
Conferences in Research and Practice in

Information Technology

Volume 92

Database Technologies 2009

Australian Computer Science Communications, Volume 31, Number 2

Database Technologies 2009

Proceedings of the
Twentieth Australasian Database Conference
(ADC 2009), Wellington, New Zealand,
January 2009

Athman Bouguettaya and Xuemin Lin, Eds.

Volume 92 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Database Technologies 2009. Proceedings of the Twentieth Australasian Database Conference (ADC
2009), Wellington, New Zealand, January 2009

Conferences in Research and Practice in Information Technology, Volume 92.

Copyright c©2009, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:
Athman Bouguettaya
CSIRO ICT Centre
GPO Box 664
Canberra ACT 2601,
Australia
Email: Athman.Bouguettaya@csiro.au

Xuemin Lin
School of Computer Science and Engineering
The University of New South Wales
Sydney, NSW 2052,
Australia
Email: lxue@cse.unsw.edu.au

Series Editors:
Vladimir Estivill-Castro, Griffith University, Queensland
John F. Roddick, Flinders University, South Australia
Simeon Simoff, University of Western Sydney, NSW
crpit@infoeng.flinders.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 92.
ISSN 1445-1336.
ISBN 978-1-920682-73-6.

Printed, January 2009 by Flinders Press, PO Box 2100, Bedford Park, SA 5042, South Australia.
Cover Design by Modern Planet Design, (08) 8340 1361.

The Conferences in Research and Practice in Information Technology series aims to disseminate the results of
peer-reviewed research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Proceedings of the Twentieth Australasian Database Conference (ADC 2009),
Wellington, New Zealand, January 2009

Preface . vii

Programme Committee . viii

Organising Committee . x

Welcome from the Organising Committee . xi

CORE - Computing Research & Education . xii

ACSW Conferences and the Australian Computer Science
Communications . xiii

ACSW and ADC 2009 Sponsors . xv

Invited Papers

Large-scale Video Sequence Indexing: Impacts, Ideas and Trends . 3
Heng Tao Shen

Engineering Agile Systems . 5
Dimitrios Georgakopoulos

Contributed Papers

The Effect of Sparsity on Collaborative Filtering Metrics . 9
Jesus Bobadilla and Francisco Serradilla

Solving the Golden Transaction Problem for ARIES-based Multi-level Recovery 19
Jayson Speer, Markus Kirchberg, Faizal Riaz-ud-Din and Klaus-Dieter Schewe

A Citation Analysis of the ADC 2006 – 2008 Proceedings, with Reference to the CORE Conference
and Journal Rankings . 29

Raymond Lister and Ilona Box

ActiveTags: Making Tags More Useful Anywhere on the Web . 39
Stephan Hagemann and Gottfried Vossen

Unified Q-ary Tree for RFID Tag Anti-Collision Resolution . 47
Bela Stantic and Prapassara Pupunwiwat

Score Aggregation Techniques in Retrieval Experimentation . 57
Sri Devi Ravana and Alistair Moffat

S.E.A.L. – A Query Language for Entity-Association Queries . 67
Edward Stanley, Pavle Mogin and Peter Andreae

On Inference of XML Schema with the Knowledge of an Obsolete One . 77
Irena Mlýnková

Elliptic Indexing of Multidimensional Databases . 85
Ondrej Danko and Tomás̃ Skopal

Efficient XQuery Join Processing in Publish/Subscribe Systems . 95
Ryan H. Choi and Raymond K. Wong

What is Required in Business Collaboration? . 105
Daisy Daiqin He, Michael Compton, Kerry Taylor and Jian Yang

Mobile Information Exchange and Integration: From Query to Application Layer 115
Van T.K. Tran, Raymond K. Wong, William K. Cheung and Jiming Liu

Event-based Communication for Location-based Service Collaboration . 125
Annika Hinze, Yann Michel and Lisa Eschner

Conditional Purpose Based Access Control Model for Privacy Protection . 135
Md Enamul Kabir and Hua Wang

Information Retrieval in Structured Domains . 143
Vincent W. L. Tam and John Shepherd

CSC: Supporting Queries on Compressed Cached XML . 151
Stefan Böttcher and Rita Hartel

Ranking-Constrained Keyword Sequence Extraction from Web Documents . 159
Dingyi Chen, Xue Li, Jing Liu and Xia Chen

Author Index . 169

vi

Preface

The series of Australasian Database Conference is an annual forum for exploring novel technical develop-
ments and applications of database systems. The 20th Australasian Database Conference, ADC 2009, is
held in Wellington, New Zealand, as part of Australasian Computer Science Week.

ADC 2009 invited submissions of original contributions in all research areas of databases and its applica-
tions. The program committee received forty three submissions of full research papers; each was thoroughly
reviewed by at least three PC members or external reviewers. Seventeen papers have been selected for pre-
sentation at the conference. In addition, the program committee invited two prominent researchers, Dr.
Dimitrios Georgakopoulos (CSIRO) and Dr. Heng Tao Shen (UNSW) for the traditional ADC invited talks.

The ADC PC chairs have also carefully evaluated all accepted papers for the conference’s Best Paper
Award. This year’s Best Paper award goes to two papers. The first paper that won the award is “Access
Control: What is Required in Business Collaboration?” by Daisy Daiqin He, Michael Compton, Jian Yang
and Kerry Taylor. The second paper that won the award is “Score Aggregation Techniques in Retrieval
Experimentation” by Sri Devi Ravana and Alistair Moffat. Congratulations to both teams! We are grateful
to the EII for donating the prize for the best paper award.

We would like to take this opportunity to thank all the authors who submitted papers and conference
participants for the fruitful discussions. We are grateful to the members of the program committee and
external referees for their timely expertise and effort in carefully reviewing the papers. We are thankful to
Mr. Haichuan Shang and Mr Chuan Xiao from the University of New South Wales for their excellent work
on maintaining the conference web site and the paper reviewing system.

Athman Bouguettaya
CSIRO

Xuemin Lin
University of New South Wales

ADC 2009 Programme Chairs
January 2009

vii

Programme Committee

Chairs

Athman Bouguettaya, CSIRO (Australia)
Xuemin Lin, University of New South Wales (Australia)

Members

James Bailey, University of Melbourne (Australia)
Boualem Benatallah, University of New South Wales (Australia)
Elisa Bertino, Purdue University (USA)
Sanjay Chawla, University of Sydney (Australia)
Stijn Dekeyser, University of Southern Queensland (Australia)
Gill Dobbie, University of Auckland (New Zealand)
Annika Hinze, University of Waikato (New Zealand)
Yoshiharu Ishikawa, Nagoya University (Japan)
Mark Cameron, CSIRO, (Australia)
Chen Li, University of California · Irvine (USA)
Xue Li, University of Queensland (Australia)
Tok Wang Ling, National University of Singapore (Singapore)
Sebastian Link, Victoria University of Wellington (New Zealand)
Chengfei Liu, Swinburne University of Technology (Australia)
Qing Liu, CSIRO (Australia)
Jixue Liu, University of South Australia (Australia)
Fred Lochovsky, The Hong Kong University of Science and Technology (Hong Kong SAR, China)
Sebastian Maneth, NICTA (Australia)
Brahim Medjahed, University of Michigan (USA)
Beng Chin Ooi, National University of Singapore (Singapore)
Liam O’Brien, NICTA (Australia)
Mourad Ouzzani, Purdue University (USA)
Helen Paik, University of New South Wales (Australia)
Krithi Ramamrithami, Indian Institute of Technology (India)
Uwe Roehm, University of Sydney (Australia)
Shazia Sadiq, University of Queensland (Australia)
Quan Sheng, University of Adelaide (Australia)
Markus Stumptner, University of South Australia (Australia)
Heng Tao Shen, University of Queensland (Australia)
John Shepherd, University of New South Wales (Australia)
Yufei Tao, Chinese University of Hong Kong, (Hong Kong SAR, China)
Zahir Tari, Royal Melbourne Institute of Technology (Australia)
Paul Thomas, CSIRO (Australia)
Anthony Tung, National University of Singapore (Singapore)
Wei Wang, University of New South Wales (Australia)
Gerald Weber, University of Auckland (New Zealand)
Raymond Wong, University of New South Wales (Australia)
Jian Yang, Macquarie University (Australia)
Jeffrey Yu,, Chinese University of Hong Kong, (Hong Kong SAR, China)
Qi Yu, Rochester Institute of Technology (USA)
Rui Zhang, University of Melbourne (Australia)
Jenny Zhang, Royal Melbourne Institute of Technology (Australia)
Yanchun Zhang, Victoria University (Australia)
Xiaofang Zhou, University of Queensland (Australia)
Aoying Zhou, China East Normal University (China)
Xuan Zhou, CSIRO (Australia)

viii

Additional Reviewers

Mohamad Eunus Ali
Zhifeng Bao
Yueguo Chen
Ryan Choi
Georg Grossmann
Yanan Hao
Mike Ma
Bo Ning
Sebastian Obermeier
Lu Qin

Yacine Sam
Martin Stradling
Evi Syukur
Stijn Vansummeren
Xin Wang
Yanbo Wu
Huayu Wu
Yong Yang
Zhenjie Zhang
Jixue Liu

ix

Organising Committee

Co-Chairs

Dr Alex Potanin
Professor John Hine

Venues

Dr David Pearce

Operations

Dr Peter Komisarczuk
Mrs Suzan Hall
Mr Craig Anslow

Finance and Program

Dr Stuart Marshall

Communications

Dr Ian Welch
Mr Craig Anslow

Events

Professor John Hine

x

Welcome from the Organising Committee

We would like to welcome you to ACSW2009 hosted by Victoria University of Wellington, New Zealand.
Wellington is set on the edge of a stunning harbour and surrounded by rolling hills. The earliest name

for Wellington, from Maori legend, is Te Upoko o te Ika a Maui. In Maori it means the head of Maui’s
fish. Caught and pulled to the surface by the Polynesian navigator Maui, the fish became the North Island.
Wellington is the capital city of New Zealand and home to the seat of parliament. But this vibrant and
dynamic city also has many other capital claims including Culture capital, Creative capital and Events
capital. It is a compact, walkable city waiting to be explored. The conference venue is less than fifteen
minutes walk to accommodation, Courtenay Place with its wide range of bars, and the harbour with its
restaurants and activities such as sea kayaking. The conference venue itself is in the Museum of New
Zealand Te Papa Tongarewa, offering visitors a unique and authentic experience of this country’s treasures
and stories. Over five floors, you can explore the nation’s nature, art, history, and heritage - from the
shaping of its land to the spirit of its diverse peoples, from its unique wildlife to its distinctive art and
visual culture.

Victoria University of Wellington - Te Whare Wānanga o te Ūpoko o te Ika a Māui - is over a century
old. Victoria College was founded through an Act of Parliament in 1897, the year of Queen Victoria’s
Diamond Jubilee celebrations, and named in her honour. Victoria is a thriving community of almost 25,000
people. Situated in the capital city across four campuses, Victoria can take advantage of connections and
values its relationships with iwi, business, government, the judiciary, public and private research organisa-
tions, cultural organisations and resources, other universities and tertiary providers and the international
community through the diplomatic corps. ACSW2009 coincides with the opening of the new School of En-
gineering and Computer Science as part of the Faculty of Engineering at Victoria University of Wellington
- combining a long history of research and teaching of the software engineering and network engineering
in the Computer Science department and computer system engineering and electronic engineering in the
Physics department. Professor John Hine, co-chairing ACSW2009, is the current Dean of Engineering and
the inaugural Head of School of Engineering and Computer Science.

ACSW2009 consists of the following conferences:

– Australasian Computer Science Conference (ACSC) (Chaired by Bernard Mans),
– Australasian Computing Education Conference (ACE) (Chaired by Margaret Hamilton and Tony

Clear),
– Australasian Database Conference (ADC) (Chaired by Athman Bouguettaya and Xuemin Lin),
– Australasian Symposium on Grid Computing and e-Research (AUSGRID) (Chaired by Wayne Kelly

and Paul Roe),
– Computing: The Australasian Theory Symposium (CATS) (Chaired by Prabhu Manyem and Rod

Downey),
– Asia-Pacific Conference on Conceptual Modelling (APCCM) (Chaired by Markus Kirchberg and Se-

bastian Link),
– Australasian Information Security Conference (AISC) (Chaired by Ljiljana Brankovic and Willy Susilo),
– Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by Jim

Warren),
– Australasian User Interface Conference (AUIC) (Chaired by Gerald Weber and Paul Calder),
– Australasian Computing Doctoral Consortium (ACDC) (Chaired by David Pearce and Vladimir Estivill-

Castro).

The nature of ACSW requires the co-operation of numerous people. We would like to thank all those
who have worked to ensure the success of ACSW2009 including the Organising Committee, the Conference
Chairs and Programme Committees, our sponsors, the keynote speakers and the delegates.

Dr Alex Potanin and Professor John Hine
ACSW2009 Co-Chairs
Victoria University of Wellington
January, 2009

CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2009 in Wellington. CORE, the peak body representing academic
computer science in Australia and New Zealand, is responsible for the annual ACSW series of meetings,
which are a unique opportunity for our community to network and to discuss research and topics of mutual
interest. The original component conferences – ACSC, ADC, and CATS, which formed the basis of ACSW
in the mid 1990s – now share the week with seven other events, which build on the diversity of the
Australasian CS community.

This year, we have chosen to feature a small number of plenary speakers chosen from across the disci-
pline, Ronald Fagin, Ian Foster, Mark Guzdial, and Andy Hopper. I thank them for their contributions to
ACSW’09.The efforts of the conference chairs and their program committees have led to strong programs
in all the conferences – again, thanks. And thanks are particularly due to Alex Potanin, John Hine, and
their colleagues for organising what promises to be a memorable ACSW.

In Australia, 2008 has been a busy year for academia, with the incoming Labor government instituting
major reviews in areas such as the higher education sector, research funding, postgraduate study, and
national curricula. However, while the reviews have exposed severe shortcomings in the funding of higher
education and research, they have not as yet been translated into definite action, and the sector as a whole
is shrinking. Although there is a widespread perception of a shortage of IT staff, and graduate salaries
remain strong, student interest in ICT continues to be low. Moreover, per-place funding for computer
science students has dropped relative to that of other physical and mathematical sciences. Several forums
and initiatives involving industry, government, and academia have attempted to address the issue of the
ongoing difficulties of attracting students to the discipline, but with little perceptible effect. New initiatives
that seek to address the issues of students and funding will be a CORE priority in 2009.

During 2008, CORE continued to work on journal and conference rankings, with much of the activity
driven by requests for information from the government. A key aim is now to maintain the rankings, which
are widely used overseas as well as in Australia, a challenging process that needs to balance competing
special interests as well as addressing the interests of the community as a whole. A new activity in 2008
was a review of computing curriculum, which is still ongoing, with the intention that a CORE curriculum
statement be used for accreditation of degrees in computer science, software engineering, and information
technology. ACSW’09 includes a forum on computing curriculum to discuss this process.

CORE’s existence is due to the support of the member departments in Australia and New Zealand, and
I thank them for their ongoing contributions, in commitment and in financial support. Finally, I am grateful
to all those who gave their time to CORE in 2008; in particular, I thank Jenny Edwards, Alan Fekete,
Tom Gedeon, Leon Sterling, Vanessa Teague, and the members of the executive and of the curriculum and
ranking committees.

Justin Zobel
President, CORE
January, 2009

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.

2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.

2008. Volume 30. Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACE. Australian/Australasian Computing Education Conference.
ACSAC. Asia-Pacific Computer Systems Architecture Conference (previously Australian Computer Architecture

Conference (ACAC).
ACSC. Australian/Australasian Computer Science Conference.
ACSW. Australian/Australasian Computer Science Week.
ADC. Australian/Australasian Database Conference.
AISW. Australasian Information Security Workshop.
APBC. Asia-Pacific Bioinformatics Conference.
APCCM. Asia-Pacific Conference on Conceptual Modelling.
AUIC. Australian/Australasian User Interface Conference.
AusGrid. Australasian Workshop on Grid Computing and e-Research.
CATS. Computing - The Australian/Australasian Theory Symposium.
HDKM. Australasian Workshop on Health Data and Knowledge Management.
HIKM. Australasian Workshop on Health Informatics and Knowledge Management (former HDKM).

Note that various name changes have occurred, most notably the change of the names of conferences to reflect a

wider geographical area.

xiv

ACSW and ADC 2009 Sponsors

We wish to thank the following sponsors for their contribution towards this conference. For an up-to-date overview
of sponsors of ACSW 2009 and ADC 2009, please see http://www.mcs.vuw.ac.nz/Events/ACSW2009/Sponsors.

CityLink, New Zealand,
www.citylink.co.nz

New Zealand Computer Society,
www.nzcs.org.nz

Victoria University of Wellington,
www.victoria.ac.nz

Australian Computer Society,
www.acs.org.au

CORE - Computing Research and Education,
www.core.edu.au

Xero,
www.xero.com

Security Assessment, New Zealand,
www.security-assessment.com

Catalyst, New Zealand,
www.catalyst.net.nz

Helium, New Zealand,
www.heliumnz.co.nz

Sponsors of ADC’09 are:

ARC Research Network in Enterprise
Information Infrastructure,

www.eii.edu.au

Sponsors of ADC’09 are:

CSIRO,
www.csiro.au

School of Computer Science and Engineering,
www.cse.unsw.edu.au

xv

Invited Papers

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

1

CRPIT Volume 92 - Database Technologies 2009

2

Large-scale Video Sequence Indexing: Impacts, Ideas and Trends

Heng Tao Shen
School of Information Technology and Electrical Engineering

The University of Queensland
QLD 4072, Australia

Shenht@itee.uq.edu.au

Abstract
With the advances of hardware (e.g., wide availability of Webcam) and software (e.g., video editing or instant
messaging software), the amount of video data has grown rapidly in many fields, such as broadcasting, advertising,
filming, personal video archive, and medical/scientific video repository. In addition, Web has generated enormous
impact by popularizing video publishing and sharing (e.g., social networking websites). Online delivery of video
content has surged to an unprecedented level. The wide availability of video data fuels many novel applications, such as
near-duplicate video detection, in-video advertising, video recommendation, web video search, etc. With these
demanding applications, how to manage large-scale video databases and search similar video content is of uttermost
importance. Although content-based video search has recently attracted plenty of attention, the high complexity of
video data, coupled with large volume, poses huge challenges towards large-scale video sequence search. As the
volume of video data continues to grow rapidly, the demand of efficient indexing on large-scale video databases from
database community is increasingly imperative.

In this talk, we will look at the problem of effective indexing supports for large-scale video sequence search in various
forms, such as clip matching, subsequence matching and continuous stream matching. Its impacts and challenges will
be discussed, followed by our recent ideas and developments to tackle this problem. Its future trends in next age will
also be discussed.

Keywords: video search, video database, indexing, sequence matching, similarity measure, query processing.
.

Copyright © 2009, Australian Computer Society, Inc. This paper appeared at the 20th Australasian Database Conference (ADC
2009), Wellington, New Zealand. Conferences in Research and Practice in Information Technology (CRPIT), Vol. 92. A.
Bouguettaya, X. Lin, Eds. Reproduction for academic, not-for profit purposes permitted provided this text is included.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

3

CRPIT Volume 92 - Database Technologies 2009

4

Engineering Agile Systems

Dimitrios Georgakopoulos
CSIRO ICT Centre

GPO Box 664, Canberra ACT 2601, Australia

dimitrios.georgakopoulos@csiro.au

Abstract
The majority of today's software systems and organizational/business structures have been built on the foundation of
solving problems via long-term data collection, analysis, and solution design. This traditional approach of solving
problems and building corresponding software systems and business processes, falls short in providing the necessary
solutions needed to deal with many problems that require agility as the main ingredient of their solution. For example,
such agility is needed in responding to an emergency, in military command control, physical security, price-based
competition in business, investing in the stock market, video gaming, network monitoring and self-healing, diagnosis in
emergency health care, and many other areas that are too numerous to list here. The concept of Observe, Orient,
Decide, and Act (OODA) loops is a guiding principal that captures the fundamental issues and approach for engineering
agile information systems that deal with many of these problem areas. However, there are currently few software
systems that are capable of supporting OODA. In this talk, we advocate a combination of complex event processing,
service computing, and OODA principles for building agile systems, and provide a tour of corresponding research
issues and state of the art solutions. We also provide specific examples of agile systems from the video surveillance,
emergency response, and intelligence gathering domains. .

Keywords: Service computing, complex event processing, OODA.

Copyright © 2009, Australian Computer Society, Inc. This paper appeared at the 20th Australasian Database Conference
(ADC2009), Wellington, New Zealand. Conferences in Research and Practice in Information Technology (CRPIT), Vol. 92. A.
Bouguettaya, X. Lin, Eds. Reproduction for academic, not-for profit purposes permitted provided this text is included.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

5

CRPIT Volume 92 - Database Technologies 2009

6

Contributed Papers

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

7

CRPIT Volume 92 - Database Technologies 2009

8

The Effect of Sparsity on Collaborative Filtering Metrics

Jesus Bobadilla and Francisco Serradilla
Universidad Politecnica de Madrid

Crta. De Valencia, Km 7, 28031 Madrid, Spain

jbobi@eui.upm.es, fserra@eui.upm.es

Abstract

This paper presents a detailed study of the behavior of three

different content-based collaborative filtering metrics

(correlation, cosine and mean squared difference) when they

are processed on several ratio matrices with different levels of

sparsity. The total number of experiments carried out is

648, in which the following parameters are varied: metric

used, number of k-neighborhoods, sparsity level and type

of result (mean absolute error, percentage of incorrect

predictions, percentage of correct predictions and

capacity to generate predictions). The results are

illustrated in two and three-dimensional representative

graphs. The conclusions of the paper emphasize the

superiority of the correlation metric over the cosine

metric, and the unusually good results of the mean

squared difference metric when used on matrices with

high sparsity levels, leading us to interesting future

studies.

Keywords: recommender systems, sparsity, collaborative

filtering, metric

1 Introduction

At present, Recommender Systems (RS), are broadly

used to implement Web 2.0 services (Janner 2007) as

mentioned by Knights and Lin (2007), based on

Collaborative Filtering (CF). RS make predictions about

the preferences of each user based on the preferences of a

set of “similar” users.

This way, a trip to Canary Islands could be

recommended to an individual who has rated different

destinations in the Caribbean very highly, based on the

positive ratings about the holiday destination of “Canary

Islands” of an important number of individuals who also

rated destinations in the Caribbean very highly.

There are a large number of applications based on RS

(Jinghua 2007, Baraglia 2004, and Fesenmaier 2002),

some of which are centered on the movie

recommendation area (Konstan 2004, Antonopoulus

2006, Li 2005).

The quality of the results offered by a RS greatly

depends on the quality of the results provided by its CF

(Adomavicius 2005, Herlocker 2004) phase; i.e. it is

essential to be capable of adequately selecting the

group of users most similar to a given individual.

The similarity among users can be computed in three

different ways: content-based methods, model-based

methods and hybrid approaches. Content-based methods

(Breese 1998, Kong 2005) use similarity metrics

(Herlocker 2004) which operate directly on the

individual user‟s ratios (in the trip recommender

example, that is each value voted for each travel

destination). Model-based methods (Breese 1998) use

user ratios to create a computable model (Bayesian

classifier (Cho 2007), neural network (Ingoo 2003),

fuzzy system [16], etc.) and from this model they predict

the clusters of similar users.

At present, for reasons of predictability and

efficiency, commercial RS (Linden 2003) are

implemented using content-based CF metrics. Model-

based CF can usually be found in non-commercial

research phases.

The majority of CF research aims to increase the

accuracy and coverage (Giaglis 2006, Li 2005, Fuyuki

2006, and Manolopoulus 2007); nevertheless, it is

advisable to improve certain other factors: effectiveness

of recommendations, searching for good items,

credibility of recommendations, precision and recall

measures, etc.).

Memory-based methods work on two-dimensional

matrices of U users who have rated a number of items I.

We can consider a RS running in an e-travel agency,

where, over the years, thousands of travelers have rated

hundreds of destinations, for example.

An important problem in obtaining effective

predictions using RS is the fact that most of the users

only rate a very small proportion of the items; this is

known as the sparsity problem. When the matrix is very

sparse, it means there are many users who have rated

very few items and this leads to two main negative

effects:

 The set of similar users (k-neighborhoods)

(Herlocker 2002) does not suitably match the

preferences of the recommended user (there are

not enough common rated items to establish a

reliable similarity result between two users).

 It is not easy to recommend items to the user, as

you are not likely to find enough k-

neighborhoods who had rated the same items

positively.

Copyright © 2009, Australian Computer Society, Inc. This paper

appeared at the 20th Australasian Database Conference (ADC

2009), Wellington, New Zealand. Conferences in Research and

Practice in Information Technology (CRPIT), Vol. 92. A.

Bouguettaya, X. Lin, Eds. Reproduction for academic, not-for

profit purposes permitted provided this text is included.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

9

Consequently, the accuracy and the majority of the main

effectiveness measures of the CF predictions drop when

they are applied to extremely sparse matrices, leading to

the users losing confidence in the RS service as a whole.

The sparsity problem has traditionally been tackled

using user profile information to reinforce the similarity

measure. The CF techniques called demographic filtering

(Pazzani 1999) use all the possible additional information

to establish the similarity among users such as gender,

age, education, area code, etc.

Another approach in order to reduce the sparsity

problem is the use of a dimensionality reduction

technique such as Singular Value Decomposition (SVD)

(Sarwar 2000).

The demographic filtering approach has two important

restrictions:

 More often than not there is no demographic

information (or not enough demographic

information) in the RS database.

 Establishing similarities based on demographic

information is very risky and can easily lead to

incorrect recommendations.

The dimensionality reduction approach removes

unrepresentative users or items. At present some research

works use statistical techniques such as Principle

Component Analysis (PCA) (Goldbergh 2001) and

information retrieval techniques such as Latent Semantic

Indexing (LSI) (Deerwester 1990, and Hofmann 2003).

The main problem with the reduction approach is the

inherent loss of information in the reduction process.

Alternatively, other approaches exist with which to

deal with the sparsity problem, such as the use of trust

inferences (Papagelis 2005), attraction-weighted

information filtering (Bruyn 2004) and topographic

organization of user preferences patterns (Polcicova

2004).

2 Content-Based Metrics

Content-based methods work on a table of U users who

have rated a number of items I. The prediction of a non-

rated item i for a user u is computed as an aggregate of

the ratings of the K most similar users (k-neighborhoods)

for the same item i, where denotes the set of k-

neighborhoods.

The most common aggregation approaches are the

average (1) and the weighted sum (2).






Kk

ikiu r
K

r
~

,, ~
1

 (1)





Kk

ikiu rkusimr
~

,,),( (2)

Where μ acts as a normalizing factor, usually computed

as:






Kk

kusim
~

),(
1

 (3)

The similarity approaches usually compute the similarity

between two users x and y: sim(x,y) based on their ratings

of items that both users have rated (4).

  iyix randrIi ,,| (4)

The most popular similarity metrics are Pearson

correlation (5) and cosine (6), although we will complete

the experiments in this paper by adding the least known

Mean Squared Difference (MSD) metric (7).

  

    







i i yiyxix

yiyi xix

rrrr

rrrr
yxsim

2

,

2

,

,,
),((5)






i iyi ix

i iyix

rr

rr
yxsim

,
2

,
2

,,
),((6)

 




I

i

iyyx rr
I

yxsim

1

2
,,

1
),((7)

The research work shown in this paper is based on

comparative experiments using Pearson (5), cosine (6)

and MSD (7) metrics, the average aggregation approach

(1), and the Mean Absolute Error (8).

MSD has been selected due to its unique behavior,

which is very different to the correlation and cosine

metrics, mainly when it is used in sparse ratio matrices.

3 Design of Experiments

In order to discover the behavior of each of the three

metrics analyzed, we used the MovieLens database 1 as a

base, which has been a reference for many years in

research carried out in the area of CF.

The database contains 943 users, 1682 items and

100,000 ratings, with a minimum of 20 items rated per

user. The items represent cinema films and the rating

ranges vary from 1 to 5 stars.

In all the experiments carried out, for each film that

each user has rated, the average value of the ratios given

by their k-neighborhoods for that film has been

calculated and the prediction has been compared with the

value rated by the user, thus obtaining the calculation of

the mean absolute error (MAE) [8].

1 Our acknowledgements to the GroupLens Research Group

CRPIT Volume 92 - Database Technologies 2009

10

I

rr
K

E

I

i

iuser

Kk

ik

user

 
 




1

,
~

,~
1

 (8)

The previous process was carried out for each of the

following k-neighborhoods values: 15, 30, 60, 90, 120,

150, 180, 210 and 240, covering from 1.6% to 25.4% of

the total number of users.

In order to obtain comparable results based on

different sparsity levels, we have made several

reductions on the original database containing 100,000

ratings; each reduction process has removed a fixed

number of database ratios using a random function. In

this way, we have obtained five additional databases:

80,000 ratings, 60,000 ratings, 40,000 ratings, 20,000

ratings and 10,000 ratings.

The MovieLens original database presents a 100-

107/(943*1682) percentage of sparsity, the 80,000

database presents a 100-8*106/(943*1682) percentage of

sparsity, and so on. Therefore, the sparsity range covered

in the experiments is: 93.7%, 94.96%, 96.22%, 97.48%,

98.74% and 99.37%.

In turn, all of these calculations have been carried out

3 times (one for each metric included in the study).

The total number of experiments carried out is 648 (9

k-neighborhoods * 6 sparsity levels * 3 metrics * 4 types

of results).
The experiments have been grouped in such a way that the

following can be determined:

 Accuracy.

 Number of recommendations made.

 Number of perfect predictions.

 Number of bad predictions.

We consider a perfect prediction to be each situation in

which the prediction of the number of stars

recommended for one user in one film matches the value

rated by that user for that film.

We consider a bad prediction to be each situation in

which the prediction of the number of stars

recommended for one user in one film is different by

more than 2 stars from the value rated by that user for

that film.

We consider a recommendation made to be each

situation in which a user has rated an item and at least

one of the user’s k-neighborhoods has also rated it, in

such a way that a prediction could be made and an MAE

error obtained.

4 Results

The results section has been divided into six subsections:

the first one shows comparatives of the three metrics

studied, processed using different levels of sparsity; in

this case no detailed information on k-neighborhoods is

included as each result (each graph) has been obtained by

calculating the average of the individual results of all

nine (15 to 240) k-neighborhoods.

The remaining three subsections refer to each one of

the three metrics, respectively, and they contain all the

detailed information obtained when processing all the

possible variations: range of k-neighborhoods / range of

sparsity levels.

The last subsections illustrate the details obtained by

comparing the correlation metric with the cosine and the

MSD metrics.

4. 1 Comparison of CF Metrics using

different sparsity levels

The first results presented here refer to accuracy, processed

using the Mean Absolute Error. The x-axis represents the

different percentages of sparsity.

Figure 1 shows better results with the correlation

metric than with the cosine metric. In fact, there is an

improvement in the correlation results, in contrast to the

cosine results, where the error increases as the sparsity

percentage increases.

The Mean Squared Difference metric shows much

better results than the cosine and correlation metrics;

nevertheless it is necessary to adjust this good result with

the very poor behavior obtained in Figure 2.

The MAE values indicate the mean absolute

difference between predictions and real rated values,

consequently, a value of 0.5 on the MAE axis means a

half-star error in the values predicted from the

„MovieLens‟ database.

Figure 1. Mean Absolute Error

Figure 2 shows the percentage of recommendations that

each metric is able to produce. These percentages are

obtained by dividing each number of predictions

obtained by computing the different levels of sparsity by

the number of ratios of each database (10,000, 80,000,

etc.), for example, using the 10,000-ratio database

(99.37% of sparsity) the cosine metric was able to

compute an average of 8688 predictions, thus the last

diamond position in Figure 2 has the value 86.88%.

The correlation metric once again shows better

behavior than the cosine metric as it is able to obtain a

larger number of recommendations; nevertheless, as

expected, the amount of predictions decreases as the

sparsity level increases (it is more difficult to obtain

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

11

recommendations when the quantity of information

available to make predictions decreases).

The rising section of the cosine function in Figure 2

can be explained by the erroneous behavior of the cosine

metric when the sparsity of the vectors is too high, which

is the case when the sparsity of the database is high.

The MSD metric provides very poor results as it

obtains a low quantity of predictions. This is this metric‟s

Achilles‟ heel and is the aspect that should be improved

in any metric derived from it.

Figure 3 shows that the correlation metric is able to

achieve a greater number of prediction hits than the

cosine metric. Whereas the cosine hits drop in line with

the sparsity level, the correlation metric even manages to

improve its results when the percentage of sparsity is

high.

Figure 2. Percentage of recommendations made

It is important to realize that the cosine metric

improves the MAE and the percentage of perfect

prediction results compared to the correlation metric

when the sparsity percentage is not very high (database

of 100,000 ratings).

The MSD exhibits excellent behavior when the

sparsity levels are high; nevertheless, it is important to

realize that the overspecialization effect (recommending

items that are too well-known) can be easily produced.

Figure 3. Percentage of perfect predictions

A very important objective of CF metrics is to avoid

incorrect recommendations, to prevent users from losing

confidence in the system.

Figure 4 presents the percentage of incorrect

recommendations (more than two stars of difference

between predictions and real ratios). As we can see, the

cosine metric does not respond well to an increase in

sparsity, whereas the correlation metric responds well.

The MSD metric does not produce a high quantity of

predictions (Figure 2), but it appears to achieve a good

number of hits with its recommendations (Figures 3 and

4), particularly when the sparsity levels are high.

Figure 4. Percentage of bad predictions

4.2 Correlation Metric

This section shows the detailed results obtained from the

correlation metric experiments. As in the previous

section, the aspects of study are: MAE accuracy,

percentage of recommendations made, percentage of

perfect predictions and percentage of bad predictions.

Each result is presented as a three-dimensional graph

where the x-axis represents the number of k-

neighborhoods computed in each experiment and the z-

axis represents the percentage of sparsity (i.e. the

100,000, 80,000, … databases used).

Figure 5a) shows an even decline of the MAE when

the sparsity percentage increases (as we saw in Figure 1).

In this case we can observe that correlation works better

when the number of k-neighborhoods is not low.

Figure 5b) shows the poorest results when the number

of k-neighborhoods is low (less than 60). The evolution

presented in Figure 2 would improve by selecting more

than 60 k-neighborhoods. The same is true when the

correlation metric obtains perfect predictions (Figure 5c)

and bad predictions (Figure 5d). As a result of this, we

can highlight the good results obtained by this metric,

especially when the number of neighborhoods is not low

and the sparsity level is high.

Figure 5c) shows how the rising correlation slope

presented in Figure 3 can be enhanced by selecting a

number of k-neighborhoods higher than 120.

CRPIT Volume 92 - Database Technologies 2009

12

Figure 5. Results of the correlation metric: a) Mean Absolute Error, b) percentage of recommendations made, c)

percentage of perfect predictions, d) percentage of bad predictions

4.3 Cosine Metric

Although it was previously established that the

correlation metric presented better behavior than the

cosine metric, it is relevant to point out the details of the

cosine, which is much less regular than the Pearson

metric.

In general, it can be said that the cosine metric works

better when the sparsity level is low and the number of k-

neighborhoods is high. This fact can be observed in

Figure 6, where the best results are given in the quadrant:

k-neighborhoods from 150 to 240 and sparsity from 93.7

to 96.22.

Figure 6a) shows the best results when the values are

smaller (from 0.65 to 0.75); the same situation is

presented in Figure 6d) (from 0.5 to 1.5). Figures 6b) and

6c) give the best results when the values are larger (from

80 to 100 and from 68 to 78, respectively).

By studying Figures 6a) to 6d) (cosine) we can

observe that the slopes of the surfaces are higher than

those corresponding to Figures 5a) to 5d) (correlation),

both on the sparsity axis and the k-neighborhoods axis

(when k>60); this means that the influence of both

parameters is higher in the cosine metric.

4.4 Mean Squared Differences Metric

The results obtained by applying the MSD metric are

significantly different to those obtained by the cosine and

correlation metrics. The mean absolute error (Figure 7a)

presents very low (good) values for all the k-

neighborhoods and the percentage of sparsity ranges. We

can observe that the best results (lowest errors) are

obtained by selecting the lowest k-neighborhood values

and, particularly, when the sparsity percentage is high.

There can be no doubt that the weak point of the

MSD metric is its poor capacity to generate a large

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

13

Figure 6. Results of the cosine metric: a) Mean Absolute Error, b) percentage of recommendations made, c)

percentage of perfect predictions, d) percentage of bad predictions

number of predictions. As can be seen in Figure 7b),

the percentage of recommendations obtained using the

MSD metric is lower than that obtained using the cosine

metric and even more so in the case of the correlation

metrics. In this aspect, it can be observed that the

function‟s slope is much more significant in the k-

neighborhoods axis than in the percentage of sparsity

axis; therefore, this aspect can be improved by choosing a

high k-neighborhood value as opposed to working with

high sparsity databases.

The quality of the recommendations (measured as

high levels of perfect predictions combined with low

levels of bad predictions) is very good when using the

MSD metric, in comparison to the cosine and correlation

metrics; this is mainly due to the low percentage of bad

recommendations. By observing Figures 7c) and 7d) it

can be determined that the best results (more perfect

predictions and fewer bad predictions) are obtained at the

highest values of sparsity. The poorest results occur when

the highest k-neighborhood values are combined with the

lowest percentages of sparsity levels.

In short, when using the MSD metric with low values

of sparsity, it is necessary to choose a suitable k-

neighborhood value to obtain a balance between quality

(Figures 7a,c,d) and capacity to recommend (Figure 7b);

the highest values of the k-neighborhood parameter offer

us a better capacity for recommendation, while the lowest

values of the k-neighborhood parameter lead to an

improvement in the quality.

The most interesting observation in Figure 7 is that all

the objectives (low error, high capacity to recommend,

high percentage of perfect predictions and low percentage

of bad predictions) are improved at the same time when

the sparsity value increases. This characteristic confers a

special importance to the MSD metric to be used in very

sparse RS databases and it opens a way to creating new

specialized MSD-based metrics.

CRPIT Volume 92 - Database Technologies 2009

14

Figure 6. Results of the cosine metric: a) Mean Absolute Error, b) percentage of recommendations made, c)

percentage of perfect predictions, d) percentage of bad predictions

5 Conclusions

The sparsity levels of RS databases have an important

influence on the results of content-based collaborative

filtering metrics. The impact of the sparsity influence

depends on the k-neighborhood value selected, the main

objective we want to maximize (MAE, capacity to

recommend, etc) and, logically, on the metric used.

When the sparsity level increases:

 The Pearson correlation metric improves its

MAE and has a negative effect on the capacity

to recommend. In addition, its percentage of

good predictions shows a slight increase.

 The cosine metric has a negative effect on all the

aspects studied (MAE, capacity to recommend,

correct predictions, incorrect predictions); this

negative behavior can be reduced by selecting

high k-neighborhood values.

 The Mean Squared Difference (MSD) greatly

improves all the results except for the capacity

to recommend.

The correlation metric obtains much better results than

the cosine metric when working with sparse RS

databases, especially when the k-neighborhood value is

not high (preferably 60 and 90).

By using databases with a high degree of sparsity, the

MSD metric obtains better results than the correlation

metric in all the aspects studied except for the capacity to

generate a large number of predictions.

The MSD metric presents unusually good behavior

when applied to sparse RS ratio matrices. However, it

should be used with caution due its very poor capacity to

generate recommendations and its high probability of

suffering from the effects of overspecialization;

nevertheless, the MSD metric offers a serious alternative

to the standard metrics when it is used in sparse ratio

matrices and can be selected as a reference in designing

new content-based CF metrics capable of satisfactorily

tackling the RS sparsity problem.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

15

Figure 7. Results of the MSD metric: a) Mean Absolute Error, b) percentage of recommendations made, c)

percentage of perfect predictions, d) percentage of bad predictions

6 References

1. Knights, M. Web 2.0, IET Communications Engineer,

(February-March 2007), 30-35

2. Lin, K.J., Building Web 2.0, Computer, (May 2007), 101-

102

3. Janner, T., Schroth, C. Web 2.0 and SOA: Converging

Concepts Enabling the Internet of Services, IT Pro, (May-

June 2007), 36-41

4. Jinghua, H., Kangning, W., Shaohong, F. “A Survey of E-

Commerce Recommender Systems”, in Proceedings of the

International Conference on Service Systems and Service

Management, 2007, 10.1109/ICSSSM.2007.4280214, 1-5

5. Baraglia, R., Silvestri, F. “An Online Recommender

System for Large Web Sites”, in Proceedings of the

IEEE/WIC/ACM International Conference on Web

Intelligence, 2004, 10.1109/WI.2004.10158, 199-205

6. Fesenmaier, D.R., Gretzel, U., Knoblock, C., Paris, C.,

Ricci, F., Stabb, S., Werther, H., Zipf, A. Intelligent

Systems for Tourism, Intelligent Systems, vol. 17, no. 6,

(nov/dec 2002), 53-66

7. Konstan, J.A., Miller, B.N., Riedl, J. PocketLens: Toward

a Personal Recommender System, ACM Transactions on

Information Systems, vol. 22, no. 3, (July 2004), 437-476.

8. Antonopoulus, N., Salter, J., CinemaScreen Recommender

Agent: Combining Collaborative and Content-Based

Filtering, IEEE Intelligent Systems, (January/February

2006), 35-41

9. Li, P., Yamada, S. “A movie recommender system based

on inductive learning” in Proceedings of the IEEE

Conference on Cybernetics and Intelligent Systems, vol. 1,

318-323

10. Adomavicius, Tuzhilin, A. Toward the Next Generation of

Recommender Systems: a survey of the state-of-the-art

and possible extensions, IEEE Transactions on Knowledge

and Data Enginnering, vol. 17, no. 6, (June 2005), 734-749

11. Herlocker, J. L., Konstan, J.A., Riedl, J.T., Terveen, L.G.

Evaluating Collaborative Filtering Recommender Systems,

ACM Transactions on Information Systems, vol. 22, no. 1,

(January 2004), 5-53

12. Breese, J.S., Heckerman, D., Kadie, C. “Empirical

Analysis of Predictive Algorithms for Collaborative

Filtering”, in Proceedings of the 14th Conference on

Uncertainty in Artificial Intelligence, Morgan Kaufmann,

1998, 43-52

13. Kong, F., Sun, X., Ye, S. A Comparison of Several

Algorithms for Collaborative Filtering in Startup Stage, In

Proceedings of the IEEE networking, sensing and control,

(March 2005), 25-28

CRPIT Volume 92 - Database Technologies 2009

16

14. Cho, S.B., Hong, J.H., Park, M.H. Location-Based

Recommendation System Using Bayesian User‟s

Preference Model in Mobile Devices, Lecture Notes on

Computer Science, vol. 4611, (August 2007), 1130-1139

15. Ingoo, H., Kyong, J.O., Tae, H.R. The Collaborative

Filtering Recommendation Based on SOM Cluster-

Indexing CBR, Expert Systems with Applications, vol. 25,

2003, 413-423

16. Yager, R.R. Fuzzy Logic Methods in Recommender

Systems, Fuzzy Sets and Systems, vol. 136, no. 2, (June

2003), 133-149

17. Linden, G., Smith, B., York, J., Amazon.com

Recommendations, IEEE Internet Computing, (January-

February 2003), 76-80

18. Giaglis, G.M., Lekakos, Improving the Prediction

Accuracy of Recommendation Algorithms: Approaches

Anchored on Human Factors, Interacting with Computers,

vol. 18, no. 3, 2006, 410-431

19. Li, Y., Nayak, R., Weng, L.T., Xu, Y., “An Improvement

to Collaborative Filtering for Recommender Systems”, in

Proceedings of the IEEE International Conference on

Computational Intelligence for Modelling, Control and

Automatitation, 2005

20. Fuyuki, I., Quan, T.K., Shinichi, H., “Improving Accuracy

of Recommender Systems by Clustering Items Based on

Stability of User Similarity”, in Proceedings of the IEEE

International Conference on Intelligent Agents, Web

Technologies and Internet Commerce, 2006

21. Manolopoulus, Y., Nanopoulus A., Papadopoulus A.N.,

Symeonidis P. Collaborative Recommender Systems:

Combining Effectiveness and Efficiency, Expert Systems

with Applications, 2007. in press.

22. Herlocker, J., Konstan J., Riedl, J. An empirical Analysis

of Design Choices in Neighborhood-based Collaborative

Filtering Algorithms, Information Retrieval, vol.5, no. 4, ,

2002, 287–310.

23. Pazzani, M. A Framework for Collaborative, Content-

Based and Demographic Filtering, Artificial Intelligence

Rev., December 1999, 393-408.

24. Sarwar, B., Karypis, G., Konstan J., Riedl, J. Application

of Dimensionality Reduction in Recommender Systems-A

Case Study, in Proceedings of ACM WebKDD Workshop,

2000.

25. Goldbergh, K., Roeder, T., Gupta D., Perkins D.,

Eigentaste: A Constant Time Collaborative Filtering

Algorithm, Information Retrieval, Vol. 4, 2001, 133-151..

26. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer

T.K., Harshman, R., Indexing by Latent Semantic

Analysis, in Proceedings of the JASIS, Vol 41(6), 1990.

27. Hofmann, T., Collaborative Filtering via Gaussian

Probabilistic Latent Semantic Analysis, in Proceedings of

the 26th ACM SIGIR Conference on Research and

Development in Information Retrieval, 2003.

28. Papagelis, M., Plexousakis D. Kutsuras, T., Alleviating the

Sparsity Problem of Collaborative Filtering Using Trust

Inferences, Lectures Notes on Computer Science, Vol.

3477, 2005, 224-239.

29. Bruyn, A.D., Giles C.L., Pennock, D.M., Offering

Collaborative-Like Recommendations when Data is

Sparse: the Case of Attraction-Weighted Information

Filtering, in Proceedings of Lecture Notes in Computer

Science, Vol. 3137, 2004, 393-396.

30. Polcicova G., Peter Tino, Making Sense of Sparse Rating

Data in Collaborative Filtering via Topographic

Organization of User Preference Patterns, Neural

Networks, Vol. 17, 2004, 1183-1199.

31. http://www.movielens.org.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

17

CRPIT Volume 92 - Database Technologies 2009

18

Solving the Golden Transaction Problem for ARIES-based
Multi-level Recovery

Jayson Speer1 Markus Kirchberg2,1 Faizal Riaz-ud-Din3,1

Klaus-Dieter Schewe1

1 Information Science Research Centre, Palmerston North, New Zealand
2 Institute for Infocomm Research (I2R), A*STAR, Singapore

3 Al Ain Men’s College, Higher Colleges of Technology, Al Ain, United Arab Emirates

Contact: MKirchberg@i2r.a-star.edu.sg (Markus Kirchberg)

Abstract

Transaction throughput is a crucial issue for data-
base systems. Multi-level transactions have been pro-
posed in an attempt to offer improved concurrency
of transaction processing by allowing operations that
would otherwise be performed serially to take place
concurrently. Therefore, it is vital that recovery al-
gorithms do not impede this concurrency by artifi-
cially introducing restrictions that otherwise do not
need to exist. The ARIES recovery algorithm has
had a significant impact on the current thinking on
database transaction logging and recovery. Its cor-
responding extension to multi-level transactions, i.e.
ARIES/ML, preserves the unique features of ARIES
but places significant restrictions on rollback process-
ing. In this paper, we present an algorithm that
solves the so-called ‘golden transaction’ problem of the
ARIES/ML algorithm.

1 Introduction

Transaction throughput is a crucial issue for database
systems (DBSs). While concurrency is utilised to in-
crease performance, it is vital to oversee the execution
of transactions (to avoid data inconsistencies). In the
event of a large number of inter-transaction conflicts
the rate of transaction throughput decreases thereby
making the DBS susceptible to poor response times.

Multi-level transactions (Beeri et al. 1989) have
been introduced in an attempt to increase the rate
of concurrency in DBSs. A multi-level transaction
(MLT) is where there is more than one level of oper-
ations for a transaction. The lowest level of a MLT is
the physical level that is synonymous with the phys-
ical level operations of single-level (i.e. traditional)
transactions. There is, at least, one level of oper-
ations between the main transaction (highest level)
and the physical level in a MLT.

Every level of a multi-level system realises a set
of abstract states, each represented by a number of
lower level states. Each level comprises of operations
that are provided by the level immediately below, and
provides a set of operations to the level immediately
above. A level, therefore, supplies a sequence of op-
erations provided by the level below it, into an opera-
tion that it supplies to the level above it. Lower levels
of a transaction are also known as sub-transactions.
Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the 20th Australasian Database Conference
(ADC 2009), Wellington, New Zealand, January 2009. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 92, Athman Bouguettaya and Xuemin Lin, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

A multi-level system using locks permits restric-
tive low-level locks of a sub-transaction to be re-
placed with less restrictive high-level locks when sub-
transactions commit. This is possible because sub-
transactions can be undone via high-level compensa-
tion actions rather than restoring a prior lower level
state – thus, enhancing concurrency.

The introduction of MLTs leads to the issue of
finding an appropriate recovery mechanism. One of
the most popular methods that is used by single-level
DBSs to implement recovery is known as ARIES (Al-
gorithm for Recovery and Isolation Exploiting Seman-
tics) (Mohan et al. 1992). ARIES/ML (Schewe et al.
2000) is an extension of ARIES for multi-level sys-
tems. It deals with the added complexities of MLTs
by introducing various log records and a new pointer
that are used to represent the tree-like structure of
MLTs. During crash recovery, ARIES/ML employs
the same three basic phases (i.e. Analysis, Redo, and
Undo) as the original ARIES algorithm. This allows
ARIES/ML to preserve the same desirable proper-
ties of ARIES while providing recovery capability to
multi-level transaction databases.

1.1 Motivation and Contribution

The purpose of the MLT model is to offer improved
concurrency of transaction processing by allowing op-
erations that would otherwise be performed serially to
take place concurrently. That is, transactions are al-
lowed to release ‘low-level’ locks before commit caus-
ing problems should such transactions need to re-
acquire these locks later to facilitate rollback pro-
cessing. The major problem that this introduces is
the possibility of a deadlock between transactions,
where two or more such transactions are in rollback.
It is not possible to resolve such a deadlock by sim-
ply aborting one of the involved transactions as they
are being rolled back already. ARIES/ML avoids this
problem altogether by allowing only a single, so-called
‘golden transaction’ to be in rollback at any point in
time. However, it is vital that any recovery algorithm
does not impede the degree of concurrency by artifi-
cially introducing restrictions that otherwise do not
need to exist. Although the ARIES/ML algorithm
poses no such restrictions during normal processing,
it places significant restrictions during rollback pro-
cessing. In this paper, we propose an algorithm that
solves ARIES/ML’s ‘golden transaction’ problem.

1.2 Outline

This paper is organised as follows: Section 2 re-
views existing multi-level recovery algorithms and,
in particular, introduces the ARIES/ML algorithm

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

19

in greater detail. Section 3 proposes the Golden
Deadlock Algorithm (GDA) that solves ARIES/ML’s
golden transaction problem. An example is presented
in Section 4 before Section 5 concludes this paper.

2 Related Work

From an internal point of view, users access databases
in terms of transactions. Fast response times and
a high transaction throughput are crucial issues for
all DBSs. Hence, transactions are executed concur-
rently. The transaction management system ensures a
proper execution of concurrent transactions. It imple-
ments concurrency control and recovery mechanisms
to preserve the well-known ACID principles. A fur-
ther improvement in both response time and trans-
action throughput can be achieved by employing a
more advanced transaction management system, e.g.
a system that is based on the multi-level transaction
model (Beeri et al. 1989, Weikum 1986, 1991). This
model is counted as one of the most promising trans-
action models. It schedules operations of transactions
based on information that is obtained from multiple
levels. Since there are usually less conflicts on higher
levels, lower level conflicts1 can be ignored. Hence,
their detection increases the rate of concurrency. For
instance, assume that two higher level operations op1
and op2, which belong to different transactions, incre-
ment Integer values A and B, respectively. Further-
more, let A and B reside on the same physical page.
An increment will be executed as a page read followed
by a page write. In the event that scheduling only
considers operations on pages, op1 will have to wait
for op2 or vice versa. Considering both levels, i.e. in-
crementations and read and write operations, we can
allow op1 and op2 to execute concurrently. The infor-
mation obtained from the higher level indicates that
different portions of the page are accessed. Thus, the
corresponding read and write operations do not affect
each other. Protecting such individual operations by
short-term locks (i.e. latches) is sufficient.

In (Weikum 1991) the execution of concurrent
transactions is described by means of a multi-level
schedule. Level-by-level (conflict-)serialisability
is ensured by employing one-level schedulers, i.e.
level-by-level schedulers, on each level. A multi-
level schedule is multi-level (conflict-)serialisable,
if all level-by-level schedules are (conflict-)serialisable.

The ARIES algorithm (Mohan et al. 1992) has
had a significant impact on the current thinking on
(single-level) database transaction logging and recov-
ery. It has been incorporated into IBM’s DB2 Uni-
versal Database, IBM’s Lotus Notes and Domino, Mi-
crosoft SQL Server and NT file system, Apache Derby
and a number of other systems (Mohan 2004). There
are a few recovery algorithms for multi-level systems,
i.e. ARIES/NT, MLRW , MLRL, and ARIES/ML,
most of which aim at preserving advantages of the
ARIES algorithm.

ARIES/NT (Rothermel & Mohan 1989) is an
extension of the ARIES recovery algorithm to the
nested transaction model. It permits semantically-
rich modes of locking, operation logging, and efficient
recovery. It also allows arbitrary parallelism between
related and unrelated transactions. That is, a trans-
action may run concurrently with its superiors, infe-
riors, siblings, and all other unrelated transactions.
Concurrency control schemes are supported, allowing
upward and downward inheritance of locks. That is,
child operations may inherit locks from their parents

1Such conflicts are referred to as pseudo-conflicts, which are
low-level conflicts that do not stem from a higher level conflict.

and vice-versa. Save-points at each transaction level
are also supported. That is, top-level transactions
as well as sub-transactions may establish save-points.
However, ARIES/NT is not specifically designed for
multi-level transaction processing. As a result, it does
not utilise inverse operations, which are possible in
multi-level transactions. Also, locks are not released
after finishing operations that are not transactions.

The Multi-level Recovery (MLRW) algorithm
(Weikum et al. 1990) has some similarities to ARIES-
based approaches but:

• It requires level-specific recovery mechanisms. A
single technique is more desirable as it maintains
only one log file and does not require any addi-
tional communication mechanisms between level-
specific recovery mechanisms; and

• It does not avoid the undo of rollback actions.

The Multi-Level Recovery (MLRL) algorithm
(Lomet 1992) works with nested and multi-level
transactions. As with ARIES, MLRL supports op-
eration logging while providing a flexible cache man-
agement. Undo recovery must be performed level-by-
level but can be implemented with a single backward
scan of the transaction log. MLRL is not sensitive to
the constraints that are enforced by the concurrency
control protocol. As such, the only locks required
are those needed for compensation and the MLRL

framework holds these locks until a sub-transaction’s
completion. The WAL protocol must be observed but
whether the log is forced at (sub-)transaction commit
is optional. In order to acquire higher level locks, ex-
tra overhead is incurred. In addition, MLRL utilises
inverse operations but, unfortunately, assumes them
to exist in any case. If they do not exist, as in most
practical situations, the restrictions of ARIES/NT are
retained.

Finally, there is the ARIES/ML algorithm
(Schewe et al. 2000), which is similar to MLRL but is
not necessarily coupled with a locking protocol. It dif-
ferentiates between operations for which there exists
an inverse, and those for which inverses do not exist.
The multi-level transaction model allows transactions
to release low-level locks before commit, which can
cause problems should such transactions need to re-
acquire these locks at some later stage to facilitate a
rollback. The major problem this introduces is the
possibility of a deadlock between two or more trans-
actions that are rolling back. In such a case, resolv-
ing the deadlock is not possible by aborting one of
the transactions, since they are already in rollback.
A fundamental flaw of the ARIES/ML algorithm is
that it does not offer any method of dealing with such
deadlocks between two (or more) aborting transac-
tions. It avoids the problem altogether by allowing
only a single ‘Golden’ transaction to be in rollback at
any point in time. Since any deadlock involving the
golden transaction can be resolved by aborting the
other normal transactions, the above mentioned prob-
lem never arises. Clearly, however, this is not a desir-
able solution since it has a significant negative impact
on the performance of the algorithm. In fact, concur-
rency of transaction rollback is eliminated entirely.
Section 3 proposes enhancements to the ARIES/ML
algorithm that allows deadlocks between one or more
aborting transactions to be resolved.

2.1 Overview of ARIES/ML

As previously mentioned, ARIES/ML (Schewe et al.
2000) is similar to MLRL (Lomet 1992) but avoids
some of MLRL’s restrictions. The salient features of
ARIES/ML include:

CRPIT Volume 92 - Database Technologies 2009

20

• The main features of ARIES such as the ability
to execute partial rollbacks, support of different
locking granularities etc. are preserved;

• It may be coupled with all types of concurrency
control protocols;

• It supports operation logging in addition to logi-
cal logging – this is a result of its ability to explic-
itly distinguish between operations for which an
inverse exists and those for which there is none;
and

• Deadlocks are resolved with less effort by en-
abling the undo and redo of a single (sub-) trans-
action i.e. it does not necessitate the use of save-
points.

Data Structures. Log records that make up the
transaction log mainly describe operations of sub-
transactions. The only operations that are logged are
those that potentially result in data objects being up-
dated. Each of the log records belongs to a specific
backward chain (BW-chain), which is a related group
of log records that make up a sub-transaction. Sub-
transactions that have committed are reflected in the
BW-chain of their parent’s log entries as CCR log
records. The primary ARIES/ML log records are:

• Update Log Records (ULRs), which reflect
changes to data objects;

• Compensation Log Records (CLRs), which reflect
the undo of an update operation or a compensa-
tion operation;

• Child-Committed Log Records (CCRs), which re-
flect the commit of a lower level sub-transaction;

• Prepare Log Records (PLRs), which reflect the
beginning of the first phase of a commit protocol
for the corresponding top-level transaction; and

• End Log Records (EndLRs), which reflect the end
of the top-level transaction.

The primary fields that are used in the log records
are as follows:

• PrevLSN , which is the address of the preceding
log record in the BW-chain of the corresponding
(sub-)transaction. This value is null for the first
log record written by the corresponding (sub-)
transaction;

• PageID , which is the page identifier of the page
that was updated by the operation that the log
record relates to;

• ChildID , which is the identifier of a committed
sub-transaction;

• LastLSN , which is the address of the last log
record in the BW-chain of the committed (sub-)
transaction; and

• UndoNextLSN , which is the address of the next
log record that has to be undone in the event of
a rollback.

Figure 1 outlines an example of how ARIES/ML
log records and their fields are utilised in order to
chain log records together.

ARIES/ML also utilises the same two in-memory
data structures as ARIES, i.e. the transaction ta-
ble and the dirty page table. The transaction table
is where references to currently active transactions
are stored. References to the parent transactions of

these active transactions are also stored in the trans-
action table. This is done in the event that the parent
of a transaction in the transaction table needs to be
undone. The dirty page table contains references to
buffered pages that have not yet been written to disk.
Entries in the dirty page table include the PageID of
the page that has been updated, and the recovery
LSN (i.e. RecLSN) of the first log record that caused
an update to the page that was not written to disk
(or made persistent).

Normal Processing. A transaction table entry is
written when a (sub-)transaction creates its first log
record. This entry is removed when the (sub-)trans-
action either commits successfully or fully aborts. A
(sub-)transaction is committed successfully once it
appends a CCR log record to its parent’s BW-chain.
The following tasks are performed when a data object
is updated:

• The corresponding page is fixed in the buffer and
latched in exclusive mode;

• The dirty page table is updated if this page was
not dirty before;

• The update is applied according to the concur-
rency control approach being implemented;

• An ULR log record is appended to the (sub-)
transaction’s BW-chain;

• The log record’s LSN is placed in the PageLSN
field of the corresponding page;

• The (sub-)transaction’s transaction table entry
is updated; and

• The page is unlatched and unfixed.

Rollback. The rollback process refers to the abor-
tion of all effects of a transaction. This involves undo-
ing all top-level operations of a transaction including
all committed and currently active sub-transactions.
The BWC-tree is represented by the BW-chains
of top-level transactions and aborted/active sub-
transactions. The BWC-forest consists of a trans-
action’s BWC-tree and the BWC-trees of that trans-
action’s active sub-transactions. The rollback of a
transaction corresponds to the undo compensation of
the log records belonging to the transaction’s BWC-
forest. ARIES/ML supports partial rollbacks through
the use of save-points (or separate roll back of a sub-
transaction) for faster resolution of deadlocks.

Rollback is initialised by providing a set of trans-
action identifiers (i.e. TransIDSet), which have to be
rolled back, and a save-point. The following tasks are
then executed:

• A rollback list is created that contains the
LastLSN from all active (sub-)transactions that
have a parent in TransIDSet.

• Undo operations are processed in order of de-
creasing LSN following the PrevLSN entries in
log records. LSN values less than the save-point
are not considered. Processing is complete when
the last entry in TransIDSet has been visited.

• Any updates described by ULR log records are
undone and a corresponding CLR log record is
created.

• When a transaction’s BW-chain is completely
rolled back, an EndLR log record is created,
and the corresponding transaction table entry is
deleted.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

21

Figure 1: ARIES/ML Log Structure Example

• When a CCR log record is encountered, a pre-
viously committed sub-transaction has to be un-
done. Different methods of undo may be used
depending on the existence of an inverse opera-
tion for the corresponding operation.

• When a reactive-child log record (RCR) or a PLR
log record is encountered, the corresponding Pre-
vLSN value in the rollback list is updated.

Example 1 Consider Figure 1 where transaction T1
is shown with three child operations Upd11, Inc12 and
Dec13. If transaction T1 completes all child opera-
tions before being aborted, this will require the roll-
back of all child operations in reverse order, where
operations Inc12 and Dec13 can be rolled back via an
inverse operation, but operation Upd11 cannot.
Also shown in Figure 1 is the log record structure for
both the updates and the rollback performed by trans-
action T1. The log is split into two parts, being firstly
the part of the log that records updates made by trans-
action T1 and secondly the part of the log that records
the rollback of those updates. Each of the update op-
erations has the same log record structure, being a
ULR log record written to represent the updates per-
formed by the child operation followed by a CCR log
record representing the completion of that operation.
For example, operation Upd11 is represented by ULR1
and CCR2 (that has a LastLSN pointer referring back
to ULR1). However, the log record structure used to
record the rollback of operation Upd11 differs from
operations Inc12 and Dec13, since Upd11 cannot be
rolled back by applying an inverse operations whereas
Inc12 and Dec13 can. Therefore, the rollback of oper-
ations Inc12 and Dec13 are each recorded by a single
CLR log record corresponding to the child commit log
records (i.e. CCR4 and CCR6 respectively), while the
rollback of Upd11 is recorded by an RCR log record fol-
lowed by a CLR log record corresponding to the update
log record ULR1.

Checkpointing. Checkpoints are used to expedite
crash recovery. This consists of three steps:

1. A begin-checkpoint log record is appended to the
log;

2. An end-checkpoint log record containing copies of
the transaction table and the dirty page table is
appended to the log; and

3. The log is forced to stable storage, and the LSN
of the begin-checkpoint log record is stored in the
Master log record, which is also stored on stable
storage.

Restart Processing. Crash recovery follows the
same principles as the original ARIES algorithm.
The Analysis pass reconstructs the transaction table
as well as the dirty page table. The starting LSN for
the subsequent redo phase is set to the lowest LSN in
the dirty page table. The redo pass restores the state
of the database to the state it was in immediately
before the system crash. Finally, the undo pass rolls
back any effects of the transactions which were active
at the time of the crash.

For more details on the ARIES/ML algorithm re-
fer to (Schewe et al. 2000, Drechsler 1998, Riaz-ud-din
2002).

3 The Golden Deadlock Algorithm (GDA)

As discussed in Section 2, the fundamental flaw of the
ARIES/ML algorithm is that it offers no method for
dealing with deadlocks between two or more aborting
transactions. Instead, it avoids the issue entirely by
allowing only a single ‘golden’ transaction to be in
rollback at any one time. While this avoids the possi-
bility of deadlocks between transactions in rollback, it
places unreasonable restrictions on performance. In
this section, we propose the Golden Deadlock Algo-
rithm (GDA), which augments the ARIES/ML re-
covery algorithm in a way that permits the resolution
of deadlocks between a set of transactions in rollback.

The GDA assumes that the set of transactions TD
in deadlock have locks acquired on a set of objects
OD and that a set of (tie-break) objects OT ⊆ OD

CRPIT Volume 92 - Database Technologies 2009

22

can be chosen to break the deadlock. That is, if no
transaction in TD requires a lock on any object in
OT , the deadlock will be resolved. Given the set of
deadlocked transactions TD and the tie-break objects
in OT , it is the objective of the GDA to roll back all
updates made to the tie-break objects in OT by trans-
actions in TD in a single action. Hence, removing the
need for any transaction in TD to maintain its lock
on any tie-break object in OT . The consequence of
this is, provided the tie-break objects were chosen ap-
propriately, that the deadlock is broken. Each trans-
action is then able to continue the normal rollback
process. During the course of rolling back updates
to the tie-break objects, it may be necessary for the
GDA to trigger the cascading abort of one or more
transactions TC whose updates to tie-break objects
must also be rolled back. This is determined by de-
tecting conflicts between the deadlocked transactions
and all other transactions.

In order to accommodate the GDA, a number
of areas of the ARIES/ML algorithm must be aug-
mented, these being: Lock acquisition, logging, data
structures, and rollback algorithms.

3.1 Lock Acquisition

Before the GDA can roll back any operations per-
formed on the tie-break objects in OT , it must first
acquire an exclusive lock on each object in OT . In
order to avoid the GDA itself becoming involved in
a deadlock situation, it is necessary to observe the
following rules when acquiring locks:

1. The GDA takes precedence over all transactions.
This also means that any transaction that cur-
rently has a lock on a tie-break object is forced
to relinquish it. Ultimately, this may lead to the
transaction being aborted.

2. If another invocation of the GDA algorithm al-
ready has a lock on any tie-break object, then
this invocation must wait.

3. The GDA must acquire exclusive locks on all tie-
break objects atomically.

Clearly there exists the possibility that some trans-
action(s) not in TD will hold some form of lock on ob-
jects in OT at the time the GDA is invoked. To reduce
the number of cascading transactions (TC), it is pos-
sible to shelve some transactions rather than aborting
them. Shelving involves the following actions:

• Temporarily pausing the transaction’s process-
ing;

• Forcing the transaction to relinquish its locks on
all tie-break objects; and

• Once the GDA has completed processing, the
transaction can be allowed to reacquire its locks
and continue processing.

Rules for deciding whether a transaction should be
shelved or aborted are:

• Abort: If the transaction has a lock on any object
in OT that may lead to a dirty read2 then it must
be added to the set of cascading transactions TC .

• Shelve: If the transaction has no such locks, it
may be added to the set of shelved transactions
TS .

2A dirty read is interpreted as any operation reading an object
whose outcome may be affected by the value read. For example, an
increment operation is not considered a dirty read since its outcome
is unaffected by the object’s initial value.

Shelving a transaction does not guarantee that the
GDA will not trigger its abort at some later point. If
the GDA subsequently determines that a transaction
in TS must be aborted, its identifier can be removed
from TS and placed in TC .

Example 2 Consider the scenario where two trans-
actions T1, T2 /∈ TD hold the following locks on some
object in OT : T1 holds Inc and Dec locks whereas T2
holds only a Read lock.
Transaction T1 can be added to the set of shelved
transactions TS, since it has not acquired any locks
on a tie-break object that can lead to a dirty read.
However, transaction T2 must be added to the set of
cascading transactions TC , since it has acquired a lock
on a tie-break object that might lead to a dirty read.

3.2 Logging

The introduction of the GDA algorithm requires the
following changes and additions to the log records
written by the ARIES/ML algorithm.

Addition of the GDA Start Record (GSR).
The purpose of the GSR log record is to record the in-
vocation of the GDA algorithm. The GSR log record
contains sufficient information to allow the algorithm
to determine the correct course of action in the case
of crash recovery. Its fields are:

• GID3: The GDA identifier.

• TD: Set of deadlocked transactions that caused
the GDA to be invoked.

• OT : Set of tie-break objects.

• SaveLSN: The save-point for the rollback.

Addition of the GDA End Record (GER).
The purpose of the GER log record is to record
the successful completion of the GDA. The GER log
record is written once all updates to the tie-break ob-
jects in OT by transactions in both TD and TC have
been undone. The only field contained in the GER
log record is GID.

Addition of the GDA Cascading Aborts
Record (GCR). The purpose of the GCR log
record is to record any transaction that the GDA was
forced to abort due to conflicts with transactions in
TD or TC . The fields contained in the GCR log record
are: GID and TransId, the identifier of the transac-
tion aborted.

Introduction of the ObjectLastLSN Pointer.
The ObjectLastLSN pointer is added to ULR, CCR,
CLR, and RCR log records and points to the last log
record that records an update to the corresponding
object. The value of the ObjectLastLSN pointer can
be taken directly from the object table (refer to Sec-
tion 3.3). The ObjectLastLSN pointer in conjunction
with both the LastLSN and PrevLSN pointers pro-
vide a linked list of log records that record updates
to each object.

Figure 2 shows the use of the ObjectLastLSN
pointer in conjunction with both the LastLSN and
PrevLSN pointers previously defined by (Schewe et al.
2000, Drechsler 1998).

3GID is used to uniquely identify each invocation of the GDA
algorithm.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

23

Figure 2: ObjectLastLSN Example

3.3 Data Structures

In order to accommodate the GDA, the following ad-
ditional data structures are introduced:

Object Table. The object table is used to store
the ObjectLastLSN pointers for each database ob-
ject Oi. If no entry for object Oi exists, the Object-
LastLSN pointer is set to null . The fields contained
in the object table are:

• ObjectID: The object identifier;

• ObjectLastLSN: LSN of the object’s last log
record that describes an update;

• ObjectFirstLSN4: LSN of the object’s first log
record describing an update; and

• PinCount: Number of top-level transactions that
have updated this object.

Whenever a transaction writes a log record LSNj

for an object (e.g. Oi) for the first time, it creates or
updates an object table entry as follows:

• If no entry exists for object Oi, create entry
(Oi, LSNj , 1); or

• If an entry exists, set its ObjectLastLSN value
to LSNj and increment PinCount.

Whenever a transaction commits, it decrements
the PinCount of all objects that it wrote a log record
for. If this results in PinCount being 0, the entry is
deleted from the object table.

Object Undo List. The purpose of the object
undo list is to determine the order in which the up-
dates to the tie-break objects (OT) will be undone.
The fields contained in the object undo list are as
follows: ObjectID and ObjectLastLSN.

Each invocation of the GDA has its own object
undo list, which is initialised by adding an entry for
each object in OT . The value of ObjectLastLSN for
each object is taken from the object table.

In order to preserve database consistency, the
GDA undoes operations in reverse order. This is
achieved by always undoing the operation that has
the highest ObjectLastLSN value in the object undo
list. Each time an operation is undone, the Object-
LastLSN value in the object undo list is replaced
by the ObjectLastLSN value in the log record whose
changes have been undone. If the new value of Ob-
jectLastLSN is null , the entry is deleted from the ob-
ject undo list.

4The ObjectFirstLSN field is required only for GDA’s dis-
tributed version (Speer 2005), but it is also offered as an optional
enhancement to the (centralised) GDA algorithm.

Figure 3: Undone List Example

Undone List. The purpose of the undone list is
to ensure that no operation is rolled back more than
once. Without the inclusion of the undone list, it
would be possible for an operation belonging to some
transaction Ti to be undone by the GDA and then
subsequently be undone again by another invocation
of the GDA or as transaction Ti proceeds with the
normal rollback process.

