��	�����
��$���
� ���������� ���	�	� ��	"
�
����� ����� $�
�	��&� ��� #������� �����
����
�)������� $�
�	���������� �
� 	�$���$�� �
� ����
���������$�� #�� ���� �
�� �
� ���� �����$��

�
����
����� ��� ��	"
� �����
��������
���
�
������&A�

�
Q��� B� I��"� 2-<<.4� ������$� ����� �!!� �	���$�
�

���
�
������ ��� ��	"���6� @E� %����� ���� ����	���� �
�

�
�
�����!�������%�		
�
	
�
�������� ���%��
�����#�
� ���
����
�
������
���
�
�$�#����	��

���6�@?���$������	���$�F����	A�#��Q�	��������%%%&��$�����
&������
����6HH%%%&��$�����
&���H�����
H�	�����&���7������$R<�9�

CRPIT Volume 95 - Computing Education 2009

84

��	"�������$����
�/��������������
�$�������(���$�#������

��$���
����������	"�����	���

���
����	���$&�3���$$�������
���
�
������ �
� ���	���$�� �
��������� �
� ��	�� ����� ����
��	
��� �
� �������$� ��� ������	"���� �	���

&A���	��� ���	
�
����	�� ���� ���
�
������ �	������� %�
�
����� #����� ��$��
2F����
�� *00-4&� !�� ����	���������
�	���� 2��	��	�� !��+
���"��� G����	�� F��"�� ;����
��� G���� B� 1���	$�� *00D4�
	���	��$� ����� �!!� �
� %�$���� ��	�����$� ��� ���	��
��
���
�
������ �����	"���&��������B���	#�	������	���%����
����
�	���� ����� �!!� @�

�	
� ���
�
������ ��� ��	"���A�
2*00,��&�* 4&���
���
�
�
�2*00*��&�-<4�
����
6��

�
@�����#������ ��$�
��	��

� ���	��
�� #��
����������������

�

������	���

�#����
��
����
������	"�����������
���
��������$�
��� ��	"� ����� ������ �
� %�	"&� ���	�� �
� ���
��

�#������ �
� $�
�	���������� ��$�
��$���
�
�	��%�����%�	���
� ����
���� ��������	����� �
�
�	����$��/������#������
�
���&A�

�
��������������	
����2��4�
����%
�
�	�����	���$�	�
�

��� �$$	�

� ��	"�	� #��
� ��$� �����
�
�����&� ��� �	��
��	������	���
�
�����#���������
���	�#���
����������������
���#�	� �
�
��$���
� ��$� ����	
� �������$� ��� ���	��
�	�
��������� �
� �� ���	
�&� G�	� �)������� ����
�� D�000�

��$���
� ���"� ���� ���������� ���	
�� ����� ���
�
��$�� �
�$�

�	�$���&��

?�	�� �
� ���� %�	"� �������$� ��� �	���	���� �� ���	
�� �
�
�	�$������$������$�����	�=���
���$���	"����1�����
����
�������
�	����	"�������
�
�����&�;��	���)�����$�	���
�
��$�	������� ����� �
�� �	����$� ��	"�	
� 	�+��	"� ���� �)��
�
��$� ���
�������� ��	"
� �	�� ����
������$� ��$� 	�
����$&� !�

������ �
� ���� ����%�	"� �

�������
� �
� ������	�$� ���
��	�
�� ����	���� ��$� ���
�
�����&� ���
�� �	���$�	�
� �	��
��������� ���$����� ����� ��� #������
� ��������	"���� ����

�

�	�
	���#��
���$������
�
�����&�

�
���
�
�#
������� ����� �)�����
� �
� ���� %�$�
�	��$�

��	�������� ����� ������ ��	"����
�

�	
�
	��� �� ���"� �
�
���
�
�����&� ���
� ��	��������� ��%���	��
���
� ��� #��
��
����	��$� #�� ����	����� ���$����� ��$� ���$
� ��� ����
�����������
�	�����
��$�&�

!&-� ���
$��
���%����������#
�
���� ����	
� ����$� ��� ���
�
�#
������� ������$�� #��� $�$� ����
�	���$�� ���$������ ����� �!!� ���	���
� ��	"����
���
�
�����&� C	�%��� C���� B� ?��$��#�	�� 2-<<�� �&� *D94�
����� ����	���	�� ��� ����	��� �

�

�	� �����
�
������
	���
-.<0� ��� -< D&� =�%
���$� 2*00*4�� ��� ��� ��$���� �
� ����
���

����	��������� ���� 	����#������ �
���	"�	
� 2=�%
���$�B�
F����
�� -<<94� �	���$�
� ���$����� �
� ���	� ��	"�	�
	����#������ ��� ����
���$� �
� �
��������&� F�
����� ���
��
�)�����
��%������$�
��$��������	���	�������#��"�$�����%����
���$������ ���� ������ ����� �!!� ���	���
� ��	"����
���
�
�������������
���$��
��������	�
������&����$��
�������
	�
��	���	
� %���$� ���$� ��� �	�
���� ���$����� ����� ������
��	"�	
� �	�� ���� ���
�
����� �����	�%���� ����� ����	� ��$H�	�
%���� ����
����
� ���	� ����� ��$� ����� �
�����!!� ���$
� ���
���	�������&� ���
� ����	� �	���$�
� ���$����� ����� ������
��	"�	
� �	��
�	�
	��� ���
�
������ ��� ���
�� %���� ��	"����

��	����
%�	
��������$�������
��������	�
������&��

(� ����.��#
�
���
�
������� $�
�	�#�
� ��
��$�� ��� ��������� ��%� ���
����
������ ��	"�	
� ��	��� %���� ����� ����	&� 3�� %�
� ��	�� �
� ��
��	��	��

�	�����$����������������	�!

�
��$�!

�

�����

�
���� 2�!!4� ��� ��	"�
��	�� ��
%�	
� ��� ���� $������ �
�
�������	�
������&��

(&!� ����'��'�����%��������#
�
!��������	�!

�
��$�!

�

�����
�
����2�!!4��
������
�
������
������	��
�%������������	"�	
��
�%�����
�������
��	"�	
���	���%�������������	&����
������	$�	�������������
��	� �!!�� %�� ���$�$� ��� /�����
�� ��%� %���� ������
��	"�	
���	���%�������������	&������� ��� �
��
����������$�
�������	"������	��#�������)�
�
�2
����������	�$������4������
�
$�

���������
��$�
����	��������$����&����
�
��$���	���$�
�
���$��������
����	��������������������	���
�%�$����	��#������
%������������	"�	
&�

���� ���� �
�� ���� 	�
���
� �
� ���
�
��$�� �
� �� #�
������
�����
�� %����� ��� �����	�� ���� �!!&� 3
� ���� 	�
���
� �
� ��
�!!����
�����������	��)���$�����#�
��������������������
#���

�	�$�����������!!��
�������
����&�

�3���	+	���	�	����#������23��4��
�����������������	���
�$�
��� $�
�	�#�� ��%� ���
���� 	���	
� ��	��� %���� ����� ����	&�
5%���2*00-��&����4�
����
�@'�	����������������������
��
�$�
��� ����	���� �)��������� �	� ����������� �� ���
�	��
�	�
���

�
����� ��
�#(���� ����� �� �	�$�
���$� ������	�� ���� #��
���
�$�	�$� �
� �� 	���	&A� ��� �
�
� ��	
�
� $�����
����
�
������	����������
�2*00-��&�,D4���$�
������
�
����

�
�����

�
�� ����	$���� ��� �����	� 2*00-� �&� <.4� �
� �)�����
� �
�
	���	
&� 3�� ���
� ����	�� ���� 	���	
� �	�� ��������	"�	
&� ����

�#(���
����������
����5%��L
��������
��	�
�
����	��
��$����
��
%�	
&� ���� !�-�
����
���� %�
� �	����$� ��� �
��#��
�� ����
�������
���	�������������	���	
�25%����*00-��&����4&��

(&(� ����'���

'�����
��� 	��	����$�
���� �)��	�� ��	"�	
�
	��� ���� �����
�����	
����2��4�
��

&�����������������	�����
��&,����	
�
�)��	�������
���	"�	
���� �������%����������	�����
�D&,�
���	
� �)��	��������	"����
�	� ���� ���	
��
	���%�����%��
���"� ���� ��
%�	
+��+#�+��	"�$&� ��� ��	"�	
� �	�� �������
�	����$� O� ����� ��� ��	����� �� �	������� ���	
��� ��	"� ��� ��
$������$���	"����
������� ��$� �	�� ����
����$� ��� �������
����	� ��	"
� ��$�	���$&� !
� ��
���� �
� ����	�
���
��������
��

��������
�����
�������	
����+�����#��������
#��	$� ��� $�
��

� ���	������
� �
� ��	"���� ��	������	�
/��
����
&�

���� 	��$�	�
����$� ����� ����� ���� ��	"
� ��������$�
�	�
���
�
��$�� �	�� ��+��$�	���$�� ����� �
�� ����� %�	�� ����
����"�$�� ��	�
��$�� ��$� 	�+��	"�$� ��� ���� ������ �
� ��
$�
��	������� #��%���� ��	"�	
&� ��$� ���� ��	"
� #����
�����$�$�
�	� ������� ��	"����� ����� %���$� ����� #����
��$�	���$&� C����
�� ��� ���	
�
� ���� ����� ����
��$
� �
�

��$���
������
���
����	��
�	������������	"�	
������	"�����
���	
�&� ���� ��� ��
� �	���$�	�
� ��� ������� �����$����
��$�	������ ��	"
� ��$� $��#��+��	"����
�	� �����
��"�
�
�

�

����
�������
�	����������������
����
�
�����&��

(&,� ���������
��� �
�$� -.� $�

�	���� /��
����
�
�	� ���
�
��$�� 2
����
!����$�)� !�
�	� ���� ��)�� �
� ���� /��
����
4&� ���	�� �	��

���	�������
��
�/��
����
8���%���	��������	������
	�������

�	
�� �%�� ����%�	"� �

�������
� �
� ���� G�#	��	�� *009�

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

85

�	�
��������� �
� �-,0� O� F����� ���������� ��$�
3�
�	��������%����� �
� ��� ���	�$����	�� ���	
�� �

�	�$� #��
��S
�����������F���	�����&�1�����
�����/��
����
�2�&�&�
-D�� -9�� - 4� 	�/��	�� /����� �����
���
��	���
�	�����+
�	%�	$�
��
%�	
� %����� ����	
� 2�&�&� 9�� *04� 	�/��	�� �����	�� ��	��
����+��$�$� ��
%�	
&� 1���� 2�&�&� -� ��$� *4� �	�������+��	��
��$�%�	��� .� ��$�-*� �����
� 	�
����������%����� ����	
� �	��
%�	��� (�
�� *�� D�� �	� 9� �����
&� G���� /��
����
� 2.+-*4� �	��
�#���� ����&� ���
�� ���	�� �
� �� ��	����� �
� /��
����� ����
��
������������������������ �
� ����� ������	������
��	����
%�	��
	����	�����������������������	��	��H
��
�������/��
����
&�

�!����$�)� !�
��%
� ���� ��)�� �
� ���� -.� /��
����
�
�	�
%�����������������	"�	
���������$�����
��$������
%�	
&�
2=�������������-.�/��
����
��	�����#�	�$�-����*-&��������
�����������������	"�	�
��$��%�
���	���
�����	��	��

�	�����
$����������!!�
�
���&����	�����$�/��
����
�,�� ����$�
��
	��� ����
��$�� #����
�� #����� ����	����� 	����	� �����
��)������ ����� %�	�� ��
����$�
�	� ��	"���� #�� ��	�
�

�

�����
�
���&4�

����
��$���� ��
%�	
+#����+��	"�$� �����
	��� ����
�������
��$����
�	���
� ��� /��
����
� ������ ��� ����
���	�$����	�� �������	� ����	���� ���	
�� ��������$� �#���&�
;���� �
� ����
������	"�	
� 2%���� �)�������
� ����$� #���%4�
��	"�$�����
����
����
� 0�	��$���
��$������
%�	
��������
-.� /��
����
� �
���� ���� ��	"����
������ �	����$�
�	� ����
�	�
��������� �
� ���� ���	
�� �
�$� ��� ���
�
��$�&� ���
$�
��	$�$� ���� ��	"
�
�	� ����
�	
�� -0� ��
%�	
� ��� �����
/��
�����
�� ����� ������	"�	
�����$�#������
������	�%����
������	"����
������#�
�	��%�� 	���	$�$� ����	���	"
&����
���������� ���� 3����
� ����
������	"�	
��%�����	�$�������
�
����� %���� ���� ����	�
��	�
�	� �� ������ �
� ���� ������ ���
������ �����	�
��
� 2��	"�	
� -� ��$� *�� -� ��$� D�� ��$�
��
��4&� ���
�� ��$���$���� �����	�
��
� ����� ��� �$��� �
� ����
	������
���	������������������	"����������
��/��
����
&��

(&-� /�	
#
�
�
����
��$����
����$�����$����
�	�
���	���	��
��
&�G�	
�������
��	��������
� %�	�� �)��	�� ��	"�	
� �)��	�����$� ��� �)������
����������
���	"����	�/��	�$�#������
��$�&�3���$$�����������
-.� /��
����
� %�	�� $�
����$�
�	� ��� ������� ���	
��
�	�
���������%��������	�����
�"��%��$�������������%���$�
#�� �
�$� ��� ��
�� ���� ����	���� �
� ��������	"�	
&� ���� ,0�
��
%�	
���	"�$�
�	� ����� /��
�����%�	�� ��������
��$����
��
%�	
&� G�������� ���� ��	��� /�������� �
� ���������� $����
�	���$�
�	��

�	��������������	�
���
�����#������	���
�$&��

��%���	�����	���	��
��	���

�#�����	���
������������$����
�
����
�
��$�&�������	�����
�����������������
�������	"�	
��
%���%�	�����	�����$� ���������� ��$�%�	�����$�
�	� ����	�
%�	"&����
���
������%�	������	�
��$�������������������(�#�
�
�/���"����
���

�#�������������$������#������	���

�%����
����	���	"���&���
�	����������%����������%����
���������
���� ��"������$� �
� ���
� ����		����&� ���
�
��������� �
�

���%���� ��������
� ��� 	������	"���� +���	"�	
� �	�� ���$�

�	� ����	� %�	"&� ��%���	�� ���� ���	�����$� ����������
	�����$� ���� 	��
���
�	� ���
��������
���	"���� O� ��� 	����
��	"����
��������
����	"�	
� �	��������	�$� ��$� ����%���
���
�
���������
��	"
�%���$�����#��	���	�$&�

����
����$���	���� �������$���� �
����������%�#�����	
����
#��%���� ���� ��	"�	
� ��$� ���� ��	"
� $���#�
�� �	������$�
������	"�	
�
	��� 	����%���� ����	���	"
� ��� �$(�
�� ������
����"������	���	������	"�����	���$�	�
&����
�����$������
	�
����$� ��� ��

� ���
�
������ ����� ��	���� $��� ��� ����
���#������ �
� ���� ��	"�	
� ��� $��#��+����"� ����	� %�	"&�

��%���	��������
���%���
�������	"�	
�%�	�����
��������
�
������� ��� ��
�� ��� 	����%� ����	� ��	"
&� ���
�
���� ����
������	#�������������	������������	�����
���	��	����+������
��	"�	
� ���� ����� #���� ��	���

� #����
�� ����� %�	��
���	�����$����������&�

���� ���	$� ������ �
� ����� ���� 	�
���
� �#�����$�
	��� ���
�

��$��������
��%� ��� ���
������ ����� ������ �
� ��	�������
#����
�� ���� �
� ���� ��	"�	
� �	�� �)��	�����$&� I�

�
�)��	�����$���	"�	
������� ���� #�� �
� ���
�
����� �
� ���
��
��	"�	
&������	"�	
������ ���	
��
��)��	��������	�
�����

����%��������	"����
����������	�$����(�
��
��#�����		����
��	"
&� 3��
��	��������	"�	
��	�����$&�I�

��)��	�����$�
�	���

�%���+�	����$���	"�	
�����������$���
�%���&�

G�������� $��� ��� �� $���#�
�� ���	
��%� �	�#����� �%�� �
�
������	"�	
�%�	�����#��� �����������������
� ������	"���&�
���
��T��
�����-��%�
���	"�$�#�� (�
��
��	������
� ��$�
T��
����
� -<+*-� %�	�� ��	"�$� #�� ����� ��	��� �����
&�
!�������� ���
� �	�#����$��
� ���� ������$���� ���� 	�
���
�� ���
$��
�����������$�

�	����/��
����
������$�

�	�������#�	�
�
���	"�	
�	�/��	������	�����#����"���%���������	��������
	�
���
�
�	� ���� �

����$� /��
����
&� ��%���	�� ���� �
� ����

�	�����
��
����
�
��$���������
����������
�$������������$�
��$������
�$��
��������$
&�

F�
����� ����
��	� �	�#���
���������$� ��� ���� �	�����
�
��	��	���
�� %�� #������� ����
��$�� �	���$�
� �����#���
	�
���
&� ���� ��	"�	
� %�	�� �	�
�

������ ��$� �)��	�����$�
2�������	�
����������
��$��
��&�&�2G���P��-<< 4�%������
��
�	�$�����
��$���
� �
� ��	"�	
4�� ��$� ���� ��	����� ��$�
������������� �
� ���� /��
����
� �
� %���� �
� ���� �)��	��
�� �
�
������	"�	
�
����	����������	���
�+�#�������
�����
��$���
&�

,� ��������	���
G���	�
�-���	�����-.����!����$�)�C�$�
������
�	�������
�
����-.�/��
����
������3����
����5%��L
�!�-�
����
���&�G�	�
���
� ���	���� �� �����	� !�-� ���#�	� ��$�����
� ����� ����
	����������	"�	
��	�����
�	� �����	������� ��������
��%����
�� ��%�	� !�-� ���#�	&� T��
����
� -+- � ��$� -.� %�	��
��	"�$� #��
���� �����
� ����$���� ���� ���	
�
�	� �����
/��
����&� T��
����� -�� %�
� ��	"�$� #��
��	� �����
�
	�
������� ���
�)� ���	
&� T��
����
� -<+*-� %�	�� ��	"�$� #��
��	��������
����������	������	
�
�	������/��
����&��

3�� �$$������ ��� ������������ ���� 3���
�	� ����� ���	� �
�
��	"�	
�� %�� ���������$� ���� ���	���� 3���
�	� ����
����
��	"�	
�2
��	�
�	�/��
�����-����$���	���
�	�/��
����
�-<+
*-4&� 3�� ����� �
� ���� -.�
���	�
�� ���� ��	�P������ ����� �
� ����
3���
�	������
�������	"�	
8�����
�������$������
��%
�����
3���
�	���������	��
���	"�	
&���

G���	�� -<�
����	�
�
� ���� �	�����
� -.�
���	�
8� ���

��%
� ���� ���	���� 3���
�	� ����� �
� ���� /��
����
�
�	��$�

	��� %�	
�� ��� #�
�&� ���
� �	����
��%
� �� %�$�� 	����� �
�
�����
��
	�������%��
�0&-,������������
�0&<�&��������	����
3��� �
� 0&,<� %���� ��
���$�	$� $��������� �
� 0&*�&� C��
��
�����������
�
���	�����������$���	�����%�����/��
����
�

��%� #����	� ��	������&� T-<�
��%
� ���� �����
�� ������ �
�
��	�������%�����T-��
��%�������%�
���������
���	������&�

-� �
� ���
�����#�
�'	
 ��
����
C�� ��������� ��� ����
�	
�� -.�
���	�
�� ���� ����
��� �����
�	�
����� �
� ���� /��
����
�� ���	�� �
� �� ��	��� ������� �
�
�����
�
�������������3���
���	�
�%��������
������/��
����&�
T��
����
�D��9����$�-,�
��%�$	�������$�

�	����
�������
�������	
��
���	"�	
&�G�	��)����������T9�����3���	����
�

CRPIT Volume 95 - Computing Education 2009

86

	�������%��
�0&0-�
�	����	�-���$�9������������
�0&.<�
�	�
���	�*���$�D&��������	����3���
�	�T9��
�0&D9&�1��������	
�
�
���	"�	
�%�	��#���%����
����	������$���	������	
�%�	��

�#
�����������#�����������	���&�

3������	�
�� ��� ����/��
����
�%���� ��%�$����	��#������ ���
��	"��������������
�T��
����
�*��-D�����$�- ��������	"�	�
���	
� �	��
�����	&� G�	�T- ��
�	� �)������� ���� 3��� 	����
�

	���0&.<�
�	����	
�-���$�9���$�9���$�,������������
�0&< �

�	� ���	� *� ��$� D8� ���
�� ���� ���	
� �
� ��	"�	
� ����� ���
���	����3����
�0&<*&����
��$����
����
�������T- ��
���
��

�	���������	"�	
������	"������������������
����
�
�����&�

G�	�
���� �
� ���� /��
����
�� �� ��	������	� ��	"�	� �	�
��	"�	
�
���������%�	��������	����3��&�G�	�T��
����
�*��
D��-*����$�- �� ����%�	
��
��	����	
�����������	"�	�98�
�	�
T��
����� --�� ����%�	
��
��	� ���	
� ����������	"�	�-�� ��$�

�	�T��
����� -,�� ����%�	
�� ���	
� ����������	"�	� ,&� ���
�
�#
�	���������
�	���
�������
�
�	��������������������	����
�
� �� �!!�
�
���&� 3
� ��� �#
�	��	� ���� �$����
�� �����!!�

�
���� �
� ������� ���� ���
�� ���
�
����� ��	"
�� ����� ����
������������$�� ����� �����!!�
�
���� �
� ������� �$�/�����
��	"�	&�

G���	�� -<�
��%
� ���� ���	���� 3���
�	� ���� �
� ���� -.�
/��
����
&� ����� 	�����
	��� �� ��%� �
� 0&-,� ��� �� ����� �
�
0&<��%����������	�����
�0&,<&����
������$�

�	�����
	���
���� ��%�
�� 3��� ��� ���� �����
�� 3��� ��
� �� ������� �
�
�����������
&�G�	
������
��$����
����
�������
����/��
����
�
�	����	$�	������	"����������	
&����
�$�

�����������$��	�
��

	��� ��� ��#������� ��� ���� /��
����� �	� �� $�

�	����� �
�
�������� ��� ��%� ���� ��	"����
������
����$� #��
����	�	���$&�1����$�� �
� ���� ������������
�	� ���� �����������
�
����!!�
�
���&�C����
�������������
���	�������������
������ ��	"�	
� $����$
� ��� %����� /��
����� �
� #�����
���
�$�	�$�������
�����

�	����������	�������!!�
�
���S
�
��	"
���$�������3���
���	�
�
�	�����/��
��������������&�
!��������	�������	�

�����
���������	�����
��������������
��	"�	�%���$�#���������
��
�	��)�����������	���	��$������
�������	����������3���%�
�0&,<���$������!!��������$�
0&,�&�����	�
���
��
����
�
��$��
��%���������
���%��
���	�
�
%���$� ���	
����� ���� �!!�
�
���L
� ������ �
� ��	�������
%������������	"�	
�
�	�
����/��
����
���$���$�	
��������

�	�����	
&�

0� .�����
�
���� ��	��
�� �
� ���
�
��$�� %�
� ��� /�����
�� ��%� %����
������ ��	"�	
� ��	��� %���� ���� ������	� ��� �	$�	� ���
��������� �������	� !

�
��$� !

�

����� 1�
���
&� C��
�
����5%��L
� !�-����
�	�� �
� ����	+	���	� 	����#������� ����

��$�� �	���$�
� ���$����� ����� ����� ��	�� �)��	�����$� ��$�
%�����	����$���	"�	
��
�����	�$������%�$��	������
�3����
#����
�	� ����
���� /��
����� �
� %���� �
�
�	� $�

�	����
/��
����
&��

���� ��(�	� ������
����
	��� ���
�� $���� �
� �����
�����������3����
�������)&�3���
�����
�

����������	���	����

������3���
���	�&�����������$����	���$�	
���$�����
�����
��	
�	������ �
� 	���	
�� �����$���� ����������� �������	+
#�
�$� 	���	
�� ���� ���$
� ��� "��%� ���� 	����� ��$� ����� �
�
/��
����
� #����� ��	"�$� �
� %���� �
� ���� 3���
�	� �����
/��
����&��
�
�
�

1� ��%���� ���
C��
�	$��1&�F&��C�	"���;&��&��G�)�����;&�B�������
���&�!&�

2-<< 4&��������
�������	��������	������������
�		�		��
���
������
�	������
�������������
���������
������	�	��
����������������
��
=������������������������	
�����
�=�����������
����6HH�
&(���
��&
�HU���"�H%%%V����&*�0*< HC
�	"�&��������
������

�$�*9�����#�	�*00�&�

C�	����$��!�$�	
�2-<<<4&����
��
���������� ��	�!���
�������������������	����"�
!��������
���
�		�		��
��#�����	��$��%!�
!������		�&�����&�
1���"�'��$
���.��#����2����
���.
�'��
����
C	����������&�

C	�%���5&��C�����Q&�B�?��$��#�	����&�2-<<�4&�������
���
���#����	����
���
���
������#� ��
��&�I��$����
������$��&�

C�����Q���������������5	�������F���
���&��&���������1���
F��
��������
�B�1�����	��=�����2*00*4&�
&����
%�
���		�		��
����������'���
�
��
(���
������	&���� ��#
�����%��.)"2"�3�(44(��
!��"���$��=�%�>�����$&�

��	��	��Q������!��+���"�����	
����G����	���	
�����F��"��
��	�����;����
���Q�����G�������������B�1���	$��
Q�$��2*00D4&�����������$���		�		�(��)�
��� ��#
�����%�����"�
).3�(44,�����
���
����'���'���������

�����"���5	������!���
?	�

&�

��	�
�����Q���
�2*00D4&������������		������%�
������
��
��
��!����	�������%)���� ��#
�����%�����5���
"�������
���	�)���)��%���� ���
I����#�	��������&�

��������5	������B�C�����Q������2*00*4&��� ��	��
�����
��
�
����������
��������������
���&�
��� ��#
�����%�����1���"�������
���	�)���
)��%���� ���I����#�	��������&�

F�����
�����
��C�	����$��!�$�	
��?��	
��!	���$�B�
G�����	��1�����2*0094&�*����#���	�����		�		��
�&�
1���������	��
���)��'��
���3#� ��
���
)��%���� ��*�)3(44-+��F���$����=�%�
>�����$&�

F����
��?����2*00-4&�������	�� ����������
���������!
���������	�	����������� �������������������� ��)�
��� ��#
�����%�����0���"�������
���	�)���
)��%���� ���I����#�	��������&�

G���P��?���	��&�2-<< 4&�'���
��	���
�����
���	�	�������+�!
 �	�����	�����&�6���$
��������� �������#���
"�������������#�)��'������(72*46�-<�+*0*&�

5%����������2*00-4&����#������%�"����8������
��	
��
	
�
���������3��
���������2�$�	��%�
����������6����������������	�
'	��������&�
5�����	
#�	����F��1�!�!W31�?�#��
�����
�������&�

Q������"��B�I��"����������2-<<.4&������������������
���
#��%�
������,
!��
���		�		��
�&���� ��#
����
�%�"�
).39:7��F�#�����3	����$&�

��!�����������	��2*00*4&����
�����	�����		�		��
����!!�
����	��������	
�����
�I������
%%%&�������	�&��&�"H	�
��	��
H#�������	
H��$�
)&
��������
������

�$�*.�����#�	�*00�&�

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

87

=�%
���$��1�������2*00*4&��+���
�
�������+���
��	
�
$����������	�� �������		�		�
��	����
�)�
��
 ��	��
�2����
�����#���� �
���(2*46��0+
�,&�

=�%
���$��1�������B�F����
��3&�2-<<94&��+���
��	�
�+���
��
�(�������� ����������+������%�
���
�
�	��������&�������
 ��	��
���56�*- +*-<&�

������?����2-<<,4&�(�����������		�		�
�&�;���� �#��
 �
02D4&�

���"���
����	�
�B����"
��1�����2*00*4&�$����*�����	�
������������
��,��
��
	������������!�		�	����
�		�		��
�&���� ��#
�����%�����1���)���
)��%���� ���I����#�	��������&�

1�#�	��=�����2*00*4&�(�����	����
����������������
�
���������

�����
�
��������
	�������	-��������	�
�
���������
�����������	����
�	&�.��#
���
��
3#� ��
���	�3$�	���
���(72946�D*<+D9,&�

1�����
��?���	�����$%�����Q������
"��
��G	��
�B�C	�

��
��	�
�����2-<<�4&���������
���		�		��
���
��
#��%�
�����������	�������
����	&���� ��#
����
�%�����(�#�������	
���)��%���� �����
)��'�����.
�� ��3#� ��
����."<).3��
���#��	����!�
�	������!��&�

�
���
�
�
��!�����
��
&�*00*&���*�������%���������
���������.�	����		�		��
�����/�������.�	���
����	����%&�����#��
��$�?�F����
�
&�1�������
�
�������	�1���������$�3�
�	�������������������
�����	
�����
�=�����������=���������&�*D,���&�

��	#�	�����C����B���������5	������2*00D4&�����*�
��
�	�
���������
��������������
���������!������
�		�		��
�&���� ��#
�����%��2�8)�(44,��
1��

���$����&�

�

CRPIT Volume 95 - Computing Education 2009

88

!����$�)�!�

�� ������	
��
	�
���
������������
���	�������	��	���������������
 ������������	���	������!���"�#���
����� ��������������$	���������	����%�����

&�
�� ���� ����
�
'� 	���	���� �	������������� ���� ������� �
��	��� ���� #	�����#	�
�
�	
� �
�� ����
#	����� (����)� ����� �	�
� ���� ����
�
'� 	���	��� ����� "	�� ����� "	�� ���� �	��� �
��������� �
�
�������
'��
��	
��	����	���
��
�����	������������"�"	���������	��
����������
�
'�	���	��)�

���

 ���� �	��� ���%� ���
�� �	��� � ���� ��� ����
���� 	�� ���� �	����
�� "	�� ��	���� ����� �	�
��
����
"	��������	����������
'��
����%�� �	���	����"	���	
����������*���������	����	������	��������

+�

&�
������,-�%���.���������)� �����������,/0�� �����������
����	���������'���*��������
�1�����
 �����*���"�����"	���	������
������ �����������,/0�	������������
 �������������
�����
������	���
�����
�
'�����
�'���"	��������	�������������
��������
������
�
������
�'��������	
���
�������
�	�����	
�	
����������
���������
2��������,/0�	��������
�����
�
'�����
�'�)�1	����'���
��������
��������'�	���
3	������������
��������
�'�������"	���
"���
'���	��������'���������
����������
��������
 �����'����
��������
�����������������
 �����������,/0�	����������
�'��������"	���	�
�������
�	�����	
��

���

 �������������
'�
�4��
��������*���"�'	��"	���	�����
�'��������	
���
���"	����
������

���

�5� �6�
���
4����������
���4������������
���������
��
��
��	'����
�������������*��
���")� 7�
�7� (�����
�����
���	�����	�
��������
����4���
���
�
'�����
��
	��)� �"������������'�
�����
�����	��

���
�������
��	�
���
'�� 7�
+$
���

&	�����������8������������	������1��2��
��������	
��	����	���
��
������	�������
�	��������������	��'�
���
1��2)�9������������
���������	��'�
���1��2)��������	
����
������������������

����
��):�
;<=%���"���		>�������
����'������	�����	���
'������	��)��+�
��������		
����
���������
����	�����	������
����	����

7�

�?� ;<=0�
	���
�@;<=3	�;<=�
	��
������������������
���������	����)�
�� ���	�
��
��3	��	
�
������������������
���������	����)�

7�

���� �;0=0�����;<=���";A0=�;A<=���
	���
���	������������������������")��
�� 0������������
	���
���	������������������������")�

7�

���� ���
'���	��	B�������������������������������������
'���	��	B�
�� C��>���������4;</=;A</=�
�� <		>�����)��C��>���������4�
�� ���<		>�����)�

7�

���� �	����
�	�����	
���
�����	�
��;��
���DE���
)���E=����;A�=)�
�� �	����
�	�����	
���
�����	�
������)�

7�

�5$
���

�.���	��������������	�
������	��������
�����
	��)� ��
��	�
����4���������������	�������������>�	
�����
�	�
����)�2�����������������������
	����
��������������
��������	
����������������	����
��
���)� ��

��5� #	
������
'������	
��
���	��������
	����������4���������
	�
���	���������������	���
�������
��� ��
��7� ������

�
���	����������������������	
�	�������	����
��� ��
���� !�''�����
���
�	����
���
�.���	���F���	�>�
�������4�'���
'�������	
��	��"	����
����)� ��
��G� (������	�����
����	��
�������
����	��'��������	��������
�������������>)� ��
��H� .���	�������
���������	����������	
"�	��������
	��4��������
������������	
����
����������
���������4�

�	�I	�
4����	�>��	����'�����������	�
�
"F��<����
'����	�����)� ����� ��	���
��
���� �	���
���
�
�������������
�����
���������4������
�,-����4�������"���
��������
	��)� ��

��+� 6�
���
�������"�����
�	
���"�	���
���
�����������������	��������	
��
���	��������
	����	������
������
�
��������
������������
����������
������	�"�	�����������������'�)� ��

��?� I	�
F�������������������I	�
J<����
'���)	�����)�")�>� �����
�����	�����������������B����������

���4�����
����	�������	���
4������	
$�������	���
�� ��

���� .���	�������
�
��
�����������
	����	��
��������	
�	
����������)�0
�
	��	������
������	���4���
���
�
��������������	���>���
�	����	�
�����
���>�
'�������
	���
�����)� 5�

���� ����� 	�� ���� �	��	��
'� ��	���� ����
������� 	
� ������������ ����� ���� ��
	��� �
����"��#	�
�
"�
�������4�
���	
�������
�	
��
�����4��������������� 5�

�

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

89

!����$�)�C�

�)��

�)��

�)7�

�)G�

�)+�

�)��

�����������

��
�

K�������1���
�0// �)�� �)�� �)�� �)�� �)�� �)�� �)�� �)�� �)�� �)��

0
���������0// �)�? �)�G �)75 �)7+ �)7+ �)�� �)7� �)7� �)G? �)�G

�$� �$5 �$7 �$� �$5 �$7 �$� 5$7 5$� 7$�

�

�)��

�)��

�)7�

�)G�

�)+�

�)��

�����������

��
�

K�������1���
�0// �)+� �)+� �)+� �)+� �)+� �)+� �)+� �)+� �)+� �)+�

0
���������0// �)++ �)?� �)H� �)?� �)+� �)H5 �)HH �)GH �)++ �)G?

�$� �$5 �$7 �$� �$5 �$7 �$� 5$7 5$� 7$�

G���	��-��3���	+	���	������#������
�	�T��
�����-� G���	��*�3���	+	���	������#������
�	�T��
�����*�

�)��

�)��

�)7�

�)G�

�)+�

�)��

�����������

�
��

K�������1���
�0// �)�+ �)�+ �)�+ �)�+ �)�+ �)�+ �)�+ �)�+ �)�+ �)�+

0
���������0// �)H� �)H� �)�H �)H7 �)++ �)�G �)+5 �)�G �)+5 �)��

�$� �$5 �$7 �$� �$5 �$7 �$� 5$7 5$� 7$�

�

�)��

�)��

�)7�

�)G�

�)+�

�)��

�����������
�
��

K�������1���
�0// �)5� �)5� �)5� �)5� �)5� �)5� �)5� �)5� �)5� �)5�

0
���������0// �)�� �)�5 �)�� �)�� �)+? �)H5 �)�? �)H� �)�H �)��

�$� �$5 �$7 �$� �$5 �$7 �$� 5$7 5$� 7$�

G���	��D�3���	+����	�	����#������
�	�T��
�����D� G���	��9�3���	+	���	������#������
�	�T��
�����9�

�)��

�)��

�)7�

�)G�

�)+�

�)��

����� �����

�
�
�

K�������1���
�0// �)+� �)+� �)+� �)+� �)+� �)+� �)+� �)+� �)+� �)+�

0
���������0// �)H� �)H+ �)HH �)H7 �)?7 �)+� �)?7 �)+� �)?� �)HG

�$� �$5 �$7 �$� �$5 �$7 �$� 5$7 5$� 7$�

�

�)��

�)��

�)7�

�)G�

�)+�

�)��

�����������

��
�

K�������1���
�0// �)H� �)H� �)H� �)H� �)H� �)H� �)H� �)H� �)H� �)H�

0
���������0// �)7+ �)GH �)H� �)GH �)H� �)G� �)H� �)H? �)+� �)H?

�$� �$5 �$7 �$� �$5 �$7 �$� 5$7 5$� 7$�

G���	��,�3���	+	���	������#������
�	�T��
�����.� G���	�� �3���	+	���	������#������
�	�T��
�����<�

�)��

�)��

�)7�

�)G�

�)+�

�)��

�����������

��
�

K�������1���
�0// �)7G �)7G �)7G �)7G �)7G �)7G �)7G �)7G �)7G �)7H

0
���������0// �)5� �)�5 �)5H �)�G �)�� �)75 �)�5 �)HH �)HH �)G�

�$� �$5 �$7 �$� �$5 �$7 �$� 5$7 5$� 7$�

�

�)��

�)��

�)7�

�)G�

�)+�

�)��

�����������

�
��

K�������1���
�0// �)�7 �)�7 �)�7 �)�7 �)�7 �)�7 �)�7 �)�7 �)�7 �)�7

0
���������0// �)5� �)7� �)77 �)7G �)�+ �)G5 �)G� �)G� �)�5 �)HG

�$� �$5 �$7 �$� �$5 �$7 �$� 5$7 5$� 7$�

G���	����3���	+	���	������#������
�	�T��
�����-0� G���	��.�3���	+	���	������#������
�	�T��
�����--�

�

CRPIT Volume 95 - Computing Education 2009

90

�

�)��

�)��

�)7�

�)G�

�)+�

�)��

�����������

�
�
�

K�������1���
�0// �)5? �)5? �)5? �)5? �)5? �)5? �)5? �)5? �)5? �)5?

0
���������0// �)5G �)�� �)�H �)75 �)GG �)�5 �)G+ �)�� �)�? �)�+

�$� �$5 �$7 �$� �$5 �$7 �$� 5$7 5$� 7$�

�

�

G���	��<�3���	+	���	������#������
�	�T��
�����-*� G���	��-0�3���	+	���	������#������
�	�T��
�����-D�

�

�)��

�)��

�)7�

�)G�

�)+�

�)��

�����������

��
�

K�������1���
�0// �)7� �)7� �)7� �)7� �)7� �)7� �)7� �)7� �)7� �)7�

0
���������0// �)H+ �)55 �)?� �)�H �)5� �)H� �)�H �)5+ �)�� �)�5

�$� �$5 �$7 �$� �$5 �$7 �$� 5$7 5$� 7$�

�

G���	��--�3���	+	���	������#������
�	�T��
�����-9� G���	��-*�3���	+	���	������#������
�	�T��
�����-,�

�)++

�)?�

�)?�

�)?7

�)?G

�)?+

�)��

�����������

�
��

K�������1���
�0// �)?G �)?G �)?G �)?G �)?G �)?G �)?G �)?G �)?G �)?G

0
���������0// �)?+ �)?+ �)?5 �)?G �)�� �)?G �)?+ �)?G �)?+ �)?5

�$� �$5 �$7 �$� �$5 �$7 �$� 5$7 5$� 7$�

�

�)��

�)��

�)7�

�)G�

�)+�

�)��

�����������

��
�

!������ �)�� �)�� �)�� �)�� �)�� �)��

!������ �)�� �)�� �)5G �)�� �)�5 �)��

�$5 �$7 �$� 5$7 5$� 7$�

�

G���	��-D�3���	+	���	������#������
�	�T��
�����- � G���	��-9��3���	+	���	������#������
�	�T��
�����-��

�)��

�)��

�)7�

�)G�

�)+�

�)��

�����������

��
�

K�������1���
�0// �)GG �)GG �)GG �)GG �)GG �)GG �)GG �)GG �)GG �)GG

0
���������0// �)�� �)G5 �)G5 �)G5 �)H7 �)G+ �)G5 �)+? �)G+ �)�?

�$� �$5 �$7 �$� �$5 �$7 �$� 5$7 5$� 7$�

�

�)?�

�)?5

�)?7

�)?�

�)?G

�)?H

�)?+

�)??

�)��

�����������

�
��

K�������1���
�0// �)?H �)?H �)?H

0
���������0// �)?� �)?+ �)?+

�$7 �$� 7$�

�

G���	��-,��3���	+	���	������#������
�	�T��
�����-.� G���	��- ��3���	+	���	������#������
�	�T��
�����-<�

�)H�

�)+�

�)+�

�)?�

�)?�

�)��

�����������

�
��

K�������1���
�0// �)?� �)?� �)?� �)?� �)?� �)?� �)?� �)?� �)?� �)?�

0
���������0// �)+? �)?� �)?+ �)++ �)+? �)?� �)+G �)?+ �)++ �)?�

�$� �$5 �$7 �$� �$5 �$7 �$� 5$7 5$� 7$�

�)+G

�)++

�)?�

�)?�

�)?7

�)?G

�)?+

�)��

�����������

��
�

K�������1���
�0// �)?� �)?� �)?� �)?� �)?� �)?� �)?� �)?� �)?� �)?�

0
���������0// �)?G �)?G �)?G �)?7 �)�� �)?� �)?7 �)?� �)?7 �)?7

�$� �$5 �$7 �$� �$5 �$7 �$� 5$7 5$� 7$�

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

91

�)��

�)��

�)7�

�)G�

�)+�

�)��

�����������

�
�
�

K�������1���
�0// �)�� �)�� �)��

0
���������0// �)�5 �)�+ �)��

�$7 �$� 7$�

�
�

G���	��-���3���	+	���	������#������
�	�T��
�����*0� G���	��-.��3���	+	���	������#������
�	�T��
�����*-�

�
�

�

G���	��-<�!��	����3���	+	���	������#���������	�-.�T��
����
�
	�����	
�����C�
��

����������������������

�)��

�)��

�)7�

�)G�

�)+�

�)��

�����������

�
�
�

K�������1���
�0// �)5+ �)5+ �)5+

0
���������0// �)7� �)5� �)7�

�$7 �$� 7$�

� ��������
��!��
���"��������
��	 ����#�$���
�	���
��	��%	���
�
	�������
���������

�)��
�)��
�)��
�)5�
�)7�
�)��
�)G�
�)H�
�)+�
�)?�
�)��

$���
�	��&�����

��
�

������	
 �)�� �)�� �)5� �)5+ �)5? �)7� �)7G �)�� �)�7 �)�+ �)GG �)H� �)+� �)+� �)?� �)?� �)?G �)?H

�H �� 7 �� �� �� �� � �� 5 �+ ? � + �7 �5 �G �?

CRPIT Volume 95 - Computing Education 2009

92

A Focus Group Study of Student Attitudes to Lectures

Michael Hitchens
Department of Computing,

Macquarie University,
NSW 2109, Australia

michaelh@ics.mq.edu.au

Raymond Lister
Faculty of Engineering and Information Technology

University of Technology, Sydney
NSW 2007, Australia

raymond@it.uts.edu.au

Abstract1
This paper reports on the findings from focus groups,
conducted at Macquarie University, on the attitudes of
computing students to lectures. Students felt that two
things were vital for a good lecture: (1) that the lecturer
goes beyond what is written in the lecture notes; (2) that
the lecture is interactive, by which students meant that the
lecturer asks if students understand concepts and adjusts
the delivery accordingly, and also the lecturer answers the
students’ questions. The students in the focus groups also
discussed what makes for a bad lectures: (1) lecturers
reading straight from slides; (2) lecturers who ‘blame the
students’, by saying that students don’t work hard enough
and are too lazy to turn up to lectures; and (3) lecturers
who cover the material too slowly or too quickly. The
most prominent reason given for not attending lectures
was the timetabling of lectures in such a way that students
had too few classes in one day to make the sojourn to
university worthwhile. Any university seeking to
improve attendance at lectures should perhaps look as
much to improving its timetabling practices as it does to
improving the practices of its individual lecturers.
Keywords: lectures, student attitudes, focus groups.

1 Introduction
The lecture is possibly both the most iconic element of
university education, and the most frequently criticized
element of university education. The negative aspects of
university lectures are perhaps best summed up in the
following well known joke:

The lecture is the process by which the notes of the
lecturer are transferred to the notes of the student
without passing through the mind of either.

Recognized authorities on university teaching are critical
of how lectures are commonly conducted. Biggs (1999,
pp. 98–100), citing earlier studies, claimed that attending
lectures is a less effective way to acquire information
than unsupervised reading, and that lectures are
ineffective for stimulating higher order thinking. These
problems with lectures, Biggs claimed, are due to the
human attention span being limited to 10–15 minutes in
passive situations, such as sitting in a lecture theatre.
Ramsden (1992, pp. 154–156) made similar claims to

Copyright © 2009, Australian Computer Society, Inc. This
paper appeared at the Eleventh Australasian Computing
Education Conference (ACE2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in
Information Technology, Vol. 95. Margaret Hamilton and Tony
Clear, Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

Biggs. Ramsden, however, does end his criticism of the
lecture with the following caveat:

I would not want to leave anyone with impression that
it is impossible to deliver a good lecture, or that I
think good teachers should not lecture (though I do
think they should do less of it, and for shorter
periods).

Perhaps then lectures are not an impossible method for
teaching, but a method that few academics currently do
well. Certainly, few university academics have received
any formal training in how to lecture, and there is a
considerable amount that can be taught about lecturing
(Bligh, 2000).
In 2006, the Division of Information and Communication
Sciences (ICS) at Macquarie University undertook an
investigation into student attitudes to aspects of their
learning experience. That investigation was wide ranging
and included lectures, tutorials, practicals, assessment
procedures and feedback. The university’s Centre for
Professional Development (CPD) was commissioned to
facilitate focus groups representative of all four
departments in the division, of which computing was one
department (the others being Electronics, Physics and
Mathematics).
As a result of that study, the Division decided to focus a
second study on their students’ attitudes to lectures, as the
first study pinpointed lectures as a particularly
problematic area. Again, CPD was commissioned to
facilitate focus groups that were representative of each of
the four departments. This paper reports on the outcomes
of this second study on lectures.

2 The Focus Groups

2.1 Recruitment and Composition
The focus groups were conducted in August 2007. The
students who participated in the focus group sessions
were recruited via email and information posted on
websites – thus the participants were self-selecting and
this should be taken into account when considering the
findings. As an incentive to attend, participants were
given movie vouchers.
There were eight focus groups sessions in total, of which
three groups were comprised of students majoring in
computing – each of these three computing groups
comprised students from one of the three years of study.
This paper describes the findings from the three
computing focus groups. All the illustrative quotes below
are from the computing focus groups. The composition of
the three computing groups is given below.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

93

2.1.1 First Year Computing Group
• 11 participants

• 2 international students

• 0 female students

2.1.2 Second Year Computing Group
• 10 participants

• 5 international students

• 3 female students

2.1.3 Third Year Computing Group
• 7 participants

• 2 international students

• 0 female students

2.2 Focus Group Questions
While the students were encouraged to raise any issues
about lectures, several scripted questions were used by
the interviewer to initiate and perpetuate discussion:

• What, to you, makes a good lecture? Why?
• What, to you, makes a bad lecture? Why?
• Why do you attend lectures?
• Why don’t you, or others, attend lectures? (think

about internal and external factors)
• In terms of lecture structure, what would most

assist your learning? Why?
• In terms of lecture content, what would most

assist your learning? Why?
• What improvements would you make to the

current ICS lectures?
• What supporting material (lecture notes,

websites, etc) do you currently have access to?
• What supporting material would most assist your

learning? Why?
The following sections summarise the discussion that
ensued from these questions.

3 “What to You Makes a Good lecture?”
Students nominated several aspects of a good lecture.
The most prominent of these aspects are described in the
following subsections.

3.1 Adapting to the Students
Students appreciate lecturers who ask if the students
understand the concepts and can adapt the lecture
delivery according to the feedback the students’ provide:

Student: [nominates a particular lecturer] would refer
to something that we had to learn about in layman's
terms, in simple terms. So if we didn't understand it
then he would explain it even further with different
examples.

<Third Year Group>

Student: One thing I do like about [student nominates
a lecturer] is after every section he gives us things to
do – like we've got to do it ourselves. So he's not just
teaching us – he’s making sure we understand while
you're doing it.

<First Year Group>

Student: I think it's – yeah – good lectures often when
they don't have a specific – OK – ‘I have to get to
slide 38 by the end of the lecture’. They go at the pace
of the class.
Interviewer: OK – so they've got that flexibility.
Student: Yep.
Interviewer: So do you think that flexibility comes
from good teaching or from knowing the content or
just being comfortable.
 …
Student: I think kind of judging where the students
are at by asking them 'do you understand this', you
know, 'do you want me to go over anything?’
Student: Like the lecturer sort of has to become part
of the class almost.

<Third Year Group>

3.2 Handling Questions
Students consistently nominated the ability to ask
questions as a feature of a good lecturer. Among the more
experienced students, there was an acknowledgement of
the tension between questions and classroom
management:

Interviewer: Is there anything else that would make
up a good lecture?
Student: More time, more time for questioning.
Interviewer: OK.
Student: Sometimes I find the lecturers go over the
time allocated spot.
Interviewer: Trying to get through the content?
Student: Because people ask questions in the middle.
Interviewer: Oh, OK.
Student: And I think that's what most people are
there for. If he goes through something and they're
unsure they can ask the lecturer.
Interviewer: OK. So just a question time to be
allocated into the lecture?
Student: Yeah.

<Second Year Group>
Interviewer: So when you go to a [computing]
lecture, what makes it work for you? How do you
learn the best?
Student: I think things like actual student involvement
and getting students – getting us to actually think
through different examples or things like that – rather
than just sitting there for the whole hour...
Interviewer: Mm-hm.
Student: I think that's a problem though because a lot
of the times that – like – the lecturer will say 'OK let's
do this example – does anyone have an answer to it?'
– Everyone just doesn't say anything anyway. So while
that's – like I think it's a good idea to get student

CRPIT Volume 95 - Computing Education 2009

94

involvement …But the thing is that – I think it's –
student involvement – yeah – I think is fantastic but
when you have a lecture theatre full of – like – a 150
people or something like that it's very hard to, one,
hear what the person has to say if they're answering
it, but two, actually get people involved as well.

<Third Year Group>

We note that many lecturers would find an inconsistency
between the above student views and their own lecture
room experience, where extracting questions from a class
can be like extracting teeth.

3.3 Happy, Enthusiastic Lecturers
Students respond positively to lecturers who appear to be
happy that they are teaching and are enthusiastic about
the material they are presenting.

Student: … what makes a good lecture is more the
lecturer and his attitude towards giving the lecture. …
I've noticed that I've walked out of lectures thinking
‘oh that's a good lecture’ actually when the lecturer's
happy more or less.

<Second Year Group>

Associated with a positive emotional environment is the
notion of humour. Students reported that the occasionally
light moment helped refresh their minds:

Student: … especially when you're doing [a particular
subject] you are sitting there listening to code and it
just doesn't listen to you for the whole hour.
Student: Lecturer's ability to bring you out of that for
even a second – just say something funny just once in
a while.
Student: Or even if it's not related just …
Interviewer: Is that like refocussing you almost?
Student: Mm. 'Cos they expect us to sit there for an
hour and listen to everything and absorb everything-
it's kind of hard. But even if it was for like a minute to
have a laugh and then you go back to it – it just seems
so much better.

<Second Year Group>

4 “What to you makes up a bad lecture?”
Students nominated several aspects of a bad lecture. The
most prominent of these aspects are described in the
following subsections.

4.1 Unreadable PowerPoint Slides
Student: ... the graphics of the lecturer's slides. It's –
sometimes it's really bad so you can't even see it when
you print it out.
Student: They can get actually quite complicated
sometimes. … I mean, when you've got code up there
fair enough – it's going to be complex. But
occasionally you've got something that has like three
or four levels of little points and headings and arrows
– and it's not very nice to learn from or to read.
You're trying to focus on the lecturer but you're also
trying to focus and read on the PowerPoint slides. …
Can't do both at the same time.

<Second Year Group>

4.2 Blame the Students
Students reported feeling alienated by lecturers who make
sweeping generalisations about the character of students:

Student: … I don't turn up to the first week of lectures
at all because half of it's … about how many people
failed the last semester, how many people aren't
showing up to lectures… they just stereotype the
whole group. … you take it on board quite personally.
Interviewer: OK. So they cater towards the people
who don't want to learn.
…
Student: And obviously the people who have showed
up are the ones that do.
Interviewer: OK. Well do you guys all go to lectures?
Student: [several] Yes.

<Second Year Group>

4.3 Poor Coordination between Subjects
When lecturers do not have a clear understanding of what
the class already know, they may teach too quickly or too
slowly:

Student: [Lecturers …] often they're assuming that –
like subjects that we have prerequisites for another
subject – they're assuming that because we've done
that prerequisite in the past that we know absolutely
everything from that subject– there's always going to
be things you don't remember perfectly.
 …
Student: But also on the other hand – sometimes
they go over stuff over and over.
 …
Student: Like we've … basically conversion methods,
like to do with phase conversion and implementation
– stuff like that – and all the waterfall methods and all
that stuff – I've done that for three years now. Every
single lecture it will come up. Its like – OK – I know
that – can we move over to something else?
 …
Student: Yeah … it just seems like they've got no
idea what I've done in the past …
Student: … I find that if I've had the same lecturer
through the years like for the subject and then the next
one it helps a lot. 'Cos you sort of get to know his style
and … you sort of know what to expect and he knows
what he's covered before.

<Third Year Group>

4.4 The Physical Environment
Students explained that sometimes the lecture room itself
was simply unpleasant.

Interviewer: OK – anything else in your perfect
lecture world ?
Student: Better seats [laughter]
Student: [several] Yes!

<First Year Group>

Another group cited as a problem the poor audio visual
capabilities in some rooms.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

95

5 Why do you attend lectures?
It is perhaps reassuring to hear that some students gave a
very positive reason for attending lectures:

Student: I'm more likely to turn up to the lectures for
the subjects that I'm interested in …

<Third Year Group>

Thus reassured, the remainder of this section describes
less positive reasons for attending lectures.