To achieve this, each time the GDA rolls back an
operation, it stores the identifier of that operation in
the undone list. Each entry in the undone list persists
until the transaction to which it belongs is no longer
active. By consulting the undone list during rollback,
each transaction and invocation of the GDA can avoid
rolling back an operation a second time.

Applying a compensation operation rather than
applying before images at the lowest level can be used
to roll some types of operations back, these opera-
tions are referred to as compensable. In such cases,
the GDA need not roll back all the child operations.
Instead, rollback is achieved by applying the corre-
sponding compensation operation. In such cases, only
the identifier of the parent operation will appear in
the undone list. Therefore, whenever a transaction
checks whether or not a particular operation has been
undone, it must also check whether or not its parent
operation has been undone. Since operation identi-
fiers are extensions of their parent identifier, this pro-
cess is relatively simple.

Example 3 Consider the scenario in Figure 3 where
operations Op122 and Op11 have been rolled back by
some invocation of the GDA. Since operation Op11
is compensable, it has been undone by applying a
compensating operation, which means the undone list
will not contain the identifiers of its child operations.
Therefore, when transaction T1 checks whether or not
operations Op111 and Op112 have been rolled back, it
will also need to check whether or not their parent
operation (i.e. Op11) has been undone.

3.4 Rollback Algorithms

The purpose of this algorithm, given the set of dead-
locked transactions (TD) and the set of tie-break ob-
jects (OT), is to roll back all updates made to the
tie-break objects by the transactions in TD. In doing
so, some transactions may be found to be in conflict
and will be added to the set of cascading transac-
tions (TC). In the case where a save-point is specified,
only updates that took place after the save-point will
be undone. The GDA algorithm is split into three
phases:

Initialisation Phase. The initialisation phase is
responsible for priming the object undo list in prepa-
ration for use by the undo phase and acquiring the
necessary exclusive locks on the tie-break objects.
This involves adding an entry to the object undo
list for each of the tie-break objects and their con-
stituent objects. The constituents of any tie-break
object must also be added to the object undo list

CRPIT Volume 92 - Database Technologies 2009

24

Figure 4: Initialisation Phase Example

since all updates to these constituents by the dead-
locked transactions (TD) must be rolled back.

Once the object undo list has been constructed
and the locks acquired, the initialisation phase writes
a GDA Start (GSR) log record, which includes the
tie-break objects (OT), the save-point (SaveLSN), the
identifiers of the deadlocked transactions (TD) and
the unique GDA identifier. If a decision has been
made to allow the algorithm to shelve transactions,
this will be done in the initialisation phase by adding
these transactions to the set TS .

Example 4 Consider the scenario in Figure 4 where
the tiebreak object set is OT = {A} and object A has
constituent objects {B, C, D,E}. Given the structure
of object A and the object table, at the completion of
the initialisation phase the object undo list will appear
as shown.

Undo Phase. The undo phase of the GDA algo-
rithm is responsible for rolling back the operations
performed on the tie-break objects by applying either
before images or compensation operations. As each
operation is rolled back, the appropriate log records
are written. Figure 5 illustrates the undo phase by
use of a flow chart. Explanations for each step are as
follows:

0: If there are no more entries in the object undo
list, all log records have been processed and the
algorithm prepares to terminate; otherwise, it
continues.

1: Retrieve the next log record, i.e. the one whose
LSN is the same as the highest of all Object-
LastLSN values in the object undo list, to pro-
cess.

2: If this log record belongs to any transaction in
TC or TD, the operation that it represents must
be rolled back; otherwise, it may be left alone.

3: Determine whether or not this operation has pre-
viously been rolled back. There are two situa-
tions under which this may occur:

(a) A previous invocation of the GDA has rolled
back this operation; or

(b) This GDA invocation has previously rolled
back the operation’s parent.

In the former situation, the Undone List can
be used to determine whether or not an oper-
ation has been undone. In the latter situation,
this GDA invocation keeps a record of all opera-
tions it has undone and can therefore determine
whether or not it has previously rolled back the
operation’s parent.

4: The transaction manager determines whether or
not this operation is in conflict with any other
operation. If so, some cascading aborts will need
to be triggered; otherwise, the rollback process
continues unabated.

5: Determine whether or not this is a parent opera-
tion. The update operation is a parent operation
if the log record that represents it is a CCR. Oth-
erwise, the update operation is a child operation
(represented by a ULR log record).

6: Determine whether or not this operation is com-
pensable. If it is not, undo the effects of this
operation by rolling back its child operations.

7: Determine whether or not any of the operation’s
child operations have already been rolled back.
The only situation under which this can occur
is if a previous GDA invocation has rolled back
some of this operation’s child operations. The
Undone List can be used to test this condition.

8: This step rolls back a parent operation that is
compensable. That is, the operation is compens-
able and none of its child operations have been
previously rolled back. Rollback is achieved via
the following steps:

(a) Write a CLR log record that contains all
necessary data; and

(b) Perform the compensation operation re-
quired to roll back this operation.

9: Prepare a non-compensable parent operation for
rollback. This step writes a RCR log record for
a parent operation that cannot be rolled back
via a compensation operation and subsequently
activates the child operation.

10: This step rolls back a child operation that resides
on level 0 (i.e. the lowest level) and therefore
has no child operation of its own. Rollback is
achieved via the following steps:

(a) Write a CLR log record that contains all
necessary data; and

(b) Apply a before image to the object if the
operation is not compensable or, otherwise,
apply a compensation operation.

11: All operations that are in conflict with an opera-
tion that is to be rolled back must be scheduled
for rollback themselves. Furthermore, these con-
flicting operations must be scheduled in such a
way that the GDA will roll back all operations in
reverse order to which they were originally per-
formed. This can be achieved by updating the
object undo list as follows:

• If an operation Opi is in conflict with any
subsequent operation(s) performed on some
object Obj ∈ OT , update Obj ’s entry in the
object undo list (ObjectLastLSN := largest
LSN of any conflicting operation).

12: In the case where an operation that is to be
rolled back is in conflict with subsequent opera-
tions, the transactions to which those operations
belong must be added to TC and triggered for
abort. If any of these transactions are shelved,
they must be removed from TS .

13: Once the GDA invocation has completed rolling
back all necessary operations, it stores the iden-
tifiers of those operations in the Undone list.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

25

Figure 5: Undo Phase Algorithm Flowchart

Completion Phase. The completion phase is sim-
ply responsible for releasing all locks acquired dur-
ing the initialisation phase and recording the success-
ful completion of a GDA invocation. The latter is
achieved by writing a GER log record. If transac-
tions had been shelved, at this point, the GDA in-
structs all transactions in TS to resume processing.
Resumption of processing involves the re-acquisition
of the locks that the shelved transactions were forced
to relinquish.

Termination of Algorithm. At first glance, it
may be difficult to determine when the GDA algo-
rithm will actually terminate. In fact, it may seem
initially that it will not terminate until the beginning
of the log has been reached, which would, of course,
be disastrous. However, the nature of the object ta-
ble ensures that this is not the case. Since the object
table only maintains the LastLSN value for an object
as long as it remains pinned by some active transac-
tion, each time an object is unpinned by all active
transactions, its LastLSN value will be reset to null .
The result of this is that the GDA will only traverse
backwards through the log until it reaches the first
reference to a tie-break object in OT from any active
transaction; or until the save-point is reached.

Although the GDA algorithm does not traverse
backwards to the beginning of the log, it does however
process more records than actually required. This
leads to the introduction of an optimisation (refer be-
low) that ensures that the GDA algorithm processes
exactly those log records required.

Example 5 Consider the scenario illustrated by the
partial log shown in Figure 6, where updates to the
tiebreak object OT = {A} performed by the deadlock

Figure 6: Termination of the GDA Algorithm

and cascading transactions TD ∪ TC = {T5, T6, T7}
must be rolled back by the GDA algorithm.
Once invoked, the GDA will ascertain the last log
record written for object A (i.e. LSN25) by con-
sulting the object table and then will traverse back-
wards through the log using the ObjectLastLSN point-
ers stored in each log record. Since log record LSN10
has a null (⊥) ObjectLastLSN pointer, the GDA algo-
rithm will terminate at this point. Log record LSN10
has a null ObjectLastLSN pointer since both transac-
tions T1 and T2 unpinned object A in the Object Table
when they each committed, therefore resetting the Ob-
jectLastLSN pointer for object A to null at that point.
Although the GDA algorithm did not traverse back-
wards to the beginning of the log, it did however pro-
cess more records than were actually required. In par-
ticular, it processed log records LSN15 and LSN16,
neither of which was written by a deadlocked or cas-
cading transaction. The conclusion that can be drawn
from this is that while the GDA algorithm will termi-
nate at some point before the beginning of the log is
reached, it will process more log records than actually
required.

Termination Refinement. This refinement re-
quires the collection of some additional data during

CRPIT Volume 92 - Database Technologies 2009

26

Figure 8: Object Undo List and GSR Log Record

normal processing5. The transaction manager is re-
quired to maintain the FirstLSN value for each trans-
action, where FirstLSN is the log sequence number
of the first log record written by a transaction. This
data can easily be added to the transaction table,
which already stores data pertinent to all active trans-
actions. The newly defined FirstLSN subsequently
allows the definition of TermLSN for each GDA in-
vocation, where TermLSN is defined as the lowest
FirstLSN value of all deadlocked transactions (TD)
or cascading transactions (TC). TermLSN must be
calculated by the GDA during the initialisation phase
once the set of deadlocked transactions (TD) is known
and then recalculated each time the set of cascad-
ing transactions (TC) is updated. To ensure that
the GDA algorithm terminates at the correct point,
the following rule for updating an entry in the ob-
ject undo list must be modified: Each time an opera-
tion is undone, the ObjectLastLSN value in the object
undo list is replaced by the ObjectLastLSN value in
the log record whose changes have been undone. The
entry should be removed from the object undo list if
the new value of ObjectLastLSN is null or less than
TermLSN .

4 GDA Invocation – An Example

Consider the partial schedule and object table in Fig-
ure 7, where the GDA has been invoked in order to
break a deadlock between transactions TD = {T2, T3}
on the tie-break object OT = {B} using a null save-
point. It is assumed for this example that the con-
stituents of object B are {c, d} and the conflict rela-
tion for the partial schedule is {(Op212, Op121)}.

During the initialisation phase, the GDA algo-
rithm takes actions as follows:

• Generate a unique identifier (GID);

• Determine the set of tie-break objects OT (in-
cluding the constituent objects);

• Construct the object undo list;

• Acquire an exclusive lock on the tie-break ob-
jects; and

• Write a GDA Start (GSR) log record.

The contents of the object undo list and GSR log
record are shown in Figure 8.

Figure 7 shows GDA sequence numbers, which
represent the sequence in which the GDA algorithm
will process the log records. The following describes
the actions taken by this GDA invocation during the
undo phase:

5This will invariably add to the overhead of the transaction
processing system. As such, the merit of this refinement cannot
be fully assessed without implementation and testing of the GDA
algorithm with and without this refinement in place.

Figure 9: Overview of States of the Object Undo List

1. Process log records LSN20, LSN19 and LSN18
without any undo since T1 /∈ TD∪TC . The object
undo list is updated as shown in Figure 9[Step 1].

2. Since T3 ∈ TD, the operations represented by
log records LSN13, LSN14 and LSN15 must be
undone. The operation represented by LSN15 is
compensable meaning that all three operations
can be undone by applying a single compensation
operation. The object undo list is updated as
shown in Figure 9[Step 2]. Note, objects B and d
are removed since their ObjectLastLSN pointers
had null values.

3. Process log record LSN9. Even though T2 ∈ TD,
undo is postponed due to a conflict between
Op212 and Op121. T1 is added to TC and the
object undo list is updated to ensure that Op121
is rolled back first (see Figure 9[Step 3]).

4. Process log record LSN18, whose operation must
be undone since T1 ∈ TC . The object undo list
is updated as shown in Figure 9[Step 4].

5. Process log record LSN13, which has previously
been undone by this GDA invocation. Thus, sim-
ply update the object undo list (refer to Figure
9[Step 5]).

6. Process log record LSN9 again, but this time op-
eration Op212 can be undone since the conflicting
operation (i.e. Op121) has already been undone.
The object undo list is updated as shown in Fig-
ure 9[Step 6].

7. Process log record LSN3, whose operation must
be undone since T1 ∈ TC . The object undo
list is updated, which results in no entries being
present.

8. Since there are no more log records to process,
the GDA will update the Undone list as follows:
Add operation identifiers 31, 121, 212, and 111.
Neither operation Op311 nor Op312 appears in the
Undone list since their effects were undone by a
compensation operation that removed the effects
of operation Op31.

During the completion phase, the GDA algorithm
releases all locks acquired during the initialisation
phase and writes a GER log record. At this stage,
no transaction in the deadlocked transaction set (TD)
needs to reacquire a lock on any object in the tie-
break. Therefore, the deadlock has been successfully
broken.

5 Conclusion

In this paper, we proposed an algorithm that
solves the ‘golden transaction’ problem present in the
ARIES/ML (Schewe et al. 2000) recovery algorithm.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

27

Figure 7: GDA Example

As a result, multi-level transaction management sys-
tems can now fully utilise the increased performance
benefits coming with multi-level transaction support.
Artificial restrictions are no longer placed on neither
normal processing nor rollback processing.

The augmented ARIES/ML algorithm has the
same performance characteristics during normal pro-
cessing as the original ARIES/ML algorithm. Only
in the event that the termination enhancement is be-
ing utilised, a small penalty has to be paid during
normal processing. The small penalty corresponds
to the maintenance of one additional field in the ac-
tive transaction table. During rollback processing,
however, the augmented ARIES/ML variant allows
multiple rollbacks to process concurrently. This en-
hances not only the performance of rollback process-
ing but also reduces the time transactions in normal
processing mode have to wait until those objects that
are accessed by transactions in rollback mode become
available again for normal processing.

References

Beeri, C., Bernstein, P. A. & Goodman, N. (1989), ‘A
model for concurrency in nested transactions sys-
tems’, Journal of the ACM (JACM) 36(2), 230–
269.

Drechsler, S. (1998), Kopplung des ARIES-recovery-
systems mit hybriden mehrschichtenschedulern,
Master’s thesis, Department of Computer Science,
Clausthal University of Technology, Germany. (in
German).

Lomet, D. B. (1992), MLR: a recovery method for
multi-level systems, in ‘Proceedings of the ACM
SIGMOD international conference on Management
of data’, ACM Press, pp. 185–194.

Mohan, C. (2004), ‘ARIES family of locking
and recovery algorithms’, On the Internet at
http://www.almaden.ibm.com/u/mohan/ARIES
Impact.html.

Mohan, C., Haderle, D. J., Lindsay, B. G., Pirahesh,
H. & Schwarz, P. M. (1992), ‘ARIES: a transaction

recovery method supporting fine-granularity lock-
ing and partial rollbacks using write-ahead logging’,
ACM Transactions on Database Systems (TODS)
17(1), 94–162.

Riaz-ud-din, F. (2002), An implementation of the
ARIES/ML recovery manager, Master’s thesis, De-
partment of Information Systems, Massey Univer-
sity, New Zealand.

Rothermel, K. & Mohan, C. (1989), ARIES/NT: a
recovery method based on write-ahead logging for
nested transactions, in ‘Proceedings of the 15th in-
ternational conference on Very large data bases’,
Morgan Kaufmann Publishers Inc., pp. 337–346.

Schewe, K.-D., Ripke, T. & Drechsler, S. (2000), ‘Hy-
brid concurrency control and recovery for multi-
level transactions’, Acta Cybernetica 14(3), 419–
453.

Speer, J. (2005), Database recovery: Expanding the
ARIES constellation, Master’s thesis, Department
of Information Systems, Massey University, New
Zealand.

Weikum, G. (1986), A theoretical foundation of multi-
level concurrency control, in ‘Proceedings of the 5th
ACM SIGACT-SIGMOD symposium on Principles
of database systems’, ACM Press, pp. 31–43.

Weikum, G. (1991), ‘Principles and realization
strategies of multilevel transaction management’,
ACM Transactions on Database Systems (TODS)
16(1), 132–180.

Weikum, G., Hasse, C., Broessler, P. & Muth, P.
(1990), Multi-level recovery, in ‘Proceedings of the
9th ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems’, ACM Press,
pp. 109–123.

CRPIT Volume 92 - Database Technologies 2009

28

A Citation Analysis of the ADC 2006–2008 Proceedings, with
Reference to the CORE Conference and Journal Rankings

Raymond Lister and Ilona Box
Faculty of Engineering and Information Technology

University of Technology, Sydney
Jones St. Broadway NSW 2007
raymond@it.uts.edu.au

Abstract1
This paper compares the CORE rankings of computing
conferences and journals to the frequency of citation of
those journals and conferences in the Australasian
Database Conference (ADC) 2006, 2007 and 2008
proceedings. The assumption underlying this study is that
there should be a positive relationship between citation
rates and the CORE rankings. Our analysis shows that
CORE conference and journal rankings broadly reflect the
ADC citations, but we note some anomalies. While these
anomalies might be minor in the larger scheme of things,
any anomalies need to be addressed, as the careers of
individual academics may depend upon it. The concept of
conference and journal rankings is probably here to stay,
and this paper ends with some suggestions on how the
rankings process should now evolve, so that it becomes
more transparent.
Keywords: Citation Analysis, Excellence in Research for
Australia (ERA), conference rankings, journal rankings.

1 Introduction
For several years, the Australian federal government has
been developing a process for reviewing the quality and
impact of publicly funded Australian research. The
review was originally known as the Research Quality
Framework, or simply RQF (DEST, 2007), but with a
change of government some aspects of the review process
changed, and the review process is now known as
Excellence in Research for Australia, or simple ERA
(ARC, 2008). As part of the RQF/ERA, the Computing
Research and Education Association of Australasia
(CORE) has developed a ranking scheme for computing-
related conferences and journals (CORE, 2007).

Developing such a set of rankings is by no means
straightforward. Most ranking systems include citations
as a prominent factor. While there are indexes that record
the number of citations for individual papers and for
journals, only a small percentage of all computing papers
are thus indexed. Since there was not an existing robust
method for ranking conferences and journals, CORE
formed committees that developed their own processes
for ranking conferences and journals.

Copyright © 2009, Australian Computer Society, Inc. This
paper appeared at the 20th Australasian Database Conference
(ADC 2009), Wellington, New Zealand. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 92. A. Bouguettaya, X. Lin, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

This paper evaluates the CORE rankings from the
perspective of the Australasian database research
community. Specifically, the paper poses the following
research question: do the conferences and journals cited
most frequently in the three most recent ADC proceedings
figure prominently in the CORE rankings? More
specifically, if a conference or journal is:
1) Ranked high by CORE and receives a high number of

citations in the three ADC proceedings, then the
ranking and the citation rate are consistent.

2) Ranked low by CORE and receives a low number of
citations in the three ADC proceedings, then the
ranking and the citation rate are consistent.

3) Ranked high by CORE but receives a low number of
citations in the three ADC proceedings, then the
interpretation of that data depends upon other factors:
a) Such a highly ranked conference/journal may not

be highly relevant to database research, so it would
not be surprising that its citation rate within ADC
proceedings is low.

b) The conference/journal may be very new, and there
simply hasn’t been the opportunity for many papers
from it to be cited yet.

c) Otherwise, we would regard its high ranking as
being inconsistent with its low ADC citation rate.

4) Ranked low by CORE but receives a high number of
citations in the three ADC proceedings, then we
would regard its low ranking as being inconsistent
with its ADC citation rate.

Note that “inconsistent” does not mean “incorrect”.

There may be other factors that make the CORE ranking
appropriate. Inconsistency merely indicates that further
attention is warranted.
The ADC 2006, 2007 and 2008 conferences respectively
contain 21, 17 and 18 full papers with citations, which is
a total of 56 papers. To answer the above research
question, all 1,332 citations in those 56 papers were
examined, to see what conferences and journals were
most frequently cited. Of the 1,332 citations, 362 (27%)
were to journal papers and 711 (53%) were to conference
papers. Table 1 shows a complete breakdown of the
different types of citations in those ADC proceedings.
(All tables appear at the end of the paper.)

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

29

2 Conference Citations and CORE Rankings

2.1 The CORE Conference Ranking System
The CORE website describes the broad structure and
chronology of the conference rankings process (CORE,
2007b; CORE, 2007d). It began in late 2005. In the first
few months, the Australian National University's
Research Evaluation and Policy Project (REPP), using
bibliometric analyses, created a master list of
conferences. In March 2006, that master list was
presented for discussion at a workshop of approximately
20 ICT researchers from a number of universities. After
refinement of the list, it was released for consultation and
feedback from the ICT community. In late 2006, a project
reference group (of unspecified size and composition)
produced the first draft of the conference ranking list.
During 2007, consultation with the ICT community
continued, and some changes were made to the list. At the
time this paper was written, the most recent draft of the
conference rankings was released in December 2007.

The CORE conference rankings are based upon four
tiers, enumerated as A+, A, B, L and C (CORE, 2007c).
There are two indications on the CORE website as to the
significance of the various tiers. These two indicators are
described in the following two subsections.

2.1.1 CORE Description of the Tiers
The following description of the conference tiers is taken
verbatim from the CORE web site:

Tier A+: Typically a Tier A+ conference would be
one of the very best in its field or subfield in which to
publish and would typically cover the entire
field/subfield. These are conferences where most of the
work is important (it will really shape the field), where
researchers boast about being accepted, and where
attendees would gain value from attending even if they
didn't have a paper themselves. Acceptance rates would
typically be low and the program committee would be
dominated by field leaders, including many from top
institutions. Tier A+ conferences would be highly
represented in the CV of a junior academic (assistant
professor) aiming for tenure at a top 10 US university.
These are the conferences where people from overseas
congratulate you on getting in and you shout drinks to the
research group.

Tier A: Publishing in a Tier A conference would add
to the author's respect, showing they have real
engagement with the global research community and that
they have something to say about problems of some
significance. Attending a Tier A conference would be
worth travelling to if a paper was accepted. Typical signs
of a Tier A conference are lowish acceptance rates and a
program committee and speaker list which includes a
reasonable fraction of well known researchers from top
institutions (as well as a substantial number from weaker
institutions), and a real effort by the program committee
to look at the significance of the work.

Tier B: Tier B covers conferences where one has
some confidence that research was done, so publishing
there is evidence of research-active status (that is, there is
some research contribution claimed, and a program
committee that takes its job seriously enough to remove
anything ridiculous or ignorant of the state of art), but it's

not particularly significant. This is where PhD students
might be expected to send early work; it also includes
places whose main function is the social cohesion of a
community. Typical examples would be regional
conferences or international conferences with high
acceptance rates, and those with program committees that
have very few leading researchers from top international
institutions.

Tier L: These are local conferences which may be
important for the social cohesion of the local community
and for networking. Many were “one off” but are
included for historical reasons.

Tier C: All the rest.

2.1.2 DEST Publication Rates
The second indication on the CORE web site as to the
significance of the various tiers is data from the
Australian Government’s Department of Education,
Employment and Workplace Relations (DEWR)
indicating approximate publication rates of Australian
authors in each of the CORE ranks:
 A+ 6%
 A 27%
 B 31%
 U (sic) 29% (meant to be C?)
 C (sic) 6% (meant to be L?)

The RQF/ERA processes have changed rapidly over

the years of this project, and the information on the
CORE web site has not always kept pace with those
changes. While the CORE web site information above
describes tiers “U” and “C”, we suspect that those
designations should be updated to “C” and “L”
respectively.

2.2 ADC Conference Citations—Results
In the 56 papers of the three ADC proceedings surveyed,
authors cited papers from 204 different conferences.
Table 2 shows the number of citations to conferences
within the four CORE tiers, and also to conferences not
listed by CORE. The final row of Table 2 shows the
DEST estimate of the publication rates of Australian
authors in each of the conference ranks, which shows
that—as one would expect—the rate at which ADC
authors cite A and A+ conferences exceeds the frequency
with which Australians publish in A and A+ conferences.

A striking feature of Table 2 is that almost one third
(30%) of the conferences cited by ADC authors are not
listed by CORE. However, it would be unreasonable to
expect CORE to rank all those conferences, for at least
two reasons: (1) for the purposes of the RQF/ERA,
CORE was only asked to rank conferences and journals
in which Australian-based academics had reported having
recently published, and (2) as shown in Table 3, of the
204 different conferences cited, 128 of those conferences
(62.7%) were cited in only paper in the ADC 2006–08
proceedings.

Table 2a is a comparison of the data from Table 2 for
ADC with similar data from three other conferences that
are part of the Australasian Computer Science Week. For
details of the analysis of those other three conferences,
see the analogous papers appearing in those respective
conference proceedings (Lister & Box, 2008, 2009a, and

CRPIT Volume 92 - Database Technologies 2009

30

2009b). Table 2a shows that ADC has a higher
percentage of citations to both A+ and A conferences
than any of the other three conferences. Also, the
percentage of unranked conferences cited in ADC (30%)
is lower than for the other conferences—it is almost half
the percentage of unranked conferences for ACE (55%).

Some conferences cited more than once were cited in
only one paper. Also, the citation rate for a particular
conference can be distorted by self-citation. Table 4
allows for these distortions, by (1) counting not the actual
citations, but the number of different papers that cite a
particular conference, and also by (2) excluding self-
citations. Of the 176 conferences that received citations
other than self-citations, over two thirds of those
conferences (68.2%) were cited in only one paper and just
under 90% (88.1%) of conferences were cited in three or
less papers (i.e. an average of one paper or less per year
for ADC2006–2008).

Table 5 lists the top 21 conferences, which are all cited
in four or more papers, excluding self-citations. The
columns show the CORE tier (column “Tier”), total
number of citations to the conference (column “Cites”),
total number of citations to the conference, excluding
self-citations (column “CitesXSelf”), total number of
papers that cited that conference (column “Papers”), and
total number of papers that cited that conference,
excluding self-citations (column “PapersXSelf”). The list
is ordered on the last column (descending), then by tier,
then by conference name. Of the 21 conferences listed in
Table 5, two thirds (67%) are ranked as A+ by CORE,
and 19 of the 21 conferences (90%) are ranked as either
A+ or A.

Figure 1 is a log-log plot (to base e) of PapersXSelf
versus the rank of the 21 conferences from Table 5 (i.e.
ranked on PapersXSelf). This graph suggests that the
distribution of the number of papers citing a particular
conference is broadly consistent with the well known
power law distribution for citations (Redner, 1998; Tsallis
& de Albuquerque, 2000). Such power law distributions
are often referred to as Zipf’s Law. The slope of the line
of best fit is -0.8. However, this plot is merely suggestive
of a power law distribution, and not definitive, as the
amount of data we have collected in this study is
relatively low by the standards of citation analysis.

Table 5a shows five conferences with the word
“database” in the conference titles, which were ranked
highly by CORE but which received a low number of
citations in the ADC 2006–2008 proceedings.

3 Discussion of Conference Rankings
Given the above results, we conclude that – in general,
with caveats to follow – the citations to various
conferences in the ADC 2006–08 proceedings are in
general consistent with the CORE conference rankings.
The remainder of this discussion focuses on the possible
anomalies.

Authors of papers published in the WebDB and ER
conferences might have some grounds for feeling
aggrieved, as those are the only two conferences in Table
5 that are ranked lower than A. WebDB authors may be
particularly aggrieved, as that conference appears in the
middle of Table 5, but is only ranked as a “C”
conference. By criteria 4 given in the introduction, the

CORE ranking of WebDB is inconsistent with our ADC
citation data. However, the rankings system is not based
solely on citation data (from any source, let alone our
analysis of only three ADC proceedings), and other
factors may have reasonably led to the lower ranking of
WebDB. However, an author of a WebDB conference
paper should at least be able to find out CORE’s reasons
for ranking that conference so low, and currently CORE
does not publish its reasons for the specific ranking of
any conference (or journal).

An author of a paper published in ER may have fewer
grounds for feeling aggrieved than an author of a WebDB
paper. ER is ranked by CORE as a “B” conference, and it
appears low in Table 5. Perhaps if we gathered citation
data from a few more ADC conferences, we might then
find that ER appeared even lower in an extended version
of Table 5.

Surprisingly, ADC itself does not appear in Table 5. It
received (non-self) citations in only two papers, in the
ADC2006–2008 proceedings. In the analogous citation
analysis of three other ACSW conferences—ACSC,
AUIC and ACE—each of those conferences appeared in
its respective Table 5 (Lister & Box, 2008, 2009a, and
2009b). If ADC authors are not citing each other’s
papers, then by whom are ADC papers intended to be
read?

With regard to the five “database” conferences listed
in Table 5a, and by criteria 3c given in the introduction,
the CORE rankings for these five conferences are
inconsistent with our ADC citation data. However, it does
not necessarily follow that these CORE rankings are
inappropriate, for three possible reasons: 1) Statistical
fluctuation due to small sample size—for example, had
only one more ADC paper cited a paper from DASFAA,
then that conference would have been in Table 5; 2) these
five may be niche conferences, and the focus of ADC, at
least in the years 2006–2008, may have not been on the
aspects of databases covered by these five conferences;
and 3) citation rates are only one form of data that inform
the CORE rankings.

Over two fifths (41%, see Table 2) of ADC citations to
CORE ranked conferences are to conferences ranked B, L
or C. That statistic challenges the premise of RQF/ERA
conference rankings process—that the rank of a
conference is a reliable proxy for the quality of all papers
in that conference.

4 Journal Citations and CORE Rankings

4.1 The CORE Journal Ranking System
There are four tiers in the ERA journal ranking system—
A*, A, B, and C. The Australian Federal Government’s
Australian Research Council (ARC, 2008) has indicated
that, within each research discipline, the proportion of
journals within each tier should be approximately:

A* – top 5%
A – next 15%
B – next 30%
C – bottom 50%

Of the 834 journals ranked by CORE, as at June 2008,

the percentages in each of the tiers is:

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

31

A* – 6% (47 journals)
A – 18% (147 journals)
B – 28% (233 journals)
C – 49% (407 journals)

The CORE web site contains a “journal update

template” which gives an indication of the type of
information used by CORE to determine the ranking of a
journal:

• The number of referees for each paper submitted to the
journal.

• Whether the review process is blind, double blind,
open, or performed by the editor.

• The acceptance rate.
• The composition of the editorial committee (e.g. the

proportion that are leading researchers in the field, and
whether they are from the premier institutions for the
field).

• The quality of the papers presented (e.g. whether the
work presented shapes the field, and whether the
quality of papers is uniform or ‘patchy’).

• Whether the top researchers in the field publish in that
journal.

• The citation rate for papers in that journal.

4.2 ADC Journal Citations—Results
In the three ADC proceedings surveyed, authors cited
papers from 135 different journals. Table 6 shows the
number of citations to journals within the four CORE
tiers, and also to journals not listed by CORE. The final
row of Table 6 shows the distribution across the tiers of
all 834 journals ranked by CORE, which shows—as one
would expect—that there is a bias among ADC authors
toward citing the more highly ranked journals.

As with the analogous data for conferences, an
immediately striking feature of Table 6 is that 33% of the
journals cited in recent ADC papers are not ranked by
CORE. However, as was the case with conferences, it
would be unreasonable to expect CORE to rank all those
journals, for at least two reasons: (1) for the purposes of
the RQF/ERA, CORE was only asked to rank journals in
which Australian-based academics had reported having
recently published; and (2) as shown in Table 7, over one
half (59%) of journals cited in the three ADC proceedings
were cited only once. Also, among the journals cited in
ADC papers are some that—while the citation may be
germane to the paper in which the citation is made—one
would not realistically expect the journal to be ranked by
the CORE committee (e.g. Drug Discovery Today, and
Methods in Enzymology).

Some journals cited more than once were cited in only
one paper. Also, the citation rate for a particular journal
can be distorted by self-citation. Table 8 allows for these
distortions, by (1) counting not the actual citations, but
the number of different papers that cite a particular
journal, and also by (2) excluding self-citations. Two
thirds (66%) of journals cited were cited in only one
paper (excluding self citations) and 90% of the journals
were cited in three or fewer papers (i.e. 90% of journals
were cited, on average, in one or fewer papers per year
over the three years of ADC proceedings analysed).

Table 9 lists the 20 journals cited by three or more
papers, excluding self-citations. The columns show the
CORE tier (column “Tier”), total number of citations to
the journal (column “Cites”), total number of citations to
the journal, excluding self-citations (column
“CitesXSelf”), total number of papers that cited that
journal (column “Papers”), and total number of papers
that cited that journal, excluding self-citations (column
“PapersXSelf”). The list is ordered on the last column
(descending), then by tier, then by journal name. Of the
20 journals listed in Table 9, 6 (30%) are ranked as A* by
CORE, and 15 (75%) are ranked as either A* or A.

Figure 2 is a log-log plot (to base e) of PapersXSelf
versus the rank of the 20 journals from Table 9 (i.e.
ranked on PapersXSelf). This graph suggests that the
distribution of the number of papers citing a particular
journal is broadly consistent with a power law
distribution, as was also the case for conferences. The
slope of the line of best fit is -0.7. However, this plot is
merely suggestive of a power law distribution, as the
amount of data we have collected in this study is
relatively low by the standards of citation analysis.

5 Discussion of Journal Rankings
Given the above results, we conclude that—in general,
with some caveats to follow—the citations to various
journals in the ADC 2006–08 proceedings are broadly
consistent with the CORE journal rankings.

The ranking of SIGMOD Record as a “C” journal is
consistent with CORE’s policy of ranking all ACM
Special Interest Group (SIG) newsletters as “C” (personal
communication with CORE). However, such a ranking
for SIGMOD Record is inconsistent with its appearance at
the top of Table 9.

The Communications of the ACM (CACM) appears
second in Table 9, which seems inconsistent with
CORE’s ranking of it as a “B” journal. The ranking of
CACM generated much discussion within CORE. In early
drafts of the rankings, CACM was deliberately not ranked
at all, since many within CORE argued that CACM is a
magazine, not a research journal (personal
communication with CORE). In the analogous citation
analysis of three other ACSW conferences—ACSC,
AUIC and ACE—CACM ranked first, first and third
respectively (Lister & Box, 2008, 2009a, and 2009b).
Polites and Watson (2008) used a more elaborate citation
analysis technique than what we have used in this paper,
and they found CACM to be a highly influential
publication within Information Systems research—even
more influential than MIS Quarterly. On this citation data
in isolation, CACM’s “B” ranking is hard to justify.

The non-ranking of the SIGIR Forum, which appears
in Table 5, is an oversight by CORE, as it is (like
SIGMOD Record) an ACM SIG newsletter.

Approaching one half (44%) of ADC citations to all
ranked journals are to journals ranked B or C (see Table
6). As was also the case with the analogous conference
statistic, this 44% statistic challenges a premise of the
RQF/ERA – that the rank of a journal is a reliable proxy
for the quality of all papers in that journal.

Table 6a is a comparison of the data from Table 6 for
ADC with similar data from three other conferences that
are part of the Australasian Computer Science Week

CRPIT Volume 92 - Database Technologies 2009

32

(Lister & Box, 2008; 2009a; 2009b). Table 6a shows that
the 38% cumulative percentage of ADC citations in Tiers
A* and A is higher than the 29% of ACSC and much
higher than the same figure for AUIC and ACE. The
percentage of unranked journals cited in ADC (33%) is
much lower than the percentage for the other three
conferences.

6 Age of Citations
The ERA specifies an audit period of six years. An
examination of the age of citations in the ADC 2006–
2008 proceedings shows that 70% of ADC conference
citations are to conferences held in the year 2000 or more
recently, and 55% of ADC journal citations are to papers
that appeared in the year 2000 or more recently. The
analogous percentages for ACSC are similar (69% and
50% respectively), but the analogous percentages for
AUIC are much lower (25% and 25% respectively).

7 Discussion: Scholarship and Discourse
The schedule for developing the CORE rankings has been
driven largely by the federal government’s timetable for
the RQF/ERA, which was faster than many in academia
would have liked. Under such unfavourable
circumstances, it was unavoidable that the ranking would
be a relatively opaque committee/executive process.

While the rankings themselves may change, the
concept of conference and journal rankings is here to
stay. Furthermore, this ranking scheme will be used for
purposes beyond the federal government’s ERA exercise.
For example, the rankings will become a routine part of
applications for promotion in Australian universities.

It is now appropriate to consider the long-term strategy
for the rankings. It is not in the best long-term interests of
scholarship that the ranking remains an opaque
committee/executive process. Scholarship would be
better served by a more transparent process that allows
for the ranking process itself to be improved, via open
scholarly debate. As a first move toward developing such
a scholarly process for routinely revising the rankings, we
suggest a three-step process, described below.

7.1 All Policy and Data Should be Public
CORE have not yet documented their criteria for the
journal rankings. Also, while there is a description of the
conference rankings process on the CORE web site, it is
not detailed. CORE should further document the criteria
for journal and conference rankings.

The data for each conference and each journal (e.g.
acceptance rates) should be made public, so that the
computing community can check that the data is correct.
Currently, given the high number of conferences and
journals that have been ranked, and the short time in
which the rankings were done, it is likely that a small
number of journals and conferences have been ranked
inappropriately because of bad data.

By using Web 2 technologies, CORE could make its
ranking data public, and also push much of the effort for
data acquisition and data cleaning onto the computing
academic community.

7.2 Formal Models
A formal model—perhaps a points system—should be
adopted for assigning preliminary rankings to conferences
and journals. Such a model would make the ranking
process far more transparent.

A formal model would offer a mechanism for
providing a preliminary ranking for new conferences and
journals. Currently, the conferences and journals that
have been ranked are conferences and journals in which
Australian-based academics have published in recent
years. In the absence of a formal model, and irrespective
of what the federal government and CORE may have
intended, it is likely that unranked conferences and
journals will be regarded as inferior; or at best dubious.
The first Australian academic to publish in an unranked
journal will have difficulty in establishing the quality of
that journal to a promotions board, and the first
Australian academic who has a paper accepted by an
unranked conference will have difficulty in making a case
to his/her department head for travel funding. The
absence of a formal model will stifle Australian
academics working in emerging research areas of
computing.

7.3 A Documented Manual Review
Formal models will not capture the complexities of
ranking. It is therefore appropriate that CORE continue
to appoint committees that review the outputs of a formal
model. When such a committee elects to manually alter
the ranking from that assigned by the formal model, the
reasons for doing so should be made public.

8 Conclusion
From our analysis of the CORE conference rankings, we
conclude that the existing rankings are broadly consistent
with the frequency of citation to conferences and journals
in the three most recent ADC conferences. Our analysis
shows that CORE conference and journal rankings
broadly reflect the ADC citations, but we have noted
some anomalies. It is important that anomalies be
resolved, as the careers of individual academics may
depend upon it.

Apart from the traditional intellectual skills associated
with each academic discipline, all successful academics
have found it necessary to acquire other skills—project
management, and grant writing, to name just two of those
skills. The RQF/ERA government initiatives have added
a new required skill for the successful Australian
academic—the ability to understand issues in
bibliometrics well enough to participate in the discourse
on conference/journal rankings, particularly with regard
to the ranking of their preferred conferences and journals.
If we do not master bibliometrics to that degree, then
bibliometrics will master us.

The process of ranking conferences and journals is as
complex as it is vexing. This aim of this paper is merely
to begin a scholarly discourse within the ADC
community on the CORE rankings. This paper is
certainly not intended as the final word. Meanwhile,
careers will rise and fall on the decisions made by the
CORE ranking committees. It is therefore vital that the
CORE ranking processes be open to informed discussion
and peer review—why should we settle for a ranking

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

33

process that is less rigorous in its scholarship than what
we demand from the research published in a highly
ranked conference or journal?

References
ACM (2007) Policy on Pre-Publication Evaluation.

http://www.acm.org/pubs/prepub_eval.html / [Accessed
October 2007].

ARC (2008) Excellence in Research for Australia
Initiative, Consultation Paper. http://www.arc.gov.
au/pdf/ERA_ConsultationPaper.pdf [4th September
2008].

CORE (2007a). Final 2007 Australian ranking of ICT
conferences. [Internet]. Computing Research and
Education. Available from:
http://www.core.edu.au/rankings/Conference%20Ranki
ng%20Main.html [4th September 2008].

CORE (2007b). The initial process for an Australian
ranking of ICT conferences. [Internet]. Computing
Research and Education. Available from:
http://www.core.edu.au/rankings/ranking-process.pdf
[4th September 2008].

CORE (2007c). Tiers for the Australian ranking of ICT
conferences. [Internet]. Computing Research and
Education. Available from:
http://www.core.edu.au/rankings/conf-tiers.pdf [4th
September 2008].

CORE (2007d). The updating process for the Australian
ranking of ICT conferences. [Internet]. Computing
Research and Education. Available from:
http://www.core.edu.au/rankings/update-process.pdf
[4th September 2008].

CORE (2008). Journal rankings. [Internet]. Computing
Research and Education. Available from:
http://www.core.edu.au/ [4th September 2008].

DEST (2007) Research Quality Framework: Assessing
the quality and impact of research in Australia.
http://www.dest.gov.au/sectors/research_sector/policies
_issues_reviews/key_issues/research_quality_framewor
k/#RQF_Implementation_2007 [Accessed Oct. 2007]

Lister, R. and Box, I. (2008). A citation analysis of the
ACE2005 -2007 proceedings, with reference to the June
2007 CORE conference and journal rankings. In Proc.
Tenth Australasian Computing Education Conference
(ACE 2008), Wollongong, NSW, Australia. CRPIT, 78.
Simon and Hamilton, M., Eds., ACS. 63-68.
http://crpit.com/Vol78.html

Lister, R. and Box, I. (2009a). A citation analysis of the
ACSC 2006–2008 proceedings, with reference to the
CORE conference and journal rankings. In Proc. 32nd
Australasian Computer Science Conference (ACSW
2009), Wellington, New Zealand, January 2009. CRPIT,
91. Bernard Mans (Ed.), ACS.

Lister, R. and Box, I. (2009b). A citation analysis of the
AUIC 2006–2008 proceedings, with reference to the
CORE conference and journal rankings. In Proc. 10th
Australasian User Interface Conference (AUIC 2009),
Wellington, New Zealand, January 2009. CRPIT, 93.
Calder, P. and Weber, G., Eds., ACS.

Polites, G. L. and Watson, R. T. 2008. The centrality and
prestige of CACM. Commun. ACM 51, 1 (Jan. 2008),
95-100. http://doi.acm.org/10.1145/1327452.1327454
[Accessed September 2008]

Redner S. (1998) How popular is your paper? An
empirical study of the citation distribution, Eur. J. Phys.
B, 4, 131-134. http://xxx.lanl.gov/abs/cond-mat/
9804163

Tsallis C., de Albuquerque M. P. (2000) Are citations of
scientific papers a case of nonextensivity ?, Eur. Phys.
J. B, 13, 777-780, http://tsallis.cat.cbpf.br/biblio.htm

ADC2006 ADC2007 ADC2008 Total Types of
Citation

No.

Citations
%age

Citations
No.

Citations
%age

Citations
No.

Citations
%age

Citations
No.

Citations
%age

Citations

Journal 143 31% 111 23% 108 27% 362 27%

Conference 212 46% 272 57% 227 57% 711 53%

Book or
Chapter 54 12% 34 7% 24 6% 112 8%

Web Page 27 6% 41 9% 14 4% 82 6%

Unpublished
Report 15 3% 9 2% 13 3% 37 3%

Unpublished
Thesis 10 2% 4 1% 11 3% 25 2%

Patent 0 2 <1% 0 2 <1%

Map 0 1 <1% 0 1 <1%

Total 461 474 397 1332

Table 1: Number of different types of citation in the ADC2006, ADC2007 and ADC2008 proceedings.

CRPIT Volume 92 - Database Technologies 2009

34

Tier

A+ A B L(ocal) C Not
Listed

Number of conferences cited in ADC 30 53 38 2 19 60

Percentage of conferences cited in ADC 15% 26% 19% 1% 9% 30%

Percentage of listed conferences cited in
ADC 21% 37% 27% 1% 13% –

DEST publication rates of Australian
authors in each of the CORE ranks 6% 27% 31% 6% 29%

Table 2: Number of citations in the ADC proceedings to conferences in each CORE tier, and to conferences not
listed by CORE.

Tier

A+ A A+ & A B C Not
Listed

Percentage of conferences cited in ADC
(as in Table 2)

15% 26% 41% 19% 9% 30%

Percentage of conferences cited in ACSC 14% 22% 36% 14% 8% 42%

Percentage of conferences cited in AUIC 12% 19% 31% 14% 4% 50%

Percentage of conferences cited in ACE 5 % 11 % 16 % 21 % 9 % 55 %

Table 2a: A comparison of citations to conferences in each CORE tier in the ADC proceedings with three other
ACSW conferences.

Number of Citations

1 2 3 4 5 6 7 8 9 10 11 13 16 19 30 48 81 85 Total

Number of
Conferences 128 28 17 6 3 2 2 3 2 1 2 3 1 2

1
SIGIR

1
ICDE

1
VLDB

1
SIGMOD

204

Cumulative
Percentage 62.7 76.5 84.8 87.7 89.2 90.2 91.2 92.6 93.6 94.1 95.1 96.6 97.1 98.0 98.5 99.0 99.5 100%

Table 3: Number of conferences receiving various numbers of citations from the ADC2006–2008 proceedings

Number of Different Papers that Cite a Particular Conference

1 2 3 4 5 6 7 8 9 10 11 22 29 Total

Total No.
Conferences 120 27 8 4 4 2 3 2 1 1 1 1 2 176

Cumulative
Percentage 68.2 83.5 88.1 90.3 92.6 93.8 95.5 96.6 97.2 97.7 98.3 98.9 100%

No. Tier A+ 9 5
FOCS

CHI

JCDL
SODA
ICML

ICDM
IJCAI
AAAI

STOC
SIGKDD

WWW
SIGIR PODS ICDE

SIGMOD

VLDB

No. Tier A 37 5 4 TREC DEXA
EDBT
ICDT

 CIKM

No. Tier B 20 7 ER

No. Tier C 11 4 WebDB

No. unlisted 43 6 2

Table 4: Number of conferences receiving citations, excluding self-citations, from various numbers of papers in
the ADC2006–2008 proceedings. For an explanation of the conference acronyms, see Table 5.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

35

Conference Tier Cites CitesXSelf Papers PapersXSelf

SIGMOD: ACM Special Interest Group on Management of
Data Conference A+ 85 83 30 29

VLDB: International Conference on Very Large Databases A+ 81 80 30 29

ICDE: IEEE International Conference on Data Engineering A+ 48 44 22 22

PODS: ACM SIGMOD-SIGACT-SIGART Conference on
Principles of Database Systems A+ 19 19 11 11

CIKM: ACM International Conference on Information and
Knowledge Management A 19 16 10 10

SIGIR: ACM International Conference on Research and
Development in Information Retrieval A+ 30 30 9 9

SIGKDD: ACM International Conference on Knowledge
Discovery and Data Mining A+ 16 16 8 8

WWW: International World Wide Web Conference (ACM) A+ 13 12 9 8

EDBT: Extending Database Technology A 8 8 7 7

ICDT: International Conference on Database Theory A 7 7 7 7

WebDB: International Workshop on the Web and Databases C 8 8 7 7

STOC: ACM Symposium on Theory of Computing A+ 8 8 6 6

DEXA: International Conference on Database and Expert
Systems Applications A 9 6 9 6

ICDM: IEEE International Conference on Data Mining A+ 13 11 5 5

IJCAI: International Joint Conference on Artificial Intelligence A+ 10 10 5 5

AAAI: National Conference of the American Association for
Artificial Intelligence A+ 7 7 5 5

ER: International Conference on Conceptual Modelling B 5 5 5 5

JCDL: ACM/IEEE-CS Joint Conference on Digital Libraries A+ 6 6 4 4

SODA: ACM/SIAM Symposium on Discrete Algorithms A+ 9 9 4 4

ICML: International Conference on Machine Learning A+ 5 5 4 4

TREC: Text Retrieval Conference A 13 13 4 4

Table 5: All conference proceedings cited by four or more papers (excluding self-citations) in the ADC2006,
2007 and 2008 proceedings. The columns show the CORE tier (“Tier”), total number of citations to
the conference (“Cites”), total number of citations to the conference, excluding self-citations
(“CitesXSelf”), total number of papers that cited that conference (“Papers”), and total number of
papers that cited that conference, excluding self-citations (“PapersXSelf”). The list is ordered
(descending) on the last column, then by tier.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5

ln(Rank)

ln
(P

ap
er

sX
se

lf)

Figure 1: A plot of the natural logarithm of PapersXSelf versus the natural logarithm of the rank of the 21

conferences from Table 5, based on PapersXSelf.

CRPIT Volume 92 - Database Technologies 2009

36

Conference Tier Cites CitesXSelf Papers PapersXSelf

DASFAA: DB Systems for Advanced Apps A 3 3 3 3

SSDBM: International Conference on Scientific and
Statistical Data Base Management A 2 2 2 2

DOOD: Deductive and Object-Oriented Databases A 1 1 1 1

PKDD: European Conf. on Principles and Practice of
Knowledge Discovery in Databases A 3 1 3 1

SSTD: International Symposium on Spatial Databases A 0 0 0 0

Table 5a: Highly ranked database conferences with a low number of citations in ADC 2006–2008 proceedings.

Tier

A* A B C Not Listed

Number of journals cited in ADC 19 32 28 12 44

Percentage of journals cited in ADC 14% 24% 21% 9% 33%

Percentage of ranked journals cited
in ADC 21% 35% 31% 13% –

CORE Overall Percentages (n=834) 6% 18% 28% 49%

Table 6: The distribution of ADC citations across the CORE journal tiers.

Tier

A* A A* & A B C Not
Listed

Percentage of journals cited in ADC
(as in Table 6)

14% 24% 38% 21% 9% 33%

Percentage of journals cited in ACSC 13% 16% 29% 9% 4% 58%

Percentage of journals cited in AUIC 7% 7% 14% 16% 8% 61%

Percentage of journals cited in ACE 5 % 4 % 9 % 5 % 1 % 85 %

Table 6a: A comparison of the ADC journal citation distribution with three other ACSW conferences.

Number of Citations

 1 2 3 4 5 6 7 8 10 11 12 14 19 22 Total

Number of Journals 80 21 12 6 3 4 1 1 1 2 1 1 1 1 135

Cumulative Percentage 59 75 84 88 90 93 94 95 96 97 98 99 99 100

Table 7: Number of journals receiving various numbers of citations from the ADC2006–2008 proceedings

Number of Different Papers that Cite a Particular Journal

1 2 3 4 5 6 8 10 12 15 17 Total

Total No. of Journals 81 22 8 3 3 1 1 1 1 1 1 123

Cumulative Percentage 66 84 90 93 95 96 97 98 98 99 100

No. Tier A* 21 6 ML PAMI TOIS VLDB CSUR TODS

No. Tier A 6 2 4 DPD
CN

DMKD
IS TKDE

No. Tier B 18 4 CACM

No. Tier C 4 5 IPM MOD

No. unlisted 32 5 2

Table 8: Distribution of citations to journals, excluding self-citations, from ADC2006–2008 papers.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

37

Journal Tier Cites CitesXSelf Papers PapersXSelf

MOD: SIGMOD Record C 22 22 17 17

CACM: Communications of the ACM B 19 19 15 15

TODS: ACM Transactions on Database Systems A* 14 14 12 12

TKDE: IEEE Transactions on Knowledge and Data
Engineering A 11 11 10 10

CSUR: ACM Computing Surveys A* 11 11 8 8

VLDB: The VLDB Journal A* 8 8 6 6

TOIS: ACM Transactions on Information Systems A* 10 10 5 5

DMKD: Data Mining and Knowledge Discovery A 5 5 5 5

IS: Information Systems A 7 7 5 5

PAMI: IEEE Transactions on Pattern Analysis and
Machine Intelligence A* 6 6 4 4

DPD: Distributed and Parallel Databases A 6 6 4 4

CN: Computer Networks A 4 4 4 4

ML: Machine Learning A* 5 5 3 3

MS: Multimedia Systems A 3 3 3 3

CJ: Computer Journal A 3 3 3 3

TCS: Theoretical Computer Science A 4 3 4 3

TOIT: ACM Transactions on Internet Technology A 3 3 3 3

IPM: Information Processing and Management C 5 5 3 3

SIGIR: ACM SIGIR Forum — 3 3 3 3

CSVT: IEEE Transactions on Circuits and Systems
for Video Technology — 12 11 3 3

Table 9: All journals cited by three or more papers (excluding self-citations) in the ADC2006, 2007 and 2008
proceedings. The columns show the CORE tier (“Tier”), total number of citations to the journal
(“Cites”), total number of citations to the journal, excluding self-citations (“CitesXSelf”), total number
of papers that cited that journal (“Papers”), and total number of papers that cited that journal,
excluding self-citations (“PapersXSelf”). The list is ordered (descending) on the last column, then by
tier, then by journal name.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5

ln(Rank)

ln
(P

ap
er

X
se

lf)

Figure 2: A plot of the natural logarithm of PapersXself versus the natural logarithm of the rank of the 20
journals from Table 9, based on PapersXself.

CRPIT Volume 92 - Database Technologies 2009

38

ActiveTags: Making Tags More Useful Anywhere on the Web

Stephan Hagemann Gottfried Vossen

European Research Center for Information Systems (ERCIS)
University of Münster

Leonardo-Campus 3, 48149 Münster, Germany,
Email: {shageman,vossen}@uni-muenster.de

Abstract

Tags in social tagging systems store meaning for the
taggers who have entered them, and other users often
share this understanding. The result of this, a folk-
sonomy, is typically used in several ways, including
information retrieval and clustering, serendipitous in-
formation access, or visualization of folksonomic char-
acteristics. For these uses tags work pretty well; how-
ever, the ambiguity of tags makes it difficult to use
them for more than searching and browsing. This
paper introduces examples of current programmatic
support in the form of mashups and highlights its
shortcomings. It identifies several types of tags based
on their structure and language, and discusses how
these types support programmatic uses. The main
part is the presentation of the ActiveTags system, a
browser extension with supporting server infrastruc-
ture. Using it the same community process that cre-
ates a folksonomy can be used to enhance tags with
programmatic meaning. Users are enabled to create
reliable mashups based on tags. Effectively, this leads
to customized views of Web pages with tagged con-
tent. ActiveTags naturally increases the usability of
social tagging systems and further extends the notion
of user-generated content.

Keywords: Social tagging; mashups; data as a service;
information retrieval, filtering, and dissemination.

1 Introduction

Social tagging systems are part of numerous sites all
over the Internet (Hammond et al. 2005, Lund et al.
2005, Marlow et al. 2006) and they are a central com-
ponent in current Web 2.0 developments of the social
Web (Hinchcliffe 2006). The objects that are tagged
are quite diverse, ranging from bookmarks, photos
and videos to products. The systems all share the
fact that users can freely choose tags to be attached
to objects, they can typically see tags that others have
attached, and they can subsequently use all these to
search and browse through the resources on a site.
While this works quite well, the ambiguity of tags
generally prevents more specific uses – the meaning
of a tag is obvious to its creator but not necessarily to
others. There are some examples of tags being used
as a basis for mashups, which then specifically and ef-
fectively support linkages between information source
and operations on their contents. Yet currently, these
examples are few, have a very limited scope, and are

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the 20th Australasian Database Conference
(ADC 2009), Wellington, New Zealand. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
92, Xuemin Lin and Athman Bouguettaya, Ed. Reproduction
for academic, not-for profit purposes permitted provided this
text is included.

implemented and enforced by the site operator. The
ActiveTags system we propose in this paper allows
users to implement their own mashups based on tags
and use mashups of other users; tags can be used
regardless of their Web location, thereby effectively
allowing Web pages to be customized and enhanced
by their users.

Two examples of support for specific tags are
present on Flickr, a photo sharing site which al-
lows the owners of photos to tag pictures, and
to share them with friends depending on settings.
So-called machine tags were introduced in January
2007 (Straup Cope 2007), which marked the be-
ginning of special treatment of tags of the form
“namespace:predicate=value.” More functions
are supported for machine tags when the Flickr
API is used (flickr.com/services/api/flickr.
photos.search.html). Earlier, the site had begun to
support two sets of specific tags: geotags and event
tags: (1) Geotags are a combination of three tags that
together indicate the presence of a geotag and encode
a geographic location. Two of the tags are machine
tags, which encode the longitude and the latitude and
can thus be used to position objects on a map. The
site allows these two tags to be exported into struc-
tured data fields for geographic information, so that
the pictures are automatically shown on maps also.
(2) Tags with the prefix “upcoming:event=” are in-
terpreted as links to events on Upcoming.org, with
the effect that a link to the corresponding event is
included in the page.

These two tag types essentially create mashups of
Flickr content with related external content, and they
are great features of tagging on the Flickr site. Sim-
ilar examples are present on other sites, e.g., Deli-
cious.com uses a special tag to send bookmarks from
one user to another. While these specific forms of tag
support are reasonable steps towards a use of tags
for accessing relevant related information, they have
several shortcomings:

Nature of tagging. The meaning of the tags is ef-
fectively enforced by the functions connected.
An essential aspect of folksonomic tagging is that
the vocabulary is free. In general, it should be
possible for different understandings to coexist.

Flexibility. The tags that were chosen to be sup-
ported have been chosen by the site; exten-
sions are only possible if the site operator im-
plements them. Yet new understandings contin-
uously arise in social tagging systems, and they
should not depend on site operators to be effec-
tively supported.
Note that for Flickr and Delicious this does not
hold for uses through their APIs, where new
functions can be implemented by users, although
not within the confines of the original site and
not without certain programming skills.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

39

Scope. The tags we have discussed above only work
on individual sites, although the outlined forms
of tagging occur on other Web sites as well. It
should be left to the users to decide what the
scope of their tag usage and subsequent mashups
is.

Users. As it is the users who generate tags, define
their meanings, and make use of them, they have
to be taken into account when it comes to pro-
grammatic support.

It is these shortcomings that the ActiveTags system
is designed to overcome; corresponding support is the
guideline for our development. Users should have a
wide range of possibilities when it comes to selecting
which interpretations they subscribe to. This includes
which mashups they want to use, the support should
be flexible so that new interpretations (mashups) can
be included as the use of tags evolves, and it should
be up to the users to define in which contexts inter-
pretations should lead to actions (and mashups be
shown). These contexts may, for example, include
settings based on Web pages, time, or a user’s so-
cial network. We have implemented ActiveTags as a
browser extension to enhance a user’s browsing expe-
rience based on the above principles.

The contribution of this paper is twofold: First,
we will show how the ActiveTags system is designed
in order to fulfill the principles mentioned above, and
second we will show how the ActiveTags browser ex-
tension technically works, explaining how mashups
can be created based on tags. To this end, the or-
ganization of this paper is as follows: Section 2 ana-
lyzes the current practice of tagging. Section 3 out-
lines the ActiveTags system design and introduces our
prototype. Section 4 discusses which research findings
and which practical developments are relevant for our
work. We give our conclusions as well as an outlook
in Section 5.

We are currently conducting an evaluation of our
approach and the prototype implementation. Since
that work is still ongoing, we have opted for present-
ing our concept independently here. We will report
on the results of the evaluation in an upcoming paper.

2 On the Practice of Tagging

We have analyzed random tags from Flickr to evalu-
ate what types of tags occur and now discuss whether
these can be used to support mashups effectively. As
opposed to other analyses such as Golder & Huber-
man (2006) we have not looked at the roles tags play,
but at their syntax and whether they are from natural
language dictionaries.

Flickr has several ways of storing tags. We have ac-
cessed the so-called raw version of a tag, which can be
easily extracted via the Flickr API. Its disadvantage
is that whitespaces contained in tags are not present
in this form; thus, if tags are comprised of multiple
words, these cannot be detected. 45,924 photos with
at least one tag were randomly extracted. This has
returned the tags of photos from 24,375 distinct users,
with 490,561 tags in total or 4.43 tags per photo on
average. We have analyzed whether tags belong to
one of the four languages English, French, Spanish,
or German, which we believe are currently the most
popular languages on Flickr. This has been done by
checking them against the respective aspell dictionar-
ies (see aspell.net). We have divided all remaining
tags into “machine tags” and “other tags.” The re-
sults are summarized in Table 1.

The largest group, almost 50% of all tags, con-
tains tags from natural languages. This percentage is
likely to be even higher (as we will see below) when

Type Absolute Percentage

Language tags 244,692 49.88

English 222,145 45.28
French 68,236 13.91
German 61,069 12.45
Spanish 48,172 9.82

Machine tags 7,978 1.63

Other tags 237,891 48.49

All Tags 490,561 100.00

Table 1: Types of tags (based on all occurrences).

one takes into account more languages and treats
multiple-word tags differently. Machine tags make
up for only 1.63% of the tags found. Together with
the number for tags per photo, we can assume that
machine tags are present roughly for 1 out of every
14 photos.

Table 2 contains the five most popular tags from
each of the three categories. Due to their structure,
machine tags, as we have seen above, can be used
effectively for storing structured data in tags. In Ta-
ble 2 we have based our frequency calculation on the
name space and property parts of the tag only. As
can be seen, geotags are by far the most popular ma-
chine tags, which is most likely due to the fact that
these tags are supported by the Flickr site. We take
this as evidence that programmatic support increases
the incentive to use tags.

The question now is: Are we dealing with less than
two percent of all tags, or can any of the other tags
be used for building mashups as well?

An example of a mashup that uses ordinary tags
to achieve something similar to geotagging is fo-
toland.us. It uses tags as the basis for a mashup of
photos from Flickr and the maps provided by Google
(maps.google.com). Instead of geotags it uses the
names of countries and cities, but can also handle ad-
ditional tags added by its users. Although the site
often achieves good results, there tend to be photos
in result sets where the tags have been interpreted the
wrong way: For example, for the German city of Es-
sen, which is also the German word for food, it is quite
common to find photos that were actually taken in
other cities, but that show food, people having food,
or something similar.

Although this may be rare, problems with cities
that have the same name are very common. As anec-
dotal evidence, take Athens, Texas. If this town were
only tagged with “Athens” most pictures that get
connected will actually be from Greece. If one tries
to disambiguate the tag by tagging “Athens, US”, the
results get better, leading to some pictures from the
city in Texas, but also pictures from Greece with peo-
ple on them. Here the meaning of “US” was obviously
not the country but us as in “we are in the picture.”
Finally, tagging “Athens, Texas” yields very good re-
sults. So, with proper disambiguation even common
terms can be used as a reliable basis for mashups.

The five most popular tags in our sample which
belong into the “other” category show what types
of tags this category contains: Obviously there are
abbreviations (bw - short for black & white photog-
raphy), portmanteau words (geotagged - see above),
tags composed of multiple words (“a big fave” – with
“fave” being a short form of favorite, and “black and
white”), and numbers (2006 - most probably denoting
the year). Portmanteau words are commonly used to

CRPIT Volume 92 - Database Technologies 2009

40

Dictionary Machine Other

1 portrait (1333) geo:lat (2455) bw (3089)
2 canon (1250) geo:lon (2396) geotagged (1852)
3 me (1238) flickr:user (422) abigfave (1476)
4 nikon (1218) dc:identifier (418) blackandwhite (1110)
5 bravo (1120) xmlns:dc (418) 2006 (1070)

Table 2: Five most popular tags by category.

uniquely identify events. Often used for conferences,
examples include “barcampcologne”, “barcampsyd-
ney07”, and “drupalconbarcelona2007.” For example,
searching for the last term yields photos, slides, blog
entries etc. related to the Drupal Conference 2007 in
Barcelona.

We conclude that there are several groups of tags
based on syntax which can reliably be used as meta-
data. The quality of this data is in the hands of the
users. It is our hope that with the support of Active-
Tags the awareness for good metadata will increase,
as will the quality of the metadata.

3 The ActiveTags System

3.1 Tag-mashup lifecycle

The introduction of tag support for maps and events
on Flickr was preceded by discussions in the commu-
nities of Flickr and other sites (Straup Cope 2007),
and by external developments of services supporting
the tags (Andrews 2006). As such, the implementa-
tion of terms depended on the process of the term
development from inhibition to common understand-
ing. The mashup development was then taken care of
by the developers behind the site. In order to support
a community in going through similar processes and
the system to react flexibly, users have to be empow-
ered to do so. They have to be able to define their
understandings of tags, must be able to implement
mashups, and to control the connection of the two.

The goal of ActiveTags is to support what could
be called a “tag-mashup lifecycle” as depicted in Fig-
ure 1: (1) The starting point is an individual interest
in expressing information which is not explicitly avail-
able. In this stage there is no common understand-
ing of pragmatics. (2) The ActiveTags system allows
the understanding to be expatiated through the im-
plementation of a mashup. (3) The understanding
spreads from individual to common, i.e., over the so-
cial network of a user. (4) This stimulates new terms
to arise, which in turn spawns the creation of new
mashups by restarting the cycle for other terms. This
cycle is not to be made mandatory, but transitions be-
tween the steps are to be made as efficient as possible.

(1)
Individual Interpretation

(3)

Dissemination

(2)

Active Tags

Mashup

(4)

Emerging

new uses

Tags and

Tag meaning

Figure 1: ActiveTags dissemination of mashups.

3.2 Building a tag-based mashup system

The four principles we have laid out above guide the
design and implementation of the ActiveTags system;
these were accordance to the nature of tagging, flexi-
bility in control, user-defined scope, and explicit user
modeling. The scope requirement has two aspects: to
technically allow for a maximal scope, while enabling
the user to restrict it. At this point we want to enable
users to employ tags over the entire Web. Focusing
on the Web does leave out programs that also use
tagging (such as file tagging in Mac OS X and Mi-
crosoft Vista), but are not part of the Web. However,
in doing so, we can rely on HTML as the dominant
language for transporting content, and on the browser
as the dominant way of access to the Web. Because
of this, we have implemented ActiveTags as a Firefox
extension that interacts with the Web pages a user
visits to enhance them with tag-based mashup sup-
port. As a consequence, the design that is presented
below is concerned with the Web context, but could
be easily formulated for other contexts as well. Let
us first look at an example of the intended user expe-
rience before we discuss the design of the ActiveTags
system and its browser extension.

3.2.1 A sample page enhanced by ActiveTags

To exemplify the feasibility of our approach we have
re-implemented the two functions which, as we have
mentioned earlier, are available on Flickr as Active-
Tags mashups. Figure 2 shows the screenshot of a
Web page viewed in Firefox with the ActiveTags ex-
tension enabled and its results highlighted.

The Web page is a typical detailed photo page on
the Flickr site. The dashed red lines indicate what
the ActiveTags extension is working on. Tags are
present on this page in the right column (1). They
have been highlighted, indicating that ActiveTags has
recognized them. As can be seen, the photo has
been geotagged and tagged with an Upcoming.org Id.
Flickr neither shows a map nor a link to one because
geotags have to be specifically imported first; only
thereafter a link to a map containing the photo will
be shown. The link to Upcoming.org that is provided
by Flickr is visible under “Additional Information” in
the right column (2).

The mashups of ActiveTags that are available for
this page are visible in the large highlighted section
titled “ActiveTags MergeSpace” in the lower half of
the image (3). First, a map mashup shows where the
photo was taken, the map itself being a fully naviga-
ble Google Maps object included as an IFrame (4).
Second, there is also a link to the event at Upcoming
(5).

In effect, there is not much difference between the
functionalities provided by Flickr’s native methods
and ActiveTags’ mashups on this page. However,
scope and implementation are very different: Indeed,
the ActiveTags mashups were created by users and
they not only work on this sample page, but on arbi-
trary Web pages as well.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

41

Definitions

Web

Firefox ActiveTags Server

ActiveTags extension

Synchronization

Browser component

Page

modification

Users

Community
MergeSpaces

Mashups

TagExtractors

Recommen-

dation

Browse

MergeSpaces

Mashups

TagExtractorsContexts

Activation

Influence
Influence

Figure 3: ActiveTags components.

1

2

3

4

5

Figure 2: Sample page with ActiveTags mashups.

3.2.2 Design

Figure 3 contains an overview of the main compo-
nents of the ActiveTags system. Depicted on the
left is the user-side component of the ActiveTags sys-
tem: a browser with the ActiveTags extension. The
ActiveTags server (depicted on the right) stores the
global database of definitions and social aspects, that
is, users and community.

The ActiveTags extension is the hub for client in-
teraction and it fulfills several functions. In executing
the ActiveTags routine, it handles the visible part of
ActiveTags’ operations. The routine consists of the
following steps:

1. Monitoring page loads,

2. extracting tags from the Web page,

3. checking for applicable mashups based on tags,
URL, and settings,

4. finding a place on the Web page to merge
mashups, and

5. including mashups into the Web page.
The process is aborted after steps 2, 3, or 4 if the pre-
vious step yields an empty result, resp. If, however,
the process continues all the way to step 5, it leads
to a situation similar to the one depicted in Figure 2,
with tags detected, mashup integration space found,
and mashups shown.

The extension regularly synchronizes its database
of definitions with the server to support sharing
among users. This encompasses TagExtractors (used
in step 2), MergeSpaces (used in step 4), and mashups
(used in steps 3 and 5). Finally, the extension offers
users the possibility of creating new instances of these
definitions. Contexts, the last portion of the exten-
sion, allow a user to specify his or her browsing con-
text, which can be used to control the activation of
different mashups in varying circumstances.

The ActiveTags server stores the global database
of definitions. Through this database the extension
instances exchange their definitions. Users can form
links among each other that are equal to “friend” con-
nections in social networks. Together with activation
statistics the communities thus created influence the
suggestion and ranking of definitions when they are
proposed to the user.

3.2.3 Client implementation

The shaded parts of Figure 3 are those that have been
implemented so far. We have opted to not imple-
ment contexts at this time, as a similar effect can

CRPIT Volume 92 - Database Technologies 2009

42

be achieved through profiles in the Firefox browser.
Also, the community features have not yet been re-
leased, because we first want to grow the user base
and the number of definitions. Even with good rank-
ing algorithms, a small user base that has only a few
definitions to work on may lead to arbitrary and use-
less results, which is why we currently take care of
quality control by closely monitoring all newly cre-
ated definitions.

The details of our implementation of the Active-
Tags extension will follow the steps from the five-
step procedure outlined above:

Monitoring page loads. The extension reg-
isters an event listener that waits for
DOMContentLoaded events and thus imple-
ments step 1. These events are a Mozilla-specific
and they fire after the content of a page, but
before images are fully loaded. It is checked
whether such an event is from an IFrame that
was generated by ActiveTags. If this is not the
case, the process continues.

TagExtractors are definitions that perform step 2
of the ActiveTags procedure. They consist of a
regular expression for URLs, an XPath expres-
sion for element extraction, and an optional sep-
arator string.
The following example is an extractor for tags
attached to photos on a Facebook photo page:

URL pattern:^.*www\.facebook\.com\/photo
\.php.*$

XPath: //*[@id=’phototags’]/span
Separator: –

A TagExtractor’s XPath is executed on any
browsed page that matches the URL pattern,
where, if present, the separator string is used to
split up the contents of elements into tags (oth-
erwise the entire element is considered a single
tag). The results of all applicable TagExtractors
are combined and fed into the next step of the
process.
There are certain extractors that are not site spe-
cific, since they make use of standardized for-
mats, which can encode tags. Therefore they
are applied to all Web pages. Relevant for-
mats include microformats, eRDF, and RDFa.
In particular, we use the rel-tag microformat
(Celik & Marks 2005). It specifies tags by an-
notating links with a rel attribute whose value
is “tag”. The XPath to extract tags with
this microformat is //a[contains(concat(’
’,@rel,’ ’),’ tag ’)]. Microformats are
widely used: e.g., blogs created using major blog-
ging tools such as those from Blogger.com or
Wordpress.com encode tags for blog posts using
this microformat.
The other formats are listed for completeness;
they are currently not activated, since they are
hardly used in practice. eRDF and RDFa allow
RDF to be embedded into Web pages. GRDLL
(W3C 2007) is a specification detailing how se-
mantic data can be extracted from XML content.
In the semantic data we would look for tag defi-
nitions as specified by the Newman tag ontology
(Newman 2004).
If the tags on a page are not recognized by Ac-
tiveTags, users can create a new TagExtractor
for it. TagExtractors are built as CSS selec-
tors (W3C 2005) and converted into equivalent
XPath expressions prior to storage and execu-
tion. Patterns are often easy to create, as tags

are commonly presented on Web pages using lists
or tables of links, or plain text versions of tags.
Therefore, ActiveTags offers simple visual ex-
tractor creation with which users can point and
click to create TagExtractors. Although this pro-
cess can create only a very limited subset of se-
lectors it is sufficient for many Web pages. Cur-
rently, only about 12% of TagExtractors in use
have been manually corrected to cope with (par-
tial) false positives.
The main part of the TagExtractor creation di-
alog is depicted in Figure 4: after a user opens
the dialog, he or she starts creating a selector
by moving the pointer over the copy of the Web
page, which is displayed in the center (1). While
hovering selectable elements under the pointer
are highlighted. Once the user finds the tags and
clicks on one of them a selector is created. Now,
all elements that are covered by this selector are
highlighted. The selector is also shown in the
field Selector (2). Using the buttons that make
up the selector, the selector expression can be
generalized, i.e., parts can be generalized, or left
out completely. This allows the user to widen
the selector. Should multiple tags be captured
by one HTML element, a separator can option-
ally be specified to separate them (3). Finally,
the URL pattern on which the extractor should
be working can be modified like the selector by
clicking on the boxes (4). Submitting the ex-
tractor makes it available for immediate use and
uploads it to the ActiveTags server so that it is
available to other users as well.

Mashup definitions check for the applicability of
mashups (step 3) in two ways: via tags and via
URLs. The latter is an optional list of regular
expressions on URLs that, if present, needs to
contain at least one item that matches the cur-
rent URL. The former is a list of patterns for
tags, where each item specifies what tag pattern
is looked for and what part of this pattern (if
any) is to be used as a mashup parameter.
The following example, which checks for the lat-
itude component of geotags, is such an item. It
defines the expected tag pattern as a regular ex-
pression. Part of the tag is to be used as a param-
eter. By default, it is the outermost parentheses
in the regular expression that define which part
of the tag is to be used as a parameter: in this
case it is the numerical component of the tag. Fi-
nally, the extracted part can be referred to using
the parameter name, which here is “lat.”

Tag pattern: ^geo:lat=(-?\d*[0-9]
(\.\d*[0-9])?)$

Param? yes
Param name:lat

The other parts of a mashup definition are rele-
vant for its execution and will be explained be-
low.

Finding a place on Web page. Step 4 is per-
formed with the help of MergeSpace definitions.
These are very similar to TagExtractors, the dif-
ference being that MergeSpaces do not have sep-
arators. The rule to go from selected elements to
the space where to include mashups is the follow-
ing: Mashups are incorporated into a page after
the last element that is selected by the XPath of
the definition. If multiple MergeSpaces are ap-
plicable on a page, the first MergeSpace found
will be used.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

43

1

2

3

4

Figure 4: TagExtractor creation dialog.

Mashup execution. As seen above, mashups
extract parameters from tags. In order to be
able to execute, they also define where the
Web procedure call (WPC, see (Vossen &
Hagemann 2007)) endpoint implementing the
mashup is located. For the example introduced
above the URL is www.bananathinking.net/
ActiveTags/webServices/google-map/map.
php?lat=%lat%&lon=%lon%. At the end of this
URL, enclosed in percent signs, the parameter
names for “lat” and analogously for “lon” can
be seen. For an execution of this WPC, these
parameter names are replaced with the current
values. Mashups are executed by a piece of
activating code that is embedded into the Web
page.
There are currently two types of mashups, which
differ in their embed code: link and IFrame
mashups. The former creates a link pointing to
the URL discussed above, while the latter creates
an IFrame for which the source is that URL.

3.2.4 Server implementation

The ActiveTags server has been implemented us-
ing CakePHP (cakephp.org). It currently resides at
bananathinking.net/ActiveTags/server. It offers
a management console for enabling, disabling, and
modifying definitions. While access to most parts of
the server is restricted, definitions can be up- and
downloaded by ActiveTags extensions. A running Ac-
tiveTags extension will usually download new defini-
tions from the server once after every browser start.
There are options to change this default behavior and
users can trigger this manually. The server delivers
definitions as a JSON string, which is cached by the
extension so that it is operable even should the server
be unreachable. A newly created definition is up-
loaded to the server and will spread to other users
when they restart their browsers or manually update
their definitions.

The current implementation is running proof that
the outlined system is functional; however, there are
aspects of large, distributed systems which need to be
addressed. The server implementation is performing
all storage and distribution functions of the system.
This centralized component will eventually become a
bottleneck when the number of users grows. There-
fore, the next step in the development will include
an extension of the server towards a peer-to-peer ar-
chitecture. We are currently investigating the use of
the BitTorrent protocol. In this scenario, the server
will continue to handle definition uploads, but dis-
tribute them not only directly, but also via the Bit-
Torrent protocol. To this end, the server will provide
tracker information for the definition files and be the
seed of these files, while the Firefox extensions will
act as BitTorrent peers, helping with the distribution
of definitions. An approach of combined short-term
individual updates and regular cumulative ones will
balance timeliness and generated network traffic.

While TagExtractors and MergeSpaces are needed
by every extension, the utility of mashups is very
much dependent on what a user wants the function-
ality to be. Therefore, a second way to distribute
mashups will be implemented in the future. Simi-
lar to the way Ubiquity distributes actions (see Sec-
tion 4), it will be possible to include mashup defini-
tions into arbitrary Web pages, highlighted in such a
way that ActiveTags extensions recognize them and
allow installation. This approach would simultane-
ously tackle conflicts between different requirements
towards mashups and scalability of mashup distribu-
tion. At the same time it allows mashups to remain
private, e.g., a business mashup using company inter-
nal sources.

Conflicts between definitions are also an issue with
TagExtractors and MergeSpaces. They are tackled
by a fine-granular recommendation system. Based on
the numbers of users activating certain definitions,
and explicitly stated inconsistencies, activations will
be proposed to other users.

CRPIT Volume 92 - Database Technologies 2009

44

4 Related Work

The projects closest to ActiveTags are Piggy Bank
(Huynh et al. 2007) and Intel Mash Maker (www.
mashmaker.intel.com/), which both are also Fire-
fox extensions and quite similar in their features.
Piggy Bank allows Web pages to be connected after
the pages have been scraped. Scrapers are available
for nine Web sites and three generic formats. The
scraped data is transformed into Semantic Web lan-
guages, and then used for mashups. Intel’s project
covers features similar to Piggy Bank, yet without
focusing on Semantic Web languages. The scraped
data has to be transferred to Intel servers before it
can be used. Both projects do not have an inte-
grated notion of communities. In order for mashups
to be used they have to be manually installed. This
gives users control over which mashups they want to
use. We aim at retaining control while increasing the
ease of sharing mashups. An essential part of Active-
Tags, namely supporting the development of meaning
in folksonomies, is not within the scope of these two
projects.

Ubiquity (Raskin 2008), an extension adding a
command line interface to Firefox, has a complemen-
tary approach. Instead of focusing on the resources
(of Web sites), its main concept are commands, which
can be invoked on any Web page. If text is selected
on a Web page this text functions as the parameter
to commands automatically. The mapping example
mentioned above is available in Ubiquity. Here, the
workflow is as follows: The text of an address is se-
lected, the Ubiquity shortcut is pressed (which opens
the “command line”), the command “map” is typed
in, which brings up a small map immediately. New
commands can be developed by anyone. The code im-
plementing a command is embedded into a Web page
using special markup so that a browser with Ubiq-
uity installed will inform the user of the command’s
presence and allow installation.

The online mail application Zimbra implements a
feature called “Zimlets” (Zimbra 2006). These are
programs that are activated on pre-specified patterns
found in certain objects (mails, event entries, con-
tacts, etc.). They are used to show data from other
sources, thereby effectively mashing-up these pieces of
content. The Operator extension (https://addons.
mozilla.org/de/firefox/addon/4106) for the Fire-
fox browser scans Web pages for microformat data,
which it can extract and send to other programs
that make use of this data. The extension Sxip-
per (www.sxipper.com) extends the Firefox password
store and is able to automatically fill out forms by
learning forms on Web pages through user interac-
tion. The information on how a form is to be used
is stored centrally, so of all Sxipper users using a site
only the first one has to train a particular form. The
ActiveTags system uses similar information extrac-
tion mechanisms as these two extensions. It employs
a mashup execution mechanism similar to Zimlets,
but allows more complex invocation criteria.

There is a lot of research on folksonomies and
tagging, as well as on bringing these two together
with Semantic Web concepts; see Voss (2007) for an
overview. Ontologies are a central aspect of the Se-
mantic Web. They provide machine-interpretable se-
mantics and intend to allow machines to reason about
the meaning of objects. In order to create an ontol-
ogy, a design process is needed, which means upfront
investment of knowledge engineers that will structure
the respective field (Hüsemann & Vossen 2005).

There are several different attempts to bridge so-
cial tagging systems and the resulting folksonomies
with ontologies. It has been argued by Christiaens
(2006) that these two approaches are complemen-

tary and differ by their respective degree of freedom.
The relationship between folksonomies and machine-
extracted keywords was evaluated in Al-Khalifa &
Davis (2007) in order to study the former’s poten-
tial for being used to generate semantic metadata.
How semantic knowledge can be used to enhance tags
in folksonomies explicitly has been evaluated by An-
geletou et al. (2007). Tags have been processed by
Specia & Motta (2007) to infer meaning by using
other Web resources. Their results are “faceted on-
tologies . . . partial ontologies conceptualizing specific
facets of knowledge.” In contrast, statistical meth-
ods have been used by Zhang et al. (2006) to infer
semantics from folksonomies.

Plug-in modules have been proposed by Wu et al.
(2006) for social tagging systems that support the ex-
traction of knowledge from those systems. They thus
aim at systematizing the capabilities of the technical
infrastructure to allow for further use in this direction.
The possibility of defining relationships between tags
into a social bookmarking system has been introduced
by Hotho et al. (2006). All these contributions relate
folksonomies and the Semantic Web in one way or
another, but do not attempt to directly support the
use of tags programmatically, which is the aim of our
contribution.

5 Conclusions and Future Work

Social tagging systems obtain their capabilities from
massive amounts of users who participate. The open
structure and low specificity of tagging allows for
many uses, without forcing a particular one or favor-
ing another. The downside of this is that, although
the tags allow it, only a few forms of use are effi-
ciently supported in typical tagging systems. The
ActiveTags system brings direct programmatic sup-
port for tags in the form of mashups right alongside
the objects where the tagging takes place.

This paper has shown how the ActiveTags sys-
tem has been designed and how it works. The sys-
tem is able to copy popular tag-based mashups that
are in use today. Moreover, it has been shown that
right from the start the scope is greatly improved
when compared to these examples. The evaluation
period that is currently running has seen the creation
of several new mashups. Other initial results from
our evaluation are also promising: For example, Ya-
hoo! Pipes has been used to connect related articles
of big German news portals. The rel-tag microformat
TagExtractor detects tags on many pages that have
not been specifically trained for ActiveTags. Still,
the largest growth in numbers has been observed for
TagExtractors – most of which worked properly right
away. As already mentioned, we are working on a
detailed evaluation of the ActiveTags system. Never-
theless, we take the observations mentioned above as
positive indicators from the first weeks of our evalu-
ation. Although not all features of the system have
been activated, the desired developments are already
observable. While continuing the evaluation, we will
complete the implementation of the system as out-
lined in Section 3.2.4.

The design of the ActiveTags system is inherently
distributed: The more Web sites use tags (and these
becoming detectable), the more common tag inter-
pretations and the more ubiquitous mashups can be-
come. ActiveTags leverages several dimensions of
user-generated content and we expect it to influence
the way in which tags are used.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

45

References

Al-Khalifa, H. S. & Davis, H. C. (2007), ‘Exploring
The Value Of Folksonomies For Creating Seman-
tic Metadata.’, International Journal on Semantic
Web and Information Systems (IJSWIS) 3(1), 13–
39.

Andrews, P. (2006), ‘Flickr Upcoming Event
Userscript’. http://userscripts.org/scripts/
show/5464.

Angeletou, S., Sabou, M., Specia, L. & Motta, E.
(2007), Bridging the Gap Between Folksonomies
and the Semantic Web: An Experience Report.,
in ‘Workshop: Bridging the Gap between Semantic
Web and Web 2.0, European Semantic Web Con-
ference’.

Celik, T. & Marks, K. (2005), ‘Rel-tag microformat’.
http://microformats.org/wiki/rel-tag.

Christiaens, S. (2006), Metadata Mechanisms: From
Ontology to Folksonomy ... and Back, in R. Meers-
man, Z. Tari & P. Herrero, eds, ‘OTM Workshops
(1)’, Vol. 4277 of Lecture Notes in Computer Sci-
ence, Springer, pp. 199–207.

Golder, S. & Huberman, B. A. (2006), ‘Usage pat-
terns of collaborative tagging systems’, Journal of
Information Science 32(2), 198–208.

Hammond, T., Hannay, T., Lund, B. & Scott,
J. (2005), ‘Social Bookmarking Tools (I)’, D-Lib
Magazine 11(4). http://www.dlib.org//dlib/
april05/hammond/04hammond.html.

Hinchcliffe, D. (2006), ‘Continuing an Industry
Discussion: The Co-Evolution of SOA and Web
2.0’, Dion Hinchcliffe’s Web 2.0 Blog. http:
//web2.wsj2.com/continuing_an_industry_
discussion_the_coevolution_of_soa_and.htm.

Hotho, A., Jäschke, R., Schmitz, C. & Stumme,
G. (2006), Emergent Semantics in BibSonomy, in
C. Hochberger & R. Liskowsky, eds, ‘GI Jahresta-
gung (2)’, Vol. 94 of LNI, GI, pp. 305–312.

Hüsemann, B. & Vossen, G. (2005), Ontology Engi-
neering from a Database Perspective, in S. Grum-
bach, L. Sui & V. Vianu, eds, ‘ASIAN’, Vol. 3818
of Lecture Notes in Computer Science, Springer,
pp. 49–63.

Huynh, D., Mazzocchi, S. & Karger, D. (2007),
‘Piggy bank: Experience the semantic web
inside your web browser’, Web Semantics: Sci-
ence, Services and Agents on the World Wide
Web 5(1), 16–27. http://www.sciencedirect.
com/science/article/B758F-4MVF4YB-1/2/
38957cbb8d2a861463d6a77e35637bf6.

Lund, B., Hammond, T., Flack, M. & Han-
nay, T. (2005), ‘Social Bookmarking Tools (II):
A Case Study - Connotea’, D-Lib Magazine
11(4). http://www.dlib.org/dlib/april05/
lund/04lund.html.

Marlow, C., Naaman, M., boyd, d. & Davis, M.
(2006), HT06, tagging paper, taxonomy, Flickr,
academic article, to read, in (Wiil et al. 2006),
pp. 31–40.

Newman, R. (2004), ‘Newman Tag Ontology’. http:
//www.holygoat.co.uk/projects/tags/.

Raskin, A. (2008), ‘Introducing ubiquity’, Mozilla
Labs Blog. http://labs.mozilla.com/2008/08/
introducing-ubiquity/.

Specia, L. & Motta, E. (2007), Integrating Folk-
sonomies with the Semantic Web, in E. Franconi,
M. Kifer & W. May, eds, ‘ESWC’, Vol. 4519 of Lec-
ture Notes in Computer Science, Springer, pp. 624–
639.

Straup Cope, A. (2007), ‘Machine tags’, Flickr API
/ Discuss. http://www.flickr.com/groups/api/
discuss/72157594497877875/.

Voss, J. (2007), ‘Tagging, Folksonomy & Co - Renais-
sance of Manual Indexing?’. http://arxiv.org/
abs/cs/0701072.

Vossen, G. & Hagemann, S. (2007), Unleashing Web
2.0 - From Concepts to Creativity, Morgan Kauf-
mann, Burlington, MA.

W3C (2005), ‘Selectors, W3C Working Draft’. http:
//www.w3.org/TR/css3-selectors/.

W3C (2007), ‘W3C GRDLL Specification’. http://
www.w3.org/2001/sw/grddl-wg/.

Wiil, U. K., Nürnberg, P. J. & Rubart, J., eds (2006),
HYPERTEXT 2006, Proceedings of the 17th ACM
Conference on Hypertext and Hypermedia, August
22-25, 2006, Odense, Denmark, ACM.

Wu, H., Zubair, M. & Maly, K. (2006), Harvesting
social knowledge from folksonomies, in (Wiil et al.
2006), pp. 111–114.

Zhang, L., Wu, X. & Yu, Y. (2006), ‘Emergent
Semantics from Folksonomies: A Quantitative
Study’, J. Data Semantics VI, 168–186.

Zimbra (2006), Zimlets - A Mechanism for Integrating
Disparate Information Systems and Content with
the Zimbra Collaboration Suite (ZCS), version 0.97
edn.

CRPIT Volume 92 - Database Technologies 2009

46

Unified Q-ary Tree for RFID Tag Anti-Collision Resolution

Prapassara Pupunwiwat Bela Stantic

Institute of Integrated and Intelligent Systems
Griffith University, Gold Coast Campus

Queensland 4222, Australia
Email: {p.pupunwiwat, b.stantic}@griffith.edu.au

Abstract

Radio Frequency Identification (RFID) technology
uses radio-frequency waves to automatically identify
people or objects. A large volume of data, result-
ing from the fast capturing RFID readers and a huge
number of tags, poses challenges for data manage-
ment. This is particularly the case when a reader
simultaneously reads multiple tags and Radio Fre-
quency (RF) collisions occur, causing RF signals to
interfere with each other and therefore preventing
the reader from identifying all tags. This problem is
known as Missed reads, which can be solved by using
anti-collision techniques to prevent two or more tags
from responding to a reader at the same time. The
current probabilistic anti-collision methods are suffer-
ing from Tag starvation problems so not all tags can
be identified, while the deterministic methods suffer
from too long Identification delay. In this paper, a
“Unified Q-ary Tree Protocols” based on Query tree
is presented. In empirical study compared with the
Query tree and 4-ary tree, we show that the proposed
method performs better, it requires less number of
queries per complete identification, which results in
less total identification time.

1 Introduction

RFID technology has gained significant momentum
in the past few years. It has promised to improve
the efficiency of business processes by providing the
automatic identification and data capture. The core
RFID technology is not new, and it can be traced
back to World War II where it was used to distin-
guish between friendly and enemy aircrafts or known
as friend-or-foe (Landt 2001). Currently RFID tech-
nology is used in different systems such as: trans-
portation, distribution, retail and consumer packag-
ing, security and access control, monitoring and sens-
ing, library system, defence and military, health care,
and baggage and passenger tracing at the airports.

In warehouse distribution environment where
RFID systems are deployed, the Ultra High Fre-
quency (UHF) range of radio-frequency waves are
used for long distance identification. UHF includes
frequencies from 300 to 1000MHz, but only two fre-
quency ranges, 433MHz and 860-960MHz, are used
for UHF RFID systems. The 433MHz frequency is
used for active tags, while the 860-960MHz range is

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the 20th Australasian Database Conference
(ADC 2009), Wellington, New Zealand, January 2009. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 92, Athman Bouguettaya and Xuemin Lin, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

used for passive tags or semi-passive tags. All proto-
cols in the UHF range have some type of anti-collision
capability, which allow multiple tags to be read simul-
taneously within the interrogator zone (Brown et al.
2007).

Despite significant improvement with respect to
the quality of readers and tags, a significant percent-
age of captured data still has errors, which are par-
ticularly due to the Missed reads. To prevent these
Missed reads, mostly caused by RF Collision, several
techniques for the Edge anti-collision have been pro-
posed in the literature. However, these approaches
still suffer from either Tag starvation problem, or
produced too many Collision cycles and Idle cycles,
which causes Identification delay.

In this study, we propose a new anti-collision al-
gorithm called “Unified Q-ary Tree Protocols”, which
is a combination of Q-ary trees, particularly a binary
tree, 4-ary tree, 8-ary tree, and 16-ary tree, to opti-
mise the anti-collision in reading RFID tags. We fo-
cus on deterministic anti-collision protocols since they
can achieve 100 percent identification. We also con-
centrate on the impact of similarity of EPC data, es-
pecially in warehouse environment where most items
have bulky movement. These items are usually manu-
factured from the same company which evidently used
the same Encoding Schemes and have the same Com-
pany Prefixes. In simulated experimental study, we
show that our method reduces Collision cycles and
Idle cycles, which resulted in less Identification delay
and improve a quality of captured data.

The remainder of this paper is organised as follows:
In section 2, some general background on RFID and
information related to Missed reads including their
causes is provided. In section 3, we discuss the re-
lated works to our proposed method and their lim-
itations, which include probabilistic and determinis-
tic anti-collision methods, and Query tree protocols.
In section 4, we are presenting a new technique, the
“Unified Q-ary Tree Protocols” including methodol-
ogy and scenarios. In section 5, we present experi-
mental results, analysis and discussions, and finally in
section 6 we provide our conclusion and future work.

2 RFID Background

RFID may only consist of a tag and a reader but a
complete RFID system involves many other compo-
nents, such as computer, network, Internet, and soft-
ware such as middleware and user applications. A
typical RFID system is divided into two layers: the
physical layer and Information Technology (IT) layer
(Brown et al. 2007).

The physical layer consists of: one or more reader
antennas, one or more readers (Interrogator), one or
more tags (Transponder), and deployment environ-
ment.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

47

The IT layer consists of one or more host com-
puters connected to readers (directly or through a
network), and appropriate software such as device
drivers, filters, middleware, databases, and user ap-
plications.

Figure 1: An example of how RFID tag, reader, mid-
dleware and application operate.

Figure 1 shows that RFID reader retrieves infor-
mation from tag and sends that information back
to host computer via middleware. Middleware first
needs to convert raw data retrieved by the reader to
a meaningful data before sending them to an appli-
cation layer assigned on a host computer.

2.1 Electronic Product Code (EPC)

EPC Class 1 Generation 2 is widely used in UHF
range for communications at 860-960MHz. This
passive tag is also referred to as EPC Gen-2 tag,
where the standards have been created by EPC-
Global (EPCGlobal 2006). The most common en-
coding scheme currently widely used includes: Gen-
eral Identifier (GID-96), Serialised Global Trade Item
Number (SGTIN-96), Serialised Shipping Container
Code (SSCC-96), Serialised Global Location Num-
ber (SGLN-96), Global Returnable Asset Identifier
(GRAI-96), Global Individual Asset Identifier (GIAI-
96), and DoD Identifier (DoD-96).

In this paper, we only focus on General Iden-
tifier 96-bits type due to page limitation. The im-
plementation and experiment will be determined by
the impact of EPC Encoding Scheme and bulky move-
ment of items, therefore at present, only one type of
encoding is necessary.

GID-96 Bit Max.Decimal/Binary
Header 8 0011 0101
GMN* 28 268,435,455

Object Class 24 16,777,215
Serial Number 36 68,719,476,735

Table 1: The General Identifier (GID-96) includes
three fields in addition to the ‘Header’ with a total
of 96-bits binary value (*GMN = ‘General Manager
Number’).

The general structure of EPC tag encodings is a
string of bits, consisting of a fixed length (8-bits)
‘Header’ followed by a series of numeric fields whose
overall length, structure, and function are completely
determined by the Header value. Table 1 shows an ex-
ample of GID-96 EPC generation 2 encoding scheme.
Only Header is shown in binary, the rest are shown
in decimal number.

2.2 Warehouse Distribution Justification

Items tend to move and stay together through differ-
ent locations especially in a large warehouse (Gonza-

lez, Han & Li 2006), (Gonzalez, Han, Li & Klabjan
2006). For example, 10 pallets with 60 cases of crys-
tal glasses each may be ready to leave the warehouse
and deploy to different retailer. At this point, 10 pal-
lets move along a conveyor belt through dock doors
mounted with RFID readers. We can, for example,
use the assumption that many RFID objects stay or
move together, especially at the early stage of dis-
tribution, and these EPC data will be very similar
since the first few bits of encoding will determine the
type of Encoding Scheme (Header), Company Prefixes
(GMN), and Object Class.

2.3 Errors in RFID Data Streams

Due to the characteristics of RFID streaming data,
which does not contain much information and can be
captured very fast, some of these data need to be
filtered before being stored into the database. Such
filtering is called ‘Edge cleaning/filtering’. There are
four typical errors: Unreliable reads, Noise, Missed
reads, and Duplication. Several techniques for filter-
ing RFID data have been proposed in literatures (Bai
et al. 2006), (Jeffery, Garofalakis & Franklin 2006),
(Carbunar et al. 2005), (Fishkin et al. 2004); how-
ever, these techniques only filter specific kind of errors
generated. A research on Noise and Duplication data
filtering has been done very well previously; however,
the Unreliable reads can be prevented only at some
point. This depends on the deployment of readers,
tags, and an environment.

2.4 Problems with “Missed reads” and their
solutions

Missed Reads are very common in RFID applications
and often happened in a situation of low-cost and low-
power hardware, which leads to a frequently Dropped
Reading referred to in other work (Derakhshan et al.
2007). Another cause of Missed reads is usually when
multiple tags are to be detected by a reader but RF
collisions occur causing RF signals to interfere with
each other preventing the reader from identifying any
tags. Dropped reading can be easily filtered using
“Smoothing” technique proposed by Jeffery, Alonso,
Franklin, Hong & Widom (2006), where missing data
from specific time can be filled. However, preventing
data resulting from RF collisions can be harder and
in order to solve this problem, anti-collision can be
performed at the edge to prevent two or more tags
from responding to a reader at the same time.

3 Related Works

The various types of anti-collision methods for multi-
access/tag collision can be reduced to two basic types:
probabilistic method and deterministic method.

3.1 Probabilistic Methods

In a probabilistic method, tags respond at randomly
generated times. If a collision occurs, colliding tags
will have to identify themselves again after waiting at
a random period of time. This technique is faster than
deterministic but suffers from Tag starvation problem
where not all tags can be identified due to the random
nature of chosen time.

The probabilistic methods are based on “Slotted-
ALOHA” protocol (Quan et al. 2006), which intro-
duces discrete time-slots for tags to be identified by
reader at the specific time. To improve the per-
formance, a “Frame Slotted ALOHA” (Shin et al.
2007) based anti-collision algorithm has been sug-
gested, where each frame is formed of specific number

CRPIT Volume 92 - Database Technologies 2009

48

of slots that is used for the communication between
the readers and the tags. Each tag in the interroga-
tion zone arbitrarily selects a slot for transmitting the
tag’s information. However, the probabilistic method
can only be improved to a very high throughput rate
but they still cannot achieve 100 percent tag identifi-
cation.

3.2 Deterministic Methods

The deterministic method starts by asking for the
first number of the tag (Query Tree algorithm) un-
til it matches the tags; then it continues to ask for
additional characters until all tags within the region
are found. This method is slow and introduces a long
Identification Delay but leads to fewer collisions, and
have 100 percent successful identification rate.

Such deterministic methods can be classified into
a Memory based algorithm and a Memoryless based
algorithm. In the Memory based algorithm, which
can be grouped into a splitting tree algorithm such as
an “Adaptive Splitting Algorithm” and a “Bit Arbi-
tration Algorithm”, the reader’s inquiries and the re-
sponses of the tags are stored and managed in the tag
memory, resulting in an equipment cost increase espe-
cially for RFID tags. In contrast, in the Memoryless
based algorithm, the responses of the tags are not de-
termined by the reader’s previous inquiries. The tags’
responses and the reader’s present inquiries are deter-
mined only by the present reader’s inquiries so that
the cost for the tags can be minimised. Memoryless
based algorithms include a “Query Tree Algorithm”,
a “Collision Tracking Tree Algorithm”, and a “Tree
Walking Algorithm”.

In this paper, we will focus on Memoryless Query
Tree based protocols since it is the most popular
and is an effective anti-collision technique for pas-
sive UHF tags. However, there are other improved
anti-collision methods based on Query Tree such as
an “Adaptive Query Splitting” (AQS) proposed by
Myung & Lee (2006b), Myung & Lee (2006a) and a
“Hybrid Query Tree” (HQT) proposed by Ryu et al.
(2007). AQS keeps information which is acquired dur-
ing the last identification process in order to shorten
the collision period. This technique requires tags to
support both the transmission and reception at the
same time, thereby making it difficult to apply to low-
cost passive RFID systems. HQT uses a 4-ary query
tree instead of a binary query tree, which increased
too many Idle cycles despite reducing Collision cy-
cles, while extra memory needed also increases as an
identification process gets longer, since each query in-
crease the prefixes by 2-bits instead of 1-bit. Accord-
ingly, the Query Tree algorithm, adopted at present
as the anti-collision protocol in EPC Class 1, may be
limited to the tree based anti-collision protocol, which
can be implemented (Choi et al. 2008).

3.3 Query Tree Based Protocols

The Query tree is a data structure for representing
prefixes which is sent by the reader in the Query
tree protocols. A reader identifies tags through an
uninterrupted communication with tags. The Query
tree protocols consist of loops, and in each loop, the
reader transmits a query with specific prefixes, and
the tags respond with their IDs. Only tags with IDs
that match the prefixes, respond. When only one
tag responds to reader, the reader successfully recog-
nises the tag. When more than one tag tries to re-
spond to reader’s query, tag collision occurs and the
reader cannot get any information about the tags.
The reader, however, can recognise the existence of
tags to have ID which match the query. For identify-
ing tags that lead to the collision, the reader tries to

query with 1-bit longer prefixes in next loops. By ex-
tending the prefixes, the reader can recognise all the
tags.

Depending on the number of tags that respond to
the interrogator, there are three cycles of communi-
cation between tag and reader.

• Collision cycle: Number of tags that respond
to the reader is more than one. The reader can-
not identify the ID of tags.

• Idle cycle: No response from any tag. It is a
waste that should be reduced.

• Success cycle: Exactly one tag responds to the
reader. The reader can identify the ID of the tag.

The delay of identification of tags is mostly af-
fected by the Collision cycles, Idle cycles, and simi-
larity of IDs. Therefore, reducing the number of Col-
lision cycles and eliminating Idle cycles, can improve
the identification ability of the reader.

In order to overcome shortcomings of existing
methods for collision resolution, we propose a “Uni-
fied Q-ary Tree Protocols” based on Memoryless QT.
We focus on analysing the impact of EPC Gen-2 en-
coding scheme and the fact of bulky items movement
within warehouse, therefore, we only considered static
tags where tags have no mobility. We investigated dif-
ferent combination of Q-ary trees, to reduce Collision
cycles and Idle cycles, which lead to shorter identifi-
cation time.

4 Unified Q-ary Tree Methodology

In order to reduce Collision cycles and Idle cycles,
and minimise total Identification delay, a “Unified Q-
ary Tree Protocols” or a combination of two Q-ary
trees are employed. The Unified Q-ary tree is a Mem-
oryless anti-collision protocols based on QT. This sec-
tion will describe the Q-ary tree, the scenarios where
EPC data are similar, and what can be improved by
combining two Q-ary trees together.

4.1 Q-ary Tree

Instead of using a Query Tree, which uses each bit
of tag ID to split a tag set, Q-ary tree uses every
2-, 3-, or 4-bits of tag ID to split a tag set. Q-ary
tree increases the child node of tree from ‘2’ to ‘4’,
‘8’ or ‘16’ nodes and so on. This way, we can reduce
more collision but at the same time, Idle cycles will
also increase. In the literature (Ryu et al. 2007), the
author used a 4-ary tree (HQT) to optimise the anti-
collision performance, which increases a lot of Idle
cycles despite reducing number of Collision cycles,
and requires extra memory and time to avoid them.
Therefore, the best way to solve the problem is to
produce both Collision cycles and Idle cycle as low as
possible in order to improve identification time.

4.2 Warehouse Distribution Scenarios

In this paper, we are examining a specific scenario
based on the assumption that items tend to move and
stay together through different locations especially in
a large warehouse. We are focusing on Crystal ware-
house scenario which can be classified into four dif-
ferent scenarios as follows:

Scenario One: Two collided tags are captured and
they have the same Encoding Scheme (Header), same
General Manager Number (Company Prefixes), same
Object Class, and different Serial Number. We can as-
sume that all items are from the same warehouse that

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

49

uses the same Encoding Scheme throughout the ware-
house, and the warehouse also keeps different kind of
product from different companies.

For example, the company warehouse produces
different kind of crystal wine glasses, and all glasses
that have the same sculpture will be packed in the
same case and pallet. Therefore, crystal Red-wine
glasses and crystal White-wine glasses should be
packed in different case and pallet since they are dif-
ferent type of wine glasses. Within this scenario, each
case of wine glasses will have a unique Serial Num-
ber attached to it with different Object Class for each
pallet of White-wine or Red-wine.

Figure 2: Crystal Warehouse Scenario: a) Two cases
of Red-wine have the same Object Class but different
Serial Number, b) White-wine case and Red-wine case
have different Object Class and Serial Number, and c)
White-wine case and Crystal plate case have different
General Manager Number, Object Class, and Serial
Number.

As for scenario one, by using the crystal warehouse
example from Figure 2 a), when two collided tags are
captured and they have the same Encoding Scheme,
same General Manager Number, same Object Class,
and unique Serial Number ; we believe that both tags
are each attached to two different cases of Red-wine.

Scenario Two: Two collided tags are captured and
they have the same Encoding Scheme, same General
Manager Number, different Object Class, and different
Serial Number.

As for scenario two, by using the crystal warehouse
example from Figure 2 b), when two collided tags are
captured and they have the same Encoding Scheme,
same General Manager Number, unique Object Class,
and unique Serial Number ; we believe that one tag
is attached to Red-wine case, while the other tag is
attached to White-wine case.

Scenario Three: Two collided tags are captured
and they have the same Encoding Scheme, different
General Manager Number, different Object Class, and
different Serial Number.

As for scenario three, by using the crystal ware-
house example from Figure 2 c), when two collided
tags are captured and they have the same Encod-
ing Scheme, unique General Manager Number, unique
Object Class, and unique Serial Number ; we believe
that one tag is attached to Crystal plate case, while
the other tag is attached to White-wine case. We can
also make the assumption that there are two different
companies producing separate crystal ware; and the
wine glasses and plates are from different company
but share the same warehouse since they are both
crystal.

Scenario Four: Two collided tags are captured and
they have the different Encoding Scheme, different
General Manager Number, different Object Class, and

different Serial Number. We can assume that all items
are from different company that uses different encod-
ing schemes. For example, two wine glasses with
different sculpture, one made from crystal and one
made from plastic, are allocated in the same ware-
house. This scenario will not be discussed any further
in this paper since we are only looking at a large ware-
house distribution where most items move together as
a group. Therefore, most items from the same type
of manufacturing will stick together until deployed to
smaller retailer.

4.3 Unified Q-ary Tree

Instead of using a plain Q-ary tree, which uses ev-
ery 2-, 3-, or 4-bits of tag ID to split a tag set, we
propose a “Unified Q-ary tree” or a combination of
two Q-ary trees (12 combinations), which can reduce
more collision and at the same time, Idle cycles can be
minimised. For example, we can combine 4-ary tree
with 8-ary tree and apply this anti-collision to 96-bits
EPC; however, we need to configure the right parti-
tion so that 4-ary tree can be applied to the first half
bits of EPC and 8-ary tree can be applied to the re-
maining bits. The remaining of this section will focus
on two approaches: 1) a Naive approach, where Q-ary
tree is non-unified and only a single Q-ary tree is used
as an anti-collision; and 2) a Unified approach, where
two Q-ary trees are combined as an anti-collision with
12 possible combinations.

Naive Approach - Non-Unified Q-ary tree:
The Naive approach is a non-unified Q-ary tree that
does not have a combination between two different Q-
ary trees. There are four non-unified Q-ary trees in-
vestigated in this paper: binary QT, 4-ary tree, 8-ary
tree, and 16-ary tree. Table 2 represents a Number of
bits needed for each query using different Q-ary tree.

Binary 4-ary 8-ary 16-ary
No. of bits 1 2 3 4

Table 2: The non-unified Q-ary Tree is where no com-
bination between two Q-ary trees is necessary. The
Table represents 4 non-unified Q-ary tree: binary, 4-
ary, 8-ary, and 16-ary tree with 1, 2, 3, and 4 bits
needed for each query respectively.

Figure 3: Naive Q-ary Tree: a) Query Tree (2-ary),
b) 4-ary Tree, c) 8-ary Tree, and d) 16-ary Tree.

CRPIT Volume 92 - Database Technologies 2009

50

Figure 3 shows the example of the Naive Q-ary
tree. There are four Naive Q-ary trees shown in
the figure: a) Query/Binary/2-ary Tree with 2 child
nodes, b) 4-ary Tree with 4 child nodes, c) 8-ary Tree
with 8 child nodes, and d) 16-ary Tree with 16 child
nodes.

The Highest Level Tree for each Naive Q-ary tree
is calculated as shown in Table 4. The first four rows
represent the Highest Level Tree for a binary QT,
4-ary tree, 8-ary tree, and 16-ary tree. Calculation
for this Highest Level Tree will be explained in detail
under heading ‘Highest Level Tree for each combina-
tion’.

Unified Approach - Unified Q-ary tree: The
Unified approach is a unified Q-ary tree with 12 pos-
sible combinations. This approach will be applied on
each collided tags EPC which will be split using every
1, 2, 3, or 4-bits of tag ID for the first few queries;
and then at one point every 1, 2, 3, or 4-bits will be
queried. With the fact that most items from ware-
house have bulky movement, first few bits of EPC
will be identical. For example, first 8-bits of EPC
are ‘Header’, which will be the same for all items us-
ing the same encoding and they usually came from the
same company and in the same pallet. These 8-bits of
EPC can be bypassed faster using 4-ary tree instead
of binary tree but by doing so, too many Idle cycles
will be produced. By using 4-ary tree instead of bi-
nary tree, the Number of bits needed for each query
also accumulates faster. Thus, we need to optimise
the performance of “Unified Q-ary tree” by configur-
ing the right separating point between the two Q-ary
trees. The objective of Unified Q-ary tree is to min-
imise the Number of Bits used for querying all tags
within an interrogation zone. Figure 4 shows the ex-
ample of the Naive 4-ary Tree (4a) and the Unified
4-ary & 8-ary Tree (4b).

Figure 4: a) Naive 4-ary Tree, and b) Unified 4-ary
& 8-ary Tree.

binary 4-ary 8-ary 16-ary
F S F S F S F S

binary - 2 1 3 1 4 1
4-ary 1 2 - 3 2 4 2
8-ary 1 3 2 3 - 4 3
16-ary 1 4 2 4 3 4 -

Table 3: The Unified Q-ary Tree can be merged into
12 different combinations. Each EPC can be divided
into two parts: First half (F) of EPC where all bits
are identical, and Second half (S) of EPC where most
bits are unique for all EPC in the reader zone. 1, 2, 3,
and 4 represent the Number of bits queries each time
for splitting tags when collision occurred.

For Highest Level Tree, Idle cycles, Collision cy-
cles, and Number of bits estimation calculation pur-
poses; let ‘F’ be the first half of EPC where bits are
identical, and let ‘S’ be the second half of EPC where

bits are unique. Table 3 shows possible combinations
between four of the Q-ary trees; binary, 4-ary, 8-ary,
and 16-ary.

Highest Level Tree for each combination: We
now present a Highest Level Tree for all combinations
of both Naive Q-ary tree and Unified Q-ary tree. Ta-
ble 4 shows the Highest Level Tree where xl is the
maximum level tree of ‘x’ (first partition variable);
yl is a maximum level tree of ‘y’ (second partition
variable); and Tl is a maximum level tree of xl + yl.

From the Table, for the first four Naive Q-ary tree,
we can see that Tl is equal to 96 divided by the num-
ber of bit/bits needed for each query. For example:
for the Naive 4-ary tree, Tl = 48 which is 96 divided
by 2. In the case of a Naive Q-ary tree, ‘F’, ‘S’, and
variable ‘x’ and ‘y’, does not play any major role.

Sample calculation of 4-ary tree for xl, yl, and Tl
where x = 36, y = 60:

logF (2x) + logS(2y) = log4(2
36) + log4(2

60)

log4(2
36) + log4(2

60) =
log10(236)
log10(4)

+
log10(260)
log10(4)

log4(2
36) + log4(2

60) = 4 + 44 = 48

OR

log4(2
96) =

log10(296)
log10(4)

= 48

Therefore, xl = 4, yl = 44, and Tl = 48

For the remaining 12 combinations of Unified Q-
ary tree in Table 4, we can see that Tl is equal to the
sum of xl and yl, where the sum of x and y equal to
96. For example: for 4-ary tree combining with 8-ary
tree (F = 4, S = 8), Tl = 34 which is 4 plus 30 (xl +
yl). In the case of a Unified Q-ary tree, ‘F’, ‘S’, and
variable ‘x’ and ‘y’, play any major role.

Sample calculation of a Unified 4-ary & 8-ary Tree,
for xl, yl, and Tl where F = 4, S = 8, x = 8, y = 88:

logF (2x) + logS(2y) = log4(2
8) + log8(2

88)

log4(2
8) + log8(2

88) =
log10(28)
log10(4)

+
log10(288)
log10(8)

log4(2
8) + log8(2

88) = 4 + 30 = 34

Therefore, xl = 4, yl = 30, and Tl = 34. Note that
the outcome in decimal is rounded up to the nearest
whole number since level of tree cannot be fractioned.

From Table 4, by combining two Q-ary trees, for
example binary tree and 4-ary tree, Tl for this combi-
nation is different to Tl of the Naive 4-ary tree and Tl
of the Naive binary tree. The question is, would the
difference between levels of tree have any impact on
the total number of Idle cycles and number of Colli-
sion cycles for all tags identification within one inter-
rogation zone? Identification delay can be reduced by
reducing number of queries, which is a summation of
Idle cycles, Collision cycles and Success cycles. Suc-
cess cycles will always be the same using any combi-
nation techniques, which leaves Idle cycles and Col-
lision cycles. Furthermore, Number of bits per query
need to be taken into consideration since different Q-
ary tree uses different Number of bits for each query.
Thus, the following paragraph shows the difference
between performances of the Naive approach versus
Unified approach, and the impact from number of Idle
cycles, number of Collision cycles, and total Number
of bits.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

51

logF (2x) x = 8 x = 36 x = 60
logS(2y) y = 88 y = 60 y = 36
F S xl yl Tl xl yl Tl xl yl Tl

2 2 8 88 96 36 60 96 60 36 96
4 4 4 44 48 18 30 48 30 18 48
8 8 2 30 32 12 20 32 20 12 32
16 16 2 22 24 9 15 24 15 9 24
2 4 8 44 52 36 30 66 60 18 78
4 2 4 88 92 18 60 78 30 36 66
2 8 8 30 38 36 20 56 60 12 72
8 2 3 88 91 12 60 72 20 36 56
4 8 4 30 34 18 20 38 30 12 42
8 4 3 44 47 12 30 42 20 18 38
2 16 8 22 30 36 15 51 60 9 69
16 2 2 88 90 9 60 69 15 36 51
4 16 4 22 26 18 15 33 30 9 39
16 4 2 44 46 9 30 39 15 18 33
8 16 3 22 25 12 15 27 20 9 29
16 8 4 30 34 9 20 29 15 12 27

Table 4: Each combination 1 to 16 are applied with
three different variables of ‘x’ and ‘y’, where xl =
number of highest tree level for ‘F’; and yl = number
of highest tree level for ‘S’. Tl, which is the summa-
tion of xl and yl, also represents the number of queries
needed for the worst case of identification where two
collided tags have all identical bits except for the last
bit (bit 96).

Sample comparison between a performance of
Naive approach versus Unified approach: We
are now initiating a comparison between the perfor-
mance of Naive binary tree, Naive 4-ary tree, Unified
binary & 4-ary tree, and Unified 4-ary & binary.

Figure 5 shows a comparison between Unified ap-
proach (binary & 4-ary, 4-ary & binary) and Naive
approach (4-ary, binary) on the five EPC data. We
can see that the Naive 4-ary tree have the shortest
level of tree, however, by examining Table 6, 4-ary
tree does not have the lowest Total number of bits.
This proves that levels of tree have an impact on the
Total number of bits and Overall cycles, but does not
necessarily result in the best performance of tree.

In order to calculate a Total number of bits re-
quired for the whole identification process, informa-
tion on Number of Child Nodes (NCN) for each level
of tree and Number of Bits per Query (NBQ) for that
specific level, is needed. Number of bits per Level
(NBL) can be calculate as follows:

NBL = NCN ×NBQ

Level 2 2, 4 4, 2 4
1 2 2 8 8
2 4 4 16 16
3 6 6 24 24
4 8 8 32 32
5 10 10 18 40
6 12 12 40 48
7 14 14 22 -
8 16 16 24 -
9 18 40 - -
10 40 48 - -
11 22 - - -
12 24 - - -

NBLs 176 160 184 168

Table 5: Calculation of Total memory bits required
for two Naive Q-ary trees and two Unified Q-ary trees.
NBLs shows the Total number of bits required for the
specific Naive/Unified Q-ary tree.

Figure 5: Identification processes of: a) Naive Binary
tree, b) Unified Binary & 4-ary tree, c) Unified 4-ary
& Binary tree, and d) Naive 4-ary tree.

After calculating the NBL for each level of tree, the
Total number of bits (NBLs) required can be found
by doing the summation of all NBL. For example, in
Figure 5 a) it can be seen that the tree has 12 levels
where all levels except Level 10 have 2 child nodes
each. For each Level, NBQ increased by 1-bit since
this is a Naive binary tree. Thus, NBL for each level
are (NCN x NBQ): 2 or (2x1), 4 or (2x2), 6 or (2x3),
8 or (2x4), 10 or (2x5), 12 or (2x6), 14 or (2x7), 16 or
(2x8), 18 or (2x9), 40 or (4x10), 22 or (2x11), 24 or
(2x12) respectively. After adding all NBL together,
the NBLs of 176-bits is as shown in Table 5.

Table 6 shows that both Naive binary tree and
Unified 4-ary & binary tree, has the same number
of Overall cycles. However, the Total number of bits

CRPIT Volume 92 - Database Technologies 2009

52

for the two approaches is different. The same goes
with Naive 4-ary tree and Unified binary & 4-ary tree
where Overall cycles are the same but have a different
Total number of bits. As for the impact of EPC data,
we can see that when EPC IDs are identical (bit 1-8),
a binary tree works better since it uses less Num-
ber of bits than 4-ary tree. This difference cannot
be seen without calculating a proper Total number
of bits since for the ‘F’, both binary and 4-ary tree
have the same number of Collision cycles and Idle
cycles. However, for each of these cycles, different
Number of bits are used for querying, thus 4-ary tree
uses more bits than binary tree. For ‘S’, 4-ary tree
uses less Number of bits than binary tree since the
number of Collision cycles happened more in binary
tree. Although a 4-ary tree produces more Idle cycles
than binary tree in the second half, it still produces
less total number of Collision cycles and Idle cycles.
We can now conclude that for identical bits of EPC,
lower level tree can perform better than higher level
one and for unique bits of EPC, a higher level tree is
more suitable.

Combination 2 2, 4 4, 2 4
Collision Cycles (F) 8 8 4 4
Collision Cycles (S) 4 1 4 1

Total Collision Cycles 12 9 8 5
Idle Cycles (F) 8 8 12 12
Idle Cycles (S) 1 2 1 2

Total Idle Cycles 9 10 13 14
Success Cycles (F) 0 0 0 0
Success Cycles (S) 5 5 5 5

Total Success Cycles 5 5 5 5
Overall Cycles 26 24 26 24

Number of bits (F) 72 72 80 80
Number of bits (S) 104 88 104 88

Total number of bits 176 160 184 168

Table 6: Results of Collision cycles, Idle cycles, Suc-
cess cycles, Overall cycles, Number of bits, and Total
number of bits for 5 tags identification using Naive
approach and Unified approach.

Number of tags in the interrogation zone also has
an impact on Collision cycles and Idle cycles. When
number of tags increases, number of collision also in-
creases, thus higher level trees are more suitable since
they provide more unique queries at each level of tree.
In this paper, we will only test the combination of bi-
nary and 4-ary tree and analyse a performance to see
how much improvement can be formed. In the future,
further study will be done with higher level trees and
a larger number of tags will be used for an experi-
ment.

5 Experiment and Results

In this section, we present experiment conducted to
evaluate the performance of “Unified Q-ary tree”. As
a result, analysis discussions are evaluate between the
performance of Naive approach versus Unified ap-
proach.

5.1 Environment

To study the proposed “Unified Q-ary Tree” and com-
pare with the performance of Naive approach, exper-
iments are performed according to a Crystal ware-
house scenario. The experiment is set up in a well
controlled environment where there is no metal or wa-
ter nearby. A UHF RFID reader is used and mounted
on a dock door at the end of a conveyor belt. Passive
RFID tags are attached to each case of crystal ware.

Each pallet of wine glasses, plates, bowls are moved
along this conveyor belt. At this stage, we assume
that all three pallets move-in and move-out at the
same time to an interrogation zone and no arriving
tag or leaving tags are present during each identifica-
tion round.

Specification: An Intel Pentium 4 CPU with
2.80GHz processor and 2GB RAM is used for test-
ing. A Microsoft Window XP professional with Ser-
vice Pack 3 is installed on the computer. Algorithms
are implemented using Java JCreator.

Figure 6: Level-Packaging.

Figure 6 displays a level-packaging, where each
case contains 6 glasses and each pallet contains 27
cases. For our experiment, 3 of these pallets will be
visible to the reader attached to the dock’s door next
to the conveyor belt.

5.2 Data Set

Results presented are related to the first scenario
mentioned earlier in Section 4.2. We performed ten
runs on the data set and present the average results.
For the data set, there are 81 tags/EPC used in the
experiment. Each tag contains 60 identical bits for
‘F’ and 36 unique bits for ‘S’. Each pallet contains 27
tags (See Figure 6) and 3 pallets are assumed to be
visible to the reader each time. We applied the Naive
approach, binary and 4-ary tree, to the data set with
no partition. On the other hand, we applied Unified
approach to the data set using ‘x’ = 60 and ‘y’ = 36
based on the nature of scenario one where the first
60-bits are identical.

5.3 Result, Analysis and Discussion

Based on the experiment simulation, Figure 7 shows
the average results, from ten runs, on all four combi-
nations: Naive binary, Unified binary & 4-ary, Unified
4-ary & binary, and Naive 4-ary tree. From Figure
7, we can see that the Naive 4-ary tree produced the
most Idle cycles while the Naive binary tree produced
the least. In contrast, the Naive binary tree produced
the most Collision cycles while the Naive 4-ary tree
produced the least. Both Naive binary and Unified
4-ary & binary have the same total number of cycles,
which corroborate our methodology. In addition, the
total number of cycles for Naive 4-ary tree and Unified
binary & 4-ary tree are also equal. The total number
of cycles can, at one point, clarify the performance of
all four methods. We notice that both Naive 4-ary
tree and Unified binary & 4-ary tree have less total
cycles than binary and 4-ary & binary. This means
that these first two methods will use less Number of
bits in querying for all 81 tags than the other two.
However, without looking into the actual results of

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

53

Figure 7: Results of two Naive approaches (Binary, 4-ary) and two Unified approaches (Binary & 4-ary, 4-ary
& Binary) for number of Idle cycles, Collision cycles, Success cycles, and Overall cycles.

Number of bits, we still cannot conclude which of the
two methods will achieve less identification time for
querying.

Based on Figure 7 we are now aware of Success
cycles of all four methods are all equal to 81, which
means that all tags in the interrogation zone are 100
percent identified. We can also see that all 81 tags
were recognised at the later stages, where all bits (bit
no. 61-82) are unique. As for identical bits of Idle
cycles and Collision cycles, the sum of Idle cycles
and Collision cycles have an outcome of 120 cycles,
which means that both methods of binary or 4-ary
tree have no impact in the sense of cycles count but
as mentioned earlier, we need to calculate the actual
Number of bits in order to clarify the difference of
the performance of both methods. The next Figure
(Figure 8) shows the Number of Bits for Idle cycles,
Collision cycles, Success cycles, and Overall cycles, of
each method.

Figure 8 shows all the actual bits for all queries
that occur during tags identification. We now notice
that the Unified binary & 4-ary tree have the lowest
Number of bits queried for entire identification pro-
cess. This verify our theory that by using a lower
level tree for identical bits of EPC and higher level
tree for unique bits of EPC, Number of bits queried
can be minimised and identification process can be
accelerated. There is not much difference in results
but we can assume that as the number of tags in an
interrogation zone increases, and other combinations
of Q-ary tree are used, we will be able to see more
differences in the outcome.

For identical bits of EPC, there is a slight differ-

ence between the Number of bits queried by the four
methods. While Figure 7 shows that there is no dif-
ference between total number of cycles for identical
bits for all four methods, we can see clearly that To-
tal number of bits is different for each case in Figure
8. This is because each query inquired each time is-
sues different Number of bits. For example, 4-ary tree
issues 2 extra bits from the last query (from the par-
ent node), while binary tree only append 1 extra bit
to the last query. The Unified binary & 4-ary tree
performed the best overall and required 60 bits less
than the Naive 4-ary tree, and 924 bits less than the
Naive binary tree. In contrast, the Unified 4-ary &
binary tree performed the worst out of all four meth-
ods. This is because a higher level tree was used at the
earlier stages of identification where all bits are iden-
tical. This means that more than 75 percent of the
queries were Idle cycles which are waste of resources
(See Figure 8 - 4-ary & Binary; Idle cycles:Collision
cycles = Ratio of 3:1 or 75%:25%). By using binary
tree instead of 4-ary tree for identical bits, 60 bits of
queries were reduced (3720 minus 3660).

For unique bits of EPC, Number of bits query rises
rapidly compared to identical bits. Figure 8 shows
that, by using 4-ary tree for unique bits of EPC, num-
ber of queries and bits were slightly reduced (see To-
tal bits queried for unique bits). The performance of
each method on unique bits of EPC will be specified
in detail in Figure 9.

Figure 9 shows the number of Idle cycles, Collision
cycles, Success cycles and Overall cycles produced in
each query loop. We can see that at bit 63-64 to bit
65-66, the difference between Overall cycles of binary

CRPIT Volume 92 - Database Technologies 2009

54

Figure 8: Results of two Naive approaches (Binary, 4-ary) and two Unified approaches (Binary & 4-ary, 4-ary
& Binary) for total number of bit queried for Idle cycles, Collision cycles, Success cycles, and Overall cycles.

and 4-ary tree grows. After bit 67-68, there is not
much difference between the two. From bit 73-74 to
bit 79-80, there are no Success cycles for both meth-
ods; therefore, there are no differences for their Over-
all cycles. We can now assume that at bit 61-62 to bit
71-72, the EPC are similar but not identical, which
results in the unstable change in number of Overall
cycles. On the other hand, at bit 73-74 to bit 79-80,
we can assume that all bits become identical again
resulting in no change in Overall cycles. The number
of collided tags at bit 73-74 to bit 79-80 are exactly
two since the ratio of Idle cycles to Collision cycles is
1:1 for binary tree and 3:1 for 4-ary tree respectively.
At last, all tags were identified at bit 81-82 resulting
in the same number of Overall cycles for both binary
tree and 4-ary tree.

We can now summarise that by using a lower level
tree for identical bits of EPC, and by using a higher
level tree for unique bits of EPC, the Total number
of bits for querying can be decreased. By reducing
the Total number of bits, identification time for each
round can be minimised.

6 Conclusion

In this study, we identified the significance of RFID
tags anti-collisions and developed efficient method to
minimise the use of memory bits; and at the same
time to ensure that all RFID tags are 100 percent
identified, which is essential to provide correct RFID
data before they can be further processed, trans-
formed, and integrated for RFID-enabled applica-
tions. We proposed a “Unified Q-ary tree”, which
combines two Q-ary trees together in order to re-

duce Collision cycles and Idle cycles; and to minimise
identification time. In the experimental evaluation,
we showed that our method performs better, ensures
100 percent tags identification and reduces Overall
cycles, and Total number of bits queried, which leads
to faster identification time.

As of future work, we intend to test other combina-
tions of Q-ary trees. Different pallet sizes will also be
inspected to determine the impact of packaging and
density on quality of captures data. Different number
of tags will be tested for the impact of number of tags
within one interrogator zone. Also, different Encoding
Scheme other than GID-96 will be observed.

Acknowledgements

This research is partly sponsored by ARC (Australian
Research Council) grant no DP0557303.

References

Bai, Y., Wang, F. & Liu, P. (2006), Efficiently Filter-
ing RFID Data Streams, in ‘CleanDB Workshop’,
pp. 50–57.

Brown, M., Patadia, S. & Dua, S. (2007), Mike Mey-
ers’Certification Passport: CompTIA RFID+ Cer-
tification, McGraw-Hill.

Carbunar, B., Ramanathan, M. K., Koyuturk, M.,
Hoffmann, C. & Grama, A. (2005), Redundant
Reader Elimination in RFID Systems, in ‘2nd An-
nual IEEE Communications Society Conference on
Sensor and Ad Hoc Communications and Networks
(SECON’05)’, pp. 176–184.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

55

Figure 9: Performance Analysis of Binary tree vs. 4-ary tree on unique bits of EPC, Bit 61 - 68, until all tags
are identified. Results of Idle cycles, Collision cycles, Success cycles, and Overall cycles are displayed.

Choi, J. H., Lee, H. J., Lee, D., Lee, H. S.,
Youn, Y. & Kim, J. (2008), ‘Query Tree
Based Tag Identification Method in RFID
Systems’. www.freshpatents.com/Query-tree-
based-tag-identification-method-in-rfid-systems-
dt20080508ptan20080106383.php.

Derakhshan, R., Orlowska, M. E. & Li, X. (2007),
RFID Data Management: Challenges and Op-
portunities, in ‘IEEE International Conference on
RFID 2007’, Texas, USA, pp. 175–182.

EPCGlobal (2006), ‘EPCGlobal Tag Data Stan-
dards Version 1.3: Ratified Specification’.
http://www.epcglobalinc.org/standards/tds/.

Fishkin, K. P., Jiang, B., Philipose, M. & Roy, S.
(2004), I Sense a Disturbance in the Force: Unob-
trusive Detection of Interactions with RFID-tagged
Objects, in ‘UbiComp 2004: Ubiquitous Comput-
ing’, Seattle, Washington, USA, pp. 268–282.

Gonzalez, H., Han, J. & Li, X. (2006), Mining Com-
pressed Commodity Workflows from Massive RFID
Data Sets, in ‘CIKM ’06: Proceedings of the 15th
ACM international conference on Information and
knowledge management’, ACM Press, New York,
NY, USA, pp. 162–171.

Gonzalez, H., Han, J., Li, X. & Klabjan, D. (2006),
Warehousing and Analyzing Massive RFID Data
Sets, in ‘ICDE ’06: Proceedings of the 22nd Inter-
national Conference on Data Engineering’, IEEE
Computer Society, Washington, DC, USA, p. 83.

Jeffery, S. R., Alonso, G., Franklin, M. J., Hong, W. &
Widom, J. (2006), Declarative Support for Sensor
Data Cleaning, in ‘Pervasive Computing’, Springer
Berlin/Heidelberg, pp. 83–100.

Jeffery, S. R., Garofalakis, M. & Franklin, M. J.
(2006), Adaptive cleaning for RFID data streams,
in ‘VLDB’2006: Proceedings of the 32nd interna-
tional conference on Very large data bases’, VLDB
Endowment, Seoul, Korea, pp. 163–174.

Landt, J. (2001), Shrouds of Time The history of
RFID, An Aim Publication, Pittsburg, PA.

Myung, J. & Lee, W. (2006a), ‘Adaptive binary split-
ting: a RFID tag collision arbitration protocol for
tag identification’, Mob. Netw. Appl. 11(5), 711–
722.

Myung, J. & Lee, W. (2006b), Adaptive splitting pro-
tocols for RFID tag collision arbitration, in ‘Mobi-
Hoc ’06: Proceedings of the 7th ACM international
symposium on Mobile ad hoc networking and com-
puting’, ACM, New York, NY, USA, pp. 202–213.

Quan, C. H., Hong, W. K. & Kim, H. C. (2006),
Performance Analysis of Tag Anti-collision Algo-
rithms for RFID Systems, in ‘Emerging Directions
in Embedded and Ubiquitous Computing’, Vol.
4097, Springer Berlin/Heidelberg, pp. 382–391.

Ryu, J., Lee, H., Seok, Y., Kwon, T. & Choi, Y.
(2007), A Hybrid Query Tree Protocol for Tag Col-
lision Arbitration in RFID systems, in ‘MobiHoc
’06: Proceedings of the 7th ACM international
symposium on Mobile ad hoc networking and com-
puting’, IEEE Computer Society, Glasgow, UK,
pp. 5981–5986.

Shin, J. D., Yeo, S. S., Kim, T. H. & Kim,
S. K. (2007), Hybrid Tag Anti-collision Algorithms
in RFID Systems, in ‘Computational Science
ICCS 2007’, Vol. 4490, Springer Berlin/Heidelberg,
pp. 693–700.

CRPIT Volume 92 - Database Technologies 2009

56

Score Aggregation Techniques in Retrieval Experimentation

Sri Devi Ravana Alistair Moffat

Department of Computer Science and Software Engineering
The University of Melbourne

Victoria 3010, Australia
{sravana, alistair}@csse.unimelb.edu.au

Abstract

Comparative evaluations of information retrieval systems
are based on a number of key premises, including that
representative topic sets can be created, that suitable rel-
evance judgements can be generated, and that systems
can be sensibly compared based on their aggregate per-
formance over the selected topic set. This paper considers
the role of the third of these assumptions – that the perfor-
mance of a system on a set of topics can be represented by
a single overall performance score such as the average, or
some other central statistic. In particular, we experiment
with score aggregation techniques including the arithmetic
mean, the geometric mean, the harmonic mean, and the
median. Using past TREC runs we show that an adjusted
geometric mean provides more consistent system rankings
than the arithmetic mean when a significant fraction of the
individual topic scores are close to zero, and that score
standardization (Webber et al., SIGIR 2008) achieves the
same outcome in a more consistent manner.

Keywords: Retrieval system evaluation, average precision,
geometric mean, MAP, GMAP.

1 Introduction

Measurement is an essential precursor to all attempts to
improve information retrieval (IR) system effectiveness.
But to experimentally measure the effectiveness of an IR
system is a non-trivial exercise, and requires that a com-
plex sequence of tasks and computations be carried out.
These tasks typically involve:

1. Selecting a representative corpus and a set of topics;
2. Creating appropriate relevance judgements that de-

scribe which documents are relevant to which topics;
3. For each of the systems being compared, building a

set of runs, one for each of the topics;
4. Selecting one or more effectiveness metrics, and ap-

plying them to create a set of per-metric per-topic
per-system scores;

5. For each effectiveness metric, comparing the scores
obtained by one system against the scores obtained
by the other systems, to determine if the difference
in behavior between the systems can be assessed as
being statistically significant; and then, finally,

6. Writing a paper that describes what the new idea
was, and summarizing the measured improvement

Copyright c©2009, Australian Computer Society, Inc. This paper ap-
peared at the Twentieth Australasian Database Conference (ADC 2009),
Wellington, New Zealand, January 2009. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 92, Athman Bouguet-
taya and Xuemin Lin, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

(or not) that was obtained relative to other previous
techniques.

A variety of mechanisms have evolved over the years
to perform these tasks. For example, because of the
high cost of undertaking relevance judgements, steps 1
and 2 have tended to be carried out via large whole-of-
community exercises such as TREC and CLEF. To per-
form step 3, we might build our own software system, or,
to again make use of shared resources, we might choose
to modify a public system such as Lemur, Terrier, or
Zettair1. In the area of effectiveness metrics (step 4), the
IR community has converged on a few that are routinely
reported and can be evaluated via public software such
as trec eval. These include precision@10 (denoted
here asP@10), R-precision, average precision (denoted as
AP), normalized discounted cumulative gain (nDCG), rank-
biased precision (RBP), and so on. Common tools and
agreed techniques for step 5 are also emerging – there is
now a clear community expectation that researchers must
indicate whether any claimed improvements are statisti-
cally significant using an appropriate test (Cormack & Ly-
nam 2007).

Now consider the last stage, denoted step 6 above. We
wish to describe the new system in a context that allows
the reader to appreciate the aspects of it that will lead to
superior performance; and then need to provide empirical
evidence that the hypothesized level of performance is at-
tained. And, inevitably, we seek to do all of that within
an eight or ten page limit. In support of our new system
we describe the (established) corpus and topics that we
have used in any training that we did to set parameters
for our system and a baseline or reference system; and
we describe the (different) corpus and/or topics that we
then used to test the two systems with those parameters
embedded. We can also succinctly summarize any statis-
tically significant relationships between the two systems
(the step 5 output): the sentence “SystemNew was signif-
icantly better than SystemOld at the0.05 level for all of
X, Y, and Z” (where X, Y, and Z are effectiveness metrics)
takes up hardly any space at all in our paper. Yet such a
claim is the holy grail of IR research – provided, of course
that SystemOld is a state-of-the-art reference point; that
we had implemented it correctly; and that the experiments
do indeed lead to the desired level of significance.

We would then like to provide evidence of the magni-
tude of the improvement we have obtained. To do that, we
add a table of numbers to our paper. And here is the ques-
tion that is at the heart of this work: what numbers? Two
systems (at least) have been compared, over (probably)
50 or more topics, using (say) three effectiveness metrics.
The experiments thus give rise to at least300 per-system,
per-topic, per-metric scores, and while we have all seen
IR papers with that many numbers in them, including that

1See http://www.lemurproject.org/, http://ir.dcs.gla.ac.uk/

terrier/, andhttp://www.seg.rmit.edu.au/zettair/ respectively.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

57

volume of data is rather less than ideal. Even worse, the ef-
fectiveness scores are all derived from the fifty underlying
runs, each containing (typically)1,000 document identi-
fiers. So if we wish to provide sufficient data that follow-
up researchers can apply new effectiveness measures to
the data, we need to publish2×50×1,000 = 105 “things”
as the output of even the simplest two-system evaluation.
(For example, TREC has accumulated the actual system
runs lodged by the participating groups in over a decade
of experimentation, and these now form an invaluable re-
source in their own right, and have been used in the exper-
iments leading to this paper.)

Given that it is impossible for the data that was used
as the input to our statistical testing to be included in our
paper, but desirous of including at least some element of
numeric output, we inevitablyaverage the per-topic per-
system per-metric effectiveness scores, to obtain a greatly
reduced volume of per-system per-metric scores. We then
populate a table in our paper with these numbers (perhaps
as few as six of them in a one-collection, two-system,
three-metric evaluation); use superscript daggers or bold
font to indicate the relationships that are statistically sig-
nificant, and submit our work for refereeing. This ap-
proach is now so prevalent that the phrase “mean average
precision” has taken on a life of its own, and a table of
“MAP” scores is an unavoidable part of every experimen-
tal IR paper, as if MAP was an axiomatic measure in its
own right.

In this paper we take a pace back from this process,
and ask two very simple questions that arise from the dis-
cussion above: what does it mean to “average” effective-
ness scores? And, if it is indeed a plausible operation, is
the arithmetic mean the most sensible way to do it, or are
there other methods that should be considered?

2 Numeric aggregation

If a set of observations describes some phenomenon, it is
natural to seek some kind of gross, oraggregate statistic
that summarizes those observations. The simplest of these
central tendencies is thearithmetic mean, which, for a set
of t observations{xi | i ∈ 1 . . . t} is computed as:

AM =

(

t
∑

i=1

xi

)

/t ,

As examples, consider the four possible sets oft = 5 ob-
servations that are shown in Table 1. The arithmetic mean
of example setS1 is 0.28.

One point worth noting in connection with the arith-
metic mean is that all of the values should be on the same
scale – it is not possible to compute the average of five
inches, ten centimeters, and0.001 miles without first con-
verting them to a common framework. Similarly, it is im-
possible to average three liters, five centimeters, and four
kilograms, because they cannot be converted to common
units.

Another key aggregation mechanism is thegeometric
mean, defined as thet th root of the product of thet num-
bers,

GM =

(

t
∏

i=1

xi

)1/t

.

The geometric mean is more stable than the arithmetic
mean, in the sense of being less affected by outlying val-
ues. However, when any of the values in a set is zero, the
geometric mean over that set is also zero. For IR score
aggregation purposes, this introduces the problem that a
single “no answers” topic in the topic set might force all

of the system scores to be zero. To sidestep this diffi-
culty, Robertson (2006) thus defined anǫ-adjusted geo-
metric mean,

ǫGM = exp

(

∑t
i=1 log(xi + ǫ)

t

)

− ǫ ,

whereǫ is a small positive constant, and the summation,
exp, and log functions calculate the product andt th root
of the set oft ǫ-adjusted valuesxi in a non-underflowing
manner. Because it is based on multiplication, in which
there is no requirement that the quantities have the same
units, it is permissible (although somewhat confusing) to
take the geometric mean of, for example, three liters, five
centimeters, and four kilograms. In this example, theGM

is 3.91 (liters · centimeters· kilograms)1/3. Further exam-
ples ofGM andǫGM are shown in Table 1.

A variant of ǫGM-AP in which ǫ is applied toAP
scores in a thresholding sense rather than in an ad-
ditive/subtractive sense is now one of the aggregate
scores routinely reported by thetrec eval program (see
http://trec.nist.gov/trec_eval) usingǫ = 10−5

(Voorhees 2005):

ǫGMtrec eval = exp

(

∑t
i=1 log max{xi, ǫ}

t

)

.

For example, theǫGMtrec eval score for sequenceS2 in Ta-
ble 1 is0.039, and would be0.157 with ǫ = 0.01, the value
used in the table. Note that whenǫ approaches∞ the addi-
tive/subtractiveǫGM score for a set of numbers (but not the
thresholdedǫGMtrec eval variant) approaches theAM score
for the same set. For this continuity reason, we prefer the
ǫGM-AP additive/subtractive version to thetrec eval ver-
sion, and have primarily used the former in this paper.

The harmonic mean is another central tendency that
is typically used to combine rates, and can also be used
as a method for score aggregation. It is defined as the
reciprocal of the average of the reciprocals,

HM =
t

∑t
i=1(1/xi)

.

The harmonic mean is undefined if any of the set values
are zero, meaning that it is again convenient to make use
of anǫ-adjusted version:

ǫHM =
t

∑t
i=1 1/(xi + ǫ)

− ǫ .

Whenǫ is large, theǫHM score again converges to theAM
score.

The fourth and final central tendency explored in this
paper is themedian, denoted here asMD. The median of
a set is the middle value of the set when they are sorted
into numeric order:x(t+1)/2 whent is odd, and(xt/2 +
xt/2+1)/2 whent is even. The median has the benefit of
being relatively unaffected by outliers, but the flip side of
this is that it is completely insensitive to changes of value
that do not affect the set ordering except when it is the
middle values that change.

Table 1 shows the application of these four aggregation
methods, plus twoǫ-adjusted variants, to four example
data sets, with the largest value in each column picked out
in bold. It is apparent that the aggregation techniques have
different properties, since the four sequences are placed
into different “overall” orderings by the various aggrega-
tion techniques. There is, of course, no sense in which
any of systemsS1 to S4 in Table 1 is superior to the oth-
ers (presuming that the five elements in each sequence can

CRPIT Volume 92 - Database Technologies 2009

58

System Scores AM GM ǫGM HM ǫHM MD

S1 0.1 0.1 0.3 0.8 0.1 0.280 0.189 0.192 0.145 0.148 0.100
S2 0.0 0.4 0.2 0.4 0.3 0.260 0.000 0.151 – 0.0340.300
S3 0.1 0.5 0.3 0.2 0.2 0.2600.227 0.228 0.197 0.200 0.200
S4 0.2 0.2 0.3 0.2 0.2 0.220 0.217 0.2170.214 0.214 0.200

Table 1: Example sets of values corresponding to different systems applied tot = 5 topics, and their calculated central
tendencies. In theǫGM andǫHM methods,ǫ = 0.01. The values in bold are the largest in each column.

be regarded as paired observations and then a statistical
significance test applied), so no answer is possible to the
question “which system is better in the sense of having the
highest score?” Nevertheless, and despite that patent lack
of demonstrable differentiation, as soon as an aggregate
score has been computed for the observations generated
by some system, it is immediately tempting to then “or-
der” the systems by their aggregate scores – exactly as we
have in Table 1 by presenting the sequences in decreasing
AM order. In Table 1, systemS1 at face value “outper-
forms” the other three systems by a quite wide margin.