5.1 Assessment Hints
Some students said that they went in case the lecturer
spoke about assessment tasks (assignments and exams).

Student: I feel I'm encouraged to go to lectures when
subjects offer something a little more. Like – perhaps
– I know this sounds a bit [inaudible] but sometimes
they go into maybe a little bit of the assessment that's
gone and they give you good guidelines. What you
don't get from each exercise.

<Second Year Group>

Student: I think a lot of people come to lectures to
come to hear if they say anything about anything
that's really examinable. And like I know if I know
that the lecture is going to be about the exam then I'll
be a hundred percent. So maybe if you want
attendance to go up – say each lecture we're going to
be giving you something – like letting you know a
little about the assignment that's coming up and how
you can approach it and stuff like that – instead of just
going on and on and on about theory when clearly
we've got an assignment coming up. We're thinking
about that – we’re not thinking about anything else.

<Third Year Group>

Sometimes a similar sentiment was expressed more
positively:
Student: One of the good subjects I've had was with the
assignment – they didn't just give you everything they're
going to give you at the start and then go 'Right. Now
work it all out for yourself'. They gave you not much at
the start but then progressively they give you six weeks to
do it or something. And basically every week or whatever
they'd give you more information to help you to do it so
you weren't just left doing it on your own and trying to
work it out. They'd actually tell you how to do stuff you
needed to know for the assignment. … So you'd start –
you'd start your assignment when they first gave it to you
and there was only so much you could do because you
didn't know it all. But then the next lecture they'd tell you
more.
Student: That’s how you learn …

<Third Year Group>

5.2 An Absence of Written Materials
In some cases students said that they had to go to lectures
because there was not a set of lecture notes, or a textbook.

6 Why don’t people attend lectures?
While students in the focus groups conceded that some
students do not attend lectures out of laziness, or because
of paid casual work, they described several reasons why

even committed students cease attending lectures. In
general, many students find that lectures are not a good
use of their limited time:

Student: Well the thing is that a lot of people in third
year don't even come to lectures anymore. Do you
know what I mean? I'll be honest, I don't come to a lot
of the lectures either because I know the lecturer
who's taking it – I don't get anything out of it anyway
so there's no point. So that's why you get – I mean,
first year I went to every single lecture, every single
whatever. But then you start to realise … well I really
don't need to be here for this – I'm just going to leave.
Student: You just get the same amount out of it if you
just spend time at home.
Student: Exactly.
Student: Than making …
Interviewer: Without travel.
Student: Yep, that's it.

<Third Year Group>

6.1 No Value Added to PowerPoint Slides
Students want lecturers who go beyond what is written in
the lecture notes:

Interviewer: Do you guys all go to lectures?
Student: Yep.
Student: Most of the time [laughter]
Student: Most of the time.
Student: Except when my lectures clash.
…
Interviewer: … do you know people who don't go to
lectures and why do you think they don't go?
Student: Because most of the time they tend to
already know what they're up for and what they need
to get done.
Interviewer: And why – how do they know that?
Student: They read the slides.
Student: Yeah.
Student: Yeah – they just assume that everything
that's taught is going to be off the slides and just learn
the slides and what needs to be done.
Interviewer: And is that true?
Student: Most of the time.
Student: Sometimes – yeah.
Student: Some of my – well there's one class I haven't
been attending … 'cos I don't feel like I'm learning
anything from the lesson.

<First Year Group>

Student: I think it's a huge issue. I think it's like – I
mean, lectures are supposed to be you listening to the
lecturer. I mean, if I wanted to read the slide I'd just
read it at home. I wouldn't sit in a lecture room for
however many hours to do it. I'm coming to a lecture
to hear what they have to say about it.

<Third Year Group>

CRPIT Volume 95 - Computing Education 2009

96

Even when the lecturer has an engaging manner, some
students will not attend if the lecture if they know the
lecturer will only cover the material in the notes:

Student: … he's actually a good speaker…. But I
don't necessarily gain anything more from going to
the lecture than just simply reading the textbook or
doing the tutorials or things like that. The PowerPoint
things that he puts up are fairly good but again, you
know, if I read the PowerPoints beforehand I'm OK.
Interviewer: There's no value added.
Student: Yeah – exactly – there’s no value added out
of going.

<Second Year Group>

On reading the above, a lecturer might be tempted to
improve their lecturer attendance by not making the
lecture slides available, but as the students themselves
point out, that may cause its own problems:

Student: The easy solution for that will be the
lecturers will go "OK – well we'll stop putting that
content up" but that doesn't solve the problem.
Student: Yep.
Student: Because [inaudible]
Student: Yep, that’ll just increase failure rate.
Student: Yeah, that'll just increase …
Student: I can guarantee that.

<Second Year Group>

6.2 Lecturers with Accents
Students were reluctant to attend a lecture if they knew
they would struggle to understand the lecturer’s accent,
but students are not insensitive to the cultural issues of
accents:

Student: I think another important thing is that the
lecturer has a clear voice. … Sometimes if the lecturer
is – you can't hear what he's talking about – not
interested in the lecture.
Interviewer: OK – so when you say clear voice do
you mean – just …
Student: The pronunciation.
Interviewer: … not accented or just the way they're
talking loud?
Student: No, I mean the accent.
Interviewer: The accent – OK.
Student: I know it's something we can't really
complain about because it's the lecturer's
background.
Interviewer: You can complain about it.
Student: Yeah – but accent – especially at [first year]
level – I found really difficult to understand anything.
And I found no point in going to lectures as well if I'm
going to sit there and struggle to understand the guy
when I know most of it is just reading off the lecture
slides. I seriously have no motivation to go at all.

<Second Year Group>

6.3 Class Scheduling

6.3.1 Timing
The times at which classes are scheduled has an impact
on student attendance:

Student: Um – it's not anything really to do with the
lecturer – it's sometimes just time. Like – if you have a
lecture in the morning and a lecture at night the
chances of going in the morning and staying the
whole day might be diminished a little bit.
Interviewer: OK.
Student: Yeah – It’s time.
Interviewer: Time.
Student: Yeah.
Student: … Some lecturers – I know it's probably not
their fault – but they had one class for that subject
and you had to go this, this and this day. And often
when you're timetabling you're left with one class in
the morning for one hour and the rest of the day off.
Interviewer: Mmm.
Student: And they're better off thinking, you know, I'll
stay at home and read the slides.
…
Student: For [student nominates a particular subject]
I don't know why they separate three one-hour
lectures.... in two days. One is eleven o'clock on the
Monday and the other one is Tuesday nine o'clock and
then one o'clock in the afternoon.

<Second Year Group>

Student: It's also – some lectures are on really stupid
times. Like, I have a lecture on 6pm to 9 pm on a
Friday night. For religious reasons I have dinner at
home and all those kind of things on Friday nights.
And like – who wants to stay at uni from 6–9 on a
Friday night? … we might be computing students
where we like to sit at home on our computers but it
still doesn't mean that like … [laughter]
Student: Even 9 AM starts four days a week.
Student: Yeah there's no way I can get here at 9 at a
lecture. 'Cos – I don't know – some people live so far
away … I live in the East which is half an hour drive
away. But if I'm leaving – if a lecture is at nine o'clock
I'm going to be in traffic for at least an hour.
Interviewer: I live in the east. I get here at seven to
miss the traffic.
Student: Yeah – so that's the thing. So it's just a bit
of a problem to have …
Student: And it's worse when you come in at – you
make the effort and come in at nine and then, like, he
just doesn't do anything and it's just a half an hour
lecture and then …
Student: You're like, ‘why did I just come?’
 …
Student: [Begins by naming a particular class] There
are only thirteen people in the class and they had a
lecture at nine o'clock in the morning and they had to
move it because …
Student: … No one would turn up.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

97

Student: Three people would turn up [laughter].
Because for most people it was the only subject they
had the whole day so they didn't bother turning up
because it'd take them an hour, an hour and a half to
get to uni for an hour.
 …
Student: I've [classes] five days a week but two of
them I've only have one hour of class.
Student: Last semester I had a 9 o'clock class and
then I've got [no classes] till like 8pm.
Student: I've had classes where I've been here from
nine o'clock to nine o'clock.
Student: I've had nine to nine.
Interviewer: Really?
Student: Oh yeah, easy.
Student: Yeah.
Student: I've had that nearly every year I've had that.
This semester I've got that – start at ten.
Student: I had – one of those times I had a five hour
break in the middle of the day.

<Third Year Group>

6.3.2 Location
Associated with poor timing of lectures is the poor
location of lectures:

Student: Usually most of our classes and most of our
activities are around this building here, and then our
lectures are so at the end [of the campus] …there are
a lot of other classes that people can fit in around
here instead of all the way over there.
Student: Our classes are not big.

<Second Year Group>

6.3.3 Length
Part of poor scheduling is also the length of lectures:

Student: I've got lectures that go for a three hour
block. And I think it's just – it's – yeah – it's great
to get it all done because you don't have to come in
the individual days but on the other hand I would
rather coming in different days so you don't have to
sit through a lecture for 3 hours. I don't know – it gets
a bit annoying when it is for that huge block.
Interviewer: Yeah – a lot of people doing one-hour
lectures in the younger years were saying ‘no, no – we
want two-hour blocks’.
Student: Yeah – I don't know – by 3rd year I just get
a bit annoyed because – I don't know – I lose
concentration quite quickly and it's just – it gets to be
a lot.

<Third Year Group>

6.3.4 Relationship with Labs/Tutorials
Poor scheduling and location also adversely affects the
relationship between lectures and practical sessions:

Interviewer: … how do your lectures, tuts and
practicals fit in with each other? Do they all ... you
know, do you go to lectures and you learn what you

need to do for the tuts and pracs and do they fit nicely
together?
Student: No – it's not really [inaudible]
Student: I just went to a prac and we haven't learnt it
yet. … You have a [subject] tut and you do the
material that you're supposed to learn the next day in
that [subject’s] lecture. So you have no idea what's
going on doing [subject].
Student: Yeah.
Student: Yeah.
Interviewer: OK.
Student: Sometimes you really don't know. Once you
finish your class you rush to the tut or before the tut
you go to before the lecture and then you're like in
totally two different subjects.

<Second Year Group>

6.4 Assessment Scheduling: Peak Loads
Sometimes the assessment deadlines stop students from
attending lectures:
Student: … sometimes you get big assignments that are
due the same week.
Student: You get all your assignments at once.
Student: Oh, that's a killer.
Student: So sometimes you can't go to lectures because
you have to sit in the labs doing the assignments for a
week.
Student: Every semester I get that ... I got it this semester
as well.
Student: You sit in the labs the entire week and you
never turn up to one lecture the entire week because …
Interviewer: You're too busy doing all.
Student: You've got all your assignments due at the same
time.
 …
Student: Well, yeah, I understand that we should be
doing assignments months and months before but let's be
honest like a lot of us don't do that because of whatever.
Student: But some of them we don't have the knowledge
in the lectures.
Student: Yeah, yeah.
Student: That as well – we don't have the knowledge for
it.
Student: We get given the assignment and we don't have
the knowledge to start it.
Student: We only have the knowledge for it when it's due
basically.
Student: We'll have maybe two weeks worth to … get
given a month for the assignment but we only learn the
knowledge two weeks before it's due.

<Third Year Group>

7 Recommendations by CPD
As noted earlier, these focus group sessions were
conducted by the university’s Centre for Professional
Development (CPD). As a result of these sessions, the
CPD made a number of recommendations to the Division,

CRPIT Volume 95 - Computing Education 2009

98

which are described in the following subsections. These
recommendations are taken almost directly from the
CPD’s report, and were only lightly edited for this paper.

7.1 Professional Development of New Staff
Academics new to teaching, or with less than two years
experience in teaching at a tertiary level, undertake some
form of professional development in teaching and
learning, coordinated by the Centre for Professional
Development (CPD).

7.2 Peer Observation
ICS academics take a “professional approach” to
teaching, including the incorporation of systematic peer
observation of teaching throughout the division.

7.3 Curriculum Review
The division undertake an extensive curriculum review in
order to investigate the potential of lectures being more
interactive – this could mean more content is available
online.

7.4 Recognition of Good Teaching
The Division/Departments recognise and reward good
teachers and use them, together with Divisional winners
of Macquarie Outstanding Teacher awards as examples of
good practice.

7.5 Communication problems
Academics with strong accents/language difficulties are
provided with assistance to overcome the problems these
pose in the teaching and learning context.

8 Discussion and Further Findings
In this section, we first discuss the CPD
recommendations before making some further
suggestions of our own.

8.1 Comments on the CPD Findings
With the exception of the recommendation regarding
academics with strong accents / language difficulties, the
CPD recommendations are not closely related to the
evidence in the focus group transcripts. These
recommendations are what university Teaching &
Learning units across Australia have been advocating for
many years.
The CPD recommended professional development of new
staff. This is a good recommendation, but we ask ‘what
in the focus group transcripts suggests that new staff
members are a particular problem?’ We find almost
nothing in the transcripts concerning the experience
levels of lecturers. If anything, what little evidence we
did find in the transcripts suggests that it is the older
academics, not the new academics that may need the
professional development:

Student: … don't get me wrong because older people
can be really happy and really energetic and really
passionate. But, you know, if you're sort of new to
something – like when you get a new job you work
hard to like, you know, impress and keep it. But I
don't really think that – like I think they get older so

they just don't care. They just want to hurry up and
teach and get out of there.

<Second Year Group>

8.2 Other Factors in Poor Lecture Attendance
This subsection discusses several factors leading to poor
lecture attendance that we found prominent in the
transcripts but were not addressed in the
recommendations of the CPD.

8.2.1 Timetabling
A prominent reason given for not attending lectures is the
timetabling of lectures in such a way that students had too
few classes in one day to make the sojourn to university
worthwhile. The transcripts also contain student
suggestions on how classes could be more attractively
timetabled:

Student: ... you would know that someone who's
doing, say, an information systems degree would have
to do these subjects. Can't you sort of sync it up so
that they're all in the same block? … Instead of
waiting three hours for a lecturer to come and then
you don't really need to go to it. Do you know what I
mean?
Student: [The student begins by advocating the
adoption within computing subjects of a timetabling
structure that the student experienced in a non-
computing subject]. … it's like a two-hour block
which is like – the first hour is lectures and stuff like
that and afterwards if you've got questions and stuff
the lecturer will be there to answer questions – or,
say for a computing subject, that he could be in the
labs or something like that ...
Student: That's like the [computing subject] we did it
last semester was actually good because you'd have
lecture and then for … the prac … The lecturer and –
one of her PhD students I think – they would be in the
labs the hour after … like the whole class would walk
to the labs and we'd do like practice stuff together.
 …
Interviewer: So you had access to them after the
lecture.
Student: And it was useful because like she was
there to help the whole class. Like we could be doing
our pracs and go 'OK how do I do this' and she'd be
able to help us as well as discuss.

<Third Year Group>

8.2.2 Coordination of Assessment Load
Students identified heavy peak assessment load as a
factor in non-attendance at lectures. One student also
pithily suggested a solution:

Student: … the lecturers need to talk between each
other because sometimes you get big assignments that
are due the same week.

Many experienced academics will complain about
externally mandated alterations to their assessment
schedule, with some justification, as the deadlines for
assignments in individual subjects are often bound tightly
to the sequencing of the lecture material. We concede

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

99

that, from the perspective of a single lecturer/subject,
coordinating assessment deadlines across subjects might
introduce some inefficiency into the teaching of single
subject. However, lecturers who are troubled by poor
lecture attendance might consider the larger picture; that
students attendance at their lectures might improve as a
result of coordinating assessment deadlines, and perhaps
there is a net gain to be had via the gambit of slightly
suboptimal assessment deadlines.
The second author has worked in a faculty (not at his
current institution) where assessment deadlines were
mandated across subjects, so coordination of assessment
deadlines is – not popular, but – possible. If mandated
deadlines are too difficult, then at least lecturers could
communicate their deadline intentions to each other, and
some of them might then adjust their own assessment
schedule voluntarily

8.2.3 Coordination of Content Across Years
Students identified the repetition of material in successive
subjects as a factor in non-attendance at lectures, and they
also discussed the obvious solution:

Student: … I don't know if lecturers actually talk to
each other to let them know what they've done. …
Student: Yeah – well, I'm sure it happens. But it just
seems like they've got no idea what I've done in the
past …

Coordination across several subjects is difficult, as every
lecturer knows that their colleague may have talked about
something, but the students may not have learnt it.
Never-the-less, there is no harm in academics at least
talking to each other to find out what their colleagues
claim to have taught.

9 Discussion of Findings
We identified two underlying themes in the focus group
transcripts that were not captured within the CPD
recommendations:

• Lecturer attitude
• Value-adding

With respect to the first of these underlying themes, we
can hardly expect our students to be enthusiastic about
attending lectures if we lecturers do not convey a positive
attitude about lectures. This might appear self-evident,
that a lecturer who is disinterested – or worse negative –
about taking the class, is giving a signal to students to
adopt the same attitude. From the study results presented
in this paper it appears that it is worth reminding
ourselves and our colleagues of this self-evident truth.
With respect to the second of the underlying themes (i.e.
value-adding), students are increasingly asking questions
about what the lecturer experience is providing to them.
We should at least be thankful that they are asking
questions, if not perhaps the ones we would prefer.
Scientific enquiry is not meant to ask the easy questions.
The results from this focus group study indicate that

students want the lecture to contain material and
experiences that could not as easily be gained from
private reading of the textbook or notes. The lecturer
might achieve such an outcome by many alternatives.
Some alternatives are: (1) to make the lecture an
opportunity to ask questions of the lecturer; (2) have the
students work on problems for which the lecturer then
presents a worked solution; (3) provide assessment and
examination information. Perhaps the message is that if
the lecture would have been given in the same way even
if no students were actually present, and especially if the
lecturer’s attitude was disinterested or worse, then we
have a lecture that the students are not keen to attend.
Lectures that involve the students, which give them
positive reasons to attend, will see their own reward.

10 Conclusion
Computing academics often warn of the dangers of
outsourcing software development. Analogous problems
arise when academics within a discipline outsource the
evaluation of teaching quality to an external unit of their
own university. Teaching and learning units have their
own perspective – (to use an expression common in
teaching and learning units) they see the world through a
particular lens – and therefore teaching and learning units
bring their own biases to any analysis of teaching within a
discipline. We are not advocating that teaching and
learning units should be ignored – on the contrary, we
strongly advocate that academic disciplines work closely
with their teaching and learning units. What we warn
against is a complete dependence on an outside source of
authority for the evaluation of teaching and learning
issues.
Teaching and learning units tend to focus on problems
that can be fixed by changes to the practises of the
individual lecturer. That focus makes teaching and
learning units less aware of the sources of other problems
in university teaching, and therefore less likely to identify
problems that can only be solved by changes to systemic
procedures. For example, in this paper, we identified poor
timetabling of lectures and associated classes as a factor
in low lecture attendance, but the report from the teaching
and learning unit made no recommendations in that
regard. On the basis of our reading of the transcripts, we
conclude that any university seeking to improve
attendance at lectures should look as much to improving
its timetabling practices as it does to improving its
individual lecturers.

References
Biggs, J. (1999) Teaching for Quality Learning at

University. Buckingham: Open University Press.

Bligh, D. A. (2000). What's the Use of Lectures? San
Francisco, CA: Jossey-Bass.

Ramsden, P. (1992) Learning to Teach in Higher
Education. London: Routledge.

CRPIT Volume 95 - Computing Education 2009

100

What Our ICT Graduates Really Need from Us: A Perspective from the
Workplace

Tony Koppi1 Judy Sheard2 Fazel Naghdy1 Joe Chicharo1 Sylvia L. Edwards3
Wayne Brookes4 David Wilson4

1Faculty of Informatics, University of Wollongong, Australia
tkoppi{fazel, chicharo}@uow.edu.au

2Faculty of Information Technology, Monash University, Australia
Judy.Sheard@infotech.monash.edu.au

3Faculty of Information Technology, Queensland University of Technology, Australia
s.edwards@qut.edu.au

4Faculty of Information Technology, University of Technology Sydney, Australia
brookes@it.uts.edu.au, David.Wilson@insearch.edu.au

Sylvia Edwards, David Wilson, UTS

Abstract
A national Discipline-Based Initiative (DBI) project for
Information and Communications Technology (ICT),
funded by the Australian Learning and Teaching
Council, has sought the opinions of recent graduates of
ICT in the workplace to help inform the curriculum. An
online survey was devised to question graduates on
workplace requirements and university preparation for
abilities categorized as: personal/interpersonal;
cognitive; business and technical. The graduates in
employment have highlighted broad mismatches
between the requirements of their professional work in
these categories and the preparation for employment
they received from university. A regression analysis
was used to determine influences on graduates’
opinions of the preparation they received at university.
The quantitative and qualitative results from this survey
could have far-reaching consequences for ICT
education and this initiative will enable the
development of curricula that ensures graduates are
equipped with the skills required by the ICT industry.

Keywords: ICT curriculum, graduate workplace
abilities, ICT graduates, professional work
requirements, university courses

1 Introduction
This paper reports on a study that is part of the
Discipline-Based Initiative (DBI) for Information and
Communications Technology (ICT) education in
Australia. This national project is based at the
University of Wollongong under the directorship of
Professors Joe Chicharo (Dean, Faculty of Informatics)
and Fazel Naghdy (Head, School of Electrical

Copyright ©2009, Australian Computer Society, Inc. This pa-
per appeared at the Eleventh Australasian Computing
Education Conference (ACE2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 95, Margaret Hamilton
and Tony Clear Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

Computer and Telecommunications Engineering) and
is concerned with improving education and the student
experience in the broad range of ICT disciplines. The
project is partnered by Monash University, Queensland
University of Technology, and the University of
Technology, Sydney, with the collaboration of the
Australian Information Industry Association (AIIA) in
parts of the project. It is supported by The Australian
Learning and Teaching Council.

The issues and challenges facing the ICT education
sector are broad and complex. The context in which
these can be explored includes the interrelated areas of
high schools, tertiary education providers (which are
dominated by universities), industry, professional
bodies and government. Furthermore, the discipline
area of ICT covers a wide spectrum with engineering-
related disciplines at one end and business/commerce-
related disciplines at the other.

In spite of the downturn in the early years of this
century, the ICT industry has proved to be quite robust
and is set to grow in the coming years. There is a
renewed optimism for healthy growth of the sector at
least during this decade (Newstrom, 2005). The growth
is expected to take place concurrently in all four major
sectors of ICT i.e., hardware, software, services and
communication.

The growth and expansion of ICT so far and its
future development have two major impacts on ICT
education. The growing ICT sector will require more
trained human resources at all levels including
maintenance, design, development, implementation and
leadership. At the same time, new developments and
inventions will create new fields in ICT, which in turn
will demand introduction of new courses and training
programs at all levels.

The rapid pace of change in the ICT sector has been
driving and demanding parallel changes in all facets of
ICT education including curriculum, structure, content
and delivery. This has been crucial to ensure that
courses offered have relevant curricula, address the
needs of the ICT industry and produce graduates of
immediate benefit in their employment.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

101

This paper is concerned with the ICT curriculum
and its relevance to graduates in the workplace. Recent
graduates who have been in the workplace from one to
five years have been consulted about their curriculum
by means of an online survey. A survey of graduates in
the workplace was a recommendation from an
Australian Universities Teaching Committee (AUTC)
project concerned with ICT education (AUTC, 2001).
The survey was designed to elicit from graduates in the
workplace the abilities they consider as important for
successful performance in their current professional
work, and to give their perceptions of how well their
university course prepared them for these abilities. The
results of the survey will enable universities to develop
curricula that better prepare their students for
employment in the ICT sector. A similar but smaller
and narrower study was carried out by Sumner and
Yager (2008) in the US on perceived differences
between what MIS graduates learned in their degree
program and the requirements of their jobs.

The views of these graduates in the workplace
represent industry’s requirements of university
curricula. Any discrepancy between these requirements
and the perceptions of university preparation to meet
them would reveal a gap between academia and
industry. Such a gap between industry and academia
was identified by Yen, Chen, Leea and Kohc (2003)
and Nagarajan and Edwards (2008). Another
perspective of graduate suitability for the workplace is
given by employers (such as reported by Hagan, 2004)
but that aspect is outside the scope of this paper.

2 Design of the online survey of graduates in
the workplace

The online survey of ICT graduates in the workplace
was intended to inform universities about the
curriculum with respect to industry requirements. The
survey questionnaire was developed by the project
team. The design was based on that of Scott (2003) and
modified for the purposes of this ICT study. The
questionnaire was trialled with graduates and
academics before release. Notification of the survey
was via local Alumni Offices and responses were
received from graduates from 15 Australian
universities.

The categories under which the survey questions
were devised are as follows:

• Personal/interpersonal abilities

• Thinking/cognitive abilities

• Business abilities

• Technical abilities

• Learning and university experience

The essential structure of the survey was three
columns on a webpage with statements of abilities
relevant to a particular category down the centre, the
rating scale of importance of that ability in current
professional work on the left, and the extent to which

the university course1 focused on developing that
ability on the right (as shown in Table 1). Five point
Likert scales were used for the comparison of
responses on the left and right of the table. Comparing
the left and right sides illustrates how well the
curriculum is integrated with the requirements of
professional practice. The results tables presented
below differ from the online version, which included
radio buttons and the high-low order was reversed.

Text entry boxes were provided at the end of each
category for respondents to add any comments and
other information they considered would be helpful
regarding that category.

3 Results and discussion
This paper reports on results from five universities that
gave the majority of the total responses. These five
universities were from NSW, Victoria and Queensland,
and included one Group of Eight (Go8)2 university and
two from the Australian Technology Network (ATN).
There were 548 completed responses to the online
survey from graduates in the workplace from these five
universities. The results are presented in the following
tables as percentage values and they are ranked by the
high score of the left column. Data were analysed in
SPSS and the distribution of responses relating to
current professional work was compared to that of
university preparation by using the Wilcoxon Test.

3.1 Personal/interpersonal abilities
There were 12 questions in this category. The
percentage responses are shown in Table 1. The results
are ordered on the left hand column (high responses)
for the importance for professional work. For all
questions, the graduates gave a higher rating for the
importance of the ability for successful performance of
professional work than the extent to which the
university course focussed on this ability. These
differences were significant according to Wilcoxon
tests. There were 104 open text responses to this
category.

1 Course in this context means a program of study for a
degree or diploma.
2 The Group of Eight is a coalition of research intensive
Australian universities (http://www.go8.edu.au/)

CRPIT Volume 95 - Computing Education 2009

102

Importance of this for

successful performance in my
Current professional work

 Extent to which my
University Course

focused on this ability
5

high
4 3 2 1

low
 5

high
4 3 2 1

low
61 29 10 1 0 Ability to remain calm under pressure or

when things go wrong
11 24 30 21 13

55 33 10 2 1 Ability to contribute positively to team-
based projects

29 37 24 7 3

51 33 13 3 1 Ability to communicate effectively in
writing

23 36 27 11 3

51 31 13 4 1 Ability to speak to groups of people
effectively

13 35 28 15 10

49 39 10 2 0 A willingness to face and learn from my
errors and listen openly to feedback

19 31 31 12 6

48 28 17 4 3 Ability to work productively with people
from a wide range of cultural backgrounds

25 30 27 11 7

46 34 15 4 2 Ability to communicate effectively and
appropriately using electronic media

19 37 26 15 4

44 41 12 2 1 A willingness to consider different points
of view before coming to a decision

17 36 27 14 5

34 31 25 7 3 Ability to communicate effectively in
visual or graphical formats

14 33 31 17 6

32 27 21 10 10 Ability to consider the impact of my
actions on the environment

9 16 31 22 23

30 34 20 10 6 Ability to consider the impact of my
actions on people in the broader
community

9 19 34 22 17

11 14 19 14 43 Ability to communicate in languages other
than English

4 6 16 14 59

Table 1. Personal/interpersonal abilities responses given as % and ranked in order of importance (high score) in

current professional work

The ability to remain calm under pressure or when
things go wrong is clearly seen as the most important
ability in the work environment by nearly two thirds of
the respondents. None of the open text responses
directly commented on this particular ability although
there were several comments of a general nature
regarding these ‘soft skills’. Some of those comments
noted that universities were generally not good at
developing these skills (e.g., “University has not
focused on interpersonal skills to the extent it should
have focused”), and other graduates noted that these
were developed in extra-curricular activities within the
university, such as in university clubs and societies,
and also in part-time jobs and work experience.
Participation in extra-curricular activities to develop
interpersonal skills has also been advocated by the
Engineers for the development of their graduates
(King, 2008).

The ability to contribute positively to team-based
projects is a high priority in professional work, as
indicated by more than half of the respondents.
Nagarajan and Edwards (2008) also reported that

teamwork is an important requirement at work. A
positive comment noting the importance of teamwork
and university contribution from a respondent:

“Team based assignments where individuals
were scored on their contribution to the work
were very important to ensure one person
didn't "carry" the group, but was also not
penalised for others short-falls. In IT today, it
is rare to be working solo on a piece of work.
More and more employers are asking for self-
starting team based players, as more
companies adopt the Agile project
methodology.”

However, in explanation of the significant
difference between importance for professional work
and university preparation of this ability (Table 1),
other comments note that universities were not fully
effective in developing teamwork skills for a variety of
reasons including differences in ability, experience,
attitude and behaviour amongst the students within an

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

103

environment that is different from that of the
workplace.

Written and oral communication skills were also
given high importance by more than half of the
respondents and were also significantly different from
university preparation for these abilities (Table 1).
Nagarajan and Edwards (2008) reported that the
dominant skill requirement at work was
communication (both verbal and written). Many
respondents commented on their lack of development
of presentation abilities whilst at university.

 “Presentations were usually done in Tutorials
- while the first thing I came across (and I told
myself I wish we were trained on this ...) was
speaking to over 300 people.”

“…and only made 2-3 presentations to peers
which utilised an over-head projector.”

“I also learned the importance of being able to
consult effectively through presentation and
confident speaking. I am still working on

these skills and had I realised the importance
in UNI I would have given more of an effort
in presentations etc.”

“I think more presentation skill should have
been taught in university. In the first few
subjects there should have been more
importance on presentation”

One university was praised and thanked by a
respondent for the valuable relevant training received
in communication units.

3.2 Thinking/cognitive abilities
Table 2 shows the thinking/cognitive abilities ranked in
order of high importance in professional work. There
were eight questions in this category. In each case,
graduates gave a higher rating for the importance of the
ability for successful performance of professional work
than the extent to which the university course focussed
on this ability. These differences were significant
according to Wilcoxon tests.

Importance of this for

successful performance in my
current professional work

 Extent to which my
University Course

focused on this ability
5

high
4 3 2 1

low
 5

high
4 3 2 1

low
61 29 8 1 1 Ability to diagnose what is really causing

a problem and test this out in action
19 32 30 12 6

55 30 12 2 1 Ability to identify the core issue in any
situation from a mass of detail

18 32 31 14 4

52 39 8 1 0 Ability to access and organise
information effectively

28 36 27 7 2

49 39 10 2 0 Ability to bring a creative approach to
problem solving

19 38 29 11 4

44 37 17 2 1 Ability to keep up to date with relevant
developments

17 33 29 15 7

43 35 17 5 1 Ability to represent and interpret
information in a variety of formats (e.g.,
graphical, text or multimedia)

24 35 29 10 2

42 42 13 2 1 Ability to synthesise information into
appropriate formats

20 39 32 7 2

34 35 18 9 4 Ability to work equally well in paper-
based and electronic-based formats

24 33 30 9 4

Table 2. Thinking/cognitive abilities responses given as % and ranked in order of importance (high score) in

current professional work

Out of the 45 written responses, several respondents
claimed that these cognitive/thinking abilities are
probably the most important part of the university
experience and of high relevance to professional work,
for example:

“The things that I use most from my
university education are the personal skills

and thinking skills. Very little of the content
of my degree do I use in my present role.”

Almost two thirds of respondents thought that the
ability to diagnose what is really causing a problem
and test this out in action is of high importance, and
more than half of the respondents thought that the
ability to identify the core issue in any situation from a
mass of detail was also of high importance. These

CRPIT Volume 95 - Computing Education 2009

104

problem solving abilities were generally not considered
to have been well developed at university. Some
typical responses:

“Diagnosing problems is a highly developed
skill, but was not "taught" at all. We each
practiced it on our on solutions, but weren’t
given the skills.”

“It would be worthwhile in some of the
problem-solving subjects, providing
opportunities to students to complete the same
task using different approaches would prove
useful in training creative thinking.”

“I felt somewhat guided at university as to the
solution to a problem especially if it was
related to a specific topic. Generally I have

little or no information and very vague
descriptions of the problem.”

“More real world examples of problems
would be useful in ICT courses.”

3.3 Business abilities
Table 3 shows the business abilities ranked as being of
high importance in professional work. There were
eight questions in this category. In each case, graduates
gave a higher rating for the importance of the ability
for successful performance of professional work higher
than the extent to which the university course focussed
on this ability. These differences were significant
according to Wilcoxon tests.

Importance of this for successful

performance in my
current professional work

 Extent to which my
University Course

focused on this ability
5

high
4 3 2 1

low
 5

high
4 3 2 1

low
64 25 9 1 1 Ability to understand, appreciate and

meet the needs of your clients
16 29 30 16 9

55 34 8 1 2 A willingness to take responsibility for
projects including their outcomes

24 37 25 9 6

54 36 8 1 1 Ability to set and justify priorities 20 32 29 14 5
51 33 11 3 2 Knowing how to manage projects into

successful implementation
21 35 27 12 5

50 35 11 3 1 Ability to estimate the time required
for work-related tasks

20 33 25 15 8

44 35 15 4 3 Having an understanding of how your
organisation functions as a business

11 22 31 19 17

39 33 18 5 4 Ability to be flexible and adaptable to
frequent changes of employment

11 20 27 22 20

28 33 23 10 6 Ability to translate innovation into a
viable business plan

11 22 30 20 17

Table 3. Business abilities responses given as % and ranked in order of importance (high score) in current

professional work

Many of the 34 text responses in this category noted
the importance of business skills in ICT employment.
Some illustrative responses:

“I score 5 for all of the items because today's
competitive is very tight. All are necessary”

“Business skills are essential to THRIVE (not
just survive) in the IT industry. While Uni
graduates continue to under-perform in this
area, the degrees they showcase will continue
to be under-valued and discounted as mere
bits of paper.”

“Aside from 3rd and 4th year projects, I found
business skills to be lacking from my degree.

When I started to manage projects for my
company, I found these things difficult and
had to learn very quickly from my mistakes.”

“Understanding the business context is
essential however I really only did 1 subject
that required this but in my programming
work that I am doing I MUST speak the same
language as the business and demonstrate that
I understand their business from their
perspective.”

However, while acknowledging the importance of
business skills, other respondents commented on other
important roles of universities.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

105

“However, it's crucial to have a deep
theoretical framework to build on, from the
outset. And there's not so much luxury to get
this in the chaos of working life. That's where
time at Uni is such a crucial window of
opportunity for learning theory and concepts.”

“I did not do a business or management
related degree. I did a technical degree where
I would not expect these things would need to
be covered. I had gained previous business
experience which I use for my current job.”

“…it would be more beneficial to have a
subject give you a grounding in the principles

of the different methodologies, rather than
trying to teach you to 'be' a PM on day 1.”

The challenge for university teachers seems to be
one of achieving a balance of basic theory and business
skills that will meet the needs of graduates in industry.

3.4 Technical abilities
Table 4 shows the technical abilities ranked as being of
high importance in professional work in this category.
The extent to which university courses focused on
these abilities is significantly different in each case
except for the item that is concerned with being able to
program in relevant languages.

Importance of this for

successful performance in my
current professional work

 Extent to which my
University Course

focused on this ability
5

high
4 3 2 1

low
 5

high
4 3 2 1

low
50 33 12 3 2 Having the technical expertise relevant to my

work area
20 32 29 12 8

41 38 16 4 2 Having the practical skills to generate creative
solutions to abstract problems

18 32 31 14 6

36 39 18 5 2 Having a critical understanding of theories
and principles in a discipline area

26 39 26 8 2

34 32 21 7 5 Having experience with industry-based project
work

12 21 27 22 18

28 33 27 8 4 Having numerical skills

19 32 28 13 8

26 28 24 13 9 Having exposure to ICT professionals prior to
my current job

10 21 30 22 18

26 25 16 12 21 Being able to program in relevant languages 17 32 28 12 10
23 27 30 11 9 Being familiar with current technologies

rather than fundamental theories
10 18 36 23 12

16 22 34 18 10 Having a firm grounding in fundamental
theories rather than being familiar with current
technologies

18 30 34 12 7

Table 4. Technical abilities responses given as % and ranked in order of importance (high score) in current

professional work

Many of the text responses (49 in total) in this
category commented that a focus on new technologies
and practicalities relevant to the workplace is required.
Some typical comments:

“A focus on new technologies available would
be good even if it was a brief overview before
leaving university to get a job.”

“Although the theory of a concept is
important, believe that more time / focus
should have been provided for the application
of the particular theory.”

“Most of the course dealt with theory in depth
- and failed to provide the practical skills
relevant for work.”

Other respondents noted the relevance and place of
fundamental theories.

“Nevertheless, I feel the theoretical
background I got at Uni has put me in a very
good position for adopting new technologies.”

“University is not TAFE, you should be
learning more fundamental theories than
current technologies.”

CRPIT Volume 95 - Computing Education 2009

106

“Technical relevancy is well behind in
University. Theory is usually good though and
that is where I'm ahead of those that did not
go to Uni.”

Several respondents noted the importance of
specific industry skills and qualifications and
commented that these should be available to university
students.

“Programming is not a large part of my job
however scripting is. Advanced scripting in
PHP/Bash/Perl would have been useful to
me.”

“In my 2 years of full-time employment I have
been exposed constantly to the .NET platform
which was never even considered during my
university career.”

“During my course, I was introduced to
ASP.NET, VB, C# and SQL. While this is
good and relevant, it should be noted too that
PHP is dominant in the real world.”

“It would be hugely useful to introduce
students to BOTH ASP.NET and PHP as that
would be a lot more relevant to the real world.
I'm taking this survey only because I wanted
to make this point - its from experience and I
know others who share the same sentiments.”

“The Technical skills need to be accredited
industry skills. Universities need to realise
that learning the fundamentals at university is
not up to the standard required by the work
force.”

These diverse opinions of ICT graduates in the
workplace emphasises the challenge that university
teaching staff have in finding the optimal balance
between fundamental theory, practical application, and
industry requirements.

3.5 Learning experiences at university
Table 5 shows the learning experiences at university in
relation to a set of abilities. The results are ranked as
being of high importance in professional work. The
extent to which university courses focused on these
abilities is significantly different in each case except
for the last item, which is concerned with being able to
research publications to prepare documents, reports
and presentations.

In this category, problem solving abilities rank the
highest for professional work, and it appears that being
able to solve problems personally is relatively more
important than in a group. It is perhaps not surprising
that universities match workplace requirements in the
ability to research publications since that is a basic
academic activity.

Importance of this for

successful performance in my
current professional work

 Extent to which my
University Course

focused on this ability
5

high
4 3 2 1

low
 5

high
4 3 2 1

low
54 32 11 2 1 Problem-solving activities on my own 27 39 23 8 3
44 38 13 4 1 Problem-solving activities in a group 25 34 27 9 5
41 30 19 5 5 Working on projects relevant to industry 15 24 27 20 15
40 33 16 7 4 Giving presentations

26 33 25 10 7

36 30 19 7 8 Interviewing clients to ascertain their
ICT needs for a project

10 20 25 22 23

33 30 22 10 6 Researching publications to prepare
documents/ reports/ presentations

31 35 23 6 5

Table 5. Learning abilities responses given as % and ranked in order of importance (high score) in current

professional work

3.6 The university experience
Table 6 shows the responses to a set of statements

relating to the university experience. These indicate
that the students were generally positive about their
university experience. While some text responses
stated that university teachers were not always up to
date with technological advances, Table 6 shows that a
majority of graduates in the workplace (59%) agreed to

some extent that the technical content of their degree
was current. Some text responses also indicated that
university courses did not prepare students well for
their work, however almost two thirds of respondents
(Table 6) tended to agree that they were well prepared
for work. Furthermore, almost two thirds indicated that
they consider their ICT qualification has an advantage
over qualifications from other disciplines.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

107

Several text responses noted that part-time work (of
various kinds) contributed positively to preparation for
the workplace. While 24% of graduates apparently did
not have part-time work (Table 6), more than half of

the remainder indicated that part-time work contributed
to their work preparation.

 5

Strongly
agree

4
Somewhat

agree

3
Neutral

2
Somewhat
disagree

1
Strongly
disagree

Not
applicable

The technical content of my degree was
always up to date

22 37 18 14 7 2

My part-time job helped me prepare for
the workplace

25 17 17 7 10 24

My ICT qualification has an advantage
over qualifications from other disciplines

30 32 19 10 7 4

My university courses prepared me well
for my work

27 34 18 12 7 2

Table 6. Responses to aspects of the university experience given as %

The influence of the graduates’ ratings of university

course focus items (columns on the right in Tables 1-5)
on their rating of how well their university course
prepared them for their work (fourth item in Table 6 is
taken as an indicator of ‘satisfaction’) was investigated
using a stepwise regression analysis. Twenty four of
the 43 university course items that produced coefficient
values greater than 0.3 when correlated against the
preparation for work item were used in the regression.
Five of these items produced a model with an R2 of
0.291, significant at F (5,408) = 33.455 for p < 0.05.
The regression output is shown in Table 7.

The significant influence of the ability to contribute
positively to team-based projects in the workplace with
general satisfaction of university courses is supported
by many text responses that note the importance of
teamwork in professional practice. However, many text
responses also criticise how teamwork is managed in
universities.

It is noteworthy that two of these items relate to
problem-solving activities. This is supported by many
text responses, indicating the importance of problem-

solving capabilities in the workplace. It seems that
university courses which utilise problem solving
activities leads to better prepared professionals. This is
also recognised for the engineering profession (King,
2008).

Graduates also seem generally satisfied with the
technical abilities they developed at university even
though they expressed considerable ambivalence
towards current technologies and fundamental theories.

Since none of the business items produced a
significant influence, it would seem that whatever
business skills they learned or didn’t learrn at
university, they do not contribute to their general
satisfaction with their university courses. However,
‘working on projects relevant to industry’ is significant
in this regard, and that would encompass many aspects
including practical application, problem-solving,
teamwork and business abilities. Because many of the
graduates commented on the lack of business abilities
they learned at university, this lack of correlation with
a measure of satisfaction may simply be taken as
support for their comments.

Extent to which my University Course
focused on this ability

Standardised
Beta

t Significance
(p value)

Ability to contribute positively to team-based projects 0.213 4.573 0.000

Ability to diagnose what is really causing a problem
and test this out in action

0.126 2.485 0.013

Having the technical expertise relevant to my work area 0.175 3.568 0.000

Problem-solving activities on my own 0.135 2.729 0.007

Working on projects relevant to industry 0.118 2.339 0.020

Table 7. Regression analysis results relating general satisfaction with university courses (item 4 in Table 6) with

university preparation for the workplace
.

CRPIT Volume 95 - Computing Education 2009

108

4 Conclusion
Our study found that graduates consider a range of
abilities from the personal/interpersonal, cognitive,
business, technical and learning domains are important
for performance of their work. These include
communication, teamwork, problem solving,
organisation of information, project management,
client relationships and technical expertise. However,
there were considerable mismatches between what
graduates consider to be of high importance for their
work and their perceptions of how well universities
focused on developing relevant abilities. The free text
comments provided explanation of many of these.

While a majority of graduates seem to be satisfied
with how their university prepared them for their work,
many perceive themselves as being under prepared in
terms of personal and interpersonal skills and business
abilities. Graduates claimed they were generally well
prepared in technical skills but would prefer more
exposure to new and emerging technologies.

The perception that graduates are underprepared in
communication and other ‘soft’ skills is not necessarily
because universities did not provide the opportunities
for the development of these skills. As a number of
graduates claimed, as students they did not appreciate
the importance of these skills for future work and
hence did not engage in developing these as fully as
they might have.

Future work on these graduate perspectives and
those from employers will be used to determine how
industry and academia can work together to produce
curricula that will prepare graduates for careers in an
expanding ICT profession. An outcome of this
approach may be more industry involvement in the
teaching of undergraduates.

Information from graduates in the workplace
indicated that a well-rounded ICT graduate requires
relevant technical know-how, workplace experience,
problem solving skills and ability to work in a team for
success in professional employment. Sumner and
Yager (2008) also concluded that students need a
balance of technical and non-technical skills for
industry relevance. Perhaps the most appropriate final
words are from one of the respondents.

 “I really think that universities need to expose
their students to the latest technologies as that
is the first step in preparing them for full-time
employment. The next step is to expose them
to a working environment to teach them that
excellent grades will only get you so far and
that you need to have people skills to help you
excel in what you do.”

5 References
AUTC (2001). (Higher Education Division,

Department of Education, Training and Youth
Affairs) Teaching ICT, The ICT-Ed Project, The
report on learning outcomes and curriculum
development in major university disciplines in
Information and Communication Technology,
Computing Education Research Group, Faculty of
Information Technology, Monash University, pp.
275.

Hagan, D. (2004): Employer Satisfaction with ICT
Graduates. Proc. Sixth Australasian Computing
Education Conference (ACE 2004), Dunedin, New
Zealand, 30:119-123.

King, R. (2008). Addressing the supply and quality of
engineering graduates for the new century. Report
for the Carrick Institute for Learning and Teaching
in Higher Education.

Nagarajan, S. and Edwards, J. (2008): Towards
Understanding the Non-technical Work
Experiences of Recent Australian Information
Technology Graduates. Proc. Tenth Australasian
Computing Education Conference (ACE2008),
Wollongong, Australia, 103-112.

Newstrom, G. C., (2005). Keynote speech at
"Information and Communication Technology
(ICT): Prospects for the Future", at the II
International Summit on Information and
Communication Technologies (ICT): COSTA
RICA INSIGHT 2005, cited at
http://www.witsa.org/papers/index.htm#5, August
2006.

Scott, G. (2003), Using successful graduates to
improve the quality of curriculum and assessment
in nurse education, Australasian Nurse Educators
Conference, Rotarua, New Zealand, September

Sumner, M. and Yager, S.E. (2008). An Investigation
of Preparedness and Importance of MIS
Competencies: Research in Progress. Proc. of the
2008 ACM SIGMIS CPR conference on Computer
personnel doctoral consortium and research, pp
97–100. Available
http://portal.acm.org/author_page.cfm?id=811001
23452 and viewed 11 September 2008.

Yen, D.C., Chen, H-G., Leea, S. and Kohc, S. (2003).
Differences in perception of IS knowledge and
skills between academia and industry: findings
from Taiwan. International Journal of Information
Management 23, 507–522.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

109

http://portal.acm.org/author_page.cfm?id=81100123452
http://portal.acm.org/author_page.cfm?id=81100123452

CRPIT Volume 95 - Computing Education 2009

110

Evolution of an International Collaborative Student Project

Cary Laxer
Rose-Hulman Institute

of Technology
Terre Haute, IN, USA

cary.laxer@
rose-hulman.edu

Mats Daniels

Uppsala University
Uppsala, Sweden

mats.daniels@

it.uu.se

Åsa Cajander

Uppsala University
Uppsala, Sweden

asa.cajander@

it.uu.se

Michael Wollowski
Rose-Hulman Institute

of Technology
Terre Haute, IN, USA
michael.wollowski@
rose-hulman.edu

Abstract
International collaborative student projects are
inherently difficult for everyone concerned – the
students working on the projects, the faculty guiding the
students, and the clients submitting the projects. With
more and more schools recommending, or even
requiring, that their students have some form of
international experience in their degree programs, these
projects will become more prevalent in helping to
educate computing students in the 21st century.
Understanding cultural differences between countries
helps students have a better appreciation for the global
aspects of computing and the issues faced in making
software work in an environment they are not used to.
This paper discusses the evolution over four years of
collaborative projects between computing students at
two schools, one in Sweden and one in the United
States. The projects are based in courses at both schools
that deal with computing in society. We discuss what the
faculty teaching the courses and guiding the projects
have learned and how they have improved the
experience, what the students learn through these
projects, and how the clients interact with the students
and faculty. Suggestions for further development of
these projects are also made.

Keywords: International collaborative projects,
computing and society, open-ended group projects, real-
world problems

1 Introduction

Computer scientists and software engineers face many
challenges with the projects they work on. The problems
they solve are mostly open-ended and team-based. More
and more frequently the projects are also international in
nature, with many multinational corporations using
around-the-clock approaches to getting problems solved.
The challenge to computer science educators is how to
get their students exposure to these types of problems
and experience in solving these types of problems, so
that when the students complete their degrees they are
able to join the professional workforce with the

necessary skills to make them useful as quickly as
possible to the companies hiring them.

Fuller et al (Fuller, Amillo, Laxer, McCracken, and
Mertz 2005) showed that working on international
projects facilitated learning for computer science
students. The students should understand the needs of
the local communities in which their project results will
be used. However, in the past there has been little, if
any, opportunity for students to experience, and
overcome, language and cultural barriers that are
inherent in international collaborative projects
(Azadegan and Lu 2001).

Likewise, open-ended group projects facilitate
student learning by allowing the students to reflect on
and apply the fundamental computer science and
software engineering principles they have learned to a
larger, perhaps less well-defined, problem than they are
used to working on (Newman, Daniels, and Faulkner
2003). These projects “can contribute to the
development of professional and ‘social’ skills which
will be essential for their future careers” (Newman,
Daniels, and Faulkner 2003).

The work reported in this paper combines the desired
educational goals of both international collaborative
projects and open-ended group projects. The approach
strives to overcome the educational shortcomings of
international collaborative projects mentioned earlier
and tries to provide a richer educational experience for
the students.

2 Method

The findings in this paper are based on us working as
reflective practitioners. The setting is two non-
traditional courses and as such warrants attention in
order to better understand the created learning
environment. The authors have collected feedback using
several mechanisms: examination methods, course
evaluations, being part of the project process, and
discussions with colleagues. In addition, several faculty
colleagues interviewed students to find pedagogical
strengths and weaknesses and ways to improve the
course over several years. The actions and findings
presented in this paper are strongly influenced by the
authors’ active participation in the computing education
research community, as well as a continuing scholarly
interest in educational theories. The findings are
presented in a narrative form.

3 Background

The Department of Information Technology at Uppsala
University has offered a course titled “IT in Society”

Copyright © 2009, Australian Computer Society, Inc. This
paper appeared at the Eleventh Australasian Computing
Education Conference (ACE2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in
Information Technology, Vol. 95. Margaret Hamilton and Tony
Clear, Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

111

(ITiS) since 1998. The overall goal of this course is to
provide an understanding of the interactions between
technology, users and designers. This involves
examining several types of interactions – between users,
between designer and user, between user and system,
between designer and system – and looking at how other
factors influence each interaction. It requires particular
attention to interactions between people and to the ways
in which technology influences them. For example, we
examine interactions between users and how those
interactions are affected by the computer systems
employed. An important goal of the course is to provide
a framework for, and experience in, evaluating social
and ethical issues in the use, or construction, of
technical products.

The course gives a brief theoretical exposé over areas
like organizational psychology and group dynamics, in
the context of interactions between users and the role of
technology in those interactions. The issues are
practiced in corporate projects with real work
environments. This course views system design in its
social context, showing how technical, psychological
and sustainability issues are important considerations in
system design, as are health and ethical issues. There is
a focus on how to make individual groups of four to
seven students function as well as how to structure
collaboration between these groups in a wider context.
Four years ago this wider context began to include
students from the Department of Computer Science and
Software Engineering at Rose-Hulman Institute of
Technology in the United States, enrolled in a course
titled “Computing in a Global Society.”

In this course, the Rose-Hulman students explore the
importance and relevance of globalization, especially as
it relates to computer science and software engineering.
Readings, such as “Globalization and Offshoring of
Software” (Aspray, Mayadas, and Vardi, 2006), and
seminars provide the mechanisms for exploring this
topic. Like the course at Uppsala University, there is a
focus on team dynamics and collaboration in a wide
context.

An open-ended group project serves as the primary
focus of the two courses, around which discussions and
lectures are centered. The project is performed for a
client external to both departments and has a clear
societal impact. For many students in the courses this
project is their first exposure to an open-ended
assignment of great magnitude. At first this poses a
daunting challenge for them. During the first class
meeting, when students were asked to introduce
themselves and tell what they hoped to learn from the
course, most students expressed apprehension about
what to expect from the course project. At the end of the
course most students had high regard for the experiences
they had and what they accomplished, and they clearly
indicated they learned a lot from the project and were
better equipped to handle such projects in the future.
Open-ended group projects enable students to reach
higher-order thinking skills (Hauer and Daniels 2008)
and it was clear the students in these courses achieved
those skills.

3.1 History of the Collaboration

In the fall of 2004 the Associate Dean of the Faculty at
Rose-Hulman Institute of Technology was approached
by one of the authors (Daniels) at the Department of
Information Technology at Uppsala University about the
possibility of collaborating on a project that was to
investigate the feasibility of designing web-based
modules for improving Swedish health care
professionals’ abilities to interact with their patients.
The associate dean decided this project best belonged in
the Department of Computer Science and Software
Engineering and asked the department head (author
Laxer) if he was willing to pursue it. The two faculty
members involved knew each other professionally and
decided to attempt the collaboration. Neither department
had attempted a collaboration like this on an open-ended
project before (although Uppsala University has done
international collaborative projects that have been well
defined, such as the Runestone project (Daniels, Petre,
Almstrum, Asplund, Bjorkman, Erickson, Klein, and
Last, 1998, and Last, Daniels, Almstrum, Erickson, and
Klein, 2000)).

Students at Uppsala University would receive
academic credit for the project through the IT in Society
course, in which the project was based. The Rose-
Hulman students would earn academic credit through a
Special Topics in Computer Science course. Since the
nature of this collaboration was unprecedented, student
participation at Rose-Hulman was invited – interested
students were asked to submit a short application essay
about why they were interested, what they hoped to get
out of the experience, and what they could contribute.
They were made aware that this was a new and
experimental course, and that the project was open-
ended and not well-defined. Four students were chosen
for the initial collaboration.