Robertson (2006) provides an insightful discussion of
measures and how they apply toAP and other effectiveness
scores, including the relationship betweenAM-AP andGM-
AP. Our discussion here can be seen as extending Robert-
son’s evaluation, through the use of experiments in which
aggregation methods are used to represent the overall per-
formance of retrieval systems. In order to understand
the effects of using these aggregation methods and their
ability to produce consistent system rankings, evaluations
were conducted using various TREC collections, and dif-
ferent types of effectiveness measure. Our experiments in-
dicate thatǫGM handles variability in topic difficulty more
consistently than does the usualAM aggregation method,
and also better than the medianMD and harmonic mean
HM methods, when a significant fraction of the individual
topic scores are close to zero. Also of considerable interest
is that the standardized average precision scores of Web-
ber et al. (2008a) achieve the same outcomes, even when
coupled with the standardAM aggregation.

3 Topic hardness

The effectiveness of a retrieval system is gauged as a func-
tion of its ability to find relevant documents (Sanderson &
Zobel 2005). One of the aims of the recent TREC Ro-
bust Track is to improve the consistency of retrieval tech-
nology by focusing on poorly performing topics – ones
for which most of the participating systems score poorly
(Voorhees 2003). TheGM-AP aggregation method was in-
troduced as part of this effort, in order to de-emphasize the
role of high-scoring topics in system comparisons, and to
enhance the relative differences amongst low-scoring top-
ics (Voorhees 2005, Robertson 2006). Note, however, that
changing toGM-AP has no effect on the significance or oth-
erwise of any pairwise system comparison, since signifi-
cance is a function of the elemental effectiveness scores,
prior to any summary value being computed. The aggre-
gation mechanism relates purely to the gross statistic that
is presented as being the overall score for the system.

Mizzaro (2008) makes further observations in this re-
gard. The importance of good relative performance over
all topics, and not just excellent performance on one
(which is how systemS1 obtains its highAM score in Ta-
ble 1), and the fact that users remember any delivery of
poor results by a system for a topic was also discussed by
Mandl et al. (2008). Similarly, Buckley (2004a) points out
that the topic variability is the main problem when design-
ing an IR system for all user needs, and that a universal IR
system should perform well across a range of topics with

varying levels of difficulty.
It has been noted that a key expectation (or rather,

hope) arising from any form of IR experimentation is
that the system performance results based on one topic
or one collection should be able to predict system per-
formance on other topics and other collections (Buckley
2004a, Webber et al. 2008b). It has also been noted (see
Buckley (2004b) and Webber et al. (2008a)) that topic
variability is at least as great as system variability, and
that in the nominal matrix of per-system per-topic scores,
there is more commonality of scores across any particular
topic than there is across any individual system. Restating
this observation another way, the score achieved by a par-
ticular system on a given topic tends to be more a function
of the topic than of the system.

In a similar vein, Mizzaro & Robertson (2007) argue
that GM-AP is a more balanced measure thanAM-AP for
TREC effectiveness evaluations. This is due to the way in
which the arithmetic mean can be influenced by easy top-
ics, for which the system-topic scores are generally high,
and bad systems might still get scores that are numerically
large. Mizzaro & Robertson also asserted thatGM-AP is
not overly biased towards the low end of the scale, where
the system-topic scores are low, and, equivalently, the top-
ics are hard. Indeed, as was noted by O’Brien & Keane
(2007), users prefer strategies and technologies that maxi-
mize the amount of information they gain as a function of
the interaction cost that they invest.

Observations such as these then raise the question as
to how best to measure topic “hardness”. In the TREC
2003 Robust Retrieval Track, difficult topics were defined
as being those with a low median AP score and at least
one high outlier score (Voorhees 2003). Other definitions
include computing (Mizzaro 2008)

Dt = 1 − meant , (1)

wheremeant is the average of the system-topic scores for
topic t; or computing

Dt = 1 − maxt ,

wheremaxt is the maximum score for topict. For the pur-
poses of the experiment, we took another approach, and
defined the difficultyDt of a topict to be

Dt =
maxt − meant

sdt
, (2)

in which standardizedz-scores are calculated in the
system-topic matrix (Webber et al. 2008a), and the most
difficult topic is deemed to be the one for which the most
“surprisingly good” score is obtained by one of the sys-
tems, with surprise defined in terms of standard deviations
above the mean.

4 Methodology

Our purpose in this investigation was to examine the effect
that the choice of score aggregation technique had on the
outcomes of experiments, and whether the proposed use of

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

59

theǫGM adjusted geometric mean (Robertson 2006) could
be experimentally supported in any way. To carry out this
study, we devised the following experimental methodol-
ogy. While we have no basis for proving that what we have
computed has “real” meaning, we trust that the reader will
find the experiment plausible (and interesting), and will
agree that the results we have computed are grounded in
practice.

We made use of standard TREC resources – col-
lections, matching topics, and corresponding relevance
judgements (seehttp://trec.nist.gov). We also
used the official TREC runs, as lodged each year by the
participating research groups, and were able to compute
retrieval effectiveness scores for each of the submitted sys-
tems based on any subset of the topics that we wished to
use. Al-Maskari et al. (2008) consider these test collec-
tions and support their use in IR experimentation, arguing
that they can be used to predict users’ effectiveness suc-
cessfully.

Each of our main experiments proceeded by:

1. Choosing a random subset containing half of the set
of t topics.

2. Extracting the rankings for thoset/2 topics from the
s available runs.

3. Using the chosen effectiveness metric and the rel-
evance judgements to calculate a set ofst/2 per-
system per-topic scores.

4. Using the chosen score aggregation technique to
compute a set ofs per-system scores.

5. Sorting thes systems into decreasing score order,
based on the per-system scores.

6. Repeating this process, using the othert/2 topics.
7. Taking the twos-item system orderings, and calculat-

ing the similarity between them using a mechanism
such as Kendall’sτ (Kendall & Gibbons 1990).

8. Then repeating this entire sequence10,000 times, so
that10,000 Kendall’sτ scores could be used to rep-
resent the self-consistency of the score aggregation
technique.

We note that researchers have also applied this methodol-
ogy in investigations examining other aspects of retrieval
performance (Zobel 1998, Sanderson & Zobel 2005).

Part of the purpose of Table 1 was to illustrate the
inconsistencies that can arise out of system “orderings”
based on aggregate scores, and our experiments in this pa-
per are intended to uncover the extent to which such in-
consistencies are an issue in real IR experimentation. If an
aggregation computation was “perfect”, and if subsets of
topics could be equally balanced (whatever that means),
the two system orderings would be the same, and the
Kendall’sτ would be1.0. Variation in aggregation tech-
nique, and variations in subset balance, mean that it is un-
likely that Kendall’sτ scores of1.0 can be achieved. But,
if the same (large number of) topic subsets are used for
all aggregation methods, any consistently-observed differ-
ence in Kendall’sτ can be attributed to the aggregation
method.

5 Testing aggregation

For the initial experiments, theAP metric was coupled
with a range of aggregation techniques. Use ofAP in IR
experimentation is widespread, and while it is normally
regarded as being a “system” metric rather than a “user”
one, it does still correspond to a (somewhat contrived) user
model (Robertson 2008).

Epsilon

K
en

da
ll’

s
ta

u

0.
6

0.
8

1.
0

1e−04 0.01 1 Inf

eHM−AP
eGM−AP

Figure 1: Average system ordering correlations whenGM-
AP andHM-AP are used as the score aggregation method
across topics. In this experiment, the50 TREC9 Web
Track topics were randomly divided into equal-sized sub-
set pairs, and the system rankings generated on those two
subsets were compared using Kendall’sτ . When theGM-
AP andHM-AP parameterǫ approaches infinity, the resul-
tant system ordering approaches the ordering generated by
AM-AP.

0.6 0.7 0.8 0.9 1.0

0
5

10
15

Kendall’s tau

D
en

si
ty

eGM−AP
eHM−AP
AM−AP
MD−AP

Figure 2: Density distribution of10,000 Kendall’sτ val-
ues forǫGM-AP, ǫHM-AP (both withǫ = 0.01), AM-AP, and
MD-AP. In each experiment the TREC9 Web Track topics
are randomly split into two halves, each system is scored
using the topic subsets, and then the two resultant system
orderings are compared. Three of the four curves repre-
sent density cross-sections corresponding to points in Fig-
ure 1. TheMD-AP cross-section is additional. The vertical
dotted lines on the curves indicate the means of the four
density distributions.

5.1 Results using average precision

Figure 1 provides a first illustration of the data collected
using the experimental methodology described in the pre-
vious section. In this graphǫGM-AP andǫHM-AP induced
system orderings are compared for different values ofǫ,
with the average value of Kendall’sτ for random pairs
of query subset-induced system orderings plotted as a
function of ǫ. The line shows the averageτ value over
10,000 random splittings of thet = 50 TREC9 topics and
s = 105 TREC9 systems, in an experiment designed to
answer the very simple question as to whether eitherǫGM-
AP or ǫHM-AP should be preferred toAM-AP, and if so, what
range of values ofǫ is appropriate.

The shape of the curve in Figure 1 makes it clear that
whenǫ is small the average system ordering correlations
are higher – that is, that theǫGM-AP aggregate score (to-
wards the left end of the graph) places the systems into
rankings that are more self-consistent than does the con-
ventionalAM-AP summarization at the righthand end of the
graph (whenǫ → ∞). TheǫHM-AP method is also better
at ordering the systems than isAM-AP provided that mid-
range values are chosen forǫ. For smallǫ, the quality of
the induced system rankings forǫHM-AP drops markedly.

A major theme of this paper is that plain averages
should be treated with caution, and we should heed our

CRPIT Volume 92 - Database Technologies 2009

60

Epsilon

K
en

da
ll’

s
ta

u

0.
6

0.
8

1.
0

1e−04 0.01 1 Inf

TREC8 Ad−hoc
TREC2001 Web

Figure 3: Average system ordering correlations whenGM-
AP andAM-AP (asǫ → ∞) are used as the score aggrega-
tion method across topics. The two curves for the TREC8
Ad-Hoc Track (t = 50 topics,s = 129 systems) and the
TREC2001 Web Track (t = 50 topics,s = 97 systems)
can be directly compared with theǫGM-AP curve in Fig-
ure 1.

own advice in this regard. Figure 2 shows the density
distribution of the10,000 τ values at three of the points
plotted in Figure 1, showing the variability of the system
orderings whenǫGM-AP andǫHM-AP (both withǫ = 0.01)
andAM-AP are used to aggregate the per-system per-topic
and generate the system orderings. Also shown as a fourth
line is theτ density curve for the system similarities gener-
ated using the medianAP score as the gross system statis-
tic. The density curves are derived from10,000 random
splittings of the50 TREC9 topics into two25-topic sub-
sets. The system orderings produced byGM-AP aggrega-
tion are consistently more similar than the system order-
ings induced byAM-AP for the same topic splits, and sug-
gest thatGM-AP is the more stable aggregation technique
for this data set. Analysis of the paired differences shows
that all of the relationships shown are significant at the
p = 0.01 level, that is, thatǫGM-AP > ǫHM-AP > AM-AP >
MD-AP with high confidence.

5.2 Other collections

Having used the TREC9 Web Track data to confirm that
ǫGM-AP with ǫ = 0.01 yields more consistent system rank-
ings than doesAM-AP, we turned to other TREC data sets
in order to determine the extent to which that relationship
is a general one. Figure 3 was created via the same exper-
imental methodology as was used for Figure 1, but using
the TREC8 Ad-Hoc Track queries and systems (t = 50,
s = 129); and the TREC2001 Web Track queries and sys-
tems (t = 50, s = 97). Neither of these experiments favor
ǫGM-AP compared toAM-AP, and for the TREC8 data set,
ǫGM-AP with ǫ = 0.01 is significantly less consistent that
AM-AP (p = 0.05).

Figure 4 helps understand why this difference in be-
havior arises. It shows the distribution of the per-topic
per-systemAP scores for the three TREC data sets used
in our experiments. The TREC9 collection, topics, and
judgements combination generates a high number of low
scores compared to the other two data sets, and it is these
low scores that theǫGM method is handling better. For
example, in the TREC9 results,10% of the system-topic
scores are zero, and a further46% are below0.1, making
a total of56% low scores, shown in the first row of Ta-
ble 2. For TREC2001 the corresponding rates were4%
and45%, totalling 49%; and for TREC8 the rates were
3% and33%, totalling 36%. That is, in the TREC2001
and TREC8 experiments there were fewer lowAP values
in the score matrix,AM-AP suffers less vulnerability, and
there is thus less scope forǫGM-AP to be superior.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

Average precision scores

D
en

si
ty TREC8 Ad−hoc

TREC2001 Web
TREC9 Web

Figure 4: Density distribution ofAP scores for TREC9
Web Track data (t = 50 topics ands = 105 systems);
TREC8 Ad-Hoc Track data (t = 50 topics ands = 129
systems); and TREC2001 Web Track data (t = 50 topics
ands = 97 systems).

Metric % = 0 % ≤ 0.1

AP 10 56
P@10 37 37
nDCG 10 23
RBP0.95 17 52
SP 0 4

Table 2: Proportion of low scores among the TREC9
system-topic combinations when assessed using different
effectiveness metrics.

5.3 Effectiveness measures

Figure 5 and Figure 6 show what happens in the TREC9
environment whenAP is replaced byP@10,RBP0.95 (see
Moffat & Zobel (2009) for a definition of this metric), and
nDCG (see Järvelin & Kekäläinen (2002)) as the underly-
ing similarity measure. The score density plot in Figure 6
suggests thatǫGM-nDCG should be stable asǫ is changed,
because of the low density ofnDCG near-zero scores, and
that is what is observed in Figure 5. On the other hand,
RBP0.95 has a relatively high density of near-zero scores,
andǫGM-RBP0.95 is accordingly sensitive toǫ, with more
consistent system rankings being generated withǫ = 0.1
than whenǫ tends to∞ and the arithmetic mean is being
used. Note also the comparatively poor performance of
P@10 – it is relatively immune to the choice ofǫGM or AM
aggregation, but nor is it a terribly good basis for ordering
systems.

Webber et al. (2008a) recently introduced astandard-
ized version ofAP that we denote here asSP. The critical
difference betweenAP andSP is that a set oft topic means
and standard deviations are computed across thest per-
system per-topic scores, and each of thest scores is then
converted into az score with regard to that topic’s statis-
tics:

e′s,t =
es,t − meant

sdt
,

wheree′s,t is thez-score corresponding to the average pre-
cision effectivenesses,t. Becausez-scores are centered on
zero, and can be negative as well as positive, Webber et al.
further transformed thee′s,t values through the use of the
cumulative normal probability distribution. The result is
a set ofe′′s,t scores that lie strictly between zero and one,
and which, for each topic, has a mean of0.5 and a uni-
form standard deviation. The last row of Table 2 shows the
rather unique properties of the set of effectiveness scores
that result from this two-stage standardization ofAP scores
to generateSP scores.

Given the intention of the standardization process, it
is unsurprising (Figure 7) that there is no change in sys-

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

61

Epsilon

K
en

da
ll’

s
ta

u

0.
6

0.
8

1.
0

1e−04 0.01 1 Inf

nDCG
RBP0.95
P@10

Figure 5: Average system ordering correlations when
ǫGM-P@10,ǫGM-RBP0.95, andǫGM-nDCG are used to score
the TREC9 systems. Whenǫ approaches infinity the meth-
ods converge toAM-P@10,AM-RBP0.95, andAM-nDCG re-
spectively.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

System−topic scores

D
en

si
ty nDCG

RBP0.95
P@10

Figure 6: Density distribution of TREC9 system-topic
scores usingRBP0.95, P@10, andnDCG (t = 50 topics
ands = 105 systems).

tem ranking consistency asǫ is changed; and also unsur-
prising (Figure 8, Table 2) that the fraction ofSP scores
that are near zero is small. That is, the condition that led
to geometric mean average precision being proposed as
an alternative to arithmetic mean average precision – the
presence of important low-scoring topics in amongst the
high-scoring ones – is removed by the standardization pro-
cess, and there is no benefit in shifting toǫGM aggregation.
Instead,AM aggregation, with the elimination of the need
to selectǫ, is the preferred approach, because standardiza-
tion means that all topics are already contributing equally
to any assessment in regard to differences in system effec-
tiveness, and no further benefit arises from emphasizing
low scores.

Note that standardization is only possible when a set of
retrieval systems are being mutually compared, and topic
means and standard deviations can be calculated; or when
pooled relevance judgements based on a set of previous
systems are available, together with the runs that led to
those judgements.

Figure 9 draws together the observations we have
made. A total of fifteen collection and effectiveness met-
ric couplings are shown, with the percentage of low effec-
tiveness scores for that coupling plotted horizontally, and
the extent of the superiority (or inferiority) ofǫGM as an
aggregation method relative toAM plotted vertically. The
behavior of theSP metric does not depend on a specific ag-
gregation technique to perform well, and for all three col-
lections used is insensitive to the score averaging mecha-
nism. In the case of the other four metrics the trend is as
we have observed already: if there are many low scores,
ǫGM gives more consistent system orderings than doesAM.

Epsilon

K
en

da
ll’

s
ta

u

0.
6

0.
8

1.
0

1e−04 0.01 1 Inf

eGM−SP
eGM−AP

Figure 7: Average system ordering correlations when
ǫGM-SP (based on standardized average precision) is used
as the evaluation metric, compared to theǫGM-AP combi-
nation. The methodology and data set used in this experi-
ment are identical to those used in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0
0

2
4

6

System−topic scores

D
en

si
ty

AP
SP

Figure 8: Density distribution ofAP andSP scores for the
TREC9 Web Track data (t = 50 topics ands = 105 sys-
tems).

5.4 Query “hardness”

All of the results presented thus far have been based on
the average performance of the aggregation methods over
large numbers of random splittings of the topics in the
query set. As an alternative, we also constructed two par-
ticular topic subsets based on the nominal topic difficulty
scores defined by Equation 2, to evaluate the extent to
which the various aggregation mechanisms were affected
by topic difficulty. In undertaking this part of the experi-
mentation, we additionally sought to determine whether
the additive/subtractive version of the adjusted geomet-
ric mean gave rise to consistent rankings, or whether the
trec eval ǫ-thresholding version was more consistent.

The two query partitionings were constructed to il-
lustrate extreme behavior. In the first partitioning, the
Hard/Easy split, Equation 2 was used to assign a difficulty
rating to each of thet = 50 TREC9 topics, and then the
highest-scoring25 were taken into one set, and the low-
est25 topics were taken into the other. The secondMid-
dle/Rest partitioning again ranked the topics by difficulty,
but then extracted the mid-scoring (most internally con-
sistent) group into one subset, and left the remaining12
hardest topics and13 easiest ones in the other set. Sys-
tem orderings based on aggregate score overAP andSP
for each pair of sets were then computed, and compared
using Kendall’sτ . The results of these experiments are
shown in Table 3. The columns headed “Random” relate
to the previous methodology of taking the averageτ value
over10,000 random splittings of the50 topics, and rep-
resent the numeric values of some of the points already
plotted in the various graphs.

There are a number of trends that can be distilled from
Table 3. Looking at theAP halves of the three subtables
it is clear that the additive version ofǫGM is preferable
to the ǫGMtrec eval version – in eight of the nine cases,
ǫGM detects more similarity between the system orderings,

CRPIT Volume 92 - Database Technologies 2009

62

Aggregation method AP SP
Random Hard/Easy Middle/Rest Random Hard/Easy Middle/Rest

AM 0.748 0.694 0.722 0.798 0.704 0.820
ǫGM, ǫ = 0.01 0.819 0.779 0.826 0.805 0.712 0.824
ǫGMtrec eval, ǫ = 0.00001 0.798 0.818 0.800 0.806 0.802 0.826

(a) TREC9 data set,t = 50 ands = 105.

Aggregation method AP SP
Random Hard/Easy Middle/Rest Random Hard/Easy Middle/Rest

AM 0.693 0.584 0.611 0.741 0.622 0.798
ǫGM, ǫ = 0.01 0.729 0.650 0.674 0.740 0.622 0.798
ǫGMtrec eval, ǫ = 0.00001 0.682 0.639 0.567 0.737 0.657 0.816

(b) TREC2001 data set,t = 50 ands = 97.

Aggregation method AP SP
Random Hard/Easy Middle/Rest Random Hard/Easy Middle/Rest

AM 0.773 0.719 0.753 0.781 0.739 0.790
ǫGM, ǫ = 0.01 0.755 0.732 0.760 0.769 0.714 0.785
ǫGMtrec eval, ǫ = 0.00001 0.681 0.672 0.676 0.768 0.680 0.785

(c) TREC8 data set,t = 50 ands = 129.

Table 3: System ranking correlation coefficients using Kendall’sτ , for two different effectiveness metrics, three different
score aggregation methods, three different collections, and three different ways of splitting the topics into two halves.
The three subtables are ordered by decreasing percentage of system-topicAP scores that are below0.1. Note that the
Hard/Easy and Middle/Rest splits are both one-off arrangements in each of the three data sets.

30 60

−0.10

−0.05

0

0.05

0.10

0.15

G
M

 −
 A

M

% of scores < 0.1

SP AP nDCG P@10 RBP

Figure 9: Comparing theǫGM andAM score aggregation
methods across three collections and across five effec-
tiveness metrics. The horizontal axis shows the percent-
age of low effectiveness scores generated by that collec-
tion/metric combination; the vertical axis plots the differ-
ence in the Kendall’sτ score obtained usingǫGM−AM and
ǫ = 0.01.

including in all three of theRandom evaluations.
Second, looking at the top row of each subtable, the

AM-SP combination of effectiveness metric and aggrega-
tion method is uniformly better than theAM-AP combi-
nation that has dominated IR reporting for more than a
decade. The third effect to be noted is that theHard/Easy
pairing, with just two exceptions in connection with the
ǫGMtrec eval aggregation, is more likely to lead to differ-
ent system orderings than is theMiddle/Rest topics split.
And fourth, it also appears that theMiddle/Rest is no less
likely to generate different system orderings than aRan-
dom split, and hence there is no sense in which it provides
a problematic arrangement for the aggregation metrics to
handle. This is a slightly surprising outcome, since the
Rest group contains topics of widely varying difficulty, at
least in terms of Equation 2.

20 40 60

−0.10

−0.05

0

0.05

0.10

0.15

% of scores < 0.1

G
M

 −
 G

M
 tr

ec
_e

va
l

SP AP nDCG P@10 RBP

Figure 10: Comparing theǫGM aggregation method and
the thresholdedGM variant used in thetrec eval pro-
gram, with other experimental details as for Figure 9. The
ǫGM approach is more self-consistent on all three collec-
tions, and for four of the five effectiveness metrics used.

We also explored the use of Equation 1 as a topic dif-
ficulty rating, and in results not included here, obtained
correlation patterns similar to those shown in Table 3.

Finally in this section, to reinforce our contention
that trec eval’s thresholdingǫGMtrec eval aggregation
method is less reliable than the additive/subtractiveǫGM
version, Figure 10 repeats the “differences between the
average Kendall’sτ score” experiment of Figure 9. The
three points representingSP on the three different collec-
tions are again unaffected by the aggregation method used.
But in all of the other twelve cases,ǫGM generates more
consistent system rankings than doesǫGMtrec eval. We
can see no basis for persisting with the thresholding ver-
sion of GM-AP provided bytrec eval, and suggest that
other authors be similarly vary of using the scores it gen-
erates.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

63

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
5

15
25

Pearson’s rho

D
en

si
ty

eGM−AP

eHM−AP

AM−AP
MD−AP

AM−SP

Figure 11: Density distribution of10,000 Pearson’sρ val-
ues forAM-AP, GM-AP (ǫ = 0.01), HM-AP (ǫ = 0.01), MD-
AP, andAM-SP, based on10,000 random splittings of the
TREC9 data set (t = 50 ands = 105). The experimental
methodology was as for Figure 2.

5.5 Correlation coefficient methods

We have made extensive use of Kendall’sτ in our anal-
ysis, starting from the presumption outlined in Section 1
that whether or not significance of any particular pairwise
relationships had been established, it was likely that over-
all system scores would be used to derive system rankings,
and thus, that study of score aggregation mechanisms was
of merit. Use of Kendall’sτ allowed the “closeness” of
pairs of system rankings to then be quantified.

Kendall’sτ takes into account the system ordering that
is generated, but not the scores that led to that order-
ing, meaning that when there are clusters of near-similar
scores, modest changes in the scores can lead to more dra-
matic changes in the correlation coefficient. An alternative
metric that is based on scores rather than rankings is the
Pearson product-moment coefficient. To verify that the re-
lationships between rankings that have been noted above
are not specific to the use of Kendall’sτ , we repeated the
experiments that led to Figure 2, using Pearson’sρ to com-
pare pairs of lists of “system, score” pairs. The results are
shown in Figure 11, again using the TREC9 resource.

Broadly speaking, Figure 11 shows the same trends as
had been identified using Kendall’sτ . The best method
for obtaining a per-system score is theSP metric coupled
with theAM averaging technique. Earlier in this paper we
noted that becauseAM relied on addition, it could tech-
nically only be applied to values that were on the same
scale, a restriction that did not apply to the geometric
mean. The superior performance ofAM-SP compared to
AM-AP can be interpreted as a verification of this observa-
tion, since the process of standardizing theAP scores (sub-
tracting the mean, and then dividing by the standard devi-
ation for that topic) renders them into unitless values on a
common scale. On the other hand, the pre-standardization
AP values have different scales (in the sense of millimeters
versus inches), because what is good performance on one
topic might be substandard performance on another. In
this sense, the process of standardization makes it “right”
to then compute the arithmetic mean as the gross statis-
tic for a system. And, even though the fully standardized
scores are constrained to the(0, 1) interval, the fact that
equality is not possible at either end of the scale means
that no matter how good (or bad) a system is on a partic-
ular topic, it is possible – at least in theory – for a differ-
ent system to be better (or worse). That is, there are no
bookends inSP that force systems to be considered to be
“equal” on very easy or very hard topics.

Note also in Figure 11 the good performance ofǫGM
– by ǫ-adjusting the scores, and computing a geometric
mean, small effectiveness values are allowed to contribute
to the final outcome. However use of the harmonic mean
is not appropriate, and theHM-AP method is inferior to the

baselineAM-AP approach. Nor – predictably – is the me-
dian an especially good score aggregation technique.

6 Conclusion

Our exploration ofAM-AP andǫGM-AP has confirmed that
for the TREC9 Web data theǫ-adjusted geometric mean is
a more appropriate score aggregation mechanism than is
the arithmetic mean. This appears to be a consequence of
the large number of lowAP scores (more than50% are less
than0.1) across the TREC9 systems and topics. Experi-
ments conducted with other TREC data resources confirm
that when a collection has a majority of system-topicAP
scores that are zero or close to zero, theǫ-adjusted geomet-
ric mean is a more appropriate score aggregation method
than is the arithmetic mean. On the other hand, when there
are only a minority of low system-topic scores, the arith-
metic mean is resilient, and tends to perform well, where
“performs well” is in the sense of system orderings de-
rived from one subset of the topics being similar to the
system orderings derived from a different set.

We also experimented with other effectiveness metrics,
includingP@10,nDCG, RBP0.95, andSP, and observed the
same overall outcome – when a large fraction of small ef-
fectiveness scores are generated by the metric, it is better
to use theǫGM aggregation approach.

On the other hand, experiments using the standardized
precision (SP) metric showed that it anticipates the bene-
fits brought about through the use of the geometric mean,
and that the best aggregation rule for it was the standard
arithmetic mean. TheSP metric has the useful attribute
of transforming the effectiveness scores so that, for every
topic in the set, the mean score for that topic is0.5, and
the standard deviation is also fixed. Standardizing thus
converts all system-topic scores to the same “units”, and
allows averaging as a logically correct operation.

To broaden the scope of our investigation we also plan
to explore both further aggregation mechanisms, such as
the MEDRANK approach of Fagin et al. (2003); and also
other rank correlation approaches, including theτAP top-
weighted approach of Yilmaz et al. (2008). Top-weighting
of the rank correlation scoring mechanism is important if
we are more interested in fidelity near the top of each rank-
ing than in (say) the bottom half of the two system order-
ings being compared.

We conclude by reiterating that our experiments – in
which we regard a metric and aggregation technique to be
“good” if they yield similar overall system rankings from
different topic sets – are founded in practice rather than
in theory, and reflect common evaluation custom rather
than an underlying principle. We also stress that to be
plausible, experimentation should be accompanied by sig-
nificance testing, and because significance tests are car-
ried out over sets of values, the details of the aggregation
technique used to obtain representative gross scores are of
somewhat parenthetical interest if significance cannot be
asserted. Nevertheless, and even given these caveats, we
have found thatǫGM has a role to play when there are many
small score values to be handled, and thatAM-SP is the
combined metric and aggregation technique that is most
strongly self-consistent in terms of score-induced system
rankings.

Acknowledgment: This work was supported by the Aus-
tralian Research Council, by the Government of Malaysia,
and by the University of Malaya. We thank the referees for
their helpful comments.

CRPIT Volume 92 - Database Technologies 2009

64

References

Al-Maskari, A., Sanderson, M., Clough, P. & Airio, E.
(2008), The good and the bad system: Does the test col-
lection predict users’ effectiveness?,in ‘Proc. 31st Ann.
Int. ACM SIGIR Conf. on Research and Development
in Information Retrieval’, Singapore, pp. 59–66.

Buckley, C. (2004a), Topic prediction based on compar-
ative retrieval rankings,in ‘Proc. 27th Ann. Int. ACM
SIGIR Conf. on Research and Development in Infor-
mation Retrieval’, Sheffield, England, pp. 506–507.

Buckley, C. (2004b), Why current IR engines fail,in
‘Proc. 27th Ann. Int. ACM SIGIR Conf. on Research
and Development in Information Retrieval’, Sheffield,
England, pp. 584–585.

Cormack, G. V. & Lynam, T. R. (2007), Validity and
power of t-test for comparing MAP and GMAP,in
‘Proc. 30th Ann. Int. ACM SIGIR Conf. on Research
and Development in Information Retrieval’, Amster-
dam, The Netherlands, pp. 753–754.

Fagin, R., Kumar, R. & Sivakumar, D. (2003), Efficient
similarity search and classification via rank aggrega-
tion, in ‘Proc. SIGMOD Int. Conf. on Management of
Data’, San Diego, CA, pp. 301–312.

Järvelin, K. & Kekäläinen, J. (2002), ‘Cumulated gain-
based evaluation of IR techniques’,ACM Transactions
on Information Systems 20(4), 422–446.

Kendall, M. & Gibbons, J. D. (1990),Rank Correlation
Methods, Oxford University Press, New York.

Mandl, T., Womser-Hacker, C., Nunzio, G. D. & Ferro,
N. (2008), How robust are multilingual information re-
trieval systems?,in ‘Proc. 23rd Ann. ACM Symp. on
Applied Computing’, Fortaleza, Cear, Brazil, pp. 16–
20.

Mizzaro, S. (2008), The good, the bad, the difficult, and
the easy: Something wrong with information retrieval
evaluation?,in ‘Proc. 30th European Conf. on Informa-
tion Retrieval’, Glasgow, Scotland, pp. 642–646.

Mizzaro, S. & Robertson, S. (2007), HITS hits TREC: Ex-
ploring IR evaluation results with network analysis,in
‘Proc. 30th Ann. Int. ACM SIGIR Conf. on Research
and Development in Information Retrieval’, Amster-
dam, The Netherlands, pp. 479–486.

Moffat, A. & Zobel, J. (2009), ‘Rank-biased precision for
measurement of retrieval effectiveness’,ACM Transac-
tions on Information Systems. To appear.

O’Brien, M. & Keane, M. T. (2007), Modeling user be-
havior using a search-engine,in ‘Proc. 12th Int. Conf.
on Intelligent User Interfaces’, Honolulu, Hawaii, USA,
pp. 357–360.

Robertson, S. (2006), On GMAP: And other transforma-
tions,in ‘Proc. 15th ACM Int. Conf. on Information and
Knowledge Management’, Virginia, USA, pp. 78–83.

Robertson, S. (2008), A new interpretation of average pre-
cision, in ‘Proc. 31st Ann. Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval’,
Singapore, pp. 689–690.

Sanderson, M. & Zobel, J. (2005), Information retrieval
system evaluation: effort, sensitivity, and reliability,in
‘Proc. 28th Ann. Int. ACM SIGIR Conf. on Research
and Development in Information Retrieval’, Salvador,
Brazil, pp. 162–169.

Voorhees, E. M. (2003), Overview of the TREC 2003 Ro-
bust Retrieval Track,in ‘Proc. 12th Text REtrieval Con-
ference (TREC 2003)’, Gaithersburg, Maryland.

Voorhees, E. M. (2005), Overview of the TREC 2005 Ro-
bust Retrieval Track,in ‘Proc. 14th Text REtrieval Con-
ference (TREC 2005)’, Gaithersburg, Maryland.

Webber, W., Moffat, A. & Zobel, J. (2008a), Score stan-
dardization for inter-collection comparison of retrieval,
in ‘Proc. 31st Ann. Int. ACM SIGIR Conf. on Research
and Development in Information Retrieval’, Singapore,
pp. 51–58.

Webber, W., Moffat, A., Zobel, J. & Sakai, T. (2008b),
Precision-at-ten considered redundant,in ‘Proc. 31st
Ann. Int. ACM SIGIR Conf. on Research and Devel-
opment in Information Retrieval’, Singapore, pp. 695–
696.

Yilmaz, E., Aslam, J. A. & Robertson, S. (2008), A new
rank correlation coefficient for information retrieval,in
‘Proc. 31st Ann. Int. ACM SIGIR Conf. on Research
and Development in Information Retrieval’, Singapore,
pp. 587–594.

Zobel, J. (1998), How reliable are the results of large-
scale information retrieval experiments?,in ‘Proc. 21st
Ann. Int. ACM SIGIR Conf. on Research and Develop-
ment in Information Retrieval’, Melbourne, Australia,
pp. 307–314.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

65

CRPIT Volume 92 - Database Technologies 2009

66

S.E.A.L. – A Query Language for Entity-Association Queries

Edward Stanley*, Pavle Mogin†, Peter Andreae†

* Kakapo Technologies
32a Salamanca Road, Wellington 6140, New Zealand

† School of Mathematics, Statistics, and Computer Science
Victoria University of Wellington

PO Box 600, Wellington 6140, New Zealand

eddiewould@paradise.net.nz, Pavle.Mogin/Peter.Andreae@mcs.vuw.ac.nz

Abstract
 The paper presents the S.E.A.L. query language and
interpreter for entity-association queries that allows such
queries to be expressed in a much simpler way than in
SQL. S.E.A.L (Simplified Entity Association Language)
also supports Entity-Attribute-Value (EAV) data
structures, enabling users to write queries without having
to know whether a particular attribute is a regular attribute
or an EAV attribute. The language allows parts of a query
to be omitted if they are implied by the rest of the query,
and the interpreter will infer the missing requirements, or
ask the user to resolve the ambiguity. S.E.A.L. makes it
easier for users of databases, particularly science and
eCommerce databases, to make use of the valuable
information in their databases. .

Keywords: Databases, Query Language, EAV, Query
Inference

1 Introduction
Many database users in fields such as Medicine, Biology,
and Genetics have large collections of data which contain
important information. This information would be
valuable to their owners, if only it could be extracted
from the data. A similar situation exists in the case of
many eCommerce databases. However, many users of
these databases have only modest database expertise and
use very simple SQL or query-by-example (QBE) tools
such as Microsoft Access. But QBE tools are limited in
the kinds of queries they support, and therefore users are
unable to exploit all the information hidden in their data.
This paper presents S.E.A.L. (the Simplified Entity
Association Language) – an extension to SQL to enable
such users to extract information more easily.

A common class of queries involves finding all
instances of an entity-type which satisfy some constraints
involving participation in relationships with other entities.
An example of this kind of query would be finding all the
patients in a medical database with a set of heart related
symptoms who were closely related to someone who had
been diagnosed with a particular disease. These queries,
called entity-association queries, are common but are

Copyright © 2009, Australian Computer Society, Inc. This
paper appeared at the 20th Australasian Database Conference
(ADC 2009), Wellington, New Zealand. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 92. A. Bouguettaya, X. Lin, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

difficult to express in SQL. The difficulty arises because
users must know the implementation schema in detail.
Particularly, users need to know table names, the location
of attributes, and table primary and foreign keys; simply
knowing the conceptual schema (problem domain) is
insufficient. Additionally, users need advanced specialist
knowledge of SQL in order to declare explicit joins and
constraints on entity properties in terms of conditional
expressions.

Entity-Association queries become even more
complex if a query contains a conjunctive condition on
two different values of the same attribute, or if some of
the query attributes are stored in Entity-Attribute-Value
(EAV) database structures. In both cases, the number of
nesting levels may increase, and nesting makes queries
difficult to construct and harder to debug. (Such queries
may prove to be complex even for database
professionals.)

If an entity-association query contains a conjunctive
constraint on two different values of the same attribute,
e.g. “retrieve students who passed both Database Systems
and Operating Systems courses”, expressing it in SQL
requires finding the intersection of entity sets satisfying
each of the constraints alone. Such queries are nested by
default. Increasing the number of entity and relationship
types involved in the query may also increase the number
of nesting levels in the SQL statement.

Entity-Attribute-Value database structures are used for
efficiently storing sparse data and for allowing user-
defined attributes. There are a number of variants of EAV
database structures, but they all share a common
characteristic: meta-data regarding attribute names is
stored in database tables like other common data.
Syntactically, EAV structures can be considered as entity-
association structures, and therefore even conceptually
simple queries involving EAV database structures share
all the complexity of other entity-association structures,
requiring detailed knowledge of the database schema, and
often requiring complex nested query structures. The
need for EAV structures is very common in Medicine,
Biology, Genetics, Chemistry, and generic e-Commerce
web database applications. For example, in the medical
database above, most patient symptoms would need to be
stored in an EAV structure because there would be too
many sparsely populated possible symptoms to use
regular attributes.

As a solution to these problems, S.E.A.L. offers a
highly declarative syntax for expressing entity-
association queries in a natural way that is closer to the
conceptual than to the implementation level of the

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

67

database abstraction. Additionally, S.E.A.L. possesses
inference mechanisms that allow information about some
of the database structural concepts to be omitted from the
query. S.E.A.L.’s inference mechanism relies on a
disciplined database schema approach. Thanks to this
design approach, S.E.A.L. accepts queries having only
one entity type name, a list of result attributes, and
conditional expressions on attribute values, and produces
a corresponding SQL expression or warns the user that
the query specification is insufficient for an unambiguous
translation of the query. In the course of the query
translation, S.E.A.L. infers all necessary associated entity
types, relationship types, and entity type roles, and
generates a SQL query in terms of the underlying
relational implementation structure.
 The paper describes:
• A set of rules and guidelines for designing databases

compatible with S.E.A.L.,
• The S.E.A.L. declarative language for specifying

entity-association queries, which also supports EAV
structures,

• A prototype interpreter for S.E.A.L. queries.
Section two of the paper reviews related work.

Sections three and four introduce an example database
schema, and briefly discuss EAV database structures.
Section five analyses a simple entity-association query
and justifies the claim that such queries are complex to
define. Sections six and seven introduce the S.E.A.L.
syntax and briefly describe the design of the S.E.A.L.
interpreter. Section eight reports on the results of a
limited number of performance measurements and the
final section presents conclusions and ideas for future
work.

2 Related Work
Because of its inference abilities, S.E.A.L belongs to the
class of the database query languages with a Universal
Relation Schema Interface. According to the Universal
Relation Assumption (Ullman 1982), there exists a
hypothetical relation schema (URS) which contains all
attributes of a universe of discourse (problem domain).
An actual database schema is produced by decomposing
the URS. A URS query interface allows a user to define
queries solely on attributes without having to care about
real database objects like tables.

One of the first research projects on a query language
with URS user interface was developed within an
experimental database management system called
System/U (Ullman 1982). Ullman describes a query
interpretation algorithm and two ways to cope with
ambiguities induced by database cyclic structures, but
does not discuss interpretation of queries having
conjunctive conditional expressions on different values of
an attribute.

The Query-By-Example (QBE) language is a graphical
query language developed by IBM Research and is
available as a part of the Query Management Facility
(Elmasri and Navathe 2006). It is also embedded into
Microsoft Access. A query is formulated in QBE by
filling in table templates that are displayed on the screen.
Users drag and drop tables and set predicate conditions to
construct a query. The QBE engine takes care of issues

such as aliasing and generating join conditions. QBE
relieves a user from having to know the structure of the
underlying database, but it is still not a URS interface
language, since it builds queries using tables. Also, QBE
engines that we have tested have been unable to produce
queries involving conjunctive conditional expressions on
different values of an attribute (except by modifying the
database structure).

Entity Attribute Value (EAV) database structures are
important for this paper since queries against EAV
database structures belong to the class of entity-
association queries. EAV structures are described in
Nadkarni and Brandt (1998), Dinu and Nadkarni (2006),
and Corwin et al (2007).

We identified two systems which abstract EAV
attribute representation from a database user. The first,
ACT/DB (Nadkarni et. al. 1998), is a database tool for
managing clinical trial data. It uses a client/server
architecture with Oracle7 at the backend. Users construct
queries with a GUI-based tool written in Microsoft
Access. The tool uses Visual Basic code to handle the
abstraction of EAV attributes in queries and translation
into SQL to be executed at the backend. The tool relies
upon the specific schema for which it was designed. The
schema includes conventional tables as well as six
general purpose EAV tables for the various data types
supported. ACT/DB supports a number of comparison
operators as well as aggregate functions such as average
and standard deviation.

The second is QAV (Nadkarni 1996) which is a GUI-
based tool which allows users to perform queries against
the Columbia MED dataset, a large medical metadata
repository. QAV uses a special schema in which all data
is represented in EAV form. QAV is also based on client-
server architecture.

Both of these systems are tied to a particular schema.
A significant advantage of S.E.A.L is that it can be used
with any schema which conforms to the rules and
guidelines given in section 6.3 of this paper.

During the literature search, we found no previous
attempts to classify entity-association queries or
implement a general solution for allowing users to
express these queries in an easier way.

3 Example Database Schema
To illustrate entity-association queries in a way that
requires no specialized domain knowledge and to explain
the proposed language and interpreter, the paper uses a
running example of a fictional ‘robbers’ database. The
‘ robbers’ database contains a variety of structures that
require defining entity-association queries.

The robbers database describes robbers and banks
they have robbed. Robbers have certain skills that are
tested at special testing locations and some robbers may
have special features such as haircuts, or like particular
kinds of music. Figure 1 contains the conceptual
‘ robbers’ database schema in the form of an entity-
relationship diagram, which, for simplicity, is presented
with no attributes.

Figure 2 contains a relational schema that corresponds
to the ER diagram in Figure 1, giving the schema name
and the set of attributes, with the primary key underlined.

CRPIT Volume 92 - Database Technologies 2009

68

Figure 1: ER diagram of the Robbers database.

Relation Schemes:
 robber{ robberid, nickname, age},

robber_attributes{ attributeid, attribute},
robber_eav{ robberid, attributeid, value},
mentoring{ robberid1, robberid2}
robber_skill{ robberid, skillid, skilllevel},
skill{ skillid, skillname},
skill_test{ robberid, skillid, locationid },
test_location{ locationid, locationname},
bank{ bankid, bankname},
robbery{ robberid, bankid, date, amount}

Referential Integrity Constraints:
 robber_eav[robberid] ⊆

 robber[robberid] (eav_robber),

 robber_eav[attributeid] ⊆
 robber_attributes [attributeid] (eav_skill),

 mentoring[robberid1] ⊆ robber [robberid] (teacher),

 mentoring[robberid2] ⊆ robber [robberid] (pupil),

 robber_skill[robberid] ⊆
 robber [robberid] (has_skill),

 robber_skill[skillid] ⊆ skill [skillid] (possessed_by),

 skill_test[(robberid, skillid)] ⊆
 robber_skill[(robberid, skillid)] (rob_skill_tested),

 skill_test[locationid] ⊆
 test_location[locationid] (tested_at),

 robbery[robberid] ⊆ robber [robberid] (has_robbed),

 robbery[bankid] ⊆ bank [bankid] (is_robbed)

Figure 2: Implementation Schema

For simplicity, all relation schemes have only one key —
the primary key — and a small number of attributes

The referential integrity constraints have the form
N1[FK] ⊆ N2[PK] (role), where FK is the foreign key
corresponding to the primary key PK of N2, and role is
the role of the entity type N2 in the relationship type N1.

Sparse robber attributes like haircut, music, and call-
sign are stored in EAV database structures, represented
by robber_attributes and robber_eav relation schemes.
EAV database structures are described in the next section.

4 EAV Database Structures
Under a conventional relational database design, each
entity instance is represented by a single row in the table
representing that entity type. This row has a fixed number
of columns and each column stores an attribute value.
Each attribute is described by the name of the column and
the data type. As a consequence of this, all entity
instances of the same entity-type contain values of the
same set of attributes. Metadata on the number, names
and types of attributes an entity-type stores information
on is defined by the table structure.

An Entity Attribute Value (EAV) database structure is
an alternative method for representing the attributes
belonging to an entity type. EAV represents each entity
instance as a set of (entityid, attribute, value) triples
(Nadkarni and Brandt 1998). The entity describes the
entity, the attribute value carries the information about
the attribute name, while the value assigns data to the
attribute name. Under EAV, metadata is represented as
data: not only are the values of attributes data (as they
were in the conventional relational model) but the
attribute names are also data.

EAV tables are generally not shared between entity
types: that is, each entity type making use of EAV storage
is assigned a separate EAV table. A useful variation to
the described structure is to also have a separate lookup
table to record the names of attributes stored in EAV
form. Often the attribute lookup table will have a
surrogate integer primary key (attributeid) and the EAV
table stores a reference to this field.

EAV database structures are used in applications that
handle sparse data, or have a need for user defined
attributes. They can also be used to store multivalued
attributes.

4.1 Sparse Attributes
Conventional “one fact per column” table designs are
unsuitable for extremely sparse data. A common example
of sparse data is a patient record in a medical database.
While there may be thousands of possible facts that can
apply to a single patient record, the number that typically
applies may be only a few dozen (Nadkarni and Brandt
1998). Unlike conventional relational tables which set
aside space for each attribute whether it is null or not,
EAV only represents facts which apply to the given entity
instance. EAV can be used in combination with
conventional storage: data which applies to every
instance can be stored in a conventional table and the
sparse data can be represented in an EAV table (Dinu and
Nadkarni 2006).

N

 robber_skill

 robbery

teacher

has_skill

possessed_by

has_robbed

is_robbed

robber_skill_tested

tested_at

skill

 skill_test

robber

test_location

bank

N
NN

N

N

N

pupil

N

 mentoring

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

69

4.2 User Defined Attributes
In certain applications, as in generic e-commerce
databases, there is a need for users to be able to define
(and destroy) attributes as part of a normal usage. Under a
conventional schema this would involve acquiring an
exclusive lock on the table and then issuing data
definition language (DDL) instructions to alter the table
structure. In a busy high-volume database, it may not be
possible to acquire an exclusive lock or it may be too
detrimental to performance. Allowing the user/application
to perform DDL is also a significant security risk.

Using an EAV design, the attributes for an entity-type
are described as regular data, and therefore only regular
row INSERT/DELETE operations are required to add and
remove attributes respectively. This design removes the
security risk associated with user-defined attributes and
also removes the need to acquire an exclusive lock on the
whole table, making user-defined attributes feasible even
in a high-volume database.

4.3 Multivalued Attributes
In the conventional normalized relational databases,
multivalued attributes are stored using separate tables.
For example, the multivalued attribute robber’s skills is
represented this way in the schema of Figure 2. An EAV
database structure is another possible solution for
representing multi-valued attributes, if the primary key of
the EAV table is set to be (entityid +attributeid +value).

Example 1. In the example robbers database, dense
robber attributes nickname and age are stored in the
conventional table robber, and sparse attributes like
haircut, music, and call-sign are stored in EAV database
structures. Figure 3 presents instances of the
robber_attributes and robber_eav EAV relation schemes.
The robber_attributes instance lists the sparse attributes
haircut, music, and callsign, and the robber_eav instance
specifies the association between robbers and attribute
values.

robber
robberid nickname Age

1 Al Capone 31
2 Bugsy Malone 23
3 Lucky Luchiano 55
4 Anastazia 47
5 Dutch Schulz 63

robber_attributes
attributeid attribute

1 haircut
2 music
3 callsign

robber_eav
robberid attributeid value

1 1 Mohawk
4 1 Mohawk
4 2 Latin
4 2 Classic

Figure 3

Using the combination of the following two SQL
statements, a user may insert a new sparse attribute food
and assign a value ‘Pizza’ to the food attribute of a
robber:

INSERT INTO robber_attributes VALUES
(4, ‘ food’);
INSERT INTO robber_eav VALUES (2, 4,
‘ Pizza’);
The structure composed of tables has_skill and skill is

another EAV structure that is used to represent the
multivalued attribute skill in the robbers database. Here,
the attribute skilllevel in the robber_skill table associates
values of the attribute skill to robbers.

A significant problem with EAV structures is that the
user has to know whether an attribute is stored as a
regular column or in an EAV table (Nadkarni and Brandt
1998). This problem adds to the complexity of writing
SQL queries against EAV database structures. As it will
be shown in the following sections, thanks to its inference
capabilities S.E.A.L. hides this complexity from users.

5 Analysis of an Entity Association Query
If an entity association query contains two or more
conjunctively bound constraints on the same attribute,
SQL does not have a declarative syntax for expressing
this class of queries in a simple way. In principle, such
queries require finding the intersection or set difference
of entity sets satisfying each of the constraints alone. We
are aware of four main strategies for expressing such
entity-association queries in SQL. These are:

1. Multiple SELECT statements combined with the set
operators,

2. Nested SELECT queries using the IN operator,
3. Correlated nested SELECT queries using EXISTS

operators, and
4. Multiple nested SELECT queries where the

intersection is performed using an equi-join.

Example 2. The following is a relatively simple entity-
association query for the robbers database:

“Find the robbers who have the skill ‘Gun Shooting’
but do not have the skill ‘Money Counting’, and the
robbers who have the skill ‘Explosives’”.

Using the first approach, this query could be broken
down into three SELECT queries and then combined with
the set operators UNION, INTERSECT and EXCEPT:

SELECT nickname FROM robber NATURAL
JOIN
((SELECT robberid FROM robber_ skill
 NATURAL JOIN skill WHERE
 skillname=’ Gun Shooting’
 EXCEPT

SELECT robberid FROM robber_skill
 NATURAL JOIN skill WHERE
 skillname=’ Money Counting’)
 UNION
 SELECT robberid FROM robber_skill
 NATURAL JOIN skill WHERE
 skillname=’ Explosives’) AS foo;

Using the second approach, the query could be
expressed using nested IN statements:

CRPIT Volume 92 - Database Technologies 2009

70

SELECT nickname FROM robber WHERE
((robberid IN (SELECT robberid FROM
 robber_skill NATURAL JOIN skill
 WHERE skillname=’ Gun Shooting’))
 AND
 (NOT (robberid IN (SELECT robberid
 FROM robber_skill NATURAL JOIN
 skill WHERE skillname=’ Money
 Counting’))))
OR
(robberid IN (SELECT robberid FROM
 robber_skill NATURAL JOIN skill
 WHERE skillname = ’ Explosives’));

Using the third and fourth strategies results in
similarly complex nested SQL expressions.

We argue however that a query constructed using
either of these strategies poorly reflects the logical intent
of the query and because of this is difficult to write.
Given the intent of the query, it will not be clear to a user
why they would need to issue multiple select statements.
From the user’s perspective, the relationships in which an
entity participates can be viewed as a property of the
entity itself. The following relation schema probably
better represents the user’s understanding of the domain:

robber{ robberid, nickname,
 has_gun_shooting_skill,
 has_money_counting_skill,
 has_explosives_skill}

Example 3. With this schema, the query could be
expressed straightforwardly as:

SELECT nickname FROM robber WHERE
 (has_gun_shooting_skill AND NOT
 has_money_counting_skill)
 OR has_explosives_skill;

While this database design is flawed (it will not scale
to hundreds of possible skills), it is easy to see that this
SQL reflects the user’s intention more simply and more
directly than the complex queries above.

Furthermore, all of the strategies described lead to
queries which are unnecessarily difficult to write. Factors
contributing to this difficulty include the following:

1. Users need to know where an attribute is stored. Is it
stored in a regular column or as an EAV attribute?

2. Users need to construct join conditions explicitly.
For this trivial example, NATURAL JOIN suffices
but, in the case of joins involving a recursive
relationship type, INNER JOIN has to be used.

3. When using INNER JOIN, a user needs to know the
primary keys of tables representing the entities
involved in the relationship as well as the primary
and foreign keys of the tables which represent the
relationship. In more complex examples, these keys
may be composite, involving three or more attributes.

4. With nested associations, multiple table aliases must
be used. These aliases must be uniquely named and
knowing which alias to refer to is a source of
confusion.

5. Finally, if the query contains a conjunctive constraint
on the same attribute, the query has to find the
intersection of entity sets satisfying each of the

constraints alone. Such queries are complex: hard to
define and even harder to debug.

This analysis applies equally to queries on EAV
structures, since the entity_eav relation schema
corresponds to a relationship type and the
entity_attributes relation schema corresponds to an entity
type.

Example 4. Consider the following query against the
robbers database:

“Find robbers who like ‘Latin’ and ‘Classic’ music.”

The query constraints ask for two values of the
multivalued sparse attribute music, which is stored in the
EAV structure. The following SQL query uses the
SELECT … IN … approach:

SELECT nickname FROM robber WHERE
 (robberid IN (SELECT robberid FROM
robber_eav NATURAL JOIN
 robber_attributes WHERE attribute
= ’ music’ AND value = ‘Latin’))
 AND
 (robberid IN (SELECT robberid FROM
robber_eav NATURAL JOIN
 robber_attributes WHERE attribute
= ’ music’ AND value = ‘Classic’));

6 S.E.A.L. Design
This section describes the design of the S.E.A.L. system,
including the syntax of the S.E.A.L. query language, the
requirements on the design of the database, and the
S.E.A.L. interpreter, particularly the inference algorithms
S.E.A.L. uses to infer entity and relationship types left
implicit in a query.

6.1 S.E.A.L. Syntax
The syntax of the S.E.A.L. query language is inspired by
the SQL SELECT syntax, but is specialised for entity-
association queries. A S.E.A.L. query specifies a set of
attributes and a base entity type, along with two kinds of
constraints: constraints on the attributes of the base entity
(regular or EAV attributes), and constraints on entities
associated with the base entity. A S.E.A.L. query has the
following form:

Query ::=
 SELECT
 attribute [, . . .] | *
 FROM
 baseEntityType
 [‘ [‘
 AttributeConstraintExpression
 ‘]’]
 [AssociationExpression]

An AttributeConstraintExpression is a
logical expression (which may contain conjunction,
disjunction, negation, and parentheses) involving
AttributeConstraint (s) which specify constraints
on regular or EAV attributes of the base entity type:

AttributeConstraint ::=
 attribute (‘ =’ | ‘!=’ | ‘<’ | ‘>’ |
 ‘>=’ | ‘<=’) value

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

71

An AssociationExpression is a logical
expression involving Association (s), each of which
specifies an associated entity type, the relationship type
by which the entity type is associated with the base entity
type, the roles in the relationship type of the base entity
type (“VIA ”) and associated entity type (“AS”), followed
by constraints on the relationship and associated entity
types. The entity type, relationship type and roles are all
optional if they can be unambiguously inferred from the
rest of the query.

Association ::=
 ‘ASSOCIATED_WITH’ ‘ (’
 [‘VIA ’ EntityRole]
 [AssociatedEntityType
 [‘AS’ AssociatedEntityRole]
 [‘THROUGH’ AssociatingRelationship]
 ‘,’]
 AssociationConstraintExpression
 ‘) ’

An AssociationConstraintExpression is a
logical expression involving Association
Constraints , each of which specifies constraints on
the associating relationship type and/or the associated
entity type, possibly including nested Association
Expressions to constrain the entity or the relationship
type.

AssociationConstraint ::=
 ‘<’ AttributeConstraint [, . . .] ‘>’
 [AssociationExpression]

The attribute constraints in an association constraint
can refer to any attribute (regular or EAV) of either the
associating relationship type or the associated entity type
of the Association .

6.2 Example Queries in S.E.A.L. Syntax
The following examples use the robbers schema given in
Section 3. All examples follow the same structure: the
aim of the example is given first, it is followed by the
query, then the S.E.A.L. syntax, and finally by an
optional comment.

Example 5. The following demonstrates uniform access
to attributes (whether EAV or regular ones):

“Find robbers who are 39 years old and have a
‘Mohawk’ haircut.”

SELECT nickname FROM robber [haircut
= ’ Mohawk’ AND age = 39]

The user does not need to know that haircut is
represented in EAV form, while age is a regular column.

Example 6. The following demonstrates how a simple
entity-association query is composed in S.E.A.L.:

“Find robbers who have the skill ‘Lock-Picking’ and
who have the skill ‘Planning’.”

SELECT nickname
FROM robber ASSOCIATED_WITH(
 skill THROUGH robber_skill,

 < skillname = ’ Lock-picking’> AND
 < skillname = ’ Planning’>)

The base entity-type is restricted based on the
participation constraint specified in the
ASSOCIATED_WITH clause. The associated entity-type,
skill, is specified explicitly as is the relationship type
robber_skill. The specification of roles is not needed,
since the relationship type robber_skill associates only
the robber and skill entity types. Two specifications of
attribute constraints are used in the query which are
combined into an expression with the AND operator.

Example 7. The following demonstrates the role of
inference in S.E.A.L.:

“Find robbers who robbed the ‘Loan Shark’ bank.”

SELECT nickname FROM robber
 ASSOCIATED_WITH(<bankname =
 ’ Loan Shark’>)

In this query, the associated entity type, the
relationship type, and the roles of the both entity types
were all omitted. With regard to the robbers schema,
given in Section 3, S.E.A.L. is able to infer that the
specification <bankname = ’ Loan Shark’> refers
to the associated entity type bank through the relationship
type robbery. The corresponding roles are also inferred.

Example 8. The following shows how an entity-
association query, where the relationship type has a
participation constraint, is constructed in S.E.A.L.:

“Find robbers with the skill ‘Guarding’ who had it
tested at a testing location called ‘Harvard’.”

SELECT nickname FROM robber
 ASSOCIATED_WITH(skill,
 < skillname = ’ Guarding’>
 ASSOCIATED_WITH(test_location,
 < locationname = ’ Harvard’>))

S.E.A.L. interprets the query through the following two
main steps. First, it infers the association between robber
and skill tables through the has_skill table using the
attribute skillname. Next, it infers the association between
has_skill and test_location tables through the skill_test
table using the attribute locationname. As a result,
S.E.A.L. constructs a SQL statement with two levels of
nesting.

Example 9. The final example is a query where roles
cannot be inferred and must be specified:

“Find robbers who have been taught by ‘Bugsy
Malone’.“

SELECT nickname FROM robber
 ASSOCIATED_WITH(robber
 AS teacher THROUGH mentoring,
 < nickname= ’Bugsy Malone’>)

In this example, the role of the associated entity type
(also a robber) was specified as a teacher. It was
necessary to specify at least one role, because the
mentoring relationship involves two entities of the same
type (a robber acting as a teacher and a robber acting as a
pupil).

CRPIT Volume 92 - Database Technologies 2009

72

6.3 Rules and Guidelines for Implementing
S.E.A.L. Compatible Databases

The S.E.A.L. interpreter has a set of rules and
conventions to which a schema must adhere if it is to be
used with S.E.A.L. These rules and conventions provide a
consistent way to describe metadata as well as
simplifying the interpreter code by reducing the number
of special cases needed. These rules follow a common
disciplined database design approach and are illustrated
by the robbers schema in Figure 2. The most significant
guidelines are the following:

• All attributes that have different meaning (whether
stored conventionally or in EAV form) must have
distinct names.

• EAV database structures should be implemented using
an attribute lookup table, named 〈entity〉_attributes and
a relationship table named 〈entity〉_eav with the
structure (entityid, attributeid, value), where 〈entity〉 is
the name of the entity type the attributes belong to.

• The referential integrity (foreign key) constraints have
to be named after the name of the role the referenced
table plays in the relationship type.

These, and the other requirements, all represent good
database design practices, and are not difficult to satisfy.
We note that the first requirement is needed to avoid
ambiguities induced by cyclic database structures
(Ullman 1982).

6.4 Inference Algorithms
S.E.A.L. gives users considerable flexibility when
specifying a participation constraint via an ASSOCIAT-
ED_WITH clause. While the base entity-type and an
expression constraining attribute values are required, the
associated entity type, the relationship type, and the roles
of both the base and associated entity types are optional.

If any of these types or roles is omitted, S.E.A.L. will
attempt to infer them based on the attributes used in the
specification expression. To be able to perform
translation without ambiguity, S.E.A.L. needs to find
exactly one valid (relationship type, associated entity
type, base entity role, associated entity role) combination
for the base entity-type and attributes used.

6.4.1 Inferring possible combinations
The first step is to infer all the possible combinations of
relationship types, associated entity types, and roles that
are consistent with the specified base entity type. Any
types or roles specified in the query constrain the search.
Subject to these constraints, S.E.A.L. searches the
metadata for all tables in the database that have at least
two foreign keys, at least one of which references the
base entity type. Any such table is a candidate
relationship type, and all tables referred to by the other
foreign keys of the table are candidate associated entity
types. Names of the foreign keys involved are the roles.

S.E.A.L. then attempts to reduce the set of candidate
combinations by examining the attributes specified in the
query (using the attribute coverage algorithm described in
6.4.2) and eliminating combinations that are not
consistent with the attributes. If the set of combinations is

not reduced to a single combination, then the query
contains ambiguity which the user must resolve.

One kind of ambiguity arises if there are two possible
relationships in the database between the base entity type
and an associated entity with the specified attributes. In
this case, S.E.A.L. can report the alternative relationships
to the user so that the user can specify the relationship
they intended.

Another kind of ambiguity arises if the relationship
type of a combination involves the base or associated
entity type in more than one possible role (i.e., the table
has two or more foreign keys referring to the same entity
type) and the role is not specified in the query. In this
case, the algorithm reports the ambiguity to the user,
along with the possible roles, so that the user can refine
the query.

Once there is an unambiguous consistent combination
of 〈relationship type, associated entity type, base entity
role, associated entity role〉, this information is passed to
the translation algorithms (6.5) to construct the SQL
query.

Note that a S.E.A.L query may contain multiple
ASSOCIATED_WITH clauses and that the inference
process must be applied to each clause. For nested
ASSOCIATED_WITH clauses, the process must be
applied recursively.

6.4.2 Attribute coverage algorithm
For a given (relationship type, associated entity type,
base entity role, associated entity role) combination to be
valid with respect to a query, the associated entity type
together with the relationship type must contain (in either
EAV or regular column form) all attributes referred to in
an ASSOCIATED_WITH clause. A combination with this
property is said to “cover” the ASSOCIATED_WITH
clause. The attribute coverage algorithm checks a
(relationship type, associated entity type) pair to
determine if it covers the query.

Regular attributes can be checked from the metadata,
but checking for the existence of an EAV attribute
requires a query against the database. For efficiency,
attributes are grouped into sets corresponding to their
expected location and all EAV attributes used in a query
are checked at once rather than individually.

6.5 Translation Algorithms
Once a query has been parsed and all necessary
inferences are completed, the translation into SQL is
performed by a bottom-up, recursive traversal of the
query tree. In this design, the various parts of the query
tree are responsible for their own conversion into SQL
with relatively little interdependence.

At an abstract level, the translation of a S.E.A.L.
statement produces SQL blocks of the form

base_entityid IN (SELECT
base_entityid FROM relationship INNER
JOIN associated_entity ON … WHERE
AssociationConstraint)

for each Association Constraint in an ASSOCIATED_
WITH clause. These SQL blocks are connected by logical
operators in accordance with the structure of the

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

73

Association Constraint Expression and placed in a SQL
WHERE clause in the following way

SELECT attribute_list FROM
base_entity_type WHERE
(SQL_block_expr);

The form of the generated SQL statement has a form
very close to the second SQL query in Example 2.

7 Implementation of the S.E.A.L. Interpreter
When the S.E.A.L. interpreter first starts, it connects to
the PostgreSQL database and collects metadata about the
database that it needs for translating queries. When a user
issues a query, the interpreter parses and translates the
query. If it identifies any ambiguity or errors in the query,
the interpreter not only reports the problems, but also
gives suggestions to the user on how to resolve them.
Once the query is successfully translated, it outputs the
SQL, which can then be run against the database.

The SEAL prototype interpreter is implemented in a
Java, JDBC, and PostgreSQL environment. After
retrieving metadata, translating a query comprises three
main stages: parsing, inference, and translation.

Since the principles of the inference and translation
process were described in section 6.4, this section briefly
describes only the metadata retrieval and parsing.

7.1 Retrieval of metadata
PostgreSQL provides an ‘Information Schema’ that is a
collection of views and tables describing structures of
databases contained in a cluster. These tables and views
can be queried through regular SQL.

S.E.A.L connects to PostgreSQL through JDBC and
issues custom queries against the PostgreSQL Inform-
ation Schema to collect metadata on attribute names,
table names, table primary keys, table foreign keys, and
foreign key names. Metadata, which carries information
about role names, is stored in an internal data structure.

EAV attributes are not collected during the metadata
acquisition phase, since an entity type may have many
thousands of EAV attributes, and many are most probably
not needed by a query. Any EAV attributes used in a
query are checked at the translation time (which also
allows for updates to the EAV attributes during the
interaction with the interpreter).

7.2 Parsing
The parser for the interpreter was created with the
ANTLR (ANTLR http://www.antlr.org) parser generator.
ANTLR allows the programmer to write a context free
grammar along with Java code to describe actions to
perform on rule/token matches. In the case of the S.E.A.L
interpreter, the rules defined are relatively simple: the
parser simply generates an OO representation of the
query tree substituting base and associated entity-types,
relationship types and roles with table, join-table and
foreign key names, respectively, contained in the
metadata structure.

8 Testing
We performed three kinds of testing. One was testing the
claim that entity-association queries are complex. The

other was comprised of an extensive sequence of
functional tests on the S.E.A.L prototype interpreter. A
limited number of performance tests was our third kind of
tests. The section briefly describes the tests.

8.1 Testing complexity of entity-association
queries

To prove the claim that entity-association queries with a
conjunctive condition on two different values of the same
attribute are hard to define, we asked a group of 47
students to produce SQL statements for the following
entity-association queries within given time limits:

1 Find robbers who have the ‘Planning’ skill. [5 minutes],

2 Find robbers who have been taught by ‘Bugsy Malone’.
[6 minutes], and

3 Find robbers who have the ‘Planning’ and ‘Lock-
Picking’ skills. [10 minutes].

The students had just completed an intensive training
in SQL and were familiar with the structure of the
robbers database (which excludes any effect of surprise
on their performance). The aim of the first two queries
was to test students’ SQL expertise with simple entity-
association queries, while the third query was an entity-
association query with a conjunctive condition on two
values of an attribute. The outcomes of the test are given
in the table below.

Query Correct answers [%]
1 92
2 56
3 32

The fact that 92% and 56% of students defined
correctly the first two queries within the given time limits
shows that they possessed a fair level of SQL expertise.
The fact that almost 70% of them failed to give a correct
answer to the third question supports the claim that
entity-association queries with a conjunctive condition on
two values of an attribute are hard to define.

8.2 Functional testing
The goal of the functional testing was to check that
S.E.A.L meets the expected functional requirements.
These tests comprised the following steps:

• Defining a query against the robbers database in
English,

• Expressing the query in S.E.A.L syntax,
• Expressing the query in SQL using an expert’s

knowledge,
• Running the S.E.A.L interpreter to produce a SQL

query,
• Comparing the S.E.A.L generated SQL query and the

SQL query produced by the expert, and
• Running both SQL queries against the robbers

database and comparing results.
The examples listed in previous sections of the paper

are a representative set of the test queries that were run.
The actual testing comprised numerous variants of these
queries and a number of queries that went beyond the
initial requirements of the S.E.A.L. project. The query
variants included more complex conditional expressions
on attributes, multiple associations of the base entity type

CRPIT Volume 92 - Database Technologies 2009

74

with associated entity types, multiple associations of
relationship types, and conditional expressions on
associated entity type EAV attributes. The SEAL
prototype interpreter passed all these tests successfully.

The queries that went beyond the project requirements
identified some limitations of the current implementation
and are discussed in the Conclusion as a part of the future
work.

8.3 Performance testing
There were two parts to the performance testing:
comparing the performance of Nested-In and Set
theoretic operator approaches to produce entity-
association queries and comparing the interpreter
overhead to the query execution time.

All performance tests were performed on an Intel
Pentium 4 processor at 3.2 GHz, with1.5 GB DDR2
memory at 533 MHz , and a Seagate 80Gb SATA disk,
using Net-BSD 4.99.9, and PostgreSQL Version 8.2.4.

Two databases were used: the robbers database and a
EAV database consisting of a table representing an entity
type and two other tables representing its EAV data
structure. The robbers database was small; the smallest
table contained just 5 tuples, while the largest table
contained 40 tuples. The EAV database was considerably
larger. It was populated by randomly generated data. The
entity table contained 3,000 tuples, the entity_attributes
table contained 2,500 tuples, and the entity_eav table
contained 1,000,000 tuples.

8.3.1 Comparing the performance of Nested-IN
with Set theoretic operator approach

A set of experiments was conducted to compare the
performance of the ‘nested IN’, ‘nested equi-join’, and
‘set theoretic operator’ approaches described at the start
of Section 5. The goal of these experiments was to help in
deciding which of the three approaches to adopt for the
implementation of the S.E.A.L interpreter. The
performance of the ‘nested EXISTS’ approach was not
tested, since the use of the SQL EXISTS operator results
in correlated nested queries, which are known to have
worse query costs than equivalent nested non correlated
queries (ElMasri&Navathe 2006).

A number of queries involving conjunctive conditional
expressions on randomly chosen (attribute =
attribute_name, value = value_data) pairs were executed
on the EAV database. Such queries are indicative of
queries involving EAV attributes. The difference in
performance was negligible with all three SQL query
implementations taking approximately 3 ms to execute.

Another set of experiments involving conjunctive
conditional expressions on randomly chosen (attribute =
attribute_name) pairs were executed on the EAV
database. Such queries are indicative of entity-association
queries involving conventional relational mapping of
entity and relationship type structures. The ‘nested IN’
implementation took approximately 12.3 ms,
outperforming the ‘nested equi-join’ implementation
which took 13.75 ms, and the ‘set theoretic’
implementation which took 15.8 ms. The outcomes of
these experiments led to the decision to implement the
SEAL interpreter using the ‘nested IN’ approach.

8.3.2 Comparing interpreter overhead with the
query execution time

Multiple experiments were performed on the robbers
schema to compare the time the S.E.A.L interpreter took
to translate S.E.A.L queries with the time the queries took
to execute against a small database. The following table
presents the measurements for three characteristic entity-
association queries.
 S.E.A.L. Syntax Tran Exec

SELECT nickname FROM robber
ASSOCIATED_WITH(bank THROUGH
robbery, <bankname = 'Loan Shark'>)

0.2
Ex7 SELECT nickname FROM robber

ASSOCIATED_WITH (<bankname = 'Loan
Shark'>)

3.6
0.4

SELECT nickname FROM robber
ASSOCIATED_WITH (skill THROUGH
robber_skill, <skillname = 'Guarding'>
ASSOCIATED_WITH (test_location
THROUGH skill_test, <name = 'Harvard'>))

0.4

Ex8
SELECT nickname FROM robber
ASSOCIATED_WITH (<skillname =
'Guarding'> ASSOCIATED_WITH
(test_location, <name = 'Harvard'>))

3.7

0.7

SELECT nickname FROM robber
ASSOCIATED_WITH (robber_attributes
THROUGH robber_eav, <attribute = 'music'>
AND <value = 'Latin'> AND <attribute =
'haircut'> AND <value = 'Mohawk'>)

1.4

SELECT nickname FROM robber
ASSOCIATED_WITH (<attribute = 'music'>
AND <value = 'Latin'> AND <attribute =
'haircut'> AND <value = 'Mohawk'>)

4.1

1.2 Ex4

SELECT nickname FROM robber[haircut =
'Mohawk' AND music = 'Latin'] 0.6 0.7

The first column specifies the example where the
semantics of queries are defined. The second column
contains the S.E.A.L. syntax of the query. The third and
fourth columns contain the average query translation time
and the average query execution time in milliseconds. For
each query semantics, the first table row contains a
S.E.A.L. expression where only entity type roles are
omitted requiring only a small amount of inference. The
second row contains a S.E.A.L. expression where both
the associated entity and the relationship types are
omitted requiring a considerable amount of inference.

The first query (Ex7) is a simple entity association
query. The second query (Ex8) requires nested S.E.A.L.
expressions, produces a SQL statement with two levels of
nesting, and is a more complex query than the first one.
The third query (Ex4) involves a conjunctive condition on
EAV attributes of the base entity type. The first two
S.E.A.L. expressions treated the EAV structure as a
conventional entity-association structure; the third treated
EAV attributes as base entity type attributes, forcing
SEAL to find their real source by inference.

The table shows that in the case of nearly full syntax
expressions, S.E.A.L. translation time is of the same
order of magnitude as the query execution time against a
small database. The inference generally incurs an
overhead that is just a few times greater than in the case
of expressions that require practically no inference. The
last table row highlights an interesting S.E.A.L. feature.
Although the query requires inference, the translation
time is lower than in the case of practically no inference.
This is because the SEAL expression in the last row does
not contain an ASSOCIATED_WITH clause, which

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

75

incurs many checks. Also, S.E.A.L. produced a simpler
and more efficient SQL code resulting in a faster
execution time against the robber database.

The S.E.A.L interpreter was then used against the
EAV database to perform the queries retrieving entities
based solely on EAV attribute conditions. As an
indicative result, a query on a conjunctive attribute
condition took 1 ms to translate and 12.3 ms to execute.

The experiments showed that the S.E.A.L interpreter
incurs an overhead that is negligible in interactive use.

9 Conclusions and Future Work
This paper describes S.E.A.L., a highly declarative
extension to SQL for the specification of entity-
association queries in an easy and natural way. Entity-
association queries constitute a class of queries often
needed by users of databases in Medicine, Biology,
Chemistry, Genetics and similar fields of science. These
queries ask for data about entities based on their
participation in relationships with other entities. The
complexity of defining entity-association queries in SQL
prevents users from exploiting the full potential of
information contained in their databases. S.E.A.L is
intended to alleviate the problem.

9.1 Contribution
The paper contains the following contributions:

• The definition of the S.E.A.L language syntax that
allows association queries to be expressed concisely
and simply.

• A description of the S.E.A.L prototype interpreter,
including the inference and translation algorithms.

• A set of rules for defining S.E.A.L. compatible
database schemas, mainly consisting of good
database design practice,

• A description of the Entity Attribute Value (EAV)
database structure, since these database structures are
particularly suited for databases in many fields of
science and in generic eCommerce web database
applications, for which queries constitute a subclass
of entity-association queries and are hard to define.

With S.E.A.L, end-users can issue entity-association
queries without a high level of database proficiency and
without detailed knowledge of the database
implementation. Users need to know only a part of the
conceptual schema, and because of its inference
capability, even this requirement is alleviated, since
S.E.A.L possesses features of query tools with a
Universal Relation Interface. In many cases, a user needs
to declare only an entity type and conditions on a number
of attributes and can ignore their location.

Another feature of S.E.A.L is that it abstracts EAV
storage. Attributes stored in EAV form and in
conventional relational form are treated uniformly in
queries. Finally, S.E.A.L is not bound to a particular
database schema since it is able to use the metadata about
the schema extracted from the database system.

Functional and performance testing performed have
shown that S.E.A.L represents a good proof of concepts
and that it incurs an insignificant overhead.

9.2 Future work
While this work provides a general solution to supporting
entity-association queries including queries on EAV
structures, there are a number of areas which can be
expanded on. Desirable functional features currently not
supported by S.E.A.L which need to be addressed in
future work include the following:

• Comparison operators other than equality to use in
Attribute Constraints,

• Support for relationship cardinalities other M:N,
• Allowing the attribute list after the SELECT clause

to contain attributes other than base entity type
attributes,

• Extending the support for EAV structures to
relationship type EAV attributes, and

• Support of queries with nesting based on associated
types of an associated entity type and queries
containing logical combinations of Association s.

The S.E.A.L. interpreter is currently a standalone
program that interacts with a database. This means that
users must decide which query system to use for a given
task. A very desirable improvement would be to integrate
the interpreter into PostgreSQL, as an extension of the
SELECT syntax, which would make S.E.A.L. queries
very much more accessible and useful to most users.

10 References
ANTLR: ANother tool for Language Recognition

http://www.antlr.org/. Accessed 6 Sep 2008.

Corwin, J., Silberschatz A., Miller, P.L. and Marenco, L.
(2007): Dynamic tables: An architecture for managing
evolving, heterogeneous biomedical data in relational
database management systems. J of the American
Medical Informatics Association 14(1):86-93.

Dinu, V. and Nadkarni, P. (2006): Guidelines for the
effective use of entity-attribute-value modeling for
biomedical databases. International Journal of Medical
Informatics 76(11-12):769-779.

Elmasri, R. and Navathe, S. (2007): Fundamentals of
Database Systems; 5th edition Addison-Wesley, Inc.

Nadkarni, P. M. (1996): QAV: Querying entity-attribute-
value metadata in a biomedical database. Computer
Methods and Programs in Biomedicine 53(2):93-103.

Nadkarni, P. M. and Brandt, C. (1998): Data extraction
and ad hoc query of an entity-attribute-value database.
Journal of the American Medical Informatics 5(6):511–
527.

Nadkarni, P. M., Brandt, C., Frawley, S., Sayward, F.,
Einbinder, R., Zelterman, D., Schacter, L., and Miller,
P. (1998): Managing attribute–value clinical trials data
using the ACT/DB client-server database system.
Journal of the American Medical Informatics
Association 5(2):139-151.

Elmasri, R. and Navathe S. B. (2006): Fundamentals of
Database Systems. Fifth Edition, Pearson-Addison
Wesley.

Ullman, J. D. (1982): Principles of Database Systems.
Rockville, Maryland, Computer Science Press, Inc.

CRPIT Volume 92 - Database Technologies 2009

76

On Inference of XML Schema with the Knowledge of an Obsolete One

Irena Mlýnková

Charles University, Faculty of Mathematics and Physics, Department of Software Engineering
Malostranské nám. 25, 118 00 Prague 1, Czech Republic

Email: irena.mlynkova@mff.cuni.cz

Abstract

The XML has undoubtedly become a standard for data
representation and manipulation. But most of XML docu-
ments are still created without the respective description of
their structure, i.e. an XML schema. Hence, in this paper
we focus on the problem of automatic inferring of an XML
schema for a given sample set of XML documents. Con-
trary to existing approaches we propose an algorithm that
exploits additional input information – an obsolete XML
schema. Consequently, we are able to exploit the informa-
tion which was correct once and to infer the schema more
efficiently.

Keywords: XML Schema, validity, schema inference,
schema correction.

1 Introduction

Without any doubt XML (Bray et al. 2006) is currently a
de-facto standard for data representation. Its popularity is
given by the fact that it is well-defined, easy-to-use and, at
the same time, enough powerful. To enable users to spec-
ify own allowed structure of XML documents, so-called
XML schema, the W3C1 has proposed two languages –
DTD (Bray et al. 2006) and XML Schema (Thompson
et al. 2004, Biron & Malhotra 2004). The former one is di-
rectly part of XML specification and due to its simplicity
it is one of the most popular formats for schema specifi-
cation. The latter language was proposed later, in reaction
to the lack of constructs of DTD. The key emphasis is put
on simple types, object-oriented features and reusability
of parts of a schema or whole schemas.

On the other hand, statistical analyses of real-world
XML data show that a significant portion of XML doc-
uments (in particular, 52% (Mignet et al. 2003) of ran-
domly crawled or 7.4% (Mlynkova et al. 2006) of semi-
automatically collected2) still have no schema at all.
What is more, XML Schema definitions (XSDs) are used
even less (only for 0.09% (Mignet et al. 2003) of ran-
domly crawled or 38% (Mlynkova et al. 2006) of semi-
automatically collected XML documents) and even if they
are used, they often (in 85% of cases (Bex et al. 2004))

This work was supported in part by the Czech Science Foundation
(GAČR), grants number 201/09/P364 and 201/09/0990.

Copyright c©2009, Australian Computer Society, Inc. This paper ap-
peared at the 20th Australasian Database Conference (ADC 2009),
Wellington, New Zealand, January 2009. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 92, Athman Bouguet-
taya and Xuemin Lin, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

1http://www.w3.org/
2Data collected with the interference of a human operator.

define so-called local tree grammars, i.e. languages that
can be defined using DTD as well.

In reaction to this situation a new research area of auto-
matic inference of an XML schema has opened. The key
aim is to create an XML schema for the given sample set
of XML documents that is neither too general, nor too re-
strictive. Currently there are several proposals of respec-
tive algorithms (see Section 2), but there is still a space
for further improvements. In this paper we focus on in-
ferring of a schema from a sample set of XML documents
in a special situation when we are provided with the orig-
inal, but already obsolete schema. According to statistical
analyses of real-world XML data (Mlynkova et al. 2006)
it is quite a common case, since the XML schema is usu-
ally considered as a kind of data documentation. Since
the schema is not used as it is supposed to be, i.e. for
checking the correct structure of XML documents, it is
usually not updated in case the respective data are. Hence,
in this paper we propose an algorithm which infers a cor-
rect schema on the basis of the knowledge of the outdated
one. Contrary to existing approaches that would infer a
correct schema regardless the existing one, we are able to
exploit the information which was correct once and to in-
fer the schema more efficiently.

The paper is structured as follows: Section 2 overviews
existing papers on automatic inference of XML schemas
as well as issues related to our stated problem. Section 3
provides background information on languages for XML
schema definition. Section 4 describes their relation to
the theory of automata and grammars and introduces the
problem of schema inference. Section 5 describes the pro-
posed solution in detail. And, finally, Section 6 provides
conclusions and outlines possible future work.

2 Related Work

The existing solutions to the problem of automatic infer-
ence of an XML schema can be classified according to
several criteria. Probably the most interesting one is the
type of the result (i.e. DTD or XSD) and the way it is con-
structed, where we can distinguish heuristic methods and
methods based on inferring of a grammar.

Heuristic approaches (Moh et al. 2000, Wong &
Sankey 2003, Garofalakis et al. 2000) are based on ex-
perience with manual construction of schemas. Their out-
put does not belong to any special class of grammars and,
hence, we cannot say anything about its features. They
are based on generalization of a trivial schema using a set
of predefined heuristic rules, such as, e.g., “if there are
more than three occurrences of an element, it is probable
that it can occur arbitrary times”. These techniques can be
further divided into methods which generalize the initial
schema until a satisfactory solution is reached (e.g. (Moh
et al. 2000, Wong & Sankey 2003)) and methods which
generate a number of candidates and then choose the opti-
mal one (e.g. (Garofalakis et al. 2000)). While in the first
case the methods are threatened by a wrong step which
can cause generation of a suboptimal result, in the latter

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

77

case they have to cope with space overhead and specify-
ing a reasonable function for evaluation of quality of the
candidates.

On the other hand, methods based on inferring of a
grammar (Ahonen 1996, Bex et al. 2007) output a partic-
ular class of languages with specific characteristics. Al-
though grammars accepting XML documents are context-
free, the problem can be reduced to inferring of a set
of regular expressions, each for a single element. But,
since according to Gold’s theorem (Gold 1967) regular
languages are not identifiable in the limit only from posi-
tive examples (in our case sample XML documents which
should conform to the resulting schema), the existing
methods exploit restriction to an identifiable subclass of
regular languages.

A set of approaches related to our stated problem, i.e.
the problem of correcting an incorrect XML schema, are
so-called XML schema evolution or XML schema version-
ing algorithms (Su et al. 2001, Tan & Goh 2005, Guer-
rini et al. 2007). However, their aim is opposite to ours.
XML schema evolution means that the original schema is
replaced by an updated schema and, hence, the effects of
the update on its instances need to be solved. In particu-
lar, the approaches deal with the problem how document
adaptation according to the evolved schema can be (even-
tually automatically) performed to make them valid again.
Schema versioning means that the original documents and
schemas should be preserved and a new updated version
of the schema is created. Document adaptation is not an
issue, but the problem of handling different versions of the
same data arises.

Instead of adapting the set of XML documents accord-
ing to the modified schema we have the opposite task –
we want to adapt the given schema according to the set of
XML documents. Among the existing works there seems
to be only one approach with an aim similar to ours. In
(Bertino et al. 2002) the authors propose an approach to
evolving a set of DTDs to obtain structures that are cor-
rect and precise with regard to a set of XML documents.
The approach is intended for a kind of dynamic repository
of XML data and DTDs. It is based on exploitation of
similarity of XML documents and DTDs and a set of data
mining heuristics.

3 XML Schema Languages

The simplest and most popular language for description
of the allowed structure of XML documents is currently
the Document Type Definition (DTD) (Bray et al. 2006).
It enables one to specify allowed elements, attributes and
their mutual relationships, order and number of occur-
rences of subelements, data types and allowed occurrences
of attributes. A simple example describing a database of
employees is depicted in Figure 1.

Figure 1: An example of a DTD of employees

At first glance it seems that the specification of the al-
lowed structure is sufficient. Nevertheless, even in this
simple example we can find several problems. For in-
stance, we are not able to specify the correct structure
of an e-mail address. Similarly, we cannot simply spec-
ify that a person can have four e-mail addresses at maxi-

mum. And, as we can see, the fact that the order of ele-
ments first and surname is not significant cannot be
expressed easily as well. Therefore, the W3C proposed a
more powerful tool – the XML Schema language (Thomp-
son et al. 2004, Biron & Malhotra 2004).

The XML Schema language has a number of advan-
tages. The main advantages are that:

• each XSD is a well-formed and valid XML docu-
ment,

• it has a strong support of data types, both simple and
complex and both built-in and user-defined,

• it enables one to re-use and re-define existing
schemes or selected parts,

• it enables one to specify the allowed structure using
more precise constraints (e.g. minimum and max-
imum allowed occurrences, ordered/unordered se-
quences, integrity constraints etc.) and

• it enables one to specify equivalent schemes using
distinct constructs.

For example an XSD equivalent3 to the example of a
DTD in Figure 1 is depicted in Figure 2.

Figure 2: An example of an XSD of employees

3Having the same set of document instances.

CRPIT Volume 92 - Database Technologies 2009

78

4 Relation to Automata and Grammars

An XML schema describing the allowed structure of XML
documents is an extended context-free grammar (Berstel
& Boasson 2000), i.e. a grammar where nonterminals can
be rewritten regardless the context in which they occur.
The extension is given by the fact that on right hand sides
of productions occur regular expressions.

Definition 1 Given the alphabet Σ, a regular expression
(RE) over Σ is inductively defined as follows:

• ∅ (empty set) and ε (empty string) are REs.
• ∀a ∈ Σ : a is a RE.
• If r and r′ are REs of Σ, then (rr′) (concatenation),

(r|r′) (alternation) and (r∗) Kleene closure) are REs.

The DTD language adds two abbreviations: (r|ε) =
(r?) and (rr∗) = (r+). Also the concatenation is ex-
pressed via the ‘,’ operator. The XML Schema language
adds (among other extensions) another one, so-called un-
ordered sequence of REs r1, r2, ..., rk, i.e. an alternation
of all possible ordered sequences of r1, r2, ..., rk. The
DTD syntax is often extended with respective ‘&’ oper-
ator.

Definition 2 An extended context-free grammar is a
quadruple G = (N,T, P, S), where N and T are finite
sets of nonterminals and terminals, P is a finite set of
productions and S is a non terminal called a start sym-
bol. Each production is of the form A → r, where A ∈ N
and r is a regular expression over alphabet N ∪ T .

The language generated by grammar G is denoted by
L(G).

A language generated by a grammar can be accepted
by an automaton, in our case a finite state automaton.

Definition 3 A finite state automaton (FSA) is a quintuple
A = (Q, Σ, δ, S, F), where Q is a set of states, Σ is a
set of input symbols (alphabet), δ : Q × Σ∗ → Q is the
transition function, S ∈ Q is the start state and F ⊆ Q is
the set of final states.

The language accepted by an automaton A is denoted
by L(A).

For each RE we can construct a FSA and vice versa.

4.1 Problem Statement

The studied problem can be described as follows: Be-
ing given a set of XML documents D = {d1, d2, ..., dn}
(i.e. words over an alphabet TD), we search for an XML
schema sD (i.e. a grammar GD = (ND, TD, PD, SD)) s.t.
∀i ∈ [1, n] : di is valid against sD (i.e. D ⊆ L(GD)). In
particular, we are searching for sD that is “enough” con-
cise, precise and, at the same time, general.

Most of the existing approaches use the following
strategy: For each occurrence of an element e ∈ D and
its subelements e1, e2, ..., ek we construct a production ~pe

of the form e → e1 e2 ... ek.4 The left hand side is called
element type and denoted type(~pe), the right hand side is
called a content model of the element type and denoted
model(~pe). The productions form so-called initial gram-
mar (IG). For each element type the productions are then
merged, simplified and generalized using various meth-
ods and criteria. A common approach is so-called merg-
ing state algorithm, where a prefix tree automaton (PTA)
is built from the productions of the same element type and
then generalized via merging of its states. Finally, the gen-
eralized automata are expressed in syntax of the selected
XML schema language.

An example of a IG and PTA for element person is
depicted in Figure 3.

4Attributes are often omitted for simplicity.

Figure 3: An example of a IG and a PTA

In the existing works the rules for merging the states of
an automaton differ, but they have a common aim to create
a concise and precise XML schema. While the heuristic
approaches exploit a set of various heuristic rules, the ap-
proaches based on inference of a grammar utilize the rules
so that the result fulfills the conditions the selected sub-
class of regular languages states.

The problem we are dealing with is a schema inference
task with a special condition – knowledge of an obsolete,
i.e. incorrect and/or too general, schema sorig . Our aim
is to exploit this additional information in order to speed
up the inference process and to make the resulting schema
more precise.

5 Proposed Approach

In general the given problem can be divided into checking
and correction/adaptation of the following subsets:

1. Simple data types

2. Element/attribute names

3. REs

The first two sets can be solved relatively easily. In
case of simple data types we simply check whether the
selected data types are not too general or too restrictive
and, if necessary, we make the respective corrections. In
fact, even most of the existing schema inference methods
do not deal with simple types at all.

In case of element/attribute names we can select from
two approaches. On one hand, we can consider and distin-
guish either the same or distinct names. On the other hand,
we can take into account their semantics and consider that
only an element/attribute name can be modified. However,
it is only a question of finding the respective mapping be-
tween the names, whereas we can find such mapping only
in case the changes are semantically related, such as, e.g.,
changing name into title. Consequently, it is only mi-
nor aspect of the problem and we will not deal with it in
the following text as well.

The most important task of the given problem is to
check and correct REs. In general we can encounter the
following cases:

1. The original XML schema sorig does not need to
be corrected. The XML documents in D and valid
against it and it is enough concise and precise.

2. The XML documents in D are valid against sorig ,
however it is too general. In particular, there can oc-
cur the following cases:

(a) Too high upper limit of occurrences (see Exam-
ple 1)

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

79

(b) Too low lower limit of occurrences (see Exam-
ple 2)

(c) Occurrence of redundant data (see Example 3)

3. The XML documents in D are not valid against sorig
anymore. In particular, there can occur two situa-
tions:

(a) sorig does not involve items that XML docu-
ments in D do (see Example 4).

(b) The XML documents do not involve items that
are in sorig mandatory (see Example 5).

Example 1 Consider the following set of productions ex-
tracted from XML documents:

E → A B C C C
E → A B C C

and the following production taken from sorig:
E → A B C+
The production should be corrected, since the + oper-

ator should be used only in case more than 5 occurrences
of an element.

Example 2 Consider the following set of productions ex-
tracted from XML documents:

E → A B C C C
E → A B C C

and the following production taken from sorig:
E → A B? C
The production should be corrected, since the element

B is present in all document instances.

Example 3 Consider the following set of productions ex-
tracted from XML documents:

E → A B C C C
E → A B C C
The following productions from sorig need to be cor-

rected since they contain redundant data with regard to
the given documents:

E → A B X? C+
E → A (B | X) C+

Example 4 Consider the following set of productions ex-
tracted from XML documents:

E → A B C C C
E → A B C C
The following production from sorig needs to be cor-

rected since it does not involve element B present in the
documents:

E → A C+

Example 5 Consider the following set of productions ex-
tracted from XML documents:

E → A B C C C
E → A B C C
The following production from sorig needs to be cor-

rected since it involves compulsory element X not present
in the documents:

E → A B C+ X

5.1 Possible Solutions

The first possible solution is to simply ignore sorig and
infer a correct schema purely on the basis of D. The ad-
vantage of this approach is obvious – we use a verified
approach that provides a correct result. However, we do
not exploit an available and apparently useful information.
Hence, our aim is to exploit this information when appro-
priate and, thus, to speed up the inference process and pro-
vide a more precise schema.

The second natural approach can be based on the fol-
lowing simple observation: The existing inference meth-
ods produce plenty of possible solutions, that are evalu-
ated and the (sub)optimal one is selected as the result. It is

caused by the fact that the approaches are based on heuris-
tic rules that generalize the IG. The amount of generaliza-
tions is high and we do not know which is the optimal one
unless we combine it with the rest of the schema. Hence,
a natural idea may be that we will exploit the knowledge
of sorig in situations when there are multiple generaliza-
tion possibilities. However, the problem is that this ap-
proach can be exploited only in case of simple REs. Oth-
erwise, the inclusion, equivalence and intersection prob-
lem of REs cannot be solved in reasonable time and, con-
sequently, we cannot easily find the related schema frag-
ments.

Consequently, the solution we propose is a relaxed ver-
sion of the two described approaches. We do exploit sorig ,
however, we do not stick to it 100%. In addition, we are
able to find its suboptimal correction/adaptation with rea-
sonable complexity.

5.2 Proposed Solution

In the approach we propose we firstly divide the given
problem into two independent and optional steps:

1. Correction of the input schema

2. Specialization of the input schema

In the fist step we assume there exists at least one doc-
ument d ∈ D s.t. d is not valid against sorig . Hence,
we need to find schema scorrect, i.e. the correction of
sorig , s.t. for ∀d ∈ D : d is valid against scorrect. In
addition, let Σcorrect be the set of all possible corrections
of sorig . Then we want to find a correction scorrect s.t.
dist(sorig, scorrect) 6 dist(sorig, s) for ∀s ∈ Σcorrect,
where dist(s, s′) is the edit distance, i.e. the sequence of
operations for transforming s to s′. In other words, we
want to find a correction that requires the least modifica-
tions of sorig .

In the second step we assume that we have a schema
scorrect, s.t. ∀d ∈ D : d is valid against scorrect. How-
ever, we want to specialize the REs involved in the schema
with regard to the data in D, resulting in more precise and
readable schema s′correct.

Note that any of the steps can be used separately. On
one hand, we may require only the correction step with-
out any unnecessary schema modifications. On the other
hand, we may have a correct schema but we want to make
it more precise, since we know that the data are more spe-
cific.

5.2.1 Schema Correction

First of all, let us mention the fact that each content model
of an XML document must be so-called deterministic or
1-unambiguous.

Example 6 Consider the following content model:
(A B) | (A C)
It is non-deterministic, because while reading A, the

XML processor cannot know which A in the model is be-
ing matched without looking ahead to see which element
follows. On the other hand, an equivalent content model:

A (B | C)
is deterministic. The processor does not need to look
ahead to see what follows; either B or C will be accepted.

This requirement is stated directly in the W3C specifi-
cation of XML (Bray et al. 2006) and ensures that an XML
processor can match the schema with the data efficiently.
And, consequently, we are able to determine the validity
of the documents in D efficiently as well.

The correction algorithm consists of the following
steps:

CRPIT Volume 92 - Database Technologies 2009

80

1. We divide the set D into sets Dvalid and Dinvalid, i.e.
valid and invalid documents, s.t. Dvalid∪Dinvalid =
D and Dvalid ∩ Dinvalid = ∅.

2. For ∀d ∈ Dinvalid we create the respective set of
productions and merge them with sorig .

The key step of the approach is merging a single pro-
duction ~pe created from an element e and its subelements
in XML document d ∈ Dinvalid with productions of
sorig . The merging algorithm can be described as follows:
Firstly, we identify production ~qe from sorig to be merged
with. For this purpose we can use any of the strategies
used in the existing works for grouping the productions. In
most of them the productions are simply grouped accord-
ing to equivalence of element types, more sophisticated
approaches take into account also greater context. Since
this is not the key aspect of our proposal, we will further
assume the former approach.

Having the two productions ~pe and ~qe to be merged,
we parse the model(~pe). Similarly to the approach of
merging productions into a PTA, we match the elements of
model(~pe) with model(~qe) until the parsing does not fail.
Whenever we reach an element e′ ∈ model(~pe) that in-
vokes invalidity, we create a separate branch of automaton
for ~qe consisting of the rest of the content model staring
with e′.

Example 7 Consider the following example of schema
production ~qE:

E → A (B | C) D+
and the following example of document production ~pE:

E → A C Q D D D
The automata describing the productions are depicted

as follows:

Using the above described algorithm, they are merged
into the following automaton:

(Note that if we merge sorig with productions of d ∈
Dvalid, the automata of sorig do not change, since there
occurs no element that would violate creating of a new
branch.)

After merging each of the automata, the newly created
schema scorrect ensures that each d ∈ D is valid against
scorrect. However, the respective automata, i.e. REs, are
not very concise and precise. Therefore, we need to apply
an approach that would merge the newly added branches
more precisely.

Example 8 Consider the merged automaton in Example
7. After more elaborate merging of states of the new
branch, we get the following more concise result:

Since there can exist multiple ways how to merge the
newly added states with the original ones, we exploit a
modification of existing general approach to schema in-
ference that can cope with all the possible cases. In partic-
ular, we utilize an approach from (Vosta et al. 2008) since
it is one of the recent approaches that combines most of
the previously proposed and verified methods.

Firstly, note that the problem of generalization of an
automaton is viewed as a kind of optimization problem.

Definition 4 A model M = (Θ, Ω, σ) of a combinatorial
optimization problem consists of a search space Θ of pos-
sible solutions to the problem (so-called feasible region),
a set Ω of constraints over the solutions and an objective
function σ : Θ → R+

0 to be minimized.

In our case Θ consists of all possible generalizations
of an automaton. As it is obvious, Θ is theoretically infi-
nite and thus, in fact, we can search only for a reasonable
suboptimum. Therefore, we use a modification of ACO
heuristics (Dorigo et al. 2006). Ω is given by the features
of XML schema language we are focussing on. And fi-
nally, to define σ we exploit a modification of the MDL
principle (Grunwald 2005).

Ant Colony Optimization (ACO) The ACO heuris-
tics is based on observations of nature, in particular the
way ants exchange information they have learnt. A set
of artificial “ants” Λ = {a1, a2, ..., acard(Λ)} search the
space Θ trying to find the optimal solution sopt ∈ Θ s.t.
σ(sopt) 6 σ(s);∀s ∈ Θ. In i-th iteration each a ∈ A
searches a subspace of Θ for a local suboptimum until
it “dies” after performing a predefined amount of steps
Nant. While searching, an ant a spreads a certain amount
of “pheromone”, i.e. a positive feedback which denotes
how good solution it has found so far. This information is
exploited by ants from the following iterations to choose
better search steps. The search terminates either after a
specified number of iterations Niter or if s′opt ∈ Θ is
reached s.t. σ(s′opt) 6 Tmax, where Tmax is a required
threshold.

The obvious key aspect of the algorithm is one step of
an ant. Each step consist of generating of a set of possi-
ble continuations, their evaluation using σ and execution
of one of the candidate steps. The executed step is se-
lected randomly with probability given by σ. And this is
the biggest strength of the ACO heuristics. Contrary to
greedy search strategy which can get stuck in local subop-
timum, ACO is able to search greater subspace of Θ due
to random selection of continuations and possible tempo-
ral moving to a worse case.

Generating a Set of Possible Continuations A single
step of an ant is represented using a modification of the
current automaton. As we have mentioned, most of the
existing approaches exploit the merging state strategy, i.e.
reduction of the set of states of the automaton on the ba-
sis of various rules, such as k, h-context (Ahonen 1996)
which merges states with same contexts (prefixes) or s, k-
string (Wong & Sankey 2003) which merges states with
same suffixes.

We will preserve the same merging strategies, the key
difference is in the set of states that can be merged. In the
original algorithm, any of the states of the automaton that
fulfills any of the merging conditions can be merged. In
our case we do not want to modify the original automa-
ton, since we want to preserve the information it carries.
Therefore, we restrict the merging only to cases when the
set of merged states involves at least one of the states of
the new branch. Consequently, we can encounter the fol-
lowing two situations:

1. We merge the states within the new branch, i.e. we
truncate the new branch.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

81

2. We merge a state of the new branch with an original
one, i.e. we reduce the number of states of the whole
automaton.

Evaluation of Continuations The evaluation of mov-
ing from schema sx to sy , where sx, sy ∈ Θ, remains in
our case the same. In particular, it is defined as:

mov(sx, sy) = σ(sx) − σ(sy) + pos(sx, sy)

where σ is the objective function and pos(sx, sy) > 0 is
the positive feedback of this step from previous iterations.
For the purpose of specification of σ, most of the exist-
ing works exploit the MDL principle (Garofalakis et al.
2000). It is based on two observations: A good schema
should be enough general which is related to the low num-
ber of states of the automata. On the other hand, it should
preserve details which means that it enables one to ex-
press document instances in D using short codes. In other
words, most of the information is carried by the schema
itself and, thus, it does not need to be encoded. Hence, the
quality of a schema s ∈ Θ described using a set of pro-
ductions Rs = {~p1, ~p2, ..., ~pcard(Rs)} is expressed using:

• the size (in bits) of Rs and
• the size (in bits) of codes of document instances in D

expressed using Rs.

Let O be the set of allowed operators and E the set of
distinct element names in D. Then we can view model(~p)
of ∀~p ∈ Rs as a word over O ∪ E and its code can be
expressed as |model(~p)| · dlog2(card(O) + card(E))e,
where |model(~p)| denotes length of word model(~p). The
size of code of a single instance d ∈ D is defined as
the size of code of an inferring sequence of productions
Rd = 〈~g1, ~g2, ..., ~gcard(Rd)〉 necessary to convert the ini-
tial nonterminal to d using productions from Rs. Since
we can represent the sequence Rd as a sequence of ordi-
nal numbers of the productions in Rs, the size of the code
of d is card(Rd) · dlog2(card(Rs))e.

5.2.2 Schema Specialization

In the second step of the proposed algorithm we assume
that we are provided with a correct schema scorrect. Our
current aim is to specify the schema using a more precise
schema s′correct. And naturally, we want to preserve the
validity condition for all documents in D.

The problem of schema specialization can be divided
into several steps:

1. Pruning of unused schema fragments

2. Correction of lower and upper bounds of occurrences
of schema fragments

3. Correction of operators

4. Refactorization

According to user requirements, selected steps can be
omitted depending on the respective application. For in-
stance a user may omit step 1. requiring that unused
schema fragments should be preserved. In fact, even the
whole specialization process can be omitted in case we
want to preserve the information from the original schema
sorig as much as possible.

Unused Schema Fragments The aim of this step is to
identify schema fragments that are not used in the sample
XML documents D. The approach can be described as
follows: For each element e in the given schema scorrect
we preserve a usage flag ϕused(e) that carries the infor-
mation about its usage in D. At the beginning of the algo-
rithm we set ϕused(e) = F (false) for ∀e ∈ scorrect. Us-
ing an XML parser we parse each d ∈ D, we check usage

of particular elements of scorrect and set ϕused(e) = T
(true) whenever e ∈ scorrect is used. After parsing the
whose set D we check the flag ϕused. All elements
e ∈ scorrect s.t. ϕused(e) = F together with the asso-
ciated operators can be eliminated since they are not used
in the sample data.

Example 9 Consider the following set of productions ex-
tracted from XML documents:

E → A C
E → A B B B C
E → A B C
E → A B B B B
The following production from scorrect involves frag-

ment Q? not used in the documents.
E → A B* C? Q?
Parsing the content model of the first production we set

ϕused(A) = T and ϕused(C) = T , i.e.
E → A B* C? Q?

T F T F
Parsing the second production we set ϕused(A) = T ,

ϕused(B) = T , ϕused(B) = T , ϕused(B) = T and
ϕused(C) = T , i.e.

E → A B* C? Q?
T T T F

Similarly we process the remaining productions which
do not change the current settings. Finally, we can see
that schema fragment Q? is not used in any of the input
documents and, hence, we can specialize the schema to:

E → A B* C?

Note that since we assume that each d ∈ D is valid
against scorrect, the elimination of unused schema frag-
ments is a correct application which preserves correctness
of the content models, as well as validity of the data in
D. It can be proven as follows: Since the data are valid,
a candidate for elimination must be an optional schema
fragment, i.e. an item of a sequence associated with either
? or * operator or an item of a choice. Hence the elim-
ination causes either truncating of the sequence or reduc-
tion of options of the choice. The schema fragment can
be either a single element or a sequence of elements. In
the latter case, again due to the assumption of validity, all
the elements in the sequence have ϕused of F and, hence
should be eliminated.

Finally, note that this simple strategy can be applied
on both DTDs and XSDs, since their treatment in case of
used and unused schema fragments is the same.

Occurrences In the second step we want to correct the
allowed numbers of occurrences of schema fragments, i.e.
operators ?, + and * in case of DTD or minOccurs and
maxOccurs attribute values in case of XSD. Similarly to
the previous case for each fragment f in the given schema
scorrect we preserve minimum repetition flag ϕmin(f) and
maximum repetition flag ϕmax(f) that carry the informa-
tion about its minimum and maximum amount of succes-
sive occurrences in D.

At the beginning of the algorithm we set ϕmin(f) =
∞ and ϕmax(f) = 0 for each fragment f ∈ scorrect.
Using an XML parser we again parse each d ∈ D. For
each repeating sequence of a schema fragment f we de-
termine its length lf , i.e. the amount of repetitions. If
lf < ϕmin(f), we set ϕmin(f) = lf . If lf > ϕmax(f),
we set ϕmax(f) = lf .

Example 10 Consider the following set of productions
extracted from XML documents:

E → A
E → B
E → A A
The following production from scorrect should be spe-

cialized.
E → A+ | B | (C D)

CRPIT Volume 92 - Database Technologies 2009

82

Parsing the content models of the productions we set
ϕmin and ϕmax as follows:

E → A+ | B | (C D)
Start: ϕmin ∞ ∞ ∞

ϕmax 0 0 0
E → A ϕmin 1 0 0

ϕmax 1 0 0
E → B ϕmin 0 0 0

ϕmax 1 1 0
E → A A ϕmin 0 0 0

ϕmax 2 1 0

The resulting values of ϕmin and ϕmax carry infor-
mation about minimum and maximum occurrences of the
respective schema fragments. In particular:

• If ϕmin = 0, the respective schema fragment has
optional occurrence.

• If ϕmin > 0, the respective schema fragment has
compulsory occurrence.

• If ϕmax > 1, the respective schema fragment has
multiple occurrence.

In case we correct an XSD, we can use ϕmin and
ϕmax as new values for minOccurs and maxOccurs
attributes of respective schema fragments. In case we cor-
rect a DTD, we transform the values of ϕmin and ϕmax
to respective DTD operators – see Table 1, where repmin
is the minimal occurrence which induces generalization to
arbitrary occurrences.

ϕmin ϕmax DTD operator
0 1 ?
0 > repmin *
> 0 > repmin +

Table 1: Transformation of ϕmin and ϕmax to DTD oper-
ators

In addition, note that the values of ϕmax also carry the
same information as ϕused. In particular:

• If ϕmax = 0, then ϕused = F .

• If ϕmax 6= 0, then ϕused = T .

Consequently, using ϕmin and ϕmax we can also iden-
tify the unused schema fragments.

Operators Apart from unused schema fragments and
imprecise minimum and maximum occurrences, there can
occur also too general combinations of operators and al-
lowed occurrences. In particular, we will deal with vari-
ous combinations of ‘|’ (choice), ‘,’ (sequence) and
‘(’, ‘)’ (group) constructs of DTD (XSD).

In general, there can occur two situations, so-called
grouping and degrouping. We will depict them by simple
rules listed in Figure 4.

a?, b? → (a, b)?
a?, b∗ → (a, b+)?
a?, b? → a|b
a?, b∗ → a|b∗

Figure 4: Grouping and degrouping rules

In general, both types of rules transform the content
models to more restrictive ones. Hence, naturally, we can
apply the rules only in case the input data are valid also
against the more restrictive version.

The algorithm for finding candidates for grouping and
degrouping is similar to the previous case: For each of the

REs that conform to the left hand sides of the rules in Fig-
ure 4, we need to check that the input data conform to their
right hand sides as well. While parsing the documents
in D, for each of the candidate schema fragment f and
for each grouping/degrouping rule r1, r2, ..., rk we pre-
serve the respective flags ϕr1(f), ϕr2(f), ..., ϕrk

(f) car-
rying the information whether or not the instances of f in
D conform to right hand side of the respective rule. At
the beginning of the algorithm we set the flags ϕr1(f) =
T, ϕr2(f) = T, ..., ϕrk

(f) = T . While parsing the doc-
uments, whenever we encounter a document instance that
does not fulfill the right hand side of a rule ri, we set the
respective ϕri(f) = F . After parsing each d ∈ D we
can apply grouping and degrouping rules only in case the
respective flag remains positive, i.e. there occurs no doc-
ument instance in D that would not be valid against it.

Example 11 Consider the following schema production:
E → A? B? C D*

In case the document productions are as follows:
E → A B C D D D D
E → A B C
E → C D D

we can apply operation grouping resulting in the following
schema production:

E → (A B)? C D*
On the other hand, if the document productions are as

follows:
E → A C D D D D
E → B C
E → A C D D

we can apply operation degrouping resulting in the fol-
lowing schema production:

E → (A | B) C D*

Note that we can use a much wider set of grouping
and degrouping rules, depending on user requirements on
schema correction. However, if the set of rules is too wide,
it can generate too large set of possible combinations and,
hence, we should use the classical merging state algorithm
instead, since it would enable one to find the suboptimal
solution efficiently. The decision remains in hands of a
user and his/hers requirements for schema specialization.

Refactorization A natural last step of each of schema
inference method is refactoring, i.e. improving readability
and simplifying structure while preserving the functional-
ity of the resulting schema. A demonstrative set of rules is
depicted in Figure 5.

a?? → a?
a++ → a+

a∗∗ → a∗

a∗? → a∗

a?∗ → a∗

a+∗ → a∗

a∗+ → a∗

a?+ → a∗

a+? → a∗

aa∗ → a+

a+a∗ → a+

a?a+ → a∗

(ab)|(ac) → a(b|c)

Figure 5: Merging of operators

The specified rules enable one to remove duplicate
occurrence operators, to merge sequences of distinct oc-
currence operators into a single one, to merge sequences
of the same fragments, to avoid nondeterministic content
models etc. Naturally, there can exist various other sets
of refactorization rules depending on the requirements of
respective applications.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

83

5.3 Complexity

The proposed algorithm consists of schema correction and
schema specialization. Schema correction is performed
using the ACO heuristic whose complexity in the worst
case is limited by the allowed number of iterations, num-
ber of steps of an ant and number of ants, i.e. O(Niter ×
Nant × card(Λ)). On the other hand, schema specializa-
tion is based on linear parsing of XML documents in D,
i.e. O(|D| × max

card(D)
i=1 (|di|)), where |di| denotes the

number of elements and attributes in document di. Nat-
urally, if we decide to perform the schema specialization
using the classical ACO heuristic, it will have the same
complexity as the correction algorithm. Consequently, the
ACO heuristic enables one to search a greater space of
possible solutions and, hence to find a better solution, but
at the cost of efficiency.

In general, even if we use the ACO heuristic instead
of the proposed simple heuristic strategy, the inference al-
gorithm will be still more efficient than the original one
that does not take into account the original schema. The
reason is that we do not begin with simple PTA, but with
an XML schema that is at least partly correct and enough
generalized. If we consider the worst case, i.e. the case
when the input schema sorig is completely incorrect, the
proposed approach builds a classical PTA from the given
XML documents and merges them. The unused schema
fragments of sorig are then simply removed in linear time.

6 Conclusion

The aim of this paper was to propose an algorithm for
automatic inference of an XML schema which exploits
an additional information – the original, possibly incor-
rect or too general schema. We have proposed a two-step
approach. Firstly, we correct the schema so that the in-
put XML documents are valid against it, whereas the new
schema preservers the information carried by the original
one as much as possible. Secondly, we propose a heuris-
tic approach that enables one to specify the schema more
precisely. In particular, we propose two alternatives which
differentiate in efficiency and quality of the result.

Currently, we are dealing with throughout implemen-
tation of the proposal, since we intend to apply it on a
representative set of real-world XML data as well as to ex-
ploit it in existing applications (Dokulil et al. 2007). We
assume that similarly to paper (Bex et al. 2007) we will
discover that the real-world data need special treatment
since they do not involve all the constructs allowed by the
W3C specifications.

Our future work we will focus mainly on integrating
of user interaction which is the key aspect in case mul-
tiple solutions are available and searching the optimum
is made only using heuristics. In fact, there seems to be
no work, that would deal with this topic in detail, taking
into account reasonable requirements for user’s skills and
amount of decisions to be made. Next, we will deal with
inference of further XSD specific features, in particular
integrity constraints. And, finally, since for further pro-
cessing of the respective XML data also constraints that
cannot be expressed in XSD may be useful, we will try to
get also beyond its expressive power.

References

Ahonen, H. (1996), Generating Grammars for Struc-
tured Documents Using Grammatical Inference Meth-
ods, Technical Report A-1996-4, Dept. of Computer
Science, University of Helsinki.

Berstel, J. & Boasson, L. (2000), XML Grammars,
in ‘Mathematical Foundations of Computer Science’,
LNCS, Springer, pp. 182–191.

Bertino, E., Guerrini, G., Mesiti, M. & Tosetto, L. (2002),
Evolving a Set of DTDs According to a Dynamic Set
of XML Documents, in ‘EDBT ’02’, Springer-Verlag,
London, UK, pp. 45–66.

Bex, G. J., Neven, F. & den Bussche, J. V. (2004),
DTDs versus XML Schema: a Practical Study, in
‘WebDB’04’, ACM, New York, NY, USA, pp. 79–84.

Bex, G. J., Neven, F. & Vansummeren, S. (2007), In-
ferring XML Schema Definitions from XML Data, in
‘VLDB’07’, ACM, Vienna, Austria, pp. 998–1009.

Biron, P. V. & Malhotra, A. (2004), XML Schema Part 2:
Datatypes (Second Edition), W3C.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.
& Yergeau, F. (2006), Extensible Markup Language
(XML) 1.0 (Fourth Edition), W3C.

Dokulil, J., Tykal, J., Yaghob, J. & Zavoral, F.
(2007), Semantic Web Repository And Interfaces, in
‘SEMAPRO’07’, IEEE Computer Society, Los Alami-
tos, USA, pp. 223–228.

Dorigo, M., Birattari, M. & Stutzle, T. (2006), Ant
Colony Optimization – Artificial Ants as a Computa-
tional Intelligence Technique, Technical Report 2006-
023, IRIDIA, Bruxelles, Belgium.

Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S. &
Shim, K. (2000), XTRACT: a System for Extracting
Document Type Descriptors from XML Documents, in
‘SIGMOD’00’, ACM, New York, NY, USA, pp. 165–
176.

Gold, E. M. (1967), ‘Language Identification in the
Limit’, Information and Control 10(5), 447–474.

Grunwald, P. (2005), A Tutorial Introduction to the Min-
imum Description Principle. http://homePAGES.
cwi.nl/˜pdg/ftp/mdlintro.pdf.

Guerrini, G., Mesiti, M. & Sorrenti, M. A. (2007), XML
Schema Evolution: Incremental Validation and Effi-
cient Document Adaptation, in ‘XSym’07’, Springer,
Vienna, Austria, pp. 92–106.

Mignet, L., Barbosa, D. & Veltri, P. (2003), The XML
Web: a First Study, in ‘WWW’03’, ACM, New York,
NY, USA, pp. 500–510.

Mlynkova, I., Toman, K. & Pokorny, J. (2006), Sta-
tistical Analysis of Real XML Data Collections, in
‘COMAD’06’, Tata McGraw-Hill, New Delhi, India,
pp. 20–31.

Moh, C.-H., Lim, E.-P. & Ng, W.-K. (2000), Re-
engineering Structures from Web Documents, in
‘DL’00’, ACM, New York, NY, USA, pp. 67–76.

Su, H., Kramer, D., Chen, L., Claypool, K. & Runden-
steiner, E. A. (2001), XEM: Managing the Evolution of
XML Documents, in ‘RIDE ’01’, IEEE Computer So-
ciety, Washington, DC, USA, p. 103.

Tan, M. & Goh, A. (2005), Keeping Pace with Evolv-
ing XML-Based Specifications, in ‘Current Trends
in Database Technology – EDBT ’04 Workshops’,
Springer, Heraklion, Crete, Greece, pp. 280–288.

Thompson, H. S., Beech, D., Maloney, M. & Mendelsohn,
N. (2004), XML Schema Part 1: Structures (Second
Edition), W3C.

Vosta, O., Mlynkova, I. & Pokorny, J. (2008), Even an Ant
Can Create an XSD, in ‘DASFAA’08’, LNCS, Springer,
pp. 35–50.

Wong, R. K. & Sankey, J. (2003), On Structural Infer-
ence for XML Data, Technical Report UNSW-CSE-TR-
0313, School of Computer Science, University of NSW.

CRPIT Volume 92 - Database Technologies 2009

84

Elliptic Indexing of Multidimensional Databases

Ondrej Danko1 Tomáš Skopal2

1 Comenius University in Bratislava, FMUK, Department of Information Systems
Odbojárov 10, 820 05 Bratislava, Slovak Republic

Email: ondrej.danko@fm.uniba.sk
2 Charles University in Prague, FMP, Department of Software Engineering

Malostranské nám. 25, 118 00 Prague, Czech Republic
Email: skopal@ksi.mff.cuni.cz

Abstract

In this work an R-tree variant, which uses minimum
volume covering ellipsoids instead of usual minimum
bounding rectangles, is presented. The most signifi-
cant aspects, which determine R-tree index structure
performance, is an amount of dead space coverage and
overlaps among the covering regions. Intuitively, el-
lipsoid as a quadratic surface should cover data more
tightly, leading to less dead space coverage and less
overlaps. Based on studies of many available R-tree
variants (especially SR-tree), the eR-tree (ellipsoid
R-tree) with ellipsoidal regions is proposed. The fo-
cus is put on the algorithm of ellipsoids construction
as it significantly affects indexing speed and querying
performance. At the end, the eR-tree undergoes ex-
periments with both synthetic and real datasets. It
proves its superiority especially on clustered sparse
datasets.

1 Introduction

In the last decades, the demand for efficient search-
ing in large multimedia databases has begun emerg-
ing much more often than anytime before. Espe-
cially the applications from areas like medicine, geog-
raphy or CAD experienced an absence of techniques
which would enable them to efficiently search in pro-
tein databases, geographical maps or CAD datasets.
Because the nature of geographical or medicine data
differs, a custom solution would be always required
to provide efficient retrieval. To solve this problem,
simple, yet powerful idea is applied – feature transfor-
mation. Each object of a dataset is transformed into a
tuple of n-dimensional space representing that object
(based on certain transformation rules). Afterwards,
a multidimensional indexing technique is employed to
enable fast retrieval. The most obvious query type in
multidimensional indexing is window query (or range
query). A window query simply specifies some por-
tion of the n-dimensional space, a window (set of in-
tervals on all dimensions), and returns all dataset tu-
ples inside.

2 Related Work

To efficiently search for tuples inside a query window,
we have to employ a spatial access method (SAM,
or called a multidimensional index). In this section

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the 20th Australasian Database Conference
(ADC 2009), Wellington, New Zealand, January 2009. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 92, Athman Bouguettaya and Xuemin Lin, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

Figure 1: R-tree index structure.

we give an overview of the most successful SAMs, all
based on R-tree.

2.1 R-tree

The R-tree (Guttman 1984) is a height-balanced mul-
tidimensional index structure similar to B-tree. The
basic idea behind the R-tree is to hierarchically par-
tition the search space into nested regions. The space
partitioning is neither complete nor disjoint, while the
nested hierarchies are formed as paths from the root
node to the leaf nodes. The root node region en-
closes regions of all its child nodes. The R-tree con-
sists of inner and leaf nodes. A leaf node holds the
data tuples and consists of entries 〈I, data〉, where
I represents a minimum bounding rectangle (MBR)
of data. Similarly, an inner node consist of entries
〈I, child pointer〉 where I is MBR of all entries con-
tained in node referenced by child pointer, see Fig-
ure 1. Searching in R-tree index structure means
traversing those paths of the tree that intersect with
the search region (query window in our case).

2.2 Other SAM

An extensive study of the original Guttman’s R-tree
on different data distributions led to proposal of some
optimizations, as:

• minimization of leaf level node region overlaps

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

85

• minimization of leaf level regions surface

• minimization of volume of inner nodes

• maximization of storage utilization

2.2.1 R*-tree

The R*-tree (Beckmann et al. 1990) introduces
forced reinsertions, because R-tree-based structures
are highly sensitive to the order in which are tuples
inserted. When a leaf node becomes overfull, some
portion of its member tuples which are most distant
from the center of the node’s MBR are deleted from
index and reinserted again. This improvement pushed
the storage utilization to 71% -76%. The R*-tree also
prefers squared MBRs over rectangular.

2.2.2 R+-tree

The key idea behind the R+-tree (Sellis et al. 1987) is
an overlap-free splitting in the tree directory (the in-
ner nodes). Generally, there is no guarantee that such
splitting exists. In case there exists no overlap-free
splitting, the R+-tree introduces a forced splitting.
When considering the example in Figure 1, to get
rid of overlap between the A and B regions, we neces-
sarily need to split the region B1. Of course, in some
situations forced splits need to be propagated until we
reach leaf nodes, whereas the number of forced splits
can exponentially increase till we reach them. As a
side effect of forced splits, unlike regular R-tree, the
R+-tree also cannot guarantee 50% space utilization.
On the other hand, the authors of R+-tree claim their
modification requires 50% less page accessess (on av-
erage) to process a query, compared to the R-tree.

2.2.3 SS-tree

The SS-tree (White & Jain. 1996) was introduced to
support similarity searches (meaning nearest neighbor
queries) in higher dimensions (thus Similarity Search-
tree). The SS-tree uses spheres instead of MBRs as
page regions. When comparing properties of MBRs
with spheres, it should be said that:

• Bounding spheres tend to produce regions bigger
in volume than MBRs.

• Bounding spheres tend to produce regions of
smaller diameter than MBRs.

When using spheres, the first mentioned property de-
creases the performance of window queries, while the
second one favors the nearest neighbor queries. An-
other advantage of spheres is that they require less
space to be stored than MBRs. For MBR we need
to store two n-dimensional vectors, while for sphere
it is enough to store one n-dimensional center and a
one-dimensional diameter. This allows higher fanout
of nodes, thus it eventually decreases the tree height.
For performance reasons the spheres of SS-tree are not
minimum volume spheres, but use centroids as their
centers. Thus, the center of the sphere is computed
as the average in each dimension of the data tuples
being bounded. The diameter is then calculated so
that it covers all tuples.

The SS-tree uses forced reinserting when an over-
flow is encountered; 30% of tuples with highest dis-
tance from the center of sphere are reinserted. While
the storage utilization of R*-tree is just 70-75%, the
SS-tree reaches 85% on average. The splitting is
based on variance. First, the dimension with high-
est variance is choosen. Then a split plane orthog-
onal to that dimension is found, so that the sum of
variances in both, the new node and the old node,

is minimized. The authors of SS-tree claim the in-
sertion uses significantly less CPU time, compared to
R*-tree (5-10x less). This is mainly because of sim-
plistic insertion and linear split algorithm, compared
to quadratic split algorithm of R*-tree. When query-
ing, the SS-tree outperforms the R*-tree by a factor
of two (approximately).

2.2.4 SR-tree

The SR-tree (Katayama & Satoh 1997) is merely a
combination of SS-tree and R*-tree. The authors pre-
sented an extensive comparison of MBRs and spheres
properties. They defined a region in SR-tree as an
intersection of MBR and sphere, gaining both advan-
tages – a small volume of the MBR and a small diame-
ter of the sphere. This extension should bring reason-
able query performance for both window and nearest
neighbor queries. The insertion and split algorithms
are taken from the SS-tree and they are controlled
solely by spheres. The SR-tree slightly outperforms
both SS-tree and R*-tree. As the most significant in-
efficiency of this approach, the authors discuss stor-
age requirements of SR-tree region, which are 1.5×
larger than that of R*-tree and 3× larger than that
of SS-tree.

2.2.5 X-tree

The X-tree (Berchtold et al. 1996) provides overlap-
free split whenever it is possible, that is, just splits
that do not lead to degeneration of the tree are al-
lowed. Otherwise, the X-tree creates variable-sized
directory nodes, so-called supernodes, to keep the
hierarchy spatially compact. Since the supernodes
can be quite large (which leads to partial sequential
search), the X-tree could be seen as a hybrid of a
linear array-like and a hierarchical R-tree-like direc-
tory. The main advantage is X-tree’s performance
when querying high-dimensional data, where it out-
performs the R*-tree by up to two orders of magni-
tude.

3 The eR-tree

As many studies (Beckmann et al. 1990, Katayama &
Satoh 1997) indicate, the performance of the R-tree-
based structures is mostly determined by the amount
of region overlaps and dead space coverage. Most of
the R-tree variants try to handle this problem by re-
visiting the splitting algorithms (e.g., the overlap-free
one (Sellis et al. 1987)) or introducing concepts like
forced reinserts, which fight against the dynamic be-
havior of R-tree indexing. Our idea is to substitute
the usually employed MBRs with arbitrarily rotated
ellipsoids. Intuitively, ellipsoid, as a quadratic sur-
face, could cover the data more tightly, leading to re-
gions smaller in volume (less dead space coverage) and
possibly less overlaps (i.e., smaller regions naturally
produce less overlaps). To grasp our “motivation”,
consider Figure 2a – 10 randomly generated tuples
are covered by an ellipsoid and an MBR. The volume
of the ellipsoid is 0.074 and the volume of the MBR is
0.181 so the ellipsoid is 2.4× smaller in volume than
the MBR.

3.1 Index Structure

The structure of eR-tree is based on the origi-
nal Guttman’s R-tree (Guttman 1984). The most
straightforward application of ellipsoids in R-tree
would substitute all MBRs with ellipsoids. However,
our preliminary tests revealed the following facts:

CRPIT Volume 92 - Database Technologies 2009

86

0
0.1

0.2
0.3

0.4 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 2: (a) Covering of 10 randomly generated tu-
ples by ellipsoid and rectangle. (b) Dead space cov-
erage and non-overlap-free split.

• The test for an ellipsoid and a query window
(QW) intersection (employed in the query algo-
rithm) is approx. 50× more expensive in terms
of CPU costs than a test for MBR and QW in-
tersection (for more details see Section 3.4).

• Most of the filtration/pruning is performed in
nodes just one level above the leaf nodes; we call
them pre-leaf nodes (and pre-leaf level).

Following the above observations and taking into
account high storage requirements of ellipsoids (being
quadratic with respect to the dimensionality), we de-
cided to investigate the eR-tree variant with ellipsoids
utilized only in pre-leaf nodes. The other nodes will
use usual MBRs.

Even though ellipsoids cover the tuples more
tightly in average, there are some situations when
MBRs are superior to them:
• When splitting, the ellipsoids tend to produce

more overlaps then MBRs on dense data.

• When the data distribution tends to rectangu-
lar clusters, the ellipsoids will cover more dead
space.

In Figure 2b, we can notice the effects stated above –
an unnecessary dead space coverage on the left, and
an overlap between ellipsoids on the right (after split-
ting). To solve these problems, we decided to define
pre-leaf node region as an intersection of an ellipsoid
and an MBR, consider Figure 3. A similar idea is
engaged in SR-tree (Katayama & Satoh 1997), where
regions are defined as an intersection of a sphere and
an MBR.

3.2 Ellipsoid Theory

In this section we will discuss the problem of enclosing
a set of data tuples by an ellipsoid.

Definition 1 Let an ellipsoid ε(c,Q) in Rn with cen-
ter in c ∈ Rn and shape matrix Q ∈ Rnxn be the set
of points

ε(c,Q) = {x ∈ Rn| (x− c)TQ(x− c) ≤ 1}

Figure 3: An eR-tree with pre-leaf regions defined as
intersection of ellipsoid and MBR.

where the shape matrix Q is a symmetric posi-
tive semidefinite coefficient matrix representing some
quadratic form.

The volume of an ellipsoid ε(c,Q) is given by formula

Theorem 1 V ol(ε) = πn/2

Γ(n/2+1)
1√
detQ

where Γ is a
gamma function.

Further details and references on proof of the theo-
rem could be found in (Sun & M. Freund 2004). It is
evident to require an ellipsoid of minimum volume to
be employed by eR-tree, hence, we define the mini-
mum volume covering ellipsoid (MVCE) and outline
the algorithm of MVCE construction with some per-
formance experiments.

Definition 2 For a given set S = {x1, . . . , xk} of n-
dimensional tuples we define the Minimum Volume
Covering Ellipsoid as any ellipsoid ε(c,Q) for which

∀x ∈ S : (x− c)TQ(x− c) ≤ 1 (containment)
ε1(c1, Q1),∀x ∈ S : (x− c1)TQ1(x− c1) ≤ 1⇒

V ol(ε1) ≥ V ol(ε) (min. volume)

Basically, we are aware of three distinct ap-
proaches how to construct MVCE. The first one pub-
lished in early 80’s is based on eigenvalue decompo-
sition (Barnes 1982). Almost ten years later Welzl
published an algorithm based on randomized itera-
tive construction (Welzl 1991). Finally, Kchachiyan
formulated the problem of computing MVCE as an
optimization problem using interior-point method
(Khachiyan & Todd 1993).

After careful examination of all methods of MVCE
construction we decided to use the Kchachiyan op-
timization construction (Khachiyan & Todd 1993).
The complexity of this algorithm was improved in
(Todd & Yildirim 2007, Sun & M. Freund 2004, Ku-
mar & Yildirim 2005). The latter brings the Core
sets1 as a byproduct. In this paper we will stick to
MVCE construction described in (Moshtagh 2005).

1Core set is a small subset of the input tuples whose covering
is ”almost” same as the covering of the entire input, hence it can
be used to optimize on large set of tuples.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

87

We want to obtain the resulting ellipsoid of min-
imum volume and covering all the tuples from S.
Thus, the formulation of MVCE is the following:

minimize det(Q−1) (1)
while preserving
(xi − c)TQ(xi − c) ≤ 1 i = 1, . . . , |S|
Q � 0

Since this problem is not a convex optimization prob-
lem, we can rewrite it, by substitution of A =
Q1/2, b = Q1/2c, as:

minimize log(det(A−1)) (2)
while preserving ‖Axi − b‖ ≤ 1 i = 1, . . . , |S|

A � 0

which is a convex optimization problem, but unfor-
tunately still difficult to solve. Luckily, the dual
problem is much easier. To solve the dual prob-
lem, lifting of the original problem needs to be de-
fined. This means all tuples S = {xi, . . . , xk} xi ∈ Rn

need to be moved to Rn+1. We can set (xli)
T =

[xTi , 1] i = 1, . . . , k and define Sl = {±xl1, . . . ,±xlk}.
The mvce(Sl) will be symmetric around the origin of
Rn+1 and themvce(S) will by obtained as an intersec-
tion of mvce(Sl) with the hyperplane H = {(x, 1) ∈
Rn+1|x ∈ Rn}. The lifted optimization is then

minimize log(det(M−1)) (3)

while preserving (xli)
TMxli ≤ 1 i = 1, . . . , |S|

M � 0

where M is the decision variable. Now, dual La-
grangian can be formulated and optimized. The op-
timization is carried out by Conditional Gradient As-
cent method. The asymptotic complexity of this al-
gorithm is linear in the number of tuples being cov-
ered by the ellipsoid. For further details we refer to
(Moshtagh 2005) and (Kumar & Yildirim 2005). The
former deals with details of optimization and solution
extraction, in the latter the asymptotic complexity is
derived.

As a stopping criterion of the optimization, the
average distance of all tuples which lie outside the ap-
proximated ellipsoid to its boundary is used. While
we need to have all the tuples strictly included in
the resulting ellipsoid, we are performing a post-
processing on the ellipsoid obtained from the approx-
imation. In the post-processing, we locate the tuple
which lies furthest from the boundary of the ellipsoid
and then we scale the ellipsoid, so this tuple and all
others lie inside. In the result, the larger stopping
criterion, the faster computation of MVCE approxi-
mation but also larger volume. For example, a value
0.1 of the stopping criterion means the furthest tuple
is at most 0.1 distant from the surface (considering
unitary radius of an ellipsoid).

We conducted some small performance experi-
ments to evaluate the adequacy of this constructing
technique of MVCE for our purposes. In Table 1, we
can observe the impact of the size of S and the dimen-
sionality on the time needed to construct MVCE. The
stopping criterion of the algorithm was set to 0.01.

The rest of experiments were focused on the stop-
ping criterion, considering 3-dimensional space. In
Table 2, we can notice the efficiency of the algorithm
depends mostly on this parameter. The experimental
results prove this algorithm meets the requirements
for our purposes with stopping criterion at most 0.01.

SetSize dim. 2 dim. 5 dim. 10 dim. 15 dim. 20

10 0.003 0.002 0.000 0.002 0.000
20 0.009 0.008 0.002 0.002 0.002
40 0.008 0.006 0.008 0.005 0.002
60 0.016 0.013 0.017 0.003 0.008
80 0.019 0.020 0.017 0.013 0.011
100 0.022 0.025 0.028 0.023 0.019
140 0.036 0.051 0.052 0.055 0.033
160 0.047 0.054 0.094 0.072 0.053
200 0.069 0.081 0.155 0.117 0.094
220 0.089 0.103 0.184 0.148 0.114
250 0.119 0.105 0.156 0.131 0.125
280 0.334 0.345 0.388 0.325 0.250
300 0.366 0.411 0.437 0.383 0.267
350 0.522 0.555 0.642 0.559 0.411
400 0.701 0.769 0.800 0.705 0.578
450 0.892 0.919 1.059 0.970 0.781
500 1.133 1.167 1.295 1.252 1.012

Table 1: Time (seconds) required to construct MVCE
as a parameter of dimension (2, 5, 10, 15, 20) and set
size.

SetSize 0.1 0.01 0.001

10 0.084 0.003 0.053
20 0.003 0.003 0.060
40 0.003 0.012 0.069
60 0.009 0.013 0.128
80 0.003 0.019 0.156
100 0.006 0.022 0.163
140 0.000 0.041 0.362
160 0.009 0.047 0.716
200 0.013 0.072 0.588
220 0.016 0.075 0.744
250 0.009 0.081 0.850
280 0.031 0.316 2.853
300 0.034 0.372 3.363
350 0.056 0.494 4.650
400 0.062 0.634 6.613
450 0.078 0.850 8.169
500 0.103 1.044 10.013

Table 2: Time (seconds) required to construct MVCE
as a parameter of stopping criterion (0.1, 0.01, 0.001)
and set size.

CRPIT Volume 92 - Database Technologies 2009

88

3.3 Indexing

The algorithm of insertion is described in many avail-
able literature, e.g., the original (Guttman 1984),
therefore we emphasize just our modifications. First,
in Algorithm 1 see the procedure which locates the
appropriate leaf for new entry accommodation.

Algorithm 1 ChooseLeaf
Require: P – tuple to be inserted

1: CurrentNode = RootNode
2: while CurrentNode is not leaf node do
3: if CurrentNode is pre-leaf node then
4: CurrentNode = getSubBranchEll(P) {return the

child of current node, which region is closest to the P .
The distance of ellipsoid and P is considered.}

5: else
6: CurrentNode = getSubBranchMBR(P) {returns the

child of current node, which MBR region being enlarged
by P produces smallest enlargement. If enlargement
should cause overlap with other regions of CurrentN-
ode and there exists region of CurrentNode which won’t
produce overlap after being enlarged by P , than the sub-
branch of this non-overlap-producing region is chosen.
I.e. we prefer rather to cover more dead space, than to
produce overlaps.}

7: end if
8: end while
9: return CurrentNode

The leaf splitting strategy significantly determines
the performance of R-tree. In Algorithm 2, see our
splitting algorithm, which tries to separate data tu-
ples based on the dimension with the maximum vari-
ance. First, we choose the dimension in which the
data is spread the most. Then we sort the data ac-
cording to values in this dimension and find the split
position.

Algorithm 2 MinVar Split
Require: {p1, . . . , pk} set of entries to be split

1: maxV ar = 0.0
2: for i = 0 to dimension do
3: var = computeV arianceInDimension(i, {p1, . . . , pk})
4: if var > maxV ar then
5: maxV ar = var; splitDimension = i
6: end if
7: end for
8: {p

′
1, . . . , p

′
k} = sortByDimension(splitDimension, {p1, . . . , pk})

{so that {p
′
1 ≤ p

′
2 ≤ . . . ≤ p

′
k} holds in splitDimension}

9: diff = p
′
k[splitDimenstion]− p

′
1[splitDimenstion]

10: for i = 2 to k − 1 do

11: if p
′
1[splitDimension] + diff/2 < p

′
i[splitDimension]

then
12: splitOrder = i
13: break
14: end if
15: end for
16: return {p

′
1, . . . , p

′
splitOrder}, {p

′
splitOrder+1, . . . , p

′
k}

3.4 Querying

The querying algorithms are also described in many
available literature, e.g., in the original (Guttman
1984). Therefore, we will focus just on the ellip-
soid and query window intersection test. The prob-
lem of deciding whether a query window QW (ql, qh),
ql, qh ∈ Rn and an ellipsoid ε(c,Q) intersect, can be
formalized as a convex optimization problem of form:

minimize (x− c)TQ(x− c) (4)
while preserving ql ≤ xi ≤ qhi i = 1, . . . , n

where the objective variable is x. If x ≤ 1, then QW
and ellipsoid intersect, otherwise their intersection is
empty. We have conducted some experiments to com-
pare the speed of intersection test of MBR×QW and
Ellipsoid×QW, see Table 3. The optimization was

carried out with the loqo2 solver. We can observe,
that Ellipsoid×QW test is significantly slower than
MBR×QW test, however, it is still significantly faster
than a seek to secondary storage.

dim.=2 =4 =6 =8 =10

MBR 0.000312 0.0005 0.000812 0.000686 0.000812
Ellipsoid 0.0403 0.0445 0.0458 0.0493 0.0602

dim.=12 =14 =16 =18 =20

MBR 0.00112 0.00119 0.0012 0.00137 0.00194
Ellipsoid 0.0676 0.106 0.23 0.522 1.01

Table 3: Time (milliseconds) required to evaluate
whether Ellipsoid/MBR and Query window intersect,
depending on growing dimensionality.

4 Experimental Results

To evaluate the eR-tree, we have used two datasets:
Clustered dataset is a synthetic dataset and con-

tains sets of 1·104−2·106 tuples, where each clus-
ter is composed of 1,000 uniformly distributed
tuples. Individual tuples were randomized prior
to storing (so they are not indexed “cluster by
cluster”, but randomly). We will refer to this
dataset as to SCU dataset.

Real dataset was generated from the well-known
IMDB database3. The 5-dim. tuples rep-
resent records [movie id, director id,
movie genre id, movie production year,
movie kind id]. The entire dataset consists of
392,689 records. The cardinality of individual
attributes can be found in Table 4. We will refer
to this dataset as to IMDB dataset.

Attribute MIN MAX
movie id 1 1137185

director id 31 1824450
movie genre id 2 29

movie production year 1519 2013
movie kind id id 1 7

Table 4: Cardinality of individual attributes in the
IMDB dataset.

We have generated various query sets to evaluate
the eR-tree querying performance. Each query set
consisted of 1,000 individual queries, and the perfor-
mance results for one query set are presented as the
average of all 1,000 trials. A query set is character-
ized by its selectivity, i.e. the number of hits each
individual query returns. The querying tests are per-
formed with query sets of absolute selectivity 3 and
50 tuples.

The eR-tree was implemented in C++, while all
the experiments were carried out on 2.2GHz AMD
Turion Processor with 1GB of RAM and 5400rpm
hard drive on WinXP with NTFS file-system. The
source code was compiled with VC 8.0.

For a comparison, the results for eR-tree are pre-
sented along with results for R-tree (being a base-
line), however, we used an R-tree version extend-
ing the original Guttman’s version (Guttman 1984)
by small improvements. These improvements try to
avoid region overlaps at the cost of higher dead space
coverage4, and relax the minimum required node uti-
lization below 50%.

2Available at http://www.princeton.edu/~rvdb/loqo/
3Available at www.imdb.com
4As discussed in (Beckmann et al. 1990), the regions overlaps

have greater impact on the search performance than the dead space

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

89

1 2 3 4 5 6 7 8 9 10

x 10
4

1

1.5

2

2.5

3

3.5

4

Set size

N
um

be
r

of
 d

is
k

ac
ce

ss
es

(a) SCU data set

eR−tree write
eR−tree read
R−tree write
R−tree read

Figure 4: Insertion costs as a parameter of a set size
– SCU dataset

4.1 Indexing

To meet the page size of the disk drive, the size of
all the nodes of eR-tree and R-tree was set to 8KB.
The fanout of eR-tree nodes can be found in Table 5.
The heights of the trees for SCU and IMDB datasets
can be found in Table 6. The columns marked with
(*) represent the theoretical tree heights with 100%
utilized nodes.

Dimension
3 4 5 8 10 12

F
a
n

o
u

t inner node 146 113 93 60 48 40
pre-leaf node 39 26 19 9 6 4

leaf node 255 204 170 113 92 78

Table 5: Node fanout

Height
eR R eR(*) R(*)

D
a
ta

se
t SCU 5 8 3 2

IMDB 3 3 3 2

Table 6: Tree heights

On the SCU dataset the eR-tree’s index size was
3.62 MB, compared to 5.2 MB for R-tree (average
node utilization of eR-tree reached 69.7%, while R-
tree reached only 50.2%). On the real IMDB dataset
the eR-tree index size was 18.2 MB, compared to R-
tree’s 15 MB (having 57.8% and 63.1% average node
utilization, respectively).

In Figures 4, 5, see the insertion costs for a single
tuple in terms of the number of required reads and
writes. In Figure 4 the result for the SCU dataset
with size varying from 1 ·104 to 1 ·105 is presented. In
Figure 5, see an analogical experiment for the IMDB
dataset.