The project was based at Uppsala University
Hospital, thus the main effort would be in Sweden. A
United States perspective on health care in the area of
patient interaction was desired, which is where the
Rose-Hulman students contributed. The research focus
was training of health care workers in patient
interaction, and the role of technology in patient
interaction solutions. The two sets of students
collaborated via e-mail and chat programs (such as
Skype).

Toward the end of the semester-long project, the four
Rose-Hulman students, along with their faculty member
and the associate dean, traveled to Sweden for a week of
interaction with their Swedish counterparts. The cost of
the trip was covered by funds from the Rose-Hulman
president, associate dean, and academic department. The
students made a presentation on the project to the IEEE
education workshop (CeTUSS) at Uppsala University,
worked on the project report, and presented the project
to the client. Although no software was written or
prototype developed, the feasibility study proved
successful and the client was very satisfied. The Rose-
Hulman students also had a day of cultural activities,
allowing them to learn something about the country with
which they were collaborating.

CRPIT Volume 95 - Computing Education 2009

112

For a first try, the collaboration was deemed
successful enough that a second collaboration the
following fall (2005) would be tried. The project that
year consisted of three pilot studies for a European
Union-wide project called SPEX (SPreading EXcellence
in health care); one of the pilot studies was located in
Sweden and based at the Uppsala University Hospital.
Academic credit was handled the same way at both
institutions as during the first year, and again four Rose-
Hulman students were chosen to participate.

The SPEX project looked at ways that medical
expertise could be provided by specialists at centers of
excellence to general practitioners at points of care, with
the goal of reducing the transport costs and time for both
the patients and the doctors, as well as getting the
needed health care to the patients in a quicker manner.
Students were divided into teams, with each team
responsible for different facets of the project
(technology, information needs, cost, etc.). Each team
had a faculty advisor, chosen from among the faculty
involved in teaching the courses at each institution.

During that offering of the course students developed
some software and used some technology (digital pens
and explanograms (Pears and Erickson 2003), developed
at Uppsala University) to offer a proposed solution to
the project. The project was presented three times – to
an IEEE education workshop (CeTUSS) at Uppsala
University, to the client, and to a European Union-wide
conference on the project in Barcelona. This time two
Rose-Hulman students went to Sweden for a week and
the other two Rose-Hulman students joined several
students from Uppsala University, along with both
faculty members, in Barcelona for the final project
conference.

Once again the collaboration was considered
successful. The faculty committed to continuing the
collaboration, and at Rose-Hulman a decision was made
to formalize the project into a regularly offered elective
course, Computing in a Global Society (which hopefully
would attract more students). A decision was also made
to have the Rose-Hulman students make two trips to
Sweden during the project, one at the beginning of the
project and one at the end. Face-to-face meetings for
globally distributed teams are advocated in industry to
promote collaboration between remote counterparts
(Oshri, Kotlarsky, and Willcocks 2008); the faculty
thought increasing the face-to-face contact for the
students would thus be beneficial. The group of Rose-
Hulman students would be split, with some traveling in
September and the others traveling in December.
Students could make both trips if they agreed to pay the
entire cost of the second trip. With the larger enrollment,
the department could no longer afford to pay for all
expenses for every student, so the students were asked to
contribute $500 each toward their trip. Everyone did so.

The September trip proved to be a huge success. The
goal was to build team spirit, meet the client, and begin
the project planning. The students from both schools
bonded well, and by the end of the week all the students
felt the students from both schools were committed to
the project, which was to improve the quality of
electronic patient journals for the Uppsala University
Hospital. Studies have shown that improving

interpersonal ties improves the collaboration on global
projects in industry [(Jarvenpaa and Leidner 1998),
(Majchrzak, Rice, King, Malhotra, and Ba 2000),
(Robey, Khoo, and Powers 2000)]. The course faculty
hoped that the collaboration between students could also
be improved, as well as giving the students exposure to
this aspect of team dynamics that would make them
amenable to it when they began their professional
careers. More details on how the team bonding was
accomplished are given in section 6.1.

When planning the project students were placed into
five teams, with each team having students from both
schools on it. A faculty advisor was assigned to each
team, who took part in weekly meetings of the team
(usually held by Skype). At the end of the project the
second trip by the Rose-Hulman students to Sweden
took place, and once again, the project was presented to
the IEEE education workshop (CeTUSS) and to the
client.

During the 2006 visit, the Rose-Hulman faculty
member (Laxer) mentioned to the Uppsala University
faculty member (Daniels) that he had a sabbatical
coming up the following year, and inquired if it would
be possible to spend the fall term at Uppsala University,
seeing the collaboration from the other side and working
to improve the collaboration for both sides. This was
well received, and for the fall 2007 the visiting
appointment took place. Another colleague at Rose-
Hulman (Wollowski) taught the course at Rose-Hulman
while Laxer visited Uppsala.

This year the collaboration had a larger number of
students (about 40 in total) and undertook two projects,
an expansion of the SPEX project to several health
areas, and development of a web portal for the
rheumatics ward at the Uppsala University Hospital.
Students could decide which project they wanted to
work on, and each project attracted students from both
institutions.

During the semester Laxer interacted with the
Uppsala students in class and out. He gave several
lectures to the class, and served as a resource about the
Rose-Hulman students throughout the term. The
constant interaction proved welcome on both sides, and
certainly helped to make things run smoothly. Students
at Uppsala University were also asked to write weekly
reflections (in English) about topics chosen by all the
instructors. Asking them to think about different issues
associated with cross-cultural collaborations and project
work helped them remain focused on the project and the
collaboration. The instructors read the reflections and
provided feedback on them to the students. It is
anticipated that the reflections will be expanded to the
Rose-Hulman students next fall.

4 Issues in this Course

There are some key characteristics in the course that we
will highlight and discuss. Perhaps the two most
prominent aspects of the course are that it is based on
the use of open-ended, ill-structured, problems, and that
it involves two groups of students from two different
kinds of departments.

We will focus on a few particular issues in this
section. They are:

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

113

• Using real-world collaboration
• Promoting self-confidence
• Having international collaboration
• Avoiding detachment and estrangement
• Focus on process rather than product

Having a real client and a real project from an
interesting workplace, e.g. a hospital, is intended to lead
to high motivation and maximum exposure to the
benefits and challenges of international teamwork. It
also gives insights into a potential future profession and
provides opportunities to acquire valuable personal
skills related to a professional life. It furthermore
provides a connection between things learned in the
student’s education and its use in a real-world setting.
Part of dealing with a real-world setting is that clients do
not necessarily have a well-formulated problem in mind.
Rather, they know that information technology can help
them, but they do not know how it can help them. This
means that when students ask clients for more detailed
specifications, there are no “right” answers and that
settings and requirements can change during a project.
There is thus no single way to deal with a problem, nor
any obvious way to distinguish between what is relevant
and what is not. Dealing with such a setting and finding
ways to successfully address the problems that arise
leads to increased self-confidence about the capability to
take responsibility for solving problems in real-life. The
increased self-confidence and practice to select and
judge potential solutions will ease the transition to future
professions.

Part of the complexity in future employment will, for
many of our students, be the ability to work in an
international setting. Having experienced and mastered
problems with working in a multicultural environment
spanning several time zones and limited or no
opportunities for face-to-face meetings will be essential
in such settings. To have overcome the lure to become
detached and ineffective due to being overwhelmed by
complexity and lack of clear directions is another way to
build self-confidence. Having a focus on dealing with
the process rather than on the finished product is an
important part of dealing with open-ended, ill-structured
real-world problems.

These are some of the potentially good outcomes
from this course, but it is important to realize that the
students are not used to this form of education and that it
is important that they get an understanding of these
educational goals early on in the course. It is important
to realize that part of running such a course is to deal
with frustration and uncertainty. The students and
teachers should have an understanding of the role of the
teacher, and especially the fact that teachers are not
there to give answers. There are no easy solutions when
key people on the client side of the project are hard to
contact and meet with. Misunderstandings due to
cultural differences also pose problems that frequently
are difficult to solve, nor is there a best way to set up
and run a project. There is, however, learning to be
gained by reflecting on these issues and the faculty have
a role to inspire reflection as well as to give feedback on
choices and nudge students when they get stuck.

One of the key challenges of this course is to make
each member of the project feel like they are integral
members of the team. This is not always easy when
using real-world projects as opposed to carefully
controlled artificial projects. In this context we wish to
discuss the following issues:

• Differences in skill sets
• Language barriers
• Primary location of project

Rose-Hulman students are strong software
developers and typically learn by developing software
systems, whether through developing specifications or
by implementing to a specification. Real-world
problems do not always have those components. Some
projects are more concerned with usability than with
software development. Usability and issues in software
adaptation are part of Rose-Hulman’s software
engineering program and as such those kinds of projects
provide a valuable experience for Rose-Hulman
students. The students from Uppsala University are
typically from the Information Technology program and
for them, adaptability and usability studies are much
more central to their course of study. As such, for a
typical software development project, the skills sets
complement each other well. Naturally real-world
problems do not always have all of the components of a
software project; as such there is a risk of one set of
students being not as enamored with the project as the
other group.

Some projects require a good amount of interaction
with clients and users. If some project members do not
speak the language of the users and clients, then other
members need to be the eyes and ears for the entire
group. This is an interesting and useful experience for
all project members and possibly one of the best reasons
why students should be encouraged to participate in
projects with language barriers.

Each of these issues can be managed, if they occur
individually. However, if they co-occur, then there is the
risk that their compound effects alienate one of the
groups.

Up until now, clients for the course projects have
been associated with the university hospital at Uppsala.
This means that so far, Rose-Hulman students travelled
to Sweden to meet with their fellow students and the
clients at Uppsala. While those trips are enjoyed by
students from both institutions, it would be desirable to
create a situation where students visit each other’s
countries. The students from Uppsala expressed a desire
for such a state of affairs. Additionally, it would ensure
parity among the students from both institutions.

This goal is difficult to achieve with real-world
problems as the software, at this point, does not have
clients in Indiana. In principle, this should not be a
problem as one of the primary teaching hospitals in
Indiana has a rural health care program for communities
within a fairly large reach of Terre Haute. Contacts
should be made with the directors of these programs to
see about the possibilities of international collaboration.
As medical personnel are notoriously busy, this is a
formidable challenge. Thought should be given as to
project domains which offer both real-world problems

CRPIT Volume 95 - Computing Education 2009

114

and an international scope. With a little bit of luck,
standardization and globalization of software
development and sales will provide for such
opportunities.

5 Pedagogical Development
Each university sets its own requirements for what
students can earn academic credit for. Thus, the courses
at each school under which the international
collaborative project is housed may be different,
especially when it comes to lecture material and class
discussions. The faculty involved in this project held
several discussions about what to cover in class
meetings; but, due to the differences in the students and
in class scheduling at each institution the two courses
were not identical. The following sections describe how
the courses have evolved at each school.

5.1 Rose-Hulman Institute of Technology

During the first two years of the collaboration, the
number of students allowed to participate in the project
was kept small (four per year) to maximize the chance
for success. The department had not undertaken an
international collaborative project before and had a lot to
learn. The course was run as a special topics course,
with the students and faculty member handling it more
like an independent study and undergraduate research
course than a lecture course. Rose-Hulman students
discussed in detail with the Uppsala University students
what the project requirements were, what they (the
Rose-Hulman students) needed to research and report
on, and how to get their results back to the students at
Uppsala.

It became apparent during those first two years that
the client for the projects tended to be the Uppsala
University Hospital, and thus the projects had a health-
related theme to them. These projects provided
opportunities to face and discuss issues that are not
usually present in course-based projects, such as
information privacy concerns; ethical and legal matters,
especially between different countries; and software
safety, since harmful consequences to people could
occur if the software is not designed properly.

Beginning with the fall 2006 course offering,
enrollment was enlarged to twelve students. It was
decided to have weekly class meetings in which the
discussions mentioned above could take place. The
April 2006 issue of Computer magazine (Computer
2006) focused on engineering clinical software, and
provided many good articles to have the students read
and discuss. In particular, students were required to read
the articles on “Coping with Defective Software in
Medical Devices” (Rakitin 2006) and “High-Confidence
Medical Device Software and Systems” Lee, Pappas,
Cleaveland, Hatcliff, Krogh, Lee, Rubin, and Sha 2006),
which were then discussed in class meetings. The
project that year dealt with electronic patient journals,
and in a very timely way IEEE Spectrum published an
article on electronic medical records in its October 2006
issue (Charette 2006); this article was posted for
students to read as well.

As described earlier, the fall 2006 collaboration was
the first one in which the Rose-Hulman students made
two trips to Sweden. During the early one, in mid-
September, the students were asked to make three
presentations to the Uppsala University students and
faculty in a combined meeting of the two classes. These
presentations focused on (1) electronic patient journals,
the focus of the project that term, (2) the Therac-25
incident, to show what could go wrong with medical
software development, and (3) Rose-Hulman Institute of
Technology, so the Uppsala University students would
learn something about the school they were
collaborating with and the students that go there. These
presentations were very useful, and helped show the
Uppsala University students that the Rose-Hulman
students were fully committed to the project and the
collaboration, and that they would be valuable
colleagues in the collaboration. The Uppsala University
students also made presentations to the combined class.

For the fall 2007, the course was put in a
globalization context. Students were assigned readings
from Wikipedia, the book “Global Sociology” by Cohen
and Kennedy (Cohen and Kennedy 2000), and the report
from the ACM Taskforce on Globalization (Aspray,
Mayadas, and Vardi 2006). The book does a wonderful
job explaining the long history of globalization and
explains the benefits and drawbacks of it. If students see
themselves as part of this trend, they have a better
understanding of the power and limitations of
globalization, ultimately giving them the ability to take
advantage of it. Students were again asked to make
presentations to the combined class meeting during the
mid-September trip to Sweden.

5.2 Uppsala University

There was a change in the organization of the project
that occurred before the collaboration with Rose-
Hulman Institute of Technology started that is relevant –
to have a large overall project with several connections
to real-world collaborators. The overall project is broken
down into subprojects and if a subgroup runs into
problems with getting access to the real-world client
they can potentially get a real-world experience through
the connections of another subgroup. Another change
that also occurred before the collaboration was to use
the hospital as the setting for the project. This provided
a client that all students readily agreed to spend time on
trying to improve the workplace for. The hospital
environment also provided an excellent example of
where IT is an important part of the workplace and yet
needs to be introduced with care.

Even though health care is an endeavor relevant to
both Sweden and the United States it is still difficult to
find projects where international collaboration can lead
to a clear benefit. It is also more difficult to collaborate
over the Atlantic Ocean than with local students. We felt
that it was important to make both the value of the
international collaboration tangible for our students, as
well as lower the threshold for active collaboration.
Face-to-face meetings were seen as an important
ingredient in this effort and funds were allocated to
support the stay for the Rose-Hulman students. Regular
group meetings were considered important and Skype

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

115

was introduced as a required media for weekly meetings
in 2006. Guest lectures by previous students that could
serve as role models for how to communicate in an
international setting were also introduced in 2006, and
in 2007 this was complemented with a guest lecturer
covering cultural aspects of collaboration, especially
between Sweden and the United States. Both of these
efforts have been seen as valuable and important among
the students, as evidenced by the students’ written
responses to reflective questions posed to them.

Up until now there have been more Swedish students
involved in the projects than American students and
some subgroups have been purely Swedish. There has
been an effort to have the mixed subgroups balanced
since we have seen that it is easy for a lone student to
become detached from the work of the group. More
detail on how we devise group membership is presented
in section 6.2.

We have also seen a tendency to view problems as
someone else’s, that if things do not go well it is due to
the other side or someone else in the group. Both the
open-endedness and the international component of the
course lend themselves to such thinking. Weekly
reflections were introduced in 2007 partly in order to
address this issue, by making each student reflect on
what problems they faced and what they personally
could do about it. This had a smaller impact than hoped
for, partly due to slow response from the teachers and
partly due to some issues not being relevant for all the
students. This will, in the 2008 course offering, be
addressed by having both general reflections and
subgroup specific reflections, with the general
reflections being given early and mid-way through the
project. The teachers involved in the 2008 course
offering will share the load of responding to the
reflections and the subgroup specific reflections will be
handled in the weekly group meetings instead of as
written individual responses.

It is not only collaboration between the students that
is difficult; there is also the matter of communication
among the faculty involved. Site visits and making
efforts to arrange face-to-face meetings (e.g. at
conferences) have been arranged. The issues have been
both about the collaboration in general as well as about
the actual projects.

Another issue that will be addressed in the next
instance of the course is the communication with the
client. There will be one main contact from the faculty
side. Communication between the students and the client
will be addressed by agreeing on when the students need
consent from the faculty member before agreeing to
something from the client.

6 Guidelines for International Student
Collaborative Projects

There are several aspects to international student
collaborative projects that should be considered to
maximize the chances for success and insure the
students get a meaningful educational experience. These
include how to build team camaraderie and trust, how to
manage the project work, and how to handle
communications.

6.1 Building Team Camaraderie and Trust
Team projects of all types require interaction among
people of varying backgrounds. It is important that team
members get to know one another and build a sense of
camaraderie and trust amongst themselves. This is easy
to do when all team members are in one physical
location. When teams comprise students from two
locations, in different countries, speaking different
languages, it becomes a more challenging task to build
that camaraderie and trust amongst the team members.
Thus, the faculty involved need to make efforts to
facilitate meetings between the students from the
schools involved. It is much more meaningful when the
students can meet in person, but this necessitates one
group of students making an international journey,
which has inherent costs – not just financial, but time
away from classes as well.

As mentioned earlier, throughout this collaboration
the project client has always been based in Uppsala,
Sweden, so it has made sense for the Rose-Hulman
students to travel to Sweden so they could meet their
counterparts as well as the client. The faculty involved
in teaching the courses at both institutions, as well as
senior academic administrators, all agree that learning
something about the country the project is being done in
and the culture of the people that live there is an
important part of this educational experience. Thus, the
visits to Sweden by the American students have always
included a day of cultural activities in addition to the
socializing with the Swedish students. The social
activities included formal and informal meetings in a
dedicated laboratory. Students enjoyed exchanging ideas
about the project, and were sharing personal
experiences. Other social activities contributing to
camaraderie included dinners and attending social
events in the evening.

The international travel aspect of this course is one
of the biggest reasons students are drawn to the course –
the Rose-Hulman students eagerly look forward to
meeting their Swedish counterparts and working with
them. Many of the Rose-Hulman students have not
travelled overseas before they took this course; going
with their fellow students and faculty member provides
an easy introduction to international travel for them.
Most of the students have remarked that they could not
wait to do further international travel, or to return to
Sweden.

During the first year of the collaboration one trip was
made to Sweden by the Rose-Hulman students; that
occurred at the end of the project, when an IEEE
education workshop (CeTUSS) was being held on the
Uppsala University campus and the presentation to the
client would occur. The faculty valiantly tried to arrange
some video conference calls early in the term for the
students to meet, but were unsuccessful in doing so. The
students introduced themselves via e-mail, and the
Angel Learning Management System at Rose-Hulman
was used for course collaboration. At the end of the
project, while the Rose-Hulman students and faculty
were in Sweden, there was a project debriefing amongst
the faculty and students from both institutions. Everyone
thought the first collaboration was successful. When

CRPIT Volume 95 - Computing Education 2009

116

both sets of students were asked if a trip to Sweden early
in the term would have proven useful, both groups of
students said they did not think it was necessary. The
faculty listened to the students and for the following
year kept only one visit, at the end of the project.

At the end of the second year’s collaboration, the
faculty decided to try two visits to Sweden by the Rose-
Hulman students for the following year. The faculty
wanted to see if the students getting to know each other
early, and working together early in the project would
lead to better team dynamics. The early trip occurred in
mid-September, about two weeks into the courses at
both institutions. Students at Uppsala University
arranged some ice-breaker and team-building exercises
that were very successful in building camaraderie and
trust among the two sets of students. Having the Rose-
Hulman students in Sweden early on, meeting with the
client and working with the Uppsala University students,
also built a better sense of ownership in the
collaborative project for both sets of students.
Communication throughout the project between the
students of both schools was improved from prior years.
Both schools’ faculty members decided to keep the two
visits for the next year’s collaboration, and will continue
to keep them for subsequent collaborations. The
challenge will be to foster and support the interpersonal
contacts among the students between the two visits,
perhaps by arranging videoconference calls. It is cost
prohibitive for educational institutions to have
“managerial” (i.e. faculty) visits to the other location to
help motivate the team members, as is done in industry
(Oshri, Kotlarsky, and Willcocks 2008).

6.2 Project Management and Process
Open-ended group projects, such as those undertaken in
these collaborations, are large in scope. For the past two
years, there have been between 30 and 40 students total
to work on each project (10-12 from Rose-Hulman and
20-30 from Uppsala University). Under the guidance of
the course faculty, the students are asked to think about
the project and how it could be divided into component
parts, with each part having a small team (four to eight
students) working on it.

Once the project has been appropriately broken up
into smaller parts, students are asked to identify which
part they would like to work on. In the past, students
were very good at ensuring that each part of the project
had a sufficient number of students associated with it.
Students were also very good about ensuring that project
teams contained students from both schools. This is a
good indicator that students enjoy international
collaboration. It should be pointed out that due to the
nature of how a project is broken up, it may be prudent
for students of only one school to work on certain parts,
in particular those that require interaction with people
who only speak one language (although the
collaboration is done in English, and the Uppsala
University students speak English very well, many of
the Swedish people that get interviewed as part of the
research only speak Swedish). The course faculty insure
that each project sub-team has adequate and appropriate
student representation on it. Each sub-team is asked to
choose a leader, who is responsible for making sure that

sub-team’s work gets done in a timely manner. The team
leaders are also responsible for the communication
between sub-teams and with the course faculty. Each
sub-team is also assigned a faculty advisor.

The sub-teams are asked to meet at least weekly, and
to include their faculty advisor in the meetings.
Meetings that only involve students and faculty from
one school usually take place in person, in either the
project room or the faculty member’s office. When
students from both schools are involved, a computer
video chat program, such as Skype, is used to conduct
the meetings. People can choose to gather at one
location at each school to conduct the meeting, or can
choose to have a conference call and be at several
locations (this usually depends on the time of day and
obligations before or after the meeting).

Each sub-team is responsible for writing their part of
the project report (see next section). A report writing
team, comprised of a student from each sub-team, brings
together the individual parts of the report, adds the
appropriate introduction and conclusion sections, and
insures that the final report flows smoothly.

6.3 Handling Communications
Communication between team members of any project
is vital. When team members are located in different
countries that are several time zones apart it takes extra
effort to insure communication goes well.

The obvious first choice for communication is e-
mail. In addition to the students’ regular e-mail
accounts, each student had access to the e-mail service
included in the Angel Learning Management System at
Rose-Hulman. Within this system teams could be
formed, which permitted e-mail to be sent to all
members of that team. The instructors arranged “Angel
teams” that corresponded to each project sub-team, as
well as Angel teams for all students, just Rose-Hulman
students, just Uppsala University students, all faculty,
and everyone. The Angel e-mail system has an option to
forward Angel e-mail automatically to the user’s
internet e-mail address (so students wouldn’t need to log
in to Angel to see if they had Angel e-mail), and
everyone was encouraged to enable this option.

As mentioned earlier, Skype was used to conduct
team meetings when team members were located at
different locations. With web cameras being inexpensive
and Skype supporting video as well as audio, students
were encouraged to use web cameras so that they could
see each other while they were talking. Some teams
experimented with the use of cameras but found it
awkward to reposition the camera to the speaker. The
camera can instead be used to point to the whiteboard, in
case students wish to refer to materials developed there.
Students were also encouraged to use Skype between
meetings when they needed to talk to one or two other
people on their team (or anyone else in the course, for
that matter).

Written communication is an important component
of the courses. Students are required to produce a project
report that detailed the nature of the problem they were
solving, what research they undertook to understand the
problem and the needs of the client, what their results
were, the justifications for the approach they took, and

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

117

recommendations for further work. As this report is
typically very large, each project sub-team was
responsible for writing their portion of the report, as
well as contributing to the overall structure of the report
and to the sections that were not associated with a
particular sub-team. Small portions of the report were
typically written in Microsoft Word for sharing amongst
the sub-team members. Google Docs was used for
putting the whole report together and editing by the
report writing team. In general, students found Google
Docs useful to edit and distribute documents of various
natures.

7 Conclusion

Working on open-ended, international collaborative
projects is a challenging task for professionals, let alone
students, but the ability to do so is important in today’s
professional workplace. This paper has described the
evolution of a collaborative project between students at
Uppsala University in Sweden and Rose-Hulman
Institute of Technology in the United States. Students
have faced and successfully overcome the challenges of
working on ill-defined, open-ended projects for real-
world clients and of collaborating with their peers in
another country and another culture, several time zones
away. During debriefings between the students and the
faculty at the end of each project the students reported
that although they were initially apprehensive about the
project and how it would proceed, they were proud of
what they accomplished and satisfied with what they
learned in the process. The faculty involved agree with
this assessment and are continuing to improve the
process for future collaborations.

8 References

Aspray, W., Mayadas, F., and Vardi, M (editors) (2006):
Globalization and offshoring of software: a report of
the ACM job migration task force. Association for
Computing Machinery.

Azadegan, S. and Lu, C (2001): An international
common project: implementation phase. Proceedings
of the 6th Annual Conference on Innovation and
Technology in Computer Science Education
(Canterbury, United Kingdom). ITiCSE '01. New
York, NY, 125-128, ACM.

Charette, R.N.(2006): Dying for data. IEEE Spectrum,
43 (10):22-27.

Cohen, R., and Kennedy, P. (2000): Global sociology.
NYU Press.

Computer (2006): 39(4) IEEE Computer Society.

Daniels, M., Petre, M, Almstrum, V., Asplund, L.,
Bjorkman, C., Erickson, C., Klein, B., and Last, M.
(1998): RUNESTONE, an international student
collaboration project. Frontiers in Education
Conference, 1998 2:727-732.

Fuller, U., Amillo, J., Laxer, C., McCracken, W. M., and
Mertz, J. (2005): Facilitating student learning
through study abroad and international projects.
SIGCSE Bulletin 37(4):139-151.

Hauer, A., and Daniels, M. (2008): A Learning Theory
Perspective on Running Open Ended Group Projects

(OEGPs). Proceedings of the Tenth Australasian
Computing Conference (ACE 2008).

Jarvenpaa, S.L. and Leidner, D.E. (1998):
Communication and trust in global virtual teams.
Journal of Computer-Mediated Communication 3(4)
http://jcmc.indiana.edu/. Accessed 22 Aug 2008.

Last, M., Daniels, M., Almstrum, V., Erickson, C., and
Klein, B. (2000): An international student/faculty
collaboration: the Runestone project. ACM SIGCSE
Bulletin 32(3):128-131.

Lee, I., Pappas, G.J., Cleaveland, R., Hatcliff, J., Krogh,
B.H., Lee, P., Rubin, H., Sha, L. (2006): High-
confidence medical device software and systems.
Computer 39(4):33-38.

Majchrzak, A., Rice, R.E., King, N., Malhotra, A. and
Ba, S. (2000): Computer-mediated inter-
organizational knowledge-sharing: Insights from a
virtual team innovating using a collaborative tool.
Information Resources Management Journal
13(1):44–54.

Newman, I., Daniels, M., and Faulkner, X. (2003): Open
ended group projects a 'tool' for more effective
teaching. In Proceedings of the Fifth Australasian
Conference on Computing Education (ACE
2003):95-103.

Oshri, I., Kotlarsky, J., and Willcocks, L. (2008):
Missing links: building critical social ties for global
collaborative teamwork. Communications of the
ACM 51(4):76-81.

Pears, A. N. and Erickson, C. (2003): Enriching online
learning resources with "explanograms". In
Proceedings of the 1stInternational Symposium on
Information and Communication Technologies,
ACM International Conference Proceeding Series,
vol. 49, Trinity College Dublin, 261-266.

Rakitin, R. (2006): Coping with defective software in
medical devices. Computer 39(4):40-45.

Robey, D., Khoo, H. and Powers, C. (2000): Situated
learning in cross-functional virtual teams. IEEE
Transactions on Professional Communications 43
(1):51–66.

CeTUSS: http://www.cetuss.se. Accessed 24 Aug 2008.

ITiS:
http://www.it.uu.se/edu/course/homepage/ITisam/ht0
7. Accessed 24 Aug 2008.

CRPIT Volume 95 - Computing Education 2009

118

http://jcmc.indiana.edu/
http://www.cetuss.se/
http://www.it.uu.se/edu/course/homepage/ITisam/ht07
http://www.it.uu.se/edu/course/homepage/ITisam/ht07

A Citation Analysis of the ICER 2005-07 Proceedings

Raymond Lister and Ilona Box
Faculty of Information Technology
University of Technology, Sydney
Broadway, NSW 2007, Australia

+61 (2) 9514 1850
raymond@it.uts.edu.au

Abstract
This paper identifies the most commonly cited
conferences, journals and books of the 43 papers within
the first three ICER proceedings. A large array of
conferences, journals, and books were cited. However,
only a small set of journals and conferences were cited
frequently, and the majority were only cited within a
single paper, which is consistent with a power law
distribution, as predicted by Zipf’s Law. The most
commonly cited books are concerned with education in
general (29%) or psychology (20%), while 17% of books
are concerned with computer science education and 12%
with computing content. The citation results for ICER
are contrasted with earlier published citation analyses of
SIGCSE 2007 and ACE2005–07.
Keywords: Citation analysis, ICER, SIGCSE, ACE.

1 Introduction
If our human bodies are a reflection of what we eat, then
an academic community is a reflection of what its
members cite. While there are databases that index the
citations of academic publications, such as the Science
Citation Index® [Thomson Scientific, 2007], computer
science journals and conferences are not
comprehensively covered by such databases.
Furthermore, such indexes do not tell us what types of
conferences and journals are cited by a particular
community of researchers, especially a small community
like the computing education research community. For
example, the established indexes cannot be used to
determine whether computing educators cite general
educational sources, such as the Journal of Educational
Psychology, more than they cite non-educational
computing journals, such as IEEE Transactions on
Software Engineering.

In this paper, we investigate which conferences,
journals, and books have been most commonly cited in
the first three ICER proceedings (i.e. 2005–07).

We, the authors of this paper, have already published
two citation analyses of computing education
conferences. The first was an analysis of the ACE2005–
07 proceedings (Lister and Box, 2008a) and the second

Copyright © 2009, Australian Computer Society, Inc. This
paper appeared at the Eleventh Australasian Computing
Education Conference (ACE2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in
Information Technology, Vol. 95. Margaret Hamilton and
Tony Clear, Eds. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

was an analysis of the SIGCSE2007 proceedings (Lister
and Box, 2008b). One of our findings was that SIGCSE
2007 authors emphasized computing content in their
citations rather than educational issues. For example,
only 2% of all the books cited were concerned with
computer science education and 23% with education in
general, whereas 57% of books cited were concerned
with computing content. From those statistics, we
concluded that:

The SIGCSE 2007 citations suggest that the
educational epistemology of the SIGCSE
community is primarily objectivist, with the focus
on course content, rather than a constructivist,
student-centred focus on learning.
We found that the authors of papers in the ACE2005–

07 proceedings did not place the same emphasis on
content. Just over half of all book citations in those ACE
proceedings were to books concerned with general
education issues (e.g. the classic texts of Biggs,
Ramsden and Bloom). However, there was still an
emphasis on computing content, with almost one third of
all book citations being to computing texts and reference
books.

In this paper, we explore whether those citations
patterns in the SIGCSE and ACE proceedings are also
present in the papers published in the first three
International Computing Education Research
Workshops (i.e. ICER 2005–07). Both SIGCSE and
ACE are primarily concerned with educational practice,
while ICER is a research conference. Thus, a
comparison of citation patterns in ICER versus ACE and
SIGCSE may shed some light upon the differences, if
any, between research and practice in computing
education.

1.1 Conference and Journal Rankings
Our interest in the differences between computing
education research and practice is not simply intellectual
curiosity. For several years, the Australian federal
government has been developing a process for reviewing
the quality and impact of publicly funded Australian
research. The review process is known by the name
‘Excellence in Research for Australia’, or simply ERA
(ARC, 2008). As part of the ERA, the Computing
Research and Education Association of Australasia
(CORE) has developed a ranking scheme for computing-
related conferences and journals (CORE, 2007). All
computing journals and conferences in which Australian
researchers have published in recent years are to be
ranked into a four–tier hierarchy.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

119

The Australian computing academics who have been
called upon to make these ranking judgments are not
themselves active in computing education research.
Consequently, they may not be able to distinguish
between education research and education practice, and
are therefore likely to make negative judgments about
computing education research conferences and journals
(“that’s a paper about teaching, not research”). By
carrying out a citation analysis on ICER papers, and
comparing the results to those for the SIGCSE 2007 and
ACE 2005–07 proceedings, we hope to be able to
articulate a clearer distinction between research and
practice in computing education.

1.2 An Overview of ICER Citations
At the time this paper was written, there had only been
three ICERs held, in 2005, 2006 and 2007. (The fourth
ICER was held in Sydney in September 2008.) In these
three ICERs, 43 papers appeared, containing 1130
citations, which is an average of 26 citations per
publication. On average, SIGCSE and ACE papers made
fewer citations. The SIGCSE 2007 proceedings
contained 122 publications with 1398 citations, an
average of 11.5 per publication, while the ACE 2005–07
proceedings contained 85 papers with 1475 citations, an
average of 17.4 per publication.

Table 1 shows a breakdown of the types of sources in
the ICER proceedings and, for comparison, the same
figures from the SIGCSE and ACE proceedings. The
percentage of citations to conferences and books is
about the same for all three conferences. ICER authors
cite a higher percentage of journals articles than
SIGCSE and ACE authors, while SIGCSE and ACE
authors cite a far higher percentage of web pages. Thus
ICER authors cite a higher percentage of peer reviewed
sources than SIGCSE and ACE authors.

The remainder of this paper focuses on citations to
conferences, journals and books.

2 Conference Papers
ICER authors, like SIGCSE and ACE authors, have
cited from a diverse array of conferences. In the 43
ICER papers, there are citations to 59 different
conferences, which is a ratio of 1.3 conferences to each
ICER paper. As shown in Table 2, 56% of those
conferences are cited in only one ICER paper. Table 2
also shows that almost 90% of the conferences cited in
ICER papers are cited in less than 10% of ICER papers.
SIGCSE 2007 papers contain citations to 104 different
conferences, which is 0.9 conferences for each SIGCSE
paper, but 79% of those conferences were cited in only
one paper. ACE has a similar distribution to SIGCSE.

Table 3 shows the percentage of ICER papers citing
papers from the following widely known conferences:

• SIGCSE: Technical Symposium on Computer
Science Education

• ITiCSE: Annual Conference on Innovation and
Technology in Computer Science
Education

• ACE: Australasian Conference on Computing
Education

• FIE: Frontiers in Education
• Koli: Koli Calling International Conference on

Computing Education Research
• PPIG: Psychology of Programming Interest

Group (Annual Workshop of)

Type of
Source ICER SIGCSE ACE

Conference 32% 31% 32%

Journal 38% 23% 29%

Book 21% 23% 17%

Web Page 5% 18% 12%

Other 4% 5% 10%

Table 1: The percentage of each type of source cited
in ICER 2005-07, SIGCSE 2007 and ACE2005-07.

Percentage of

conferences (n)
cited in …

ICER
(n=59)

SIGCSE
(n=104)

ACE
(n=121)

only 1 paper 56% 79% 79%

 ≤ 2 papers 69% 88% 87%

 ≤ 3 papers 76% 94% 89%

<10% of papers 86% 97% 96%

< 33% of papers 97% 99% 100%

Table 2: Distribution of all conferences (n) cited in
each of ICER 2005–07, SIGCSE 07 and ACE2005–07.

Conference ICER
43 papers

SIGCSE
122 papers

ACE
85 papers

SIGCSE 84% 63% 38%

ITiCSE 65% 20% 20%

ICER 44%† 2% <1%

ACE 26% 5% 48%

FIE 14% 10% 19%

Koli 12% Not available <1%

PPIG 12% Not available <1%

Table 3: The percentage of papers in ICER 2005–07,
SIGCSE 2007 and ACE2005–07 that cite at least one
paper from each of these popular conferences.

† Unlike other percentages in the ‘ICER’ column of
Table 3, this 44% was calculated from the 27 ICER 06
& 07 papers only, since ICER 05 could not possibly
cite ICER papers.

CRPIT Volume 95 - Computing Education 2009

120

Conference Tier Cites CitesXSelf Papers PapersXSelf

SIGCSE: ACM Special Interest Group on Computer
Science Education Conference A 122 109 36 35

ITiCSE: Annual Conference on Integrating
Technology into Computer Science
Education

A 58 50 28 23

ICER: International Computing Education
Research Workshop A 28 26 12 12

ACE: Australasian Conference on Computer
Science Education B 15 14 11 10

FIE: Frontiers in Education B 9 6 6 5

VL: IEEE Symposium on Visual Languages B 7 6 5 5

CSCL: Computer Supported Collaborative
Learning A+ 4 4 4 4

CHI: International Conference on Human Factors
in Computing Systems A+ 7 7 4 4

AVI: International Working Conference on
Advanced Visual Interfaces — 5 5 4 4

ESP: Workshop on Empirical Studies of
Programmers — 10 10 4 4

InSITE: Informing Science and IT Education
Conference B 3 3 3 3

OOPSLA: ACM SIGPLAN Conference on
Object Oriented Programming Systems
Languages and Applications

A+ 3 3 3 3

SOFTVIS: ACM Symposium on Software
Visualization — 4 4 3 3

HICSS: Hawaii International Conference on System
Sciences B 4 3 4 3

VL/HCC: IEEE Symposium on Visual Languages and
Human-Centric Computing A 7 6 4 3

ICSE: International Conference on Software
Engineering A+ 3 3 3 3

Koli: Koli Calling B 5 2 5 2

PPIG: Psychology of Programming Interest Group
(Annual Workshop of) B 6 2 5 2

ICLS: International Conference of the Learning
Sciences — 2 2 2 2

ICFP: International Conference on Functional
Programming, ACM SIGPLAN A+ 2 2 2 2

 International Seminar on Software
Visualization — 3 3 2 2

Table 4: All conferences cited by more than one paper (excluding self-citations) in the ICER 2005, 2006 and
2007 proceedings. The columns show the CORE tier (a dash appears where CORE have not assigned a tier),
total number of citations to the conference (“Cites”), total number of citations to the conference, excluding
self-citations (“CitesXSelf”), total number of papers that cited that conference (“Papers”), and total number
of papers that cited that conference, excluding self-citations (“PapersXSelf”). The list is ordered
(descending) on the last column.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

121

Conference Average ICER SIGCSE ACE
SIGCSE 90 0.4 0.8 0.3
ITiCSE 53 0.5 0.5 0.5
ACE 38 0.3 0.2 0.8

Table 5: Normalized citation counts in ICER, SIGCSE
and ACE (columns) of SIGCSE, ITiCSE and ACE
(rows).

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4

ln(Rank)

ln
(P
ap
er
s

Figure 1: A plot of the logarithm of PapersXSelf vs.
the logarithm of the rank of the 21 conferences from
Table 4.

Table 3 shows that SIGCSE was the most cited

conference by both ICER and SIGSCE 2007 authors.
For ACE authors, ACE itself was the most popular
conference to cite, but when self-citations are ignored,
the citation rate by ACE authors to ACE papers drops
from the 48% to 32%, and thus when self-citations are
ignored SIGCSE is also the most popular conference to
cite for ACE authors.

Among SIGCSE 2007 papers, conference citations to
SIGCSE papers are not simply the most frequent—
SIGCSE citations are dominant, with the percentage of
SIGCSE citations being 3 times higher than the next
most popular conference. While ICER authors cited
SIGCSE papers even more often than SIGCSE 2007
authors, ICER authors also cited several other
conferences extensively.

When considering citation data to determine the
popularity of conferences, allowance should be made for
two possible sources of distortion, especially for a small,
young conference like ICER. Self citation is one source
of possible distortion. (The data presented in Tables 1, 2
and 3 includes self citations.) Another source of
distortion is the possibility that a conference may be
cited in only one paper (or a very small number of
papers) but that paper cites several papers from that
same conference. Table 4 presents alternate forms of
citation data, showing the effect of these forms of
distortion on ICER data. With regard to the first source
of distortion, self citation rates are not high. With regard
to the second source of distortion, it appears that, when
an ICER author cites a paper from a popular conference
series, they often cite other papers from that same
conference series. For example, among the 36 ICER
papers that cite a least one SIGCSE, there is an average
of 3.4 citations to SIGCSE papers.

When considering citation data to determine the
popularity of conferences, allowance should also be
made for the differing sizes of conferences—a large
conference might have more papers cited than a small
conference simply because the larger conference has
more papers. In our earlier paper on the citation analysis
of SIGCSE 2007, we calculated the average number of
papers per year for SIGCSE, ITiCSE, and ACE, in the
three years 2003─05, which were 90, 53 and 38 papers
respectively. (In more recent years, the typical number
of papers in ACE has fallen, but that does not
significantly affect our citation analysis here). In this
paper, we use those average yearly figures to calculate
normalized citation data for SIGCSE, ITiCSE, and ACE.
For example, Table 3 shows that 84% of the 43 ICER
papers (i.e. 36 ICER papers) cited at least one SIGCSE
paper. Those 36 papers are 0.4 of the average number of
papers per year for SIGCSE (i.e. 0.4 of 90). Table 5
presents all the data normalized in this way. With this
correction made for the size of the conferences, it can be
seen that ITiCSE is a more popular source of citations
for ICER authors than SIGCSE, and even ACE is three
quarters as popular as SIGCSE. Also, ITiCSE is more
popular than SIGCSE as a source of citations for ACE
authors.

Figure 1 is a log-log plot (to base e) of the
PapersXSelf column of Table 4 versus the rank of the 21
conferences from Table 4 (i.e. ranked on PapersXSelf).
The plotted points are a good fit to a regression line,
which suggests that the distribution of the number of
ICER papers citing a particular conference is broadly
consistent with the well known power law distribution
for citations (Redner, 1998; Tsallis & de Albuquerque,
2000). Such power law distributions are often referred to
as Zipf’s Law. In Figure 1, the slope of the line of best
fit is approximately -1.

2.1 Discussion of Conference Paper Results
In our paper on the SIGCSE 2007 citation analysis, as a
consequence of finding this great diversity of citation
sources, and also as consequence of the influence upon
us of Becher and Trowler (2001), we made the
following conclusion :

… computer science education (at least how it is
practiced by SIGCSE 2007 authors) is a less
highly structured, less specialized and slower
moving sub-discipline than other aspects of
computing.

We now retract that conclusion, or at least we retract
that the diversity of citations in SIGCSE 2007 is
evidence that computer science education is a less highly
structured, less specialized and slower moving than
other aspects of computing. Since writing the above
conclusion, we have carried out similar citation analyses
for three other conferences, all non-education
conferences that are part of the Australasian Computer
Science Week (ACSC, ADC and AUIC). For details of
the analysis of those other three conferences, see the
papers appearing in those respective conference
proceedings (Lister & Box, 2009a, 2009b, and 2009c).
For each of the six conferences we have analysed—

ln
(P

ap
er

sX
Se

lf)

ln(Rank)

CRPIT Volume 95 - Computing Education 2009

122

SIGCSE, ACE, ICER, ACSC, ADC and AUIC—the
number of papers citing a particular conference is
broadly consistent with a power law distribution. Such a
distribution is known to be a property of many
conferences, across many disciplines.

Table 4 demonstrates a positive relationship between
the CORE conference rankings and the citation rates to
conferences from the ICER 2005–07 papers. For
example, the three most cited conferences (SIGCSE,
ITiCSE and ICER) are all ranked “A” by CORE, which
is the second highest category of the five conference
rankings (A+, A, B, C and L(ocal)).

3 Journal Papers
As was the case with citations to conferences, ICER,
ACE and SIGCSE authors cite from a diverse array of
journals. In the 43 ICER papers, there are citations to
132 different journals, but Table 6 shows that just over
half of those journals (56%) received exactly one
citation in ICER papers, and 90% of journals were cited
in less than 10% of the ICER papers. SIGCSE and ACE
citations exhibit a similar distribution.

Not only do ICER authors cite more journal papers
than SIGSCE 2007 authors (1.7 times as many; see
Table 1), but ICER authors also cite the popular journals
more often than SIGSCE 2007 authors cite those same
journals. This is illustrated in Table 7, which shows that
no single journal is cited in more than 20% of SIGCSE
2007 papers, whereas one journal (SIGCSE Bulletin) is
cited in more than half of ICER papers and three
journals are cited in more than a third of ICER papers.
ACE authors also cite SIGCSE Bulletin much more
often than SIGCSE authors.

Table 8 shows more comprehensive information
about a larger list of journals cited in ICER papers. That
table provides for an assessment of the degree of
possible distortions due to self-citation, or to multiple
citations of the same journal in one paper. Neither form
of distortion has a marked effect on the analysis below.

3.1 The SIGCSE Bulletin (Non-Conference)
For ICER, SIGSCE and ACE, the most popular journal
is the SIGCE Bulletin. (In this subsection, we ignore the
Journal of Computing Science in Colleges, which is
cited in 20% of SIGCSE 2007 papers, for reasons
discussed below in the subsection devoted to that quasi-
journal.).

The SIGCSE Bulletin appears four times a year, but
two of those issues are the “conference issues”, the
SIGCSE and ITiCSE conference proceedings. The
results in Tables 6, 7, 8 and 9, are calculated from the
two “non-conference issues” of the SIGCSE Bulletin.

Only 17% of SIGCSE 2007 papers cited a paper from
the non-conference issues of the SIGCSE Bulletin,
which is close to the 20% figure (from Table 3) of
SIGCSE 2007 papers that cite the ITiCSE conference
proceedings. Both of those percentages are far below the
63% (from Table 3) of SIGCSE 2007 papers that cite
papers from earlier SIGCSE conferences. This is
surprising, given that all SIGCSE members receive each
year all four issues of SIGCSE Bulletin. Either many
SIGCSE 2007 authors are not SIGSCE members (which

seems unlikely) or they are regular SIGCSE conference
attendees who pay more attention to the papers they hear
at the conference than the papers that arrive in the post.
In the first instance, it is only human to pay greater
attention to what we hear than what arrives in our over-
flowing post boxes (and which may never be opened).
However, as part of writing a paper, one would have
expected a SIGCSE 2007 author to perform at least a
small literature search, and the SIGCSE Bulletin issues
that arrive in the post would be an easy and logical place
to start.

Table 7 (when compared to the ICER data in Table 3)
shows that ICER authors, like SIGCSE 2007 authors,
have a preference for the SIGCSE conference
proceedings, but not to the same degree as SIGCSE
2007 authors. Table 3 shows that 84% of ICER papers
cite a paper from SIGCSE conference proceedings, and
Table 7 shows that 63% of ICER papers cite a paper
from the non-conference issues of the SIGCSE
Bulletin—a difference of approximately 20% for ICER
papers, compared to a difference of almost 50% for
SIGCSE 2007 papers. Also, this 63% is very close to
the percentage of ICER papers that cite the ITiCSE
conference (65%, from Table 3), which might indicate
that ICER authors do read the issues of the SIGCSE
Bulletin that arrive in their post box.

Percentage
Cited In …

ICER
(n=132)

SIGCSE
(n=135)

ACE
(n = 190)

Only 1 paper 56% 77% 69%
≤ 2 papers 76% 89% 87%

≤ 3 papers 86% 93% 92%
< 10% of papers 90% 98% 99%
< 33% of papers 98% 100% 100%

Table 6: Distribution of all journals (n) cited in each of
ICER 2005–07, SIGCSE 07 and ACE2005–07.

Journal
ICER

43 papers
SIGCSE

122 papers
ACE

85 papers

SIGCSE Bull. 63% 17% 34%

CACM 40% 17% 12%

Comp. Sci.
Education 37% 10% 14%

J.Educ.
Psychology 16% 3% —

Comp. Res.
News 9% 8% —

IEEE
Computer 7% 6% 7%

JERIC 7% 5% —

J. Comp. Sci.
in Colleges 5% 20% 11%

Table 7: The percentage of papers in ICER 05–07,
SIGCSE 07 & ACE 2005–07 that cite at least one paper
from each of the popular journals

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

123

Journal Tier Author Cites CitesXSelf Papers PapersXSelf

SIGCSE Bulletin C 59 53 27 25

Communications of the ACM B 31 31 17 17

Computer Science Education A 26 21 16 14

Journal of Educational Psychology — 16 16 7 7

ACM Computing Surveys A* 6 6 6 6

Journal of Visual Languages and Computing A 16 13 7 6

Journal of Computer Science Education — 6 5 5 5

Journal of Educational Computing Research C 10 9 5 5

International Journal of Human-Computer
Studies A 5 5 5 5

Computers and Education A 9 7 6 5

Cognitive Science — 10 10 5 5

Educational Psychologist — 8 8 5 5

J. Computing in Small Colleges / J. Computing
Science in Colleges — 4 4 4 4

J. Experimental Psychology: Learning,
Memory, and Cognition — 4 4 4 4

Journal of the Learning Sciences, The — 4 4 4 4

Expert Systems C 10 9 4 4

Informatics in Education, An International
Journal C 5 4 4 4

IEEE Transactions on Education B 5 4 5 4

Computing Research News — 5 5 4 4

American Psychologist — 3 3 3 3

IEEE Computer B 3 3 3 3

Journal of Computers in Maths and Science
Teaching — 3 3 3 3

Psychological Review — 3 3 3 3

Review of Educational Research — 3 3 3 3

Studies in Higher Education — 3 3 3 3

Contemporary Educational Psychology — 5 5 3 3

Human-Computer Interaction A* 3 3 3 3

IEEE Transactions on Software Engineering A* 3 3 3 3

Cognitive Psychology — 3 3 3 3

Computers in Human Behaviour — 3 3 3 3

Table 8: All journals cited by three or more papers (excluding self-citations) in the ICER 2005, 2006 and 2007
proceedings. The columns show the CORE tier (“—” where CORE have not assigned a tier), (column “Author”
is explained in the text), total number of citations to the journal (“Cites”), total number of citations to the
journal, excluding self-citations (“CitesXSelf”), total number of papers that cited that journal (column
“Papers”), and total number of papers that cited that journal, excluding self-citations (“PapersXSelf”). The
list is ordered (descending) on the last column.

CRPIT Volume 95 - Computing Education 2009

124

Journal Avg ICER SIGCSE ACE

Computer
Science
Education

 15 1.1 0.8 0.8

SIGCSE
Bulletin
(refereed)

 43 0.6 0.5 0.7

SIGCSE
Bulletin (all) 69 0.4 0.3 0.4

J. of Comp.
Sci. in
Colleges

272 0.01 0.1 0.0

Table 9: Normalized citation counts in ICER,
SIGCSE and ACE of three computing education
journals.

3.2 Computer Science Education
Table 7 shows that the second most cited specialist
computer science education journal is Computer Science
Education, by ICER, SIGCSE and ACE authors.
(CACM is not a specialist computer education journal,
and it is discussed separately, below). While 37% of
ICER papers cited a paper from Computer Science
Education, only 10% of SIGCSE 2007 papers and 14%
of ACE papers did the same.

Of course — as was also the case with conference
citations—a large journal might have more papers cited
than a small journal simply because the larger journal
has more papers. In our earlier paper on the citation
analysis of SIGCSE 2007, we calculated the average
number of papers per year, over the three years
2003─05, for the three journals listed in Table 9. For
example, Table 9 shows that Computer Science
Education published an average of 15 papers a year over
2003–05. In this paper, we use those average yearly
figures to calculate normalized citation data for the three
journals in Table 9. We calculated two averages for
SIGCSE Bulletin. One of the averages is for all papers
published (see "SIGCSE Bulletin (all)" in Table 9). The
other average excludes articles like the invited columns
and is just for the refereed papers, including the working
group papers (see "SIGCSE Bulletin (refereed)" in Table
9). With the citation data thus normalized for the size of
each journal, it is clear from Table 9 that Computer
Science Education is the most popular source of
citations for ICER, SIGCSE and ACE authors.

3.3 Journal of Computing Sciences in Colleges
The Journal of Computing Science in Colleges began
with a different name—Journal of Computing in Small
Colleges. In this analysis, we use its current name to
refer to papers published under either name.

Despite its name commencing with the word
“Journal”, the Journal of Computing Sciences in
Colleges is really an aggregated set of conference
proceedings. It contains the proceedings for each of the
ten regional journals sponsored by the Consortium for

Computing Sciences in Colleges. It is therefore not clear
whether the analysis of citations to it should be included
in the journal analysis, or should instead be included in
the conference analysis. We have chosen arbitrarily to
include it as part of the journal analysis.

In terms of the absolute number of citations, the
Journal of Computer Science in Colleges is the most
cited journal in SIGCSE 2007 papers (20%, see Table
7), but it also publishes far more papers than the other
journals, and when citation rates are normalized, this
journal ranks lowest among the journals listed in Table
9. Even when normalized, the Journal of Computer
Science in Colleges remains a significant source of
citations in SIGSCE 2007 papers, but it barely registers
as a source of citations for ICER authors.

3.4 Communications of the ACM
We were surprised by the prevalence of citations to
CACM articles in the ICER papers, just as we were
surprised by its prevalence in our earlier analyses of
SIGCSE and ACE. Since then, we have found that
CACM is also highly cited in ACSC, ADC and AUIC
(Lister and Box, 2009a, 2009b, and 2009c).

The complete set of 23 CACM articles cited in the
ICER papers is:
• Brooks (April 1980) Studying programmer behavior

experimentally: the problems of proper methodology
• Bayman & Mayer (September 1983) A diagnosis of

beginning programmers' misconceptions of BASIC
programming statements.

• Camp (October 1997) The incredible shrinking pipeline.
• Campbell & McCabe (March 1985) Predicting the

success of freshmen in a computer science major.
• Denning (December 1989) A debate on teaching

computing science.
• Denning (August 1981) Smart editors.
• Denning (November 2003) Great principles of computing.
• Denning & McGettrick. (November 2005) Recentering

computer science.
• Dijkstra (December 1989) On the cruelty of really

teaching computing science. Cited twice.
• Goldberg et al. (December 1992) Using collaborative

filtering to weave an information tapestry.
• Evans & Simkin (November 1989) What best predicts

computer proficiency? Cited twice.
• Guzdial & Soloway (April 2002) Teaching the Nintendo

generation to program. Cited four times.
• Hu (February 2005) Dataless objects considered harmful.
• Kramer (April 2007) Is abstraction the key to computing?
• Mayer (November 1979) A psychology of learning BASIC.
• McDowell et al. (August 2006) Pair programming

improves student retention, confidence, and program
quality. Cited twice.