Next, we have observed the insertion costs as a
parameter of dimensionality. In Figure 6 see the
measurements for the SCU dataset and Figure 7 for
the IMDB dataset. For a more detailed comparison,
see (Danko n.d.).

4.2 Querying

In Figures 8-11, see the querying results for SCU and
IMDB dataset, with respect to varying set size. On
the left y-axis the total I/Os required to evaluate a

coverage; therefore, such an observation should slightly improve the
performance of the original R-tree.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

1

1.5

2

2.5

3

3.5

4

Set size

N
um

be
r

of
 d

is
k

ac
ce

ss
es

(b) IMDB data set

eR−tree write
eR−tree read
R−tree write
R−tree read

Figure 5: Insertion costs as a parameter of a set size
– IMDB dataset

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9

Dimension

N
um

be
r

of
 d

is
k

ac
ce

ss
es

(a) SCU data set

eR−tree write
eR−tree read
R−tree write
R−tree read

Figure 6: Insertion costs as a parameter of dimension:
SCU dataset

query are plotted, on the right y-axis the number of
searched leaf regions during evaluation is plotted. It
can be seen, eR-tree on the SCU dataset clearly out-
performs the R-tree – the eR-tree requires only 72%
of I/O operation required by the R-tree. The differ-
ence is even more noticable on query set with selec-
tivity 50. On the IMDB dataset, the R-tree slightly
outperforms eR-tree with selectivity of the query set
equal to 3, however, with query set of selectivity 50
the eR-tree outperforms the R-tree significantly.

How about the impact of a dimensionality on the
querying performance? This question is answered in
Figures 12-15, where the SCU and IMDB datasets
with varying dimensions are queried. We can notice,
that eR-tree gains better results for lower dimension-
alities (i.e., less than 10). In higher dimensions, the
test for ellipsoid and QW intersection (recall, that it
is an optimization problem) becomes more expensive,
because there are “more” directions in which the op-
timization can go. To avoid these situations, if the in-
tersection procedure needs 60 iterations or more, the
optimization is stopped and the ellipsoid and QW are
claimed to be intersected (to avoid false dismissals).
As a consequence, the ellipsoid volume is overesti-
mated (leading to more frequent intersections with
QW), so extra leaf nodes need to be searched. In this
paper we are not presenting the CPU time, because
it could be misleading as it highly depends on a level
of the intersection code optimization. However, us-
ing a general-purpose solver in our experiment, there
were some situations where the eR-tree outperformed
R-tree also in terms of CPU time (e.g., in low dimen-

CRPIT Volume 92 - Database Technologies 2009

90

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

Dimension

N
um

be
r

of
 d

is
k

ac
ce

ss
es

(b) IMDB data set

eR−tree write
eR−tree read
R−tree write
R−tree read

Figure 7: Insertion costs as a parameter of dimension:
IMDB dataset

0 0.5 1 1.5 2

x 10
6

0

100

200

300

400

500

600

700

800

Set Size

N
um

be
r

of
 d

is
k

ac
ce

ss
es

(a) SCU data set, selectivity=3

0 0.5 1 1.5 2

x 10
6

0

100

200

300

400

500

600

700

800

N
um

be
r

of
 le

af
 r

eg
io

ns
 s

ea
rc

he
d

eR−tree total I/O
R−tree total I/O
eR−tree leaf searched
R−tree leaf searched

Figure 8: Querying cost as a parameter of a set size.
SCU dataset, selectivity=3

sions on the IMDB data set).

5 Conclusions

In this paper, we have proposed the eR-tree, a vari-
ant of R-tree which employs minimum volume cov-
ering ellipsoids instead of usual minimum bounding
rectangles. The experimental results shown that the
construction of ellipsoids is efficient enough to be in-
corporated into R-tree-like index structures. We have
found out that eR-tree significantly outperforms R-
tree in terms of I/O on sparse clustered data, where
ellipsoidal regions are superior to minimum bound-
ing rectangles, because they tend to cover less dead
space and produce less overlaps. However, on dense
data the advantage of ellipsoids is suppressed. In the
future work the attention should be paid to optimiza-
tion of the ellipsoid and query window intersection
test and also the splitting algorithms. The further in-
vestigations should also favor of sparse data, where
the ellipsoids outperform minimum bounding rect-
angles. In particular, besides native engines, XML
databases are often transformed into sparsely dis-
tributed multi-dimensional tuples (Mlynkova & Poko-
rny 2008, Krátký et al. October 27-31, 2002). Here
the eR-tree-based indexing could be beneficial for pro-
cessing of an XPath or XQuery statement.

0 0.5 1 1.5 2

x 10
6

0

400

800

1200

1600

2000

2400

2800

3200

Set Size

N
um

be
r

of
 d

is
k

ac
ce

ss
es

(b) SCU data set, selectivity=50

0 0.5 1 1.5 2

x 10
6

0

400

800

1200

1600

2000

2400

2800

3200

N
um

be
r

of
 r

eg
io

ns
 s

ea
rc

he
d

eR−tree total I/O
R−tree total I/O
eR−tree region searched
R−tree region searched

Figure 9: Querying cost as a parameter of a set size.
SCU dataset, selectivity=50

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

60

120

180

240

300

360

420

480

Set Size

N
um

be
r

of
 d

is
k

ac
ce

ss
es

(c) IMDB data set, selectivity=3

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

60

120

180

240

300

360

420

480

N
um

be
r

of
 r

eg
io

ns
 s

ea
rc

he
d

eR−tree total I/O
R−tree total I/O
eR−tree region searched
R−tree region searched

Figure 10: Querying cost as a parameter of a set size.
IMDB dataset, selectivity=3

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

500

1000

1500

Set Size

N
um

be
r

of
 d

is
k

ac
ce

ss
es

(d) IMDB data set, selectivity=50

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

500

1000

1500

N
um

be
r

of
 r

eg
io

ns
 s

ea
rc

he
d

eR−tree total I/O
R−tree total I/O
eR−tree region searched
R−tree region searched

Figure 11: Querying cost as a parameter of a set size.
IMDB dataset, selectivity=50

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

91

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

Dimension

N
um

be
r

of
 d

is
k

ac
ce

ss
es

(a) SCU data set, selectivity=3

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

N
um

be
r

of
 r

eg
io

ns
 s

ea
rc

he
d

eR−tree total I/O
R−tree total I/O
eR−tree regions searched
R−tree regions searched

Figure 12: Querying cost as a parameter of a dimen-
sion. SCU dataset, selectivity=3

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

Dimension

N
um

be
r

of
 d

is
k

ac
ce

ss
es

(b) SCU data set, selectivity=50

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

N
um

be
r

of
 r

eg
io

ns
 s

ea
rc

he
d

eR−tree total I/O
R−tree total I/O
eR−tree regions searched
R−tree regions searched

Figure 13: Querying cost as a parameter of a dimen-
sion. SCU dataset, selectivity=50

Acknowledgments

This research has been partially supported by Czech
grants: GAČR 201/06/0756 and Institutional re-
search plan number MSM0021620838.

References

Barnes, E. (1982), ‘An Algorithm for Separating Pat-
terns by Ellipsoids’, Image Processing and Pattern
Recognition 26(6), 759.

Beckmann, N., Kriegel, H.-P., Schneider, R. & Seeger,
B. (1990), The R*-Tree: An Efficient and Ro-
bust Access Method for Points and Rectangles, in
H. Garcia-Molina & H. V. Jagadish, eds, ‘Proceed-
ings of the 1990 ACM SIGMOD International Con-
ference on Management of Data, Atlantic City, NJ,
May 23-25, 1990’, ACM Press, pp. 322–331.

Berchtold, S., Keim, D. A. & Kriegel, H.-P.
(1996), The x-tree : An index structure for
high-dimensional data, in T. M. Vijayaraman,
A. P. Buchmann, C. Mohan & N. L. Sarda, eds,
‘VLDB’96, Proceedings of 22th International Con-
ference on Very Large Data Bases, September 3-
6, 1996, Mumbai (Bombay), India’, Morgan Kauf-
mann, pp. 28–39.

Danko, O. (n.d.), ‘Elliptic Indexing of
Multidimensional Databases, master
thesis, Charles University in Prague,

1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

Dimension

N
um

be
r

of
 d

is
k

ac
ce

ss
es

(c) IMDB data set, selectivity=3

1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

N
um

be
r

of
 le

af
 r

eg
io

ns
 s

ea
rc

he
d

eR−tree total I/O
R−tree total I/O
eR−tree leaf searched
R−tree leaf searched

Figure 14: Querying cost as a parameter of a dimen-
sion. IMDB dataset, selectivity=3

1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

Dimension

N
um

be
r

of
 d

is
k

ac
ce

ss
es

(d) IMDB data set, selectivity=50

1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

N
um

be
r

of
 le

af
 r

eg
io

ns
 s

ea
rc

he
d

eR−tree total I/O
R−tree total I/O
eR−tree leaf searched
R−tree leaf searched

Figure 15: Querying cost as a parameter of a dimen-
sion. IMDB dataset, selectivity=50

siret.ms.mff.cuni.cz/skopal/diplomky/danko.pdf,
2008’.

Guttman, A. (1984), R-Trees: A Dynamic Index
Structure for Spatial Searching, in B. Yormark,
ed., ‘SIGMOD’84, Proceedings of Annual Meeting,
Boston, Massachusetts, June 18-21, 1984’, ACM
Press, pp. 47–57.

Katayama, N. & Satoh, S. (1997), The SR-tree:
An Index Structure for High-Dimensional Near-
est Neighbor Queries, in J. Peckham, ed., ‘SIG-
MOD 1997, Proceedings ACM SIGMOD Interna-
tional Conference on Management of Data, May
13-15, 1997, Tucson, Arizona, USA’, ACM Press,
pp. 369–380.

Khachiyan, L. G. & Todd, M. J. (1993), ‘On the com-
plexity of approximating the maximal inscribed el-
lipsoid for a polytope’, Mathematical Programming:
Series A and B 61, 137 – 159.

Krátký, M., Pokorný, J., Skopal, T. & Snášel, V. (Oc-
tober 27-31, 2002), The Geometric Framework for
Exact and Similarity Querying XML Data, in ‘Pro-
ceedings of First EurAsian Conferences, EurAsia-
ICT 2002, Shiraz, Iran’, Springer-Verlag LNCS
2510.

Kumar, P. & Yildirim, E. A. (2005), ‘Approximate
minimum volume enclosing ellipsoids using core
sets’, Journal of Optimization Theory and Appli-
cations 1, 1–21.

CRPIT Volume 92 - Database Technologies 2009

92

Mlynkova, I. & Pokorny, J. (2008), Usermap : an
adaptive enhancing of user-driven xml-to-relational
mapping strategies, in A. Fekete & X. Lin,
eds, ‘Nineteenth Australasian Database Conference
(ADC 2008)’, Vol. 75 of CRPIT, ACS, Wollongong,
NSW, Australia, pp. 165–174.

Moshtagh, N. (2005), ‘Minimum volume enclosing el-
lipsoid’, Convex Optimization .

Sellis, T. K., Roussopoulos, N. & Faloutsos, C.
(1987), The R+-Tree: A Dynamic Index for Multi-
Dimensional Objects, in ‘VLDB’, pp. 507–518.

Sun, P. & M. Freund, R. (2004), ‘Computation of
Minimum Volume Covering Ellipsoids’, Discrete
Applied Mathematics 52, 690–706.

Todd, M. J. & Yildirim, E. A. (2007), ‘On khachiyan’s
algorithm for the computation of minimum-volume
enclosing ellipsoids’, Discrete Applied Mathematics
155, 1731–1744.

Welzl, E. (1991), ‘Smallest enclosing disks (balls and
ellipsoids)’, Lecture Notes in Computer Science
pp. 359 – 370.

White, D. & Jain., R. (1996), Similarity indexing with
the SS-tree, in ‘In Proc. 12th International Confer-
ence on Data Engineering (ICDE’96)’, IEEE CS
Press, pp. 516–523.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

93

CRPIT Volume 92 - Database Technologies 2009

94

Efficient XQuery Join Processing in Publish/Subscribe Systems

Ryan H. Choi1,2 Raymond K. Wong1,2

1 The University of New South Wales, Sydney, NSW, Australia
2 National ICT Australia, Sydney, NSW, Australia

Email: {ryanc,wong}@cse.unsw.edu.au

Abstract

Efficient XML filtering has been a fundamental
technique in recent Web service and XML pub-
lish/subscribe applications. In this paper, we con-
sider the problem of filtering a continuous stream of
XML data against a large number of XQuery queries
that contain multiple inter-document value-based join
operations in their where clauses. To perform effi-
cient join operations, the path expressions from these
queries are extracted and organized in a way that mul-
tiple path expressions can be joined simultaneously.
The join operations are then pipelined to minimize
the number of join operations and to share any inter-
mediate join results as much as possible. Our system
operates on top of many currently available XPath
filtering engines as an add-on module to extend their
features to support queries with join operations. Ex-
periments show that our proposal is efficient and scal-
able.

Keywords: XML publish/subscribe, XML data
stream, XML query processing

1 Introduction

XML has become the standard for data representa-
tion and exchange between large scale Web service ap-
plications on the Internet. We consider a Web service
application that receives streams of XML messages
from various data sources on the Internet, and for-
wards these messages to subscribed users or other ap-
plications. This type of application is called an XML
publish/subscribe (pub/sub) system. One key fea-
ture of such an application is to support a large num-
ber of user subscriptions, and efficiently process XML
messages coming from streams in real time. Further-
more, it is important that an XML pub/sub system is
expressive enough to process complex subscriptions.
Recently, there have been several research efforts on
building scalable and expressive XML pub/sub sys-
tems (Chan et al. 2002, Diao et al. 2003, Gupta & Su-
ciu 2003, Onizuka 2003, Rao & Moon 2004, Uchiyama
et al. 2005, Kwon et al. 2005). In these systems,
user subscriptions are expressed in XPath (Clark &
DeRose 1999) queries. We use the term queries and
documents to refer to user subscriptions and messages
in this paper, respectively. Many previous works
(Chan et al. 2002, Diao et al. 2003, Gupta & Suciu
2003, Onizuka 2003, Rao & Moon 2004, Uchiyama
et al. 2005, Kwon et al. 2005) focus on how to effi-

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the 20th Australasian Database Conference
(ADC 2009), Wellington, New Zealand, January 2009. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 92, Athman Bouguettaya and Xuemin Lin, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

ciently report the set of matching query IDs for each
streaming XML document. However, one feature that
these previous works commonly lacks is to process
queries that join multiple documents. In addition,
these works are also limited in a way that, only the
matching query IDs are reported—they cannot return
the set of matching elements for each matching query.
In this paper, we present how to process queries that
contain inter-document value-based join operations
efficiently. At the same time, we also present how to
return all matching elements for each matching query.

Supporting queries that join multiple elements
coming from multiple streams is important, since
such technique allows us to deliver richer informa-
tion than existing pub/sub systems. For example, a
sudden price drop of a share can be detected, and
a financial section of an online newspaper that con-
tains news articles about the same share can be de-
livered by existing systems. However, users might be
interested in what caused the sudden price drop of
this share. To do that, existing systems require two
queries from each user, one for detecting the price
drop of the share, and the other is for selecting news
articles about that share. Then, these two queries
are postprocessed, and when there exists such match-
ing news articles about that share, each subscribed
user is notified. After that, the entire financial sec-
tions of the newspaper are optionally delivered. If
a user prefers to receive only the related news arti-
cles about that share, this cannot be achieved using
existing systems. This is because these systems are
designed to be used as XML routers or brokers, where
only the delivery of the complete documents to down-
stream routers are considered. Recent work by Hong
et al. (2007) provides a partial solution to this prob-
lem. In conjunction with an XPath processor, it sup-
ports queries that join two documents. However, it
is still not suitable for this situation, as it only re-
ports matching query IDs, and can only forward the
entire documents to users. Moreover, their join op-
erations are limited in a way that only the leaves of
a document can be joined. Furthermore, their tech-
nique is designed to process very small documents in
size, which are not suitable for larger documents. On
the other hand, our system provides a solution to this
particular problem. Any nodes from documents can
be joined with each other, and large documents in
size can be efficiently processed. In addition, we re-
turn the complete set of matching elements for each
matching query along with its ID, and they can be
forwarded to users.

We consider the case where subscriptions are writ-
ten in XQuery queries, and evaluate these queries
against streaming XML documents whose sizes are
small enough to fit into memory. In addition, the
structures of streaming documents are already given
to each pub/sub system. This is done during the ini-
tial handshake period between upstream and down-

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

95

Figure 1: System Architecture

stream pub/sub systems. Once documents have been
received from upstreaming pub/sub systems, n doc-
uments are stored temporarily in the buffer of size
b|n|, and are removed in a FIFO fashion when either
the buffer becomes full, or after a certain period of
time tc. Join operations are performed between the
documents in the buffer whose positions are in (1)
between b0 and bi; or (2) their arrival times are in
between ti and tj , where ti < tj . We currently sup-
port a subset of for-where-return clauses of XQuery.
The description for each clause is as follows. A query
contains multiple for clauses. A for clause expresses
a node that is to be joined with a node in other for
clause. The nodes in two for clauses can be from
two different streams. A where clause expresses a list
of conjunctive join operations between the nodes in
for clauses. When a node is compared for equality,
text() value is used if that node is a leaf node. If it
is a non-leaf node, either text() or string() value
can be used. A return clause expresses what node
should be returned when a query matches the condi-
tions in the where clause. Supporting let clauses is
left as a part of our future work.

Figure 1 shows the architecture of our system. A
pub/sub system sends an XML document of type t to
multiple downstream pub/sub systems that have sub-
scribed to receive documents of the same type. Upon
receiving the document, a pub/sub system processes
its subscriptions against it, and returns a set of sub-
trees in the document. This set of subtrees becomes
a set of new documents, and are sent to downstream
pub/sub systems that have subscribed to receive doc-
uments of the same type. Similar process is repeated
at every pub/sub system.

Our pub/sub system consists of three major com-
ponents. XPath Processing Engine is an XPath pro-
cessor that can return matching query IDs along
with all matching nodes for all matching queries for
each streaming XML document. We use our previ-
ous work (Choi & Wong 2009) as XPath Process-
ing Engine, as it satisfies the above conditions and
performs efficiently. XQuery Preprocessor is used
to normalize user subscriptions written in XQuery.
Transformed queries are then sent to Join Process-
ing Engine. Join Processing Engine processes queries
with join operators, and it works in conjunction with
XPath Processing Engine. When queries are received
from XQuery Preprocessor, the XPath expressions in
for clauses of XQuery queries are extracted, and the
expressions with ‘//’ and ‘*’ are expanded using the
document structures that have been registered ini-
tially. These expanded XPath expressions are then
transferred to XPath Processing Engine. At the same
time, Join Processing Engine organizes the expanded
XPath expressions in a tree structure. When an XML
document arrives, XPath Processing Engine returns
the matching XPath IDs along with matching nodes,
and they are transferred to Join Processing Engine.
Once Join Processing Engine has processed join oper-
ations, all matching nodes for each matching XQuery
query are reported, and they are sent to downstream
pub/sub systems.

This paper is organized as follows. Section 2

presents related work in the area of processing XPath
and XQuery queries on streaming XML documents.
Section 3 describes our technique to process join oper-
ators in XQuery queries. Section 4 presents our exper-
iment results for our technique. Finally, we conclude
our paper in Section 5.

2 Related Work

There have been many works done in the context
of processing XPath queries against streaming XML
documents. Diao et al. (2004) introduce an over-
all architecture of a scalable pub/sub system. XTrie
(Chan et al. 2002), YFilter (Diao et al. 2003), XPush
(Gupta & Suciu 2003), Onizuka (2003), PRIX (Rao &
Moon 2004), Uchiyama et al. (2005) and FiST (Kwon
et al. 2005) present how a large number of XPath
queries can be evaluated against a streaming XML
document. While all these works return the set of
matching XPath IDs for each document, they do not
return matching nodes for matching queries, and they
do not support queries with join operations. Further-
more, it is not clear how these features can be imple-
mented.

Approaches by Olteanu et al. (2004), FluX (Koch
et al. 2004), Li & Agrawal (2005), XFPro (Huo et al.
2006) and Gou & Chirkova (2007) process a single
XPath and/or XQuery query against a large XML
document in size. Barton et al. (2003) present how a
single XPath query with both forward and backward
axes can be processed for each streaming document.
Chen et al. (2006) use TwigM, which is an exten-
sion of the multi-stack approach in TwigStack (Bruno
et al. 2002), for a compact representation of candi-
date elements during query processing to decrease the
overall memory usage. However, non of these works
support queries with join operations.

Diao & Franklin (2003) extend YFilter such that
it can return matching elements for matching queries.
In their system, only XQuery queries with conjunctive
predicates of the form e1/text() = constant are sup-
ported, whereas we support conjunctive predicates
of the form e1/text() = e2/text() in where clauses,
where e1 and e2 can be from two different documents.
XSQ (Peng & Chawathe 2005) builds an NFA for an
XPath query that contains nested paths, and main-
tains its own buffer to store potential matching ele-
ments. This allows them to return all matching el-
ements for a given query. However, only one query
can be processed at a time. The work by Hong et al.
(2007) is the most related work to our paper. It uses a
customized query language to define queries with join
operators between elements. In its compilation phase,
the system uses Query Templates to group queries in
a way that, each group contains queries with similar
join statements. In the runtime, it uses a relational
database to join elements. Similar to our system, it
works with an existing XPath processor as an add-on
module to support queries with join operators. How-
ever, their template-based approach only works for
the queries that join two leaves of documents, and
unlike ours, queries that join non-leaves of documents
are not supported. In addition, their approach is de-
signed to process relatively very small documents in
size (i.e., documents with 3 levels deep with 16 leaves
as shown in their experiments). This is because the
number of Query Templates rapidly increases as the
number of leaves per document increases. Due to the
same reason, their approach does not scale for the
queries that join elements from multiple documents.
Similar patterns are observed when the number of
join operations per query increases. In our experi-
ments, we used documents, each of which contained a
few hundred leaves, and we could still provide better

CRPIT Volume 92 - Database Technologies 2009

96

performance. Finally, unlike ours, they only report
matching query IDs, and cannot return matching el-
ements for each matching query for each document.
This feature is important in Web service applications,
as it allows them to forward only the parts of docu-
ments in which the subscribers are interested.

There are some works that use XML algebras to
optimize XPath and XQuery processing. Barta et al.
(2005) use document summaries to calculate heuris-
tics and statistics, and process (nested) XPath queries
with that information. Gottlob et al. (2005) define
and evaluate a subset of XPath queries called Core
XPath, and they can process queries with aggregates
and user defined functions. However, the approaches
in both works are not suitable for streaming docu-
ments, as they need multiple passes of documents. In
addition, they are designed to process a small set of
queries against a large XML document in size. Nev-
ertheless, they have introduced several optimization
techniques that can be integrated to our system, and
such work is left as a part of our future work.

Unlike all pub/sub systems above, Boncz et al.
(2006) and Grust et al. (2007) process XPath and
XQuery queries by building processing engines that
operate on top of existing RDBMS. Boncz et al.
(2006) translate XQuery queries into basic relational
algebras, apply query optimizations, and evaluate
queries against a large set of documents. Grust
et al. (2007) use Range Encodings to preserve the
tree structure of XML, and use a B-Tree to optimize
and evaluate XPath queries. Systems in this category
support (almost) full features of XPath/XQuery in-
cluding updates. However, they are not suitable for
pub/sub systems, as they process queries individually.

3 Methods

This section presents our technique and consists of
five parts. The first part shows how queries are nor-
malized prior to processing them. The second part
shows how queries are prepared. The third part
presents a data structure that is used to process join
operations, and how to build it. The fourth part
presents how join operations are processed using the
data structure against a streaming document. The
last part presents an optimization technique, which
improves the overall performance of join operations.
We illustrate our technique with running examples.

3.1 Rewriting Queries

for $z in docType("nasa3")//ref
for $y in docType("nasa2")//ref//name
for $x in docType("nasa1")//journal/name
for $w in docType("nasa4")//astroObject/name
where $z//other/title=$y AND $y=$x
return $y

(a) Q1: A query written by a user

for $x in docType("nasa1")//journal/name
for $y in docType("nasa2")//ref//name
for $z in docType("nasa3")//ref//other/title
where $x=$y AND $y=$z
return $y

(b) Q1′: A rewritten query

Figure 2: Rewriting a query

Since XQuery queries could be poorly written or
auto-generated, before queries are registered to the
pub/sub system, they are preprocessed such that all
queries are in the similar format. First, we remove

for clauses whose variables do not participate in nei-
ther where nor return clauses. Second, we rewrite
any join operations and their path expressions in
for clauses in a way that join operations in where
clauses contain only variables without any path ex-
pressions. Third, we rearrange for clauses according
to the names of document types. Lastly, a constraint
table similar to Diao et al. (2003) is built using value
constraints in where clauses. The main idea is to
process constraints after finding structurally match-
ing queries.

Streaming documents have the same document
type if they share the same document structure, and
are coming from the same stream. To obtain docu-
ments of the same type, we use a user defined function
docType() in our queries. Figure 2 shows an example
of how our system rewrites a query in another for-
mat. In this example, the for clause with w variable
is removed, and both $z//other/name and //ref in
where and for clauses are rewritten, respectively. Fi-
nally, for clauses are rearranged in ascending order
of the types of NASA documents.

3.2 Preparing Queries

for $x in docType("nasa1")//src//*/year
for $y in docType("nasa2")//history//year
for $z in docType("nasa3")//revisions//yr
where $x=$y AND $y=$z AND $x/text()="1990"
return $x

(a) Q2

for $x in docType("nasa1")//src//*/year
for $y in docType("nasa2")//history//year
for $z in docType("nasa3")//journal//*/yr
where $x=$y AND $y=$z AND $x/text()="2000"
return $y

(b) Q3

for $x in docType("nasa1")//src//*/year
for $y in docType("nasa2")//history//year
where $x=$y
return $y

(c) Q4

Figure 3: Query examples

The rewritten queries are processed in order to
compactly represent them in our system. Figure 3
shows some additional preprocessed queries that we
use as running examples in this paper. The process
is as follows. First, for each rewritten query, we ex-
tract all for clauses. For each path expression in a
for clause, we assign a PathID, and store the doc-
ument type DocType from which that path expres-
sion is extracted. For example, the path expression,
//src//*/year and the document type, nasa1 are
extracted from the first for clause in Q2, and the
path expression is given an PathID = 2. We repeat
the process for all queries and collect all unique path
expressions for each document type. These path ex-
pressions are then stored in a multi-hashtable.

Second, all paths with ‘//’ or ‘*’ are expanded
so that we can efficiently evaluate them in a deter-
ministic way in runtime (Onizuka 2003). They are
expanded using a document structure of streaming
documents, and we name such a structure Structure
Index. Figure 4 shows an example of Structure In-
dex. It is similar to DataGuide (Goldman & Widom
1997) and ViST (Wang et al. 2003), but Structure In-
dex is used to extract data structures of documents
in order to preprocess and expand queries, whereas
DataGuide and ViST are used to index data to im-
prove query processing. Structure Index is generated

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

97

1: <dataset>
2: <history>
3: <revisions><year/></revisions>
4: </history>
5: <ref>
6: <other><name/></other>
7: <src>
8: <journal>
9: <date><year/></date>

10: <name/>
11: </journal>
12: </src>
13: </ref>
14: </dataset>

Figure 4: Structure Index

from a set of training documents that represent vari-
ous structures of streaming documents. Table 1 shows
expanded path expressions generated from the queries
in Figure 2(b) and 3 using Structure Index shown in
Figure 4. In this example, documents of type nasa1
and nasa2 share the same Structure Index. Structure
Index for documents of type nasa3 is similar, and can
be obtained by replacing year and name nodes on line
3, 6, 9 and 10 with yr and title, respectively. It is
omitted due to limited space.

Table 1: Expanded path expressions

DocType PathID XPath Path Expression

nasa1 1 /dataset/ref/src/journal/name
2 /dataset/ref/src/date/year

nasa2 1-1 /dataset/ref/other/name
1-2 /dataset/ref/src/journal/name

2 /dataset/history/revisions/year
nasa3 1 /dataset/ref/other/title

2 /dataset/history/revisions/yr
3 /dataset/ref/src/journal/date/yr

Third, for each query, we replace all path expres-
sions in for clauses with PathIDs that are obtained
from the multi-hashtable. A path expression is in-
ternally represented by a (DocType, PathID) pair. A
query is represented by a list of (DocType, PathID)
pairs along with the return path expression. Table 2
shows how queries in Figure 2(b) and 3 are stored in
our system. This representation of queries are then
used to build a tree called Join Tree. Lastly, the path
expressions in Table 1 are now sent to an XPath pro-
cessing engine as input at this stage.

Table 2: Query representations
QID Path Representation Return Path

1 (nasa1,1)(nasa2,1-1)(nasa3,1) (nasa2,1-1)
1 (nasa1,1)(nasa2,1-2)(nasa3,1) (nasa2,1-2)
2 (nasa1,2)(nasa2,2)(nasa3,2) (nasa1,2)
3 (nasa1,2)(nasa2,2)(nasa3,3) (nasa2,2)
4 (nasa1,2)(nasa2,2) (nasa2,2)

3.3 Building Join Tree

The query representations generated in the previous
section are rearranged in a tree structure in order to
efficiently evaluate join operations. We name this tree
structure Join Tree. Figure 5 shows an example of
Join Tree built from the query representations shown
in Table 2, and Algorithm 1 outlines how Join Tree
is built.

Each node in Join Tree represents a path ex-
pression between the root and a node in an XML
document of type DocType. For example, a
node (nasa3,2) represents a path expression whose
PathID = 2 in a document of type nasa3. In addition,

Figure 5: Join Tree

a Join Tree node contains a mapping of {DocType→
{QID(PathID)}}. In Figure 5, empty mappings as-
sociated with Join Tree nodes are omitted for sim-
plicity. The query ID in a mapping associated with
a Join Tree node v indicates that, the query is eval-
uated by joining all path expressions represented by
Join Tree nodes that are along the path between the
root and v. In addition, this mapping is also used to
find which path of a query should be processed next
in order to return matching elements. For example,
in Figure 5, {nasa1 → {q2(2)}} represents that if a
join operation that joins (nasa1,2), (nasa2,2) and
(nasa3,2) nodes returns non-empty results, a query
with QID = 2 is satisfied and should return the set of
nodes expressed by the path with PathID = 2 from a
document of type nasa1.

Join Tree is constructed as follows. We use the
term current context node vc to refer to a Join Tree
node that is currently being examined and processed.
We first set vc to point to the root of Join Tree. For
each query registered to the system, we retrieve the
list of (DocType, PathID) pairs of the query from Ta-
ble 2. For each pair from the list, we check whether
a Join Tree node that represents the pair already ex-
ists as a child node of vc. If it does, then that child
node is retrieved. Otherwise, we create a new Join
Tree node representing the pair, and it is added as
a new child node. These steps are repeated for all
(DocType, PathID) pairs. After processing the last
pair, {DocType → QID(PathID)} mapping is created
and stored in the last Join Tree node that we reach.
Lastly, the above process is repeated for all queries.

3.4 Processing Join Tree

We first explain some additional data structures that
we use when we process Join Tree, and explain how
Join Tree is processed.

Algorithm 1 buildJoinTree(queries)

1: joinTreeRoot ← createRootNode()
2: for qi ∈ queries do
3: joinNode ← joinTreeRoot
4: docTypeToXPathId ← {}
5: for pi ∈ qi.getPaths() do
6: node← joinNode.getChild(pi.getDocType(),

pi.getXPathId())
7: if node = null then
8: node ← createNewChildNode(joinNode,

pi.getDocType(),pi.getXPathId())
9: docTypeToXPathId ← docTypeToXPathId

∪ {(pi.getDocType(), pi.getXPathId()}
10: joinNode ← node
11: joinNode.addXQueryId(qi.getId())
12: joinNode.

setDocTypeToXPathId(docTypeToXPathId)
13: return joinTreeRoot

CRPIT Volume 92 - Database Technologies 2009

98

In order to distinguish different documents of the
same type coming from the same stream, we assign
each document a unique ID. We also keep a buffer of
size bn to store n documents of each type with path
processing results. When a document of type t(d) ar-
rives, it is sent to an XPath processor as input, and
the processor returns as output a set of {PathID →
{v1, . . . , vn}}, where {v1, . . . , vn} represents a set
of matching nodes for a path with PathID. This set
is easily transformed to {(DocType,PathID) → {v1,
. . . , vn}}, since we know the set is from a document
of type t(d). We use P (d) to refer to this set of map-
pings for a document d. When a document d arrives,
P (d) is created and added to the buffer of type t(d),
and is removed from the buffer after the document has
been processed. A P (d) in a buffer is also sequentially
removed in a FIFO fashion when the buffer becomes
full or a P (d) is stored for more than tc units of time.
We also maintain a global stack called Join Stack.
An entry in Join Stack represents intermediate join
results that have been produced so far by joining all
matching nodes that are along the path between the
root and a Join Tree node. Join Tree is traversed
when a new document arrives from a stream and all
buffers have at least one P (d). Join Tree is traversed
as follows. Algorithm 2 and 3 summarize the proce-
dure.

We initially set the root of Join Tree as the cur-
rent context Join Tree node vc. For each child of vc,
we obtain the type of the document that this Join
Tree node represents. This can be done by checking
(DocType,PathID) pair in the node. We then check
whether DocType is the same as the type of the newly
arrived document that is being processed. If DocType
is the same, we retrieve the last P (d) from the buffer
that represents the document of type DocType. Oth-
erwise, we obtain all P (d)s from the buffer of the same
type. The reason for retrieving only the last P (d) in
the first case is to avoid duplicate join processing. For
each P (d) that we have obtained from the buffer, we
search for the set of elements that match the path
expression that vc represents. This operation is effi-
ciently done, as P (d) is implemented in a hashtable.
If an empty set is returned for the path expression,
we stop traversing, and proceed to vc’s sibling nodes
or backtrack. If a non-empty set is returned, we join
the elements in the non-empty set with the sets of
matching elements that we obtain from Join Stack,
and push the newly generated sets of matching ele-
ments onto the stack. If a Join Tree node contains
a mapping of {DocType → QID(PathID)} (see Fig-
ure 5), all query IDs are reported as matched.

Due to performance reasons, the matching ele-
ments are not immediately returned at this stage. In-
stead, a DOM representation of the currently stream-
ing document is created, and each matching node
from the DOM tree is decorated with the matching
query IDs. We refer to such a DOM tree as a doc-
ument tree. Matching elements are returned when
Join Processing Engine finishes processing the cur-
rent streaming document. Matching elements are re-
turned in either the following two ways: (1) the dec-
orated document tree is passed directly to an upper
level application; or (2) the document tree is traversed
once more to create {QID → {matching-elements}}
mappings. It is possible that non-leaf nodes contain
matching query IDs. In that case, subtrees rooted
at these non-leaf nodes are returned as matching el-
ements. Lastly, the above procedure is repeated for
all child nodes of vc.

Example 1. Figure 6(a) shows examples of match-
ing elements P (d) for some selected nodes in Join
Tree, and Figure 6(b) and 6(c) show two instances
of Join Stack after two Join Tree nodes, (nasa3,2)

Node Matching Elements

(nasa1,2) E1,1 = {e ∈ d(nasa1) | e/text() = ‘1990’}
E1,2 = {e ∈ d(nasa1) | e/text() = ‘2000’}

(nasa2,2) E2,1 = {e ∈ d(nasa2) | e/text() = ‘1990’}
E2,2 = {e ∈ d(nasa2) | e/text() = ‘2000’}

(nasa3,2) E3,1 = {e ∈ d(nasa3) | e/text() = ‘1990’}

(nasa3,3) E3,2 = {e ∈ d(nasa3) | e/text() = ‘2000’}

(a) Matching elements

(b) At (nasa3,2) node (c) At (nasa3,3) node

Figure 6: Examples of matching elements and the
instances of Join Stack

and (nasa3,3) in Figure 5 are traversed, respectively.
In this example, Figure 6(a) shows that a Join Tree
node (nasa1,2) has two sets of matching elements,
namely E1,1 and E1,2, and each set contains the el-
ements whose text() values are 1990 and 2000, re-
spectively, and all elements are from the document
of type nasa1. Other nodes in Figure 6(a) are in-
terpreted similarly. An entry in Join Stack contains
a set of buffers (represented by a rectangle of three
small boxes), and an entry in each buffer (represented
by a small box) contains a set of matching elements
so far. For example, the bottom entry in Figure 6(b)
and 6(c) contains two buffers, each of which contains
a set of matching elements denoted by E1,1 and E1,2.
Other stack entries in Figure 6(b) and 6(c) are in-
terpreted similarly. A buffer of sets of elements are
used to represent intermediate join results. When we
reach (nasa3,2) node in Join Tree in Figure 5, we
find that the node contains {nasa1→ {q2(2)}}. Since
the top entry on Join Stack is not empty, we report
q2 as matched. We retrieve matching elements E1,1

from Figure 6(a), since q2 requires text()=‘1990’.
The query ID=q2 is then added to the retrieved ele-
ments. Join Stack in Figure 6(c) is interpreted sim-
ilarly. Figure 7 shows two document trees decorated
with matching query IDs. Due to limited space, we
use double dotted line notation between two nodes
to represent an ancestor/descendant relationship in
a document tree. This is similar to the double line
notation commonly used in query trees.

Algorithm 2 processJoin(curDocType, joinTree-
Root)

1: joinStack ← {}
2: for childi ∈ joinTreeRoot.getChildren() do
3: processJoinTree(curDocType, childi, join-

Stack)

3.5 Optimizing Join Operations

We have presented how queries are processed using
Join Tree. Up to this point, we have assumed that
all publishers publish new documents at the same
rate. In practice, however, it is most likely that some
publishers produce documents more frequently than
others, and therefore, some particular types of doc-
uments are sent more frequently than other types of
documents. In addition, since we process documents

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

99

(a) nasa1 document tree

(b) nasa2 document tree

Figure 7: Two different types of document trees are
shown. Each document tree shows which node should
be returned as matching element for a query (Double
dotted line represent ancestor/descendant relation-
ship in a document tree similar to the double line
notation commonly used in query trees).

sequentially as they arrive, we have found that there
are some join operations that are common amongst
the documents that are already in the buffer, and
those join operations are repeatedly performed when
a new document is arrived. In this section, we present
an optimization technique that allows us to further
reuse some intermediate join results that were already
calculated when previous documents were processed.
This technique considers how frequently a particular
type of document arrives, and using that informa-
tion, it determines the order in which join operations
should be performed. The effect of this optimization
is that, once more frequently arriving types of docu-
ments are identified, it improves runtime costs when
these types of documents are processed. This is done
by reusing some of the join results that were previ-
ously calculated.

In order to identify the rate of which a document
arrives, we maintain simple statistics about how fre-
quently each type of document arrives at our system
while processing streaming documents. These statis-
tics can also be reinforced when similar information
is available from publishers. We refer to such statis-
tics/information for each type of a document Fre-
quency Factor.

After collecting Frequency Factor for each type of
document, the nodes in Join Tree are rearranged in
the order of Frequency Factor such that, the least
frequent type of document is placed as child nodes of
the root of Join Tree, and the most frequent type of
document is placed as leaves of Join Tree. Figure 8
shows an example of Join Tree whose nodes are rear-
ranged according to Frequency Factor. In this figure,
nasa2 has been identified as the most frequent type of
document, and nasa1 has been identified as the least
frequent type of document.

Join Tree is now extended to include a buffer pool.
A buffer pool contains bpn number of partitions where
bpn ≤ the number of Join Tree nodes. The partitions
in the buffer pool are allocated in runtime in a lazy
way as needed. Each partition is used to store in-
termediate join results between a parent and a child
node when a join operation is performed. Having a

Algorithm 3 processJoinTree(curDocType, node,
joinStack)

1: // curDocType: type of newly arrived document
2: if curDocType = node.getDocType() then
3: docsToProcess ←

getLastDocFromBuffer(curDocType)
4: else
5: docsToProcess ←

getDocsFromBuffer(curDocType)
6: for doci ∈ docsToProcess do
7: matchingNodes ←

doci.getMatchingNodes(node.getXPathId())
8: if matchingNodes 6= {} then
9: joinResultsSoFar ←

joinStack.top().joinWith(curDocType,
matchingNodes)

10: joinStack.push(joinResultsSoFar)
11: if joinStack.top() 6= {} then
12:

13: if node.containsMappings() then
14: reportMatchingXQueries

(node.getMatchingXQueries())
15: else
16: for childi ∈ node.getChildren() do
17: processJoinTree(curDocType, childi,

joinStack)
18: joinStack.pop()

Figure 8: Rearranged Join Tree

buffer pool allows us to retrieve some previously cal-
culated intermediate join results, which often prevent
us from traversing the entire Join Tree from the root.
Instead of traversing Join Tree when a new document
arrives, we now select a group of small subtrees from
Join Tree, and traverse these subtrees to perform join
operations. A subtree is selected if the parent node
of the subtree was previously visited, and DocType of
the root of subtree is the same type as the streaming
document. Previously visited nodes can be found in
a hashtable. Checking the parent of a subtree is to
ensure that, the join operations between the root of
Join Tree and the parent node do not return an empty
set. For each selected subtree, we do not traverse the
path between the root of Join Tree and the root of
subtree, if the join results for the nodes on the path
between these two nodes can be retrieved from the
buffer pool.

Example 2. If the currently streaming document is
of type nasa2, and (nasa2,1-1) node from Figure 8
is the only node that has a parent node which was
visited previously, we only perform one join operation
between (nasa3,1) and (nasa2,1-1), as the join op-
erations between the root and (nasa3,1) can be re-
trieved from the buffer. Other join operations are not
performed, as we know they will fail eventually.

Optimized join processing is described as follows.
First, we find on which level l, the nodes that have
the same DocType as the newly arrived document are

CRPIT Volume 92 - Database Technologies 2009

100

located in Join Tree, and their parent Join Tree nodes
are extracted from Join Tree. Amongst these nodes,
we select the nodes that were successfully traversed
when a previous document had been processed. Af-
ter that, we collect all child nodes from all such par-
ent Join Tree nodes. These child nodes represent the
roots of subtrees that must be traversed to perform
join operations. One exception to the above selec-
tion process is when a parent node is the root of Join
Tree. In that case, we simply choose all child Join
Tree nodes of the root. This is the case where we
do not benefit from our optimization technique, as
we need to traverse Join Tree from the root. How-
ever, by carefully constructing Join Tree, this situa-
tion is minimized. Before any subtrees are traversed,
all partitions in the buffer pool associated with the
Join Tree nodes whose levels in Join Tree are ≥ l
are cleared, as these partitions cannot be reused with
these subtrees. To keep track of the last successfully
traversed Join Tree nodes and to perform the above
operations efficiently, we used an ordered hashtable of
{DocType → {TraversedJoinTreeNodes}} in our im-
plementation.

Second, for each subtree selected from the process
above, we check whether the previous intermediate
join results between the root of Join Tree and the
parent of subtree can be found in the buffer pool.
If so, that subtree is ready to be traversed. If not,
we recursively check whether the intermediate join
results between the root of Join Tree and any ances-
tor of the root of subtree can be found in the buffer
pool. Once such a node is found, we start travers-
ing back from that node to the root of the subtree.
The buffer pool on the path are filled while travers-
ing back. In the worst case, all nodes between the
root of Join Tree and the root of subtree are tra-
versed. Once the buffer pool for the root of subtree
is filled up, we start traversing the subtree. While
traversing a subtree, successfully traversed Join Tree
nodes are marked, and our hashtable is updated ac-
cordingly in our implementation. With this approach,
only a small set of subtrees are traversed, and by not
traversing some upper parts of Join Tree, we skip per-
forming some repeated join operations. Algorithm 4
summarizes the above procedures, and Algorithm 3
is modified in a way that the lines in Algorithm 5 are
added to Line 12 in Algorithm 3.

Algorithm 4 processJoinOpt(curDocType, join-
TreeNodeHashtable)

1: subtrees ←
joinTreeNodeHashtable.

getJoinTreeNodes(curDocType)
2: joinTreeNodeHashtable.

clearJoinTreeNodes(curDocType)
3: for subtreei ∈ subtrees do
4: parentOfSubtree ← subtreei.getParent()
5: bufferPooli ←

parentOfSubtree.getBufferPool()
6: if bufferPooli = {} then
7: // recursively visit ancestor nodes

// to find non empty bufferPool, and
// start traversing back the same path
// to fill up all ancestor bufferPools

8: bufferPooli ← calBufferPools(subtreei)
9: joinStack ← {}

10: if parentOfSubtree 6= rootOfJoinTree then
11: joinStack.add(bufferPooli)
12: processJoinTree(curDocType,subtree,joinStack)

Algorithm 5 processJoinTreeMod(docType,node,
joinStack)

1: node.setBufferPool(joinStack.top())
2: joinTreeNodeHashtable.

addJoinTreeNodes(node.getDocType(), node)

4 Experiments

This section presents our experiment results in de-
tail. All experiments were executed on a Core 2
Duo 2.33 GHz laptop with 2 GB ram running Mac OS
X. The SAX parser we used was Xerces Java Parser
2.8.0 (The Apache XML Project 2007). Our approach
was implemented in Java 1.5, and was built on top of
our previous work (Choi & Wong 2009). This section
consists of three parts. The first part shows how the
documents used in the experiments were prepared.
The second part shows how the queries used in the ex-
periments were prepared. The last part presents how
our approach performed under various conditions.

4.1 Document Preparation

We used NASA dataset obtained from UW Database
Group (2002), and this dataset was preprocessed in
a similar way as Kwon et al. (2005) to generate sam-
ple XML documents. In this setting, the dataset was
split into many smaller documents, and randomly se-
lected to form three sets of documents of size [10 KB,
20 KB), [20 KB, 30 KB) and [30 KB, 60 KB). We re-
fer to each dataset as 10k, 20k and 30k respectively
in this section. In addition, we removed all text()
values from all non-leaf nodes to make e1/text() =
e2/text() always true for all non-leaf nodes with the
same names. This is to increase the number of match-
ing queries. Finally, each dataset generated above was
added to a list, and this list was duplicated to create
m identical lists of documents. These duplicated lists
of documents were used to represent the documents
coming from different streams.

For the experiments, the documents were streamed
in two ways. First, a document from each list was
randomly selected and streamed until all lists became
empty. Second, all the first documents from the lists
were removed and streamed sequentially until all lists
became empty. This is to further increase the number
of matching queries in the experiments, as many join
operations in queries result in joining with the copies
of the same documents. We will refer to each stream-
ing method as a random and sequential streaming
method, respectively.

4.2 Query Preparation

All queries we used in the experiments were generated
as follows. First, the document structure of NASA
dataset was extracted. Second, we randomly chose
an element name e from the dataset, and selected np
elements from the document structure whose names
are the same as e. For each selected element, the
path between the root and the element was scanned.
While scanning the nodes on the path, we chose a
node with a probability of 80%, as well as maintain-
ing the element orders. For the case where a node
was not chosen, we replaced / of the next node with
//. Amongst the chosen nodes, we replaced nodes
with * with a probability of 10%. Moreover, we re-
placed / with // with a probability of 10%. This
step was repeated until np path expressions were cre-
ated. Third, the path expressions were grouped such
that each group contained the path expressions whose
last elements had the same names. Fourth, j number

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

101

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
o

m
p

ila
ti
o

n
 T

im
e

 (
m

s
)

Number of Queries

01
03
05
07
09

Figure 9: Compilation time vs. Number of queries
that have various numbers of join operations

of path expressions were randomly selected from one
path expression group, and combined to create a list
of for clauses. A where clause was created by join-
ing all path expressions found in the for clauses. A
return clause was created by randomly choosing a
path from a for clause. Lastly, the fourth step was
repeated until nq distinct queries were generated.

4.3 Results

Figure 9 shows compilation times when instances of
Join Tree are built for various numbers of queries with
various numbers of join operations. The compilation
time increases as the number of queries increases, as
the Join Tree building process is proportional to the
number of queries to process. However, the rate of in-
crease slowly drops as the number of queries increases.
This is because, the number of new Join Tree nodes
that must be created decreases, as nodes are shared
amongst similar queries. Similarly, the compilation
time increases as the number of join operations per
query increases. This is because, as the depth of Join
Tree increases, the number of Join Tree nodes that
must be created and traversed increases.

In the following experiments, the Join Tree created
in this phase was used, and all matching nodes for
each query were computed as a part of join process.
In addition, we used the following default values un-
less specified otherwise—the size of document buffer
for each type of document was set to 1, each query
had 5 join operations, 10k dataset was used, and doc-
uments were streamed in sequential order. Moreover,
all experiments were executed with our join optimiza-
tion. The processing times reported here are the av-
erage running times taken to perform join operations
for each document. It also includes the times taken
to calculate all matching elements for all queries. The
processing times taken by an XPath processor were
not included, and these can be found in our previous
work. (Choi & Wong 2009)

 10

 100

 1000

 10000

 100000

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
ro

c
e

s
s
in

g
 T

im
e

 (
m

s
)

Number of Queries

Sequential
YFilter

JoinTree

Figure 10: Processing time vs. Number of queries us-
ing various methods

Figure 10 shows how our Join Tree approach is per-
formed against both naive Sequential Join approach
and YFilter (Diao et al. 2003). In this experiment,
30k dataset was used. Compared to Sequential Join
approach, the processing time and the rate of which
our approach increases in time as the number of
queries increases is orders of magnitude lower than
that of Sequential Join approach. Due to unavailabil-
ity of the implementation of a previous work by Hong
et al. (2007), we were unable to compare our approach
directly with Hong et al. Instead, we compare our ap-
proach indirectly with them via YFilter, as Hong et
al. state that they use YFilter as an XPath proces-
sor in their implementation, and the XPath evalua-
tion costs by YFilter are much smaller than their join
processing costs.

To compare our Join Processing Engine with YFil-
ter, we prepared XPath expressions from XQuery
queries as follows. For each XQuery used in the exper-
iment, we randomly selected a for clause, and then
extracted the XPath path expression from it. We
repeated until we collected n distinct XPath expres-
sions, and they were processed by YFilter against the
same dataset. Note that the experiment is in favor
to YFilter, as it only needs to process up to 100, 000
expressions, although queries with j join operations
typically need to process 100, 000 × (j + 1) path ex-
pressions. Figure 10 shows that our join processing
costs are lower than YFilter’s XPath processing costs.
For the following experiments, we only present the ex-
periment results for our Join Tree approach.

 10

 15

 20

 25

 30

 35

 40

 45

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
ro

c
e

s
s
in

g
 T

im
e

 (
m

s
)

Number of Queries

10k
20k
30k

Figure 11: Processing time vs. Number of queries
with various sizes of documents

Figure 11 shows the join processing times when
various numbers of queries are evaluated against var-
ious sizes of documents. As the number of queries
increases, the rate of which the join processing time
increases drops slowly. This is because, as the num-
ber of queries increases, the total number of unique
join operations that must be evaluated increases at
a much slower rate than the rate of which the total
number of join operations increases. In addition, as
the number of queries increases, the number of join
operations that are shared amongst queries also in-
creases, which also lowers the rate of growth. Lastly,
similar patterns were observed for queries with 1, 3,
7, etc. . . join operations, and when documents were
streamed randomly.

Figure 12 shows the join processing times when
various numbers of queries with various numbers of
join operations were evaluated. The rate of which the
processing time increases slowly drops as the num-
ber of queries becomes larger. This is because, as
the number of queries increases, the number of inter-
mediate join results that are shared amongst similar
queries also increases. Therefore, the total number
of join operations that must be evaluated does not
increase at the same rate as the number of queries
increases. Furthermore, the processing time increases
as the number of join operations per query increases.

CRPIT Volume 92 - Database Technologies 2009

102

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
ro

c
e

s
s
in

g
 T

im
e

 (
m

s
)

Number of Queries

01
03
05
07

Figure 12: Processing time vs. Number of queries
with various numbers of join operations

 0

 5

 10

 15

 20

 25

 2 3 4 5 6 7 8 9 10

P
ro

c
e

s
s
in

g
 T

im
e

 (
m

s
)

Number of Joins per Query

10000
25000
50000
75000

100000

Figure 13: Processing time vs. Number of join oper-
ations with various queries

This is because, as the depth of Join Tree increases,
the number of Join Tree nodes increases, which result
in a larger number of join operations to evaluate.

Figure 13 shows join processing times when queries
with various numbers of join operations were evalu-
ated. In this experiment, documents were streamed
in a random order. As the number of join operations
increases, the growth of processing time slowly de-
creases. This is because the number of intermediate
join results being shared are increased, and while Join
Tree is being traversed, short cut evaluations are ex-
tensively performed to skip branches that do not have
any matching elements. In addition, the number of
matching queries has also dropped as the number of
join operations increases.

Figure 14 shows processing times when the num-
ber of documents stored in a buffer was varied. In
this experiment, the number of join operations per
query was set to 1, and the number of queries were
set to 100,000. The join processing time linearly in-
creases as the number of buffers increases. This is
because, as the number of documents in the buffer
increases, the number of join operations that need to

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16 18 20

P
ro

c
e

s
s
in

g
 T

im
e

 (
m

s
)

Number of documents stored in a buffer

100000

Figure 14: Processing time vs. Number of documents
stored in a buffer

Table 3: Analyzing the number of join operations in
both normal and optimized modes

Name Normal Optimization

1 # of skipped Join Tree nodes 361 233
2 # of join operations 643 478
3 # of non-empty join operations 590 408
4 # of empty join operations 102 70
5 # of successfully traversed leaves 189 189

be performed every time when a new document ar-
rives increases. We are currently working on sharing
buffers to decrease the linear growth in time.

Table 3 shows how much improvement we get
with our Join Tree optimization. The table displays
the average number of join operations performed for
each document. In this experiment, the total num-
ber of queries were set to 50,000, but similar pat-
terns were observed when the total number of queries
were 10,000, 25,000, etc. . . The first row shows the
number of Join Tree nodes that were examined but
not traversed further because there were no match-
ing instances for those queries. These decisions were
made without performing join operations. The sec-
ond, third and fourth rows show the total number
of join operations performed, and out of these join
operations, how many of them produced non-empty
and empty sets. The last row shows the number of
Join Tree leaves that were successfully reached and
therefore could find matching instances for queries.
The analysis shows that the total number of Join
Tree nodes that must be traversed was reduced, and
hence the total number of join operations that must
be performed was reduced substantially. As a result,
it significantly increased the overall performance of
the system, since join operations were the most ex-
pensive operations in terms of runtime costs.

5 Conclusion

We have presented an efficient approach for evaluat-
ing a large number of XQuery queries that contain
inter-document value-based join operations against
streaming documents. We use Join Tree to group
and process similar queries simultaneously. While
queries are being processed, intermediate join results
are shared in order to reduce the overall number
of join operations. In addition, unlike many pre-
vious works, we return all matching nodes for each
matching query. Experiments have shown that, our
approach can efficiently evaluate a large number of
queries with join operations.

There are several possibilities for future work.
First, we are currently working on to support more
expressive queries, and join optimization based on
the size of Join Tree when frequency information is
not available. Second, we are looking at integrating
some previous works to improve buffer management.
Third, we are looking at integrating some of the tra-
ditional join optimizations to further improve both
compile and runtime performance.

References

Barta, A., Consens, M. P. & Mendelzon, A. O. (2005),
Benefits of path summaries in an xml query opti-
mizer supporting multiple access methods., in ‘Pro-
ceedings of the 31st International Conference on
Very Large Data Bases’, ACM, Trondheim, Nor-
way, pp. 133–144.

Barton, C., Charles, P., Goyal, D., Raghavachari, M.,
Fontoura, M. & Josifovski, V. (2003), Streaming

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

103

xpath processing with forward and backward axes,
in ‘Proceedings of the 19th International Confer-
ence on Data Engineering’, IEEE Computer Soci-
ety, Bangalore, India, pp. 455–466.

Boncz, P. A., Grust, T., van Keulen, M., Mane-
gold, S., Rittinger, J. & Teubner, J. (2006), Mon-
etdb/xquery: a fast xquery processor powered by a
relational engine., in ‘Proceedings of the ACM SIG-
MOD International Conference on Management of
Data’, ACM, Chicago, IL, pp. 479–490.

Bruno, N., Koudas, N. & Srivastava, D. (2002), Holis-
tic twig joins: optimal xml pattern matching, in
‘Proceedings of the ACM SIGMOD International
Conference on Management of Data’, ACM, Madi-
son, WI, pp. 310–321.

Chan, C.-Y., Felber, P., Garofalakis, M. & Rastogi,
R. (2002), ‘Efficient filtering of xml documents with
xpath expressions’, The VLDB Journal 11(4), 354–
379.

Chen, Y., Davidson, S. & Zheng, Y. (2006), An ef-
ficient xpath query processor for xml streams, in
‘Proceedings of the 22nd International Conference
on Data Engineering’, IEEE Computer Society, At-
lanta, GA, p. 79.

Choi, R. H. & Wong, R. K. (2009), ‘Efficient filtering
of branch queries for high-performance xml data
services’, To appear: Journal of Database Manage-
ment .

Clark, J. & DeRose, S. (1999), ‘Xml path language
(xpath)’. http://www.w3.org/TR/xpath.

Diao, Y., Altinel, M., Franklin, M. J., Zhang, H.
& Fischer, P. (2003), ‘Path sharing and predi-
cate evaluation for high-performance xml filtering’,
ACM Trans. Database Syst. 28(4), 467–516.

Diao, Y. & Franklin, M. J. (2003), Query processing
for high-volume xml message brokering., in ‘Pro-
ceedings of 29th International Conference on Very
Large Data Bases’, Morgan Kaufmann, Berlin,
Germany, pp. 261–272.

Diao, Y., Rizvi, S. & Franklin, M. J. (2004), To-
wards an internet-scale xml dissemination service.,
in ‘Proceedings of the 30th International Confer-
ence on Very Large Data Bases’, Morgan Kauf-
mann, Toronto, Canada, pp. 612–623.

Goldman, R. & Widom, J. (1997), Dataguides:
Enabling query formulation and optimization in
semistructured databases., in ‘Proceedings of
23rd International Conference on Very Large
Data Bases’, Morgan Kaufmann, Athens, Greece,
pp. 436–445.

Gottlob, G., Koch, C. & Pichler, R. (2005), ‘Ef-
ficient algorithms for processing xpath queries’,
ACM Trans. Database Syst. 30(2), 444–491.

Gou, G. & Chirkova, R. (2007), Efficient algorithms
for evaluating xpath over streams., in ‘Proceedings
of the ACM SIGMOD International Conference
on Management of Data’, ACM, Beijing, China,
pp. 269–280.

Grust, T., Rittinger, J. & Teubner, J. (2007), Why
off-the-shelf rdbmss are better at xpath than you
might expect., in ‘Proceedings of the ACM SIG-
MOD International Conference on Management of
Data’, ACM, Beijing, China, pp. 949–958.

Gupta, A. K. & Suciu, D. (2003), Stream process-
ing of xpath queries with predicates, in ‘Proceed-
ings of the ACM SIGMOD International Confer-
ence on Management of Data’, ACM, San Diego,
CA, pp. 419–430.

Hong, M., Demers, A. J., Gehrke, J., Koch, C.,
Riedewald, M. & White, W. M. (2007), Massively
multi-query join processing in publish/subscribe
systems., in ‘Proceedings of the ACM SIGMOD
International Conference on Management of Data’,
ACM, Beijing, China, pp. 761–772.

Huo, H., Wang, G., Hui, X., Zhou, R., Ning, B.
& Xiao, C. (2006), Efficient query processing for
streamed xml fragments, in ‘Proceedings of the
11th International Conference on Database Sys-
tems for Advanced Applications’, Springer, Singa-
pore, pp. 468–482.

Koch, C., Scherzinger, S., Schweikardt, N. &
Stegmaier, B. (2004), Schema-based scheduling
of event processors and buffer minimization for
queries on structured data streams, in ‘Proceedings
of the Thirtieth International Conference on Very
Large Data Bases’, Morgan Kaufmann, Toronto,
Canada, pp. 228–239.

Kwon, J., Rao, P., Moon, B. & Lee, S. (2005),
Fist: Scalable xml document filtering by sequenc-
ing twig patterns., in ‘Proceedings of the 31st In-
ternational Conference on Very Large Data Bases’,
ACM, Trondheim, Norway, pp. 217–228.

Li, X. & Agrawal, G. (2005), Efficient evaluation of
xquery over streaming data., in ‘Proceedings of the
31st International Conference on Very Large Data
Bases’, ACM, Trondheim, Norway, pp. 265–276.

Olteanu, D., Furche, T. & Bry, F. (2004), An efficient
single-pass query evaluator for xml data streams, in
‘Proceedings of the 2004 ACM symposium on Ap-
plied computing’, ACM, New York, NY, pp. 627–
631.

Onizuka, M. (2003), Light-weight xpath processing of
xml stream with deterministic automata, in ‘Pro-
ceedings of the 12th International Conference on
Information and Knowledge Management’, ACM,
New Orleans, LA, pp. 342–349.

Peng, F. & Chawathe, S. S. (2005), ‘Xsq: A stream-
ing xpath engine’, ACM Trans. Database Syst.
30(2), 577–623.

Rao, P. & Moon, B. (2004), Prix: Indexing and query-
ing xml using prüfer sequences., in ‘Proceedings
of the 20th International Conference on Data En-
gineering’, IEEE Computer Society, Boston, MA,
pp. 288–300.

The Apache XML Project (2007), ‘Xerces2
java parser’. http://xerces.apache.org/
xerces2-j/.

Uchiyama, H., Onizuka, M. & Honishi, T. (2005),
Distributed xml stream filtering system with high
scalability, in ‘Proceedings of the 21st International
Conference on Data Engineering’, IEEE Computer
Society, Tokyo, Japan, pp. 968–977.

UW Database Group (2002), ‘Xml data repository’.
http://www.cs.washington.edu/research/
xmldatasets/.

Wang, H., Park, S., Fan, W. & Yu, P. S. (2003), Vist:
A dynamic index method for querying xml data by
tree structures., in ‘Proceedings of the ACM SIG-
MOD International Conference on Management of
Data’, ACM, San Diego, CA, pp. 110–121.

CRPIT Volume 92 - Database Technologies 2009

104

Access Control: What is Required in Business Collaboration?

Daisy Daiqin He1 Michael Compton2 Kerry Taylor2 Jian Yang1

1 Department of Computing, Macquarie University
Sydney Australia,

Email: {daiqin, jian}@ics.mq.edu.au
2 ICT Centre

CSIRO Australia,
Email: {michael.compton, kerry.taylor}@csiro.au

Abstract

Access control has been studied for sometime, and
there are a number of theories and techniques for
handling access control for single or centralised sys-
tems; however, unique and challenging security issues
concerning collaboration in the context of service ori-
ented computing (SOC) have arisen due to the dy-
namic and loosely coupled nature of the environment
in which these collaborations are conducted. Individ-
ual organisations usually define their access control
policies independently. When a collaboration oppor-
tunity arrives, a number of problems arise, such as:
determining if the collaboration is possible given the
access control policies, defining the policy for the col-
laboration and deciding under what conditions a ser-
vice is allowed to be forwarded to other parties. Fur-
thermore, different types of collaboration, in terms of
the way collaboration is carried out, require different
access control support. In this paper, we propose a
model encoded in description logic to capture all the
necessary elements for specifying access control policy
for collaboration. Based on the model, various incon-
sistencies between access policies from different busi-
ness units are identified. The paper also shows how a
description logic reasoner can be used to prove that
two policies are suitable, or not suitable, for collabo-
ration. The policy model and policies are encoded in
a SROIQ knowledge base. Although access control
policies focus on a single system or a single business
party’s requirements, the method presented in this
paper allows a logical analysis of the suitability of po-
tential collaboration partners. We believe this work is
laying a foundation for access policy development, ne-
gotiation and enforcement for cross-organization col-
laborations.

1 Introduction

Although Web Service technologies provide techno-
logical support for dynamic, cross-organization col-
laboration, security concerns can be a barrier to the
adoption of this new technology. Service collabora-
tion through service compositions or other means,
could have different access control requirements to
the individuals services in the collaboration; how to
provide end-to-end security guarantees is still an un-
solved problem. This paper discuses a method that
can be used to solve part of this problem by using
technologies designed for the Semantic Web and Ser-

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the 20th Australasian Database Conference
(ADC 2009), Wellington, New Zealand, January 2009. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 92, Athman Bouguettaya and Xuemin Lin, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

vices to analyse the access control policies of poten-
tial collaboration partners and prove if collaboration
will respect the policies. We emphasize, however, that
the proposed method is not restricted to Web Service.
The problem we are addressing could be applicable to
generic business collaboration domain.

The access control policy of a single organisation
or service is defined (in a role-based model) in terms
of roles and their privileges. Given a request to ac-
cess a resource or perform an operation, the service
enforces the policy by analysing the credentials of the
requester and deciding if the requester is authorised
to perform the actions in the request.

Organisations collaborate with each other in var-
ious ways. The collaboration could be through an
agent, or a direct collaboration to provide joint ser-
vice. Before organizations engage in collaboration,
their authorization policies need to be analyzed to de-
cide the possibility of collaboration under the autho-
rization constraints defined by each individual party.
Therefore, the consistency of access policies of dif-
ferent organisations needs to be evaluated before a
collaboration can be formed.

Collaborations can reveal the differences between
the participants policies. For example, if a radiology
institute wants to collaborate with a medical centre,
accepting on line bookings from the medical centre,
but inconsistencies exist between two party’s access
control policies, then either the collaboration could
not be established securely or some negotiation is re-
quired to form the collaboration.

In a collaboration, a service can be accessed by a
party that can pass it to other parties. Suppose a
patient wants to keep privacy on his health records
except to the attending doctors. If the policy of the
doctor’s medical centre allows other research institute
to access the patient records, then the patient’s wishes
might not be respected. It is important to use access
policies to control the way in which information or
services are propagated between organizations.

Intuitively, the concept of ‘access policy consis-
tency’ means that (for the same service) the access
policies of different organizations are conflict free.
And organizations are able to collaborate in the in-
tended way securely in terms of access control poli-
cies.

Access control issues in single organisations or sin-
gle domains have been well studied (Sirer & Wang
2002, Kagal et al. 2004, Bhatti et al. 2004, Srivatsa
et al. 2007); however, access control in a collaborative
environment has just started to attract the attention
of the research community (Rouached & Godart 2007,
Yau & Chen 2008), and little attention has been given
to consistency study between access control policies
of different collaboration participants, particularly in
the context of Web Services.

Our previous analysis shows that there are differ-
ent ways of collaborating, and that each imposes dif-

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

105

ferent consistency constraints on the access policies
of prospective partners (He & Yang 2007). Under-
standing the different requirements on collaboration
partners’ authorization policies for different types of
collaboration is important, and access control in col-
laboration should take individual organization’s ac-
cess policies into account, as well as the type of the
collaboration.

Our previous work (He & Yang 2007) gave a model
of access control policy and showed what sorts of in-
consistencies occur between policies and how these in-
consistencies affect the various patterns of collabora-
tion. In this paper we extend those ideas by showing
how Description Logic can be used to formally model
policies and how a Description Logic reasoner (an au-
tomated proof engine) can analyse the inconsistencies
in policies and prove if the prospective partners could
collaborate securly in terms of access control policy.

Description logics are weak fragments of first-order
logic. The compensation for their limited expressively
is decidability, making them an option when auto-
mated proof is required. The W3C has produced the
Logic OWL-DL as a Description Logic standard for
the so called Semantic Web (Web Ontology Language
(OWL) 2004). OWL-DL is based on SHOIN , and
the logic SROIQ (Horrocks et al. 2006) is proposed
as the logic for the next OWL standard (OWL 1.1
Web Ontology Language 2006). We use SROIQ here
because it is expressive for a description logic and,
though not yet a W3C OWL standard, it is supported
by the Protégé1 editor and the pellet2 (Sirin et al.
2007) reasoner.

We first develop a model of access control policies
in SROIQ and then show how two policies can be
evaluated by comparing them in the model. We en-
code the inconsistency tests as concepts and relations
in our access control model. Individual policies ex-
pressed using the model can then be compared and
tested. Given two set of policies, with the roles and
privileges of the two organisations suitably related,
a reasoner will prove that the tests are either satis-
fiable or unsatisfiable and these results can be anal-
ysed to check whether they satisfy the requirements
for the particular collaboration. Since the tests are
part of the general model they are generic, meaning
they can be expressed once, proven to encode the re-
quired meaning and used to testing any two policies.
Because Description Logics are decidable, a reasoner
for SROIQ will always terminate with the proofs, no
matter how complex the policies.

The rest of paper is organized as follows. In the
preliminaries section (Section 2), We first discuss dif-
ferent collaboration patterns in Section 2.1 and review
the syntax and semantics of SROIQ in Section 2.2.
In Section 3, we propose a description logic model
for access control policy. The inconsistency tests are
defined and proved in Section 4. In Section 5, we an-
alyze requirements for collaborative policy (5.1) and
discuss and example (5.2). Related work is discussed
in Section 6, and concluding remarks and outline of
our future research directions are presented in Sec-
tion 7.

2 Preliminaries

Before we propose a model for access control policy
and conduct an analysis of the inconsistencies, we give
a brief introduction to collaboration patterns and de-
scription logic.

1Protégé 4.0 beta is available at http://protege.stanford.edu/
2Pellet is available at http://pellet.owldl.com/

2.1 Collaboration Patterns

Cross-organization collaborations consist of complex
relationships and interactions among organizations.
Some organizations collaborate with others through
an agent; some organizations might play a role of
‘middleman’ that pass one organization’s service to
another. We have concluded several different types
of basic collaboration between organizations in our
previous work (He & Yang 2007). Some of the iden-
tified patterns are presented in Figure 1. Here, we
introduce a number of patterns, but focus on one of
collaboration pattern in this paper: Service Propaga-
tion (SP).

• Composite Services. The Composite Service
we discuss here refers to the service that is based
on the integration of multiple service providers.
Two different cases are identified in service com-
position:

1. Composite service with agent
(CSWA): Multiple numbers of service
providers provide their services through an
centralized agent. For example in Figure 1,
Health Insurance Company normally works
with different medical service providers.
Each party has its own security policy.
The insurance company could have several
service providers for same type of service
and it works as an agent, and customers
can only access those services through the
network of the insurance company.

2. Joined service without an agent
(JSOA): Two organizations involving in
a peer-to-peer collaboration and provide a
joined service by integrating their business
processes or part of their processes together
to form a new service directly without any
agent. In Figure 1, heart disease specialist
clinic collaborates with a community service
center to provide a post-treatment care plan
to elders, they integrate part of their ser-
vices directly without any agent.

• Service Propagation (SP): it depicts collabo-
rations that involving multiple organizations and
‘forward’ privilege could be passed from one or-
ganization to another organization.

Service Propagation (SP): Service Propagation
we discuss here refers to collaborations involving priv-
ilege propagation. As illustrated in Figure 1, pa-
tient is the owner of patient records who has the ul-
timate right regards to her/his own record. Patient
can grant access right, i.e., access and forward privi-
leges to her/his General Practitioner (GP) in a med-
ical center so that the GP can access the patient’s
health records for diagnosis purpose. If the ‘forward’
privilege is granted to the GP, the GP could forward
this access right to a third party, e.g. staff in hos-
pital emergency room in Figure 1 example. In this
scenario, patient is service owner and GP is the col-
laborative partner and service propagator who could
grant access right to third parties.

The evaluation in the above example three parties
are involved, comparison and evaluation has to be
carried out twice:

1. The first one is between the patient and GP’s
clinic. The service owner – the patient will be re-
sponsible for the first evaluation to find the right
partner whose authorization policy does not vio-
late patient policy.

CRPIT Volume 92 - Database Technologies 2009

106

Figure 1: Cross-organization collaboration Patterns

2. The second one is between the clinic and the
emergency room. The GP’s clinic will be respon-
sible for the second evaluation to find the right
partner whose policy is not conflict with the pa-
tient’s policy and policy of the GP’s clinic.

2.2 Description Logic

In Description Logic (DL) the objects of interest (the
domain of discourse) is modelled using axioms about
concepts, roles and individuals. In SROIQ these
axioms are stated in the TBox, the RBox and the
ABox respectively. Figure 2 accompanies the fol-
lowing paragraphs on the syntax and semantics of
SROIQ as used in this paper — Horrocks et al.
(2006) give the full definition of SROIQ. In the
following, C and D range over concepts, with A for
atomic concepts; S, R and subscripted versions of
these range over roles; and x and y range over indi-
viduals.

Concepts are defined in the TBox, starting with
atomic concepts and building more complex defini-
tions from these. All concepts are subsumed by the
universal concept >, called Thing in OWL. The com-
plement, union and intersection of concepts are used
to define concepts in terms of others, and hierarchies
of concepts are constructed using concept inclusion.
Concepts can be specified as disjoint from other con-
cepts. Existential and universal restrictions specify
concepts in terms of the relationship to other con-
cepts through roles.

Axioms defining roles are specified in the SROIQ
RBox. DL roles, binary predicates on individuals,
show the relationships between individuals. Roles can
be constructed into hierarchies, composed (composi-
tion of relations) and specified as inverses of other
roles. Further, roles can be stated as transitive, sym-
metric, reflexive or functional (single-valued).

Individuals represent members of the domain. As-
sertions about the existence of individuals, their clas-
sification into concepts and their participation in roles
are made in the ABox.

A SROIQ knowledge base K comprises a TBox,
an RBox and an ABox. The semantics of a knowledge
base is given by an interpretation I = (∆I , ·I) that
specifies a set of objects for the domain ∆I and a

function ·I that maps each individual to an object
in ∆I , each concept to subset of ∆I and each role
to a subset of ∆I × ∆I . An interpretation I is a
model of K, written I |= K, if it is consistent with
the axioms in the TBox, RBox and ABox. A concept
C in the TBox of a knowledge base K is satisfiable if
I |= K for some interpretation I where CI 6= ∅. A
concept C subsumes a concept D if C v D is implied
by the knowledge base: equivalently, if CI ⊆ DI in
all models.

Since the subsumption and satisfiablilty problems
in SROIQ are decidable (they are also mutually re-
ducible) a SROIQ reasoner can always determine the
satisfiability of a concept. In this work we are mainly
interested in satisfiability checking, with subsumption
of minor importance. We use Protégé 4.0 beta to edit
our SROIQ definitions and pellet to prove satisfia-
bility.

The DL in this paper follows the convention of
concepts beginning with a capital letter and roles with
a lowercase letter. For simplicity we write

role : (ConceptA× ConceptB)

to indicate that role is a DL role with domain
ConceptA and range ConceptB . The definition of a
role may be superscripted with F to indicate a func-
tional role, T for transitive,S for reflective and R for
reflexive. That instance a is classified into concept
C is written C(a). DL expressions are written in the
so-called German DL Syntax.

3 Model for Access Control

We base our policy model on the core definition
of Sandhu et al.’s (1996) Role-Based Access Control
(RBAC), now a NIST standard (ANSI INCITS 359-
2004 2004). RBAC models access control in terms
of roles, job functions, and the permissions assigned
to those roles. We remove notions of sessions and
users from Core RBAC, sessions because they repre-
sent the dynamic rather than structural elements of
access control, and in place of users we add the cre-
dentials required to access a role. The role hierarchies
of Hierarchical RBAC are not captured by our current
model, but we plan to investigate role hierarchies in
future work. The purpose of the model is to provide a

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

107

Constructor name Syntax Semantics
universal > ∆I
empty ⊥ ∅
atomic concept A AI

concept negation ¬C ∆I \ CI

concept intersection C uD CI ∩DI

concept union C tD CI ∪DI

concept inclusion C v D CI ⊆ DI

concept equivalence C ≡ D CI ≡ DI

existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I .(x, y) ∈ RI ∧ y ∈ CI}
universal restriction ∀R.C {x ∈ ∆I | ∀y ∈ ∆I .(x, y) ∈ RI → y ∈ CI}
role inclusion S v R SI ⊆ RI

role inverse R− {(y, x) | (x, y) ∈ RI}
role composition S1 ◦ . . . ◦ Sn v R SI1 ◦ . . . ◦ SIn ⊆ RI

Figure 2: The constructors and semantics (for an interpretation I = (∆I , ·I)) of SHOIN

formal framework that is representative, though not
prescriptive, of policy and highlights issues relevant
to collaboration.

Each service in an organisation has a policy de-
scribing the privileges assigned to the roles that may
access the service and, because the processing for any
service is the same, we describe the model without
referring further to the policies of different services in
the same organisation.

Figure 3 depicts the policy model. This paragraph
describes the model in general terms and then the
remainder of the section describes the DL encoding
of the model. The main entities in the model are
roles, credentials, privileges, obligations and provi-
sions. The users of the service are not defined and
may be, for example, humans or computer agents.
Users are not statically assigned to roles, rather cre-
dentials are used to authenticate the holder as autho-
rised to act in a particular role. Each role is assigned
a number of privileges, which, for example, may be
the right to edit files, access resources or release in-
formation. Obligation and provision conditions are
attached to each assignment of a privilege to a role.
Obligations are conditions that must be satisfied after
the privilege is accessed, while provisions are condi-
tions that must be satisfied before the privilege is ac-
cessed: hence, provisions further constrain the right
to access a privilege, such as restricting the time a
privilege is accessed, while obligations enforce what
must be done after the privilege is accessed, such as
writing to a log.

There is an unfortunate name clash between DL
roles, which are binary relations, and RBAC roles,
which are units of authorisation in RBAC and indi-
viduals in the concept Role in the policy model. Here,
either the context will make clear what is meant or
the meaning is explicitly stated; often relation is used
in place of DL role.

In the DL encoding, the concept Role models the
set of roles, individuals from the concept Credentials
model the set of credentials required by a role and
the relation requires links a role to the credentials
required to authenticate in that role.

Role v ∃requires.Credentials

requiresF : (Role × Credentials)
satisfies : (Credentials × Credentials)

(1)

The definition of Role ensures that every role is
linked through the requires relation to a set of creden-
tials. Since requires is defined as functional (single-
valued), each role is linked to only one set of creden-
tials.

The structure of credentials are not further mod-
elled here; though credentials were considered more
deeply in the original work (He & Yang 2007). The
model assumes a preordering, satisfies, on Credentials
that, in the absence of further structure, shows when
one set of credentials would also satisfy the require-
ments of another set. For example, credentials requir-
ing a password and a digital certification would also
satisfy credentials only requiring a certificate.

The only relations directly supported in a DL are
binary roles, hence the ternary relation between priv-
ileges, obligations and provisions in the policy model
needs to be represented by a concept. The con-
cept PrivilegeAssignment represents the ternary rela-
tion and relations privilege, obligation and provision
link a PrivilegeAssignment to its associated Privilege,
Obligation and Provision.

PrivilegeAssignment v ∃privilege.Privilege
PrivilegeAssignment v ∃obligation.Obligation
PrivilegeAssignment v ∃provision.Provision

privilegeF : (PrivilegeAssignment × Privilege)

provisionF : (PrivilegeAssignment × Provision)

obligationF : (PrivilegeAssignment ×Obligation)
(2)

Obligations and Provision are themselves subcon-
cepts of PrivilegeCondition.

Obligation v PrivilegeCondition

Provision v PrivilegeCondition
(3)

As with credentials, the exact structure of priv-
ileges, obligations and provisions are not important
for this paper, and again assume an ordering on obli-
gations and provisions.

obl order : (Obligation ×Obligation)
prov order : (Provision × Provision)

(4)

The intent is the same as for satisfies: that is, if
(o1, o2) ∈ obl order then o1 is a stronger obliga-
tion than o2, and similarly for prov order . That
(c1, c2) ∈ satisfies (and similarly for obl order and
prov order) may be read as if it were written c1 im-
plies c2 because, for the purposes of this paper, the
logical meaning of, and logical relation between, cre-
dentials, obligations and provisions is more important
than any structure these elements of a policy might
have.

CRPIT Volume 92 - Database Technologies 2009

108

DL Concept

sub−Concept

DL role

Privilege
Assignment

Privilege Obligation Provision

Privilege
Condition

requires

satisfies

Role

Credentials

possess

privilege
obligation

provision

Figure 3: Policy Model (relations privilege, obligation and provision not shown)

A role may posses many privileges, but a particular
privilege assignment can be made to only one role.

possesses : (Role × PrivilegeAssignment)

possesses−F
(5)

Note that (5) merely enforces that any particu-
lar instance of a privilege assignment cannot be al-
located to multiple roles; it does not preclude ex-
actly the same privilege and conditions being allo-
cated to multiple roles; (5), however, enforces that
if the same privilege and conditions are allocated to
multiple roles, a different PrivilegeAssignment must
be used in each case. The purpose of the restriction
is to ensure that the role allocated to any particular
privilege assignment can be determined (this is nec-
essary for example in Section 4.3.1).

4 Classification of Inconsistencies

Before discussing role, credential and privilege incon-
sistencies, the three types of inconsistencies discussed
in this paper, this section further outlines our model
for consistency checking.

Assume two organisations, A and B, requiring a
collaboration, where both organisations have an ac-
cess control policy, PA for A and PB for B, encoded in
the model defined in the previous section (or defined
in some other way and translated into the model). For
consistency and collaboration checking, PA and PB
must first be combined into a single model and then
checked. The policy model from the previous section
is extended by allowing the encoding and checking for
PA and PB .

First, the model is extended for the roles in PA
and PB .

RoleA v Role
RoleB v Role

RoleA disjoint with RoleB

(6)

Next, a comparability relation between the roles
in the two organisations is defined.

role compAB : (RoleA × RoleB)
role compBA : (RoleB × RoleA)

(7)

The comparability relations in (7), the following
relations in (8) and extensions to obligation, provision
and privilege, record the notion that to meaningfully
compare the policies PA and PB some basis for this
comparison is required. Either human experts from
A and B, metadata or some automated system is re-
quired to specify which roles in RoleA relate to which
roles in RoleB and what privileges are equivalent;
while this process is important for checking two poli-
cies, it is not dealt with in description logic and for
the purposes of this paper it is simply assumed that
that the relations are supplied along with PA and PB .

The relations role compAB and role compBA re-
flect the notion that for some collaborations the cor-
respondence between roles will almost be an equiva-
lence but, in other cases, a single role may be related
to many roles in the other organisation: for exam-
ple, doctor in one organisation might relate to both
physician and specialist in the other.

A similar notion to the role comparisons, though in
this case an equivalence, is introduced for privileges.

PrivilegeA v Privilege
PrivilegeB v Privilege

PrivilegeA disjoint with PrivilegeB

priv equivAB : (PrivilegeA × PrivilegeB)
priv equivBA : (PrivilegeB × PrivilegeA)

priv equivBA ≡ priv equivAB
−

(8)

Similar definitions to, say, (8) could be added for
relating credentials, obligations and provisions be-
tween PA and PB ; however, it is more convenient to
combine the two policies using the ordering relations
already present in the model. In the combined model,
obligation, provision and privilege are orderings over
the obligations, provisions and privileges of both or-
ganisations.

Further to these definitions, parts of the model
must be closed. DLs work under the open-world as-
sumption, meaning that a DL knowledge base defines

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

109

a domain in terms of known concepts, roles and indi-
viduals but, also, that the definition is open and any-
thing not explicitly stated, but consistent with the
given definitions, may also be present in the domain.
A closed-world assumption, on the other hand, takes
the definitions as all there is to know about the do-
main.

For the purposes of this paper, the open-world as-
sumption means that a DL reasoner may add to the
policies and, in particular, further roles or compara-
bilites could be added. Parts of a knowledge base are
closed by stating that the given concepts or instances
are really all there is. For example, RoleA ≡ {a, b, c}
closes RoleA by stating that the roles a, b and c are
the only inhabitants. It is then necessary to spec-
ify that these inhabitants are distinct — essentially,
adding a unique name assumption. Closing a relation
r means explicitly stating that the set of (a, b) tuples
specified for r are the only tuples in r. For the tests
given in the remainder of this section, RoleA, RoleB ,
possesses, role compAB , role compBA, priv equivAB
and priv equivBA all need to be closed. For the re-
maining concepts and relations, the tests take advan-
tage of open-world reasoning and so closure is not
necessary.

The following shows how to investigate inconsis-
tencies between PA and PB , given that they are in a
combined model that has been suitably closed.

4.1 Role Inconsistencies

Role inconsistencies between PA and PB are present
when there are roles in one that have no comparable
roles in the other. If PA has roles with no equiv-
alent in PB , then this inconsistency indicates that,
for at least those roles, PA admits privileges that PB
does not and, hence, that PA might allow some users
privileges that PB would not allow users with similar
credentials.

The Missing Role Node concept, MRNA, repre-
sents the roles in RoleA that have no comparable role
in RoleB . The concept B comp is defined to be all
the roles in RoleA that have some comparable role in
RoleB . RoleA is defined such that all roles in organi-
sation A must be classified as in MRNA or B comp.

MRNA v RoleA

B comp ≡ RoleA u ∃role compAB .RoleB

MRNA disjoint with B comp
RoleA v B comp tMRNA

(9)

The combined effect of (9) is that all roles in RoleA
are classified into either MRNA or B comp and, if
and only if all roles in RoleA have some compara-
ble role, MRNA is inconsistent, otherwise some roles
in RoleA do not have comparable roles in RoleB and
these are classified in MRNA. A similar definition
to (9) is made for MRNB , the roles in RoleB with no
comparable role in RoleA.

4.2 Credential Inconsistencies

There is an inconsistency in credentials when roles
judged as comparable have different credential re-
quirements. Such an inconsistency means that the
two organisations have different requirements on what
needs to be established before the privileges associ-
ated with a role can be accessed and could mean that
equivalent roles in the two organisations have access
to similar privileges but with a less stringent autho-
risation requirement in one organisation.

The goal is to establish if, for comparable roles, PA
has more stringent authorisation requirements than

Given the relations

r1 : (C1 × C3)
r2 : (C2 × C4)
r3 : (C3 × C4)

(11)

A new relation r relating individuals in C1 and
C2 only if they are related through r1 ◦ r3 ◦ r2−
is defined by

r1− ◦ r ◦ r2 v r3 (12)

and by ensuring that

Domain(r) v C1 u ∃r1 .C3

Range(r) v C2 u ∃r2 .C4
(13)

(12) and (13) ensure that r has only the right
pairs. The correctness of this definition is shown
by the following proof.

(c1, c2) ∈ r
→

∃c3c4.(c1, c3) ∈ r1 ∧ (c2, c4) ∈ r2 ∧ (c3, c4) ∈ r3

Proof. The domain and range restrictions in (13)
are required to show the existence of a c3 and c4
from (c1, c2) ∈ r and (12) is used to finish the
proof.

While this scheme does project a relation, it may
not capture the intended meaning if r1 and r2
are not functional. If r1 and r2 are not func-
tional, (12) has the potentially unwanted side-
effect of adding extra pairs to r3 , and there also
isn’t enough information in r to represent the mul-
tiple ways individuals in C1 and C2 might relate
through the chain r1 ◦ r3 ◦ r2−.

Figure 4: Pattern: Projecting a Relation

PB (or similarly from PB to PA). The model has a
relation for comparable roles and an ordering on cre-
dentials, but DL isn’t expressive enough to directly
encode the required property. In general, it isn’t pos-
sible to directly express a property of the form“if a
and b are related by r and a and b are related by r′ and
r′′ to ca and cb respectively, are ca and cb related via
r′′′?” With the open-world assumption the required
property can be expressed indirectly. Two things are
required to express such a property in a DL: the first
is the pattern in Figure 4, and the second is a tech-
nique often used with satisfiability which is to express
properties negatively rather than positively.

First, define a relation disjoint with satisfies.

not satisfies : (Credentials × Credentials)
not satisfies disjoint with satisfies

(10)

The relation not satisfies is not the inverse of
satisfies, it may not even relate everything that isn’t
related by satisfies, instead the open-world assump-
tion means it can be any relation on Credentials that
shares no tuples with satisfies. A DL reasoner is free
to choose any relation satisfying this constraint in an
attempt to satisfy the definitions below.

Next, the pattern in Figure 4 is used to project
the not satisfies relation between Credentials to a re-
lation nsatAB between RoleA and RoleB . In the pat-
tern replace C1 by RoleA, C2 by RoleB , C3 and C4 by
Credentials, r1 and r2 by requires, r3 by not satisfies

CRPIT Volume 92 - Database Technologies 2009

110

and r by nsatAB , giving definition (14). Since requires
is functional, the projection relates roles if and only
if their credentials are related by not satisfies. Note
that the reasoner will infer further restrictions on the
stated types for relations such as nsatAB because of
the restrictions on the other relations in (14). In fact,
stating a domain and range for nsatAB isn’t necessary
at all; however, for clarity, the most comprehensive
definitions of most concepts and roles are used in this
paper.

nsatAB : (RoleA × RoleB)

requires− ◦ nsatAB ◦ requires v not satisfies
(14)

Lastly, role compAB and nsatAB are com-
bined. The requirement is for the combination,
role compAB nsat , to relate two roles rA and rB if
and only if (rA, rB) ∈ role compAB and (rA, rB) ∈
nsat role, which is achieved by forming the intersec-
tion of role compAB and role compAB .

role compAB nsat : (RoleA × RoleB)
role compAB nsat v role compAB

role compAB nsat v nsatAB

(15)

Two roles rA and rB are thus related by
role compAB nsat exactly when rA and rB are com-
parable and the credentials required for rA are not
more stringent than those required for rB .

To prove that the required meaning is captured
by role compAB nsat requires showing (in the under-
lying semantics)

(rA, rB) ∈ role compAB nsat →
(rA, rB) ∈ role compAB∧

∃cA, cB .(rA, cA) ∈ requires∧
(rB , cB) ∈ requires ∧ (cA, cB) /∈ satisfies

the proof of which follows easily from the proof in
Figure 4 and the definitions of role compAB nsat and
nsatAB .

A DL reasoner will classify role compAB nsat as
unsatisfiable when all roles in PA have stricter cre-
dential requirements than the corresponding roles in
PB : that is, the credential requirements for each role
in RoleA also satisfies (via satisfies) the credential re-
quirements for the corresponding roles in RoleB . If
this is not the case, a DL reasoner will classify pairs
of roles into role compAB nsat where the credential
requirements for the role from RoleA do not also sat-
isfy the requirements for the roles from RoleB .

4.3 Inconsistencies in Privileges

He & Yang (2007) discussed three inconsistencies for
privileges: inconsistencies in the privileges allocated
to comparable roles and two types of inconsistencies
in the conditions associated with comparable privi-
leges for comparable roles. The four tests to deter-
mine the presence of these inconsistencies given by
He & Yang are fine-grained enough to pinpoint an
inconsistency between comparable roles and the priv-
ilege causing the inconsistency. However, the com-
bined effect of the four tests is, essentially, equivalent
to determining if comparable roles in the two collab-
orating parties have equivalent privileges and, if for
equivalent roles and equivalent privileges, one party
has weaker conditions than the other.

Here, only a test to determine if equivalent roles
have comparable conditions for equivalent privileges
is discussed. The roles and privileges causing an in-
consistency can still be recovered.

The Pair concept (16) defines a pair (a, b) as
an individual p, with Pair(p), (p, a) ∈ left and
(p, b) ∈ right .

rightF : (Pair × Thing)

leftF : (Pair × Thing)
Pair v ∃left .Thing
Pair v ∃right .Thing

(16)

Figure 5: Pattern: Pairs

4.3.1 Different Conditions

If the conditions on equivalent privileges allocated to
comparable roles are different, then these roles in the
two organisations access a privilege with different,
perhaps incompatible, restrictions. However, if the
difference is one were the conditions can be meaning-
fully compared, then the comparison will reveal that
one role accesses the privilege under stronger restric-
tions than the other.

The situation is similar to credentials, in that the
test ultimately relies on the orderings between con-
ditions; however, the relations between both privi-
leges and roles also need to be taken into account.
Further, the credential checking relied on the func-
tional relation requires; the projection pattern used
with requires is not applicable for possesses because
possesses is not functional. For non-functional rela-
tions a projection onto a single relation can’t repre-
sent all the possible relationships: for example, each
role may relate through possesses to a number of
PrivilegeAssignments, so a single relation between
Roles can’t capture the many possible relationships
to privileges and their associated conditions. How-
ever, the same general principle can still be used if
possesses is first converted to a concept.

Pairs (Figure 5) can be a more convenient rep-
resentation of a relation than the corresponding DL
role because the expressions allowed on roles and con-
cepts are different. In this case, using the pairs-for-
relations pattern (Figure 6) for possesses introduces
functional relations left and right and, thus, the rela-
tions between roles, privileges and conditions can be
projected as a relation between Pairs of Roles and
PrivilegeAssignments.

A relation, pa eq nordAB , that relates
PrivilegeAssignments from PA and PB when
the Privileges are related, but the conditions are not,
is defined by

• projecting both obl order and prov order to a
(PrivilegeAssignment×PrivilegeAssignment) re-
lation (see Figure 4 and 14)

• forming a subrelation of both the above two re-
lations (as was done in (15)) and then defining
not prov obl orderAB as a relation disjoint from
this (see also (10))

• projecting priv equivAB to a relation between
PrivilegeAssignments (Figure 4) and defining
pa eq nordAB as a subrelation of this and
not prov obl orderAB (again, see (15)).

Pairs Pair possess A and Pair possess B are de-
fined (using the pattern in Figure 6) as pairs repre-
senting the possesses relations for PA and PB .

Relations role compAB relates comparable
roles in RoleA and RoleA, pa eq nordAB relates
PrivilegeAssignments and the specialisations of left
and right on Pair possess A and Pair possess B
are functional. The projection pattern (Figure 4)

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

111

Pairs, as defined in (16) (Figure 5), can be used to
represent DL roles. DL roles (binary relations) are
simply sets of (a, b) pairs; hence, if left and right
from Pair are used to represent the domain and
range, a set of Pair individuals can represent the
information in a role. The same principle applies
for PrivilegeAssignment (2), which represents a
ternary relation. A Pair representation of a rela-
tion can even be derived from an existing relation.
Given

r : (C1 × C2) (17)

a sub-relation can be derived.

Pair r v Pair

left r v left , right r v right
Pair r v ∃left r .C1 , Pair r v ∃right r .C2

(18)

left r− ◦ right r v r (19)

The proof that the relation represented by the
pair is contained in r follows easily from defini-
tion (18), which makes Pair r a type of pairs
of C1 and C2 individuals, and definition (19),
which ensures that if (p, c1) ∈ left r and (p, c2) ∈
right r, with Pair r(p), then (c1, c2) ∈ r.

Figure 6: Pattern: Pairs for Relations

can thus be used to project role compAB and
pa eq nordAB to relations between Pair possess A
and Pair possess B . Finally, these two relations
are combined (as was done in (15)) to produce
rcomp pa nordAB , which is unsatisfiable if the
privileges for comparable roles have more strin-
gent constraints in PA than in PB and contains
Role-PrivilegeAssignment pairs with uncomparable
conditions otherwise.

5 Access Control Policy Requirements and
Example

This section first examines the inconsistencies to con-
sider for the Service Propagation pattern and then
discusses and example of using a Description Logic
reasoner to analyse policies for collaboration.

5.1 Access Control Policy Requirements

Several cross-organization collaboration patterns
were identified previously (He & Yang 2007), and
some of these were reviewed in Section 2. The differ-
ent collaboration patterns result in different consis-
tency requirements on the policies of the prospective
collaboration partners. The inconsistencies between
policies can result in collaboration being accepted,
rejected or can require negotiation to remove incon-
sistencies. This paper focuses on Service Propagation
and on inconsistencies that can be automatically ac-
cepted or rejected.

Service Propagation implies a ‘forwarding’ be-
haviour from the service owner to the collaborative
partner. Unwanted ‘forwarding’ could happen if the
partner has authorization policy that is less restrictive
than the owner’s. Therefore, policy of collaboration
partner should be more restrictive than the service
owner’s. There are three typical ways to have one
policy looser than the other:

• One set of policies has more roles to access the
same service than the other set of policies;

• One set of policies has less credentials required
for an equivalent role than the other set;

• For an equivalent role, more privileges, or privi-
leges with weaker conditions, are assigned in one
set of policies than the other set.

Based on above principles, the following defines
the requirements on collaboration partners for Ser-
vice Propagation. The requirements are in terms of
the definitions in the previous section the following
assumes organisation A is the service owner and B is
the collaborator.

1. Every role defined by the partner should have a
a comparable role in the service owner. In terms
of Section 4.1, concept MRNB (not given in the
text, but similar to MRNA) should be unsatisfi-
able;

2. The credentials required for equivalent roles
should be be more restrictive in the partner:
role compBA nsat should be unsatisfiable;

3. More privileges should be granted to roles in PA
than their equivalents in PB (not discussed in
previous section);

4. Inconsistencies in conditions are generally ne-
gotiable, but if the collaboration partner has
stricter conditions, then the collaboration is ac-
ceptable: that is, rcomp pa nordBA unsatisfiable.

5.2 Example

The following example demonstrates how an access
control policy can be presented in the DL policy
model and how the inconsistencies between the ac-
cess control policies of collaboration partners can be
evaluated using a DL reasoner.

If services and their policies are listed in a repos-
itory, a service searching for a collaboration partner
can search the repository for a service with the re-
quired functionality and then check if the access con-
trol policies are compatible. Assume a medical centre
that requires a collaboration with a pathology centre.
The two will collaborate on the tests of patients, their
records and the results of tests. The centre will search
for a medical service registry for potential pathology
collaborators and test the access control policies to
find a suitable partner. The policies of the medical
centre and two potential collaborators are shown be-
low.

1. Medical Clinic:

• Attending doctors have the privilege to ac-
cess and forward patient information;

• a provision is attach to the forward priv-
ilege: receipients must be a doctor in the
chosen pathology institute.

A policy must be defined with
individuals classified as follows:
Role(mc doctor), Credentials(mc doctor id),
PrivilegeAssignment(mc pa),
Privilege(access), Privilege(mc forward),
Provision(to partner pathology doctor)
and Obligation(no obligation). With
(mc doctor , mc doctor id) ∈ requires,
(mc doctor , mc pa) ∈ possess,
(mc pa, mc forward) ∈ privilege,
(mc pa, no obligation) ∈ obligation,
(mc pa, to partner pathology doctor) ∈
provision and a privilege assignment for
access.

CRPIT Volume 92 - Database Technologies 2009

112

2. Pathology institute X:

• Attending doctors have privilege forward
patient information;
• a provision attach to forward privilege: re-

ceipients must be doctors in X

The policy definitions are
as follows: Role(doctorX),
Credentials(doctor and path id),
PrivilegeAssignment(paX), Privilege(forwardX),
Provision(to X pathology doctor) and
Obligation(no obligationX). With
(doctorX , doctor and path id) ∈ requires,
(doctorX , paX) ∈ possess, (paX , forwardX) ∈
privilege, (paX , no obligationX) ∈ obligation,
(paX , to X pathology doctor) ∈ provision.

3. Pathology institute Y:

• Attending doctors have privilege to forward
patient information;
• a provision is attach to forward privilege:

receipient must be either a doctor in Y or
staff in a collaborating research institute.

The policy definitions are similar to
above, with the important provision
Provision(to Y pathology doctor or research).

To find a suitable collaboration partner, the
medical centre must test its policy with pathology
institutes X and Y. The policies are tested in the
combined model; one test with institute X and one
with Y. Assume in both cases that the medical
centre is policy A and that each pathology institute
is policy B (in terms of A and B as discussed
in the previous section). The relationships for
role compAB and others are straightforward, im-
portantly provision to X pathology doctor is more
restrictive than to partner pathology doctor , hence
(to X pathology doctor , to partner pathology doctor) ∈
prov order , while to Y pathology doctor or research
is less restrictive than the provision in the medical
centre and so is not related by prov order .

In the comparison with institute X the reasoner
proves the required concepts as unsatisfiable, and thus
shows that Pathology institute X is a suitable partner
for collaboration. However, in testing with institute
Y, the reasoner proves that concept rcomp pa nordBA
is satisfiable (because Pathology institute Y allows
extra forwarding privileges), and thus shows that
Pathology institute Y is not a suitable collaboration
partner.

Patients could test if the policy of the medical cen-
tre satisfies their requirements and make their choice
of suitable medical services based on these policy
tests.

The models, tests and example in this paper have
been encoded in SROIQ, using Protégé, and the rea-
soning done with Pellet. The files are available on
request.

6 Related Work

Research has been done in the area of access con-
trol / authorization control for web services. Most of
the works concentrate on authorization control pol-
icy language specifications and a number of formal
models have been developed (Sirer & Wang 2002,
Kagal et al. 2004, Bhatti et al. 2004, Srivatsa et al.
2007). These studies provide insights on security con-
straints in single organization from different perspec-
tives, which helped us to build up our authorization

policy model. But these studies did not look at au-
thorization issues in the context of cross-organization
collaborations.

Policy issues in distributed systems have been ac-
tively growing over the years, Bonatti & Mogavero
(2008) proposed an inclusion mappings based policy
comparison method, which could be useful for rule-
based policis, particularly for recursive rules. Wang
et al. (2004) addressed security policy reconsiliation
issues in distributed computing environments, and
focus on security provisioning policy. The authors
based their reconsiliation on structure of the policies,
which is similar to our work. It also provides an alter-
native for policy specification. However, our focus in
this paper is policy comparison and evaluation rather
than reconsiliation and we address authorization poli-
cies.

A number of studies concentrated on authorization
architecture (B.Carminati et al. 2006, Ziebermayr &
Probst 2004). B.Carminati et al. (2006) suggested
a brokered architecture to build composite Web ser-
vices according to the specified security constraints.
They used security matchmaker to find right collabo-
ration partners who have compatible security policies,
which is similar to our research. However, it did not
address the issue that inconsistencies and conflicts ex-
ist between security policies of prospective partner.
Nothing was mentioned about how security policies
from different partners could be combined and how to
solve the conflicts between these policies. Our work
identified various types of inconsistencies between au-
thorization policies and provided suggested solution.
We believe some of inconsistencies are acceptable or
negotiable for intended type of collaboration.

There are few papers on Web service authoriza-
tion control in the collaborative environment. We are
aware of the work presented by Rouached & Go-
dart (2007), which presented a framework for man-
aging authorization policies for Web service compo-
sitions. The proposed framework addressed autho-
rization policy conflicts and provided methodology for
conflicts detection. Yau & Chen (2008) proposed an
approach to security policy integration and conflict
reconciliation, which is relate to our research. The au-
thors presented a similarity-based policy adaptation
algorithms to adapt changes in collaborative groups
and a negotiation-based protocol for conflict reconcil-
iation But they neglected the fact that different types
of collaboration affect the way the collaboration pol-
icy is developed as well as the requirements on collab-
orative partner’s authorization policy. An evaluation
on collaborative partner’s access policy has to be car-
ried out before the collaboration be established. Our
work is to fill in this gap. We believe this is the first
step toward conflicts detection and suitable collabo-
ration partners discovery.

Description Logic (DL) has been used in differ-
enct aspects of access control (Chae & Shiri 2007,
Shields & Molloy 2007, Zhao et al. 2005, Muthaiyah
& Kerschberg 2006). Shields & Molloy (2007) pro-
posed an efficient solution to XML access control that
use description logic and decidable rules to decide the
permissions for an individual at the time they request
information. Chae & Shiri (2007) demonstrated how
to express the RBAC concept in object-oriented sys-
tems using description logic and how to use DL to
make authorization decisions between the role hier-
archy and the object hierachy. All of these studies
are only focus on access control in single organiza-
tion, access control in collaborative environment has
not been well studied.

In summary, none of these studies went deep
into different types of cross-organization collabora-
tion, which could raise different requirements on ac-
cess control policy of prospective collaborative part-

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

113

ners. None of studies provided tool for access pol-
icy comparison and evaluation. Our goal is to iden-
tify these different requirements for different types of
cross-organization collaboration, to analysis inconsis-
tencies between policies and provide suggestions and
solutions to inconsistencies according the collabora-
tion type, to propose an access control model and
automatic prover that could assist organizations to
discover compatible collaboration partners.

7 Conclusion/Discussion

Challenging security and access control issues arise in
Web Services. In particular, when cross-organisation
collaborations are formed, the access control policies
of the collaboration partners must be inspected. If
the policies are not compatible, the collaboration does
not respect the access control policy of at least one of
the partners.

In this paper we have presented a Description
Logic model for access control policy. Based on
this model, we have demonstrated how a Description
Logic reasoner can be used to find the inconsistencies
between the policies of potential collaborators. The
reasoner constructs a proof demonstrating the consis-
tency, or otherwise, of the policies by reasoning about
tests that we added to the policy model. With formal
descriptions of access control policy and different pol-
icy inconsistencicy types, we can evaluate prospective
collaborators’ access policies against requirements for
requested collaboration pattern and classify any in-
consistencies.

The method can also be use to analyse the impact
changes in policy will have for collaboration partners.

Description Logics are mathematically simple, but
that does not mean that Description Logic definitions
are not complex; in particular, the effect any defini-
tion has on others is not always clear. Because each
definition is made in terms of restrictions that may
affect other definitions, we have chosen to verify that
our definitions have the intended meaning by prov-
ing that definitions are correct once translated to the
model theoretic semantics.

In the future we intend to extend this work to
incorporate the following:

• Refine cross-organization collaboration patterns
from different perspectives, for example, from
business prosess point of view.

• Take context constraints that could affect access
control into consideration, e.g. access time or
access location.

• Discuss Role Based Access Control issues under
collaborative context, e.g. role hierarchies and
separation of duty in collaboration environment.

References

ANSI INCITS 359-2004 (2004).

B.Carminati, Ferrari, E. & Hung, P. (2006), Security
conscious web service composition, in ‘IEEE Inter-
national Conference on Web Services’, Chicago, Illi-
nois, USA, pp. 489–496.

Bhatti, R., Bertino, E. & Ghafoor, A. (2004), A trust-
based context-aware access control model for web-
services, in ‘IEEE International Conference on Web
Services’, San Diego, CA, pp. 184–191.

Bonatti, P. A. & Mogavero, F. (2008), Compar-
ing rule-based policies, in ‘9th IEEE International
Workshop on Policies for Distributed Systems and
Networks’, New York, USA, pp. 11–18.

Chae, J.-H. & Shiri, N. (2007), Description logic
framework for access control and security in object-
oriented systems, in ‘RSFDGrC’, pp. 565–573.

He, D. D. & Yang, J. (2007), Security policy specifi-
cation and integration in business collaboration, in
‘2007 IEEE International Conference on Services
Computing (SCC 2007)’, Salt Lake City, Utah,
USA, pp. 20–27.

Horrocks, I., Kutz, O. & Sattler, U. (2006), The even
more irresistible SROIQ, in ‘Proc. of the 10th Int.
Conf. on Principles of Knowledge Representation
and Reasoning (KR 2006)’, AAAI Press, pp. 57–
67.

Kagal, L., Paolucci, M., Srinivasan, N., Sycara, K.
& G.Denker (2004), ‘Authorization and privacy for
semantic web services’, IEEE Intelligent Systems
19(4), 50–56.

Muthaiyah, S. & Kerschberg, L. (2006), Dynamic
integration and semantic security policy ontol-
ogy mapping for semantic web services (sws), in
‘ICDIM’, pp. 116–120.

OWL 1.1 Web Ontology Language (2006), W3C Mem-
ber Submission. Available at http://www.w3.org/
Submission/2006/10/.

Rouached, M. & Godart, C. (2007), Reasoning about
events to specify authoriztion policies for web ser-
vices composition, in ‘Proceedings of 2007 Inter-
national Conference on Web Services’, IEEE, Salt
Lake City, UT.

Sandhu, R. S., Coyne, E., Feinstein, H. & Youman, C.
(1996), ‘Role-based access control models’, IEEE
Computer 29(2), 38–47.

Shields, B. & Molloy, O. (2007), Using description
logic and rules to determine xml access control, in
‘DEXA Workshops’, pp. 718–724.

Sirer, E. G. & Wang, K. (2002), An access control
language for web services, in ‘SACMAT’, pp. 23–
30.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A. &
Katz, Y. (2007), ‘Pellet: A practical OWl-DL rea-
soner’, Journal of Web Semantics 5(2), 51–53.

Srivatsa, M., Iyengar, A., Mikalsen, T., Rouvellou,
I. & Yin, J. (2007), An access control system for
web service compositions, in ‘Proceedings of Inter-
national Conference on Web Services’, IEEE, Salt
Lake City, UT.

Wang, H., Jha, S., Livny, M. & McDaniel, P. D.
(2004), Security policy reconciliation in distributed
computing environments, in ‘5th IEEE Interna-
tional Workshop on Policies for Distributed Sys-
tems and Networks’, pp. 137–147.

Web Ontology Language (OWL) (2004), W3C Rec-
ommendations. Available at http://www.w3.org/
2004/OWL/.

Yau, S. S. & Chen, Z. (2008), Security policy integra-
tion and conflict reconciliation for collaborations
among organizations in ubiquitous computing en-
vironments, in ‘UIC’, pp. 3–19.

Zhao, C., Heilili, N., Liu, S. & Lin, Z. (2005), Rep-
resentation and reasoning on rbac: A description
logic approach, in ‘ICTAC’, pp. 381–393.

Ziebermayr, T. & Probst, S. (2004), Web service
authorization framework, in ‘Proceedings of the
IEEE International Conference on Web Services
(ICWS’04)’, San Diego, CA, pp. 614–621.

CRPIT Volume 92 - Database Technologies 2009

114

Mobile Information Exchange and Integration: From Query to
Application Layer

Van T.K. Tran Raymond K. Wong William K. Cheungα Jiming Liuα

School of Computer Science & Engineering
University of New South Wales

and National ICT Australia
Emails: trantkv@cse.unsw.edu.au

raymond.wong@nicta.com.au

αDepartment of Computer Science
Hong Kong Baptist University

Emails: william@comp.hkbu.edu.hk
jiming@comp.hkbu.edu.hk

Abstract

Due to the popularity of mobile devices, more and
more commercial applications have been developed
on these devices. While commercial applications are
mostly backed by relational database systems, numer-
ous database engines have been ported to or built
on these devices, for example, SQLite. Since connec-
tivity can be unstable or slow, applications such as
iAnywhere have considered offline operations while
data can be synchronized with the database server
whenever the devices are online. On the other hand,
while Web-based and XML content are very common
these days, unfortunately, these mobile versions of
database engines failed to fully support them. This
paper considers a translation-based method with a
decentralised versioning system in place to support
offline operations. Web and XML contents are stored
and versioned in a distributed manner and can be
synchronized with each other without connecting to
a server. The schema of these data can be auto-
matically generated on device. With these schema,
a translation engine which allows querying these data
using SQL by translating the query to a correspond-
ing XML query is facilitated. We believe this frame-
work support mobile data applications on XML or
Web data in a seamless manner. Finally, an initial
prototype has been implemented and described in this
paper.

Keywords: Decentralised Systems, Version Control,
Mobile Data Management, Heterogeneous Informa-
tion Exchange, Information Integration, XML, Query
Translation, Schema Inference.

1 Introduction

The success of mobile devices and wireless commu-
nication technology has enabled various applications
and activities to be ported from desktop platform
into mobile fashion. Although these activities are
widespread through a variety of disciplines, from pro-
fessional to leisure, no matter what environment they

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the 20th Australasian Database Conference
(ADC 2009), Wellington, New Zealand, January 2009. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 92, Athman Bouguettaya and Xuemin Lin, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

are in, collaborative attribute plays a very important
and essential part to improve performance and pro-
ductivity. With the tremendous support of mobile
technology, work environments have become very flex-
ible and convenient. A group of people need neither
stay at the same place to collaborate, nor attach to
their PCs for their work. They can work and coop-
erate from anywhere as it is possible and convenient
for them using their mobile devices.

Working in a collaborative manner, each person works
on his/her own separated tasks, yet still closely re-
lated to his/her colleagues’ tasks. It is also very likely
that several people may have to work on a shared doc-
ument. In such cases, it is essential for one to keep
others up-to-date with the status of his/her work and
vice versa. Before one makes a change to the shared
document, he/she has to make sure that it is an up-
dated document, so that changes are unlikely to be
undone and redone. In other cases, the shared doc-
ument may need to be reverted to its previous state.
To manage all these scenarios of collaboration, ver-
sion control systems are of great help.

In a collaborating environment, conflicts are unavoid-
able. When two collaborators attempt to update the
shared document at the same time, conflicts could
occur. Conflicts are generally resolved via communi-
cation between collaborators or by decisions of group
leaders. The latter is less preferable for its inflexibil-
ity. The system should be flexible enough to allow
two group members involved in the conflicts to dis-
cuss, reach a consensus and make a decision on how to
control shared document versions. However, given a
mobile teamwork condition, especially when commu-
nication is not as instant and convenient as in face-
to-face manner, concurrency control is challenging.

Different architectures have been introduced and
investigated to support work collaboration in mo-
biles, including centralised and decentralised systems.
Centralised systems are server-client systems where
all mobile clients are connected through a central
server. The central server is responsible for control-
ling all communications and activities amongst mo-
bile clients. Central servers and central authorities,
however, are not always available for mobile collab-
orations. In such a situation, the concept of decen-
tralised system appears to be very useful. Connec-
tion preference and quality sometimes also make de-
centralised systems more attractive than centralised
systems. Version control in centralised systems is
quite straightforward since all controls and manage-
ment can be done in server-side, which is not much

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

115

different from applications for desktop platforms. On
the other hand, version control in decentralised mo-
bile systems is still a challenge.

There have been several decentralised version control
studies around (Ellis & Gibbs 1989, Munson & Dewan
1996, Suleiman et al. 1998, Ionescu et al. 1999, Jiang
et al. 2005, Su et al. 2007). These systems mainly fo-
cus on the decentralised aspect that a node can work
without connection to the server. In other words, it
is not necessary to connect to a server all the time
for one to get work done. Instead he/she can just
work on the local version and synchronise it with the
server later when there is a connection. This paper,
on the other hand, proposes a version control frame-
work focusing on another feature of decentralisation,
in which nodes can share documents in a peer-to-peer
manner and without a central authority. We believe
that this framework is much more suitable for mobile
devices.

Inspired by the fact that Web-based and XML con-
tents are very common in these days and, yet the mo-
bile versions of database engines (mostly SQL-based,
e.g., SQLite) failed to fully support them, this paper
also investigates the notion of automatically generat-
ing the schema of these data on devices and intro-
duces an XML Intelligent Agent to enable informa-
tion exchange and information integration between
heterogeneous data sources among the local reposito-
ries from individual mobile devices. Using the agent,
a data source can query multiple data sources in its
native query language and integrate the results ob-
tained without any knowledge of the data represen-
tation, format or query language of the other het-
erogeneous data sources. The agent uses XML and
iQuery (a derivative of XQuery) to represent queries
and results. A mobile application queries the agent
in a industry common query language (at the mo-
ment, most mobile data applications are still based
on a subset of SQL). The agent translates the query
to iQuery and routes the iQuery (or part-of) to other
agents capable of processing the query. These agents
translate the query to some native query language,
execute it on the heterogeneous data source, obtain
the result and return an XML representation of the
result to the source agent. The source agent inte-
grates all results and translates the final XML result
representation to the data source’s native result for-
mat (e.g., tabular, relational format) before returning
it to the mobile applications.

This paper is outlined as follows: Section 2 gives an
overview of related work in decentralised version con-
trol systems, query wrappers, and reference structural
inference methods for XML data. Section 3 describes
the motivating scenario that leads to the framework
proposed and described in Section 4. Section 5 pro-
vides some experimental results to justify the pro-
posed framework. Section 6 concludes the paper and
discusses future work.

2 Related work

2.1 Version control and decentralised sys-
tems

Decentralised systems can be distributed or replicated
systems. For either distributed or replicated systems,
the copies of each object at all nodes must be kept
consistent. Suleiman et al. (1998) presented an opera-
tional transformation algorithm that based on the no-
tion of user’s intention and using semantic properties

of operations called forward and backward transpo-
sitions to serialise concurrent operations, in order to
maintain the consistency amongst replicated copies.
The forward and backward transpositions enable the
equivalent histories to be characterised, in which for-
ward transposition resolves the problem of concur-
rency operations and backward transposition changes
the order of operations in the history without violat-
ing user’s intention.

Jiang et al. (2005) proposed a semi-replicated archi-
tecture to maintain the consistency of the replicas in
mobile environments. In this architecture, a central
server acts as the agents of mobile sites and is used
to backup a copy of the shared object, while mobile
devices with limited resources hold only parts of the
object. With this architecture, the agents that reside
in the central server take full responsibility for man-
aging operations across mobile sites, and preserving
consistency of the replicated documents.

The SVK version control system introduced in (Kao
2003) is a decentralized version control system built
with the robust subversion filesystem. It supports
repository mirroring, disconnected operation, history-
sensitive merging, and integrates with other version
control systems, as well as popular visual merge tools.
In other words, SVK is a way to work around the cen-
tralised design of SVN (CollabNet 2006) and should
be seen as an extended client, not a replacement
(Robert 2006). This SVK system is then used as a
base system for our prototype presented later in this
paper.

Many conventional solutions for version control on
those decentralised systems have involved locking ap-
proaches. Munson & Dewan (1996) developed a
framework based on a locking algorithm to prevent
concurrent operations. In this framework, a user re-
quests a lock on a particular object and the lock is
held until the end of the transaction. In the mean-
time, other users can only read and receive updates
but not modify that object. This algorithm focuses
on conflict prevention rather than conflict manage-
ment. Citro et al. (2007) overcame the above limita-
tion by introducing a delayed post-locking algorithm.
This algorithm is a variation of the conventional post-
locking algorithm, in which the modified object is au-
tomatically locked when a conflict occurs.

The problem of locking approaches is the decreasing
level of concurrency. Chianese et al. (2008) improved
concurrency of the locking approach by consider-
ing frequent disconnection or inactivity periods of
transaction. Besides locking approach, other strate-
gies include operational transformation and multi-
versioning (Suleiman et al. 1998, Citro et al. 2007,
Ellis & Gibbs 1989). These strategies are aimed to
manage and resolve conflicts in version control sys-
tems.

Generally, those above systems mainly focus on how
a node can operate on its own without a central sever
or how to resolve conflicts at a node, but they do
not mention how nodes communicate and collaborate
with one another. Ionescu et al. (1999) addressed
this issue by introducing a replication architecture, in
which if a change is made in a local object of a node,
all other nodes will be notified to change accordingly.
To use network resources efficiently, Su et al. (2007)
designed an integrated consistency-control algorithm
to decide a limited number of nodes get updated upon
any changes in the network, instead of all nodes. This
algorithm is defined based on the probability of con-
tents selection and node update.

CRPIT Volume 92 - Database Technologies 2009

116

2.2 Query translation and information ex-
change

Many efforts have been invested in data conversion
& query translation for information exchange and/or
integration. For instance, NoDoSe (Adelberg 1998)
can semi-automatically process input file using user-
defined schema and GUI to specify a region in the
input file for each object. It has an addition HTML
parser specifically for HTML files. W4F wrapper
(Sahuguet & Azavant 1999) also focus on parsing
HTML to XML. It relies on the structure of HTML
and its extraction language HEL is based on DOM.

The extraction rules introduced by Hammer et al.
(1997), based partly on regular expression and nested
structure of HTML documents, have variables for
storing extracted data. Similar to (Hammer et al.
1997), as a wrapper generation tool, XWRAP (Liu
et al. 2000) provides a component-based library to be
used by the generated wrappers and there is an in-
ductive learning based mechanism to determine the
patterns of the document structures for wrapping.
Ashish & Knoblock (1997) proposed an approach to
automate the process of generating an extractor that
can recognize the structure of HTML. This is done by
identify tokens using HTML tags and regular expres-
sion. The nested structure of the input is detected
using heuristics such as font size of heading and in-
dentation.

In addition to data format transformation (which is
needed to transform the source data and/or the out-
put of the query to a required format), one major
focus of this paper is on query language translation.
Most recent efforts have been focused on translating
XML queries to SQL, due to many proposals on im-
plementing XML databases using relational database
systems. For example, Krishnamurthy et al. (2004)
presented an efficient method to translate XML query
to SQL. Other work including (Yu 2004) focusing on
rewriting the queries into a different form to facili-
tate efficient data integration. Different from most of
these related work, since most mobile data applica-
tions have been built using an underlying SQL data
access layer and most Web/mobile content are stored
natively as XML or its related format, we present a
query translation agent from SQL to XML. We ar-
gue that querying XML data using SQL is funda-
mentally more challenging and requires more ‘intelli-
gence’. This is due to the fact that the formation of an
SQL query requires a good knowledge of a fixed, pre-
defined schema. However, schemas are usually not
availabled or stored with the content in the mobile
devices. Even they are available, due to the hetero-
geneity of the data, it would be desirable to maintain
a integrated version of the schemas of the stored con-
tent so that queries involving different content can be
supported. Therefore, a lightweight, schema genera-
tion mechanism is implemented.

2.3 Structural schema inference

In order to provide a good and lightweight schema in-
ference mechanism for the needs described above, we
need to evaluate different alternatives. While most of
the schema inference methods cost a similar amount
of time to generate a schema, their degrees of accu-
racy vary. Numerous algorithms are implemented for
evaluation in this paper. Due to the number of al-
gorithms implemented, full descriptions of them are
not presented here. Further description of these al-
gorithms can be found from (Sankey & Wong 2001),

and some related literature is included below.

The first known paper to address DTD generation
using tradition grammatical inference methods was
proposed by Ahonen (1996). The two methods pro-
posed there are theoretically appealing, as they guar-
antee to infer languages falling within certain lan-
guage classes. These classes are termed k-contextual
and (k, h)-contextual, so named as they assume the
structure to be inferred to have limited context. An-
other method applied to DTD generation (Young-Lai
1996), is derived from more recent work in grammati-
cal inference. The base algorithm is known as Alergia,
introduced in (Carrasco & Oncina 1994). The crite-
rion for state equivalence in Alergia is based upon ob-
served frequencies of transitions and finalities of a pair
of states. The most recent work on schema inference
by Bex et al. (2008) focused on a probabilistic algo-
rithm that learns k-occurrence regular expressions for
increasing values of k, and selects the one that best
describes the sample based on a Minimum Descrip-
tion Length argument.

3 Motivating scenario

This section discusses a scenario that describes the
motivation for our work. The scenario explains how
our work is worthwhile. Let us consider a system con-
sisting of two mobile nodes and a central server as in
Figure 1. In this system, the version control func-
tion is done in the central server, placed within the
Intranet of a company. The two client nodes collabo-
rate with each other via the control of the server.

Figure 1: Centralised system

Let us now consider the situation when two employ-
ees of the company go overseas to demonstrate their
product to a customer. The employees use these
two mobile devices for the demonstration. Before
the demonstration, one of them recognises that some
changes need to be made in one mobile device, and
the changes need to be updated in the other mobile.
Because of the connection problem, they cannot con-
nect to the server in the Intranet of the company back
home, meanwhile they are located close to each other
and good connection can be established with short-
range transmission protocols like Bluetooth. It makes
more sense to have them communicate directly with
each other. In such a situation, the concept of de-
centralised system as in Figure 2 appears to be very
useful.

The version control function implemented in this de-
centralised system will support the synchronization
and update process between the two clients.

Furthermore, XML has grown in popularity as a Web
publishing format, as a messaging format, as a data

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

117

Figure 2: Decentralised system

exchange format and as a means of storing data. Data
stored in XML format preserves the data represen-
tation, structure and its semantic meaning. Hence,
more and more content stored in mobile devices are
in XML. However, most mobile data management ap-
plications (e.g., iAnywhere) rely on an SQL access in-
terface to the underlying content storage. Therefore,
there is a need for a query wrapper that allows query-
ing multiple XML repositories using SQL. It should
also be possible for a mobile user to query / integrate
multiple heterogeneous content files (possibly located
in different devices) and use them as if they were a
single data source, with a single global schema.

4 Proposed mobile framework

This section describes in detail our contribution, par-
ticularly:

• How mobile information is exchanged and in-
tegrated in the mobile application layer with
our proposed decentralised version control frame-
work (section 4.1)

• Down to the SQL data access layer, informa-
tion exchange and integration amongst SQL
databases have been studied quite intensively.
However, most mobile contents are stored in
XML or its related formats. This paper, there-
fore, focuses on the translation from SQL to
XQuery to enable information exchange and in-
tegration amongst heterogeneous data sources in
XML format using SQL (section 4.3)

• To achive this aim, schema generation for the
underlying XML content is needed; therefore,
a good and lightweight structural inference for
XML data is required (section 4.2)

4.1 Decentralised version control framework

The proposed framework is a decentralised version
control system (figure 3) that focuses on collaboration
and consistency maintenance. The nodes communi-
cate with one another in a peer-to-peer manner, given
that good connection can be established with short-
range transmission protocols like Bluetooth. Essen-
tially, each node performs both server and client func-
tionalities and behaviours of a version control system.

In a general version control system, the main and
most popular functions are checkout, update, and
commit. Within a traditional decentralised system,
all nodes are treated equally. In other words, when
a node performs commit, changes are applied to all

Figure 3: Proposed framework

other nodes. When a new node is added to the sys-
tem, it can checkout from any random node in the
system. Update is not really necessary here, since ev-
ery node is kept current all the time.

However, not all nodes need to be kept updated all
the time, since some of them may be just used for one-
off tasks. To increase performance and effectiveness,
our proposed framework consists of nodes not treated
equally and not storing exactly replicated data. Par-
ticularly, when a node performs a change, it commits
to its own server first, then signals other nodes that a
new change has occurred in the system; however, only
a few algorithm-decided peer nodes are notified to up-
date their replicated documents accordingly. Other
nodes will get updated upon requests. On the other
hand, when a node requests to checkout or update,
the requests will not be sent to any random nodes in
the system, but to an algorithm-decided node.

In order to obtain those desired algorithm-decided
nodes, our framework introduces the concept of state
table and active peer, and then explain in details
how several common functions (checkout, update, and
commit) fit into this framework.

4.1.1 Active peers and state table

A node j is considered to be active when it gets up-
dated, receives requests from other nodes, and makes
requests to other nodes regularly. The active level of
a node to another node is represented by a property
called active rate. To decide the active rate, a state
table is used. Each node maintains a state table for
all of its connected peers. The state table of a node i
consists of the identifier of any node j connected to it,
the latest revision of node j, and the total number of
made requests and received requests of node j. The
state table also keeps a special field Rall represent-
ing the overall latest revision of the whole system,
in order to identify its status (current or outdated)
within the system. The state table must be updated
regularly to ensure each node has its peers’ latest in-
formation.

Let

• Ri denote the latest revision of node i

• Rj denote the latest revision of node j

• Nj denote the total number of made requests and
received requests of node j
(Nj ≥ 1 ∀j since every node must checkout at
least one when first connecting)

CRPIT Volume 92 - Database Technologies 2009

118

• Ai(j) denote the active rate of node j to node i

The parameters used in this algorithm can be eas-
ily located, collected and stored in the state table.
The number of made and received requests of a node
Nj illustrates its popularity and interaction frequency
amongst its peers. The ratio Rj

Ri
defines the current

state of node j compared with node i. These parame-
ters altogether represent the active rate Ai(j) of node
j to node i.

Ai(j) is decided as:

Ai(j) =
Rj

Ri
∗Nj (1)

The active rate Ai(j) is used for the commit operation
on node i. Ri is quaranteed to be the latest revision
value by the operator at node i, hence Ri = Rall. The
higher the ratio Rj

Ri
is, which means the higher Rj is,

the more recently node j gets updated. The higher
Nj is, the more traffic goes in and out of node j. All
in all, the higher Ai(j) is, the more active node j is,
compared with node i.

Generally, this algorithm provides a simple yet practi-
cal and effective mechanism to decide the appropriate
active nodes for versioning control operations.

4.1.2 Commit

Before an action is taken on node i, it is the respon-
sibility of node i ’s owner to make sure that node i is
current or in other words, Ri is the overall latest re-
vision. This can be obtained by simply comparing Ri
with the special field Rall reserved in the state table
of node i.

To commit a change, node i first commits the change
to its own server, then informs all other nodes
to update their special field Rall, and then star-
synchronizes between its server and its connected
nodes with highest active rates. This way, a node
will always be able to maintain the updated value of
Rall as long as it is kept connected in the system. On
the other hand, if a disconnection occurs, after the re-
connection, a node can retrieve the updated value of
Rall from any other nodes that it connects to. This
mechanism keeps all nodes be aware of the current
state of the system.

This sequence of action is illustrated in figure 4.

In ideal cases, no other changes are made concurrently
with node i, Ri is increased by 1 and becomes the
highest revision value (Rall). Therefore, Rj < Ri ∀j
→ Ai(j) < 1 ∀j.

If there exists j such that Ai(j) ≥ 1, it is an indica-
tion that a conflict occurs. When a commit operation
is performed, node i consists of the updated revision
of the system, i.e. Ri equals to Rall and be the high-
est revision value. Hence, Rj must be either less than
or equal to Ri, which makes Ai(j) ≤ 1. Given a
situation in which node j is up-to-date too, i.e. Rj
equals to Ri; node j performs another commit opera-
tion concurrently with node i, and increases Rj by 1,
meanwhile node i commits without checking Ri and
Rall again. As a result, conflict occurs. In this case,
Rj is greater than Ri, which makes Ai(j) ≥ 1.

The conflict needs to be resolved first using appropri-
ate strategies discussed in section 2, before commit

Figure 4: Operation: Commit

can take place again.

4.1.3 Checkout and update

Checkout and update are basically similar to each
other and simplier than Commit.

When a node is added to the system, it performs
checkout and update by repeatly comparing its con-
nected peers’ revision values with Rall of the system
until a match is obtained, to make sure it gets up-
dated with the lastest version of the shared docu-
ments. If none of its connected peers has the lastest
revision, it can requests its highest revision peer to
perform a different update request to be brought into
the up-to-date state and then notify it to change ac-
cordingly.

If node i checkouts or updates from node j, Ni and
Nj are increased by 1 and updated in the associated
state tables.

4.2 Structural inference for XML data

Testing results presented in (Sankey & Wong 2001)
revealed that the merge family methods (sk-strings
method) performed well in some cases, and the opti-
misation methods (Ant Colony Optimisation - ACO)
better in others. This led to the development of
the sk-ANT Heuristic, based on the most successful
method of each type.

The sk-ANT Heuristic: The motivation for this
algorithm was to create a method that would be
successful for a variety of input data sizes by com-
bining the best features of both the sk-strings and
ACO techniques. One consideration was to first run
the sk-strings algorithms, and then use the results
to seed the ACO optimisation. However, this ap-
proach suffers from several problems. Firstly, it is
not practical to attempt all possible combinations
of both algorithms. Thus we would be required to
choose a limited number of models resulting from
the sk-strings technique to seed the second stage of
the process. The simplest way to achieve this would
be to choose the best models, up to a reasonable
number. These models will not necessarily lead to
the best results, though, as they may have already
been over-generalised. More importantly, by letting
the sk-strings methods run to completion we would

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

119

lose many of the advantageous aspects of the ACO
method. Most notably, its willingness to explore a
greater breadth of the search space would be missed.

The sk-ANT method thus incorporates both the sk-
strings and ACO heuristics at each step of the infer-
ence process. It is most easily described as a modified
version of the ACO technique with the ants guided by
an sk-strings criterion. The guiding is made progres-
sively weaker as the model becomes smaller, to allow
the advantages of the ACO method for smaller mod-
els to take effect. The main modification was made
to the ant move selection of Algorithm 4, producing a
new method as shown in Algorithm 5. The first major
difference appears on line 4, where a merge must pass
the sk-strings criterion to be considered. The outer
while loop on line 2 and if statement on line 11 com-
bine to progressively weaken the sk-strings criterion
when it has become too strict. Eventually the crite-
rion will be weak enough to let all merges pass, and
the algorithm will behave identically to the original
version.

Figure 5: sk-antMoveSelector Algorithm

4.3 XML intelligent agent - Query transla-
tion from SQL to XQuery

The agent is bound to one or more heterogeneous data
sources and communicates with zero or more other
agents. A data source queries the agent in its na-
tive query language and receives results in its native
query result format. It is the agent that queries other
heterogeneous data sources, communicates with other
agents, integrates the results received and translates
the results to the native result format of the data
source. The aim is to hide the data representation
used to exchange data inside the agent framework and
allow data sources to query other heterogeneous data
sources and integrate information using their native
query language.

This section discusses SQL to XQuery translation, in
the context of the XML Intelligent Agent framework.
In fact, the agent translates the SQL query to iQuery
(intermediate Query representation) that is in turn
translated to XQuery or any other query languages.
These are the steps for translating a SQL query to
XQuery for further processing:

1. Convert to iQuery
Agent A receives a SQL query, validates it and
then converts it to iQuery. For a SQL query to
be successfully validated, it must be:

• specified in the SQL92 standard syntax.
• qualify all expressions, if the query involves

a join on more than one relation.
• (optional) use Oracle’s schema notation to

specify the keywords used in locating a re-
source.

If the query involves a join on more than one
SQL relation, all expressions in the scope of that
query need to be qualified. For example, (SE-
LECT author FROM books) is valid but (SE-
LECT author FROM books, articles) is invalid
because the agent cannot figure out which rela-
tion contains the author column. The correct
syntax is (SELECT books.author FROM books,
articles). There needs to be a mechanism for
specifying the keywords used in locating a re-
source. We borrow Oracle’s schema identifica-
tion notation to provide this feature. For ex-
ample, a query of the form (SELECT author
FROM BookSchema.Library) generates the key-
words BookSchema and Library.
To illustrate SQL to XQuery conver-
sion, we use the following example:
SELECT book, author
FROM BookSchema.library

The iQuery equivalent of the above SQL query
is:
<result level=1>
{
FOR $library IN resource(”bookschema, library”)//??
RETURN
<result tuple>
{$library//book}
{$library//author}
</result tuple>
}
</result>

2. Resolve SQL Expressions
Next, the iQuery is either processed by Agent
A or sent to another agent that can process the
query. For the purposes of clarity, we refer to the
target agent that processes the iQuery as Agent
B.

3. Resolve resource Expression
Agent B receives the iQuery. First, it must
find the XML documents required to process the
query. This is a three step process:

• For each resource keyword in each FOR
clause of the iQuery:

• Extract the resource keywords
• Use these keywords to find the XML docu-

ment
• Replace the resource function with the

XQuery document function. The argument
of the document function is the name of the
XML document.

CRPIT Volume 92 - Database Technologies 2009

120

The mechanism used to locate XML documents
using resource keywords is not part of the agent
framework. It depends on the heterogeneous re-
source. One method may be to concatenate all
the keywords together to construct a filepath
that identifies the document. Another method
may be to lookup the keywords in a database that
maps keywords to XML documents. Assuming,
use of the first method, the result is:
<result level=1>
{
FOR $library IN
document(”bookschema/library.xml”)//??
RETURN
<result tuple>
{$library//book}
{$library//author}
</result tuple>
}
</result>

4. Process level Instruction
SQL cannot handle composite types. XML doc-
uments however, are of a hierarchical nature
and can be nested to any level of complex-
ity. This is a problem. If the author element
in bookschema/library.xml has child elements
first name, last name, age; these child elements
will be returned when the XQuery is processed.
But SQL expects an atomic type in the author
field, not a structure composed of first name,
last name, age.
iQuery solves this problem. The iQuery above
contains an attribute in the result tag named
level. A value of 1 requires the agent to confirm
that the nodes selected in the RETURN clause
of the XQuery have a depth of 1. The following
cases are allowed:

• node has no text node or children but only
one attribute (in this case, the value of the
attribute is used)
• node has a non-empty text node and 0

or more child nodes and 0 or more at-
tributes(in this case, the value of the text
node is used)
• node has no attributes, text node or child

nodes (in this case, the ”null” string is used)

If all XPath expressions in the RETURN clause
satisfy one of the above conditions, execution
proceeds to the next step. If a selected node has
no text node but has two or more child nodes or
attributes, an error XML document is returned
as the result.

5. Identify XML attributes
The agent learns the elements and attributes in
the target XML document. If the XQuery ac-
cesses an element which exists as an attribute
in the XML document, the query is modified to
access the attribute and not the element.

6. Process distinct Instruction
In addition to the level attribute, the result tag
may also contain an attribute called type. This
attribute can only have one value - DISTINCT. It
the type attribute is set, the XQuery is modified
to ensure that the query result does not contain
any duplicates.

7. Process XQuery, Return SQL Relation
Lastly, the XQuery is forwarded to the XQuery
engine, processed and the resulting XML docu-
ment returned to Agent A. Agent A generates a

SQL result representation from the XML docu-
ment and returns it to the querying data source.
This process is trivial. First the agent attempts
to create a metadata SQL structure from the
XML document. Nested child nodes inside an
element node are interpreted as the result of a
GROUP BY statement. Attributes of an ele-
ment node are treated as child elements. Then
the XML document is converted to a SQL result
based on the derived metadata.

5 Experimental results

5.1 SQL to XQuery examples

To illustrate query translation, we make use of a small
database with the Entity-Relationship and relational
schema as in Figure 6

Figure 6: A sample relational database

The XML representation of the database in Figure
6 is a set of XML documents bound to an XQuery
engine. Each relation in the database maps to an
XML document.

SQL query to find the names and brewers of beers
that John likes:
SELECT manf, name
FROM Beers
WHERE name IN
(
SELECT beer
FROM Likes
WHERE drinker = ’John’
)
GROUP BY manf, name

The iQuery equivalent to the above SQL query is:
<result>
{
FOR $beers IN
distinct(document(”beers.xml”))//beer tuple/manf
LET $XQ FUN1 RESULT := XQ FUN1()
LET $beers1 := document(”beers.xml”)
//beer tuple[manf=$beers
AND name=$XQ FUN1 RESULT]
WHERE not(empty($beers1))
RETURN
<result tuple>
{$beers}
{$beers1/name}
</result tuple>
}
</result>

in which:

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

121

DEFINE FUNCTION XQ FUN1 () RETURNS sequence
{
FOR $likes IN document(”likes.xml”)
//like tuple[drinker=”John”]
RETURN $likes/beer
}

Figure 7 shows the XML Result representation.

Figure 7: XML result representation

Figure 8 shows the SQL Result representation.

Figure 8: SQL result representation

Note that the length of the resulting XML document
is minimized by grouping the results. But doing this
does not affect the final SQL result. Also, note that
the datatype sequence is identified in the function but
it is not bound to a XML Schema or explicitly defined
anywhere. This is impossible as the agent does not
know the datatype of the sequence or the result of the
function.

5.2 Inference algorithms

The small data set consisted of 100 sample files gen-
erated from random Probabilistic Finite State Au-
tomaton (PFSA) with a maximum of 5 states and
an alphabet cardinality of 4. A total of 10 sample
strings were generated for each PFSA, leading to Pre-
fix Tree Automaton (PTA) with an average size of
42.15 states. The number of strings generated was de-
liberately kept small, as sparse data is an important
problem in practical cases of inference. The average
size of the models inferred by the algorithms ranged
from 1.03 to 40.55 states, with the best models in
terms of Minimum Message Length (MML) typically
having between 2 and 5 states.

Figure 9 shows the success rates of several algorithms
in inferring models with the lowest MML values. For
each algorithm, two results have been shown. The
first is the frequency of inferring the best model over-
all, by choosing the best of the algorithms attempts.

Figure 9: Success rates for small models

The second is the frequency of obtaining the best av-
erage performance, derived by averaging all of the
algorithms attempts before ranking. The best over-
all performance is most important, whilst the best
average indicates stability across diferring input pa-
rameters. The results clearly show that the sk-ANT
algorithm performed best in terms of both rankings,
particularly the best average ranking. The next two
best algorithms were the original ACO method, and
the sk-ALL heuristic (a combination of the results
from all ak-strings variants.) This is one of the rea-
sons those methods were chosen as the basis for sk-
ANT. The other previously applied algorithms and
reference methods performed quite poorly. Although
the Stochastic method was able to infer some good
models, it trailed significantly.

Figure 10: Deviation from the best model inferred
(small data set)

Statistics relating to the consistency of the algorithms
over the 100 test cases were also gathered, in the form
of comparisons against the best inferred models. Fig-
ure 10 shows both the average deviation and worst
deviation in percent for each of the algorithms. The
numbers were derived from the difference between the
MML values of the best model inferred by a given al-
gorithm as compared with the best model overall. We
omit the individual sk-strings algorithms, preferring
the combined sk-ALL results. The results show that
the sk-ANT method is the best in terms of average
and worst deviation, followed by the sk-ALL hueristic.
Note that the worst case deviations may be too high
for some applications. In such cases, using a com-
bined approach with both the sk-ANT and sk-ALL
algorithms would yield more consistent results.

CRPIT Volume 92 - Database Technologies 2009

122

5.3 Decentralised system

The SVK version control system mentioned previ-
ously in section 2 is used as a based system for our
initial prototype. We created a C# application on
top of the SVK system to handle communication be-
tween nodes. Some performance measurements have
been carried out to evaluate the execution time of
various file size, multiple files and multiple servers.
Several nodes are set up to communicate with each
other, sending and receiving requests.

Figures 11 and 12 show that the graphs of execution
time of various file sizes and multiple files are almost
linear. In other words, there is not much difference
in terms of overhead between multiple small transac-
tions and an equivalent big transaction. These exper-
imental results provide a good justification for a ver-
sion control framework, since collaborators can syn-
chronise their work as frequently as possible, bit-by-
bit without having to wait for the whole tasks done.

Figure 11: Execution time of various file size

Figure 12: Execution time of multiple files

Figure 13 illustrates the same implication for execu-
tion time of multiple servers. The graph of execution
time of multiple servers is also almost linear, i.e. the
overhead of multiple single-server-synchronisations is
not significant in comparision with one multiple-
server-synchronisation. Therefore, it is not neces-
sary for one transaction to involve a synchronisation
with as many servers as possible to minimize the to-
tal transaction time; instead, single server transac-
tion can be done as per requested any time without
breaking the minimal total execution time. Ideally,
the execution time, as a result, does not effect the
active rate attribute of a node.

6 Conclusion

The emergent development of mobile devices and
technology has significantly enhanced cooperation in
many commercial applications.

Cooperation requires a sufficient version control sys-
tem in mobile environment without a central server.
In this paper, the proposed decentralised version con-
trol framework has successfully addressed this re-

Figure 13: Execution time of one client and multiple
servers

quirement and provides a simple yet efficient algo-
rithm to support communication between mobile de-
vices directly.

The paper has also presented a scalable, lightweight
solution to enable information exchange and integra-
tion between heterogeneous data sources. The solu-
tion also allows querying heterogeneous data sources,
especially in XML format, using a relational query
language (for example, SQL). Thus most existing
mobile data management applications can use the
proposed framework for heterogeneous, XML con-
tent without expensive changes. In order to facilitate
querying XML content with SQL, schema generation
for the underlying XML content is needed. There-
fore, we have also addressed the problem of structural
schema inference for XML and evaluated various al-
gorithms to infer schema for XML data on mobile
devices.

Our algorithm for structural schema inference, as well
as most of the existing ones, runs in batch mode, that
is it has to be rerun whenever there are new docu-
ments added. For future work, we will investigate
how to extend the existing inference technique to an
incremental version, while still maintaining minimum
memory and CPU usages.

Acknowledgement

William K. Cheung and Jiming Liu are partially sup-
ported by HKBU Faculty Research Grant FRG/03-
04/II-70 for this work. Part of this work was done
when Raymond K. Wong was visiting HKBU.

References

Adelberg, B. (1998), ‘NODOSE—a tool for semi-
automatically extracting structured and semistruc-
tured data from text documents’, In SIGMOD
27(2), pp. 283–294.

Ahonen, H. (1996), ‘Generating grammars for struc-
tured documents using grammatical inference
methods’, Technical report, Department of Com-
puter Science, University of Finland.