• Moulton & Muller (January 1967) DITRAN—a compiler
emphasizing diagnostics.

• Shantz et al. (January 1967) WATFOR—The University of
Waterloo FORTRAN IV compiler.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

125

• Shneiderman et al. (June 1977) Experimental
investigations of the utility of detailed flowcharts in
programming.

• Soloway (September 1986) Learning to program =
learning to construct mechanisms and explanation. Cited
twice.

• Soloway, Bonar & Ehrlich (November 1983) Cognitive
strategies and looping constructs: an empirical study.
Cited twice.

• Teitelbaum & Reps (September 1981) The Cornell
program synthesizer: a syntax-directed programming
environment.

• Westfall (October 2001) Hello, world considered harmful.

Of these 23 CACM articles, we regard 10 of them as

a being education research papers, either reporting an
original research result, or reviewing the outcome of
research. Another 9 of these CACM articles are not
research papers, but are opinion pieces, often written by
prominent members of the computing education
community (with several of these articles articulating
quite sophisticated pedagogical opinions). The
remaining 4 of the above 23 CACM articles are
technical perspectives, usually about a piece of software
that may be helpful for teaching.

Many of the above 23 CACM articles are old. Half of
the articles are from 1989 or earlier, with four published
before 1980. Only 2 of these articles were published in
the 1990s, and 7 were published in this millennium.

3.5 Discussion of Journal Paper Results
A sharp difference between ICER and SIGCSE 2007

citation patterns is the frequency of citations to journals.
Only 17% of SIGCSE 2007 papers cite the two most
popular computing education journals, SIGCSE Bulletin
or Computer Science Education.

Figure 2 is a log-log plot (to base e) of the
PapersXSelf column of Table 8 versus the rank of the 30
journals from Table 8 (i.e. ranked on PapersXSelf). The
plotted points are a good fit to a regression line, which
suggests that—like the earlier plot for conferences—the
distribution of the number of ICER papers citing a
particular journal is broadly consistent with a power law
distribution. In Figure 2, the slope of the line of best fit
is approximately -0.7.

3.6 Publishing and the CORE Rankings
In Table 8, the column headed “Author” indicates the
suitability of each of these journals for a computing
education researcher seeking to publish a paper. Two

ticks indicate that the journal is highly suited to a paper
on computing education research. One tick indicates
that a computing education research paper could appear
in that journal, but the journal is more focussed upon the
use of computers in education, possibly in any
discipline, and not with the teaching of computing.

The journal ‘Computer Science Education’ is both
highly suited and is ranked as a tier ‘A’ journal by
CORE. It is therefore the journal in which most
Australian computer education researchers will aspire to
publish. However, as this journal only publishes around
15 papers each year, it will also be a very hard place to
publish, and Australian computer education researchers
will need to look for other journals.

The ‘Journal of Computer Science Education’ is not
the same as the journal discussed above. According to
Ulrich’s Periodical Directory (Ulrich, 2008) papers in
this journal are aimed at those teaching computer
science at the pre- college level.

Other computing education journals not listed in
Table 8 include:

• Journal of Information Technology Education,
ranked ‘B’

• ACM Journal on Educational Resources in
Computing, ranked ‘C’.

• International Journal of Information and
Communication Technology Education, ranked
‘C’

• International Journal of Information Technology
Education, ranked ‘C’

• Journal of Informatics Education and Research,
ranked ‘C’

• Journal of Information Systems Education,
ranked ‘C’.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4

ln(Rank)

ln
(P

ap
er
s

Figure 2: A plot of the logarithm of PapersXSelf vs. the
logarithm of the rank of the 25 journals from Table 8.

ln
(P

ap
er

sX
Se

lf)

ln(Rank)

CRPIT Volume 95 - Computing Education 2009

126

4 Books
In this citation analysis, we include as “books” both
citations to complete books and citations to chapters
within edited volumes, as in our earlier analysis of
SIGCSE 2007.

As with ICER citations to conferences and journals
the majority of books (82%) were cited by only one
ICER paper.

Using the same categorization of books we used for
our earlier analysis of SIGSCE 2007, we placed ICER
citations to books into one of six categories:

• Education: Books that discuss teaching and
learning issues in a non-disciplinary specific
fashion.

• Psychology: Usually educational psychology.
• Computing Content: Many of these books were

class textbooks, while others were manuals.
• CS Education: Books specific to education

issues within the computing discipline.
• Research Methods: for example, books on

statistics, or qualitative research. ICER authors
mostly cited qualitative research method books.

• Social: Books not concerned specifically with
issues in education, psychology, or computing,
such as gender issues in the broad context.

Table 10 summarizes our categorization of all books

into one of the six categories. The majority of books
cited by ICER authors are either concerned with
education (28%) or psychology (20%) compared with
SIGCSE where the majority (57%) are concerned with
computing content. Only 2% of books concerned
specifically with computer science education were cited
in SIGCSE compared with 17% in ICER.

Table 11 lists the most highly cited books in the
ICER proceedings.

5 Age of Citations
Figure 3 shows the number of citations in the ICER
papers, for conferences, journals and books, for each
year since 1983. Figure 4 shows the same data,
cumulatively. Citations drop precipitously for
conferences held before 2003, and there are very few
citations to conferences held earlier than 1983. Citations
to journal papers also drop quickly for papers published
before 2003, but not as quickly as conferences. Book
citations decline very slowly with age. Inspection of data
for the years before 1983 shows a steady trickle of
citations to journals and books going back to the 1950s,
with a very small number of even older citations. These
characteristics of the age of citations are substantially
the same as what we observed in our earlier analysis of
SIGCSE 2007 papers.

6 Conclusion
ICER authors cite a greater variety of conferences than
SIGSCE 2007 authors, who are very focused on the
SIGSCE conference series. ICER authors cite more
journal papers, from a greater variety of journals, than
SIGCSE 2007 authors. In fact, SIGCSE 2007 authors
cite comparatively few journals articles.

The most important difference in citations between
ICER papers and SIGCSE 2007 papers is in the type of
sources that the authors cite. SIGCSE 2007 authors
place most emphasis on computing content—
curriculum—whereas ICER authors place greater
emphasis on citing educational and psychological
sources. In our earlier analysis of SIGCSE 2007, we
concluded that the SIGCSE 2007 citations suggested an
educational epistemology within that community of
practice that is primarily objectivist, with the focus on
course content. In contrast, our analysis of ICER
citations suggests that the education research community
is more focussed on students and learning.

Type of Book ICER SIGCSE ACE

Education 28% 23% 51%

Psychology 20% 6% 6%

Computing Content 17% 57% 29%

CS Education 17% 2% 3%

Research Methods 9% 3% 4%

Social 3% 5% 7%

Other 7% 9% 1%

Table 10: The frequency distribution of different types
of books cited in the ICER and SIGCSE 2007
proceedings.

Times
Book
Cited

No. of Books Cum.
%age

1 143 82%
2 20 93%
3 6 97%
4

(10% of
the 43
ICER

papers)

 2 Bransford, Brown, and Cocking
(2000) How People Learn
[education]

 Hoc, Green, Samurcay &
Gilmore (1990) Psychology of
Programming [CS education]

98%

5 1 Fincher and Petre (2004)
Computer Science Education
Research [CS education]

98%

6 1 Margolis, J. and Fisher, A.
(2002). Unlocking the
Clubhouse [CS education].

98%

8 1 Soloway and Spohrer (1989)
Studying the Novice
Programmer [CS education]

99%

10
(23%
of the

papers)

 1 Bloom, Mesia and Krathwohl
(1956) Taxonomy of
Educational Objectives
[education]

100%

Total
239

176 Different Books

 (4.1 different books per paper)
Table 11: The frequency distribution of all books cited
in the ICER 2005, 2006 & 2007 proceedings.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

127

7 References
ARC (2008) Excellence in research for Australia

initiative, consultation paper. Available from:
http://www.arc.gov.au/pdf/ERA_ConsultationPaper.p
df [Accessed September 2008].

Becher, T. and Trowler, P. (2001) Academic Tribes and
Territories. Open University Press; 2nd edition.
ISBN: 033520628X

CORE (2007) Computing Research and Education.
Available from: http://www.core.edu.au/ [Accessed
May 2008].

Lister, R. and Box, I. (2008a). A citation analysis of the
ACE2005—2007 proceedings, with reference to the
June 2007 CORE conference and journal rankings. In
Proc. Tenth Australasian Computing Education
Conference (ACE 2008), Wollongong, NSW,
Australia. CRPIT, 78. Simon and Hamilton, M., Eds.,

ACS. 93-102. Available from: http://crpit.com/
Vol78.html

Lister, R. and Box, I. (2008b). A citation analysis of the
SIGCSE 2007 proceedings. In Proceedings of the 39th
SIGCSE Technical Symposium on Computer Science
Education (Portland, OR, USA, March 12 - 15, 2008).
SIGCSE '08. ACM, New York, NY, 476-480.

Lister, R. and Box, I. (2009a) A citation analysis of the
ACSC 2006–2008 proceedings, with reference to the
CORE conference and journal rankings. In
Proceedings of the 32nd Australasian Computer
Science Conference (ACSW 2009), Wellington, New
Zealand, January 2009. CRPIT, 91. Bernard Mans
(Ed.), ACS.

Lister, R. and Box, I. (2009b) A citation analysis of the
ADC 2006–2008 proceedings, with reference to the
CORE conference and journal rankings. In
Proceedings of the 20th Australasian Database
Conference (ADC 2009), Wellington, New Zealand,
January 2009. CRPIT, 92. Lin, X. and Bouguettaya,
A., Eds., ACS.

Lister, R. and Box, I. (2009c). A citation analysis of the
AUIC 2006–2008 proceedings, with reference to the
CORE conference and journal rankings. In Proc. 10th
Australasian User Interface Conference (AUIC 2009),
Wellington, New Zealand, January 2009. CRPIT, 93.
Calder, P. and Weber, G., Eds., ACS.

Redner S. (1998) How popular is your paper? An
empirical study of the citation distribution, The
European Physical Journal B–Condensed Matter and
Complex Systems, 4, 131-134. Available from:
physics.bu.edu/~redner/pubs/ps/citation.ps [Accessed
November, 2008]

Tsallis C., de Albuquerque M. P. (2000) Are citations of
scientific papers a case of nonextensivity?, The
European Physical Journal B–Condensed Matter and
Complex Systems, 13, 777-780. Available from:
http://arxiv.org/PS_cache/cond-mat/pdf/9903/
9903433v1.pdf, [Accessed November, 2008]

Thomson Scientific (2007) The Science Citation Index
Available from: http://scientific.thomson.com
/products/sci/ [Accessed May 2008]

Ulrich (2008) Ulrich’s Periodicals Directory Available
from: http://www.ulrichsweb.com/ulrichsweb/
[Accessed November 2008]

Figure 3: The frequency of citations to books, journals and
conferences in the period 1983-2007.

Figure 4: The cumulative frequency of ICER citations to
books, journals and conferences in the period 1983-2007.

CRPIT Volume 95 - Computing Education 2009

128

How Students Develop Concurrent Programs

Jan Lönnberg1 Anders Berglund2,1∗ Lauri Malmi1

1 Department of Computer Science and Engineering
Helsinki University of Technology,

Espoo, Finland,
Email: {jlonnber,lma}@cs.hut.fi

2 Department of Information Technology
Uppsala Computing Education Research Group, UpCERG

Uppsala University,
Uppsala, Sweden

Email: anders.berglund@it.uu.se
∗ Temporary affiliation

Abstract

This paper describes a qualitative, explorative study
of how students approach developing and testing con-
current programs. The study is based on interviews
with students working on the final programming as-
signment in a concurrent programming course. We
discuss the effects of the students’ approaches to con-
structing and testing programs on their work, how
teaching can be improved to support the students in
performing these tasks more effectively and how soft-
ware tools can be designed to support the develop-
ment, testing and debugging of concurrent programs.

1 Long-term Research Aims

The ultimate goal of our project is to help program-
mers produce better concurrent programs. Our ap-
proach to this is to develop methods and tools, pri-
marily program visualisations, to help programmers
understand what a concurrent program does.

Different errors can be the result of completely dif-
ferent ways of thinking. Approaching a problem from
the wrong perspective may lead to erroneous conclu-
sions. The nature of the errors can also depend on
the perspective or task at hand. Thus, understand-
ing how the programmer is thinking is important in
finding ways to prevent errors from being made as well
as determining the errors to look for and how to look
for them. For example, a programmer who misunder-
stands the requirements or specification of a system
or module or envisions a different purposes for a sys-
tem will also be testing according to this erroneous
understanding of the requirements.

We focus on inexperienced programmers, in par-
ticular students, for several reasons. One is that their
inexperience means they have more difficulties and
therefore need more help. Another is that helping stu-
dents understand their mistakes not only helps them
get their programs to work; it also helps them learn.
Thirdly, we can collect and analyse large amounts of
data from students, with less effort than from com-
mercial software developers. Finally, it is easier to
introduce new ways of working to students than expe-
rienced professionals with ingrained habits. We have

Copyright ©2009, Australian Computer Society, Inc. This pa-
per appeared at the Eleventh Australasian Computing Educa-
tion Conference (ACE2009), Wellington, New Zealand, Jan-
uary 2009. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 95, Margaret Hamilton and
Tony Clear, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

chosen to focus on studying the understandings of stu-
dents for three different reasons. Based on the above,
our large-scale approach is to first identify the needs
of the intended users, students, and then design so-
lutions to address them. The general questions we
therefore seek answers to are:

• What kind of defects do programmers inexperi-
enced in concurrent programming introduce in
concurrent programs, and why?

• Which of these defects are difficult to locate or
understand and why?

• What kind of tools can assist a programmer in
finding and understanding these most problem-
atic defects, and how well do they work?

The first results from this project were quantita-
tive information on students’ concurrent programs’
defects (Lönnberg, 2007). We then proceeded to
seek an explanation for the defects we found in
the students’ understanding of concurrent program-
ming (Lönnberg and Berglund, 2008). This paper de-
scribes the continuation of that investigation. Here,
we describe students’ understandings of the tuple
space concept as well as their general understanding
of program development and debugging. This study
can be seen as exploring the user requirements for fu-
ture software development tools for students of con-
current programming (the first two questions above).
At the end of this paper, we briefly discuss what sort
of tools would address the issues by this study (the
third question); a theme that we address further in
another paper (Lönnberg et al., 2008).

1.1 Aims of This Study

The purpose of the work presented in this paper is to
shed light on how students approach developing and
testing concurrent programs. These insights can serve
as a platform for exploring possible sources of errors,
especially those that stem from approaches that are
ill-suited to developing reliable concurrent programs.
The key motivation here is that a better understand-
ing of errors will help us design better software to sup-
port program development, understanding and de-
bugging.

In this study, we explore the different ways in
which students in a concurrent programming course
approach developing and testing a concurrent pro-
gram. We do this using an empirical, qualitative
research approach called phenomenography (Marton
and Booth, 1997). Phenomenography investigates the
qualitatively different ways in which a group of people

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

129

experience or think about something. In our study,
this provides us with a starting point for explor-
ing many different situations where improvements to
teaching or software development tools can be made.

We focus on the design, implementation and test-
ing parts of the software development process. These
are the phases in which errors are introduced that can
be found by testing performed by developers based
on the specification or requirements they are working
from, and which require debugging to trace.

Errors in specifying or communicating require-
ments result in a clearly different form of defect (the
program is working as specified), and they can there-
fore be treated as a separate problem that is not con-
sidered here. Similarly, activities performed on the
finished code either have no effect on the code as such
(e.g. distribution and installation) or can be consid-
ered a return to a previous phase (e.g. changing the
code to meet new requirements or fixing bugs).

1.2 Students’ Understandings of Concurrent
Programming

Students may approach the task of developing a con-
current program with different goals in mind than
their teachers. Ben-David Kolikant (2005) describes
how students understand correctness in a concurrent
programming context and how this affects the devel-
opment process. She notes that students define a
“correct program” as a program that exhibits “rea-
sonable I/O for many legal inputs” and that roughly
a third of the students were sometimes satisfied with
only compiling their program to ensure it is correct.

Considering what students are trying to achieve,
it is hardly surprising that they use unsuitable ap-
proaches when they develop concurrent programs.
Ben-Ari and Ben-David Kolikant (1999) describe how
high-school students’ concurrent programming con-
ceptions and working methods change during a course
on the subject. They found that students have dif-
ficulties limiting themselves to operations permitted
by the concurrency model, make assumptions based
on informal concepts rather than use formal rules and
avoid using concurrency and apply development ap-
proaches that do not work well in concurrent pro-
gramming, such as testing a program with a few rep-
resentative inputs.

One reason for these problems is that students act
as users of programs rather than developers. Ben-
David Kolikant (2004) describes learning concurrent
programming in terms of entering a community of
computer science practitioners. She finds that the
students initially approach the concurrent program-
ming assignment from a user’s perspective, in which
only the program behaviour seen through the user in-
terface is taken into account, and not all of them are
able to switch to a programmer’s perspective.

2 The Study

Two qualitative empirical methodologies, phe-
nomenography and an informal qualitative method
inspired by grounded theory, are used in this project
to explore how students understand concepts in pro-
gram development. The data for the study are col-
lected through interviews (Subsection 2.2) and are
then analysed in two conceptually different ways.

Our key research approach in this project is phe-
nomenography. This approach aims to reveal the dif-
ferent ways in which something is understood by a
cohort (Marton and Booth, 1997). In recent years,
the interest in phenomenographic research has in-
creased in the Computer Science Education (CSE)
community, since the results that are offered, focusing

both on the learners and what they learn about, have
been shown to be useful within CSE (Berglund, 2006;
Berglund et al., 2008). Our use is mostly consistent
with this, as we aim to reveal how certain phenomena
are understood by a cohort.

Berglund (2006) describes the process of phe-
nomenographic research in computer science educa-
tion as consisting of a data collection phase and an
analysis phase. In the former, the researcher inter-
views students about the phenomena under investi-
gation.

For most of the questions we investigate, we have
found that the students’ expressions can be sum-
marised as different perspectives on certain phenom-
ena. In one case, the standpoints expressed by the
students do not refer to a single phenomenon but
several related phenomena and are therefore better
described as a set of differing opinions, less coherent
than those that have lent themselves to phenomeno-
graphic analysis. Here, we have chosen a different
method to list the opinions.

Questions of validity and our responses to them are
discussed throughout this paper as they are raised by
our methods and results.

2.1 Setting

The students in this study participated in the Con-
current Programming course1 at Helsinki University
of Technology during the autumn of 2006. Students
could choose to do the assignments alone or in pairs.

The students were initially required to submit only
their Java source code. In the event that their solu-
tion was rejected, they were required to submit cor-
rected program code and a report explaining the rea-
soning behind the erroneous code and the steps they
took to correct it.

Lincoln and Guba (1985) emphasise the impor-
tance of a natural research setting in getting results
that deal with real situations. In this case, the set-
ting was an existing programming course; the only
change made for this research was adding interviews.
They also argue that determining the transferability
of results from one context to another requires knowl-
edge of both contexts; we provide a description of our
context to allow the reader to determine which of our
results apply to his or her context.

2.2 Interviews

The interviews focused on the third assignment, Tu-
ple space, in which the students implement a tuple
space (Gelernter, 1985), which consists of a space
containing tuples that can be added, read and re-
moved atomically, using Java synchronisation primi-
tives (shared memory, monitors and conditional vari-
ables) and use this to construct the message-passing
section of a distributed chat server. The students’
message-passing code communicates with the rest of
the system using method calls; a simple GUI front-
end is provided for testing.

The eight students were those who volunteered for
the interview out of 16 selected students. Making the
interviews a mandatory part of the course for selected
students was deemed both an unacceptable demand
on the students and counterproductive as the inter-
views rely on interviewees volunteering information.

While only students who failed the assignment
participated in the interviews, this can be seen as
purposive sampling (emphasising problems learning
concurrent programming). Successful students could

1The contents of the course, including the assignments, are de-
scribed on the course web page: http://www.cs.hut.fi/Studies/
T-106.5600/2006/english.shtml

CRPIT Volume 95 - Computing Education 2009

130

http://www.cs.hut.fi/Studies/T-106.5600/2006/english.shtml
http://www.cs.hut.fi/Studies/T-106.5600/2006/english.shtml

have more advanced understandings. However, the
understandings described in this paper already cover
a wide range from novice to expert understandings,
which suggests that also interviewing more successful
students may not have affected the results.

In order to maximise the variation of experiences
based on the information available to us about the
students, we chose groups with different types of prob-
lems with their code, as determined by the teach-
ing assistant who graded the assignments. Ten of
31 groups that failed the assignment and two of 24
that passed the assignment were chosen and invited
to an interview. Of these groups, seven of the fail-
ing groups (six single students and one pair) agreed
to participate. The first author conducted interviews
with these eight students, after the results for the
third assignment were announced and before the re-
submission of failed attempts. The focus of the inter-
views was on the development process, especially the
students’ reasoning behind their design. The inter-
views were semi-structured, i.e. they were in the form
of a conversation using a set of prepared questions as
conversation starters, and lasted from 30 minutes to
almost an hour. This allowed students to, in addition
to the topics raised by the interviewer, talk about re-
lated issues such as their experiences with the other
assignments in the course or with programming in a
professional context.

2.3 Analysis

The goal of the analysis was to organise the inter-
viewees’ utterings into a form that allows the reader
to understand the students’ different understandings
and approaches to developing concurrent programs.

The analysis was done iteratively by the first au-
thor in discussion with the second author and, later,
also the third author. Each category was intended
to represent one understanding or aspect of a phe-
nomenon; the categories were grouped into outcome
spaces by the phenomenon they describe. The result-
ing categories from the last iteration are presented in
the following section.

During the analysis it became clear that one of the
resulting outcome spaces is not phenomenographic
in the sense that it can more obviously be seen as
first-order knowledge of what the students have done
than second-order knowledge; what the students ex-
perience about what they have done. We therefore
consider this outcome space to be a grounded theory.

3 Results

In this section we present the results of our analysis.
Quotes are used to illustrate the categories. In these,
the interviewer is denoted Int and the interviewees are
assigned, to preserve their anonymity, the names Ev-
geniy and Elena (interviewed separately in English),
Filip, Fabian, Fritjof and Frans (interviewed sepa-
rately in Finnish) and Freja and Fredrik (interviewed
together in Finnish). The quotes from the interviews
in Finnish have been translated into English by the in-
terviewer. Freja and Elena are, as the assigned names
indicate, female; the rest are male.

Using quotes from the interviewees allows the
reader to see exactly what was said, albeit mostly
in translated form. During the interview, follow-up
questions were used to clarify the meaning of the in-
terviewees’ words where necessary and ensure the in-
terviewer’s understanding. The results presented in
this paper are a consensus between all three authors.
These measures reduce the potential for misinterpre-
tation through e.g. researcher bias.

The phenomena are:

1. Purposes of the programming task: the dif-
ferent ways the purpose of the program to be
produced in the assignment is understood by stu-
dents

2. Sources of failure: the different entities that
may cause failures in the program that the stu-
dent takes into account

3. Software development processes: the overall
development process of the students

4. Approaches to testing: how the students un-
derstand testing their program

The first two describe what the student is trying
to achieve by developing a program; students aiming
for a passing grade care about correctness in terms
of how it affects their grades. Depending on how the
student understands the teachers’ priorities, this may
manifest in different ways.

The latter two outcome spaces are about how the
student develops and tests his or her program, like
the Developing and debugging outcome space from
our previous paper (Lönnberg and Berglund, 2008).
The categories of Tuple spaces in that paper are also
connected to different steps in a development process.

Subsection 3.2 is based on grounded theory, while
the others are phenomenographic outcome spaces.

3.1 Purposes of the Programming Task

In this subsection, we present what the students
perceive as the purpose of their programming task.
These purposes are summarised in Table 1.

These understandings are not mutually exclusive;
even apparently contradictory understandings can be
applied in different contexts by the same person. For
example, Fritjof mentions Assignment (1A) and Ideal
problem (1B) as describing how he approached the
assignment, but Possibilities (1D) as how systems of
this type should be written (see below).

The students’ aims in a project course in computer
systems have been explored by Berglund and Eckerdal
(2005). These findings show similarities with the pur-
pose of the programming task discussed in this paper,
as they encompass both requirements set by the uni-
versity and an environment extending the formal re-
quirements, looking toward a professional life.

The different ways in which the student under-
stands the purposes of the programming task are also
similar to the relative correctness of Ben-David Ko-
likant (2005) in that students have different under-
standings of what the program is supposed to be;
with the important distinction that relative correct-
ness may involve accepting failure (“The program is
correct but it is not finished.”), while the purposes of
the programming task are alternative interpretations
of the goal in which context the program works as
intended.

The categories described here can be applied to
any programming exercises in an educational setting
for which a grade is given. Assignment (1A), in par-
ticular, is limited to this context.

1A Assignment In this category, the program-
ming task is understood as a task required to get a
grade; i.e. as one task of many required to get a de-
gree. The development process is focused on the de-
mands made by the university setting (such as grad-
ing and deadlines) and the correctness or functioning
of the resulting program is a secondary concern. The
value of the program is understood in terms of how it
affects the grade.

One symptom of this is students making design
decisions based on how they affect their grade. For

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

131

Label The purpose of the pro-
gramming task

What is in focus? Framework

1A Assignment To meet the requirements of the
university setting

The university set-
ting’s requirements

University setting

1B Ideal prob-
lem

To produce a program that func-
tions within the university set-
ting’s requirements

The program itself University setting

1C Working so-
lution

To produce a solution to a prob-
lem beyond the university set-
ting

The program itself An environment beyond
the university setting

1D Possibilities To solve a problem with poten-
tial for future development

Possibilities for future
development

An environment beyond
the university setting

Table 1: Purposes of the programming task

example, when asked why he chose to design his chat
system in such a way that it may lose messages under
heavy load, Fritjof explains that he “didn’t put much
effort into that since it wasn’t a factor in failing the
assignment”. Ironically, this choice was exactly the
reason he didn’t pass the assignment.

Decisions about process can also be based on this
understanding. When Fredrik and Freja are asked
how they intend to resolve a problem found in their
program, they explain that lack of time prevents them
from solving the assignment properly, so they need to
focus on how to pass the assignment.

Similarly, errors are understood in terms of feed-
back from assistants, as exemplified by Freja express-
ing how functional her solution seemed to her in terms
of expected negative feedback from the grader. Her
chat system implementation does not remove closed
listening connections at all from the system and thus
continues to collect messages that will never be read.
Her comment on this is:

Freja: I, for one, thought there were
going to be complaints about those
ChatListeners not being removed.

1B Ideal Problem In this category, the assign-
ment is understood as constructing a program that
works in an idealised school environment where prac-
tical limitations such as finite memory space and de-
lays do not apply. The focus here is the program
itself, albeit as a part of the university setting.

Fritjof provides two different examples of this. He
describes how he resolved a problem with messages
being lost when listeners do not read them quickly
enough by allowing the buffer to expand without
limit. He then comments:

Fritjof: Yes, the new solution uses unlim-
ited memory. It’s sort of an ideal situation,
but isn’t this whole assignment a bit ideal?

This shows how Fritjof has changed from one sim-
plification (that a fixed-size buffer will never overflow)
to another (that memory is unlimited, so the buffer
does not need to have a size limit), and justifying his
latter simplification by commenting that the assign-
ment is not representative of reality, so his solution
need not be either.

1C Working Solution In this category, the as-
signment is understood as constructing a program
that works correctly in a realistic scenario. The focus
is on creating a program that works under normal real
conditions (as opposed to the ideal or academic condi-
tions of the previous category), such as the student’s
own computer. For example:

Frans: I just used some normal use cases
and then thought about what problems one

could have now and looked if they show up,
and if so, why.

1D Possibilities In this category, the assignment
is understood not only as a task to be completed,
but as a starting point for future development. This
category extends the previous one by going beyond
the program itself into the realm of possibilities for
future software and development.

The possibilities may be better ways to achieve the
perceived goals of the assignment. Fritjof explains
that the specification prevented him from writing a
program that is resilient to network errors, as it did
not provide a way to detect network failure. This
illustrates how he thinks a chat system should work.

These possibilities may also be ideas for making
future projects easier suggested by the assignment.
For example, Evgeniy would like to see “a debugger
or some kind of unit testing system for testing syn-
chronised methods” and justifies this by noting that
“with current tools you end up pretty much proving it
on paper”.

Communicating the Purpose of the Assign-
ment to Students

Different aims can easily lead to different types of er-
rors. For example, a solution to an Ideal problem (1B)
can, as our example shows, lead to a program that
fails in practice or is unacceptable from a teacher’s
perspective. One can argue that students should be
warned that the assignment is graded as a Working
solution (1C) or taught to approach programming in
a corresponding fashion. If the assignment is sup-
posed to let the student practise or evaluate the stu-
dents’ skills at determining requirements, this is more
satisfactory than explicitly listing everything a stu-
dent should take into account (e.g. memory use, per-
formance, network failure). This also illustrates how
this outcome space could easily have been different if,
for example, the grading criteria had been explained
in detail and in advance to the students.

When designing systems to explain errors result-
ing from an unsuitable understanding of purpose, the
underlying context must be made clear: the student
must understand, for example, that his or her solu-
tion fails because there is not unlimited memory, and
that this is something that must be addressed in the
solution. Visualising memory usage (e.g. by showing
object lifetimes and heap allocation over time) may
help students understand this type of problem. An-
other example is assuming the underlying tuple space
is always FIFO; giving the student a test setup where
this is not true helps expose this assumption.

CRPIT Volume 95 - Computing Education 2009

132

Source Effect on program design
2A Systems Tolerate other systems’ fail-

ures
2B Programmer Minimise chances and/or

consequences of programmer
error

2C User Tolerate user error

Table 2: Sources of failure

3.2 Sources of Failure

In order for a program to be useful, it must interact
with other entities. This typically involves interacting
with other software, especially libraries and operating
systems, and human users. As real-world entities tend
to be imperfect, risks stemming from the entities can
be found that may cause the program to fail.

In the following, we describe the failure sources
taken into consideration by students. They are sum-
marised in Table 2.

The three categories here are essentially the three
different classes of potentially imperfect entities the
student’s program interacts with over its lifespan: the
student, who as a Programmer (2B) may make er-
rors and thus introduce defects, Systems (2A), hard-
ware and software, that the system builds on or inter-
acts with and the User (2C), who may make mistakes
when using the program.

A programmer can take any combination of these
sources into account. Fritjof shows awareness of the
Programmer (2B) and Systems (2A), for example,
while Filip mentions the Programmer (2B) and User
(2C) (see below).

It should be noted that both the User (2C) and
Systems (2A) sources were de-emphasised by the
teachers to avoid complicating the assignment with
error checking.

These Sources of failure (2) apply to more or less
any program (in extreme cases, such as a program
with no user input, one of the risk factors may be
trivial enough to be ignored).

2A Systems If the goal of the development pro-
cess is to make a ‘bullet-proof’ solution, the program
must be written to recover from failures in the sys-
tems it interacts with. Fritjof’s example of Possibili-
ties (1D) illustrates this category as well.

2B Programmer An obvious source of failures is
defects in the program introduced by the developer.

One reaction to this is to keep things simple.

Fritjof: If I start playing with optimisation,
things can go wrong really quickly. I’d break
the code that works. Let’s just stick to ba-
sics.

He goes on to explain how simple structures (in
his case, while(!found) {try again}) make it easy
to show that code is correct:

Fritjof: It was a sort of emergency solution,
so you can’t get out of the loop before it’s
really found.

2C User The third and final source of problems is
the user, who may provide invalid input or make mis-
takes. The programmer may, however, have different
ideas of what a user error is than the specification.
Filip justifies deleting duplicate and empty messages
(to compensate for the system occasionally duplicat-
ing messages) by arguing that he “assumed that you
don’t want to put empty messages”.

Encouraging Awareness of Sources of Failure

The Sources of failure (2) considered by the students
are closely related in that they also describe the in-
tended context of the program. While the assignment
was designed to allow the student to ignore Systems
(2A) and the User (2C) as sources of failure, taking
these into account makes sense in a larger perspec-
tive and should therefore arguably be encouraged, not
discouraged, by teachers. User (2C) errors are easy
to create (even unintentionally), but simulating prob-
lems in Systems (2A) can be difficult and is a possible
area for testing tool development.

3.3 Software Development Processes

In the previous subsection, we described different
ways students had to structure parts of their solu-
tion. Here, in contrast, we present different ways
they structure their development process, or, in some
cases, do not structure. The process understandings
are summarised in Table 3.

The six categories of development process models
can be seen as a progression from an unstructured or
informal development process to a structured one.

Software development is traditionally divided into
separate activities that together form a development
process. The most important of these activities are re-
quirements specification, design, implementation and
verification. We use this traditional division to de-
scribe the students’ development process understand-
ings.

In a study of novice programmers, Booth (1992)
showed that students approach the task of program-
ming in different ways, varying from cut-and-paste
solutions (labelled “Expedient” by Booth) to devel-
oping solutions in a structured way, focusing on the
problem domain (labelled “Structural”). The results
concerning the development process in this project
are similar. The differences can be sought in factors
such as the differing subject areas, the experience of
the students and the development of computer science
in the past 16 years.

The process models shown here can, in principle,
be applied to more or less any programming project.

3A No Design Needed In some cases, the im-
plementation may be obvious enough from the re-
quirements that the programmer feels no design is
needed; no discernible parts can be found in con-
structing the code from the requirements.

Fabian: The tuple space implementation
was done quite mechanically. It was already
mostly defined how tuples are put in there
and in what form.

Lack of time is another reason to cut a process
down to the bare essentials.

Fabian: I didn’t think about it, I figured
I’d spend very little time on getting it done,
what with the deadlines and all.

In this category, only the essential parts of the
assignment, the requirements and the end result, the
program, are taken into account, and the focus is on
producing the end result.

3B Trial and Error Some students showed no
signs of having a planned process. Instead, they de-
scribed their development process as trial and error.
As in the previous category, there are no discernible
intermediate steps in the process. However, a sim-
ple structure can be seen: code is repeatedly written

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

133

Label What is the process under-
stood as?

What is in focus? Framework

3A No design
needed

Writing code directly based on re-
quirements

Writing code Requirements and code

3B Trial and error Writing code to find a solution
that meets requirements

What code works? Requirements and code

3C Coding to un-
derstand

Writing code to understand the
requirements

Understanding the
requirements

Requirements and code

3D Inertia from
previous work

Writing code based on own previ-
ous work

Writing code Requirements, code, own
experiences

3E Apply known
technique

Using a known technique to struc-
ture the solution before imple-
menting it in code

Structuring the so-
lution

Requirements, code, ways
to structure code

3F Adapt known
solution

Writing code based on others’ pre-
vious work

Structuring the so-
lution

Requirements, code, solu-
tion archetypes

Table 3: Software development process models

(trial) and found inadequate (error), until the solu-
tion is “good enough”

One reason for this is unfamiliarity.

Evgeniy: After a few tries, you realise some
things about your previous design and you
try to improve it. I wasn’t really trying
to design it too much ahead, because tuple
space was a new thing for me.

Another reason is experiencing problems getting
your implementation to work. Frans’s approach was
“mostly through trial and error” after he failed to find
a pre-existing solution he could use. He later explains
that:

Frans: This trial and error method was a
bit bad in the sense that you don’t really
have a clear picture of what the idea be-
hind it is, how it works, and when you try
to fix it, it’s kind of hard because you don’t
know what it’s supposed to do, what you
have been thinking about.

The distinguishing characteristic of trial and error
seen here is lack of planning leading to work that must
be redone when it is found inadequate.

3C Coding to Understand While trial and er-
ror is often used as a way to reach a solution, misread-
ing or having difficulty understanding the require-
ments may also lead to trial and error. This cate-
gory is similar to the last one, except that the pur-
pose of the repeated coding is to understand the re-
quirements. This further separates understanding the
requirements (which involves writing code that may
solve them) from producing the code that forms the
end product.

Some trial and error is inevitable, as one can not
understand the development task fully until one has
attempted it, making it hard to design ahead.

Fredrik: First I’ve had to start coding
something just to little by little get a sort
of grip on what it’s about, and not until you
start coding the whole thing for the second
time does it end up even close.

It’s also possible that the student, like Freja, sim-
ply “didn’t notice the requirement”.

3D Inertia from Previous Work This cate-
gory involves solving the assignment the same way as
one has done other programming tasks in the past.
Compared to the previous categories, a source of
approaches, the programmer’s experience, is added.

This introduces a way to find solutions: reuse your
old solutions to old problems.

Fritjof explains that assignments may be “hard to
see as separate entities” if one has “previously done
the sort of code where you do these big lumps, which
is bad”. In his case, he “just had to put together a
monolithic system”.

3E Apply Known Technique Many design
techniques such as diagrams exist that can make it
easier to design a program. Compared to the previ-
ous category, the programmer now has formal design
methodology to draw on in solving his or her problem.
These are often intended to help split the problem
into subproblems by structuring the intended system
first.

For example, Fabian “quickly drew a collaboration
diagram containing essentially all the classes worth
mentioning” and then looked at how to build it, in
the sense of which message goes where.

3F Adapt Known Solution Instead of uncon-
sciously using one’s own previous work as a guide,
one can consciously use a known solution as a start-
ing point. Like the previous category, this category
adds more knowledge from which a solution can be
constructed: other people’s solutions to similar prob-
lems.

Experiences vary. For example, Frans tried to find
something he could adapt from “some book on con-
current programming [he] borrowed from the library”,
but ended up using trial and error, and ended with a
problematic solution, of which he said:

Frans: I figured one ought to carefully ap-
proach it by thinking of a sort of existing
method to use there, since that’s the sort
of mess where you don’t know what it does
really.

Fredrik, on the other hand, found:

Fredrik: For many problems, even hard
ones, a good and efficient solution has been
invented. Usually, even the tough concur-
rency stuff is abstracted away from the ac-
tual business logic that you’re implement-
ing.

Why Should Teachers Care about Students’
Development Processes?

Many of the process models described here, like the
categories of Development and debugging in our pre-
vious paper, are based on or engender ignorance or

CRPIT Volume 95 - Computing Education 2009

134

lack of understanding, as the students themselves ad-
mit. This is worrying considering that the students
are not novices at programming. They are also sim-
plistic compared to those described in the software
engineering literature, although a complex process is
hardly justified in such a small project.

In cases where students structure their solution
in well-known ways (Apply known technique (3E) or
Adapt known solution (3F)), it would seem useful to
express information about the student’s program us-
ing the similar structures. If a teacher can infer the
structure behind a student’s solution, the teacher can
explain in the student’s terms where (in the process
and the solution) the student has gone wrong. Simi-
larly, a student is likely to understand visualisations
that show the student his or her program’s execution
using notation and a partitioning he or she is familiar
with.

3.4 Approaches to Testing

In this subsection, we examine the approaches to test-
ing taken by students in terms of what they under-
stand testing to consist of; in other words, how they
structure their testing. These views are summarised
in Table 4.

Verification, especially in sequential software, typ-
ically relies heavily on testing. However, the unpre-
dictability of interaction between concurrently exe-
cuting processes also introduces many pitfalls in the
software development process that may result in soft-
ware defects that are hard to find through testing.
There are, therefore, several approaches to ensuring
correctness despite nondeterminism, including deduc-
tive proofs (usually manually constructed) and model
checking. These formal methods, however, have lim-
ited ability to cope with large and complex programs.

Thus, the categories in this subsection can be seen
as steps from an undeveloped testing process to a de-
veloped one.

Unplanned (4A) testing can be seen as a base
that Breaking the system (4B) and Covering different
cases (4C) extend by targeting testing, while External
testing support needed (4D), Testing inadequate (4E)
and Proof necessary (4F) are successively clearer pic-
tures of the limits of tests.

While these categories are all applicable to sequen-
tial programming, the last two categories are moti-
vated by concurrency issues.

4A Unplanned Unplanned testing involves run-
ning the program and passively observing the output
to see if anything goes wrong. In this category, in-
put is provided to get the program to do something,
but the testing is not directed toward making defects
manifest themselves; it’s more a matter of convincing
oneself that one’s program works.

For example, when asked to clarify what he means
by “normal use cases” in his quote about a Working
Solution (1C), Frans explains that in order to test
both tuple space and chat system:

Frans: I just opened two or three chat win-
dows and then wrote some stuff or used the
built-in flood feature.

4B Breaking the System The goal of testing
can be understood as getting the program to fail, and
the testing process then involves setting up cases in
which the system is likely to fail. This category ex-
tends the previous by adding a goal to the testing:
getting the program to fail.

When asked whether he noticed his chat system’s
failure to enforce message order, Fabian explains the

he “tried to get it to break using the provided user
interface”.

Stress testing is one particular way to attempt to
break the system. For example, Freja tested her chat
system implementation by running many clients and
servers with heavy traffic. However, she goes on to
explain:

Freja: When I got that running, it worked
nicely, so I thought we might even pass this,
but, what do you know, there was another
“fail”.

Her solution relied on the tuple space being FIFO;
no testing using Fredrik’s (FIFO) tuple space would
have exposed this.

4C Covering Different Cases In this category,
a strategy for choosing test cases is added: many dif-
ferent cases or ways in which the program can behave
are tested. The underlying assumption is that other,
untested, cases are similar enough to be covered by
these tests. Stress testing is then only part of the
cases tested.

Diversity in testing can involve both choosing dif-
ferent data for the program and studying the pro-
gram’s behaviour in different ways. For example,
Fritjof says his testing “was just sort of trying things
out with all sorts of cases”. He “started from the ba-
sics” and moved on to stress testing. Finally:

Fritjof: I went line by line through the lines
of code, stopping at certain points in the
code and looked at the innards of the pro-
gram at that point.

Covering different cases does not preclude focusing
on likely problems, as Frans explained in Working
solution (1C).

4D External Testing Support Needed In this
category, limitations of the student’s own testing abil-
ity appear; the student realises he or she cannot find
all his or her own errors and wants outside help.

One reason is being blind to one’s own mistakes,
like Fritjof:

Fritjof: I found the problem almost directly
based on the teaching assistant’s explana-
tion. I guess it was a really clear error, and
I just couldn’t spot it in my own tests; I was
blind to that error. That sort of thing is
really hard to test without a fancy testing
facility or something.

Fritjof also mentions the importance of quick feed-
back, like in the Goblin (Hiisilä, 2005) programming
course management and assessment system he has
used in introductory programming:

Fritjof: What I especially like is that you
can submit and see what it looks like, red
or green, and it sort of gives an impression
whether my solution is close to the right one
now.

Regarding the API test package provided by the
course staff, he says “That’s just 10 % of the as-
signment; the big problem is the concurrency man-
agement”.

4E Testing Inadequate As in the previous cat-
egory, an awareness of the limitations of testing is
added here. In this case, testing in general is seen as
insufficient.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

135

Label What is testing under-
stood as?

What is in focus? Framework

4A Unplanned Trying out the program to
see if it works

How program reacts to input Features, test inputs
and outputs

4B Breaking the
system

Trying to get defects to
manifest as failures

Finding inputs that make the
system fail

Features, test inputs
and outputs

4C Covering dif-
ferent cases

Trying to show the pro-
gram can not fail

Finding a set of inputs that gives
sufficient reassurance the pro-
gram will not fail

Features, test inputs,
outputs and coverage

4D External
testing sup-
port needed

Trying to show the pro-
gram can not fail, which
a programmer cannot re-
liably do alone

Getting someone else to find a set
of inputs that gives sufficient re-
assurance the program will not
fail

Own testing ability
and others’

4E Testing inad-
equate

Part of ensuring the pro-
gram is correct

Limitations of testing Own testing ability
and others’

4F Proof neces-
sary

A complement to a cor-
rectness proof

Limitations of testing Testing and proving
correctness

Table 4: Testing approaches

Some defects may be very hard to get to mani-
fest on a normal system. Filip says that in his case
all the reasons for failing the assignment were such
that they couldn’t be found with any decent testing,
because “they were mostly hypothetical”. “If you’re
just testing on a home computer, it’s really hard to
get them to show up”.

In Covering different cases (4C), Fritjof also points
out that concurrency-related problems are hard to
track with debuggers.

4F Proof Necessary Correctness proofs are con-
sidered an important and powerful way to verify a
program. This category introduces a solution to the
limitations of testing: supplementing it with proofs.
Evgeniy’s comment about Possibilities (1D) is an ex-
ample of this.

Encouraging Better Approaches to Testing

Many of the students’ testing approaches are, like
their development processes, superficial and, as the
quotes illustrate, easily allow problems, especially re-
lated to concurrent programming, to slip through.
However, the more advanced testing approaches show
an awareness of concurrency-specific factors that af-
fect testing, in particular nondeterminism. As sug-
gested by some of the students, providing testing and
debugging facilities that support finding concurrency
problems by providing ways to generate and study dif-
ferent types of nondeterministic behaviour would be
useful. For example, generating and visualising inter-
leavings both with and without failures for the same
input could help students understand why their code
is unreliable. The visualisation should emphasise syn-
chronisation, for example by displaying interactions
between threads through locking and shared data as
e.g. a sequence diagram. Another possible approach
is to use static analysis or model checking to search
for incorrect synchronisation solutions and point out
the relevant parts of the code to the student.

4 Conclusions

In this paper, we present the different ways in which
students understand the purpose of concurrent pro-
gramming tasks, the sources of failure they take into
account in doing so, the process models they base
their development work on and their approaches to
testing. They are found to have a wide range of dif-
ferent understandings ranging from simplistic to ad-
vanced. In order to cope with these, teachers should

be aware of them and adapt their assignments, grad-
ing and tools they provide to the students to take
these understandings into account. One of example
of such tools would be concurrency testing tools to
help students find incorrect assumptions about the
execution environment and interleavings that cause
failures and visualisations to help them understand
their errors and learn by correcting them.

Most of the outcome spaces appear to be applica-
ble to other programming contexts, particularly pro-
gramming exercises in an educational context. On the
one hand, this bodes well for applying the results to
other programming courses. On the other, this raises
the issue of whether the results say anything about
concurrent programming specifically.

4.1 Understanding Goals

The Purposes of the programming task (1) and
Sources of failure (2) uncovered here suggest that
many of the errors made by students are misunder-
standings of the environment in which their program
is expected to run and what it is supposed to do
rather than actual misunderstandings of concurrent
programming itself. This is in line with our quanti-
tative analysis of students’ defects (Lönnberg, 2007).
This suggests that teachers should make goals more
explicit and provide students with ways to explore
problems related to these goals.

Providing students with tools to study memory al-
location would help them understand how their pro-
grams use (or misuse) memory. This could be as sim-
ple as showing them how to use a basic profiler to get
information on the maximum memory use of their
program. More detailed visualisations, such as charts
that show memory use over time categorised by where
the memory is allocated, can be used to help students
understand memory use in more detail.

Similarly, it is not realistic to expect students to
explictly ensure message order if they never see mes-
sages get out of order even though they have ignored
the issue completely.

The students’ Software development processes (3)
are often disorganised, partially because they do not
understand what they’re supposed to do. This could
also be mitigated by more explicit goals and subgoals
or by teaching ways to structure a software develop-
ment process and a program.

4.2 Generating Test Cases

The students’ Testing approaches (4) are quite weak.
One possible reason is that the students do not take

CRPIT Volume 95 - Computing Education 2009

136

concurrency into account properly in their testing.
Another is that, as discussed in the previous subsec-
tion, the students do not understand the environment
in which their program is to function. This situation
could be improved by teaching testing and comple-
mentary forms of verification of concurrent program-
ming.

Another approach to helping students test their
programs is providing testing tools to generate sce-
narios that are hard to discover using normal testing
procedures. In particular, students need to be able to
study how their programs behave when concurrent ex-
ecution threads interleave in different ways. One pos-
sible approach would be to allow students to manually
control how their programs’ instructions are inter-
leaved, allowing the student to examine known prob-
lematic cases in detail. Another is to automatically
generate the problematic cases using e.g. a model
checker, which helps when students are not aware of
a possible problem.

4.3 Understanding Program Behaviour

Debuggers traditionally focus on behaviour on the
level of individual statements, as in the implemen-
tation category. However, the Solving technical prob-
lems category (Lönnberg and Berglund, 2008) as well
as the Apply known technique (3E) and Adapt known
solution (3F) categories suggest an alternative per-
spective on debugging: that it would be useful to
provide supporting tools, such as execution visual-
isations, that show program behaviour in ways that
support the user’s understanding. This could be done
by allowing the user to group together parts of the
code or execution to correspond to his or her un-
derstanding, similarly to the ability to change be-
tween program- and algorithm-level behaviour sug-
gested by Price et al. (1993). The tool would then
visualise the behaviour of the program in a fashion
closer to the programmer’s view. For example, if the
programmer understands his or her program as a set
of communicating entities, the tool should be able
to display the communication between these entities
and the relevant aspects of their state, even though
this state may be spread out over several objects, and
part of the communication is implicit in locking mech-
anisms. Similarly, familiar notation is preferable; if a
student has designed a solution using collaboration
diagrams, he or she should have less trouble under-
standing a description of a failure expressed as a col-
laboration diagram than using an unfamiliar nota-
tion.

When communicating a concurrency-related fail-
ure to a student, describing the sequence of events
leading to the failure can be difficult. Understand-
ing the exact order of events and how this affects
the interactions between threads is often crucial to
understanding the underlying defect and error and
eliminating it. For this reason, the ability to store a
particular interleaving for further study is important;
this can also be helpful in debugging in general.

4.4 Understanding Errors

The results of this study can also help teachers de-
termine students’ errors based on code defects and
explanations, by showing the different ways students
understand concurrent programming. This is useful
when assessing students’ work in many ways. One is
that it allows grades to reflect the student’s under-
standing and skill better; instead of deducting points
based on failures or defects (which may have little to
do with the student’s skills), they can be deducted for
errors that are direct consequences of lack of under-
standing or skill.

Similarly, the results of this study will help us de-
termine the errors underlying students’ defects, allow-
ing more meaningful analysis of these defects. This
also helps in explaining the student’s defects and er-
rors to him or her.

5 Summary

Many understandings of concurrent programming can
be found among students that cause them to write
programs that do not work properly:

• Producing a working program is not seen as the
purpose of a programming assignment.

• Design is unnecessary or impractical, so develop-
ing a program relies on trial and error.

• Testing is cursory and does not take nondeter-
minism into account.

Our response to these issues is threefold. First,
we suggest that students need more explicit and de-
tailed guidance on how to apply different verification
techniques in practice and that assignments should
be designed to encourage careful development prac-
tices. Second, we argue that showing students the
consequences of the decisions they make due to their
understandings will help them form more useful un-
derstandings. Third, some aspects of debugging con-
current programs are difficult, especially testing and
debugging. We intend to address this by developing
software to help find concurrency-related defects and
visualise the failure to facilitate debugging and allow
the student to understand his errors and misconcep-
tions.

References

Ben-Ari, M. and Ben-David Kolikant, Y. (1999),
Thinking parallel: The process of learning concur-
rency, in ‘Fourth SIGCSE Conference on Innova-
tion and Technology in Computer Science Educa-
tion’, Cracow, Poland, pp. 13–16.

Ben-David Kolikant, Y. (2004), ‘Learning concur-
rency as an entry point to the community of com-
puter science practitioners’, Journal of Computers
in Mathematics and Science Teaching 23(1), 21–46.

Ben-David Kolikant, Y. (2005), Students’ alternative
standards for correctness, in ‘The Proceedings of
the First International Computing Education Re-
search Workshop’, pp. 37–46.

Berglund, A. (2006), ‘Phenomenography as a way to
research learning in computing’, Bulletin of Applied
Computing and Information Technology 4(1).

Berglund, A., Box, I., Eckerdal, A., Lister, R. and
Pears, A. (2008), Learning educational research
methods through collaborative research: the Ph-
ICER initiative, in Simon and M. Hamilton, eds,
‘Proc. Tenth Australasian Computing Education
Conference (ACE 2008)’, Vol. 78 of Conferences in
Research and Practice in Information Technology,
Australian Computer Society, Wollongong, NSW,
Australia, pp. 35–42.

Berglund, A. and Eckerdal, A. (2005), What do our
students strive for? Insights from a distributed,
project-based course in computer systems, in ‘Pro-
ceedings of 5th Annual Finnish/Baltic Sea Confer-
ence on Computer Science Education’, pp. 65–72.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

137

Booth, S. (1992), Learning to program: A phe-
nomenographic perspective, Acta Universitatis
Gothoburgensis, doctoral dissertation, University
of Gothenburg, Sweden.

Gelernter, D. (1985), ‘Generative communication in
Linda’, ACM Transactions on Programming Lan-
guages and Systems 7(1), 80–112.

Hiisilä, A. (2005), Kurssinhallintajärjestelmä ohjel-
moinnin perusopetuksen avuksi (Course manage-
ment system for basic courses in programming),
Master’s thesis, Helsinki University of Technology.
In Finnish, abstract in English.

Lincoln, Y. S. and Guba, E. G. (1985), Naturalistic
Inquiry, Sage Publications.

Lönnberg, J. (2007), Student errors in concurrent
programming assignments, in A. Berglund and
M. Wiggberg, eds, ‘Proceedings of the 6th Baltic
Sea Conference on Computing Education Research,
Koli Calling 2006’, Uppsala University, Uppsala,
Sweden, pp. 145–146.

Lönnberg, J. and Berglund, A. (2008), Students’ un-
derstandings of concurrent programming, in R. Lis-
ter and Simon, eds, ‘Proceedings of the Seventh
Baltic Sea Conference on Computing Education
Research (Koli Calling 2007)’, Vol. 88 of Con-
ferences in Research and Practice in Information
Technology, Australian Computer Society, Koli,
Finland, pp. 77–86.

Lönnberg, J., Malmi, L. and Berglund, A. (2008),
‘Helping students debug concurrent programs’, Ac-
cepted to Koli Calling 2008.

Marton, F. and Booth, S. (1997), Learning and
Awareness, Lawrence Erlbaum Associates.

Price, B. A., Baecker, R. M. and Small, I. S.
(1993), ‘A principled taxonomy of software visu-
alization’, Journal of Visual Languages and Com-
puting 4(3), 211–266.

CRPIT Volume 95 - Computing Education 2009

138

Issues Regarding Threshold Concepts in Computer Science

Janet Rountree Nathan Rountree

Department of Computer Science,
University of Otago,

Dunedin, New Zealand
Email: {janet,nathan}@cs.otago.ac.nz

Abstract

Threshold Concepts deserve discussion and reflec-
tion in Computer Science Education; they provide
a conceptual framework intended to re-empower ter-
tiary educators. At this stage, the idea of Thresh-
old Concepts raises plenty of questions, promises re-
newed learner and teacher engagement, and suggests
a means of focusing on the key aspects of a discipline
that will allow a learner to, for example, “think more
like a computer scientist.” But what precisely are
threshold concepts? Can we identify them? Can we
agree on which concepts are threshold concepts and
which are not? Can we validate them? If threshold
concepts do exist, and can be identified and agreed
upon, then how would they alter what we teach, how
we teach, and how we assess? Do threshold concepts
represent anything new or unexpected? The purpose
of this paper is to set out issues for the Threshold
Concepts model in Computer Science Education and
encourage on-going discussion.

Keywords: Threshold Concepts, Computer Science
Education, Liminal Space

1 The Notion of Threshold Concepts

The Threshold Concepts model is fashionable. The
notion has rapidly gained popularity since be-
ing first proposed in 2003 (Meyer and Land,
2003), with the second Threshold Concepts Con-
ference recently being held at Queen’s University
in Canada (http://thresholdconcepts.appsci.
queensu.ca), two books in print (Meyer and Land,
2006a; Land et al., 2008), as well as the publica-
tion of many topical articles across a variety of dis-
ciplines. The idea has struck a chord with many
academics interested in research into the teaching of
their discipline and its practice. Examples include
Biology (Taylor, 2006), Economics (Davies and Man-
gan, 2007; Shanahan and Meyer, 2006), Accounting
(Lucas and Mladenovic, 2007), Electrical Engineering
(Carstensen and Bernhard, 2008), Statistics (Dunne
et al., 2003), Geology (Stokes et al., 2007), and Mar-
keting (Lye, 2006). In Computer Science Education
(CSE) there is also a developing context for Threshold
Concepts (Eckerdal et al., 2006). The purpose of this
paper is to discuss work done on Threshold Concepts
in CSE, to consider notable issues, and reflect on the
usefulness of this conceptual framework to our disci-
pline. For example, we should ask ourselves whether

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the Eleventh Australasian Computing Educa-
tion Conference (ACE2009), Wellington, New Zealand, Jan-
uary 2009. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 95, Margaret Hamilton and
Tony Clear, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

it is possible to agree upon which concepts are thresh-
old concepts and which are not. Can threshold con-
cepts be validated, and how would they alter what we
teach, how we teach, and how we assess? We should
also consider whether they represent anything new or
unexpected.

We can view Threshold Concepts in two parts:
first, as a model or framework, and second, as “in-
stance” examples. (To distinguish between instances
of threshold concepts, and Threshold Concepts as a
model, we shall capitalise the latter.) In the first case,
Threshold Concepts provides a model for academics
in higher education to develop their teaching and sup-
port student learning. The conceptual framework is
intended to re-situate teaching and learning within
the context of its own discipline, in contrast to the
role learning outcomes have developed as a manage-
rial tool to audit and monitor “success” (Hussey and
Smith, 2003). To contrast the two models, learning
outcomes treat education as a set of activities de-
signed to achieve a set of pre-specified outcomes, with
success defined in terms of meeting those outcomes.
Typically, the outcomes are phrased, “by the end of
the course the learner will be able to. . . .” Threshold
concepts, on the other hand, state that learners go
through a transformation, after which they begin to
“think more like a computer scientist,” and that they
gradually acquire the identity of a community of prac-
tice. During this transformation, certain parts of the
curriculum are pivotal: they represent the “portals”
that learners must traverse in order to succeed. To
be considered a member of the community of practice,
mastery of these concepts is required, and the process
of mastery is seen as a sort of rite of passage.

Secondly, the term “threshold concept” is used to
refer to any part of the curriculum that should be
treated as one of these portals. They may be recog-
nised by (probably) being all five of: transformative;
irreversible, integrative, bounded, and troublesome
(Meyer and Land, 2006b, p7–8). Threshold concepts
are transformative in nature because their compre-
hension creates in the learner a new way of viewing
and describing the subject and may alter the learn-
ers’ perception of themselves and the world. Thresh-
old concepts are irreversible since the fundamental
qualitative change that occurs is unlikely to be un-
learnt. It follows that threshold concepts are also
integrative because learners make new connections,
perceive previously unknown relationships, and ac-
cordingly change their sense of the world. They are
described as bounded, or as boundary makers (Eck-
erdal et al., 2006, p103), since a threshold concept
“. . . helps to define the boundaries of a subject area
because it clarifies the scope of a subject community”
(Davies, 2006, p74). The final characteristic is that
threshold concepts embody knowledge that is trou-
blesome for learners to grasp—it is more than sim-
ply new subject matter, it is material that is diffi-

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

139

cult and possibly counter-intuitive, and accordingly
it cannot, as yet, integrate with the learner’s current
mental schema.

The two most important of the five characteris-
tics of threshold concepts are the troublesome and
transformative nature of the knowledge. Troublesome
knowledge goes beyond knowledge that is difficult to
understand—it is tied up with incorrect or incom-
plete mental models, misconceptions, the inability to
transfer understanding from one context to another,
conflicts with current understanding or perspective,
emotional response, (e.g. being vexing), and tacit pre-
sumptions (Perkins, 2006). Working through prob-
lems and gaining understanding of troublesome as-
pects of the subject matter is interpretative: it ex-
tends the use of language; modifies ways of thinking
and practising; it is a process of “identity formation”
through which the learner gains entrance into the sub-
ject community (Davies, 2006). The Threshold Con-
cepts framework views “. . . learning as a form of jour-
ney, during which the student not only gains insights
great and small, but is also changed as an individual
by new knowledge” (Meyer and Land, 2007). In our
case, the learner begins to think and practice ‘more
like a computer scientist.’

All threshold concepts are also core concepts, but
not all core concepts are threshold concepts. For
example, the ACM “Curriculum Guidelines for Un-
dergraduate Degree Programs in Computer Science”
presents a body of knowledge including core topics.
Picking topics arbitrarily, “object-oriented program-
ming” may be a threshold concept, but the “history
of computing,” whilst recognised as a core topic, may
not be a threshold concept. The “history of comput-
ing” (in this argument) might be new knowledge, it
might be complex knowledge, it might require effort
to learn, but it is not troublesome or transformative
in nature for the learner.

Let us take recursion as a potential example of a
threshold concept in CS: does recursion meet the five
defining characteristics? We expect that many CS
educators would agree that recursion presents an ex-
ample of troublesome knowledge. When first seen the
notion of ‘self reference’ is alien and many novice pro-
grammers struggle to come to terms with this concept
in implementation and description. Once a learner
‘gets’ recursion she has a significant transformation
in her mental process. For example, she sees recur-
sive sets rather than the state a program gets into,
ways of describing program state change to include
base/stopping cases related to the atoms of a recur-
sive set. Elegance in program design is brought into
focus. She starts to make connections and see rela-
tionships with other material such as the fact that
all loops can be expressed as recursion. It is unlikely
that this new understanding will be unlearnt, so it
follows that recursion is irreversible as well as being
integrative. On the one hand recursion is useful in
the practice of programming, on the other hand it is a
theoretical construct that defines what is computable;
hence recursion is a boundary marker for both Soft-
ware Engineering and Theoretical Computer Science.

2 Liminal Space and Pre-liminal Variation

One of the most powerful inferences that can be
drawn from Threshold Concepts is that of liminal
space. Meyer and Land suggest that a threshold con-
cept is rarely mastered in a single “aha” moment, but
instead requires a period of time over which a student
makes the transition. The period of transition is re-
ferred to as “liminal space” (from the Latin limen,
meaning boundary or threshold). Students who are
in the period of transition may be characterised as un-

dergoing a “rite of passage,” at the end of which they
will have achieved new knowledge and status within
their community. The rites may be drawn-out, con-
fusing, and require that students begin to think and
act differently to be seen as having succeeded. (Suc-
cess here is defined as not “understanding how a prac-
titioner thinks,” but “beginning to think like a prac-
titioner.”)

The proponents of Threshold Concepts charac-
terise liminal spaces as the places where students “get
stuck” if they are going to get stuck at all. Stu-
dents show such a range of ability to traverse the
liminal space that it is natural to think of them as
being “effective” or “ineffective” at negotiating the
liminality. Meyer and Land suggest therefore that
pre-liminal variation is the key to understanding how
and why students might effectively negotiate liminal
space. What is there in each student’s background
that might help or hinder their liminal journey? In ex-
amining pre-liminal variation, we may need to attend
to more than just whether or not they have mastered
the academic material considered to be pre-requisite;
perhaps also we need to examine their epistemological
stance: are they ready to build knowledge in the way
we expect them to, and will they be able to tolerate
the (possibly quite long) period of uncertainty, con-
fusion, and even oscillation between seeming to have
“got it,” and feeling sure that “it” will remain forever
elusive?

Eckerdal et al. (2007) present research to support
the notion that students in Computer Science can be
accurately characterised as spending time in liminal
space. Interviews with students regarding things that
they had previously identified as potential thresh-
old concepts established that all of the proposed fea-
tures of liminal spaces were evident: significant time
commitment, oscillation between states, emotional in-
volvement of anticipation and anxiety, and mimicry
of the new state.

The implications attendant upon liminal space
may well prove as significant as the Threshold Con-
cepts model itself. First, Eckerdal et al. note that,
contrary to popular conceptions of “levels” of under-
standing, students passing through liminal space cope
with different aspects of concepts (theoretical, prac-
tical, etc.) in parallel. Second, that the time required
to make the transitions is significant, and perhaps
unexpected to novice students (and perhaps to those
setting learning outcomes). Third, that there is a sig-
nificant emotional reaction to dealing with liminality,
and that such reaction is normal and should be man-
aged rather than ignored or dismissed. Finally, that
mimicry during the negotiation of liminal space may
not be undesirable, but may be a normal part of the
process of coming to terms with conceptual difficulty.

3 Identification of Threshold Concepts

Assuming that the Threshold Concepts model is
valid, what processes can we use to identify threshold
concept instances? Davies (2006) notes that thresh-
old concepts provide a method of describing the ‘way
of thinking’ distinctive to a discipline; a method that
is an alternative to the ‘key concepts’ idea or the
method of phenomenography. However, he also notes
that identification of threshold concepts may be dif-
ficult due to their being “taken for granted” within
a subject, and “therefore rarely made explicit.” He
goes on to suggest two methods for recognising the
threshold concepts within a discipline. (For conve-
nience we shall refer to them as the first approach
and the second approach.) The first approach argues
that we might recognise threshold concepts by ex-
amining the different ways in which two disciplines

CRPIT Volume 95 - Computing Education 2009

140

analyse the same situation. For instance, if Social
Scientists analyse school choice as a zero-sum game,
but Economists as a problem of general equilibrium,
that might lead us to believe that equilibria represent
a threshold concept in Economics.

The second approach to identifying threshold con-
cepts described by Davies is to focus on the distinc-
tion between people inside and outside the commu-
nity of practice—specifically, on the differing ways in
which students and experts in the field analyse the
same problem, or group of problems. This, of course,
is empirically very convenient for educators in a given
field, as they have the best opportunities to conduct
research on their own students. Consequently, most
work on identifying threshold concepts within disci-
plines has focused on this approach. The advantage
is that it allows researchers to look at problems that
only exist within one field. The clear disadvantage
is that there is no equivalence between novice/expert
comparisons and expert/expert comparisons.

Most substantial work on identifying threshold
concepts in Computer Science has taken the sec-
ond approach, examining the responses of students in
Computer Science to questions about where they got
“stuck” while studying. (See the comments on stud-
ies in Computer Science in Section 5.) To date, the
first approach (examining the differences in method-
ology between related fields) has been largely ignored.
This seems a missed opportunity, since Computer Sci-
ence has a wealth of related fields, many of which
have shared interests. Examining the different ways
in which practitioners in Computer Science, Informa-
tion Systems, Mathematics, Physics, Electrical Engi-
neering, and Linguistics, tackle similar problems may
produce excellent candidates for threshold concepts
in each discipline, and opens up a research question
concerning whether threshold concepts are shared be-
tween disciplines (and thus whether there is a hier-
archy of threshold concepts), and whether threshold
concepts mutate as they cross between disciplines.

Work has already begun on validating the Thresh-
old Concepts model and on identifying instances of
threshold concepts in Computer Science, e.g. in Eck-
herdal et al.’s multi-national study. This research
has made it clear that students in Computer Sci-
ence encounter things that look much like threshold
concepts and liminal spaces, but that there are diffi-
culties in articulating the granularity of such things.
For instance, both lecturers and students referred to
“object-orientation” as a threshold concept, but the
authors note that this is almost certainly too broad
a term, when interviews reflected that the “stuck
places” were more at the level of polymorphism or
object cooperation. Work on curriculum design by
Mead et al. (2006) may provide a way of teasing apart
these hierarchical distinctions; they propose the idea
of an anchor concept (which is a concept that is ei-
ther foundational or transformative AND integrative)
and an associated anchor concept graph, which maps
the cognitive load shared by related anchor concepts.
This approach might allow us to specify concepts at
multiple levels of granularity, and in a logical order
that recognises the dependency of threshold concepts
on other foundational material.

Some logical difficulties in identifying threshold
concepts have been identified. Rowbottom (2007)
raises several general caveats, all of which apply to
threshold concepts in Computer Science (and, indeed,
any other subject). His notes of caution are as follows:

1. The features attributed to threshold concepts are
insufficiently precise to distinguish them from
any other concept. They are described by their
originators as probably and not necessarily trans-
formative, irreversible, troublesome, etc. Thus,

any concept you care to mention might be a
threshold concept, even though it has none of
the features, and any concept that has all of the
features may not in fact be a threshold concept.
Thus, I may argue that “scope” is a threshold
concept in Computer Science, and you may argue
that it is not, but neither of us can properly ap-
peal to the definitions to support our argument.
Without those definitions, it is not logically fea-
sible even to use empirical research to support
or refute a claim that something is or is not a
threshold concept.

2. There are at least three accounts of what con-
stitutes a concept, from Cognitive Science (men-
tal models functionally equivalent to symbols or
words, complete with combinatorial syntax and
semantics), to competing views in Philosophy
(the concept of X is reducible to the ability to
think of Xs or classify things as Xs; or concepts
as abstract entities of thought associated with
names). Possibly these views are not contradic-
tory, and possibly we are meant to default to
the view of Cognitive Science. But which view
we hold will profoundly affect our method of de-
termining whether a particular concept has been
mastered. Rowbottom presents “playing tennis”
as an example of an activity where there is a dis-
tinction between knowing that and knowing how;
we might just as readily suggest that program-
ming is an activity where changes in concept do
not necessarily result in changes of practice, nor
that changes in practice are guaranteed to be a
result of a change in concept.

3. Not only are the qualifiers attached to each fea-
ture a problem, but so too are the features them-
selves. Take “transformative” as an example.
What may be transformative for me, may not be
transformative for you. For instance, if I learned
Pascal as my first programming language, then
the notion of generics would tend to have all the
features of a threshold concept—in particular,
troublesome, transformative, and integrative—
because Pascal does not have the features nec-
essary to support truly generic container types
(specifically, untyped pointers, or the ability to
specify that all the objects in the container will
be the same size if not the same type). 1 In con-
trast, a student who has Java as a first language
is likely to have no difficulty at all with the idea
that a container can store things of many types,
since containers can always be defined as stor-
ing things of type “Object.” Thus, genericity
is unlikely to have any of the connotations of a
threshold concept to a student who has Java as
her first programming language.

These caveats are not necessarily enough to dis-
miss the Threshold Concepts model, nor the possibil-
ity of identifying good candidates for threshold con-
cept instances. Even though our definitions of thresh-
old concepts may not be perfectly precise, we can de-
feasibly posit their existence, and agree upon their
most distinctive features, until such time as we find
evidence to suggest that we should retract our asser-
tion. Imprecise definitions are insufficient evidence
for retraction; “four-legged mammals” might be an
imprecise definition for “cats”, but that does not im-
ply that cats do not exist. However, these problems

1Variant records will allow a programmer to contain a set of
specified types, but will not allow the containment of any new
type without modification of the record. Furthermore, if one record
holds things of type A or type B, code that processes the record has
to deal with the possibility that type A processing can be invoked
on type B objects.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

141

with the identification of threshold concepts do in-
dicate that there is only a limited amount of utility
in trying to determine threshold concepts by empiri-
cal means. Science, along with its attendant methods
and expectations, is a social construction: if there
are threshold concepts, and they are really as critical
as the model claims, it is because we have put them
in place and made them so. Studying our students
for signs of threshold concepts may help to make our
tacit assumptions explicit; but studying differences in
practice between experts in related fields should pro-
vide a broader set of concepts that act as boundary
markers for a subject.

4 Consequences of Threshold Concepts

Land et al. (2006) state that the Threshold Concepts
idea “presents important challenges for curriculum
design and for learning and teaching.” Specifically,
they draw attention to nine considerations that they
feel are important with respect to the design and eval-
uation of curricula. These are:

1. that threshold concepts are the “jewels in the
curricula,” demanding longer and sharper focus
than other concepts;

2. that they emphasise the “importance of engage-
ment” by stressing the transformation of the stu-
dent into someone who thinks like a computer
scientist, rather than someone who understands
how computer scientists think;

3. that they emphasise listening for understanding
on the part of the teacher—in particular, listen-
ing for the signs of pre-liminal variation among
students;

4. that they emphasise the reconstitution of self on
the part of the student, and imply the design of
an environment supportive to the discomfort of
repositioning oneself in relation to the subject;

5. that they provide good reasons for tolerating un-
certainty both on the part of students and teach-
ers, due to the time it takes to negotiate the lim-
inal space of a Threshold Concept;

6. that they promote recursiveness and excursive-
ness of learning—that troublesome knowledge of-
ten requires re-visiting, and that the “outcome”
of learning is not just a set of “the learner will
be able to. . . ” statements, but that the learner
will have been transformed by the journey into
one who thinks differently;

7. that understanding pre-liminal variation among
students will help us to understand why some
students negotiate the curriculum effectively,
while others have more difficulty;

8. that they may expose the unintended conse-
quences of generic ‘good pedagogy,’ in that they
provide examples where standard methods (such
as simplifying the concept to begin with) prove
dysfunctional;

9. that they highlight an aspect of the underlying
game—that is, that students will only become
members of the community of practice if they
master the authorised understanding of threshold
concepts, and that alternative versions (based on
personal experience or common-sense) will place
them in unwitting opposition to the community.

At first glance, it is easy to dismiss these consid-
erations as “nothing new here.” After all, in Com-
puter Science, we are only too well aware that some
topics need longer and greater emphasis than oth-
ers, that student engagement is paramount to success,
that student variation is immense and requires signif-
icant adaptability on the part of teachers. We know
all of these things, and using the language of Thresh-
old Concepts to express them is unlikely to affect our
understanding of them, nor provoke a radical shift in
our strategies for dealing with them.

However, there remains the possibility that the
Threshold Concepts model may provide unexpected
consequences. For instance, we can reason as fol-
lows: threshold concepts are integrative; they allow
the practitioner to combine other fundamental con-
cepts in ways unique to the discipline. If we believe
object-orientation to be a threshold concept, what
other fundamental concepts are being integrated? A
strong implication of the Threshold Concepts model
is that those concepts that are to be integrated should
be grasped first by learners, before attempting to
traverse the liminal space where they will learn to
integrate them. If, for instance, we view the en-
capsulation of state and behaviour as a key part of
object-orientation, the implication is that state and
behaviour should be mastered first. This suggests
that an objects-first approach to CS1 is incompatible
with the Threshold Concepts model. To date, there
has been little or no work on exploring the conse-
quences of Threshold Concepts in this fashion: what
teaching practices would we adopt, and what should
we reject if the Threshold Concepts model is valid?

At a higher level of abstraction, is it possible—or
even necessary—that we can ever come to a general
agreement on what constitute threshold concepts in
Computer Science? It could be argued both ways:
that we can and should, and that we cannot and
that it does not matter. For the latter argument,
we need only point to the ACM curriculum and state
that some topics will be troublesome for some learn-
ers, and different topics will be troublesome for other
learners. We adapt as necessary, listening carefully to
our classes for signs of difficulty and for indications
of dawning mastery. In adopting that attitude, the
Threshold Concepts model tells us nothing new, leads
to no insights, and has no implications. On the other
hand, what happens to an academic subject when the
underlying game (a phrase used often in Threshold
Concepts literature) remains implicit, and is never
made explicit? Even in Economics, where different
schools of thought (such as the Austrian School, or
Keynsian Economics) provide very different analyses
of the same events, they all agree that they are do-
ing economics, based on a shared set of underlying,
unifying concepts.

Those concepts can be identified by focusing on
what we do that is peculiar to our discipline, and by
making explicit those things that we think everybody
agrees on. Some of that identification can no doubt be
achieved by observing students making the transition
from not thinking like a practitioner to doing so, and
some can be achieved by observing how practitioners
in different but related fields practice differently. It
seems reasonable that the two different methods will
highlight different concepts.

5 Studies in Computer Science

Shinners-Kennedy (2008) proposed state as a thresh-
old concept in Computer Science, showing that it
meets all five threshold concept criteria. Vagianou
(2006) considers program-memory interaction as a
possible example of a threshold concept in Computer

CRPIT Volume 95 - Computing Education 2009

142

Science. The author argues that research shows a vi-
able computer model must be present before program-
ming is engaged, and that an introductory program-
ming course needs to shift each student’s viewpoint
from that of a non-expert, “end-user” stance toward a
“programmer stance” with an awareness of being di-
rectly responsible for the computing process. Discus-
sion suggests that Program/memory interaction dis-
plays the characteristics of a threshold concept. The
notion is troublesome, since beginning students do
not realise how the use of memory takes place, or their
role in that process. It acts as a boundary marker be-
cause our biological concept of short and long term
memory differs from computing memory. It is inte-
grative, showing otherwise hidden relationships be-
tween hardware and software. Program/memory in-
teraction is transformative, since once understood it
will significantly shift the student’s perspective and
it follows that the notion should be irreversible since
the knowledge is very unlikely to be unlearnt.

A paper by Khalife (2006) aims to identify po-
tential Threshold Concepts in introductory program-
ming courses and propose solutions to help students
surpass thresholds. The author presents some com-
monly accepted novice programmer difficulties (such
as lack of problem solving strategies), and then sug-
gests that the first threshold a student needs to pass
is “. . . to develop a simple but yet concrete mental
model of the computer internals and how it operates
during program execution” (Khalife, 2006, p246). A
computer model for teaching purposes is then set out
along with results of an empirical evaluation of that
model.

To date, the most systematic and in-depth ap-
proach to studying Threshold Concepts in Comput-
ing is an on-going multi-institutional, multi-national
series of projects underway in the UK, USA, and
Sweden (Zander et al., 2008; Eckerdal et al., 2006;
Boustedt et al., 2007; Eckerdal et al., 2007; Moström
et al., 2008). Discussions by members of this group
have been underway since (at least) early 2005 when,
at the Conference on Innovation and Technology
in Computer Science Education in Portugal, they
“. . . interviewed 36 Computer Science educators from
nine countries and asked for suggestions about con-
cepts that met the criteria for a threshold concept”
(Zander et al., 2008). There was no universal consen-
sus of concepts amongst academics, but the most pop-
ular are listed as: levels of abstraction; pointers; the
distinction between classes, objects, and instances; re-
cursion and induction; procedural abstraction; and
polymorphism. At the 5th Koli Calling conference
in Finland, McCartney and Sanders (2005) presented
a poster on Threshold Concepts in CSE and col-
lected opinions from delegates on potential Threshold
Concepts through questionnaires and interviews. At
ITiCSE’06, the authors provided a helpful discussion
of related areas of research in CSE, namely: construc-
tivism; mental models; misconceptions; breadth-first
approach to teaching; and, ideas fundamental to the
discipline (Eckerdal et al., 2006). The paper contin-
ues by proposing, with support from literature, two
candidates for threshold concepts—abstraction and
object-orientation. A paper presented at SIGCSE’07
answers yes and yes to the title “Threshold Con-
cepts in Computer Science: Do they exist and are
they useful?” (Boustedt et al., 2007). The principal
contribution of this paper is to describe their empiri-
cal approach of using structured interview techniques
to identify candidate threshold concepts in Computer
Science. From 33 concepts mentioned by students and
educators, they examine two in detail to establish that
they have the required features: object-orientation
and pointers. Here, they make the point that what
they might have uncovered are “. . . perhaps broad ar-

eas in which thresholds exist.” Interview subjects
were inclined to use the broad terms to identify the
concepts, but then spoke in much more specific terms
about problems they encountered within those areas.

What the on-going multi-national study provides
is validation of the Threshold Concepts model for
CSE. Possible “instance” examples of threshold con-
cepts (which display the five threshold criteria), have
been identified by practitioners from different coun-
tries. CS students were interviewed regarding topics
they had found troublesome and “got stuck” on, and
an intersection of topics identified by both (object-
oriented programming and pointers) have been inves-
tigated in greater detail for evidence that they satisfy
the threshold concept criteria. The multi-national
study has also looked at the idea of liminal space as an
appropriate description of the transitional space CS
students negotiate as they develop ways of thinking
and practising.

6 Concluding Comments

The Threshold Concept Model presents a disciplinary
situated learning framework for higher education
which is a welcome shift in perspective away from
the checkbox flavour of learning outcomes. “In-
stance” examples of threshold concepts are core cur-
riculum concepts with the particular properties of be-
ing transformative, irreversible, integrative, bound-
ary markers, and troublesome. In Computer Science,
proposed threshold concept examples include: state;
program-memory interaction; levels of abstraction;
pointers; the distinction between classes, objects, and
instances; recursion and induction; procedural ab-
straction; and polymorphism. With further work, is
it likely that academics in CSE would agree on a set
of threshold concept topics? Perhaps! We think it
likely that there will be agreement for some threshold
concepts and not others. In the empirical sense, it
is not possible to validate threshold concepts because
what is a threshold concept for one person, may not
be for another. The best we can achieve is a sense of
“many” or “most” learners finding a particular topic
meets the requirements of a threshold. Does this lack
of validation matter for CSE? No, we think not, be-
cause practitioners define the subject; we define the
curriculum (not the students), and so empirical val-
idation using students may be something of a “red
herring.” If threshold concepts define the boundaries
of how practitioners perceive a subject, then surely
we need to study practitioners if we wish to define
the threshold concepts.

If practitioners have differing perspectives then
you simply get different schools of thought. Will
threshold concepts alter what and how we teach and
how we assess Computer Science? Yes and No. On
one hand, for example, object-orientation is trou-
blesome and counter-intuitive (we already know this
and give it extra teaching emphasis) so labelling it
a threshold concept provides no additional enlight-
enment. On the other hand, investigating students’
liminal space as they come to terms with object-
orientation will provide valuable insight into what
makes an effective novice. Knowing what makes a
novice effective in traversing liminal space allows par-
ticular skills and ways of thinking to be targeted. Dis-
covering an unexpected threshold concept would be
of much interest. The implications of threshold con-
cepts are also of interest for CSE; for example, is an
objects-first approach in teaching incompatible with
Threshold Concept theory? Threshold Concepts lit-
erature strongly suggests that the integrative nature
of thresholds requires students to first have mastered
some fundamental concepts before embarking on the

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

143

threshold concept itself. Simplification of a threshold
concept to make it easier has been shown (in Eco-
nomics at least) to lead students to settle for a naive
version of that knowledge (Land et al., 2006, p333).
An implication for CSE could be seen as avoiding
teaching “objects-first” in CS1.

From a philosophical viewpoint the difficulty with
Threshold Concepts is the lack of a formal definition
which would allow specification of what is, and what
is not a threshold concept. The model needs to be-
come more precise because, as it stands, no threshold
concept candidate can be verified—it is only possible
to make an assertion that it exists. We suggest that
one small step to help clarify the model is to view
Threshold Concepts in two parts: first, as a model or
framework, and second, as “instance” examples. Both
need to be validated separately—are there subjects
for which the Threshold Concepts model is completely
invalid? Or does it work for every tertiary subject? If
you have a subject for which Threshold Concepts is a
valid model, what are the threshold concepts within
it? How can you tell for sure? How can you tell if you
have identified all of them? Is it possible to distin-
guish those things that look like threshold concepts
but are not?

Although we have titled this paper “Issues with
Threshold Concepts in Computer Science,” and have
noted some difficulties, we do not think that the no-
tion of Threshold Concepts should be dismissed. As
educators in Computer Science there are essential
questions which we continually ask: When do we con-
sider a student has been successful? Why are some
students successful, whilst others are not? And how
do we support students through their learning pro-
cess? In relation to these questions, there are three
aspects of particular value that Threshold Concepts
contribute. Threshold Concepts provide:

1. an apt description for what it means for a student
to have been successful in our discipline;

2. the addition of epistemological concepts of limi-
nal and pre-liminal space, which gives direction
for future research into what makes an effective
novice programmer;

3. a focus on our community of practice, giving def-
erence to the disciplinary knowledge of the aca-
demic, so that concerns are “. . . always analysed
and resolved from, and within, specific and sit-
uated disciplinary contexts” (Meyer and Land
2007, p14).

Where should the Threshold Concept discussion
for CS education go next? We suggest that Davies’
first approach to identifying threshold concepts—
examining the ways in which practitioners in related
disciplines solve similar problems—provides the best
avenue for further research. If the goal is to identify
“how to think like a Computer Scientist” then we
must first study the practitioners, not their students.
In CS the first challenge is to specify what consti-
tutes our subject. If we ask our colleagues what it
means to be a Computer Scientist, how much agree-
ment will there be? For example, how much overlap
will there be between groups with a software engineer-
ing flavour, or theoretical, or electrical engineering ap-
proach? The immediate value of Threshold Concepts
in CS Education is to require us to address what it
means to be a Computer Scientist.

References

Boustedt, J., Eckerdal, A., McCartney, R., Moström,
J. E., Ratcliffe, M., Sanders, K., and Zander, C.

(2007). Threshold concepts in computer science:
do they exist and are they useful? SIGCSE Bull.,
39(1):504–508.

Carstensen, A.-K. and Bernhard, J. (2008). Threshold
Concepts and Keys to the Portal of Understanding:
Some Examples from Electrical Engineering, pages
143–154. In (Land et al., 2008).

Davies, P. (2006). Threshold concepts: How can we
recognise them? In (Meyer and Land, 2006a),
pages 70–84.

Davies, P. and Mangan, J. (2007). Threshold concepts
and the integration of understanding in economics.
Studies in Higher Education, 32(6):711–726.

Dunne, T., Low, T., and Ardington, C. (2003). Ex-
ploring threshold concepts in basic statistics, using
the internet. In AISE/ISI Satellite, Berlin.

Eckerdal, A., McCartney, R., Moström, J. E., Rat-
cliffe, M., Sanders, K., and Zander, C. (2006).
Putting threshold concepts into context in com-
puter science education. SIGCSE Bull., 38(3):103–
107.

Eckerdal, A., McCartney, R., Moström, J. E.,
Sanders, K., Thomas, L., and Zander, C. (2007).
From limen to lumen: Computing students in lim-
inal spaces. In ICER ’07: Proceedings of the Third
International Workshop on Computing Education
Research, pages 123–132, New York.

Hussey, T. and Smith, P. (2003). The uses of learning
outcomes. Teaching in Higher Education, 8(3):357–
368.

Khalife, J. T. (2006). Threshold for the introduction
of programming: Providing learners with a simple
computer model. In Romero, P., Good, J., Acosta,
E., and Bryant, S., editors, Proceedings of the 18th
Workshop of the Psychology of Programming Inter-
est Group, pages 244–254.

Land, R., Cousin, G., Meyer, J. H., and Davies,
P. (2006). Implications of threshold concepts for
course design and evaluation. In (Meyer and Land,
2006a), pages 195–206.

Land, R., Meyer, J. H., and Smith, J., editors (2008).
Threshold Concepts Within the Disciplines. Sense
Publishers.

Lucas, U. and Mladenovic, R. (2007). The potential
of threshold concepts: An emerging framework for
educational research and practice. London Review
of Education, 5(3):237–248.

Lye, A. (2006). Threshold concepts: Reflections on
marketing education. In Proceedings of the 2006
ANZMAC Conference, Brisbane.

McCartney, R. and Sanders, K. (2005). What are the
“threshold concepts” in computer science? In Pro-
ceedings of the 5th Baltic Sea Conference on Com-
puting Education Research (Koli Calling 2005),
page 185.

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J.,
Clair, C. S., and Thomas, L. (2006). A cogni-
tive approach to identifying measurable milestones
for programming skill acquisition. SIGCSE Bull.,
38(4):182–194.

Meyer, J. H. and Land, R. (2003). Threshold concepts
and troublesome knowledge – linkages to ways of
thinking and practising. In Rust, C., editor, Im-
proving Student Learning Theory and Practice –
Ten Years On, pages 412–424. OCSLD, Oxford.

CRPIT Volume 95 - Computing Education 2009

144

Meyer, J. H. and Land, R., editors (2006a). Overcom-
ing Barriers to Student Understanding: Threshold
Concepts and Troublesome Knowledge. Routledge.

Meyer, J. H. and Land, R. (2006b). Threshold con-
cepts and troublesome knowledge: An introduc-
tion. In (Meyer and Land, 2006a), pages 3–18.

Meyer, J. H. and Land, R. (2007). Stop the conveyer
belt, I want to get off. Times Higher Education
Supplement, page 14. Issue 1807, 17 August 2007.

Moström, J. E., Boustedt, J., Eckerdal, A., McCart-
ney, R., kate Sanders, Thomas, L., and Zander,
C. (2008). A multi-national, multi-institutional
project on threshold concepts in computer science:
Results and implications. In Threshold Concepts
Conference 2008, Queen’s University, Kingston,
Canada.

Perkins, D. (2006). Constructivism and troublesome
knowledge. In (Meyer and Land, 2006a), pages 33–
47.

Rowbottom, D. P. (2007). Demystifying threshold
concepts. Journal of Philosophy of Education,
41(2):263–270.

Shanahan, M. and Meyer, J. H. (2006). The trouble-
some nature of a threshold concepts in economics.
In (Meyer and Land, 2006a), pages 100–114.

Shinners-Kennedy, D. (2008). The everydayness of
threshold concepts: ‘State’ as an example from
computer science. In (Land et al., 2008), pages
119–128.

Stokes, A., King, H., and Libarkin, J. (2007). Re-
search in science education: Threshold concepts.
Journal of Geoscience Education, 55(5):434–438.

Taylor, C. (2006). Threshold concepts in biology:
Do they fit the definition? In (Meyer and Land,
2006a), pages 87–99.

Vagianou, E. (2006). Program working storage: A be-
ginner’s model. In Berglund, A. and Wiggberg, M.,
editors, Proceedings of the 6th Baltic Sea Confer-
ence on Computing Education Research (Koli Call-
ing 2006), pages 69–76.

Zander, C., Boustedt, J., Eckerdal, A., McCartney,
R., Moström, J. E., Ratcliffe, M., and Sanders, K.
(2008). Threshold concepts in computer science:
A multi-national empirical investigation. In (Land
et al., 2008), pages 105–118.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

145

CRPIT Volume 95 - Computing Education 2009

146

A Taxonomic Study of Novice Programming Summative
Assessment

Shuhaida Shuhidan Margaret Hamilton Daryl D’Souza

School of Computer Science & Information Technology
RMIT University,

PO Box 2476V, Melbourne 3001, Australia,
Email: {shuhaida.mohamedshuhidan, margaret.hamilton, daryl.dsouza}@rmit.edu.au

Abstract

Learning to program is difficult, a situation that is
largely responsible for high attrition rates in Com-
puter Science schools. Novice programmers strug-
gle to grasp an early understanding of programming,
which can lead to frustration and eventually surren-
der. The problem has generated interest in a range
of enquiries, and has given impetus to the need for
a teaching-research nexus towards a better under-
standing of novice programming problems. We con-
tinue the trend in this paper and report on a study
we have conducted of novice programmers’ efforts in
summative assessment. Our study involves multiple-
choice questions and coding question drawn from a
programming examination. We analyse the answers
provided by novices to final examination questions,
and attempt to understand why students make such
errors. We aim to categorise and classify the questions
in the context of two well-known learning taxonomies:
Bloom’s Taxonomy and the SOLO Taxonomy.

Keywords: Summative Assessment, Programming Er-
rors, Novice Programmer, Bloom’s Taxonomy, SOLO
Taxonomy, Taxonomy of Programming

1 Introduction

High attrition (or low retention) rates are often ex-
perienced in Computer Science schools (Bennedsen &
Caspersen 2007), in part due to students’ inability
to learn programming (Oman et al. 1989), a core
survival skill. Novice programmers are often known
to have difficulty in grasping the foundation level pro-
gramming concepts sufficiently early, resulting in grief
and frustration, and ultimately, surrender. Yet, those
who do manage to overcome their learning difficulties
are able to move on, even excel.

A novice programmer (henceforth referred to sim-
ply as a novice) is in the first stages of being a pro-
grammer (Bonar & Soloway 1983, Thomas et al. 2004)
and also has been described as an end-user who wants
to program a computer (Smith et al. 2000). Novices
range from being those who have never previously ex-
perienced programming to those may have some basic
background to programming, attained informally or
via formal study in pre-university contexts. In our
study, we restrict our definition of novices to tertiary
level students who are learning programming for the
first time.
Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the Eleventh Australasian Computing Educa-
tion Conference (ACE2009), Wellington, New Zealand, Jan-
uary 2009. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 95, Margaret Hamilton and
Tony Clear, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

Clear et al. (2008) point out that two major con-
tributors to the exodus from Computer Science and
cognate disciplines are poor teaching of computing in
high schools and the “nerdy” image of the profession
to young people. We contend that, even at univer-
sity level, too much is taken for granted by teachers,
in the formative stages of learning programming. In-
correct models of a range of fundamental program-
ming concepts are conveyed in teaching or received
by novices, often compounding the problems of un-
derstanding. Poor models of programming concepts
have a propagating effect, plunging novices into a spi-
ral of frustration, loss of confidence and self-belief, as
more complex material is covered (Wayne D. Gray
1993, Caspersen & Bennedsen 2007).

In this paper we report our own efforts to develop
a better understanding of learning difficulties in pro-
gramming. Our study analyses the novices’ final ex-
amination answer sheets and attempts to classify the
questions and responses in terms of two taxonomies of
learning: Bloom’s Taxonomy (Bloom 1956) and the
SOLO Taxonomy (Biggs & Collis 1982) (SOLO is an
acronym for Structure of the Observed Learning Out-
come). First, we study the multiple-choice questions
and responses in the examination and classify them
according to Bloom’s Taxonomy.

We extend our study to look at a programming
code question to explore the understanding displayed
by novices in writing segments of code. We clas-
sify these coded responses using the SOLO taxon-
omy. Next, our classification of responses according
to the two taxonomies prompted us to consider the
instructors’ perspectives on degrees of complexity of
the multiple-choice questions, as well as the novices’
responses, which determine the difficulty involved.

The remainder of the paper is structured as fol-
lows. In Section 2 we discuss relevant research iden-
tifying other approaches to understanding learning
difficulties experienced by novices and the study of
programming assessments. Section 3 presents our
methodology, describing details of the exam questions
and the data we seek to analyse. Results and discus-
sion in the context of the Bloom’s and SOLO learning
taxonomies are presented in Section 4. Finally, we
present our conclusions and proposed future endeav-
ours in Section 5.

2 Related work

Research into the challenges of teaching programming
to novices has long received attention, in several cases
to better understand first year programming students’
difficulties in conquering introductory programming
concepts.

Kopec et al. (2007), analysed programmers’ ex-
amination errors, but focussed on intermediate pro-
grammers. Intermediate programmers are those who
have some programming experience and understand

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

147

basic concepts of programming. Incorrect planning
leads to incorrect answers. They concluded that edu-
cators must be very careful in their problem descrip-
tion and presentation, and that novices are often con-
fused with nested loops and recursion, which differ-
entiate intermediate to novice programmers’ errors.
In our study we focus on first year programming stu-
dents, whom we define as novices. We are primarily
interested in ensuring that novices have a good foun-
dation to build upon in programming, to ensure that
further study involving programming is well-received.
Improved understanding of novice errors will also bet-
ter inform educators about alleviating the difficulties
experienced by novices at commencement.

A more recent study, Mike Lopez (2008) stud-
ied the responses of novices in an examination and
found strong support for association between their
code tracing and code writing skills, and between ex-
plaining code and writing code skills. They showed
that there are strong correlations between code trac-
ing and code writing. We also study the novices’ re-
sponses to exam questions, however, our goal is to
classify the questions and responses according to es-
tablished taxonomies.

In order to consistently analyse answers to
multiple-choice questions, one approach is to utilise
learning taxonomies. Such taxonomies allow learning
objectives to be classified according to cognitive do-
mains. Benjamin Bloom created a taxonomy of think-
ing levels in the 1950’s, known widely as Bloom’s Tax-
onomy (Bloom 1956). Educators use Bloom’s Taxon-
omy to guide the composition of challenging and so-
phisticated activities for learning. The cognitive do-
main of their study remains relevant today and is em-
ployed in identifying the educational levels required
for course outcomes. According to Bloom’s Taxon-
omy, there are three domains of the learning outcome,
referred as; Affective, Psychomotor, and Cognitive.
Our study focus on the Cognitive domain, which con-
sist of six thinking levels: knowledge, comprehension,
application, analysis, synthesis and evaluation.

In 2001, Anderson et al. (Anderson et al. 2001)
revised the major categories in Bloom’s Taxonomy
to suit the emerging educational institutional needs
of the new century. The revised Bloom’s Taxonomy
maintained the original ideas of Bloom, being the lev-
els of cognition, but made changes within the cate-
gories, expanding them and explaining them better
in the context of general education. In our study, we
use the original Bloom’s Taxonomy as we are classi-
fying programming ability, and find that it is capable
of explaining the ability or skills required by novices
to answer each multiple-choice questions. However,
although we have applied the original Bloom’s Tax-
onomy , we recognise there are further explanations
of cognitive load given in the revised version which
would also apply to our novices’ responses, but this
other dimension can be employed at a later stage of
course planning or renewing, instructional delivery
and writing new assessment items.

It can be difficult to distinguish between the lev-
els and categories when applying the taxonomy to
each exam question after it has been written and ap-
peared in the summative assessment (Thompson et al.
2008). This is due to the nature of programming
exam papers, since there are rarely any keywords from
Bloom’s Taxonomy employed by the examiner for the
questions. However, we have attempted to under-
stand each question and explain our application of
which particular level for each of the questions in the
next section.

A number of studies have applied Bloom’s Tax-
onomy to programming tasks. Scott (2003) ex-
plained some links between programming questions
and Bloom’s Taxonomy when he demonstrated how

the taxonomy works in programming tests and pro-
vided some sample questions for each category of
the taxonomy. Oliver et al. (2004) claimed that
their Programming 1 course rated as 3.9 applying
Bloom’s Taxonomy, but, in their analysis, only as-
signments were rated according to the Bloom’s Tax-
onomy. There was no evaluation made of examina-
tion questions based on Bloom’s Taxonomy as due
to the course designed, there is no final examination
for Programming. Lister & Leaney (2003) identified
the weak, middle and strong programming students
in their study based on criterion-referenced grading
(grades which were assigned according to criteria, ir-
respective of the resultant grade distribution). Differ-
ent treatments, depending on the level within the tax-
onomy, were applied in order to obtain the various dif-
ferent grades. They proposed a scale based on the stu-
dents’ performances to determine their progression to
the following semester. Furthermore, the study con-
cluded that multiple-choice questions should not be
seen as being too easy in the exam, since one third to
one half of the class failed to achieve the 70% pass fig-
ure on their first attempt. However, they still believe
that multiple-choice questions can provide a solid test
of a student’s knowledge and comprehension (Lister
& Leaney 2003).

PeerWise (Denny et al. 2008) highlighted that
there is a significant correlation between students’
overall performances in exams and their contributions
to the multiple-choice questions to the system. In our
study, we too recognise the high value of multiple-
choice questions, however, we focus on classifications
via Bloom’s Taxonomy of cognitive skills; we apply
the guidelines of the cognitive process of the taxon-
omy to suit the questions written for the final exam.

Another taxonomy, the SOLO taxonomy (Biggs
& Collis 1982), represents a more qualitative way to
classify cognitive processes. There are five categories
of SOLO taxonomy: prestructural, unistructural, mul-
tistructural, relational, extended abstract (Refer to
Table 2). However, as originally specified (Biggs &
Collis 1982), the SOLO categories are based on the
age of the learner, such as the lowest category for
youngest learner. We argue that while this claim
has merit, learning is a process and there will always
be something new to acquire, regardless of age, and
hence the levels of cognition can be applied to learn-
ing as a process, regardless of age. There are also
several studies using the SOLO Taxonomy that eval-
uate the responses of novices learning to read pro-
grams (Thompson 2007, Whalley et al. 2006, Lister
et al. 2006). Lister et al. (2006) studied written and
think-aloud responses from respondents, and reported
that novices tend to understand code via a line-by-
line approach, rather than understanding the code as
a whole.

Our research question for this study is: What are
the suitable taxonomies to classify the questions and
responses in the final examinations of novice program-
mers?

3 Research methodology

Programming 1, is a core, first-year subject in every
undergraduate degree, hence providing a high volume
of representative data. It represents a first course
in Java programming, with the aim of getting stu-
dents to code simple, small Java programs involving,
at their most challenging stage, a moderate-sized sys-
tem with a range of classes (and simple inheritance
requirements). We posit that novices give their best
effort during their final examinations, in order to pass
the subject, and such efforts are devoid of any col-
laboration with others, other than pre-exam revision

CRPIT Volume 95 - Computing Education 2009

148

with peers, and via consultation with teaching staff.
Hence, errors in solutions presented in examinations
are far more likely to be revealing of individual pro-
gramming difficulties.

For our study we used as our data source the an-
swers to selected questions in the semester 1, 2008
final examination paper for the subject Programming
1. The structure of the examination paper was as
follows:

Part 1, worth a total of 30 (out of 100) marks, con-
tained 20 equally-weighted short answer questions, of
which 19 were multiple-choice questions and one was a
code-tracing question. The 20 questions are attached
in Appendix A.

Part 2 (worth 35 marks) contained 7 equally-
weighted questions requiring code writing for short
programs, or parts of programs(Refer Appendix B).

Finally, Part 3 required incremental development
of code for a single problem context, which tested stu-
dent application of simple object-oriented code com-
pletion or development from scratch. We provide no
further details here as this part of the examination
was beyond the the scope of the study reported here.

The time allocated to complete the paper was 3
hours plus an extra 15 minutes of reading time. On
this basis the expected, estimated time to answer each
multiple choice questions was approximately two to
three minutes. There were no “explain in plain En-
glish” type of questions. However, sections of Part
2 required the recognition of code segments to be al-
tered or extended.

Our focus was on the multiple-choice questions of
Part 1 (primarily) and a selected question from Part
2, of the exam paper. In total there were 220 sub-
missions received from the novices. We analysed the
questions and answers to 19 of the 20 questions in
Part 1. In each multiple-choice questions there is only
one correct answer and three incorrect answers, de-
noted as distracters. We ignored question 6 because it
was a code tracing question with no distracters. Here
novices were required to trace a code segment and
provide a single answer in the blank space provided,
and not to select the correct answer from among a list
of choices. The remaining 19 questions were “code in-
terpretation” or “code reading” questions.

The exam paper was prepared by an experienced
team of instructors (including one of the authors) in
the second half of the semester, during which time the
novices were enrolled in the subject. This allowed the
instructors to adapt the paper to the current context
of subject delivery, as needed. During the semester a
range of preparatory instruments and activities were
used to prepare novices to become more conversant
with the style and complexity of the final examina-
tion paper. These included tutorial and laboratory
exercises; a mid-semester test in Week 8, to test mate-
rial covered up to and including Week 6 (the halfway
point in a 12-week semester); an ongoing series of We-
blearn quizzes and tests1; and discussions in lectures
of model questions and answers from past exam pa-
pers, comparable to the style and complexity of what
might be expected in their final exam.

In the remainder of this section we present de-
scriptions of our approaches to classify the novice
responses to the 19 multiple-choice questions (from
Part 1 of the exam paper) according to Bloom’s Tax-
onomy, and the responses to selected Part 2 questions
according to the SOLO Taxonomy. The latter classifi-
cation represents an extension of our study to include
short-answer questions.

Our brainstorming to carry out such classifica-
tions was inconclusive, so we employed further analy-

1Weblearn is a School-developed online system for the manage-
ment of subject question banks.

sis by introducing measures of instructor perceptions
of question complexity and novice levels of difficulty.
We present further discussion and analyses of these
issues with the results in the next section.

3.1 Methodology for classification of
multiple-choice questions responses
according to Bloom’s Taxonomy

As discussed in Section 2, Bloom’s Taxonomy was
developed for describing and categorising the level
of cognitive difficulty involved in learning a partic-
ular subject. We outline the Bloom’s Taxonomy
upon which we have based our categorisation of the
multiple-choice exam questions in Table 1. In terms
of cognitive complexity Knowledge is the lowest level
category and relates to memorising information and
being able to recall definitions. As the scale of
complexity moves up, the cognitive factor increases,
meaning that greater use is being made of the novice’s
mental capabilities. Evaluation is the highest level of
cognition and relates to the creating, developing and
writing of ideas and abstractions. The Application
level 3 is the one where we believe most of the pro-
gramming code questions from our exam paper have
been pitched.

Table 1: Bloom’s Taxonomy
Level Category Description
6 Evaluation Test on the ability to

evaluate ideas
5 Synthesis Test on the ability to re-

late knowledge from sev-
eral areas and use of old
ideas to create a new one

4 Analysis Test on the ability to un-
derstand the information
and translate it into a
different context

3 Application Test on the ability to ap-
ply the information in a
concrete situation, ques-
tions should be resolved
using skills and knowl-
edge

2 Comprehension Test on the ability to un-
derstand the information
and translate it into a
different context

1 Knowledge Test on the observation
and recall of information
learnt

3.2 Methodology for categorisation of code
writing question for SOLO Taxonomy

We extended our study to analyse Question 24, a
short answer question in Part 2 of the exam sheet,
presented in Appendix B. We chose Question 24 as it
requires short and precise responses and it provides
clear instruction for the novices. It require the novices
to write code to calculate the highest and lowest in-
teger, from a set of integers passed via the command-
line. As discussed earlier, the SOLO Taxonomy may
be used to classify program code. Thus, we applied
the SOLO Taxonomy to the novice answers. Our
modified set of SOLO Taxonomy categories is pre-
sented in Table 2, where we have added the last cat-
egory. We have slightly modified the categories to
enable us to categorise all the responses.

According to SOLO Taxonomy, each level repre-
sents increasing cognitive load. The lowest level, Pre-

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

149

structural, reflects the situation when novices may
have several pieces of unconnected information, but
cannot make sense of the whole. However, as the
levels scale up, in the extended abstract level, they
demonstrate an ability to make the necessary con-
nections between the subject area and generalising
beyond the subject area to the world at large.

Table 2: Category and Descriptions of SOLO Taxon-
omy
Category Descriptions
Extended Ab-
stract

Novices able to make connections
beyond the scope of question and
able to transfer knowledge a new
situation

Relational Fully correct or almost right.
Novices appreciate significance in
relation to the whole program
and can generalise outside of pro-
gram

Multistructural There are numbers of connections
made. Novices can create code
for loops and comparisons, but
there are a few minor slips, lead-
ing to failure to connect the whole
idea. They may fail to convert ar-
guments, use incorrect operators,
not interpret general explanation

Unistructural Simple connections are made.
Novices can compare, or write
loops but fail to implement or de-
rive the connections of loops in
relation to manipulation of arrays
or usage of further structures

Prestructural There are bits of unconnected in-
formation. Novices know some-
thing, but the overall argument
makes no sense

No attempt or
totally wrong

The answer is blank or totally
wrong

When classifying according to the SOLO Taxon-
omy, we investigate a particular solution as one whole
model and then consider how the metacognitions may
have formed. Thus, we found that it is important
to analyse how each component part of the solution
has been coded to build the whole relational model
solution. We studied the interrelation of each com-
ponents, in order to understand whether the novice
could link all the components of the knowledge that
they have learnt.

For example, below we outline a few components
that should contribute to the relational model, in an-
swering this question. The components are:

• Ability to create a loop

• Ability to extract or convert the argument cor-
rectly

• Ability to find the highest value

• Ability to find the lowest value

• Ability to code correctly

We used this approach to distinguish between Mul-
tistructural, Unistructural and Prestructural novice
categories. We felt that the Extended Abstract level
could not be tested in this question, as the novices
had been give clear instructions to what question to
solve.

4 Results and discussion

In this section we discuss primarily the classification
of 19 multiple-choice questions (see Appendix A), by
applying Bloom’s Taxonomy, and analyse this with
consideration of instructor assignment of level of ques-
tion complexity, and novice measure of level of ques-
tion difficulty.

We also applied the SOLO Taxonomy to novice
responses to Question 24, a short, code-writing ques-
tion (see Appendix B). For the novice to attain the
Relational classification level of the SOLO Taxonomy,
they must be able to connect the components which
we identified in the previous section.

4.1 Application of Bloom’s Taxonomy to
Multiple Choice Questions

We examined the Multiple Choice Questions, their
solutions and distracters, classified them according
to Bloom’s Taxonomy outlined in the previous sec-
tion, and present these results in Table 3. We found
that the content of the multiple-choice questions may
be classified primarily into the three lower levels of
Bloom’s Taxonomy: Knowledge, Comprehension and
Application, only. Since this is an introductory pro-
gramming course, we would expect that the test in-
strument should test performance at the lower level
skills. Earlier we had considered that the majority of
the multiple-choice questions would rate in the Appli-
cation level from the novices’ viewpoint, however, it
turned out that the majority of questions, 15 of them,
are in the Comprehension level. We had difficulty
distinguishing between categorising at the Compre-
hension and Application levels in the early stages of
learning, and so we decided that, since this is a practi-
cal course, novices are expected both to comprehend
and to be able to demonstrate the basic knowledge
covered at the same time. There are three Appli-
cation level questions in the examination, and these
questions require the novices to display their ability
to tackle an unfamiliar situation as posed in the ques-
tion. There is only one question in the test which we
categorised at the Knowledge or easiest level.

Table 3: Bloom’s Taxonomy and the number of Mul-
tiple Choice Questions in each level
Level Category Number of Multiple

Choice Questions
6 Evaluate 0
5 Synthesis 0
4 Analysis 0
3 Application 3
2 Comprehension 15
1 Knowledge 1

We realized that there are many sub-categories for
each category presented by the taxonomy, as learning
and background information are wide and varied. As
such, we found that categorising a novice response
was, possibly unsurprisingly, a difficult task which
posed some interesting challenges. We also went on
to find that it was difficult to categorise the ques-
tion. Firstly the Bloom’s taxonomy categories were
not developed to relate to programming questions,
and which “keyword” in each category to apply to
the question at hand was not obvious.

In particular, we found it difficult to differenti-
ate between categorising the questions according to
the Comprehension and the Application levels. The
distinction between Comprehension and Application
levels is drawn between a question at the Comprehen-
sion level requiring a novice to abstract well enough

CRPIT Volume 95 - Computing Education 2009

150

to demonstrate the expected knowledge. Whereas at
the Application level, when unfamiliar elements are
presented, the novice should be familiar enough with
the old existing elements to be able to restructure
them and respond correctly to the question (Bloom
1956).

As an example, Question 9 and 15 (both in Sec-
tion 7.1), both required novices to demonstrate their
ability to iterate through loop(s). Question 9 is a ‘do-
while’ loop, given the m value is 0, and novices are
required to count how many time(s) the loop will it-
erate. This question is categorised as Comprehension
level in Bloom’s Taxonomy as the question required a
novice to demonstrate the understanding that a ‘do-
while’ must be executed atleast once. On the other
hand, Question 15 required a novice to understand
how the ‘for-loop’ will iterate(to demonstrate and un-
derstand of old existing elements) and present this
as a matrix of 3x3. The method of presenting the
data is the new elements. Thus, in order to solve the
question, a novice needs to have the basic element
(to understand the for-loop) and able to apply the
knowledge and present the answer in a matrix.

4.1.1 Instructor’s Level of Complexity

As a result of the challenges posed by categorisation of
questions according to Bloom’s Taxonomy, we pressed
to investigate the motives of the instructors in setting
the questions. We asked the instructors responsible
for setting the exam to provide their assessment of
the level of complexity for each question. The results
of their assessments are presented in Table 6.

We based our study of the Instructor’s Level of
Complexity on the depth of the problem posed in
the question. We suggested three basic categories
to distinguish the complexity of the questions: Low,
Medium and High. A Low complexity represents a
very basic coverage of a particular concept, data el-
ement or instruction; a Medium level is when more
than one action is involved, but the structure is se-
quential; and High refers to a question which may
involve complex objects or nested structures or com-
binations of difficult concepts, such as if-statements
inside loops. The instructor applied these categories
as a basis for judging each question and we present
these results in Table 4, the Instructor’s Level of Com-
plexity.

Table 4: Instructor Level of Complexity
Category Description
Low Definitions, variables, concepts, sim-

ple instructions
Medium More than one action, object, if and

loop statements
High Nested structures, complex objects,

combinations of difficult concepts

An associated question to consider was whether
the instructor expectation of complexity was accu-
rate. Instructor expectation as evidenced by the dif-
ficulty of the question may not be on a par with the
novices’ performances (Clear et al. 2008, Joni et al.
1983). We found it worthwhile and interesting not
only to look at the complexity level expected by the
instructor, but also how it compared with the re-
sponses given by the novices, or the Novice’s Level
of Difficulty.

4.1.2 Novice’s Level of Difficulty

In our continuing analysis we looked at the level of dif-
ficulty faced by the novices. According to the nature

of multiple-choice questions, they have four possible
responses (A, B, C or D), only one correct answer and
three distracters. Our scale for describing the novice
difficulty is based on Lord (Lord 1952), and presented
in Table 5. If there are 85% or more of the novices
selecting the correct response, the question is an easy
one. If only 51% to 84% of the novices pick the correct
response, this question is of medium difficulty; and if
50% or less select the correct answer, the question is
hard for the novices to resolve. Thus the novice level
of difficulty of a question rates it as Easy, Medium or
High.

Table 5: Novice Level of Difficulty
Level of Difficulty Range of correct responses
Easy 85 - 100
Medium 51 - 84
Hard 0 - 50

According to these scales, there are 5 easy mul-
tiple choice questions, 10 medium ones and 4 hard
questions on our exam paper. For the multiple
choice questions, the summary of the content levels
of Bloom’s Taxonomy, levels of instructor complexity
and levels of novice response difficulty for each ques-
tion are presented in Table 6. Question 6 is omitted
from this table, as it was not a multiple choice ques-
tion.

Table 6: Question number (Q No), Bloom’s Taxon-
omy (BT), Instructor Level of Complexity (Complex-
ity) and Novice Level of Difficulty (Difficulty)

Q No BT Complexity Difficulty
1 Knowledge Low Easy
2 Comprehension Low Medium
3 Comprehension Low Medium
4 Comprehension Low Medium
5 Comprehension Low Hard
7 Application Low Easy
8 Comprehension Low Easy
9 Comprehension Low Medium
10 Comprehension Low Hard
11 Comprehension Medium Hard
12 Comprehension Medium Medium
13 Comprehension Medium Medium
14 Comprehension Medium Easy
15 Application High Medium
16 Comprehension High Hard
17 Comprehension Medium Easy
18 Comprehension Medium Medium
19 Comprehension Medium Medium
20 Application High Medium

4.2 Application of SOLO Taxonomy to Short
Answer Question

We applied the SOLO Taxonomy to the responses for
question 24, which required novices to trace through a
code segment about an array to determine the highest
and the lowest integer values.

We found that 35.6% of the novices’ answers were
at the Relational category, 23.3% of responses were
at the Multistructural level and less than 25% were
at the lower level categories of the SOLO taxonomy.

4.3 Discussion

We started analysing the questions by using the
Bloom’s Taxonomy. We found that it is hard to dis-
tinguish between the Application and Comprehension

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

151

Table 7: SOLO Taxonomy applied to responses for
the short written code segment

Category Response
Relational 35.6
Multistructural 23.3
Unistructural 16.0
Prestructural 7.8
No attempt or totally wrong 17.4

level. At first, we thought that any question which
has written code was devised to test the novices’ abil-
ity at the Application level of Bloom’s Taxonomy. We
decided that the Comprehension and Application lev-
els would be distinguished by the amount of abstrac-
tion required. If a novice needs to abstract in order
to solve a question, then the question is developed to
test at the Application level of Bloom’s Taxonomy,
whereas, if a novice does not need to abstract, then
the question is developed to test at the Comprehen-
sion level of Bloom’s Taxonomy.

We also found that, the three highest categories,
Analysis (Level 4), Synthesis (Level 5) and Evaluation
(Level 6), were not tested by this set of multiple choice
questions for novice programmers. These three lev-
els were tested and seen in the programming project
conducted during the semester, whereby novices were
able to practise their generating, planning and pro-
duction skills, and also further evaluate other projects
or code compared to their own.

We further analysed the Instructor’s Level of Com-
plexity as we wanted to understand their expectations
when they devised the questions. We provide a sim-
ple measure as guideline for them to categorise the
questions. We understand that the instructors may
have strong background knowledge of programming,
and thus tend to find the questions less complex than
novices do.

There were a few tricky questions presented in this
set of multiple-choice questions. This sort of question
can be justified on the grounds of testing the novices
with code which could well have been written by other
novices and they need to know how to deal with such
code and learn from it.

We decided it would be interesting to investigate
any correlations between the categorisations of the
novice responses, and the categorizations given to
the questions. We stored the data in SPSS Package
15.0 and calculated the correlation between Bloom’s
Taxonomy and the Instructor’s Level of Complexity.
Next we looked for any correlation between Bloom’s
Taxonomy and the Novice’s Level of Difficulty and
finally between the Instructor’s Level of Complexity
and Novice’s Level of Difficulty. The results are pre-
sented as in Table 8.

Table 8: Correlation(ρ) between pairwise
Bloom’s Taxonomy, Instructor Level of Com-
plexity(Complexity) and Novice Level of Diffi-
culty(Difficulty)

Variable P-value
ρ Bloom’s Taxonomy and Complexity 0.070
ρ Bloom’s Taxonomy and Difficulty 0.941
ρ Complexity and Difficulty 0.468

Since the p-value for the correlation between
Bloom’s Taxonomy and the Instructor Level of Com-
plexity is 0.070, which is greater than 0.05, we can
say that there is no significant correlation between
Bloom’s Taxonomy and Instructor’s level of Complex-
ity at the confidence level of α = 0.05. Similarly
for the correlation between Bloom’s Taxonomy and

the Novice Level of Difficulty the p-value of 0.941 is
greater than 0.05. Also for the correlation between
the Instructor Level of Complexity and the Novice
Level of Difficulty, the p-value is 0.468 which is much
greater than 0.05. Hence we can say that there are
no significant correlations between any of the tax-
onomies, Bloom’s Taxonomy, the Instructor Level of
Complexity, and the Novice Level of Difficulty, which
means that all three are independent taxonomies, not
related to each other at all.

In analysing the responses to the short answer
question, we realised that the emphasis of the ques-
tion was on the correct grammatical syntax, and no
marks were awarded for having the logic or necessary
problem-solving skills. For this example, the strong
syntax knowledge requirement is like the pillar. If
the novices are unable to practise or write their an-
swer using the correct syntax, they may be discour-
aged from going further in answering that particular
question. We concur with other studies which have
employed the SOLO Taxonomy, that it is useful to
evaluate the responses of novices learning to read pro-
grams (Thompson 2007, Whalley et al. 2006, Lister
et al. 2006), but we also consider it is useful to mea-
sure the syntax knowledge as well.

5 Conclusions

We have found that it is very difficult to classify ques-
tions on the final exam paper using Bloom’s Taxon-
omy It is hard to distinguish between the categories
as the original Bloom’s Taxonomy was written to suit
the education field generally. Programming subjects
are quite different in that the questions we create are
not based on the keywords used in Bloom’s Taxon-
omy, but are mostly based on snippets of code.

Since this is for an introductory programming
course, the questions on our exam paper belonged
to the lower, easier levels of Bloom’s Taxonomy, but
even then the questions posed at the Knowledge and
Comprehension levels can be confusing and difficult
for novices to answer. Although the content may be
an if-statement, for instance, we found that depend-
ing on the nested alternatives, or the complexity of
the test condition, that this can add other dimensions
of difficulty to the question. Hence we incorporated
further dimensions to our taxonomy to explain the
Instructor Level of Complexity posed by the ques-
tion, and the Novice Level of Difficulty relating to
how they answered the question. We found the com-
bination of these three dimensions allowed us to more
clearly classify the questions.

Hence for classifying multiple-choice questions on
exam papers, we recommend a three-dimensional tax-
onomy consisting of Bloom’s categories for the con-
tent, the instructor’s estimate of complexity, and the
novice’s percentage of correct responses as a measure
of difficulty. We recommended the two additional
measures as we have seen that there exist questions
which are low level in complexity as determined by
the instructors, but the novices found them very dif-
ficult to solve.

For classifying the code-writing questions, we
recommend the SOLO Taxonomy, to measure the
novices’ understanding of the particular concepts
tested. The SOLO Taxonomy provides a means of
evaluating cognitive or mental models, to see if the
novices are able to make connections between what
they have learnt, if any exist.

Our future work will involve a further investiga-
tion to bridge the gap between the instructors and
novices, in order to better understand the instructor’s
expectations in terms of complexity and the novices’
difficulties. Our next goal is to minimise this gap so

CRPIT Volume 95 - Computing Education 2009

152

that both parties can work along together and over-
come some of the difficulties faced by the novices.

6 Acknowledgment

The authors would like to thank Raymond Lister for
his insight into Bloom’s Taxonomy.

References

Anderson, L. W., Krathwohl, D. R., Airasian, P. W.,
Bloom, B. S., Cruikshank, K. A., Pintrich, P. R.
& Mayer, R. E. (2001), A taxonomy for learning,
teaching and assessing, complete edition edn, Ad-
dison Wesley Longman, Inc, pp. 67–68.

Bennedsen, J. & Caspersen, M. E. (2007), ‘Failure
rates in introductory programming’, SIGCSE Bull.
39(2), 32–36.

Biggs, J. B. & Collis, K. F. (1982), Evaluating the
quality of learning. The SOLO Taxonomy (Struc-
ture of the Observed Learning Outcome), complete
edition edn, Academic Press, pp. 61–92.

Bloom, B. S. (1956), Taxonomy of Educational Ob-
jectives, Handbook I: The Cognitive Domain, New
York: David McKay Co Inc., chapter Part II,
pp. 62–197.

Bonar, J. & Soloway, E. (1983), Uncovering principles
of novice programming, in ‘POPL ’83: Proceedings
of the 10th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages’, ACM,
New York, NY, USA, pp. 10–13.

Caspersen, M. E. & Bennedsen, J. (2007), Instruc-
tional design of a programming course: a learn-
ing theoretic approach, in ‘ICER ’07: Proceedings
of the third international workshop on Computing
education research’, ACM, New York, NY, USA,
pp. 111–122.

Clear, T., Edwards, J., Lister, R., Simon, B.,
Thompson, E. & Whalley, J. (2008), The teach-
ing of novice computer programmers: bringing the
scholarly-research approach to australia, in ‘ACE
’08: Proceedings of the tenth conference on Aus-
tralasian computing education’, Australian Com-
puter Society, Inc., Darlinghurst, Australia, Aus-
tralia, pp. 63–68.

Denny, P., Hamer, J., Luxton-Reilly, A. & Purchase,
H. (2008), Peerwise: students sharing their multi-
ple choice questions, in ‘ICER ’08: Proceeding of
the fourth international workshop on Computing
education research’, ACM, New York, NY, USA,
pp. 51–58.

Joni, S.-N., Soloway, E., Goldman, R. & Ehrlich, K.
(1983), ‘Just so stories: how the program got that
bug’, SIGCUE Outlook 17(4), 13–26.

Kopec, D., Yarmish, G. & Cheung, P. (2007), ‘A de-
scription and study of intermediate student pro-
grammer errors’, SIGCSE Bulletin 39(2), 146–156.

Lister, R. & Leaney, J. (2003), ‘Introductory
programming, criterion-referencing, and bloom’,
SIGCSE Bull. 35(1), 143–147.

Lister, R., Simon, B., Thompson, E., Whalley, J. L.
& Prasad, C. (2006), ‘Not seeing the forest for the
trees: novice programmers and the solo taxonomy’,
SIGCSE Bull. 38(3), 118–122.

Lord, F. M. (1952), The relation of the reliabil-
ity of multiple-choice tests to the distribution of
item difficulties, in ‘Psychometrika’, SpringerLink,
pp. 181–194.

Mike Lopez, Jacqueline Whalley Phil Robbins, R. L.
(2008), Relationships between reading, tracing and
writing skills in introductory programming, in
‘ICER’08’.

Oliver, D., Dobele, T., Greber, M. & Roberts, T.
(2004), This course has a bloom rating of 3.9,
in ‘ACE ’04: Proceedings of the sixth conference
on Australasian computing education’, Australian
Computer Society, Inc., Darlinghurst, Australia,
Australia, pp. 227–231.

Oman, P. W., Cook, C. R. & Nanja, M. (1989), ‘Ef-
fects of programming experience in debugging se-
mantic errors’, J. Syst. Softw. 9(3), 197–207.

Scott, T. (2003), ‘Bloom’s taxonomy applied to test-
ing in computer science classes’, J. Comput. Small
Coll. 19(1), 267–274.

Smith, D. C., Cypher, A. & Tesler, L. (2000), ‘Pro-
gramming by example: novice programming comes
of age’, Commun. ACM 43(3), 75–81.

Thomas, L., Ratcliffe, M. & Thomasson, B. (2004),
‘Scaffolding with object diagrams in first year
programming classes: some unexpected results’,
SIGCSE Bull. 36(1), 250–254.

Thompson, E. (2007), Holistic assessment criteria:
applying solo to programming projects, in ‘ACE
’07: Proceedings of the ninth Australasian confer-
ence on Computing education’, Australian Com-
puter Society, Inc., Darlinghurst, Australia, Aus-
tralia, pp. 155–162.

Thompson, E., Luxton-Reilly, A., Whalley, J. L., Hu,
M. & Robbins, P. (2008), Bloom’s taxonomy for cs
assessment, in ‘ACE ’08: Proceedings of the tenth
conference on Australasian computing education’,
Australian Computer Society, Inc., Darlinghurst,
Australia, Australia, pp. 155–161.

Wayne D. Gray, Neal. C. Goldberg, S. A. B. (1993),
‘Novices and programming: Merely a difficult sub-
ject (why?) or a means to mastering metacognitive
skills? (review of the book studying the novice pro-
grammer)’, 9(1), 131–140.

Whalley, J. L., Lister, R., Thompson, E., Clear, T.,
Robbins, P., Kumar, P. K. A. & Prasad, C. (2006),
An australasian study of reading and comprehen-
sion skills in novice programmers, using the bloom
and solo taxonomies, in ‘ACE ’06: Proceedings of
the 8th Austalian conference on Computing edu-
cation’, Australian Computer Society, Inc., Dar-
linghurst, Australia, Australia, pp. 243–252.

7 Appendices

7.1 Appendix A

This appendix presents the text of selected questions
from the exam paper, discussed and analysed in
Section 4.

1. Which of the following is not a primitive type in
Java ?
A) boolean
B) byte
C) String
D) float

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

153

2. What will be the value assigned to the variable x as
a result of the following statement?

int x = 2 / 10 + 12 \% 4 + 5;

A) 5
B) 7
C) 8
D) 10

3. Which one of the given sets of X, Y and Z values
makes the following expression true?

!(X && Y) && (!Y || Z)

A) X = false, Y = false, Z = false
B) X = false, Y = true, Z = false
C) X = true, Y = true, Z = false
D) X = true, Y = true, Z = true

4. Given that x and y are both variables of type int,
the statements:
y = x + x + x;
y += y + x;
are equivalent to:
A) y = 4 * x;
B) y = 5 * x;
C) y = 7 * x;
D) y = 8 * x;

5. What will be assigned to the variable result after ex-
ecution of the statements below, if the value that is entered
by the user is -1?

int something = console.nextInt();
String result;
if (something <= 0)

result = "ONE";
else if (something <= 50)

result = "TWO";
if (something <= 100)

result = "THREE"
else

result = "FOUR";

A) ”ONE”
B) ”TWO”
C) ”THREE”
D) ”FOUR”

6. What is the output of the following code segment?

for (int i = 1; i <= 15; i += 2)
{

if (i % 3 == 0)
System.out.print("a");

else
System.out.print("b");

}

Answer:_________________________

7. What is the output of the code segment below?

String message = "Sally is counting: ";
String numbers = "";
for (int i = 0; i < 12; i += 2)

numbers = numbers + i + " ";
System.out.println(message + numbers);

A) Sally is counting: 0 2 4 6 8 10
B) Sally is counting: 0 1 2 3 4 5 6 7 8 9 10 11
C) Sally is counting: 0 2 4 6 8 10 12
D) Sally is counting: 0 1 2 3 4 5 6 7 8 9 10 11 12

8. What will be the output of the program segment be-
low if marks is input as 50?

System.out.print("Enter marks : ");
int marks = console.nextInt();
if (marks < 50)

System.out.print(" Fail");
if (marks >= 50)

System.out.print(" Pass");
else if(marks >= 60)

System.out.print(" Credit");
if (marks <= 70)

System.out.print(" Distinction");
else

System.out.print(" High-Distinction");

A) Pass Credit
B) Pass Distinction
C) Pass High-Distinction
D) Pass Credit Distinction High-Distinction

9. How many times will the do-while loop below be ex-
ecuted?

int m = 0;
do {

System.out.println(m);
m = m - 1;
} while (m > 0);

A) 0 times
B) 1 time
C) 10 times
D) It is an infinite loop (ie. it will never stop executing)

10. Which of the following statements is false?
A) A static method can be accessed directly via the class
without having to create an object from that class first
(visibility permitting)
B) A non-static (instance) method cannot refer to a static
variable inside the same class
C) A static method cannot refer to non-static (instance)
variable inside the same class
D) All objects created from a class which includes a static
variable may change the value stored in that static variable
(visibility permitting)

11. What are the values of the variables a and b after
the execution of the following program:

public class TestParameterPassing
{

public static void main (String [] args)
{

double a = 2.5;
String b = "Hello";

anyMethod(a, b);
}
public static void anyMethod (double d, String s)
{

d = d * 3;
s = "Goodbye";

}
}

A) a = 2.5, b = ”Goodbye”
B) a = 2.5, b = ”Hello”
C) a = 7.5, b = ”Goodbye”
D) a = 7.5, b = ”Hello”

12. Which one of the following statements is true?
A) An abstract class must have an abstract method
B) All methods in an abstract class must themselves be
abstract
C) An abstract class cannot define instance variables
D) An abstract class cannot be instantiated

13. Which of the following statements is true in regards
to files?
A) You cannot write numeric values to a text file
B) A text file that has been opened for writing must be closed
after the program has finished writing data in order for the
data to be written out correctly.
C) No exception is thrown if a text file that does not exist is

CRPIT Volume 95 - Computing Education 2009

154

opened for reading
D) An exception is thrown if a text file that does not exist is
opened for writing

14. Given that B is a subclass of A and C is a subclass
of B, what is printed by the following code segment ?

A a = new C();
if (a instanceof A)

System.out.print("yes1 ");

if (a instanceof B)
System.out.print("yes2 ");

if (a instanceof C)
System.out.print("yes3");

A) yes1
B) yes2
C) yes1 yes2
D) yes1 yes2 yes3

15. What is the output of the program below?

public static void main (String[] args)
{

int[][] m = new int[3][3];

for (int row = 0; row <= 2; row++)
for (int col = 0; col <= 2; col++)

m[row][col] = col;

for (int i=0; i<3; i++)
{

for (int j=0; j<3; j++)
System.out.print(" "+m[i][j]);

System.out.println();
}

}

A) 0 1 2
0 1 2
0 1 2

B) 0 0 0
1 1 1
2 2 2

C) 2 1 0
2 1 0
2 1 0

D) 2 2 2
2 2 2
2 2 2

16. What is the output produced by the following code seg-
ment (assuming that the exception types ExceptionTypeOne
and ExceptionTypeTwo have been defined previously and are
not related by inheritance)?

public void aMethod()
{

int value = 10;
try
{

System.out.print("one ");
if (value <= 10)
{

System.out.print("two ");
throw new ExceptionTypeTwo();
System.out.print("three ");

}
catch (ExceptionTypeOne e)
{

System.out.print("four ");
}
finally
{

System.out.print("five ");

}
System.out.print("six ");

}
}

A) one two
B) one two five
C) one two three five six
D) one two four five six

17. If the value of the variable x is -10, 10 and 100
respectively then what is printed after the execution of the
following code segment for each of the values?

if (x > 50 && x > 0)
System.out.println("Success!");

else
System.out.println("Failure!");

A) Failure!, Failure!, Success!
B) Failure!, Success!, Failure!
C) Failure!, Failure!, Failure!
D) Success!, Success!, Failure!

18. Consider the following code segment?

int[] x = {2, 1, 4, 5, 7};
int limit = 3;
int i = 0;
int sum = 0;

while ((sum < limit) && (i < x.length))
{

++i;
sum += x[i];

}

What value is in the variable ”i” after this code is executed?
A) 0
B) 1
C) 2
D) 3

19. Consider the following code segment:

int[] x = {0, 1, 2, 3};
int temp;
int i = 0;
int j = x.length-1;

while (i < j)
{
temp = x[i];
x[i] = x[j];
x[j] = 2*temp;
i++;
j--;
}

After this code is executed, array ”x” contains the values:
A) 3, 2, 2, 0
B) 0, 2, 2, 3
C) 0, 2, 4, 6
D) 6, 4, 2, 0

20. Consider the following code segment.

int[] x1 = {1, 2, 4, 7};
int[] x2 = {1, 2, 5, 7};
int i1 = x1.length-1;
int i2 = x2.length-1;
int count = 0;
while ((i1 > 0) && (i2 > 0))
{
if (x1[i1] == x2[i2])
{
++count;
--i1;

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

155

--i2;
}
else if (x1[i1] < x2[i2])
{
--i2;
}
else
{ // x1[i1] > x2[i2]
--i1;
}
}

After the above while loop finishes, ”count” contains what
value?
A) 3
B) 2
C) 1
D) 0

7.2 Appendix B
This is the short answer question that is analysed using the
SOLO Taxonomy.

Question 24
Complete the HighLow class below to identify and display
the highest and lowest of the series of positive integer values
passed into the program as command line arguments.

Expected Input/Output is shown below.
java HighLow 7 4 9 10
Highest value passed in was 10
Lowest value passed in was 4

java HighLow 45 52 81 69 23 97 76
Highest value passed in was 97
Lowest value passed in was 23

Notes:
Command-line arguments are passed to the main method
through the array of String references (args in the main method
below). The size of any array can be accessed through its length
attribute (note: you can assume at least one valid argument
will be passed in on the command line). You will need to use
Integer.parseInt() to convert each command line argument to
integer format before processing it.
(5 marks)

public class HighLow
{

public static void main (String[] args)
{

int highestArg = 0;
int lowestArg = 0;
int nextArg;

__
__
__

System.out.println(
"Highest value passed in was " +
highest);
System.out.println(
"Lowest value passed in was " +
lowest);

}
}

CRPIT Volume 95 - Computing Education 2009

156

Ten Years of the Australasian Computing Education Conference

Simon
University of Newcastle

Australia
simon@newcastle.edu.au

Abstract
The Australasian Computing Education Conference is
now in its eleventh year. This paper charts the ups and
downs of the conference from its origin in 1996, through
its troubled years, to its recent apparently steady state. All
328 papers from the ten conferences are classified
according to Simon’s system for classifying computing
education papers, and features of interest are pointed out.
Only one clear trend over time is observed, and that is a
steady and distinct increase in the proportion of research
papers. The analysis then moves from the papers to their
496 distinct authors, exploring where the authors come
from, how many papers each has contributed to the
conference, and which authors appear to have made this
conference their home. A final look at the number of
papers presented each year suggests that the conference
might once more be experiencing difficulty, and
speculates on its future. .
Keywords: classifying publications, computing
education.

1 Introduction
The Australasian Computing Education Conference,
formerly known as the Australasian Computer Science
Education Conference, has been held ten times over the
13 years from 1996 to 2008. This paper gives an
overview of the ten offerings, then goes on to briefly
analyse the papers that have been presented at the
conference and the authors of those papers.

2 Ten offerings in 13 years
Table 1 summarises the ten offerings of the conference.
The remainder of this section describes the main points of
interest during that time.
The first Australasian Computer Science Education
Conference was held in Sydney in 1996. Chaired by John
Rosenberg and Alan Fekete of Sydney University, it
provided a regional forum for the presentation of work
that might otherwise have been submitted to the SIGCSE
Technical Symposium or ITiCSE. (SIGCSE is the Special
Interest Group on Computer Science Education, a SIG of
the premier computing professional group the ACM; the
Technical Symposium is its annual conference in the US,
and ITiCSE (Innovation and Technology in Computer
Science Education) is its annual conference in Europe.)

Copyright © 2009, Australian Computer Society, Inc. This
paper appeared at the Eleventh Australasian Computing
Education Conference (ACE2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in
Information Technology, Vol. 95. Margaret Hamilton and Tony
Clear, Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

Australian academics appear to have leapt at the
opportunity to submit their work closer to home than had
previously been possible, but there were also papers from
overseas, their authors perhaps taking advantage of a
funded trip to a desirable destination. Of the 51 accepted
papers, the authors of just over 70% were from Australia,
with the remainder coming from the USA (6 papers),
New Zealand (4 papers), the UK (4 papers), and Japan (1
paper).

At the end of the conference an interested group met to
decide whether to continue. It was assumed that the first
offering had attracted a backlog of papers that had built
up over some years, and it wasn’t clear whether the
steady state would provide enough papers to warrant
running the conference on an annual basis. Even so, it
was agreed to try the following year and see what would
happen.

The second conference did indeed attract rather fewer
submissions, but still enough for the conference to run. At
this point it was agreed that there did appear to be
sufficient interest to support an annual conference.

Plans at this stage were somewhat ad hoc: towards the
end of each conference a group of willing parties would
meet and somebody would volunteer to host and chair the
next conference. This arrangement failed in 1999, when
the volunteers didn’t manage to bring things together.
This meant not only that there was no conference in 1999,
but that there was no meeting to decide on chairs and a
venue for the subsequent conference. Realising this, Judy
Sheard and Dianne Hagan of Monash University in
Melbourne took the initiative and ran the conference in
2000.

Two matters that had often been discussed at the
meetings of interested parties were the conference name
and the conference logistics. Some felt that the ‘computer
science’ in the conference name was unnecessarily
restrictive, effectively denying legitimacy to other areas
of computing such as information systems. This feeling
was acted on in 2000, when the name was changed to the
Australasian Computing Education Conference.

The question with regard to logistics was whether
ACSE (now ACE) should collocate with the Australasian
Computer Science Conference. The latter conference,
which had been running for more than 20 years, was
making economies of scale by gathering a number of
smaller conferences together. The potential benefit to
ACE was that organisational matters such as registration,
venue, catering, and proceedings would be taken care of
by the organisers of Australasian Computer Science
Week (ACSW) as the combined conference was known.
The main potential cost was the move from mid-year to
January, which was seen for various reasons as a less
convenient time. The temptation to join ACSW was
strong, but it was resisted.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

157

After ACE 2000 there was another lost year, when
ACE 2001 failed to eventuate. This time the rescue was
performed by Tony Greening and Raymond Lister, who,
believing that the logistical problems were part of the
reason for the failures, decided unilaterally to combine
with ACSW. This explains the other apparent missing
year, as the next conference was held not in June or July
2002 but in January 2003.

Another important decision made at this time was to
provide for continuity of chairs, so that each year there
would be one chair who had already run an ACE.
Raymond Lister began the process by chairing ACE 2004
as well as ACE 2003, and each subsequent chair has
spent two years in the job, first as a junior chair learning
what was involved, then as a senior chair showing the
ropes to the new junior.

The high paper acceptance rates of ACSE 1997 and
ACE 2003 can perhaps be ascribed in part to a desire to
accept a reasonable number of papers despite the lower
numbers of submissions in those years. Submission
numbers fell again for ACE 2007 and ACE 2008, but by
this time the chairs felt constrained to keep the
acceptance rate below 50% for reasons of quality
assurance, even though this meant a serious reduction in

the number of papers presented.

3 The papers
In all, 328 papers have been accepted and presented at the
ten offerings of the conference. In this section the papers
are analysed, first according to Simon’s system for
classifying computing education papers (Simon 2007,
Simon et al 2008), and subsequently with some additional
facts and figures that might be of interest.

Simon’s system classifies a computing education
paper according to four dimensions: the context in which
the work presented is set; the theme of the paper, what it
is about; the scope of the work, which indicates the
breadth of the context; and the nature of the paper, an
indication of whether it is a research paper, an experience
report, or a position paper or proposal. The dimensions
will be explained further in the following subsections,
illustrated with examples from ACE.

3.1 Context
A paper’s context is typically the subject matter of the
course or subject in which it is taught. Therefore we
would expect to see papers with contexts such as

Table 1: summary of the ten offerings
Conference Location Chairs Submitted Accepted Accept rate
ACSE 1996 Sydney John Rosenberg, Alan Fekete 114 51 45%
ACSE 1997 Melbourne John Hurst, Harald Søndergaard 46 31 67%
ACSE 1998 Brisbane Paul Strooper, David Carrington 59 27 46%
ACE 2000 Melbourne Judy Sheard, Dianne Hagan 79 39 49%
ACE 2003 Adelaide Tony Greening, Raymond Lister 47 34 72%
ACE 2004 Dunedin Raymond Lister, Alison Young 87 48 55%
ACE 2005 Newcastle Alison Young, Denise Tolhurst 67 32 48%
ACE 2006 Hobart Denise Tolhurst, Samuel Mann 60 29 48%
ACE 2007 Ballarat Samuel Mann, Simon 43 20 47%
ACE 2008 Wollongong Simon, Margaret Hamilton 39 18 46%

Table 2: contexts of the 328 papers
Context Papers Context Papers

artificial intelligence 1% intro to IT 2%
broad-based 23% literature 1%
capstone project 5% logic 1%
compilers <1% management <1%
computer forensics <1% networks 4%
data structures 2% operating systems 1%
database 2% postgraduate / research 1%
design <1% programming languages 1%
eBusiness/eCommerce <1% programming 32%
ethics/professionalism 1% school outreach 1%
formal methods 1% software engineering 5%
graphics <1% system modelling <1%
group work 2% systems analysis 2%
hardware/architecture 4% web use 1%
human-computer interface 2% webpage development 1%
image processing <1% work experience 1%
information systems 3%

CRPIT Volume 95 - Computing Education 2009

158

programming (“Uni cheats racket”: a case study in
plagiarism investigation (Zobel 2004)), information
systems (Authentication strategies for online assessments
(Summons & Simon 1998)), compilers (Jocula - an
instructive compiler (Buckley & Hext 1996)), and so on.
In addition, the system recognises three contexts that do
not represent curricular subjects. The group work context
is used for papers that, regardless of the subject matter,
concentrate on aspects of group management, dynamics,
or assessment (Developing the software engineering team
(Hogan & Thomas 2005)). The literature context is for
papers, typically surveys, whose data comes from the
literature rather than the classroom (A citation analysis of
the ACE2005 - 2007 proceedings, with reference to the
June 2007 CORE conference and journal rankings (Lister
& Box 2008)). And broad-based is used for papers that
have no identifiable context (Building a rigorous
research agenda into changes to teaching (Daniels et al
1998)) and for papers that range across multiple contexts
(Attracting and retaining females in information
technology courses (Clayton et al 1996)).

The 328 papers together cover 33 contexts, as shown
in table 2. Programming accounts for 32% of the papers,
a further 23% are broad-based, and the remainder make
up a broad and shallow spread over the remaining 31
contexts. The spread is reasonably uniform across the ten
offerings, with no noticeable trends over time.

3.2 Theme
The theme of a paper is what the paper is actually about,
and at first consideration might be confused with its
context. Language tug-of-war: industry demand and
academic choice (de Raadt et al 2003) might appear to be
about programming, but that is in fact its context. The
paper is about the teaching technique of which
programming language to use, and so it fits into the
theme of teaching/learning techniques. In a similar vein,
The case for more digital logic in computer architecture
(Hoffman 2004) has a context of hardware/architecture
but a theme of curriculum, and Self and peer assessment
in software engineering projects (Clark et al 2005) has a
context of capstone projects but a theme of assessment
tools, as it presents a tool developed by the authors to
assist with the assessment process.

While the set of possible contexts is limited only by
the set of papers being examined, the set of themes
remains fairly fixed. The themes of the 10 years of ACE
papers are shown in figure 1.

By far the bulk of the papers are about

teaching/learning techniques (how we teach),
teaching/learning tools (tools to help us teach), and
curriculum (what we teach). Assessment techniques and
tools together make up some 13% of the papers; students’
ability and aptitude makes up about 5%, as does online
and/or distance delivery; and the remaining contexts each
account for less than 3% of the papers.

3.3 Scope
The scope of a paper is an attempt to specify the extent of
collaboration with the (computing) education community
that the work entailed. The narrowest recognised scope is
the single subject (or course). A paper set in a single
subject might possibly have been written with no
collaboration at all (Teaching software testing
(Carrington 1997)), although the many multi-author
single-subject papers attest that this need not be the case
(Transforming learning of programming: a mentoring
project (D’Souza et al 2008)).

The program/department scope indicates a paper that
is set in several distinct subjects across a degree program
or a department. Such papers generally entail
collaboration within the department (Performance and
progression of first year ICT students (Sheard et al
2008)), although there are a handful of single-author
program/department papers (Peer mentoring female
computing students - does it make a difference? (Craig
1998)).

The scope of institution, recognising collaboration
with colleagues in other departments at the same
institution, tends to be quite rare. It is not always easy to
break the silo mentality, but it can be rewarding to do so
(Peer assessment using Aropä (Hamer et al 2007)).

It is generally easier to collaborate with computing
education colleagues at other institutions, so there are
many papers whose scope is many institutions (eScience
curricula at two Australian universities (Gardner et al
2005)), especially since the advent of papers arising from
working parties or workshops (Differing ways that
computing academics understand teaching (Lister et al
2007)).

Some papers do not have an identifiable scope,
typically because they have no explicit context (Multiple
choice questions not considered harmful (Woodford &
Bancroft 2005)) or because their context is the literature
(Qualitative research projects in computing education
research: an overview (Berglund et al 2006)). These
papers are assigned a scope of not applicable.

There is no systematic variation in the pattern of
scopes over time, so figure 2 shows the combined scopes
of the papers from the last ten years.

3.4 Nature
The nature dimension was designed to acknowledge and
chart the distinction between papers that are clearly
reporting on research and papers that report their authors’

0% 5% 10% 15% 20% 25% 30% 35% 40%

ability/aptitude
accessibility

assessment techniques
assessment tools

cheating & plagiarism
curriculum

educational technology
ethics/professional issues

gender issues
language/culture issues
online/distance delivery

recruitment, progression, pathways
research

teaching/learning techniques
teaching/learning theories & models

teaching/learning tools
tutors & mentors

Figure 1: themes of the 328 papers

0% 10% 20% 30% 40% 50% 60% 70%

subject

program/department

institution

many institutions

not applicable
Figure 2: scopes of the 328 papers

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

159

experiences when implementing particular concepts in
their classrooms. The intent is not to value individual
research papers more highly than individual practice
papers, but to recognise and applaud any overall increase
in the amount of unequivocal research being reported in a
body of papers.

An experiment paper (The neglected battle fields of
syntax errors (Kummerfeld & Kay 2003)) reports on a
scientific-style experiment, at the very least entailing a
control group and an experimental group. It is logistically
and ethically challenging to carry out such experiments in
the classroom, with different groups being taught in
different ways, so experiment papers tend to be rare in
education.

A study paper reports on the implementation of a
study designed to address a particular research question.
The study will be carried out, data will be gathered and
analysed, and conclusions will be drawn (Mental models,
consistency and programming aptitude (Bornat et al
2008)).

An analysis paper is just as rigorous as an experiment
or study paper, but addresses its research question by
analysing existing data rather than first generating it.
Analysis papers might be based on collected student
results (The impact on student performance of a change
of language in successive introductory computer
programming subjects (Doube 2000)), on published
literature (A citation analysis of the ACE2005 - 2007
proceedings, with reference to the June 2007 CORE
conference and journal rankings (Lister & Box 2008)), or
anywhere else where interesting data might already exist
(Decoding doodles: novice programmers and their
annotations (Whalley et al 2007)).

Report papers, the staple of computing education
conferences, are the means by which academics exchange
their experiences with (generally) new tools and
techniques in the classroom. Valentine (2004) called
publications of this type Marco Polo papers: ‘I went there
and I did that’. Perhaps the term Genesis papers would be
more fitting: ‘and he saw what he had done, and it was
good’. Even where such a paper concludes by presenting
the results of a student survey showing approval of the
change, the survey result is incidental to the experience
report, and does not shift the paper into the study or
analysis categories.

Position/proposal papers outline work that is to yet be
done, new ideas that are yet to be put into practice, or
their authors’ thoughts on a particular question (The case
for more digital logic in computer architecture (Hoffman
2004)).

With the five categories described above, it seems
reasonable to classify experiment, study, and analysis
papers as unequivocally research. They propose a

research question, they gather the data to answer that
question, they analyse the data, and infer the result. While
some people would argue that reports, position papers,
and proposals are also research, this is generally a lot less
clear cut. There might indeed be some papers in those
groups with a legitimate claim to be called research, but
most of them are probably not.

Figure 3 shows the natures of the 328 papers from the
ten offerings of ACE. This time, though, there is a clear
trend over time. Simplifying the scale to research papers
(experiment, study, and analysis) and other (report and
position/proposal), figure 4 shows a steady growth in the
proportion of research papers over the lifetime of the
conference. This is a pleasing observation.

3.5 Titles
One cannot examine so many papers without noticing

aspects of their titles. Some titles appear to be
deliberately amusing or baffling; others are short and to
the point; others appear to be trying to tell the whole story
and save readers the effort of reading the paper.

Figure 5 shows the title lengths of the papers, from the
single two-word title (Why Ada? (Millar &
Mohammadian 1996)) to the single 25-word title (One
small step toward a culture of peer review and multi-
institutional sharing of educational resources: a multiple
choice exam for first semester programming students
(Lister 2005)). On examining figure 5, one wonders
whether the chairs of ACE 2009 might look kindly on
papers with 8-word titles, to help bring the overall
distribution closer to normal.

0% 10% 20% 30% 40% 50% 60% 70% 80%

position/proposal

report

analysis

study

experiment

Figure 3: natures of the 328 papers

19
96

19
97

19
98

20
00

20
03

20
04

20
05

20
06

20
07

20
08

other
research

0%
10%

20%

30%

40%

50%

60%

70%

80%

90%

Figure 4: proportions over time of research papers
(experiment, study, and analysis) and other papers

(report, position/proposal)

0

5

10

15

20

25

30

35

40

45

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Figure 5: lengths of titles of the 328 papers

CRPIT Volume 95 - Computing Education 2009

160

4 The authors
Over the ten years there have been 496 distinct authors of
ACE papers. Many of those authors have only ever (co-)
authored a single paper at the conference, while others
have come back many times.

Table 3 shows the number of authors who have
authored given numbers of papers, putting names to those
who have contributed most. These repeat contributors are
obviously the people one would expect to see at any
ACE. All have their stories, of which a few are mentioned
here.

Raymond Lister, the most prolific ACE author, is one
of the two chairs who revived the conference in 2003, ran
it in conjunction with ACSW, and brought in the two-
year terms for junior and then senior chair.

Simon is the only author who has had a paper at every
ACE since time began. Mats Daniels has had papers in 8,
Raymond Lister and Angela Carbone in 7, and Ilona Box,
Anders Berglund, and Judy Sheard in 6.

John Hamer is the highest-contributing author from
New Zealand.

Mats Daniels is the highest-contributing author from
outside Australasia, closely followed by Anders
Berglund. Both are from Sweden.

Michael de Raadt is the highest-contributing author all
of whose papers are in the research grouping of
experiment, study, and analysis. He is closely followed
by Anthony Robins.

Peter Bancroft is the highest-contributing author none
of whose papers are in the research grouping.

Nicole Herbert/Clark is the highest-contributing
author who is known to have changed her name during
the lifetime of ACE. Tracking authors through a change
of name requires inside knowledge, so there might be
others beyond the three recognised in this analysis.

The average number of authors to a paper is 2.4. For
most of the life of the conference it sat close to 2, but
then a surge in multi-author papers drove it up to nearly 4
in 2006, after which it fell to 3.4 in 2007 and 3 in 2008.

The highest number of authors for a single paper was
21 (Differing ways that computing academics understand

teaching (Lister et al 2007)), while the previous year saw
three 15-author papers from a single project (Simon,
Cutts et al 2006, Simon, Fincher et al 2006, Tolhurst et al
2006).

4.1 Where they’re from
Analysis of where the papers come from will use the
simplification that a paper comes from where its first
author comes from. Figure 6 shows the proportions of
papers from Australia, New Zealand, and other countries
over the ten years.

For the first three offerings about 70% of the papers
were from Australia, with reasonable proportions from
New Zealand and other countries (Germany, Japan,
Taiwan, Sweden, UK, and USA).

In the troubled years, 2000 and 2003, nearly all of the
papers were from Australia, with just three from New
Zealand, two each from UK and USA, and one each from
Denmark, Germany, and Sweden. It would seem
reasonable to conclude that the uncertainty surrounding
the conference might have made overseas academics
reluctant to submit papers to it, or perhaps even unaware
that it was still running.

Once the conference was back on track the proportion
of papers from New Zealand increased to a fairly steady
30%, and the proportion from other countries (Finland,
Ireland, Norway, South Africa, Sweden, UK, and USA)
has sat around 15%-20%. The ‘Australasian’ tag seems to
be warranted, and the conference draws a good number of
papers from a broad range of countries outside the region.

5 The future
Another look at table 1 shows that, while the numbers of
accepted papers have been up and down over the years,
the past two years have been among the lowest.
Submissions are down, and the conference chairs no
longer have the luxury of boosting numbers by accepting
a greater proportion of the submitted papers – to do so
would almost certainly result in a drop in the quality
ranking of the conference within Australia and perhaps
elsewhere.

There has been some speculation as to whether the
non-metropolitan locations of ACSW 2007 and ACSW
2008 led to this downturn, in which case ACE 2009, in
Wellington, New Zealand, should see numbers pick up
again. Unfortunately, the recently announced figures for
ACE 2009 show that there were exactly the same number
of submissions and the same number of acceptances as
for ACE 2008. One must wonder why the number of

Table 3: authors contributing given
numbers of papers

Number
of papers

Achieved by number
of authors

14 1 (Raymond Lister)
13 1 (Simon)
9 3 (Ilona Box, John Hamer, Margaret

Hamilton)
8 1 (Judy Sheard)
7 7 (Angela Carbone, Mats Daniels, Michael

de Raadt, Tony Greening, Patricia Haden,
Judy Kay, Jodi Tutty)

6 4 (Peter Bancroft, Anders Berglund,
Anthony Robins, Errol Thompson)

5 4 (Alan Fekete, Nicole Herbert/Clark,
Marian Petre, Denise Tolhurst)

4 11
3 30
2 72
1 362

1996 1997 1998 2000 2003 2004 2005 2006 2007 2008

other
New Zealand

Australia
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Figure 6: proportions of papers each year from

Australia, New Zealand, and other countries

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

161

submissions has been so low since 2007.
Many universities and polytechnics in both Australia

and New Zealand have recently made dramatic cuts to
their academic staff numbers. This affects research in two
ways: first, there are fewer people to conduct it; and
second, those who do remain in academic work are
expected to do more teaching, and thus have less time for
research. This will clearly have a lasting impact on the
overall output of research, and therefore on the number of
papers submitted and accepted to conferences.

Another possible factor is the push in many countries
for ‘quality assurance’, one consequence of which is that
people are expected to publish more in high-ranking
journals and high-ranking conferences. It seems all but
impossible to have ACE recognised as a high-ranking
conference, so institutions might increasingly be seen as
discouraging their staff from submitting papers to it.

Finally, it is possible that the higher costs of travel and
conference attendance are ruling it out as options for an
increasing number of academics.

It would be nice to believe that the current drop in
submissions and acceptances is short-lived, but we must
accept the possibility that it is the beginning of the end
for the conference.

6 Conclusion
The Australasian Computing Education Conference has
been run ten times over the 13 years of its existence,
surviving some difficult times in the process.

The 328 papers presented at the conference have been
based predominantly in the context of programming or in
no particular context, with a further 31 contexts each
accounting for no more than 5% of the papers. The bulk
of the papers deal with the themes of teaching/learning
techniques, teaching/learning tools, and curriculum; a
reasonable number deal with assessment techniques,
ability/aptitude, assessment tools, and online/distance
delivery; and the remainder are spread among ten further
themes. More than 60% of the papers are set in single
subjects, with about 10% in multiple subjects within the
same department or degree program and about 10% set
across two or more institutions. Nearly 70% of the papers
are experience reports or ‘Genesis papers’, but the
proportion of papers that are unequivocally research
shows a steady increase from just over 10% in 1996 to
nearly 50% in 2008.

The conference has seen papers by 496 distinct
authors, of whom 362, nearly three-quarters, have had
only one paper at ACE. At the other end of the scale, 21
authors have had five or more ACE papers, and the two
most prolific have had 14 and 13 papers.

The bulk of the papers have always been from
Australia, but recent years have seen respectable
proportions of papers from New Zealand (about 30%) and
nearly a dozen other countries (10%-15%).

Until recently the conference appeared to have good
prospects for a long future. However, it does seem to
have suffered a recent downturn in the numbers of papers
submitted and accepted, for reasons that are not entirely
clear, and it remains to be seen whether ACE can survive
this difficult time as it has survived others in the past.

7 References
A Berglund, M Daniels, & A Pears (2006). Qualitative

research projects in computing education research: an
overview. Eighth Australasian Computing Education
Conference, ACE 2006, Hobart, Australia.

R Bornat, S Dehnadi, & Simon (2008). Mental models,
consistency and programming aptitude. Tenth
Australasian Computing Education Conference, ACE
2008, Wollongong, Australia.

R Buckley & J Hext (1996). Jocula - an instructive
compiler. First Australasian Computer Science
Education Conference, ACSE 1996, Sydney, Australia.

D Carrington (1997). Teaching software testing. Second
Australasian Computer Science Education Conference,
ACSE 1997, Melbourne, Australia.

N Clark, P Davies, & R Skeers (2005). Self and peer
assessment in software engineering projects. Seventh
Australasian Computing Education Conference, ACE
2005, Newcastle, Australia.

D Clayton, M Cranston, & M Lynch (1996). Attracting
and retaining females in information technology
courses. First Australasian Computer Science
Education Conference, ACSE 1996, Sydney, Australia.

A Craig (1998). Peer mentoring female computing
students - does it make a difference? Third Australasian
Computer Science Education Conference, ACSE 1998,
Brisbane, Australia.

M Daniels, M Petre, & A Berglund (1998). Building a
rigorous research agenda into changes to teaching.
Third Australasian Computer Science Education
Conference, ACSE 1998, Brisbane, Australia.

M de Raadt, R Watson, & M Toleman (2003). Language
tug-of-war: industry demand and academic choice.
Fifth Australasian Computing Education Conference,
ACE 2003, Adelaide, Australia.

W Doube (2000). The impact on student performance of a
change of language in successive introductory
computer programming subjects. Fourth Australasian
Computing Education Conference, ACE 2000,
Melbourne, Australia.

D D’Souza, M Hamilton, J Harland, P Muir, C
Thevathayan, & C Walker (2008). Transforming
learning of programming: a mentoring project. Tenth
Australasian Computing Education Conference, ACE
2008, Wollongong, Australia.

H Gardner, C Johnson, G Leach, & P Vuylsteker (2005).
eScience curricula at two Australasian universities.
Seventh Australasian Computing Education
Conference, ACE 2005, Newcastle, Australia.

J Hamer, C Kell, & F Spence (2007). Peer assessment
using Aropä. Ninth Australasian Computing Education
Conference, ACE 2007, Ballarat, Australia.

ME Hoffman (2004). The case for more digital logic in
computer architecture. Sixth Australasian Computing
Education Conference, ACE 2004, Dunedin, New
Zealand.

J Hogan & R Thomas (2005). Developing the software
engineering team. Seventh Australasian Computing

CRPIT Volume 95 - Computing Education 2009

162

Education Conference, ACE 2005, Newcastle,
Australia.

SK Kummerfeld & J Kay (2003). The neglected battle
fields of syntax errors. Fifth Australasian Computing
Education Conference, ACE 2003, Adelaide, Australia.

R Lister (2005). One small step toward a culture of peer
review and multi-institutional sharing of educational
resources: a multiple choice exam for first semester
programming students. Seventh Australasian
Computing Education Conference, ACE 2005,
Newcastle, Australia.

R Lister, A Berglund, I Box, C Cope, A Pears, C Avram,
M Bower, A Carbone, B Davey, M de Raadt, B Doyle,
S Fitzgerald, C Kutay, L Mannila, M Peltomäki, J
Sheard, Simon, K Sutton, D Traynor, J Tutty, & A
Venables (2007). Differing ways that computing
academics understand teaching. Ninth Australasian
Computing Education Conference, ACE 2007, Ballarat,
Australia.

R Lister & I Box (2008). A citation analysis of the
ACE2005 - 2007 proceedings, with reference to the
June 2007 CORE conference and journal rankings.
Tenth Australasian Computing Education Conference,
ACE 2008, Wollongong, Australia.

JWL Millar & M Mohammadian (1996). Why Ada? First
Australasian Computer Science Education Conference,
ACSE 1996, Sydney, Australia.

J Sheard, A Carbone, S Markham, AJ Hurst, D Casey, &
C Avram (2008). Performance and progression of first
year ICT students. Tenth Australasian Computing
Education Conference, ACE 2008, Wollongong,
Australia.

Simon (2007). A classification of recent Australasian
computing education publications. Computer Science
Education 17, 3, 155-169.

Simon, Q Cutts, S Fincher, P Haden, A Robins, K Sutton,
B Baker, I Box, M de Raadt, J Hamer, M Hamilton, R
Lister, M Petre, D Tolhurst, & J Tutty (2006). The
ability to articulate strategy as a predictor of
programming skill. Eighth Australasian Computing
Education Conference, ACE 2006, Hobart, Australia.

Simon, S Fincher, A Robins, B Baker, I Box, Q Cutts, M
de Raadt, P Haden, J Hamer, M Hamilton, R Lister, M
Petre, K Sutton, D Tolhurst, & J Tutty (2006).
Predictors of success in a first programming course.
Eighth Australasian Computing Education Conference,
ACE 2006, Hobart, Australia.

Simon, J Sheard, A Carbone, M de Raadt, M Hamilton, &
R Lister (2008). Classifying computing educaton
papers: process and results. Fourth International
Computing Education Research Workshop (ICER
2008), Sydney, Australia.

P Summons & Simon (1998). Authentication strategies
for online assessment. Third Australasian Computer
Science Education Conference, ACSE 1998, Brisbane,
Australia.

D Tolhurst, B Baker, J Hamer, I Box, Q Cutts, M de
Raadt, S Fincher, P Haden, M Hamilton, R Lister, M
Petre, A Robins, Simon, K Sutton, & J Tutty (2006).
Do map-drawing styles of novice programmers predict
success in programming? A multi-national, multi-
institutional study. Eighth Australasian Computing
Education Conference, ACE 2006, Hobart, Australia.

D Valentine (2004). CS Educational Research: A Meta-
Analysis of SIGCSE Technical Symposium
Proceedings. Proc. 35th SIGCSE Technical
Symposium on Computer Science Education, ACM
SIGCSE Bulletin, 36, 1, 255-259.

J Whalley, C Prasad, & PKA Kumar (2007). Decoding
doodles: novice programmers and their annotations.
Ninth Australasian Computing Education Conference,
ACE 2007, Ballarat, Australia.

K Woodford & P Bancroft (2005). Multiple choice
questions not considered harmful. Seventh Australasian
Computing Education Conference, ACE 2005,
Newcastle, Australia.

J Zobel (2004). “Uni cheats racket”: a case study in
plagiarism investigation. Sixth Australasian Computing
Education Conference, ACE 2004, Dunedin, New
Zealand.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

163

CRPIT Volume 95 - Computing Education 2009

164

Surely We Must Learn to Read before We Learn to Write!

Simon
University of Newcastle, Australia
simon@newcastle.edu.au

Mike Lopez
Manukau Institute of Technology, New Zealand

mike.lopez@manukau.ac.nz

Ken Sutton
Southern Institute of Technology, New Zealand

ken.sutton@sit.ac.nz

Tony Clear
AUT University, New Zealand
tony.clear@aut.ac.nz

Abstract
While analysing students’ marks in some comparable
code-reading and code-writing questions on a beginners’
programming exam, we observed that the weaker students
appeared to be able to write code with markedly more
success than they could read it. Examination of a second
data set from a different institution failed to confirm the
observation, and appropriate statistical analysis failed to
find any evidence for the conclusion. We speculate on the
reasons for the lack of a firm finding, and consider what
we might need to do next in order to more thoroughly
explore the possibility of a relationship between the code-
reading and code-writing abilities of novice programming
students..
Keywords: reading programs, writing programs, novice
programmers.

1 BRACElet, reading, and writing
For many good writers
my heart has been bleeding
when beginners would try
to learn English by reading.

Forgive me, good readers
whom I may be slighting
in my selfish attempt
to learn English by writing.

(Piet Hein, Danish scientist, mathematician, and poet)
It is intuitively obvious that one cannot learn to write
until one has learnt to read. However, many things that
are intuitively obvious are in fact wrong. While we
generally accept that this obvious rule applies to reading
and writing natural languages such as English, we have
chosen to explore whether it applies equally to reading
and writing a programming language. We explore this
question because, while it seems obvious to us that one
cannot learn to write without first learning to read, many
of our students appear not to agree.

BRACElet (Whalley et al., 2006, Clear, Edwards et
al., 2008) is a multinational multi-institutional empirical
study of students in introductory programming courses,

Copyright © 2009, Australian Computer Society, Inc. This
paper appeared at the Eleventh Australasian Computing
Education Conference (ACE2009), Wellington, New Zealand,
January 2009. Conferences in Research and Practice in
Information Technology, Vol. 95. Margaret Hamilton and Tony
Clear, Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

whose overall purpose is to better understand how
novices learn to read and write computer programs. A
recent BRACElet initiative has been to ensure that
programming exams include comparable reading and
writing questions, with a view to analysing the nature of
students’ answers to these questions. In this paper,
though, we concentrate on a purely quantitative analysis
of the students’ marks on these questions.

Expressed formally, the question that we hope to
answer is this: does a novice programmer need to be able
to read program code in order to be able to write program
code?

2 The questions
The data analysed in this paper come from two different
examinations at two different institutions: a final exam at
a polytechnic in New Zealand and a final exam at a
university in Australia. Nevertheless, both instruments
included program reading questions and program writing
questions that their creators felt were of similar difficulty,
and both therefore provide useful data for this study.

If the courses were identical, we would have a single
set of data and little confidence in its generality. But at
the very least these two courses differ in the nature of the
institutions at which they are taught, in the programming
language used to teach them, and in the nature of their
exams. Therefore any interesting results arising from
them have a greater chance of being generalisable.

2.1 The university final exam
The university course, an introductory programming
course for students in an IT degree, uses Visual Basic as
its language of instruction. The selected questions from
this exam can be summarised as follows.

Q23 (reading, 5 marks): explain the purpose of a loop,
which counts the number of non-zero values in an array
of integers.

Q25f (reading, 3 marks): explain the purpose of a loop
that adds a predefined number of integer inputs and then
divides by that number.

Q22 (writing, 5 marks): display the squares of
successive integers, each on its own line, starting with the
square of 1, until it has displayed all of the positive
squares that are less than 1000.

Q24a (writing, 5 marks): append a family name,
comma, space, and other names, unless both family name
and other names are blank, in which case an error
message is displayed.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

165

2.2 The polytechnic exam
The polytechnic course, also an introductory
programming course for computing students, uses Java as
its language of instruction. The selected questions from
this exam can be summarised as follows.

Q4 (reading, 2 marks): generate the output produced
by a loop involving an array and string concatenation.

Q5 (reading, 2 marks): generate the output produced
by a loop involving an array and an if statement with &&.

Q6 (reading, 2 marks): generate the output produced
by a loop involving an array and an if statement, and infer
the purpose of the loop.

Q7 (reading, 3 marks): generate the output of part of a
sorting program, infer the purpose of the part, and
recognise the purpose of the whole.

Q8 (reading, 2 marks): generate the output produced
by a loop that finds the maximum element in an array,
and infer its purpose.

Q9 (reading, 2 marks): generate the output produced
by a loop that finds the index of the minimum element in
an array, and infer its purpose.

Q10 (reading, 2 marks): generate the output produced
by a loop involving an array and a while statement with
&&.

Q11 (reading, 2 marks): generate the output produced
by a method involving a parameter, an array, and loop
and break statements, and infer its purpose.

Q14 (reading, 1 mark): select from a list a code
segment equivalent to the one provided, which includes
an if statement and boolean variables.

Q16 (reading, 1 mark): deduce the value of a variable
after completion of a loop that involves arrays and an if –
then – else if – then – else statement.

Q12 (writing, 3 marks): write a nested loop involving
print and println to produce a square of asterisks.

Q13 (writing, 4 marks – a Parsons problem): unjumble
the provided lines of code to write a segment that finds
the average of the numbers in an array.

2.3 Comparability of the questions and marks
Whether the reading and writing questions are really
comparable is a vexed question. Of course there are
elements of comparability: for example, on the university
exam Q23 asks students to read and understand a simple
loop, and Q22 asks them to write a simple loop. But there
are also necessarily differences, as it would (probably!)
not be reasonable to ask students in one question to read
and understand a given piece of code, and in another to
write the same piece of code. So while Q23 uses a for
loop and includes an if statement, Q22 involves a while
loop and the production of successive lines of output.

The lecturers of the two courses involved have
determined that these questions are in some sense
comparable – or, for this study, that the selected set of
reading questions is reasonably comparable to the
selected set of writing questions – but we have no
objective scale of difficulty with which to measure each
question and verify that determination.

In addition, reading questions and writing questions
will often be marked differently. One of the early
questions explored by BRACElet was whether successful
reading of a code segment could entail tracing the code

line by line, or whether it necessarily entailed
understanding the purpose of the code (Lister et al 2006,
Whalley et al 2006). With this distinction in mind, both of
the university reading questions and about half of the
polytechnic reading questions have marks allocated for
explaining the purpose of the code, a criterion that really
tends to be all or nothing.

On the other hand, it might be relatively easy to get
part marks for a code-writing question. Traynor et al.
(2006) quote a student as saying “Well, most of the
questions are looking for the same thing, and you usually
get the marks for making the answer look correct. Like if
it’s a searching problem, you put down a loop, and you
have an array and an if statement. That usually gets you
the marks ... Not all of them, but definitely a pass.”

Denny et al. (2008) also comment on the nature of
code-writing rubrics and their potential deficiencies. The
analysis that follows must be considered in the light of
these issues.

2.4 Reading as a precursor to writing:
arguments for and against

We remarked in the introduction that while we believe a
programming novice must learn to read before learning to
write, many of our students do not agree.

Students in the university course addressed in this
paper were given a weekly sheet of exercises. As has
always been the case in this course, most of the exercises
involved writing code. However, to help prepare the
students for the reading questions on the exam, this year
almost every sheet started with a single question that
asked the students to explain the purpose of a code
segment that was provided, or to answer other questions
that would show their understanding of the code. Almost
without fail, students would skip this question and go
straight to the first code-writing question. When asked
why, some of them explained that it was a lot easier to
write code, with compilation error messages to help point
the way, than to read it.
While no BRACElet publication has yet addressed the
question as we are doing here, others have touched on it,
without providing definitive answers. For instance Denny
et al. (2008) found that a code writing task was easier
than a code tracing task, but that there was a correlation
between code tracing and code writing (Spearman’s r
squared .37). Similarly, Lopez et al. (2008) found that
the correlation between the ability to explain code and
writing was positive (Pearson correlation .5586 at the
0.01 significance level). The path diagram proposed in
Lopez et al. (2008) further suggested strong relationships
between code ‘reading’ and ‘writing’ (as defined in the
paper), but without necessarily implying a direction
between the relationships. So the causation remains to be
clarified.

3 The analysis
What we have done for this analysis is compare students’
marks on the reading questions with their marks on the
supposedly comparable writing questions. Because there
are different numbers of marks available for the two sets
of questions, we first gave each student a single

CRPIT Volume 95 - Computing Education 2009

166

percentage mark for the reading questions and a single
percentage mark for the writing questions. We then
compared these marks for each student.

3.1 First findings
We began by looking at the correlation between the
university students’ reading and writing marks. We found
a strong correlation (r(27)=0.6543; p<0.01; adjusted
R2=41%) between these which is consistent with the
studies mentioned above. Such a correlation, however,
tells us nothing about the direction of possible causal
relationships. To explore the causality, we carried out a
visual inspection of the relationship between the marks.
Our first finding, shown in figure 1, stunned us. The
figure shows a plot of the university students’ writing
marks against their reading marks. If students need to be
able to read before they can write, we would expect the
reading marks to be higher than the writing marks, and
the bulk of the points to lie below the diagonal. This is
indeed the case with the higher-scoring students, those to
the right side of the plot; and this indeed makes sense for
those students, many of whom scored full or nearly full
marks for the reading, while falling a little short of that
mark for the writing.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%

Reading

W
rit

in
g

Figure 1: writing mark vs reading mark in the

university course

The left side of the plot, though, tells a different story.
The weaker students are all close to the diagonal or above
it, some of them well above it, suggesting that they can
write code at least as well as, and in many cases far better
than, they can read it.

As a first attempt to confirm this trend, we took the
difference between each student’s reading and writing
marks and plotted it against the student’s overall course
result (figure 2). There is a clear trend to this plot: the
worst students (those on the left side of the plot) clearly
perform better on the writing tasks than on the reading
tasks. Dividing the class somewhat arbitrarily into
terciles (or thirds), the bottom tercile (the worst third of
the students) average 30% better on writing than on
reading; the middle tercile average just 12% better on
writing than on reading; and the top tercile average 7%
worse on writing than on reading.

-60.0%

-40.0%

-20.0%

0.0%

20.0%

40.0%

60.0%

80.0%

0 20 40 60 80 100

Overall mark in exam

W
rit

in
g

m
ar

k
m

in
us

 re
ad

in
g

m
ar

k

Figure 2: writing-reading difference against overall

exam result, with trend line (university)

The data set is quite small, limited to those few
students in the course who gave their consent to have
their results analysed for this project; but an informal
glance at the other hundred or so students in the course
suggests that this pattern is reasonably representative of
the whole class.

This was a somewhat startling discovery, running
completely counter to our intuitive belief that students
who perform poorly overall, and indeed students who
perform poorly on code-reading tasks, will also perform
poorly on code-writing tasks. We appear to have
discovered that students can write before they learn to
read.

3.2 A second data set
If the effect we observe here is real, we would expect it to
be evident across disparate data sets. Having access to a
second data set, that for the polytechnic course, we
proceeded to examine that data in the same way.

In this dataset we also found a strong correlation
(r(22)=0.9056; p<.01; adjusted R2 = 81%) between reading
and writing marks, This correlation was surprisingly high,
but it should be noted that the writing mark included a
Parsons-type question (Parsons & Haden, 2006) which
the literature suggests may be an intermediate level
between reading and writing.

The initial plot of reading scores against writing scores
(figure 3) is rather better clustered about the diagonal
than the plot of figure 1, with no suggestion that the
weaker students do better at writing than at reading.

The subsequent plot of the reading-writing difference
(figure 4) actually shows a slight trend in the opposite
direction to that shown in figure 2, suggesting that

0%

20%

40%

60%

80%

100%

120%

0% 20% 40% 60% 80% 100% 120%

Reading

W
ri

tin
g

Figure 3: writing mark vs reading mark in the

polytechnic course

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

167

students do in fact need to learn to read before they can
learn to write.

3.3 Statistical analysis and z-scores
The apparent finding from the university results is
counterintuitive, but appears quite strong. However,
similar examination of the polytechnic results fails to
confirm the finding. As both of these findings arise from
inspection, it is clear that some rather more rigorous
analysis is required.

Our next step was to standardise the values that we are
comparing.

On the university test, the reading questions are
marked out of 8 and the writing questions out of 10. The
difference between a student’s writing and reading marks
is therefore a higher proportion of the reading mark than
of the writing mark. We try to compensate for this by
considering the student’s marks in each section as
percentages of the possible mark, but this introduces a
new problem: the item discrimination of questions may
vary, resulting in a wider spread of marks for some
questions than others. What we need is a way of using the
same measuring scale for both sets of marks.

The solution to these problems is to standardise the
data, which can be done in various ways, and which we
have done in this instance by calculating z-scores for the
marks. The z-score of a data point indicates how far it is
from the mean of the data set, measured in units of
standard deviations. A z-score of 1 indicates a point that
is one standard deviation from the mean, and –1.5
indicates a point that is one and a half standard deviations
away in the opposite direction. The z-score for a point
mark is therefore simply (mark – mean)/StDev.

Figure 5 shows the same data as figure 2, but with the
percentage differences replaced with the corresponding z-
scores. The scatter of the points is now a fine example of
random noise, and the trend line (which is included in the
figure) is almost exactly horizontal and virtually
indistinguishable from the z-score axis. Standardising the
data has removed any suggestion of a meaningful
relationship between writing-reading difference and exam
result.

Figure 6 shows the same data as figure 4, but again
with the percentage marks replaced by z-scores. Again
the marks display a random scatter, and again the
trendline is virtually indistinguishable from the horizontal
axis.

Our first look at figure 1 suggested that poor students

do better at code writing than at code reading, while
better students do better at code reading than at code
writing. We appeared to have discovered some evidence
that students do in fact learn to write before they learn to
read. Our first look at a second data set failed to support
the conclusion, and a proper statistical consideration of
the results removed the suggestion entirely.

4 Discussion and threats to validity
Although in the end we have found nothing, we need to
consider why this is so, and what we might need to do in
the future if we are to discover any causal relationship
between code-reading and code-writing skills.

Why is a causal relationship of interest? Because it can
have a major impact on the way programming is taught to
novices.

While we cannot find published references on the
topic, we believe that the ‘typical’ programming course
entails teaching people to write programs, in the
assumption that learning to read programs will
necessarily keep pace. But now and then an instructor
receives a shock with the realisation that many students
cannot even read programs, let alone write them (Lister et
al., 2004). A likely consequence of this realisation is a
shift in teaching approach to one that emphasises reading
and understanding of code before going on to writing it.
On the other hand, if we had indeed found that people can
write programs well without being able to read them,
there would be no need to devote any effort to teaching

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

0 20 40 60 80 100

Overall mark in exam

W
rit

in
g

m
ar

k
m

in
us

 re
ad

in
g

m
ar

k

Figure 4: writing-reading difference against overall

exam result, with trend line (polytechnic) -1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

0 20 40 60 80 100

Overall mark in exam

W
rit

in
g

z-
sc

or
e

m
in

us
 re

ad
in

g
z-

sc
or

e

Figure 5: writing-reading z-score difference against

overall exam result, with trend line (university)

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100

Overall mark in exam

W
ri

tin
g

z-
sc

or
e

m
in

us
 re

ad
in

g
z-

sc
or

e

Figure 6: writing-reading z-score difference against

overall exam result, with trend line (polytechnic)

CRPIT Volume 95 - Computing Education 2009

168

the latter skill – and we would be arguing that it was
inappropriate to examine program-reading skills in a
course designed to teach program writing.

4.1 Comparability of reading and writing
questions

Are the reading and writing questions in these exams
really comparable? BRACElet has devoted some time to
exploring the SOLO taxonomy (Lister et al., 2006, Clear,
Whalley et al., 2008, Sheard et al., 2008) as one
consideration in assessing the difficulty level of code-
reading questions (Whalley et al., 2006), but we are not
aware of any work that has been done to assign
difficulties at the micro level. Is an assignment statement
easier or harder to read and understand than a print
statement? Is a nested loop easier or harder than an if-
then-else? Is the difficulty of a piece of code simply the
linear sum of the difficulties of its constituent parts? Does
the difficulty depend on how familiar the student is with
the construct? Without answers to these questions, the
comparability of two code-reading questions is ultimately
subjective and intuitive.

Further, while BRACElet has begun to explore the
extension of SOLO to code-writing questions, or possibly
the design of a different taxonomy for code-writing
questions (Clear, Philpott et al., 2008), that exploration is
far from complete, we have no reliable measure of the
difficulty of code-writing questions even at the macro
level, and so we are clearly not in a position to make any
confident assertions about the comparability of particular
code-reading and code-writing questions.

This problematic situation for assessing and
understanding code writing in turn reflects earlier
comments made concerning code reading.

“We have a limited theory base relating to the
comprehension of code … Our state of the art
seems akin to studying reading without the key
notions of comprehension level or reading age”.
(Clear, 2005)

Likewise, there appear to be no equivalent complexity
metrics for code writing. A formal code complexity
measure such as cyclomatic complexity (McCabe, 1976)
may make a possible contribution, but such metrics tend
to be designed to assess an already written large body of
code, rather than the normally small fragments of an
introductory programming course.

4.2 Comparability of the marking of reading
and writing questions

If we do manage to overcome the difficulty of assessing
the comparability of reading and writing questions, we
will then face the related but distinct question of the
comparability of their marking. It appears to us that the
student quoted at the end of section 2.3 has a valid point:
it might well be easier to get ‘enough’ marks on a writing
question than on a reading question.

Following earlier work by the Leeds group (Lister et
al., 2004) and BRACElet (Lister et al., 2006), we were
conscious in our exam questions of the distinction
between explaining a code segment line by line and
explaining its overall purpose. Both are evidence of an
ability to read the code, but the wording of many of our

reading questions, and consequently our marking
schemes for them, clearly emphasise the importance of
the latter view, the big-picture understanding of the code.

It is not clear to us that this distinction between line-
by-line understanding and big-picture understanding has a
parallel in code-writing questions. If it had, it would
presumably be along the lines that the more abstract an
answer, so long as it was correct, the more marks it would
earn. A correct answer in precise and accurate code
would earn fewer marks than a higher-level pseudocode
answer; and, taken to its logical extreme, the highest
mark would go to the answer that merely rephrased the
question, this being the answer that best expresses the
overall purpose of the code in what SOLO calls a
‘relational’ manner.

Therefore the ideal that we have been setting for code-
reading questions, that of big-picture understanding of the
overall purpose of the code, is clearly one that we would
be reluctant to apply to code-writing questions. This
being the case, we are at present unclear as to how we
might actually go about determining any comparable
measures of student’s code-reading skills and of their
code-writing skills.

5 Future work
Where to from here?

We might be able to engage in a more detailed
marking analysis of these data sets, one that would
distinguish between the students’ ability to trace code and
their ability to perceive its overall purpose. This would be
possible for some of the questions in the second data set,
which asked for both tracing and overall-purpose
answers, but not for those in the first data set, which
asked only for the latter.

Particularly if that more detailed analysis is not
possible or not fruitful, we could consider setting further
exam questions that distinguish more clearly between the
different reading-related skills, for example by asking
students both to explain a piece of code line by line and to
explain its overall purpose.

If we are to have a reliable measure of students’
abilities at reading and writing code, we would need to
consider a minute analysis of the difficulty levels of code-
reading and code-writing questions at the micro level.

We would also need to continue our attempts to find a
difficulty measure for code-writing questions comparable
to the SOLO taxonomy for code-reading questions.

All of this should be done with an open mind and an
acknowledgement that perhaps our counterintuitive non-
finding is right. Many years ago, Sylvia Ashton-Warner
(1963) proposed that teaching children to write English
might be a better way of teaching them to read English
than the traditional approach. Her method, which proved
very successful with New Zealand Maori children, has
not taken the world by storm, but that doesn’t mean it is
entirely without merit. Perhaps Piet Hein was not joking
when he wrote the grook with which this paper began.
Until we have clear evidence one way or the other, we
should keep an open mind about whether our students
need to be able to read code in order to be able to write it.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

169

6 Acknowledgements
We are grateful to Raymond Lister for his founding and
driving role in the BRACElet project, and for the specific
ideas that he contributed to the discussion of this work; to
Barbara Boucher Owens for reminding us of Sylvia
Ashton-Warner’s ideas about teaching children to read by
teaching them to write; and to Mats Daniels for alerting
us to the grooks of Piet Hein.

7 References
Ashton-Warner, S. (1963). Teacher. Simon & Schuster, New

York.
Clear, T. (2005, Jun). Comprehending Large Code Bases - The

Skills Required for Working in a “Brown Fields”
Environment. SIGCSE Bulletin 37:12-14.

Clear, T., Edwards, J., Lister, R., Simon, B., Thompson, E., &
Whalley, J. (2008). The teaching of novice computer
programmers: bringing the scholarly-research approach to
Australia. Tenth Australasian Computing Education
Conference (ACE2008), Wollongong, Australia, 63-68.

Clear, T., Whalley, J., Lister, R., Carbone, A., Hu, M., Sheard,
J., et al. (2008). Reliably Classifying Novice Programmer
Exam Results using the SOLO Taxonomy. In S. Mann & M.
Lopez (Eds.), 21st Annual NACCQ Conference (Vol. 1, pp.
23-30). Auckland, New Zealand: NACCQ.

Clear, T., Philpott, A., Robbins, P., & Simon (2008). Report on
the Eighth BRACElet Workshop (BRACElet Technical
Report No. 01/08). Auckland: Auckland University of
Technology.

Denny, P., Luxton-Reilly, A., & Simon, B. (2008). Evaluating a
New Exam Question: Parson's Problems. In R. Lister, M.
Caspersen & M. Clancy (Eds.), The Fourth International
Computing Education Research Workshop (ICER '08).
Sydney, Australia: ACM.

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J.,
Lindholm, M., McCartney, R., Moström, J.E., Sanders, K.,

Seppälä, O., Simon, B., & Thomas, L. (2004). A Multi-
National Study of Reading and Tracing Skills in Novice
Programmers. SIGCSE Bulletin 36(4):119-150.

Lister, R., Simon, B., Thompson, E., Whalley, J., & Prasad, C.
(2006). Not seeing the Forest for the Trees: Novice
Programmers and the SOLO Taxonomy. In M. Goldweber &
R. Davoli (Eds.), The Tenth Innovation and Technology in
Computer Science Education Conference (ITiCSE) (pp. 118-
122). University of Bologna, Bologna: ACM.

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008).
Relationships Between Reading, Tracing and Writing Skills
in Introductory Programming. In R. Lister, M. Caspersen &
M. Clancy (Eds.), The Fourth International Computing
Education Research Workshop (ICER '08). Sydney,
Australia: ACM.

McCabe, T.J. (1976). A Complexity Measure. IEEE
Transactions on Software Engineering SE-2(4):308-320.

Parsons, D. & Haden, P. (2006). Parson's programming puzzles:
a fun and effective learning tool for first programming
courses. Eighth Australasian Computing Education
Conference (ACE2006), Hobart, Australia, 157-163.

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson, E., &
Whalley, J. (2008). Going SOLO to Assess Novice
Programmers. In Proceedings of the 13th Annual Conference
on Innovation and Technology in Computer Science
Education (ITiCSE '08) (pp. 209-213). New York: ACM
Press.

Traynor, D., Bergin, S., & Gibson, J.P. (2006). Automated
Assessment in CS1. Eighth Australasian Computing
Education Conference (ACE2006), Hobart, Australia, 223-
228.

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins, P.,
Kumar, P., et al. (2006). An Australasian Study of Reading
and Comprehension Skills in Novice Programmers, using the
Bloom and SOLO Taxonomies. Eighth Australasian
Computing Education Conference (ACE2006), Hobart,
Australia, 243-252.

CRPIT Volume 95 - Computing Education 2009

170

A People-First Approach to Programming

Donna Teague
Queensland University of Technology

Brisbane, Australia

d.teague@qut.edu.au

Abstract

Students continue to find learning to program difficult.

Failure rates from introductory programming units are

high, as are attrition rates from IT courses.

Case studies were conducted in 2007 involving

Queensland University of Technology (QUT)

introductory programming students who took part in

weekly interviews and focus groups, and responded to

questionnaires. Students divulged details relating to their

attitude and approach to study, together with the level of

confidence they had in their ability to learn to program.

Four of the case studies are included in this paper

which portrays students with varying levels of confidence

motivation, determination, attitude and study ethic, and

how they each struggle to learn to program. The purpose

of the studies was to determine to what extent each of

these factors has an influence on student learning

outcomes.

The studies focus on the people rather than the more

traditionally studied cognitive difficulties of learning to

program. The data collected from the case studies give

some insight into the social barriers on many levels that

students face and how they are dealt with and in some

cases overcome.

The paper concludes with a discussion on student

programmer personas as a design taxonomy and

pedagogical tool.

Keywords: learning to program; student perceptions;

motivation; determination; confidence; personas

1 Introduction

Queensland University of Technology is not alone in

suffering a dramatic nose dive in enrolments in its

Information Technology (IT) degree course over recent

years. Attrition from similar courses worldwide is high

(Seymour E et al. 1997; Kinnunen et al. 2006; Biggers et

al. 2008), particularly for women and other minority

groups for whom there is often poor representation to

begin with (Cohoon 2002; Fisher et al. 2002; Lewis et al.

2006; Murphy et al. 2006; Reges 2006; Varma 2006;

Vilner et al. 2006).

Commonly offered as a first year core subject,

introductory programming subjects have an alarming

failure rate (Sheard et al. 1998; Robins et al. 2003). Since

Copyright (c)2009, Australian Computer Society, Inc. This

paper appeared at the Eleventh Australasian Computing

Education Conference (ACE2009), Wellington, New Zealand,

January 2009. Conferences in Research and Practice in

Information Technology, Vol. 95. Margaret Hamilton and Tony

Clear, Eds. Reproduction for academic, not-for profit purposes

permitted provided this text is included.

2003 an average of 31% of students were failing QUT’s

introductory programming subject (Teague et al. 2008).

Much work has been done in an attempt to address this

learning to program dilemma. Cognitive theories include

the difficulty of understanding the purpose of programs

and their relationship with the computer; difficulty

grasping the syntax and semantics of a particular

programming language (Robins A et al. 2003);

misconceptions of programming constructs (Soloway E et

al. 1989); inability to problem-solve (McCracken M et al.

2001); and inability to read and understand program code

(Lister R et al. 2004; Mannila L 2006).

But what of the students themselves? Who are they?

Where do they come from? What is their attitude to

study? What are their perceptions of learning to program?

This paper reports on four case studies involving

introductory programming students and gives some

insight into the diverse range of student attitude,

motivation and self-confidence, all of which seem to be

crucial elements for success. Three of the students were

interviewed each week during the course of their study

and the case studies document their attitudes and

approaches to study and a perception of their weekly

progress. The fourth case study results from a single

interview with a student with a history of learning

difficulties and failure. Some of these students provided

further details towards their profile during a focus group

session and/or by way of on-line questionnaire.

The objective of these and other case studies

undertaken with introductory programming students was

to get a better understanding of the social and cultural

barriers that students face learning to program. After

identifying and attempting to quantify a number of

student characteristics including confidence level,

motivation and perceptions regarding the learning

material, the task was to determine to what extent these

characteristics have an influence on student learning

outcomes. In this paper, ‘motivation’ refers to the source

of incentive to succeed and ‘determination’ refers to

amount of commitment to that goal.

The results of this study may help educators identify

and nurture the positive influences and breakdown the

barriers of learning to program.

2 Related work
It has been said that confidence can play a significant

role in the successful outcome of students learning to

program (Gonzalez 2006). However, others report that

lower confidence levels are not correlated to lower

overall achievement (Murphy et al. 2006).

One of the major reasons for students to drop out of IT

courses was found to be motivation (Kinnunen et al.

2006). Much effort has gone into developing courses and

tools which aim to motivate and captivate introductory

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

171

programming students and make learning fun (Lister

2004; Parsons et al. 2006; Pollard et al. 2006; Davis et al.

2007; Feinberg 2007)

Pair programming in the learning environment is one

approach which addresses many of the issues that

students struggle with while learning to program

including not only those of a cognitive nature, but social

and cultural barriers as well. Students find programming

in pairs creates a social rather than competitive

environment which promotes interaction and lends twice

the cognitive resources and an extra set of eyes to a

programming exercise (Simon et al. 2007). Studies on

collaborative learning and pair programming identify

some of the issues that students face, and this paper

documents how those issues may manifest while learning

to program.

3 Case Studies

In order to understand what barriers may exist for

students learning to program and why they often fail,

amongst other things we need to investigate how students

approach learning to program and what their attitudes to

study are. Case studies are described as the preferred

strategy for considering these types of questions (Yin

2003).

Volunteers were sought from those students enrolled

in either of the first year programming units at QUT in

semester 2 of 2007 who were willing to discuss their

ongoing experiences of learning to program. Weekly

interviews ensued for the duration of the 13 week

semester with eight such students. Although pursuing a

consistent line of enquiry each week, interviewees were

given ample time to discuss whatever seemed important

to them, as well as having the opportunity to take

advantage of the interviewer being a member of the

teaching staff from whom technical assistance could be

sought. After an initial ‘getting to know you’ and trust-

building period, interviews soon became relaxed non-

threatening sessions where students seemed comfortable

discussing their experiences in an open and honest

manner, without fear of judgement or retribution.

The data collected from these guided conversations,

complemented with survey responses and focus group

input, form the basis of what Bassey (1999) refers to as

‘theory seeking’ case studies. Four of those case studies

are summarised in this paper.

The two units involved:

ITB001 Problem-Solving and Programming is QUT’s

first programming unit, a core unit where students are

introduced to solving computational problems and

implementing solutions (at the time of this experiment in

Scheme). This unit has no prerequisites, but typically the

student cohort tends to have a wide variation of computer

and programming skills ranging from very limited

experience with a computer, to a small amount of

programming industry experience. Most ITB001 students

are doing their first semester of the Information

Technology degree, although there is often a proportion

of second-year double-degree students.

The assessment for this unit consisted of three

individual assignments of increasing difficulty (total of

50%) and an end of semester written exam (50%).

ITB003 Object Oriented Programming is the second

programming unit for QUT, with ITB001 as its

prerequisite. This unit builds on the skills developed in

ITB001, focusing on understanding and implementing an

object-oriented design specification in C#. ITB003 is a

second semester, first year unit with a high proportion of

students who have chosen a software engineering major.

The assessment for this unit consisted of weekly on-

line quizzes (10%), a semester-long individual

programming project submitted in two phases (30%);

short answer exam-like review questions (10%), and an

end of semester written exam (50%).

Each unit represented 25% of a full-time study

workload, and both conducted a one to two hour lecture

and a two hour workshop each week. Workshops

involved students completing programming exercises to

reinforce in a practical way the material previously

introduced in a lecture. Attendance at workshops was

strongly encouraged but was neither obligatory nor

counted towards final grades. Apart from lectures and

workshops, all students were expected to dedicate an

extra 8 or 9 hours per week to self-directed study for a

total of 12 hours study per unit per week. The students

involved in the case studies were asked how much time

they actually spent on the unit.

Students were asked similar questions each week

including how difficult or otherwise they were finding the

unit, and their current enjoyment and confidence levels.

Students graded each of these perceptions on a Likert

scale of 1 (low) to 5 (high).

The final grade awarded to each student is included in

this paper, on a scale of 1 (low) to 7 (high) with 4 being a

passing grade.

3.1 Nelly [studying ITB001]

3.1.1 Profile:

Nelly is a domestic female student enrolled full-time in

the Bachelor of IT course, majoring in Software

Architecture. She is 27, lives in shared accommodation

with others of similar age and averages about 21 hours a

week paid work. Nelly was interviewed during her first

semester of university while studying her very first

programming unit, and had no previous programming

experience except “dabbling in HTML”.

Nelly has a history of personal challenges, but in

recent years had the determination to fight and overcome

a family predisposition for a debilitating health condition.

3.1.2 Pre-ITB001
Perception of: Scale of 1 – 5

(1 = low; 5 = high)
Confidence 4

Enjoyment 4

Difficulty 3

Table 1 – Nelly: Pre-Unit Perceptions

Nelly was looking forward to learning to program, but

felt at a disadvantage because she didn’t fit the

stereotype: no programming experience, and weak math

skills.

She sees programming as something for ‘nerds’, but

also adds that ‘nerds are cool’ and for that reason, doesn’t

CRPIT Volume 95 - Computing Education 2009

172

mind being classified as one if she does well in this unit.

Nelly strongly agreed that it makes sense that there are

more men than women in programming.

3.1.3 During ITB001
Average hours spent on ITB001 per week 12

Average hours spent on un/paid work per week 21

Table 2 - Nelly: Study versus Work

Nelly advised that she suffered from anxiety and lack

of sleep, and identified this as a distraction to her studies.

In weeks where she didn’t dedicate the required 12 hours

of study to the unit, it was as a result of lack of time to do

so.

Nelly’s confidence during the course of the semester

was volatile. She generally welcomed a challenge, and

when presented with a difficult topic her approach was to

simply try harder, put in more time and keep practicing

until it ‘sunk in’.

...Need more practice mastering this topic. Need more

exercises. But it all makes sense. … It gets so

confusing. …Recursion is doing my head in and you

get frustrated with it. I think I have it - then do the

next exercise and I haven't!

Nelly persisted with hands-on practice even though

some topics were ‘frustratingly challenging’. She often

reported serious self-doubt in these situations, but was

convinced that persistence would eventually pay off.

[I was] stuck on problems for so long. I'm stupid - I'm

not getting it. Takes me so long to figure things out. I

eventually get it though. I'm a kinesthetic learner.

The [iteration] exercise really got me. I was so

pleased when I figured it out.

Nelly rarely sought help from the teaching staff when

she was stuck, because she felt like they were “too

important to bother”, and felt it would be an

‘intimidating’ experience. She also confessed to keeping

up the pretence of being confident and capable, and

feared that asking for help would destroy that image and

make her appear weak and incapable.

She also expressed disappointment in her friends and

peers that they didn’t seem to be putting in enough effort

– that they would attend the lectures and workshops, but

do little further work themselves. Although preferring to

work through problems by herself first, Nelly valued the

role of collaboration in learning and ended up mentoring

a couple of friends who were struggling with the unit,

assuming a leadership role normally undertaken by paid

peer mentors.

She always seemed to be up to date with the work and

had completed most of the workshop exercises before the

workshop, but attended them anyway out of fear of

“missing something”. This fear probably resulted from a

need to prove her ability (to either herself or someone

else) while harbouring some doubt that she could

succeed.

Even when Nelly had successfully solved a

programming problem, she was not confident in the

quality of her solution. She admitted to being a bit of a

perfectionist and showed a keen interest in seeing

alternative approaches to the same problem.

It’s a case of my usual problem solving strategy of

ramming myself into the brick wall of a problem until

enough pieces fall off to let it get through. … But it

does the job, so I'm sort of happy. … It passes all the

tests.

3.1.4 Post ITB001
Perception of: Scale of 1 – 5

(1 = low; 5 = high)
Confidence 4 (stable)

Enjoyment 5 (up from 4)

Difficulty 4 (up from 3)

Table 3 - Nelly: Post-Unit Perceptions

Nelly enjoyed the unit more than she had predicted she

would, even though she found it more difficult than

expected. She summarised her motivation and attitude

towards studying programming as wanting to do her

“absolute best”, and put in a big effort to do so.

After completing the exam, but prior to release of

grades, Nelly reflected that overall she had been fairly

confident of being about to successfully learn how to

program during the semester, and predicted a final grade

of 7. She said she loved programming and could not wait

to do the next programming unit.

 Final grade

Expectation:

- pre-ITB001 7

- pre-exam 7

Actual 7

Table 4 - Nelly: Grade Expectation versus Actual

3.2 Jane [studying ITB001]

3.2.1 Profile

Jane is a domestic female student enrolled full-time in the

Bachelor of IT course, with (as yet) unchosen major. She

is 20+ and works part-time, averaging about 5.5 hours a

week. Jane failed her first attempt at this unit in the

previous semester, which constituted her first taste of

programming. She cited “lack of time” as the main factor

for failing, and has since reduced her working hours as a

result.

3.2.2 Pre-ITB001
Perception of: Scale of 1 – 5

(1 = low; 5 = high)

Confidence 2.5

Enjoyment 4

Difficulty 4

Table 5 - Jane: Pre-Unit Perceptions

Jane predicted that this would be the hardest unit for her

this semester, but was confident she now had the time

necessary to give it a good shot.

Jane has a very nervous disposition, and was

constantly fidgeting. She lacked confidence in terms of

both her university studies and personal life. A health

condition was a constant distraction, which was

exacerbated by elevated anxiety levels. Jane advised that

she was constantly stressed, sometimes to the extent of

having difficulty carrying out everyday tasks.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

173

Jane confessed that her severe lack of confidence had

in the past caused her to withhold assignments from

submission because she believed them to be too inferior.

She was also reluctant to consult with teaching staff about

her assignments for the same reason.

Given her previous experience with learning to

program, and her anxiety disorder, Jane had little

confidence from the beginning that she could successfully

learn to program.

3.2.3 During ITB001
Average hours spent on ITB001 per week 11

Average hours spent on un/paid work per week 5.5

Table 6 - Jane: Study versus Work

In the early weeks of the semester, although showing

signs of a hectic social life and still coming to grips with

her study timetable, Jane was finding the easier concepts

a bit of a confidence boost:

I didn't really learn much last semester. I really like it

now that I'm actually doing it. It’s not difficult at all -

and that's a huge relief. I was so worried!

Jane explained how anxiety affects her learning during

workshops:

It would probably help if I had a look at [the exercise]

in my own time. Because of my anxiety I can't actually

understand - think straight at the time. It’s really

distressing for me. All I do is smile and nod at the

time. I can't actually take it in.

There was little clue of Jane’s panic and lack of

progress during workshops as outwardly she presented as

a vivacious student who rarely asked questions, and when

approached, consistently confirmed that she was up to

speed and happy with her progress.

Jane had a habit of accepting misinterpreted

explanations of concepts without question, and without

testing it or proving it to herself. This became evident

when she spoke about her understanding of how a non-

recursive function call works:

Like the computer goes through [the function] and

unless you write code to stop it, it will just do it again.

I didn't realise …that's how Scheme works. [Give me

an example, tell me what you mean.] Like once it’s

gone to the bottom of your code it goes back up and

starts again at the top. [But only if there is a recursive

call]. Oh. Really? [So if your procedure says add 2

plus 3, it will add 2 plus 3 then stop] Really? Well

that explains THAT then! What makes it go around

and do it again then? [Recalling the procedure <demo

ensued>..]

As the semester progressed, Jane convinced herself

that her struggle was not with implementing code, but

with the preparatory problem solving:

I understand writing procedures more than having to

work out the problem. So if the problem was solved

logistically, I could probably write the program.

She continued to have little faith in her ability.

I'd probably make mistakes even though I thought I

got it right.

She reportedly spent a “ridiculous amount of time” on

simple assignment tasks, sometimes being in the

computer lab over night. She approached assignments

with extreme caution, once she had actually worked up

the courage to start. She was actually “scared” of doing

them.

After consultation with counselling services, and on

advice from the teaching staff, Jane delayed work on

assignment tasks until she had thoroughly revised the

workshop material which was designed to develop the

skills required for the assignment
2
. She was then advised

to spend a small amount of time on the assignment task,

then seek help if she couldn’t progress further.

Jane was delighted that this approach seemed to work

for her by building her confidence:

I didn't even look at the assignment for 3 hours, I just

went through all the other little exercises. Then once I

got to the actual assignment, it only took me half an

hour. So I thought - maybe I CAN do it. :-)

Jane continued to struggle through the semester,

eventually dropping another unit to ease the workload.

She attended two workshops for ITB001 each week, with

the intention to use the first as a preview, then taking time

to work through the material herself before the second

workshop where she would be more confident with the

material and less influenced by stress.

3.2.4 Post ITB001
Perception of: Scale of 1 – 5

(1 = low; 5 = high)

Confidence 3.5 (up from 2.5)

Enjoyment 5 (up from 4)

Difficulty 3.5 (down from 4)

Table 7 - Jane: Post-Unit Perceptions

Jane said that she had ‘enjoyed this unit immensely’

which seemed incongruous with the degree to which she

had suffered with anxiety and lack of confidence and

struggled with the learning as a result. Nevertheless,

Jane’s expectation of grade increased from 4 to 5 just

prior to sitting the final exam.

 Final grade

Expectation:

- pre-ITB001 4

- pre-exam 5

Actual 4

Table 8 - Jane: Grade Expectation versus Actual

3.3 Dave [studying ITB003]

3.3.1 Profile

Dave is a full-time domestic student and fits the

stereotype of a programming student: recent school

leaver, highly confident, limited social skills and a keen

interest in technology. Unlike the previous two students,

Dave was profiled during his second semester of

university, while completing his second programming

unit. Other previous experience included programming at

school, being part of an internet website development

2
 This approach is continually recommended to students, but

rarely adopted.

CRPIT Volume 95 - Computing Education 2009

174

group; building circuitry, as well as a list of half a dozen

programming languages that he was familiar with.

Dave lives at home with his family and is not

employed in paid or unpaid work.

3.3.2 Pre-ITB003
Perception of: Scale of 1 – 5

(1 = low; 5 = high)

Confidence 4

Enjoyment 5

Difficulty 2.5

Table 9 - Dave: Pre-Unit Perceptions

Dave expected to enjoy this programming unit, but went

to great lengths to convince me that he probably knew it

all already. For that reason, he expected it to be fairly

easy and was confident of a high overall grade.

Dave advised that he had an extraordinary memory

and a mind for computing that meant he didn’t need to

write much down, nor work through any problem-solving

or design process in order to implement an exemplary

solution.

I can do a lot of the testing in my mind because I have

a mind that can just keep track of variables - millions

of variables and just watch code execute in my mind.

Can read and understand code in any language - even

if I've never used that language before.

3.3.3 During ITB003
Average hours spent on ITB003 per week 5

Average hours spent on un/paid work per week -

Table 10 - Dave: Study versus Work

Dave attended lectures and workshops with a friend he

had gone to school with, but gave the impression that he

need not have bothered, given his already significant

programming ability. Dave measured his own confidence

at the highest level (5) for most of the semester.

[I’m] not bothered to spend more time. Its just basic

at the moment - will work more when it is harder. It

just comes natural to me.

Dave’s attitude to the semester-long programming

project for assessment was that he would be able to

complete it in a couple of weeks and therefore didn’t need

to spend the recommended time each of the 13 weeks of

semester working on it. He was pretty sure he would be

able to “knock most of it over” during the week-long

semester break.

The first phase of Dave’s project was graded 30/50

and he was happy with that result. Although his

submission was incomplete:

[I] didn't do the test cases - couldn't be bothered. I'm

lazy - I'll do the bare minimum…

He believed the true fault lay with the project

specifications supplied to students which were

“horrible…badly worded”.

As to the unit as a whole, although his attendance at

lectures and workshops was good, Dave seemed to have

his own timetable and agenda:

Workshops (all units) go too slow. So I leave it to the

end and teach myself.

During workshops, Dave would often take part in the

activities, or contribute for a short while until he lost

interest and until he found something more appealing to

do. As a result, some tasks remained unsolved and it was

not evident (except from his own insistence) that he was

actually capable of completing them successfully.

3.3.4 Post ITB003
Perception of: Scale of 1 – 5

(1 = low; 5 = high)

Confidence 3.5 (down from 4)

Enjoyment 5 (stable)

Difficulty 3.5 (up from 2.5)

Table 11 - Dave: Post-Unit Perceptions

Dave reflected on the unit as follows:

Lectures would be useful if I listened - ok for basics.

He insisted that he required very little time to complete

programming tasks, including the non-trivial

programming project required for this unit. Dave seemed

loath to spend time early in the semester on project tasks

that he was confident he could complete in a short

amount of time just prior to submission date. Combined

with the fact that other units had similar assessment

demands late in semester, this attitude resulted in

insufficient time to complete all aspects of the project

successfully. Nevertheless, Dave’s confidence did not

waiver and he continued to expect a high grade for this

unit.

 Final grade

Expectation:

- pre-ITB003 6

- pre-exam 7

Actual 4

Table 12 - Dave: Grade Expectation versus Actual

3.4 Steve [studying ITB001]

3.4.1 Profile

Steve is a 24 year old domestic student who has recently

failed to complete the unit after a number of previous

unsuccessful attempts and withdrawn enrolment. Steve

presented as fairly confident about his academic ability,

but socially inept.

Steve was frequently witnessed in both lectures and

workshops listening to music, playing games and refusing

to take part in either class discussions or to converse with

teaching staff on a one-on-one basis. Given this attitude,

his presence in class confounded both his teachers and

fellow students. Steve agreed to be interviewed after

completion of the unit, in order to help us understand his

attitude towards study and his motivation for studying

programming.

Steve’s family has been in Australia for 17 years, and

he is currently in the process of moving out of home.

Steve discussed a less than idyllic schooling where he

was very shy, had trouble making friends and received a

very poor senior high school result. He feels pressure

from his mother to study, get a job and financially

support the family. Since school, he has completed a

Diploma at TAFE in order to gain entry to university.

Steve expressed a keen interest in working in the

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

175

computer gaming industry, but was disappointed that he

hadn’t as yet worked in IT at all. In fact, Steve had never

had any kind of job, paid or unpaid.

Steve’s academic history at university reflects a very

poor result, with a number of units having been repeated,

but none, as yet, completed successfully.

I think it’s just me being lazy. That’s all. It’s doable.

Asked how best he learns, Steve responded that his

preference was for active hands-on repetitive learning:

Yeah, doing. Information sort of sneaks out when I’m

reading…If I’m doing it – it will still slip out but I can

always repeat it because I’ll know what to do. So I

can just keep on repeating that action until I get it.

3.4.2 ITB001 studies

As Steve was not interviewed prior to completion of the

unit like the previous three case studies, there is no record

of his perceived confidence, enjoyment and level of

difficulty of the unit.

Average hours spent on ITB001 per week <1

Average hours spent on un/paid work per week 0

Table 13 - Steve: Study versus Work

Steve understood the workload requirements to

successfully complete this unit, but dedicated very little

time to study, if any. He admitted that if he was really

serious about it, he would have to spend at least three

hours per day on a unit.

On repeating a unit, Steve would convince himself he

was way ahead, and lose the motivation to work:

I felt pretty confident – because actually I was getting

ahead of the program. I actually stopped myself. I

actually felt lazy. It felt good I was getting ahead but

like it was a good excuse to let me do something else.

As to programming, Steve said he would have enjoyed

it more if he had known what he was doing:

If I knew what I was doing, I would like it. But I don’t.

And I think if I pay more attention and focus on the

work and not get sidetracked a lot, I would like it. I

like working things out.

Steve blamed his lack of ability to learn programming

on his attitude:

Like it’s because I’m not paying attention at all. You

need to be focused on it fulltime or else you will fall

behind….I never really got into the knowledge of it.

All the ins and outs of programming. Need to find out

about it.

Further discussions about Steve’s study ethic revealed

that he was seriously distracted with games, and tended to

play World of Warcraft at every possible moment,

equating to around 16 hours each and every day:

[I play it] whenever I’m awake. It’s really addictive.

Steve described the World of Warcraft environment as

a social place where he interacted with his friends.

Because he doesn’t have any real people to “hang out”

with, he logs on and hangs out there.

So if I can just get more real life friends that I can

meet face to face I wouldn’t have the need to go on

World of Warcraft much.

Asked about his preference for learning environment,

Steve said he preferred studying with a friend, or in a

small group:

I want to interact because I want to get better at

socialising and it gets lonely if I’m always by myself.

You need to be talking with people anyway. It’s good

for your health. Right now I’m trying to do as much of

that as possible.

Steve habitually logged on to the game as soon as he

woke up, so it was no wonder his attendance at university

and studies suffered. Although he showed a little

reluctance to continue this habit, he described a sense of

commitment to his virtual gaming friends:

Like, World of Warcraft – there’s a community. So it’s

– I feel like I have an obligation to people in the game.

After moving house and no longer having internet access:

I don’t [miss playing it]. …Relieved actually.

Because I felt like I had to log on every time but now I

don’t have to, because I can’t. So it’s a relief that I

don’t have that obligation.

Steve admitted that his addiction to World of Warcraft

had stopped him from being serious with his study. He

also claimed he had kept up to date with this unit for the

first three weeks of semester at which point he needed to

take time off due to sickness, and then fell behind with

his studies. He eventually withdrew from the unit.

3.4.3 Update
Steve re-enrolled in ITB001 in semester 1, 2008 (the

following semester) and showed a little improvement in

at least his attendance at and involvement in workshops.

However, his focus was clearly set on completing the

assessment items, and completely ignored the workshop

exercises that were designed to introduce problem-

solving and programming concepts and build the

expertise required for the assignments. His demeanour

continued to be that of an introvert; however it was

evident that he was making a small effort to communicate

with other students outside class. Steve started asking

questions during workshops, but seemed to make little

progress in terms of problem-solving skills and ability to

program.

Steve regularly attended lectures and workshops as

well as extra catch-up sessions that were made available

for students falling behind. His assignment submissions

indicated some small amount of progress in his

understanding of the unit content, although a great deal of

help had apparently been sought from many of the

teaching staff, and we suspect also from other students.

Steve sat the final exam for ITB001, but failed the unit.

Steve again enrolled in ITB001 in semester 2, 2008

and his attendance at workshops was initially very good.

He was less distracted in class, and made a habit of

asking many questions, not in group discussions, but

privately with a tutor. After spending much time with

Steve, it became apparent that one-on-one tuition was not

only what he expected, but what he benefited from the

most. After gaining a little confidence with his tutor, he

verbalised his frustration with the wording of one

particular task’s instructions. After this was rectified, for

the very first time Steve was able to complete an exercise

CRPIT Volume 95 - Computing Education 2009

176

by himself. He was praised for his efforts and it was

quite obvious he was very proud of himself and continued

with renewed confidence. Surprisingly, the following

week he was called on to present his solution to the class,

and did so without hesitation – another first. His solution

was neat, well described and of fairly good quality.

His acute shyness and lack of social confidence had

initially made it difficult for him to verbalise the

difficulties he was having. As a result, he had chosen to

struggle on by himself. What he is capable of achieving

with a little confidence and encouragement remained to

be seen.

Unfortunately, to the best of the author’s knowledge,

Steve attended no further workshops after the week he

presented his solution to class. Perhaps the prospect of

being called on again to address the class was too much

to bear. Alternatively, the small progress he made may

have pushed his confidence into overdrive, lending him to

mistakenly believe he could complete the remainder of

the unit without attendance. Steve, once again, failed the

unit.

4 Discussion

Although in the interviews Nelly graded her confidence

as fairly high, her confidence was clearly reliant on her

ability to solve the current task at hand. She tended to

over-prepare for workshops, by which time she had

ensured that she had already acquired the necessary skills.

The transcripts of her interviews (some quotes from

which are included in the previous section) gave a better

insight into her personal struggle to succeed. Nelly’s

health struggle against difficult odds, showed the power

of determination she had at her disposal. Faced with

frustratingly challenging programming concepts, this

determination was called into play. Again, she proved to

herself and others that she was capable. Although not

always confident, she valued the appearance of being

confident and capable, which at times must have made it

a difficult and lonely task for her to resolve issues with

the unit. Determination was a key factor in Nelly’s

success.

Jane also showed a fierce determination throughout

the unit, when it seemed like the odds were against her.

She struggled with the unit content and anxiety issues, but

never with motivation and attitude. Although close to

what seemed like a nervous breakdown, she still happily

declared that she loved programming and was determined

to keep going.

Dave’s profile highlighted all too often seen traits of

young male students – competitive and over-confident yet

lazy and unmotivated. Their definition of ‘success’ is

probably just passing the unit, rather than excelling – or

simply confirming their aptitude to themselves rather than

proving it via formal assessment.

Steve is a bewildering case, and one which, if possible,

will be followed up with some interest. It will be

intriguing to see if a little more confidence, combined

with a better work ethic could see him pass any units in

the future.

The common issue with each of the four students is

their level of confidence, motivation and determination.

Their aptitude (which has not been documented) may

actually be less relevant in terms of being able to

successfully learn to program. One tool which addresses

confidence and motivational issues is collaborative

learning (Wilson et al. 1993; McKinney et al. 2006) and

more particularly, pair programming where students

enjoy significant educational benefits including active

learning and improved retention, program quality, and

confidence in the solution (McDowell et al. 2002;

Williams et al. 2002; Nagappan et al. 2003; Werner et al.

2004; McDowell et al. 2006; Mendes et al. 2006).

There is a presumption by educators that university

students aim to succeed: but ‘success’ is surely

subjective. Students oozing confidence in their

programming ability with a similarly matched weighty

ego are not inevitably those who achieve high grades.

Nor are they necessarily even motivated to do so.

Similarly, students struggling with low confidence are not

always low achievers. Stress and anxiety issues, often

reported in particular by female students, if coupled with

the motivation and determination to succeed, are not

always insurmountable obstacles.

Some students can be reluctant to admit they are

having difficulty and fear losing face. Others want to

play the underdog and pretend they are having similar

troubles as their mates, because to them it might be

uncool to be smart.

Great aptitude and confidence do not, in isolation,

guarantee superior marks. Without motivation there may

be little reason to ‘succeed’, whatever definition you

hold. If there is a lack of motivation to do well, a

student’s true ability may not necessarily be reflected in

their overall result. Conversely, a lack of natural ability

does not always result in poor results if the student has a

good attitude and is determined enough.

The following table roughly plots the confidence and

determination levels of those four students including their

final results. The lighter shaded area of the table

represents a feasible estimation of the required level of

each attribute for successful outcome.

Table 14 – Confidence versus Determination

5 Conclusions

What this paper has highlighted is that what you see isn’t

always what you get.

Student final grades seem to be neither good indicators

of ability, motivation, determination nor confidence.

Equally, learning outcomes are not easily predicted based

on confidence or ability.

 low << Determination >> high

h
ig

h

<
<

C

o
n

fi
d

en
ce

 >

>

lo
w

Jane [4] Steve

[fail]

Nelly [7]

Dave [4]

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

177

The four students in these case studies reflect a huge

variation in attitudes and provide a rich source of data

relating to student attitudes and their perception of their

level of confidence, enjoyment and difficulty of

programming.

Confidence may be a key issue in successful learning

outcomes – but is not in itself a reliable predictor of

success. It seems that determination (ie the level of

commitment to reach whatever goal the student is

motivated to achieve) also plays a significant role in

success, at any level of aptitude.

If the key to success in learning to program is a

balance between aptitude, confidence and determination,

ethnographical-like studies may be useful to develop a set

of Personas, or fictitious characters, representing the

likely range of student programmers in terms of these

attributes. Personas are used in human computer

interaction design to model user demographic and

behavior and articulating user population. They represent

hypothetical archetypes of actual users (Cooper 1999).

Importantly, it seems obvious from these studies that

assumptions must not be made about students’ likelihood

of success when based on superficial assessments.

Rather, we need to delve a little deeper than normal into

the person behind the student, in order to determine the

barriers most likely to affect their ability to learn to

program.

Computer science educators could better understand

the real cultural and social issues that characterise the

real people learning to program, by developing precise

descriptions of students, their perceptions and attitudes.

Programming student personas could combine the

attributes of confidence and determination with learning

styles, to become a design taxonomy for courses and a

pedagogical tool for teaching and support. Personas

could be plotted in a similar manner to Table 14 with

each of the attribute dimensions quantifiable in some

way. This pertinent information may enable timely

intervention by teaching staff with students fitting the

persona of a student at risk of failure due to ill-placed

confidence, or lack of motivation and determination.

6 Acknowledgements

Thanks to the students who gave up their time to share

cake and coffee with me (especially Nelly, Jane, Dave

and Steve – not their real names), while reflecting on

their program learning experiences at QUT.

7 References

Bassey, M. 1999. Case Study Research in Educational

Settings. Buckingham, Open University Press.

Biggers, M., Brauer, A. and Yilmaz, T. 2008. Student

Perceptions of Computer Science: A Retention

Study Comparing Graduating Seniors vs. CS

Leavers. 39th SIGCSE technical symposium on

Computer science education, Portland, OR,

USA, ACM.

Cohoon, J. M. 2002. "Women in CS and Biology." ACM

SIGCSE Bulletin, Proceedings of the 33rd

SIGCSE Technical Symposium on Computer

Science Education SIGCSE '02 34(1).

Cooper, A. 1999. The Inmates are Running the Asylum.

Indianapolois, IN, Sams.

Davis, J. and Rebelsky, S. A. 2007. Food-First Computer

Science: Starting the First Course Right with

PB&J. 38th SIGCSE Technical Symposium on

Computer Science Education. Kentucky, USA.

Feinberg, D. 2007. A Visual Object-Oriented

Programming Environment. 38th SIGCSE

Technical Symposium on Computer Science

Education. Kentucky, USA.

Fisher, A. and Margolis, J. 2002. "Unlocking the

clubhouse: the Carnegie Mellon experience "

ACM SIGCSE Bulletin 34(2).

Gonzalez, G. 2006. A Systematic Approach to Active and

Cooperative Learning in CS1 and its effects on

CS2. SIGCSE 2006 Technical Symposium on

Computer Science Education. Houston, Texas,

USA.

Kinnunen, P. and Malmi, L. 2006. Why Students Drop

Out CS1 Course? 2006 international workshop

on Computing education research ICER '06.

Lewis, S., McKay, J. and Lang, C. 2006. The Next Wave

of Gender Projects in IT Curriculum and

Teaching at Universities. Eighth Australasian

Computer Education Conference (ACE2006),

Hobart, Tasmania, Australia, ACS.

Lister, R. 2004. Teaching Java First: Experiments with

Pigs-Early Pedagogy. 6th Australasian

Computer Education Conference (ACE2004).

Dunedin, Australian Computer Society Inc.

Lister R, Adams E, Fitzgerald S, Fone W, Hamer J,

Lindholm M, McCartney R, Moström J, Sanders

K, Seppällä O, B, S. and Thomas L 2004. "A

Multi-National Study of Reading and Tracing

Skills in Novice Programmers." SIGSCE

Bulletin 36(4): 119-150.

Mannila L 2006. Progress Reports and Novices’

Understanding of Program Code. 6th Baltic Sea

Conference on Computing Education Research,

Koli Calling.

McCracken M, Almstrum V, Diaz D, Guzdial M, Hagan

D, Kolikant Y, Laxer C, Thomas L, Utting I and

Wilusz T 2001. "ITiCSE 2001 working group

reports: A multi-national, multi-institutional

study of assessment of programming skills of

first-year CS students." ACM SIGCSE Bulletin

33(4).

McDowell, C., Werner, L., Bullock, H. and Fernald, J.

2002. The Effects of Pair-Programming on

Performance in an Introductory Programming

Course. 33rd SIGCSE technical symposium on

Computer science education. Cincinnati,

Kentucky ACM.

McDowell, C., Werner, L., Bullock, H. E. and Fernald, J.

2006. "Pair programming improves student

retention, confidence, and program quality "

Communications of the ACM 49(8).

McKinney, D. and Denton, L. F. 2006. Developing

Collaborative Skills Early in the CS Curriculum

CRPIT Volume 95 - Computing Education 2009

178

in a Laboratory Environment. SIGCSE 2006

Technical Symposium on Computer Science

Education. Houston, Texas, USA.

Mendes, E., Al-Fakhri, L. and Luxton-Reilly, A. 2006. A

Replicated Experiment of Pair-Programming in

a 2nd-year Software Development and Design

Computer Science Course. ITiCSE 06:

Proceedings of the 11th annual conference on

Innovation and technology in computer science

education Bologna, Italy.

Murphy, L., McCauley, R. and Westbrook, S. 2006.

Women Catch Up: Gender Differences in

Learning Programming Concepts. SIGCSE 2006

Technical Symposium on Computer Science

Education. Houston, Texas USA.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang,

K., Miller, C. and Balik, S. 2003. Improving the

CS1 Experience with Pair Programming. 34th

SIGCSE technical symposium on Computer

science

Parsons, D. and Haden, P. 2006. "Parson's Programming

Puzzles: A Fun and Effective Learning Tool for

First Programming Courses." Eighth

Australasian Computer Education Conference

(ACE2006) 52: 157-163.

Pollard, S. L. and Duvall, R. C. 2006. Everything I

Needed to Know About Teaching I Learned in

Kindergarten: Bringing Elementary Education

Techniques to Undergraduate Computer Science

Classes. SIGCSE 2006 Technical Symposium on

Computer Science Education. Houston, Texas,

USA.

Reges, S. 2006. Base to basics in CS1 and CS2.

SIGCSE’06, Houston, Texas, USA, ACM.

Robins A, Rountree J and Rountree N 2003. "Learning

and Teaching Programming: A Review and

Discussion." Journal of Computer Science

Education 13(2): 137-172.

Robins, A., Rountree, J. and Rountree, N. 2003.

"Learning and Teaching Programming: A

Review and Discussion." Journal of Computer

Science Education 13(2): 137-172.

Seymour E and Hewitt NM 1997. Talking About

Leaving, Westview Press, Harper Collins

Publishers.

Sheard, J. and Hagan, D. 1998. Our failing students: a

study of a repeat group. Proceedings of the 6th

annual conference on the teaching of computing

and the 3rd annual conference on Integrating

technology into computer science education:

Changing the delivery of computer science

education ITiCSE '98.

Simon, B. and Hanks, B. 2007. First Year Students'

Impressions of Pair Programming in CS1. Third

International Computing Education Research

Workshop. Georgia Institute of Technology,

Atlanta, GA USA, ACM.

Soloway E and Spohrer J 1989. Studying the Novice

Programmer. Hillsdale, NJ, , Lawrence Erlbaum

Associates.

Teague, D. and Roe, P. 2008. Collaborative learning:

towards a solution for novice programmers.

Proceedings of the tenth conference on

Australasian computing education. Wollongong,

NSW, Australia, ACS.

Varma, R. 2006. "Making Computer Science Minority-

Friendly." Communications of the ACM 49(2).

Vilner, T. and Zur, E. 2006. Once She Makes it, She is

There: Gender Differences in Computer Science

Study. ITiCSE 06: Proceedings of the 11th

annual conference on Innovation and technology

in computer science education, Bologna, Italy.

Werner, L. L., Hanks, B. and McDowell, C. 2004. "Pair

Programming Helps Female Computer Science

Students." Journal on Educational Resources in

Computing (JERIC) 4(1).

Williams, L., Wiebe, E., Yang, K., Ferzli, M. and Miller,

C. 2002. "In Support of Pair Programming in the

Introductory Computer Science Course."

Computer Science Education 12(3): 197-212.

Wilson, J. D., Hoskin, N. and Nosek, J. T. 1993. The

Benefits of Collaboration for Student

Programmers. 24th SIGCSE Technical

Symposium on Computer Science Education

SIGCSE 1993, Indianapolis, Indiana US, ACM

Press.

Yin, R. K. 2003. Case Study Research Design and

Methods. California USA, Sage Publications

Inc.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

179

CRPIT Volume 95 - Computing Education 2009

180

Experiences in Teaching Quality Attribute Scenarios

Ewan Tempero
Department of Computer Science

University of Auckland
Auckland, New Zealand

ewan-at-cs.auckland.ac.nz

Abstract

The concept of thequality attribute scenariowas intro-
duced in 2003 to support the development of software ar-
chitectures. This concept is useful because it provides an
operational means to represent the quality requirements
of a system. It also provides a more concrete basis with
which to teach software architecture. Teaching this con-
cept however has some unexpected issues. In this paper,
I present my experiences of teaching quality attribute sce-
narios and outline Bus Tracker, a case study I have devel-
oped to support my teaching.

1 Introduction

It has long been understood that choice of architecture can
affect the success of a system (Garlan et al. 1995, Shaw
& Garlan 1996). There has been much work done to find
ways to efficiently find the right architecture for a given
set of requirements. One particular issue is how to es-
tablish that a proposed architecture does indeed match the
requirements. Doing so requires that the relevant require-
ments be expressed in anoperationalform that allows an
objective assessment of the fit of a given architecture. In
the second edition of their book on software architecture,
Bass et al. introduced the concept of thequality attribute
scenario(QAS) (Bass et al. 2003). This concept can be
used to express the (non-functional) quality requirements
of a system in an operational form.

When I encountered the QAS concept, I thought it was
a solution to a problem I faced. In the previous year, I had
taught a section on software architecture, and have been
unsatisfied with the answers I could give to the question
“How do we know when we’ve got the right architecture?”
When I discovered QAS, I immediately saw the potential
for providing an objective means to answering the ques-
tion. There was still the question of how to find the right
architecture, but at least having established the QASs for a
system we would know what the target looked like. What
I didn’t anticipate, however, was how difficult a concept it
was to grasp for inexperienced software engineers. I spec-
ulate that it was easier for me as I had some understanding
of what the issues were and so perhaps could more easily
see how QAS would help. Prototypical software engineers
however are mostly unaware of the concept of software
architecture itself, never mind the issues surrounding the
development of one. Nevertheless I still had to teach the
concept to them!

In this paper, I discuss the problems that students ex-
perienced in learning about QAS and outline theBus
Tracker case study I have developed and use to support

Copyright c©2009, Australian Computer Society, Inc. This paper ap-
peared at the Eleventh Australasian Computing Education Conference
(ACE2009), Wellington, New Zealand, January 2009. Conferences in
Research and Practice in Information Technology (CRPIT), Vol. 95,
Margaret Hamilton and Tony Clear, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

my teaching of software architecture, and QAS in particu-
lar.

The rest of this paper is organised as follows. In the
next section I will describe the context in which I teach
software architecture, so that others can determine how
applicable my experience may be to their own situation. In
section 3 I will briefly present the quality attribute scenario
concept and discuss other related work. Section 4 presents
the Bus Tracker case study. Section 5 presents the issues
that I have observed students having when learning about
QAS, giving examples from the class. Section 6 completes
the Bus Tracker case study by providing a set of scenarios
for it. I make some concluding comments in section 7.

2 Context

The material described in this paper is taught as part of
a Software Engineering (SE) specialisation in the Bache-
lor of Engineering (BE) degree offered by the School of
Engineering at the University of Auckland.

The BE degree is a four year undergraduate pro-
gramme. Students who are accepted into the programme
do a common first year consisting roughly of courses rep-
resenting all the specialisations in the degree. At the end
of the first year, students then apply to enter their special-
isation of choice. Each specialisation then consists of 3
years of courses specific to that programme, although each
year also has “professional development” courses cover-
ing such topics as communication skills, engineering man-
agement, ethics, and sustainability.

The SE programme has a course titled “Software Ar-
chitecture” in the second semester of the second special-
isation year (third year of the BE). At the point the stu-
dents take this course, they would have done one course
during the common first year that introduces fundamen-
tal programming concepts and a year and half (that is,
3 semesters) of (mostly) SE speciality courses. This in-
cludes, during their second year, courses covering topics
such as object-oriented design, design patterns, data struc-
tures, computer organisation, quality assurance, discrete
mathematics, statistics, probability, and a project course.
During the first semester of their third year, SE students
have courses on databases, human-computer interaction,
and computer architecture. While they are taking software
architecture they are also taking courses on networks and
operating systems, as well as a project course. So the stu-
dents have seen a number of related topics, however they
have not really seen anything where the software architec-
ture of anything is discussed in detail.

The “Software Architecture” course is logically di-
vided into two parts. The first part is “middleware”, cov-
ering such topics as remote procedure call and replication
strategies and technologies such as RMI and CORBA. The
second part, which I teach, is software architecture funda-
mentals. The organisation has come about due to curricu-
lum realities and pedagogical decisions.

We, along with all other curriculum designers, have
discovered that 4 years is not enough to teach everything

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

181

that we think is important. We have had to make com-
promises based on our teaching environment, available
expertise, local demand, and the usual vocal individuals
(Gruba et al. 2004), meaning we could not have two sepa-
rate courses on middleware and software architecture.

Combining these two areas into one course is not un-
reasonable as there is a clear relationship between the two.
In fact combining middleware with software architecture
helped with a problem I had encountered when first teach-
ing this course. Students in their third year of university
generally have had little experience with large software
systems and so have difficulty appreciating discussions on
the architecture of systems. They have also had little expe-
rience with quality attributes such as reliability and avail-
ability, both of which are important to middleware discus-
sions. By following on from the middleware part, I have
some nice examples on which to based discussion on soft-
ware architecture. The support provided by middleware
on teaching software architecture has been noted by oth-
ers (Royce et al. 1994).

While combining with middleware was useful, it still
left me with only 6 weeks in which to cram (what I con-
sidered to be) the important fundamental concepts of soft-
ware architecture. I had originally used the first edition
of Bass, Clements, and Kazman’sSoftware Architecture
in Practice, but as I indicated in the introduction, was un-
happy with my ability to answer what I considered to be
an important question of any architecture, namely “is it the
right one?” When the second edition came out (Bass et al.
2003) and introduced thequality attribute scenariocon-
cept, I saw it as the answer to my problem. I immediately
adopted it and structured the rest of the material around it.

3 Background and Related Work

In this section I give a summary of the concepts needed
for the rest of the presentation, and discuss related work.
Most of the specifics here come from Bass et al. (Bass
et al. 2003)

3.1 Software Architecture Concepts

As many have observed, there are a number of definitions
for software architecture (SEI 2007). The specific defi-
nition I use in the course is not so relevant to this paper,
but for completeness sake it is the one from Bass et al.,
namely:

The software architecture of a program or com-
puting system is the structure or structures of the
system, which comprise software elements, the
externally visible properties of those elements,
and the relationships among them.

What is not obvious from this definition, although it is
made clear in the text, is that what dictates a given archi-
tecture is not the functional requirements of a system, but
what are often referred to as the non-functional require-
ments, that is, such things as performance, reliability, ex-
tensibility, and so on. These are what are now generally
referred to asquality attributes. Since these impact choice
of architecture, we need to be able to specify them in an
operational way in order to be able to determine if the
correct choice of architecture has been made. It is to do
this that Bass et al. introducequality attribute scenarios
(QAS).

Two key points about quality attribute scenarios is that
they are intended to capturerequirements, and so it is
not appropriate that they contain any kind of decision re-
garding how the system may be built, and that they are
intended to be used to determine if a given architecture
meets those requirements. The second point dictates what
kind of information is needed in their description whereas
the first dictates what kind of information should not be in
their description.

Source some entity that generates a stimu-
lus

Stimulus a condition or event that needs to be
considered

Artifact the thing that is stimulated
Environment conditions under which the stimu-

lus occurs
Response what the artifact should do on ar-

rival of the stimulus
Measure how to measure the response to de-

termine it is satisfactory

Figure 1: Quality Attribute Scenario parts (From Bass et
al.)

Bass et al. identify six “system” quality attributes rele-
vant to software architecture: performance, modifiability,
availability, security, usability, and testability. The other
commonly discussed quality attributes can be expressed in
terms of these six (for example, portability is a specialised
form of modifiability, and data integrity is a specialised
form of security). There are other aspects that may affect
choice of architecture, such as time to market or system
lifetime, but it is these six that are my main focus for the
use of QASs.

A quality attribute scenario consists of the parts shown
in figure 1. It is the “measure” that makes a scenario oper-
ational. It is not enough to declare that a web server must
be “fast” as we don’t know what “fast” means. To some
people this may mean generating a response in 100 mil-
liseconds, but others may be content with a response in
under 2 seconds.

The “measure” part dictates what is acceptable. But
just having the response time is not enough information to
evaluate an architecture. For example, does the 2 seconds
apply to how long the server has to generate a response
from when the request is received, or does it apply to the
time between when the user clicks the submit button and
sees a page displayed — these two situations involve dif-
ferent “source” and “response” values.

The time the user has to wait for a response depends
on factors such as the network performance — the system
can hardly be held accountable if the network fails. The
context in which the response measure applies is described
in the “environment” part.

There can be potentially many scenarios for a given
system and so a concern is that some may be missed. Bass
et al. distinguish betweengeneraland concreteQASs.
General QASs are system independent; the same scenario
can apply to many different systems. Bass et al. provide
initial lists of possible values for each of the parts of a
QAS for each of the system quality attributes. The pro-
cess of finding QASs begins by choosing relevant values
from these lists to identify the appropriate general scenar-
ios. Then each general scenario is instantiated for the par-
ticular system under consideration by deciding on system-
specific values for each of the general values to get con-
crete scenarios. One general QAS may result in many
concrete QASs. Figure 2 shows the possible values for
Performance general scenarios as described by Bass et al.

While I present the general scenario concept, and insist
that students at least indicate which values they are using
when developing concrete scenarios, I do not regard this
concept as a complete solution. So, for example, I make
it clear that we should not regard that all the general val-
ues provided Bass et al. are a complete set, or even that
we must pick exactly one value from each list. General
scenarios are (merely) a tool that help us produce concrete
scenarios.

3.2 Related Work

Shaw and Clements have argued that software architec-
ture is in its “golden age” and in the near future will reach

CRPIT Volume 95 - Computing Education 2009

182

source of stimulus an independent source (possibly
within the system)

stimulus periodic events arrive; sporadic
events arrive; stochastic events ar-
rive

environment normal mode; overload mode;
artifact system
response processes stimuli; changes level of

service
response measure latency, deadline, throughput, jitter,

miss rate, data loss

Figure 2: Possible general values for Performance (From
Bass et al.)

the point of being an “unexceptional, essential part of
software system building — taken for granted, employed
without fanfare, and assumed as a natural base for further
progress” (Shaw & Clements 2006). I would argue that to
attain this status it needs to be part of any software engi-
neering curricula (and possibly computer science curricula
as well). As I have already suggested, and as others have
confirmed, there are issues in teaching software architec-
ture, especially to inexperienced undergraduate students.

To my knowledge, there has been no discussion of the
teaching of quality attribute scenarios, but there have been
some discussions relating to teaching software architec-
ture in general. One of the first was by Royce et al. who
discussed the use of a middleware product to teach soft-
ware architecture at a graduate level (Royce et al. 1994).
Their proposed course emphasised developing large-scale
systems from reliable, pre-integrated, reusable compo-
nents, and considered the ability to compare architectures.
At the time of publication the course had only been of-
fered once but the authors observed that it was compli-
cated teaching software architecture concepts to students
with little practical experience.

In contrast, Bucci et al. explained how they intro-
duced the concept of software architecture early in the
curriculum (Bucci et al. 1998). They focused on the view
of software presented to developers (or students) by the
tools that are used, and argued that tools that provided an
architecture-level view of software would help students
understand software architecture. While the part of the
course I teach involves no actual writing of code, Bucci et
al.’s point that students need the rightmental modelsis, I
believe, at the heart of the teaching software architecture.

More recently Lago and van Vliet discussed their ex-
periences teaching two software architecture courses at the
Masters level (Lago & van Vliet 2005). Their course goals
included generating alternative architectures, describing
architectures, and evaluating architectures, and they were
particularly interested in the need to trade-off different
stakeholder requirements and consequently the need to
communicate effectively with stakeholders. I see the use
of QASs as a key ingredient in such communication, as
well as evaluating the final result. Lago and van Vliet do
not mention QAS explicitly, although they use Bass et al.
as the text for one of the courses. They do note the im-
portance of the quality of “scenarios,” but it is not clear if
they mean QASs specifically, or a more general use of the
term.

Karam et al describe their undergraduate presentation
of software architecture taught at about the same level as
my course (Karam et al. 2004). They present many of the
same topics that I do, although they do no explicitly men-
tion QAS. They claim that having complete executable ex-
amples allow the students to understand the material bet-
ter. I am not convinced. As I will discuss later, I have
found students tend to want to dive into implementation
as soon as possible, even when they are trying to deter-
mine requirements. I am concerned that working with
executable systems would reinforce that behaviour so my
preference is to not deal with actual code.

4 Bus Tracker

The example I use in the case study was initially set as
an assignment (see section 4.1). It involves development
of a system for providing electronic display of estimated
arrival times of public buses for a city council

4.1 History

This example was used as an assignment in the first offer-
ing of the course in 2002. The assignment was to “develop
an architecture for the system.” It was not used in 2003
(when QASs were introduced) but then reused in 2004
as the basis for the two-assignment sequence (see section
4.4). It worked so well for the assignment that in 2005
I decided to begin developing it as a case study for use
in class and tutorials. The case study was then developed
over the next 3 deliveries of the course.

4.2 Description

Figure 3 shows some of the initial details that are given
to the students (the explanation at the bottom has been
added for this presentation). Some other details are also
provided, partly to provide some more concreteness to the
exercise. For example, some of the functionality is de-
scribed in more detail, such as what should appear on a
display. Numbers are also given for how many bus stops
and buses may need to be considered, and some possible
performance characteristics of the communications sys-
tems and other hardware.

Nevertheless there are still many details that might be
important to know when developing an architecture. For
example, nothing is said about what hardware is available
(some Computer Systems Engineers take the course each
year and they have observed that different chipsets could
be used for the bus subsystems with different capabilities
and different costs), or how the estimates are produced.
Partly this is due to my lack of knowledge in such things,
and anyway such details also should not be so relevant to
developing the quality requirements. But I use this lack of
information to make the point that as software architects
the students are likely to be in the same situation (not hav-
ing complete information) and they are welcome to make
up any details they feel are necessary so long as they can
justify their choices and the choices do not make the exer-
cise trivial.

In fact, the details I do give them are not totally consis-
tent, or not that relevant, or not actually likely to be what
the client actually wants, as I will discuss later. Over the
years I have resisted the temptation to “improve” the infor-
mation. Information provided by clients is notorious for
not necessarily being of high quality and others have ob-
served that development of the architecture is sometimes
where the true requirements are determined (Bass et al.
2003, sidebar, p27). This is a point I can make more eas-
ily using the existing description than if I had provided a
“sanitised” description.

Another aspect of this example that has proven useful
is that it naturally decomposes into three subsystems: the
bus subsystem, the display subsystem, and the rest (which
I typically refer to as the “central” subsystem, although
there is nothing implied in the description that that part
has to be all in one place). This provides a nice example
of how the system architecture can partially impact the
choice of software architecture, as well as the distinction
between system and software architecture.

As well as the aspects I’ve mentioned above, the Bus
Tracker system is useful for the number of architectural
questions that arise. In particular, there are are multi-
ple examples of all the quality attributes, all leading to
many interesting different possible scenarios. I will dis-
cuss some of these in section 6.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

183

ARC wants a system called Bus Tracker that tracks
buses. It wants to add GPS to all of its buses so that it
can track where they are to within 100 metres. They
will use this information to provide estimated arrival
times of buses at each major bus stop.
The unit to be placed on each bus consists of a Global
Positioning System (GPS) receiver, a radio transmit-
ter, and other bits of hardware and software. The GPS
receiver can can determine its position to within 10
metres at each second. If calibrated properly, it can
reliably track the bus position and speed throughout
the journey. It transmits this information, along with
the bus’ identifier to the Bus Tracker system on a reg-
ular basis.
The major bus stops are where a number of bus routes
converge. There are typically 20 or more buses that
stop at these stops during peak travel times. The
planned displays will have a radio receiver and room
for display four or five bus numbers and times (that is,
similar to those that already exist for the LINK bus).
The displays should repeatedly scroll through all the
buses whose estimated or scheduled arrival times at
that stop are sometime in the next hour. Once the
bus is within 1 kilometre (that is, about 2 bus stops
away) of a display, the estimated arrival time should
be within 2 minutes of the actual time, 95% the time.
All other displays should show a “best effort” esti-
mated time.
The bus company also would like to allow bus users
to get estimated arrival times for all buses at all times
via their web site, and also via phone.

(The ARC — Auckland Regional Council — is an elected
local government authority covering the Auckland Region
and the cities within it with regulatory power and funding
capabilities for such things as public transport, environ-
mental protection and regional parks. The LINK bus is a
particular bus service.)

Figure 3: Bus Tracker initial description.

4.3 Presentation

The way the case study is presented has evolved over the
last 3 or so years. What is described here is the presenta-
tion used in the 2007 second semester (July-October) of-
fering.

The first step is a tutorial session in which the students
work in teams of about 5 members (self-formed) to iden-
tify the “non-functional” requirements likely to be rele-
vant to the text as given. The purpose of this tutorial is to
demonstrate the issues with specifying such requirements
in a manner that allows for proposed architectures to be
evaluated. It also has the benefit of giving the students
a chance to come to grips with the Bus Tracker system
itself, without the distraction of having to apply new con-
cepts at the same time. Teams (the number depending on
the amount of time available) are then asked to present
one non-functional requirement to the class, and we dis-
cuss how useful their description is with respect to being
able to determine if a proposed architecture meets the re-
quirement.

At the time of this tutorial, the students have not seen
the QAS concept, but they have had explained to them the
general idea of what software architecture means and why
architecture is important, and have seen fairly high-level
descriptions of some software architecture examples.

The second step is a tutorial a week later. By this time
the students have seen QAS, including general scenarios.
In this tutorial, they are formed into teams (this time not
of their choosing) and asked to develop two performance
scenarios for Bus Trucker. Once all the teams have at

least one completed (typically after about 30 minutes), one
team is picked to present one of their scenarios to the rest
of the class. This scenario is then critiqued.

Later on the same day, the course has a scheduled lab.
We use this lab session to refine the scenario descrip-
tions, with each team entering their descriptions into the
SE Wiki.

In the next lecture session we go through several sub-
mitted scenarios for another round of feedback. Finally,
in a following lecture, I present some scenarios of my own
and explain my reasoning for choosing (or rejecting) them.

Although not directly relevant to this paper, the Bus
Tracker system is later used as the basis for tutorials, and
lab exercises on the development of structures for archi-
tectures.

4.4 Assignments

It is worth noting that the assignments follow the same
pattern. Initially, students given a piece of text at a sim-
ilar level of detail as in figure 3. Their first assignment
is then to develop some number (typically 3) of quality
attribute scenarios for a quality attribute (typically perfor-
mance or availability) for the proposed system, and also
one structure description that relates to one of their sce-
narios. These assignments are marked via peer assessment
using an on-line peer assessment system (Hamer et al.
2007).

For the second assignment, I give them 2-3 scenarios
and ask them to develop an architecture that meets those
requirements. Doing this means that they get to see an-
other set of scenarios I have developed for another system
that they have had to think about, reinforcing the sequence
from Bus Tracker. They submit their architecture descrip-
tion and justify it with respect to the scenarios. As this
assignment is due only at the end of the teaching period, it
is assessed in the more traditional fashion.

5 Issues

In this section I discuss the kinds of issues I have observed.

5.1 Overview

There are four areas of confusion that need to be addressed
— what constitutes reasonable values for each part, how
the values for each part interact, whether the choice of val-
ues constitutes a quality requirement, and whether the re-
sulting scenario is relevant to the system being developed.
Teaching QASs requires progressing through each of these
areas. The first two areas are about how to construct a
valid scenario, whereas the last two are about whether the
scenarios are describing something useful.

Determining reasonable values is about such things as
describing something for the stimulus part that really is
a stimulus, or an artifact that really is a part of the sys-
tem that is relevant to the creation of the architecture. The
first scenarios produced by the students usually contain
values that are somewhat acceptable, but lack the preci-
sion needed for the ultimate use of QASs — evaluating
an architecture. However in some cases the values are not
acceptable. A common example is the statement for the
measure that contains nothing measurable

While it might be expected that the general scenario
values would help reduce these problems, my experience
is that early on, students have few problems creating con-
sistent general scenarios but have difficulty with concrete
scenarios. I speculate that this is because the production
of a general scenario can be done by just choosing values
from lists. This means a consistent general scenario can
be produced without a great deal of understanding of what
the individual values mean. A common mistake is to pro-
duce an acceptable general scenario, but then choose val-
ues for the concrete scenario that are inconsistent with the

CRPIT Volume 95 - Computing Education 2009

184

Figure 4: A typical first QAS. (Most details are repro-
duced in the main text.)

chosen general values. For example, choosing “latency”
as the general performance measure, but then specifying a
concrete measure that is not latency.

The next area is choosing values that work together
to describe a scenario. Here the issue is whether, for ex-
ample, the stated stimulus can be produced by the stated
source, and will be felt by the stated artifact, or whether
the stated measure does measure something related to the
stated response. It is common to see sets of values where
the individual values make sense, but they do not fit to-
gether to make a coherent QAS.

Once a valid scenario is constructed, there is the ques-
tion as to whether it is of any use. One property that re-
duces the usefulness of scenarios is when it assumes or
dictates architectural decisions. It is common early on for
students to, effectively, think about how they would build
the system they are supposed to be developing QASs for,
and then write the scenarios with their designs in mind.
While it is possible that some aspects of an architecture
may be dictated by the client (“must use J2EE” or even
“must use replication to ensure availability”) it is not ap-
propriate for the architect to add architectural details not
already given in the requirements.

Even once we have valid scenarios that really do spec-
ify requirements, there is still the question as to whether
or not they specify the right requirements, that is, those
intended by the client. While this is a crucial property of
a useful scenario — if we get it wrong then the wrong ar-
chitecture may result — it is in some sense the one I’m
least concerned about. If the students can produce sce-
narios that a client can immediately determine are spec-
ifying the wrong things, then I have done my job. If
the QASs have been produced to a level of quality that
clients can, with confidence, figure out that they are the
wrong requirements, then at least the (big) problem of
mis-communication has been reduced.

5.2 Examples

I will now illustrate the comments above with examples.
In the first QAS exercise, the students are asked to pro-

duce performance scenarios for the Bus Tracker system.
As well as producing the concrete scenario, the students
are also required to give the general scenario (ideally start-
ing with that), and also explain why they have picked the
scenario they have in terms of the details of the system

they have been given. The latter requirement is intended
to prevent students choosing a scenario they thinkshould
exist, as opposed to one based on the information provided
by the client. This is to remind students that once they
become professional engineers, their responsibility is to
their client, and so they are not free to just make up stuff
they think might be interesting. That said, as I mentioned
earlier, I don’t provide complete details and so they do
sometimes have to fill in the gaps. My main requirement
is that whatever assumptions they make are not inconsis-
tent (note the deliberate use of the double negative) with
the text I give.

Figure 4 shows a typical first attempt at a performance
QAS for the Bus Tracker system (in fact produced by one
of the teams in the 2007 class). The first point to make
about this scenario is that the team has identified a reason-
able requirement for the Bus-Tracker system, namely that
providing the estimated arrival times on the displays in a
timely manner is a key requirement. The second point to
make is that the general scenario details are reasonable for
the requirement they are trying to specify. This suggests
that any problems the students have is not due to lack of
understanding as to what they are trying to do, or the gen-
eral idea of what a scenario looks like. The problems are
with their choice of values for the concrete scenario, both
for the specific parts, and for the overall scenario.

The first problem is with the stated stimulus: “a bus
is within one hour of arrival from the specific location.”
This does not describe something that might be regarded
as an actual stimulus. My experience is that the wording
is indicative of confusion as to what constitutes a stimu-
lus, and this is an issue that needs further discussion and
explanation.

A generous interpretation of what has been written
might assume that it was intended to be something like
“a bus reaches a point that is one hour from the specific
location,” which is closer to being a stimulus, however it
is a somewhat nebulous statement, and, more significantly
is inconsistent with both the stated source “gps transmit-
ter on the bus” and the stated artifact “bustrack system” —
the transmitter doesn’t cause a bus to arrive anywhere, and
the bus’ arrival at some point doesn’t directly have any ef-
fect on the overall system. Note that in this case it is not
the values of source and artifact that are the problem, but
the relationships between values for different parts of the
scenario.

A stimulus value that would be more consistent with
the stated source and artifact would be something like “a
message from a bus within one hour from the location is
received.” This suggests that there needs to be another
scenario for when the buses are further away. As QAS
are intended to capture quality requirements, there should
only be separate scenarios if the quality requirements are
different. In this case, it might be reasonable to suppose
that the display does not have to be updated in quite so
timely a manner.

The choice of source indicates some confusion. For
a start, a GPS system typically doesn’t transmit anything,
but that could be due to either lack of knowledge about
how these things work, or what was written being short-
hand for “The subsystem on the bus containing the GPS
receiver.” Nevertheless it is representative of a lack of pre-
cision regarding what exactly constitutes the values of the
different parts of the scenarios.

The choice of artifact also shows a lack of precision.
In the context given, we can probably reasonably assume
that it is the “central” system that is meant, but, as with
any presentation of requirements, we would prefer not to
have to assume anything.

While beginners generally seem to understand what
most of the parts are supposed to do (even if they struggle
to apply this understanding to produce sensible values),
the environment part usually causes the most confusion in
terms of its purpose. The value given in the example “Less
than 5 buses on the display” is, on the face of it, not an un-

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

185

reasonable value. However it implies that there must be
a different scenario for the case when there are more than
5 buses (needed to be) on the display. While it is likely
that in terms ofimplementationthese two cases may be
different, it seems unlikely that the quality requirements
for the two cases should be different, and so separate sce-
narios are unnecessary. I believe this confusion is due to
the students still thinking in terms of what they have to do
to produce the system, rather than thinking about what the
quality requirements of the system are. The fact that sce-
narios are intended to specifyrequirements(not design or
implementation details) and in particularquality require-
ments is in my experience something that needs to be re-
peated and reinforced.

One point to make about this example is, once the is-
sues regarding the other parts of the scenario are resolved,
the stated measure, “The display is updated within 15 sec-
onds,” and response, “The Bus is displayed on the sign,”
are reasonable values. It is not uncommon to get measures
such as “before the bus gets to the next stop”, which, as
well as not really being a measurement, is not something
that any proposed architecture could be evaluated against.

Once all the issues discussed above are resolved, there
is still the question as to how useful the resulting scenario
is. It may describe something that looks like a perfor-
mance requirement, but is it one that we would care about
when developing an architecture? What this scenario does
not do is specify which display is being updated. A bus
does not go to just one bus stop, and most of the time it
will be within one hour of several bus stops, with more
than one having displays. It is not sufficient that the sys-
tem update on bus stop in a timely manner, but that it up-
date several. The need to generate multiple estimates and
deliver them to multiple displays is likely to be significant
in terms of performance requirements. This is a point that
is always missed.

Related to the above point is the fact that there are also
multiple buses, including multiple buses on the same route
(and so visiting the same displays in the same order). This
point is not directly evident in the given scenario. How-
ever, it seems clear that the team was somewhat aware of
this due to their choice of “sporadic event” for the general
value of the scenario, which only makes sense if there are
multiple (albeit unpredictably spaced) events.

There is one remaining problem with the example sce-
nario, which I will address in section 6.

5.3 Other comments

As I mentioned earlier there was usually little difficulty in
coming up with a consistent general scenario, but there are
problems deciding on concrete values to match the general
values. In part, some of those problems are due confusion
as to what the general values meant. For example, distinc-
tion between “sporadic” and “stochastic” was often un-
clear, as are the differences between “latency”, “through-
put”, and “deadline.” Even when it was clear that these
terms had been encountered before, there appeared to be
difficulty applying them in this context. This showed up
in performance discussions most often, but that is almost
certainly because that was the quality attribute I used the
most, figuring students would have better intuition about
it than the less familiar quality attributes.

6 Bus Tracker Scenarios

In this section I will present some of the scenarios I use in
the course to illustrate various points about QAS develop-
ment.

The starting point is to reexamine the information that
has been provided. While I make the point that we have
a responsibility to the client, that doesn’t mean we should
simply accept what we are given uncritically! Close ex-
amination of the given text reveals some problems. For

example, consider the phrase “the estimated arrival time
should be within 2 minutes of the actual time, 95% of the
time.” While it seems reasonable that the estimate should
be reasonably accurate (otherwise what is the point of hav-
ing it), it is not clear what “95% of the time” means. If this
is determined over a day’s operation, which is from 6am
to 12am, then if the system is down for 1 hour it will not
meet this requirement. However, 1 hour of downtime over
a week does meet this requirement.

Another problem is the phrase “Once the bus is within
1 kilometre” which is intended to indicate that if the bus is
a reasonable distance away then the estimates can be less
accurate. However, it takes 3 minutes to travel 1 kilometre
at 20 km/h. Having a 2 minute accuracy requirement when
the bus is only about that far away seems fairly pointless!
Notice that these issues didn’t cause the problems the stu-
dents faced in developing their scenarios.

Instead, we need to determine what the client is really
trying to say. One reasonable interpretation is:

Provide estimated times of arrival accurate
enough to be useful.

Now we can start considering the quality implications of
this requirement. Examples include:

• can the system “keep up,” that is show estimates in
time to be useful? —performance

• can we add new displays quickly and/or cheaply
while still showing accurate enough estimates in time
to be useful? —modifiability

• under what conditions must the system show accurate
enough estimates in time to be useful? —availability

Starting with performance, we need to express what
it means for the system to “keep up” or, “show accurate
enough estimated times of arrivals for all buses on all dis-
plays”. A question that is always raised at this point is
concern of how to specify this requirement without know-
ing how to get accurate enough estimates, or whether the
estimates can be produced fast enough. There are two an-
swers I give to this question. The first is that, while as
engineers we are responsible for building the system, that
does not mean we have to build every little bit of it our-
selves. For such things as estimation algorithms, we could
contract that out to experts (e.g., those with a more tradi-
tional computer science background). The second answer
is that that question isn’t actually relevant when trying to
come up with QASs. The client determines how accurate
the estimate has to be and that dictates how quickly the es-
timates have to be generated. It is up to us, once we know
what “quickly” means, to find develop an architecture that
will meet the requirements (or convince the client to ac-
cept something a little less expensive). For the moment,
the question that needs to be answered is what “quickly”
means.

Source A bus subsystem
Stimulus . . . sends out a message with its current

speed and location every 15 seconds
Artifact . . . to the central subsystem
Environment . . . when all communications and hard-

ware is working adequately.
Response The system produces an estimated ar-

rival time for all relevant displays and
sends them out to the display where the
estimate is shown

Measure . . . in under 30 seconds from when the
bus’ message was sent.

Figure 5: Performance Scenario A

Figure 5 gives my version of a scenario like that shown
in the previous section. It has an issue that the students are

CRPIT Volume 95 - Computing Education 2009

186

quick to point out — how does it make sense to have 15
seconds in one place and 30 in an other? Note that this is
not a problem with the integrity of the scenario itself, but is
a perceived problem with the requirements it is supposed
to capture. This is what is good about QASs. They allow
for a discussion about what the precise requirements are,
rather than having to guess.

Source A bus subsystem
Stimulus . . . sends out a message with its current

speed and location every60 seconds
Artifact . . . to the central subsystem
Environment . . . when all communications and hard-

ware is working adequately.
Response The system produces an estimated ar-

rival time for all relevant displays and
sends them out to the display where the
estimate is shown

Measure . . . in under15 seconds from when the
bus’ message was sent.

Figure 6: Performance Scenario B

Figure 6 shows a scenario that fixes the problem with
Scenario A. It says that each bus sends out its speed and
location every 60 seconds, and all updated estimates based
on that information must be shown within 15 seconds of
the message being sent. This is, however, a more subtle
problem with this scenario — it suggests that a new es-
timate be delivered to every relevant display every time
every bus sends a message. In fact, there is nothing in
the requirements implied by this scenario that prevents an
implementation just sending an old estimate (if it’s not too
old). Nevertheless the scenario does seem to be specifying
more than is intended.

Source A bus subsystem
Stimulus . . . sends out a message with its current

speed and location every 5 seconds
Artifact . . . to the central subsystem
Environment . . . when all communications and hard-

ware is working adequately.
Response The system stores the bus’ id, location,

and speed with a timestamp for when
the message was received

Measure . . . in under 1 second from when the
message is received.

Figure 7: Performance Scenario C

Figure 7 shows a better scenario, in that all it spec-
ifies is that messages that are sent by buses are quickly
recorded. But a feature of all of these scenarios is that
they are “internal”, in that the stimuli are all generated
from within the system, and they imply part of the archi-
tecture (the three subsystems and to some extent how they
interact). The latter point should especially be of concern.
For example, all three scenarios assume that the bus sub-
systems “push” their information to the rest of the system,
rather than the central system polling buses for their cur-
rent speed and location. While the push style interaction
probably makes most sense, requirements that imply de-
sign are to be avoided.

Figure 8 shows a scenario that I feel is more useful for
describing some of the performance requirements for Bus
Tracker. The stimulus is external to the system, namely
a user of the system wanting to use its functionality, and
all it says is that what is shown on the display should be
based on fairly current information about the relevant bus’
speed and location. Note the level of detail provided in the
environment part. This performance requirement does not
apply if there are more than 20 buses scheduled to arrive
(so, so long as the display can scroll through 20 buses in
30 seconds the patron will see her bus’ time within 30 sec-
onds), nor does it apply if the bus is estimated to be more

Source A bus patron
Stimulus . . . wants to know when their bus is go-

ing to arrive at
Artifact . . . the bus stop they’re standing at when
Environment . . . the desired bus is estimated to arrive

in less than 20 minutes and at most 20
buses are estimated to arrive within 20
minutes of the bus stop.

Response The display at the bus top shows an es-
timated time of arrival of the desired
bus based on the actual location of the
bus that is not more than 1 minute old

Measure . . . in under 30 seconds.

Figure 8: Performance Scenario D

than 20 minutes away (although presumably the estimated
time will eventuallyappear on the display, just not in 30
seconds — another scenario would be needed to specify
that).

Now consider the modifiability requirement. Adding
a new display can be a non-trivial operation. The equip-
ment needs to be assembled, a hole dug and wires con-
nected. If we were responsible for building the entire sys-
tem, we might need to make decisions regarding this as-
pect, but in terms of developing asoftwarearchitecture,
it’s the software modifications we need to consider. The
kinds of questions we need to think about includes such
things as: does the change have to be possible when the
system is operational or can we shut the system down, how
do we measure the cost of modification — time, money, or
something else.

Source Operations manager
Stimulus . . . requests that a new display be made

operational
Artifact . . . in the Bus Tracker system
Environment . . . outside of the peak traffic period.
Response The new display starts displaying esti-

mated arrival times for buses relevant
to it

Measure . . . within 5 minutes of the request

Figure 9: Modifiability Scenario E

Figure 9 shows the scenario that requires that a new
display must be able to be brought on-line without affect-
ing the rest of the system, but only during a time that is
outside peak traffic (perhaps because the client does not
want to do anything that will affect the system’s behaviour
during the time when most of the patrons want to use it).
This scenario assumes that all the equipment is already in
place.

Source Operations manager
Stimulus . . . requests that a new display be made

operational
Artifact . . . in the Bus Tracker system
Environment . . .while no buses are running
Response The new display is available to start

displaying estimated arrival times for
buses relevant to it

Measure . . .within 4 hours.

Figure 10: Modifiability Scenario F

Figure 10 shows another possibility. If the client
agreed that this scenario was acceptable then it would
allow the system to be shut down and restarted, which
may allow a choice of architecture (and so system) that
is cheaper than what would be required to meet Scenario
E.

For the availability requirements, we need to consider
what constitutes “useful”, for example this might mean

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

187

Source A random event
Stimulus . . . causes a failure
Artifact . . . to the subsystem on a bus
Environment . . . while the bus is on a bus route.
Response The relevant displays must start show-

ing the scheduled arrival time for the
bus

Measure . . . until it next starts a route

Figure 11: Availability Scenario G

“most” of the time estimated arrival times for any given
bus must be shown, and the remainder of the time it’s
acceptable to show the scheduled arrival time. Figures
11 and 12 show two possibilities. Scenario G represents
the expectation that the failure of a single bus’ subsystem
should not impact the rest of the system and be fixable
once the bus returns to base (that is, fast enough that it can
be done before the next time the bus goes out on a route).
Note that this measure for this scenario is not really a use-
ful one as presented. We really need specific details as to
how long bus routes are and how quickly buses get turned
around to go out on another route.

Source A random event
Stimulus . . . causes a failure
Artifact . . . to the communications network
Environment . . . during normal operation.
Response All displays must start showing the

scheduled arrival time for all buses
Measure . . . within 30 seconds of the failure.

Figure 12: Availability Scenario H

Scenario H indicates what has to happen when the
communications network goes down. One possibility
could have been to just show nothing in this case, but this
scenario requires that all the displays showed the sched-
uled arrival times for all buses. This requirement has an
architectural implication. It implies that all displays must
have access to these scheduled times, which means that
they will need local copies of those times.

7 Concluding Comments

I have described some of the issues I have encountered
in teaching the concept of Quality Attribute Scenarios to
third year software engineering students. I have taught
software architecture for 6 years now, 5 of which using
QAS. I have presented some of the details of the Bus
Tracker case study to aid my teaching of this concept.

My goal in teaching software architecture is not to pro-
duce software architects — as with any other engineer-
ing discipline the theory has to be tempered with real-
world experience before it becomes useful. Many have
suggested that to teach software architecture (and soft-
ware engineering in general) the coursework needs to be
as “real world” as possible. This is, however, difficult in
a university environment, and I think we must be content
with giving as much practical application of the theory as
possible. My conclusion based on my experiences teach-
ing this course is that, at least at the level I am teaching, the
students don’t have the necessary experience to appreciate
a “real world” example. They are still struggling to un-
derstand the fundamental principles, and if these are not
properly understood, no amount of real world examples
will help.

In the case of QASs, practical application takes the
form of multiple cycles of creating scenarios and evalu-
ating them for multiple applications. My goal is to make
sure that the theory is understood. Based on the assess-
ment items relating to QASs (assignment and typically an

exam question) I am meeting that goal, at least with re-
spect to the QAS concept.

Acknowledgements

My thanks to the students I have taught in the 6 years of
software architecture teaching I have done. They asked
the hard questions that exposed the issues. In particular,
thanks to the 2007 Part III software engineering cohort,
whose examples have been used here with their permis-
sion.

References

Bass, L., Clements, P. & Kazman, R. (2003),Software Ar-
chitecture in Practice, 2 edn, Addison-Wesley.

Bucci, P., Long, T. J. & Weide, B. W. (1998), Teaching
software architecture principles in CS1/CS2,in ‘ISAW
’98: Proceedings of the third International Workshop
on Software Architecture’, ACM Press, New York, NY,
USA, pp. 9–12.

Garlan, D., Allen, R. & Ockerbloom, J. (1995), ‘Architec-
tural mismatch: Why reuse is so hard’,IEEE Software
12(6), 17–26.

Gruba, P., Moffat, A., Sondergaard, H. & Zobel, J. (2004),
What drives curriculum change?,in R. Lister & A. L.
Young, eds, ‘Sixth Australasian Computing Educa-
tion Conference (ACE2004)’, Vol. 30 ofCRPIT, ACS,
Dunedin, New Zealand, pp. 109–117.

Hamer, J., Kell, C. & Spence, F. (2007), Peer assess-
ment using Aropä,in ‘ACE ’07: Proceedings of the
ninth Australasian conference on Computing educa-
tion’, Australian Computer Society, Inc., Darlinghurst,
Australia, Australia, pp. 43–54.

Karam, O., Qian, K. & Diaz-Herrera, J. (2004), A model
for SWE course “software architecture and design”,in
‘34th Annual Frontiers in Education (FIE)’, pp. 4–8.

Lago, P. & van Vliet, H. (2005), Teaching a course on soft-
ware architecture,in ‘18th Conference on Software En-
gineering Education and Training (CSEE&T)’, pp. 35–
42.

Royce, W., Boehm, B. & Druffel, C. (1994), Employing
unas technology for software architecture education at
the university of southern california,in ‘WADAS ’94:
Proceedings of the eleventh annual Washington Ada
symposium & summer ACM SIGAda meeting on Ada’,
ACM Press, New York, NY, USA, pp. 113–121.

SEI (2007), ‘SEI list of definitions of software ar-
chitecture’, http://www.sei.cmu.edu/
architecture/definitions.html Accessed
September.

Shaw, M. & Clements, P. (2006), ‘The golden age of soft-
ware architecture’,IEEE Software23(2), 31–39.

Shaw, M. & Garlan, D. (1996),Software Architecture:
Perspectives on an Emerging Discipline, Prentice Hall.

CRPIT Volume 95 - Computing Education 2009

188

	ace2009deRaadt.pdf
	Introduction
	Previous Work
	Initial Study
	Pilot Study

	Participants and Setting
	Research Questions
	Integration Questions
	Impact Question

	Integrating Strategies
	The ‘Strategy Guide’
	Explicit Incorporation in Written Notes
	Explicit Incorporation in Lectures
	Strategies in Tutorial and Practical Exercises
	Assignment Instructions
	Assignment Marking Criteria
	Examination Questions
	Knowledge-Comprehension Questions
	Knowledge-Generation Questions
	Strategy-Comprehension Questions
	Strategy-Generation Questions

	Marking the use of Strategies in the Examination

	Methodology
	Integration
	Impact
	Guarded Division Problem (2005 Examination)
	Averaging Problem (2007 Examination)
	Avoiding Bias

	Results
	Integration
	Impact
	Guarded Division Problem (2005 Examination)
	Averaging Problem (2007 Examination)

	Discussion
	Integration
	Impact

	Conclusions and Future Work
	References

	ace2009Denny.pdf
	Introduction
	Methodology
	Overall quality ratings
	Objective quality ratings
	Quality in relation to exams

	Results
	Do students’ ideas of quality match those of staff?
	Objective Quality
	Quality in Relation to Exams

	Discussion
	Question Case Studies
	Error discovery and correction
	Question styles

	Conclusions
	Future work
	References

	ace2009Koppi.pdf
	Abstract
	1 Introduction
	2 Design of the online survey of graduates in the workplace
	3 Results and discussion
	3.1 Personal/interpersonal abilities
	3.2 Thinking/cognitive abilities
	3.3 Business abilities
	3.4 Technical abilities
	3.5 Learning experiences at university
	3.6 The university experience

	4 Conclusion
	5 References

	ace2009Lonnberg.pdf
	Long-term Research Aims
	Aims of This Study
	Students' Understandings of Concurrent Programming

	The Study
	Setting
	Interviews
	Analysis

	Results
	Purposes of the Programming Task
	Sources of Failure
	Software Development Processes
	Approaches to Testing

	Conclusions
	Understanding Goals
	Generating Test Cases
	Understanding Program Behaviour
	Understanding Errors

	Summary

	05_proceedings_invited_papers.pdf
	ACE2009Invited2.pdf
	1 Introduction
	2 The Brief History of BRACElet
	2.1 The First BRACElet Paper
	2.1.1 Reflection: The Two-Task Approach

	2.2 Follow up to the First Paper
	2.3 Code Classification Questions
	2.4 Parson’s Problems
	2.5 The Traffic Light Conjecture
	2.6 The Relationship to Code Writing
	2.7 The Path to Abstraction
	2.8 Doodles
	2.9 Reasoning with Diagrams
	2.10 Developing the Research Methods
	The BRACElet project has made extensive use of two taxonomies, the revised Bloom’s taxonomy and the SOLO taxonomy. However, in doing so, BRACElet participants have had to come to a mutual understanding of how these taxonomies apply to the work of novice programmers. This has not been easy – indeed BRACElet participants are yet to develop a strong consensus on how these taxonomies are best applied to novice programmers. Thompson, et al. (2008) represents our best attempt thus far to apply a consistent interpretation with concrete exemplars of the revised Bloom’s taxonomy, and Clear, et al. (2008b) does the same for the SOLO taxonomy.

	3 The BRACElet Guiding Principles
	3.1 Belief in a strong teaching–research nexus
	3.2 Assessing the student always comes first
	3.3 The Common Core
	3.4 Repetition for Robustness
	3.5 The Rules of Engagement
	3.6 The Publication Protocol
	3.7 Membership / Recruitment
	3.8 The Open Research Plan

	4 The 2009.1 (Wellington) Common Core
	4.1 Basic Knowledge & Skills
	4.1.1 Anticipated Analysis

	4.2 Reading / Understanding
	4.2.1 Anticipated Analysis

	4.3 Common Core 3: Writing
	4.3.1 Anticipated Analysis

	4.4 Other Data to be Collected
	4.5 2009.1 (Wellington) Membership

	5 Conclusion