Ashish, N. & Knoblock, C. A. (1997), ‘Wrapper gen-
eration for semi-structured internet sources’, In
SIGMOD 26(4), pp. 8–15.

Bex, G. J., Gelade, W., Neven, F. & Vansummeren,
S. (2008), ‘Learning deterministic regular expres-
sions for the inference of schemas from xml data’,
In WWW ’08: Proceeding of the 17th international
conference on World Wide Web, ACM, New York,
USA, pp. 825–834.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

123

Carrasco, R. & Oncina, J. (1994), ‘Learning stochas-
tic regular grammars by means of a state merging
method’, In ICGI ’94: Proceedings of the 2nd In-
ternational Colloquium on Grammatical Inference,
862, Springer-Verlag, pp. 139–150.

Chianese, A., d’Acierno, A., Moscato, V. & Picariello,
A. (2008), ‘Pre-serialization of long running trans-
actions to improve concurrency in mobile environ-
ments’, In ICDEW ’08: Data Engineering Work-
shop pp. 129–136.

Citro, S., McGovern, J. & Ryan, C. (2007), ‘Con-
flict management for real-time collaborative edit-
ing in mobile replicated architectures’, In ACSC
’07: Proceedings of the thirtieth Australasian con-
ference on Computer science, Australian Computer
Society, Darlinghurst, Australia, pp. 115–124.

CollabNet (2006), ‘Tigris.org: Open source software
engineering tools’.
URL: http://www.tigris.org/

Ellis, C. A. & Gibbs, S. J. (1989), ‘Concurrency con-
trol in groupware systems’, In SIGMOD 18(2),
pp. 399–407.

Hammer, J., Garcia-molina, H., Cho, J., Aranha, R.
& Crespo, A. (1997), ‘Extracting semistructured
information from the web’, In Proceedings of the
Workshop on Management of Semistructured Data,
pp. 18–25.

Ionescu, B., Binder, J. & Ionescu, D. (1999), ‘A
distributed architecture for collaborative applica-
tions’, Pacific Rim Conference on Communica-
tions, Computers and Signal Processing, IEEE
pp. 525–529.

Jiang, B., Zhang, H., Chen, C. & Yang, J. (2005),
‘Enable collaborative graphics editing in mobile en-
vironment’, In CSCWD 1, pp. 313–316 .

Kao, C.-l. (2003), ‘The svk version control system’.
URL: http://svk.elixus.org/

Krishnamurthy, R., Kaushik, R. & Naughton, J. F.
(2004), ‘Efficient xml-to-sql query translation:
Where to add the intelligence’, In VLDB, pp. 144–
155.

Liu, L., Pu, C. & Han, W. (2000), ‘XWRAP: an xml-
enabled wrapper construction system for web in-
formation sources’, Proceedings of the 16th Inter-
national Conference on Data Engineering pp. 611–
621.

Munson, J. & Dewan, P. (1996), ‘A concurrency
control framework for collaborative systems’, In
CSCW ’96: Proceedings of the 1996 ACM con-
ference on Computer supported cooperative work,
ACM, New York, USA, pp. 278–287.

Robert, O. (2006), ‘Dvcs or a new way to use version
control systems for freeBSD’.
URL: citeseer.ist.psu.edu/749273.html

Sahuguet, A. & Azavant, F. (1999), ‘Building light-
weight wrappers for legacy web data-sources using
w4f’, In VLDB ’99: Proceedings of the 25th In-
ternational Conference on Very Large Data Bases,
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, pp. 738–741.

Sankey, J. & Wong, R. K. (2001), ‘Structural in-
ference for semistructured data’, In CIKM ’01:
Proceedings of the tenth international conference
on Information and knowledge management, ACM,
New York, USA, pp. 159–166.

Su, Z., Katto, J. & Yasuda, Y. (2007), ‘Efficient con-
sistency control for mobile dynamic contents de-
livery network’, International Symposium on Mi-
crowave, Antenna, Propagation and EMC Tech-
nologies for Wireless Communications pp. 171–173.

Suleiman, M., Cart, M. & Ferrie, J. (1998), ‘Concur-
rent operations in a distributed and mobile collab-
orative environment’, Proceedings of 14th Interna-
tional Conference on Data Engineering, pp. 36 –
45.

Young-Lai, M. D. (1996), ‘Application of a stochas-
tic grammatical inference method to text struc-
ture’, Master’s thesis, Computer Science Depart-
ment, University of Waterloo.

Yu, C. (2004), ‘Constraint-based xml query rewriting
for data integration’, In SIGMOD, pp. 371–382.

CRPIT Volume 92 - Database Technologies 2009

124

Event-based Communication for Location-based Service
Collaboration

Annika Hinze1 Yann Michel2 Lisa Eschner2

1 University of Waikato, New Zealand
Email: hinze@cs.waikato.ac.nz

2 Freie Universitaet Berlin, Germany
Email: {ymichel,eschner}@mi.fu-berlin.de

Abstract

Location-based context-aware services for mobile
users need to collaborate in disparate networks. Ser-
vices come and go as the user moves and no central
repository is available. The user’s personal informa-
tion and service usage statistics need to be protected.
To support service collaboration we propose a service
infrastructure that relies on an event-based service-
oriented architecture. We implemented a basic ver-
sion of the architecture and used it for a tourism
information system. An advanced version has been
modelled using formal methods to evaluate privacy
aspects. This paper reports about both architectures
and our experiences of their application to tourism-
related services.

1 Introduction

Imagine a museum guide that provides rich informa-
tion about its exhibits on your mobile phone, or a car
navigation system that shows the way to the nearest
specialist depending on your health status. Mobile
users of such services receive information tailored to
their situation and preferences on their own portable
devices. Context-aware mobile services use informa-
tion about a user’s location to deliver customized in-
formation [3]. Many of these services will only be
offered in a restricted territory, e.g., close to a hos-
pital or in a museum. For example, Figure 1 shows
the areas of availability of two services A and B. As
the user moves, services appear and disappear (at the
four points marked) and no common network may be
available.

To reach their full potential, different services need
to collaborate, such as the tour guides, route planners,
and health monitors in our example. For a seamless
user experience, services must collaborate automat-
ically and share user-related data as necessary. Be-
cause services are not known in advance, their collab-
oration has to be initiated and sustained in an ad hoc
manner. At the same time, services and their com-
munication infrastructure should protect a user’s per-
sonal information, thus, collaboration must be anony-
mous. It must also be immediate [12].

Service collaboration raises several issues: for a
seamless experience, configuration should not be re-
quired and services should be able to deal with collab-
oration partners that appear and vanish as the user
moves around. We address these issues by developing
a method for independent services to automatically

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the 20th Australasian Database Conference
(ADC 2009), Wellington, New Zealand, January 2009. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 92, Athman Bouguettaya and Xuemin Lin, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

user path

Service A

availablility Service B

availability

Figure 1: Mobile user and service availability.

collaborate in a mobile environment without know-
ing about each other.

We developed this research in the context of the
tourism application TIP. The Tourist Information
Provider (TIP) is a mobile tourist information sys-
tem that provides information about sights to trav-
ellers based on context, i.e., their personal preferences
and their location. The personal preferences are de-
fined in profiles and describe a user’s likes and dis-
likes. Different from other context-aware systems, the
TIP system supports several services, e.g., informa-
tion service [14], recommendations [13] and a map
service [16]. In [12] we highlighted the need for re-
designing the mobile context-aware TIP system into
a service-oriented architecture.

The remainder of this paper is structured as fol-
lows: Section 2 discusses related approaches to ser-
vice collaboration. Section 3 introduces our event-
based SOA, Section 4 gives details of service manage-
ment and collaboration. Section 5 discusses our ba-
sic architecture. Section 6 introduces advanced con-
cepts, which are then discussed in Section 7. Section 8
briefly describes the two prototypes; the paper closes
with a summary.

2 Related service collaboration approaches

Currently, location-based systems are available only
separately. They do not collaborate and the user of-
ten has to obtain specialised hardware and software
123. No infrastructure exists to support such collab-
oration. Interesting related issues in location-based
systems have been addressed but so far do not con-
sider service collaboration. The solution suggested
in [22] provides a subscriber-based means to access
location-restricted services in a mobile environment
(by using a UDDI channel instead of a repository).
Similarly, cloaking has been used to retain privacy

1Zingo Taxi, location aware taxi hailing in London, online in-
formation at http://www.zingotaxi.co.uk/ , see also online ar-
ticle at http://www.jacobsen.no/anders/blog/archives/2003/03/19/
locationaware_mobile_services_zingo_taxis.html

2TomTom, personal navigation systems, online information at
http://www.tomtom.com/

3Geominder, location-based personal reminder, online informa-
tion at http://www.ludimate.com/products/geominder/

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

125

when accessing location-based services (using a cen-
tralised third party[10] or a P2P approach [4]).

Previously introduced techniques for service col-
laboration use a service repository to search for col-
laboration partners [6]. This traditional Service-
Oriented Architecture (SOA) is unfit for collaboration
of location-based services in mobile environments be-
cause it assumes that services are openly known and
that they directly enter bilateral contracts for longer
business relations. These assumptions do not hold
in a changing mobile environment with disconnected
network patches and locally offered services. The
original Web Services Architecture from the W3C [1]
is even more restrictive and not applicable for mobile
environments.

SOA as a more general design principle has been
applied to mobile services. However, current solu-
tions do not cater for the complex situation of collab-
orating location-aware services: architectures for mo-
bile telephones [21] connect static services on mobile
devices and require services to be explicitly known.
Hodes et al. suggest an architecture for composable
and location-based services in an ad hoc network en-
vironment [15], in which they use a meta-service in-
dex which shares information about the available ser-
vices in a given network cell. The index service is
an equivalent to the SOA service repository and the
same limitations apply. Similarly, Le Sommer sug-
gests a service register for remote services using a
publish/subscribe mechanism [17]. The ensuing ser-
vice collaboration is not designed to be anonymous.
We observe that current architectures for service col-
laboration are either not suitable for changing mo-
bile environments or do not support collaboration be-
tween anonymous services. Middle-ware solutions for
ad hoc environments [23, 18, 20, 11] do not support
anonymous service collaboration either.

On the other hand, anonymous and immediate
communication is supported in publish/subscribe sys-
tems [8]. The aim of these systems is to disseminate
published information to a set of subscribers. Each
subscriber receives only the information that matches
their subscription; communication via the network
is uni-directional and anonymous. Publish/subscribe
systems use event-based communication that is ini-
tiated by the publisher; the event information is fil-
tered and routed through the network. The focus
of publish/subscribe developments for mobile and ad
hoc environments [9, 5] is on efficient routing strate-
gies in a changing and possibly disconnecting net-
work. However, efficient routing is not required for
localised services because the user is in close proxim-
ity to the service provider (e.g. in the museum) and
thus the service network generally requires only sin-
gle hops. The publish/subscribe paradigm does not
include a service concept nor does it support ongoing
collaboration between publishers or subscribers. We
explore event-based communication as used in pub-
lish/subscribe systems as a means for anonymous col-
laboration in a service-oriented architecture for mo-
bile location-based services.

3 Basic Architecture

The new TIP 3 architecture introduces an event-
based middle-ware, with which every local service
interacts. The component representing this middle-
ware layer is called the broker. For client/server inter-
action, co-operating services exchange their informa-
tion via their local brokers, i.e., every communication
from a client to a server service or vice versa is only
handled by the brokers and is transparent to the ser-
vices. On the server-side, the TIP server sends and
receives all information via the broker. The server-

adv

sub

adv

sub

adv

sub

Service

Service

Service

Service

Broker

forwarded
adv. and sub.

Message Handler

local Services

remote Services

subadv

subadv

Broker

adv sub

remote Services

adv sub

local Services

Message Handler

Service

Service

Service

Service
adv

sub

adv

sub

adv

sub

sub

adv

adv

sub

Figure 2: Local and forwarded service advertisement-
(adv) and subscription- (sub) handling by the mes-
sage handlers TIP 3.

sided services, e.g., the information service and rec-
ommendation service, can also use a database as their
information back-end. The services residing on the
client-side may interact directly with the user, e.g., a
user clicks on the map of the map service to submit a
position to the server. In addition, the client system
can submit information autonomously, e.g., the loca-
tion service automatically submits a user’s changed
position by using the data of a locally attached GPS
receiver. For technical reasons, both sides use a wrap-
per process that is used to effectively start and stop
all running processes, i.e., the broker and services.
For the server-side, this results in a TIP server pro-
cess. On the client-side, this process is called the TIP
client.

The original TIP 1 [14] and TIP 2 [12] systems are
based on client/server interaction. The TIP 3 system
is planned to also support peer-to-peer and client-
to-multi-server connections. In the peer-to-peer ap-
proach, servers can be seen as special peers with more
available data and unlimited bandwidth or power.

As each service directly communicates with a bro-
ker only, the broker is responsible for routing the
incoming information to the appropriate services or
other brokers. When a service is started, it connects
to a broker, advertises the provided information and
subscribes for other information. The broker main-
tains this information in a registry. When a broker
connects to another broker, it exchanges its registries’
information with the remote broker. This principle is
illustrated in Figure 2.

3.1 Event System

A generic and platform independent format for in-
formation exchange is required. Therefore, we use
the XML-based simple object access protocol (SOAP).
Slominski et al. [19] propose an event system architec-
ture for their grid project. They use an event-based
communication for submitting status information and
jobs between the participating grid nodes. Some of
their requirements also apply to the TIP system:

• Language and platform independence: The com-
ponents used for the TIP system should neither
depend on a special programming language nor
on a special platform.

• Extensibility: New services should be easily
added. In addition, existing services should be
easily extended.

• Lightweight Publishers: Standard libraries
should provide basic functionality. This is a very
important fact especially on small devices such as
the supposed mobile clients of the TIP system.

Figure 3 shows the basic SOAP message format for
the TIP system. Any SOAP message consists of a

CRPIT Volume 92 - Database Technologies 2009

126

</e:Envelope>

<?xml version=’1.0’ ?>

<e:Envelope xmlns:e="http://www.w3.org/2003/05/soap−envelope">

 <e:Header>

 <m:event xmlns:m="http://isdb.cs.waikato.ac.nz/tip/event"

 env:mustUnderstand="true">

 <m:id>{id}</m:id>

 <m:type cacheable="{boolean}" forwarded="{boolean}"

 prefetched="{boolean}">

 {type}

 </m:type>

 <m:dateAndTime>{dateAndTime}</m:dateAndTime>

 </m:event>

 </e:Header>

 <e:Body>

 [...]

</e:Body>

Figure 3: Basic TIP SOAP message format for the
TIP system.

root element which is the Envelope. The Envelope
contains two elements: a Header and a Body element.
The Header is comparable to a common letter head,
i.e., it describes general parameters of the submitted
information. For our purposes, we use the following
parameters:

• id: a unique identifier (event number),

• type: the type of this event (descriptor for the
contained body information),

• dateAndTime: the date and time this event was
created.

The type element is also used for routing the incom-
ing messages properly to the subscribed services with-
out being forced to parse the whole message but just
the header element, i.e., the body element is skipped
for this purpose. In addition, several attributes are
available for internal handling of the message:

• cacheable: This attribute indicates if a message
is cacheable (true) or not (false).

• forwarded: This attribute indicates if a message
was forwarded (true), i.e., it was received from a
broker, or locally (false), i.e., by a service.

• prefetched: This attribute indicates if the
message was triggered by a pre-fetching-service
(true) or if it is an ordinary message (false).

The first flag (cacheable) is used for deciding if this
message can be stored inside a cache or not. The
other two attributes, forwarded and pre-fetched,
affect the message routing. If a message was for-
warded from a foreign broker, any reply should be
sent to this broker only and not to any other services
or brokers. If a message has the pre-fetched flag set
to true, a reply should be sent but the reply is then
not forwarded to the client’s display. The reply is used
only for storing the information locally prior to any
user request. The Body element is the main container
for the type specific information that is transported
in any message. Therefore its structure is not defined
in general but can be freely designed, depending on
the type’s information.

3.2 Caching

Figure 4 shows the broker of a TIP 3 client. The
cache resides within the broker or can be accessed by
the broker only. The use of a cache is therefore fully
transparent to any service. Inside the broker, the
message handler is responsible for efficient message

local Services

IN

Cache

Broker (Client)

IN

Message Handler

OUT

remote Brokers

OUT

GUI handler

Publisher Index

Subscriber Index

Figure 4: Internal message handling of a client-sided
event-broker (basic architecture).

is
−

a

Event

Reply

Request

replies
to

(1,*)

(0,*)

Figure 5: The entity relationship model (ERM) of the
cached objects, i.e., events.

handling. The aim of the message handler is to reduce
the external network traffic, i.e., the traffic to remote
brokers. The local traffic, i.e., the traffic of services
with the broker is not considered here. Messages are
handled differently depending on their direction.

The algorithm for handling the outgoing messages
to remote brokers is shown in Algorithm 1. When a
message handler decides to send a message to a re-
mote broker, it first checks if a similar message was
sent before. If that is the case, it sends the still cached
replies back to the local services. If no similar mes-
sage could be found in the cache or cached replies are
missing, the message is forwarded.

Any message that is retrieved from a remote bro-
ker is handled according to the algorithm shown in
Algorithm 2. If the incoming message was a reply to
a previous request (message) and is cacheable, it is
stored in the cache and then forwarded to the local
services.

The relationship of the cached messages, i.e., the
cached events, is shown in Figure 5. An event can be
either a request or a reply. A request can have zero
or many replies and a reply has at least one parent
it relates to but can also have more. This allows for
effective re-use of cached replies that refer to more
than one request. Assuming that a reference to the
request object uses less memory then a reply object,
this results in less space required for cache memory.

Algorithm 1 Message handling of outgoing mes-
sages.

1: if message is cached then
2: if replies available then
3: return replies;
4: end if
5: else
6: send message;
7: end if

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

127

Algorithm 2 Message handling of incoming mes-
sages.

1: if message is a reply then
2: if cacheable then
3: store message in cache;
4: end if
5: else
6: forward message;
7: end if

4 Basic Architecture – Services

In [12] we suggested the use of a service-oriented ar-
chitecture (SOA) for TIP 3. All components, i.e., the
brokers and services, are loosely coupled only. That
means that every component acts autonomously and
communicates with any other by using a standard
protocol, preferably SOAP. As we have already seen,
services interact with brokers only. The brokers for-
ward information to other brokers or services that
subscribed for a certain event type. This section de-
scribes how a service is designed, how the registra-
tion process works and how existing services were mi-
grated.

4.1 Service Architecture

A service is a modular component that is loosely cou-
pled to a broker. It runs as a separate process and
communicates with a broker via a network connec-
tion. After a service is started, it listens on a spec-
ified port for incoming events. All outgoing events
are sent to a broker whose hostname and port num-
ber have to be known by the service. A service can
register and un-register itself from a broker. That
means it advertises events and subscribes for events
that it is interested in. Which events a certain service
subscribes to or which it is going to provide depends
on the type of the service, i.e, the service’s purposes.
Figure 6 shows this principle: A service receives an
event that it has previously subscribed to. This event
is then processed and the service then provides an ad-
vertised event to the broker. Services can also work
differently, i.e., a service may only provide events but
consume none. An example for such a service is a lo-
cation service that submits a user’s location at regular
intervals. Therefore, it needs no events to subscribe
to but only produces them. A service can also be a
sink, i.e., the service only consumes events but does
not produce any. An example of such a service may
be a history service that only tracks the user’s loca-
tions to log them into a database. Another type of
service can be a split service, e.g., one part of the
service is running on the client and the other part
on the server-side. An example of such a service is
the map service. The map is shown on the client-side
but must be retrieved from the server prior to that.
A running TIP system has a hybrid mixture of all
possible combinations of service types introduced.

All services have the same external interfaces and
therefore look identical from the exterior, i.e., broker’s
view. Services are also capable of receiving any event
but will only process some of them, i.e., the ones they
subscribed to. To reduce unnecessary communication
and workload, the broker should take care that only
events that it subscribed to are forwarded to each
service.

4.2 Service Management

All information is sent through event messages. The
subscription and advertisement of events is wrapped
into events as well. We distinguish between system

Port

process

advertised event

subscribed eventBroker Service

Figure 6: Event exchange between the broker and a
service processing them.

Broker

advertisments subscribtions

advertise events

subscribe to events

Port

Service

Figure 7: Event subscription and advertisement of a
service to a broker.

events, i.e., all events that have an administrative
purpose, and service events, i.e., events that are pro-
cessed by the services depending on their purpose. As
this section is describing the service management, we
are referring to system events throughout the rest of
this section. The service events are described in the
next section.

Figure 7 shows a service that subscribes to and
advertises events. Referring to Figure 3, the corre-
sponding event would have the type element set to
Advertisement. The Body would contain the descrip-
tion of the advertised event. If our service was, for
example, a location service, it would provide Location
events. The corresponding Body element provides the
name of the event enclosed by the <m:name/>-tags.
The subscription events would look similar. The type
element would simply be set to Subscription.

When the broker receives advertisements and sub-
scriptions, the information about the event type and
the service that generated these events is stored in an
internal registry. This registry is later used for effi-
cient event routing as proposed above, i.e., events are
directly forwarded to services that requested them,
and not broadcasted.

To draw a bigger picture of the service registra-
tion process, we illustrate the sequence by using the
UML sequence diagram shown in Figure 8. Assum-
ing that the TIP server is already running and has
registered its services, we start the description on the
mobile user’s site. A TIP user starts its TIP client
residing on their mobile device. At first the client soft-
ware starts the local broker as a core component that
is run for every TIP client. Then the locally avail-

: TIPClient : Service : Broker : Broker

start

register

connect

start

<< register >>

TIPServerTIPClient

<< register >>

start

Figure 8: The sequence of the service and broker
registration-procedure of the TIP 3 system.

CRPIT Volume 92 - Database Technologies 2009

128

: TIPClient : Service : Broker : Broker

shutdown

unregister

shutdown

TIPServerTIPClient

disconnect

<< unregister >>

<< unregister >>

shutdown

Figure 9: The sequence of the service and broker un-
registration–procedure of the TIP 3 system.

: Service : Broker : Broker

<< register >>

start

start

<< register >>

TIPServerTIPClient

connect

Figure 10: The idealized re-start sequence of the
TIP 3 client.

able services are started and told to register with the
previously started local broker. Once every service
is started, the broker is forced to register itself to a
remote server-broker. By registering to it, all local
subscriptions and advertisements are forwarded. In
addition, the remote server-broker forwards the sub-
scriptions and advertisements of its services. Once
this initialization procedure is finished, the user can
start working with the TIP system. If the user wants
to shut down the TIP client, an un-registration pro-
cedure is started. This procedure is shown in Fig-
ure 9 and symbolizes the reverse registration proce-
dure: First the client-broker un-registers from the re-
mote server-broker, i.e., the locally advertised events
are revoked and the local subscriptions are cancelled.
The remote server-broker does this as well for its local
services. Then every local client-service is shut down
by un-registering from the local broker first and then
terminating. When all local services are shut down,
the broker itself is shut down and terminated. Then
the TIP client terminates.

An idealized procedure for a client startup is
shown in Figure 10. Here the user has previously
started all services plus the local broker but decided to
shut down the client software. Now the client should
be re-started. Again, the broker is started first. After
that, all services are started, but this time, the local
registration procedure is skipped because the service
setup has not changed, i.e., there are neither new ser-
vices nor are pre-known services missing. Therefore
the known registry information is re-used. Only the
broker is re-registering its local services to the remote
site. Similarly, the shutdown procedure is only un-
registering the broker from the remote site. Then, the
local processes are simply shut down, i.e., the broker
and every service is stopped. This means that the
registry’s entries are kept until the client services are
restarted.

In addition, Figure 10 shows a sequence where only
the services and the brokers are involved but not the
TIP client process that was used above. This is based

on the assumption that in this idealized scenario, all
services are started independently, whereas in the pre-
vious example all services were started together with
the broker by using a wrapper process.

4.3 Integration of Legacy Services

In TIP 2, a service is a monolithic software component
that combines the data, the logic and the presentation
of the provided data. For TIP 3, this single compo-
nent has to become uncoupled. We use the model-
view-controller (MVC) design pattern. The model,
i.e., the state of the service, might be, for example,
represented by the database back-end. Therefore it
resides on the server-side in the TIP 3 system. The
view visualizes the data available to the user. It is
the representation layer and therefore part of the TIP
client. The controller, i.e., the linkage between the
two other parts, is represented by the program logic
and the event layer. As both the client and the server
use this event-layer for their information exchange,
this component is found on the TIP server as well as
the TIP client. We illustrate how selected services are
migrated:

Location Service: This service is a provide-only
service, i.e., it provides Location events but does not
consume any other events. Therefore, this service re-
sides on the client-side only.

Information Service: This service cannot be di-
rectly converted into a TIP 3 service. The service is
split into several smaller ones. A first service uses
the location-information, the user’s profile and his-
tory and the available events to suggest the touris-
tic items. Instead of sending all item information to
the client, it would send the item type and identi-
fier to the client. The client then requests the items
if the complete item information is not yet locally
available. This would ease the reuse of fine grained
information, i.e., if an item was part of two consecu-
tive Information events, it could be re-used without
being requested again. In addition, this division keeps
the messages small. In addition, a new service has to
be run for every item type that is suggested within
its provided events. For the client-side, a Display ser-
vice displays the provided information to the user and
requests the item information prior to displaying it.

Recommendation Service: Similar to the Informa-
tion Service, this service has to be split into several
smaller services. The service also subscribes to lo-
cation information. The provided Recommendation
event again is only a description of the item types and
their recommended identifiers. The item information
can be obtained by the same services that have to be
introduced for the Information service and provide
the item information only. This has to be handled by
the introduced Display-service.

Map Service: This service consists of a client and
a server part in the TIP 3 system. The server part
provides maps and subscribes for MapRequest events.
Based on these events, it provides maps, i.e., Map
events. The client part displays the map on the mo-
bile device. In addition, it displays the items obtained
by the Information and Recommendation Service on
these maps. When a user leaves the scope of the lo-
cally available map, a new one for the current location
is requested. Therefore the client-sided map service
submits a MapRequest event.

5 Discussion of the Basic Architecture

The basic architecture and the event-based infrastruc-
ture well support ad-hoc service collaboration. One
example is the typical scenario of the GPS (loca-
tion service) publishing the user’s location to the bro-

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

129

ker, the information service subscribes to the location
events to deliver touristic information. The map ser-
vice also subscribes to location events to show the
user’s location on the map. It also offers locations as
the user may select points on the map that are then
reported as new location events.

This basic scenario can be extended to deal with
a more complex situation: The user enters a mu-
seum where location information becomes available
by reading RFID tags. At the same time, the GPS
service is only available with reduced quality. A new
information service is available within the museum
and a new map (for the museum) needs to be added
to the existing map service.

This situation introduces a number of challenges:
alternative services with differing quality, parallel ser-
vices and exclusive services; and the general question
of quality of service. We will focus on two questions
in particular: (1) How to ensure quality of the map
service when the user location data is no longer avail-
able? (2) How does the system decide which location
service to use?

For the first question: in a traditional re-
quest/response interaction the map would be aware
of missing location data. This is not the case in
event-based interaction. The assumption in pub-
lish/subscribe systems is that if no event data is avail-
able, no event happened. This assumption does not
hold in a mobile context.

For the second question: The concept of parallel
services and exclusive services has not been used in
this architecture so far. In general, the concept of
service types has not been described.

Both questions were approached using formal
modelling, as the mere implementation of more ser-
vices and coding of a particular solution was not
deemed to be sufficient for a general collaboration
infrastructure that aims to be open to third party
services.

6 Advanced Concepts

This section introduces advanced concepts for our
event-based SOA that have been verified and evalu-
ated using formal modelling. TIP 3 services are now
classified into service categories. Service categories
are a new concept to TIP. A service category de-
scribes the functionality a service provides. A service
category groups services, so that services with similar
functionality belong to the same service category. Dif-
ferent information and recommendation services be-
long to the informative service category whereas map
services belong to the map service category. A good
example is the map service category. Two map ser-
vices A and B both offer a user interface where the
user sees their current location on a map. Map ser-
vice A offers basic features: the map displays sights;
the user can zoom in and out from the map, i.e.,
change the map’s scale. Map service B offers the
same features as map service A and some additional
features: the user can also select a new location, e.g.,
by dragging the map; the user can select a start and
an end point for a route planner that map service B
co-operates with. Both map services belong to the
same service category.

Similarly, TIP events are classified into event types
as described above. An information service subscribes
to location events. Whenever it has processed a loca-
tion event it publishes an information event. Event
types are classified into event categories. When the
information service publishes a location event, this
location event and the information events belong to
the event category information events, enabling sub-
scribers to differentiate between location events from

Cache

Broker (Client)

IN

Message Handler

OUT

remote Brokers

GUI handler

IN OUT

Publisher Index

Subscriber Index

local Services

Observer

Auxiliary Services

Figure 11: Internal message handling of an extended
event-broker.

different publishers and to treat them accordingly. A
location event belonging to the information event cat-
egory is treated differently by the map service from
a location event belonging to the location event cate-
gory, for example.

Figure 11 shows the advanced TIP 3 client archi-
tecture. We start with a short discussion of a TIP 3
peer. We then discuss TIP 3 services and their at-
tributes before we discuss the observer and the bro-
ker.

A TIP 3 service offers functionalities, e.g., sights
on locations and information about the sights. A
service may publish events and subscribe to events.
Event publishers provide an advertisement. Event
subscribers provide a set of functional conditions and
subscription rules. Every service provides a service
description.

A service does not locate co-operation partners. It
simply is subscribed to the events needed to provide
its functionality. Services are grouped into service
categories. For example, services providing informa-
tion on sights belong to the informative service cat-
egory while services offering map tiles and services
displaying the map tiles belong to the map service
category.

A TIP service provides a service description, an
advertisement, functional conditions and subscription
rules.

The service description provides information
about the service. It specifies what service category
the service belongs to. It defines the event categories
used by the service, as well as the event types it pub-
lishes. Furthermore it informs about the quality of
the published data, the service’s maximum latency
and the service’s maximum failure rate. The service
description also informs about the owner of the ser-
vice and provides other administrative information.

The service advertisement tells about the data
published by the service. It defines the event and
service category, the event type and the quality of
data. A service may provide several advertisements,
one for each event type that it publishes.

The service conditions specify a subscriber’s func-
tional pre-conditions. The service defines the event
it requires to be able to supply its functionality, e.g.,
location events. It may further specify what kind of
service should publish the data, i.e., the publisher’s
service category. The subscriber can also decide if
the publisher should be a local service, i.e., a service
that is located on the same device, or an external
service. The information service, for example, would
require location data from a location service. If the
service’s pre-conditions are not satisfied, the service
cannot provide its functionality. A service condition
is a tuple <data category, service category, local pub-
lisher, remote publisher>. The subscription rules de-

CRPIT Volume 92 - Database Technologies 2009

130

fine these conditions in more detail – the required
data format, quality of service and, if necessary, the
publishing service, amongst others.

Rules enable the service to prioritise certain event
types over others or to choose between several pub-
lishers. In a group, the rules are prioritised: a priority
can be set on high, medium or low. Rules with high
priorities are evaluated before those with lower pri-
orities. If the rule with a higher priority has been
evaluated successfully, i.e., the evaluation resulted in
a subscription, rules that have lower priorities and be-
long to the same group are not evaluated. This gives
the service the opportunity to choose between differ-
ent event types from the same event category, or be-
tween different data qualities. Subscription rules are
a tuple <priority, event type, event category, qual-
ity, exclusive subscription, service category of pub-
lisher, publisher, local, external, allowable latency,
maximum failure rate>.

The event category is needed to select the sub-
scribed event type if the same event type is offered
by several services: location data may, for example,
be published by the location service, and by the in-
formation service. A service that is only interested in
the user’s current location will subscribe to location
data from the location category. Another service in-
terested in location data from sights, would subscribe
to location data from the information category.

When a service subscribes to events from only one
publisher we call this an exclusive subscription. For
example, the map service should only subscribe to lo-
cation data from one location service, and not from
several location services at the same time. The map
service would then have to name its favourite pub-
lisher.

The service category of the publishing service can
be named as well. The map service subscribes to loca-
tion data both from the location service and the infor-
mation service. The information service subscription
is not exclusive, however. The map service then de-
fines in a rule that it wants to subscribe to events that
are published by services belonging to the category of
information services.

Services can also specify if they want to subscribe
to data generated locally, or if the data should be
computed remote, e.g., on a client. This is needed
for location subscriptions, amongst others. The al-
lowable latency and the maximum failure rate specify
features of the publishers, and prevent that a service
subscribing to publishers that provide poor quality.

The observer evaluates the service conditions and
rules. It monitors the connection to services or bro-
kers, i.e., it monitors if services or brokers have been
disconnected. In case of disconnection the observer
removes the advertisements and subscriptions from
the disconnected service or broker.

Although the observer may behave like an inde-
pendent actor, it is located at the broker. The ob-
server is called during the service startup routine. A
service delivers its advertisements and subscription
rules to the observer. The observer then selects some
event types from the available types at the broker, i.e.,
from the event types other services have advertised,
using those rules. When a newly registered publisher
advertises its data, the subscriptions may be changed
if needed or possible. When a publisher disconnects,
the subscriptions are re-evaluated as well.

When a service wants to subscribe to data not
available in the requested data format, the observer
requests that the broker starts an auxiliary service
that can convert the available data format into the
requested.

The broker or event-manager provides a commu-
nication interface for local services and for other bro-
kers. It connects local services with one another and

connects to external brokers. The broker receives
the events from publishers, filters them and forwards
them to the respective subscribers. The broker starts
auxiliary services if needed. The broker keeps track
of which service publishes what data type, and which
service subscribes to what data type. The auxiliary
services convert from one data format to another.
They are managed by the broker, i.e., if an auxiliary
service is requested, the broker starts it.

The publisher and subscriber index are used by
the broker to keep track of what service publishes
which data, and who subscribes to which data. The
subscriber index is accessed during the filtering pro-
cess. The publisher index is accessed during the eval-
uation of rules and conditions. The TIP databases
are typically located at the tip 3 server peer. They
store geo-spatial data, information on sights and user
data. Other services access the databases through a
database service.

We refrain from showing all model parts here as
the necessary level of detail for an in-depth discussion
cannot be obtained. Figure 12 shows one example of
the model for the (server) broker filtering incoming
events. The broker is responsible for service registra-
tion, service deregistration, publishing events to the
broker, and filtering events. Here we briefly sketch
each step and give some details of the model for the
filtering.

1. Service registration When a service registers
with the broker, it first publishes its service de-
scription to the broker. A subscribing service
provides a set of functional conditions and sub-
scription rules. The observer evaluates the condi-
tions. If they are satisfied, the observer evaluates
the services subscription rules and subscribed the
service to the events needed. Otherwise, the reg-
istration process is stalled until the conditions are
satisfied, i.e., until the events needed have been
advertised to the broker. Publishing services an-
nounce their advertisement.

2. Service deregistration When a service de-
registers, its advertisement is removed. The sub-
scriptions are removed as well. The broker does
not try to filter messages to a subscriber that
does not exist any more. After a time inter-
val, services are deregistered from the broker by
the observer if the service for some reason has
been disconnected. This avoids deregistering of
services and re-evaluation of subscription rules
when a service disconnects for a short time and
then re-connects.

3. Publishing events to the broker Services
publish events to the broker. We first verify that
services may publish events to the broker. If this
is the case then the broker enqueues the message
in its in-queue.

4. Filtering events When the broker receives events
from local services or from other brokers, it fil-
ters the events and forwards them to the respec-
tive subscribers. In the first step, a service sends
its message to the broker. The broker receives
the event and enqueues it in its in-queue. Then
the broker dequeues the message (Step 2) to first
check if there are any subscribers (Step 3) or
if the message was published by the database
service. If the message was published by the
database service, the event is forwarded directly
to its recipient and the broker returns to the
idle location. Otherwise the broker identifies the
subscribers in Step 4. In our example, another
service has subscribed to the event. In Step 5,

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

131

INIT

LOOP

Broker SENDING

IDLE
idleTime < 10

FILTERING

k-DEVICES != device && subscribers[k] &&
k >= NUMBEROFSERVICES &&
k < NUMBEROFSERVICES +DEVICES

startBF[device]?
idleTime = 0

e.datatype >= 0

e.datatype == -1

idleTime = 0

b2bPublish[k - DEVICES]!
filtered[k - DEVICES] = e,
subscribers[k] = false,
receivers--

sub < NUMBEROFSERVICES + DEVICES && e.id == id &&
subscriberIndex[device][e.datacat][e.datatype]
[e.quality][e.publisher][sub][LOCAL]

subscribers[sub] = true,
receivers++, sub++

sub < NUMBEROFSERVICES + DEVICES &&
!(e.id != id && subscriberIndex[device][e.datacat]
 [e.datatype][e.quality][e.publisher][sub][OUTSIDE] ||
 e.id == id && subscriberIndex[device][e.datacat]
 [e.datatype][e.quality][e.publisher][sub][LOCAL])

sub++

sub < NUMBEROFSERVICES + DEVICES && e.id != id &&
subscriberIndex[device][e.datacat][e.datatype][e.quality]
[e.publisher][sub][OUTSIDE]

subscribers[sub] = true,
receivers++, sub++

numberOfSubscribers
[device][e.datatype] > 0

readSubscriberIndex[device]!
sub = 0, receivers = 0

publishedToBroker[k - DEVICES]!
k++

receivers > 0 &&
k < NUMBEROFSERVICES &&
subscribers[k]
sendToService[k]!

filtered[k] = e,
subscribers[k] = false,
k++, receivers--

sub == NUMBEROFSERVICES + DEVICES
subscriberReadFinished[device]!
k = 0

numberOfSubscribers
[device][e.datatype] <= 0
idleTime = 0

e = dequeue(brokerInqueue[device])

k < NUMBEROFSERVICES +DEVICES &&
(!subscribers[k] && receivers > 0) ||
k == device+DEVICES
k++

k == NUMBEROFSERVICES + DEVICES ||
 receivers == 0

idleTime = 0

Figure 12: Model for Broker message filtering.

the broker synchronises with the subscribing ser-
vices through sendToService[k]!. The index
k identifies the subscribing service and selects a
communication channel. The service receives the
message. For a detailed discussion of the mod-
elling we refer to our Technical Report [7].

7 Discussion of the Advanced Architecture

The introduction of quality of service concepts, ob-
servers, rules and auxiliary services remedies the
shortcomings identified in the discussion of the ba-
sic architecture (Section 5). Our interaction fame-
work now covers alternative services, service selection,
quality of services and exception handling. Revisiting
our previous scenario of a user entering a museum, the
following interactions will be triggered: (1) The ob-
server is initialised with quality-of-service rules about
location services, (2) The observer detects the low
quality of the GPS service when entering the museum,
(3) An auxiliary service translates RFID information
into GPS data, (4) Preference is given to the higher
quality data.

The next challenge facing our event-based SOA
is that of sufficient privacy and protection of user-
related information. How much information needs
to be exchanged between services and how much in-
formation can be hidden from the service vendors?
These questions will be addressed in future research
as more complex modelling and validation are neces-
sary that are, unfortunately, beyond the capabilities
of most existing model checking tools.

8 Prototypes

Two prototypes were implemented, one uses Java pro-
gramming and the other formal modelling in Uppaal.

Basic architecture The basic TIP 3 architecture
was implemented using Java. The implemented net-
work is based on a TCP/IP stack. Every component
that submits or receives information over the network
uses a Connector. To simplify the network access for
services and brokers, this connector hides the send
and receive implementations. The transported infor-
mation is an event. This event is wrapped into a mes-
sage that additionally contains the receiver details,
i.e. hostname and host port. A connector provides
send and receive methods. The sender and receiver
objects are hidden inside and work autonomously.
That means, whenever a new message is enqueued
for sending, the sender automatically forks a worker
process for submitting the contained event to the ad-
dressed remote party. Whenever the component, i.e.,
the service or broker, that owns the connector calls
the receive method, a received message is taken from
this queue. If the queue is empty the receive method
blocks and waits until a new message is enqueued.

This prototype was used to implement and verify
the concept of an event-based SOA. It was also used to
implement and test caching and pre-fetching in TIP 3.

Advanced architecture We re-implemented the
basic architecture using real-time discrete event mod-
elling in Uppaal [2]. Uppaal is a tool-box for the
verification of real-time systems. Uppaal uses timed
automata to model processes. We extended this ba-
sic architecture with the advanced concepts described
in the previous section: observers, rules, and auxil-
iary services. The model was divided into three parts
for reasons of clarity and verification. We decided to
model the client peer and its services in one model.
The server peer and its services are modelled in a
second model. The communication between several
peers is modelled in a third model. The design and
modelling process comprises three interleaving steps.
In the first step, the usability requirements should be
recognised, as they are needed later during the design

CRPIT Volume 92 - Database Technologies 2009

132

and modelling process. During the modelling process,
the properties are identified and formulated as verifi-
cation queries in the second step. The requirements
are used to formulate the properties. In the third
step, the model is verified using the properties. The
verification of the properties often leads to a revision
of the model. The different steps often interleave:
the analysis of the verification results can lead to a
re-engineering of the model or the property, so that
the model has to be verified again or the new prop-
erty has to be verified. Finally the results of the last
verification are analysed. The result analysis differ-
entiates two cases: either the property holds under
the assumptions upon which the model is based, or
it does not hold. If the property does not hold, it
is examined and analysed. A property that does not
hold highlights weaknesses in the model and should
result in a better model or property.

The prototype was used to verify basic proper-
ties of advanced architecture and infrastructure. The
verification was largely performed using simulation.
Our simulations showed that the model functions ad-
equately and without deadlock: services are able to
register, i.e., publishers can advertise, subscribers are
subscribed to events if their functional conditions are
satisfied; publishers can publish events to the bro-
ker; the broker filters events to the subscribers; ser-
vices can deregister, or are deregistered by the ob-
server in case of disconnection. The observer evalu-
ates the services’ functional conditions and subscrip-
tion rules. When a new publisher has advertised to
the broker, every subscribers’ subscription rules are
evaluated and subscriptions accordingly updated. If
a registering service’s functional conditions are not
satisfied, the registration process is stalled until an
appropriate advertisement has been published to the
broker. Our simulations have shown that only the
currently visible service reacts to user input.

9 Summary

In this paper, we proposed an event-based service-
oriented architecture for collaboration of mobile
context-aware services. All services are loosely cou-
pled and interact via an event-based middle-ware.
The information exchange is event-based, i.e., events
trigger the submission of information. We illustrated
the principle of events message exchange in two ver-
sions: a basic architecture that was implemented and
practically evaluated, and a formal modelling of an
extended architecture to allow for verification and
generalizability of observations. We outlined how ex-
isting legacy services of a tourist information system
can be migrated to the new TIP 3 architecture.

References

[1] Web services architecture. Technical report,
World Wide Web Consortium, February 2004.

[2] G. Behrmann, A. David, and K. G. Larsen. A
tutorial on uppaal. In Formal Methods for the
Design of Real-Time Systems: 4th International
School on Formal Methods for the Design of
Computer, Communication, and Software Sys-
tems, SFM-RT 2004, page 200236, 2004.

[3] G. Chen and D. Kotz. A survey of context-aware
mobile computing research. Technical report,
Hanover, NH, USA, 2000.

[4] C.-Y. Chow, M. F. Mokbel, and X. Liu. A peer-
to-peer spatial cloaking algorithm for anonymous
location-based service. In GIS ’06: Proceedings

of the 14th annual ACM international sympo-
sium on Advances in geographic information sys-
tems, pages 171–178, New York, NY, USA, 2006.
ACM.

[5] G. Cugola and H.-A. Jacobsen. Using pub-
lish/subscribe middleware for mobile systems.
SIGMOBILE Mob. Comput. Commun. Rev.,
6(4):25–33, 2002.

[6] T. Erl. Service-Oriented Architecture: Concepts,
Technology, and Design. Prentice Hall PTR, Up-
per Saddle River, NJ, USA, 2005.

[7] L. Eschner and A. Hinze. Design and formal
model of an event-driven and service-oriented ar-
chitecture for the mobile tourist information sys-
tem tip. Technical report, University of Waikato,
November 2008.

[8] P. T. Eugster, P. A. Felber, and A. marie Ker-
marrec. The many faces of publish/subscribe.
ACM Computing Surveys, 35:114–131, 2003.

[9] D. Frey and G.-C. Roman. Context-aware pub-
lish subscribe in mobile ad hoc networks. In
A. L. Murphy and J. Vitek, editors, COORDI-
NATION, volume 4467 of Lecture Notes in Com-
puter Science, pages 37–55. Springer, 2007.

[10] M. Gruteser and D. Grunwald. Anonymous us-
age of location-based services through spatial
and temporal cloaking. In MobiSys ’03: Pro-
ceedings of the 1st international conference on
Mobile systems, applications and services, pages
31–42, New York, NY, USA, 2003. ACM.

[11] K. Henricksen, J. Indulska, and T. Mcfadden.
Middleware for distributed context-aware sys-
tems. In International Symposium on Distributed
Objects and Applications (DOA, pages 846–863.
Springer, 2005.

[12] A. Hinze and G. Buchanan. The Challenge
of Creating Cooperating Mobile Services: Ex-
periences and Lessons Learned. In Twenty-
Ninth Australasian Computer Science Confer-
ence (ACSC 2006), Hobart, Australia, Jan. 2006.

[13] A. Hinze and S. Junmanee. Advanced recom-
mendation models for mobile tourist informa-
tion. In Federated Int. Conference On The Move
to Meaningful Internet: CoopIS, pages 643–660,
2006.

[14] A. Hinze and A. Voisard. Location- and time-
based information delivery in tourism. In Con-
ference in Advances in Spatial and Temporal
Databases (SSTD 2003), volume 2750 of LNCS,
Santorini Island, Greece, July 2003.

[15] T. D. Hodes and Y. H. Katz. Composable ad hoc
location-based services for heterogeneous mobile
clients. ACM Wireless Networks, 5:411–427,
1999.

[16] X. Huang. Travel Planning Map Service – De-
velopment of a Java-based Application for Travel
Planning. Master’s thesis, Dep. of Comp. Sc.,
University of Waikato, Sept. 2006.

[17] N. Le Sommer. Service Provision in Discon-
nected Mobile Ad Hoc Networks. In Interna-
tional Conference on Mobile Ubiquitous Comput-
ing, Systems, Services and Technologies (UBI-
COMM 2007), pages 125–130, Papeete, French
Polynesia (Tahiti), November 2007. IEEE Com-
puter Society Press.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

133

[18] R. Meier and V. Cahill. Steam: Event-based
middleware for wireless ad hoc networks. In Pro-
ceedings of The ICDCSW, pages 639–644, 2002.

[19] A. Slominski, M. Govindaraju, D. Gannon, and
R. Bramley. An Extensible and Interopera-
ble Event System Architecture Using SOAP.
Technical Report TR549, Department of Com-
puter Science Indiana University Bloomington,
IN, U.S.A., 2002.

[20] C.-F. Sorensen, M. Wu, T. Sivaharan, G. S.
Blair, P. Okanda, A. Friday, and H. Duran-
Limon. A context-aware middleware for applica-
tions in mobile ad hoc environments. In MPAC
’04: Proceedings of the 2nd workshop on Middle-
ware for pervasive and ad-hoc computing, pages
107–110, New York, NY, USA, 2004. ACM.

[21] J. van Gurp, A. Karhinen, and J. Bosch. Mo-
bile service oriented architectures (mosoa). In
F. Eliassen and A. Montresor, editors, Proceed-
ings of DAIS, volume 4025 of Lecture Notes in
Computer Science, pages 1–15. Springer, 2006.

[22] X. Yang, A. Bouguettaya, B. Medjahed, H. Long,
and W. He. Organizing and accessing web ser-
vices on air. IEEE Transactions on Systems,
Man, and Cybernetics, Part A, 33(6):742–757,
2003.

[23] S. S. Yau, F. Karim, Y. Wang, B. Wang, and
S. K. S. Gupta. Reconfigurable context-sensitive
middleware for pervasive computing. IEEE Per-
vasive Computing, 1(3):33–40, 2002.

CRPIT Volume 92 - Database Technologies 2009

134

Conditional Purpose Based Access Control Model for Privacy
Protection

Md Enamul Kabir Hua Wang

Department of Mathematics and Computing
University of Southern Queensland,

Toowoomba, Queensland 4350, Australia,
Email: {kabir, wang}@usq.edu.au

Abstract

This paper presents a model for privacy preserv-
ing access control which is based on variety of pur-
poses. Conditional purpose is applied along with al-
lowed purpose and prohibited purpose in the model.
It allows users using some data for certain purpose
with conditions. The structure of conditional pur-
pose based access control model is defined and in-
vestigated through a practical paradigm with access
purpose and intended purpose. An algorithm is devel-
oped to achieve the compliance computation between
access purposes and intended purposes. According to
this model, more information from data providers can
be extracted while at the same time assuring privacy
that maximizes the usability of consumers’ data. This
model extends traditional access control models to a
further coverage of privacy preserving in data mining
atmosphere. Its interior is a new structure for manag-
ing collected data in an effective and trustworthy way.
This structure helps enterprises to circulate clear pri-
vacy promise, to collect and manage user preferences
and consent. The implementation of the idea in the
paper shows the flexibility of the model, and finally
we provide comparisons of our work to other related
work.

Keywords: access control, access purpose, intended
purpose, conditional intended purpose, prohibited in-
tended purpose.

1 Introduction and Motivation

Privacy1 preservation of individuals is a challenging
problem in the data-mining environment. Enterprises
collect customer’s personal identification information
along with other attributes during any kinds of
marketing systems. It is a natural expectation that
the enterprise will use this information for various
purposes, this leads to concern that the personal
data may be misused. Many enterprises collect, store
and use huge amount of personal information. A
study conducted by the Federal Trade Commission
has shown that 97 percent of websites were collecting
at least one type of identifying information such as
name, e-mail address, or postal address of customers
(Federal Trade Commission 2000). Privacy preser-
vation in data-mining environment has become a
great concern both for enterprises and individuals.

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the 20th Australasian Database Conference
(ADC 2009), Wellington, New Zealand. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
92, Athman Bouguettaya and Xuemin Lin, Ed. Reproduction
for academic, not-for profit purposes permitted provided this
text is included.

1Privacy is defined as the right of an individual to decide when,
how, and to what extent he/she would like to share his/her infor-
mation

As individuals are more concern about their privacy,
they are becoming more reluctant to carry out
their businesses and transactions online, and many
organizations are losing a considerable amount of
potential profits (Forrester Research 2001). The
research shown that on-line commerce was reduced
by US$15 billion in 2001 due to individual pri-
vacy concerns. These reactions from individuals
imitate an altering awareness about how data is
managed. Therefore without a clear compromising
between individuals and enterprises, data quality
and data privacy cannot be achieved and many
organizations are seriously thinking about privacy
issues of consumers. By demonstrating good privacy
practices, many businesses are now trying to build
up solid trust to customers, thereby attracting more
customers (Baker & Peter 2003). Considering the
privacy of customers, enterprise has to develop a
secure privacy policy to remove the fear of customers.
Thus in an internal management system, a reliable,
efficient, effective and secure privacy policy should
be established depending on customer’s requirements.

A lot of work has been developed in order to
protect the privacy of individuals and showed that
the notion of purpose should be used as the basis
for access control for specifying a privacy policy
(Agrawal et al. 2002, Powers et al. 2002, LeFevre
et al. 2004, Agrawal et al. 2005, Byun et al. 2005,
2008). According to Yang et al. (2007), a privacy
policy ensures that data can only be used for its
intended purpose (intended usage of data), and
an access purpose (intension for accessing data
objects) is compliant with the data’s intended pur-
pose. During the last few years, rapid technological
developments especially in the field of information
technology directed most attention and energy to
the privacy protection of Internet users. Unless
customers’ data is suitably protected, individuals’
privacy can be breached revealing their personal
information. On the other hand, these collected data
sets are the most important tools for a wide range
of studies. Again the data that is more protected
usually loses data quality. So it is necessary to come
up a point where both data quality and data privacy
are achieved. Although a significant number of works
has been developed in this area (OASIS, Agrawal
et al. 2002, Powers et al. 2002, LeFevre et al. 2004,
Agrawal et al. 2005, Byun et al. 2005, 2008), research
has yet to be done in order to remove the dilemma
between data quality and data privacy.

Many privacy policy access control models have
been proposed in order to protect the privacy of
consumers. Byun et al. (2005, 2008) pointed out
that privacy protection cannot be easily achieved
by traditional access control models as it focuses on
which user is performing which action on which data

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

135

Table 1: Hypothetical data base illustrating AIP and PIP
name age address income nameip ageip addressip incomeip

Alice 35 21, West St., TBA, QLD 4350 35000 〈{G}, {Φ}〉 〈{Φ}, {G}〉 〈{G}, {A, S}〉 〈{G}, {M}〉
Bob 29 45, Fay CT., TBA, QLD 4350 23000 〈{G}, {Φ}〉 〈{G}, {M}〉 〈{G}, {A, S}〉 〈{G}, {A,M}〉
Ron 56 20, Anita Dr., TBA, QLD 4350 56000 〈{G}, {Φ}〉 〈{G}, {M}〉 〈{G}, {A, S}〉 〈{G}, {A}〉
Jak 48 25, Wuth St., TBA, QLD 4350 48000 〈{G}, {Φ}〉 〈{G}, {M}〉 〈{G}, {A}〉 〈{G}, {A,M}〉

G={General purpose}, A={Admin purpose}, S={Shipping purpose}, P={Purchase purpose},
M={Marketing purpose}, ip={Intended purpose}=〈AIP, PIP〉

object. But a reliable privacy policy are concerned
with which data object is used for which purpose.
They also suggested that the notion of purpose must
play a major role in access control models and that
an appropriate metadata model must be developed
to support such privacy centric access control models
in order to protect data privacy. An approach
is developed that is based on intended purposes,
which specify the intended usage of data, and access
purpose, which specify the purposes for which a
given data element is accessed. Usually, during the
data collection procedure customers are informed
about the purposes of enterprises. Customers then
decide whether their information could be used
or not for a certain purpose. That means data
providers are given an option of their data with
certain purposes. If an individual mentions that
his/her data could not be used for a certain purpose,
then his/her information is not accessible for the
purpose. Usually data providers are reluctant to use
any part of their information for any purposes and so
there is a possibility of losing information. But more
information can be extracted from data providers
by providing more possible options of using their
information. It is possible to protect the privacy of
individuals in this model, but there is a shortcoming
of information loss. An intended purpose is divided
(IP) into two parts: Allowed Intended Purposes
(AIP) (explicitly allows to access the data for the
particular purpose) and Prohibited Intended Purpose
(PIP) (data access for particular purposes are never
allowed). In order to recognize the model clearly,
suppose that a company uses consumers’ data for the
purpose of General, Admin, Marketing and Shipping
and consider the hypothetical database in Table 1.

In Table 1, the value of Alice’s attribute incomeip

is 〈{G}, {M}〉, which means that Alice income could
be used for General purpose but strictly prohibited
to use for Marketing purpose. If we take a query

SELECT name
FROM Table 1
FOR Marketing Purpose

it gives the name of Alice, Bob, Ron, Jak and if we
have a query

SELECT name, age
FROM Table 1
FOR Marketing Purpose

it returns nothing because prohibited intended
purposes override the allowed intended purposes.
This model protects privacy of consumers as it
considers customers’ requirements but it occurs more
information loss. So a natural question arise

“ Is it possible to extract information from PIP at
least conditionally?”

The answer of this question is achieved in this
article by adding a new term conditional purpose in
the intended purpose. In order to extract more data

and protect data privacy, conditional purpose plays
a role in access control models. In this paper, we
address this goal by presenting a model of purpose
management, which is a fundamental building block
on which conditional purpose based access control
can be developed. Our proposed model is based on
access purpose and intended purpose. Both access
purposes and intended purposes are specified with
respect to a hierarchical structure that organizes a
set of purposes for a given enterprise. A key feature
of our proposed model is that it supports conditional
purpose and prohibited purpose, thus allowing users
to specify that data should be used conditionally or
should not be used for a set of purpose.

Observing these challenges and the satisfaction
of both enterprises and customers, we need a better
model to extract more information from customers
with privacy guarantees. To overcome this challenge,
we propose a new access control called conditional
based access control model. In the access control
model it is enable to extract information from PIP
by giving conditions called Conditional Intended
Purpose (CIP). Our proposed model is helpful for
enterprises to establish an ideal privacy policy and to
manage data in a sensitive, effective and trustworthy
way. It also helps policy makers and the experts in
the data-mining environment.

The reminder of this paper is organized as follows.
We present a brief overview of privacy related tech-
nologies in Section 2. Since purpose is used as the
basis of access control, a brief description of the no-
tion of purpose is described in Section 3. In Section
4 we present comprehensive descriptions of our pro-
posed access control model. Section 5 is devoted to
compliance check and access control using query mod-
ification. We compare our proposed model with the
most recent access control models in Section 6. Con-
cluding remarks are included in Section 7.

2 Related Work

This work is related to several topics in the area of
privacy preservation in data mining atmosphere.

The most notable technique to protect privacy
is the W3C’s Platform for Privacy Preferences
(P3P) that formally specify privacy policy by service
providers (Marchiori 2002). P3P provides a way for
a web site to encode its data collection in a machine-
readable format known as a P3P policy, which can
be compared against a user’s privacy preferences
Yang et al. (2007). Byun et al. (2008) pointed out
that P3P does not provide any functionality to
keep promises in the internal privacy practice of
enterprise. Thus it can be said that a striking privacy
policy with inadequate enforcement mechanism may
place the organizations at risk of reputation damage.
The concept of Hippocratic database introduced by
Agrawal et al. (2002) that amalgamates privacy pro-
tection in relational database system. A Hippocratic
database includes privacy policies and authorizations
that associate with each attribute and each user

CRPIT Volume 92 - Database Technologies 2009

136

the usage purpose(s) (Al-Fedaghi 2007). Agrawal
et al. (2002) presented a privacy preserving database
architecture called Strawman which was based the
access control on the notion of purposes, and opened
up database-level researchers of privacy protection
technologies. After that, purpose based access con-
trol introduced by Byun et al. (2005, 2008) and Yang
et al. (2007), fine grained access control introduced
by Rizvi et al. (2005) and Agrawal et al. (2005)
are widely used access control models for privacy
protection. In IT system the proposed Enterprise
Privacy Authorization Language (EPAL) of IBM
is a language for writing enterprise privacy policies
to run data handling practices. An EPAL policy
defines hierarchies of data-categories, user-categories,
and purpose (Byun et al. 2008). A set of actions,
obligations, and conditions are also defined by an
EPAL policy.

A lot of works (Bertino et al. 1996, Denning et al.
1988, Sandhu & Chen 1991, 1998) provide many
valuable insights for designing a fine-grained secure
data model. In a multilevel relational database
system, every piece of information is classified into a
security level, and every user is assigned a security
clearance (Byun et al. 2008). LeFevre et al. (2004)
proposed an approach to enforcing privacy policy
in database setting. This work focus on ensuring
limited data disclosure, based on the premise that
data providers have control over who is allowed to
see their personal data and for what purpose. They
introduced two models of cell-level limited disclosure
enforcement and suggest an implementation based
on query modification techniques.

Byun et al. (2008) present a comprehensive
approach for privacy preserving access control model.
In their access control model multiple purposes to
be associated with each data elements and also
support explicit prohibitions. This model is based
on the notion of purpose as it plays a central role
and is the basic concept on which access decisions
are made. According to Byun et al. (2008) a purpose
describes the reason(s) for data collection and data
access, access purpose is intension for accessing data
objects and intended purpose is the specified usages
for which the data objects are collected. Massacci
et al. (2005) pointed out that most privacy-aware
technologies use purpose as a central concept around
which privacy protection is built.

All of these works proposed different approaches
to protect the privacy of individuals through differ-
ent models without being considering to extract more
information. Our aim is to preserve privacy of indi-
viduals as well as extracting more information. With
this aim in this paper we propose a model that has
significantly improved the work of Byun et al. (2008).
It has improved in three different remarkable ways.
First, we introduce conditional purpose in addition to
explicit prohibitions that make data providers more
flexible to give information. Second, the enterprise
can publish an ideal privacy policy to manage data in
a sensitive, effective and trustworthy way, and third
it reduces the information loss as it shows that we can
extract more information from data providers.

3 Purpose, Access Purpose and Intended
Purpose

Data is collected for certain purpose. For instance,
a nation wide demographic survey in Australia, data
may be collected to know the socioeconomic and de-
mographic characteristics of all Australians. Each

Table 2: Predetermined Intended Purposes
Group 1 Group 2 Group 3

Name 〈{G}, {T}, {Φ}〉 〈{G}, {Φ}, {T}〉 〈{G}, {Φ}, {Φ}〉
Address 〈{G}, {T}, {Φ}〉 〈{G}, {Φ}, {T}〉 〈{G}, {Φ}, {Φ}〉
Phone 〈{G}, {T}, {Φ}〉 〈{G}, {Φ}, {T}〉 〈{G}, {Φ}, {Φ}〉
Age 〈{G}, {T}, {Φ}〉 〈{G}, {Φ}, {T}〉 〈{G}, {Φ}, {Φ}〉

Income 〈{G}, {T}, {Φ}〉 〈{G}, {Φ}, {T}〉 〈{G}, {Φ}, {Φ}〉

data access also serves a certain purpose. So it is
a natural expectation that a privacy policy should
concern which data object is used for which purposes.
Many authors indicated that purpose is a central part
in many privacy preserving access control model.

3.1 Definition of Purpose

For preserving the privacy of customers, each and
every data access must obey with the privacy policies
on which customers have conditionally or uncondi-
tionally agreed. A representative privacy policy for a
data element includes purposes, retention, condition
and obligation. This means that the particular data
element can be conditionally or unconditionally
accessed only for the specific purposes with certain
conditions. The retention indicates how long the
data element can be reserved, and the obligation
designates the actions that must be followed after
an access to the data element is approved. So
purpose is the most interesting thing to researchers
as it directly shows how access to data elements
has to be controlled. P3P defines purpose as ”the
reason(s) for data collection and use” and specifies a
set of purposes (World Wide Web Consortium). In
commercial surroundings purposes normally have a
hierarchical associations among them; i.e., general-
ization and specialization relationships. For instance,
a group of purposes such as direct-marketing and
third party marketing can be represented by a more
general purpose, marketing. We borrow the purpose
definition from Byun et al. (2008).

Admin Purchase Shipping Marketing

Profiling Analysis Direct Third-Party

D-Email D-Phone T-Email T-Postal

Special-Offers Service-Updates

General-Purpose

Figure 1: Purpose Tree

Definition 1 : (Purpose and Purpose Tree): A pur-
pose describes the intentions for data collection and
data access. A set of purposes, denoted as ω, is or-
ganized in a tree structure, referred to as Purpose
Tree and denoted as Ω, where each node represents
a purpose in ω and each edge represents a hierarchi-
cal relation between two purposes. Let ri, rj , be two
purposes in Ω. We say that ri is an ancestor of rj (or
rj is a descendent of ri) if there exists a downward
path from ri to rj in Ω. Figure 1 is an example of

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

137

purpose tree, where each node represents a purpose
in ω and each edge represents a hierarchical relation
between two purposes.

Purposes, depending on their association with ob-
jects and subjects, may be called intended purposes
or access purposes respectively.

Definition 2 (Access Purpose): An access purpose
is intensions for accessing data objects, and it
must be determined by system when data access is
requested. So access purpose specifies the purpose
for which a given data element is accessed.

Definition 3 (Intended Purpose): An intended
purpose is the specified usages for which data objects
are collected. That is, purpose associated with
data and thus regulating data accesses as intended
purpose. According to our approach an intended
purpose consists of the following three components.

Allowable Intended Purpose (AIP): This means
that data providers explicitly allow accessing the
data for a particular purpose. For example data
providers may consider that his/her information can
be used for marketing purpose without any further
restrictions.

Conditional Intended Purpose (CIP): This means
that data providers allow accessing the data for a
particular purpose with some conditions. For exam-
ple data providers may consider that his/her income
information can be used for marketing purpose by
hiding his/her personal identification information
(e.g. id or name etc.) or his/her income data
can be reveal through generalization. or only the
first letter of name can be used for marketing purpose.

Prohibited Intended Purpose (PIP): This means
that data providers strictly disallow accessing the
data for a particular purpose. For example data
providers may consider that his/her income infor-
mation cannot be used for marketing purpose. In
that case data provider’s income attribute is strictly
prohibited to use for marketing purpose. An example
of how AIP, CIP and PIP works is illustrated through
a hypothetical database in Table 3.

So an intended purpose IP is a tuple
〈AIP, CIP, PIP 〉, where AIP ⊆ ω, CIP⊆ ω
and PIP⊆ ω are three sets of purposes. The set of
purposes implied by IP, denoted by IP?, is defined to
be AIP↓∪CIP↓ -PIPl, where

R↓, is the set of all nodes that are descendants of
nodes in R, including nodes in R themselves,

R↑, is the set of all nodes that are ancestors of
nodes in R, including nodes in R themselves, and

Rl, is the set of all nodes that are either ancestors
or descendants of nodes in R, that is, Rl=R↑ ∪ R↓.

The following example explains the definition of
AIP, CIP and PIP.

Example 1 : Suppose IP= 〈{Admin,
Direct}, {Third-party}, {D-mail}〉, then IP? =
{Admin, Profiling, Analysis, D-Phone, Third-party,
T-Emailc, T-Postalc}. where subscripts c indicates
that customers information can be used for the
purpose with some conditions.

Definition 4 (Access Purpose Compliance): Let
Ω be a purpose tree. Let IP= 〈AIP, CIP, PIP 〉
and AP be an intended purpose and an access

purpose defined over Ω, respectively. AP is said to
be compliant with IP according to Ω, denoted as
AP⇐ΩIP, if and only if AP∈ IP?.

Example 2 : Suppose a company established the
following privacy policies:

• We use your information for purchasing pur-
poses, to provide services to you, and to inform
you of services that may better meet your needs.

• We will disclose, conditionally disclose or will not
disclose your information to third parties accord-
ing to our privacy requirements.

In Table 2, Group 3 represents customers who have
given consent for third-party marketing, Group 1 rep-
resents customers who have given consent for third-
party marketing by removing personal identification
information or via generalization/suppression (condi-
tionally given consent) and Group 2 represents cus-
tomers who have not given consent for third-party
marketing.

4 Conditional purpose based access control

In our model data providers are asked three options
for their data usage, permissible, prohibited and
conditional permissible usages of each data item. For
example, a data provider may select his/her name
is permissible for Admin purpose, address is not
permissible for Shipping purpose but income infor-
mation is conditionally permissible for Marketing
purpose. That is, data provider does not have any
privacy concern over the name when it is used for
the purpose of administration, great concern about
privacy of the address information (and so does not
want to disclose address) when it is used for the
purpose of shipping, but his/her income information
can be used for marketing purpose with some condi-
tions. Here the term “conditions” means that data
provider ready to release his/her certain information
for certain purpose by removing his/her name or id
or through generalization. This information is then
stored in the database along with the collected data,
and access to the data is tightly governed according
to the data provider’s requirements. For using the
term condition data providers feel more comfortable
to release their data. So according to our approach
enterprise can establish an attractive privacy policy
and it is possible to extract more information from
data providers. Table 4 illustrates some imaginary
records and intended purposes stored in a conceptual
data base relation. Notice that each data element
is stored in three different purposes each of which
corresponds to a particular intended purposes.

As discussed before, our design of intended pur-
poses supports permissive, conditions and prohibitive
privacy policies. This construction allows more
squash and flexible policies in our model. Moreover,
by using CIP and PIP, we can assure that data
access for particular purposes are allowed with some
conditions and never allowed. Note that an access
decision is made based on the relationship between
the access purpose and the intended purpose of the
data. Access is allowed only if the access purpose
is included in the implementation of the intended
purpose; in that case the access purpose is compliant
with the intended purpose. The access is accepted
with conditions if the implementation of intended
purpose includes the access purpose with conditions;
in this case we say that access purpose is condition-
ally complaint with intended purpose. The access is
denied if the implementation of the intended purpose

CRPIT Volume 92 - Database Technologies 2009

138

Table 3: Hypothetical data base illustrating AIP, CIP and PIP
name age address income nameip ageip addressip incomeip

Alice 35 21, West St., TBA, QLD 4350 35000 〈{G}, {Φ}, {Φ}〉 〈{Φ}, {M}, {A}〉 〈{G}, {Φ}, {A, S}〉 〈{G}, {A}, {M}〉
Bob 29 45, Fay CT., TBA, QLD 4350 23000 〈{G}, {Φ}, {Φ}〉 〈{G}, {M}, {Φ}〉 〈{G}, {M}, {A, S}〉 〈{G}, {M}, {A}〉
Ron 56 20, Anita Dr., TBA, QLD 4350 56000 〈{G}, {Φ}, {Φ}〉 〈{G}, {M}, {Φ}〉 〈{G}, {Φ}, {A, S}〉 〈{G}, {S}, {A}〉
Jak 48 25, Wuth St., TBA, QLD 4350 48000 〈{G}, {Φ}, {Φ}〉 〈{G}, {M}, {Φ}〉 〈{G}, {M}, {A}〉 〈{G}, {M}, {A}〉

G={General purpose}, A={Admin purpose}, S={Shipping purpose}, P={Purchase purpose},
M={Marketing purpose}, ip={Intended purpose}=〈AIP, CIP, PIP〉

Table 4: Fictional records and intended purposes
name age address income

AIP Alice 35 21, West St., TBA, QLD 4350 35000
CIP A 30-40 West St., TBA, QLD 4350 30000-40000
PIP ? ? ? ?
AIP Bob 29 45, Fay CT., TBA, QLD 4350 23000
CIP B 20-30 Fay CT., TBA, QLD 4350 20000-30000
PIP ? ? ? ?
AIP Ron 56 20, Anita Dr., TBA, QLD 4350 56000
CIP R 50-60 Anita Dr., TBA, QLD 4350 50000-60000
PIP ? ? ? ?
AIP Jak 48 25 Wuth St., TBA, QLD 4350 48000
CIP A 50-60 Wuth St., TBA, QLD 4350 40000-50000
PIP ? ? ? ?
? means data providers are reluctant of any usage of their data items

does not include the access purpose, in this case
access purpose is not complaint with the intended
purpose. Suppose in the online marketing system,
an enterprise collects name, age, address and income
of customers along with other information and
the enterprise uses customer’s information for the
purpose of admin, shipping, purchase and marketing.
Consider the hypothetical database in Table 3.

In Table 3, the value of Alice’s attribute incomeip

is 〈{G},{A},{M}〉 which means that Alice income
could be used for General purpose but strictly pro-
hibited to use for Marketing purpose. It also means
that Alice income could be used for Admin purpose
by hiding her personal identification information or
through generalization. Similarly, Bob, Ron and
Jak’s income information could be used conditionally
for Marketing purposes but their income information
is strictly prohibited for Admin purpose.

4.1 Implementation

In our proposed model, users query the database
using standard SQL statements. In this article we
assume that each query is connected with a specific
purpose. The data is accessible to each query varies
depending on the data providers agreement and
the purpose of the query. For example, any query
against Table 3 with any purpose returns a result
that is equivalent to the result of the query. As our
proposed model directly reflect the information that
is allowed, conditionally allowed or prohibited by
each data provider, querying against these model
does not violate privacy. This model is quite dif-
ferent from the conventional access control model
as different sets of data may be returned for the
same query depending on the purpose of the query
and the data providers’ agreements. Thus from the
hypothetical database in Table 3, if we take the query

SELECT name, income
FROM Table 3
FOR Marketing Purpose,

Table 5: Filtering information
Ron 56000
Bob 20000-30000
Jak 40000-50000

then by using Table 4, we get the information in
Table 5.

We can see from Table 5 that it gives name and
income of Ron as he allows to disclose his name and
income information for Marketing purpose. It also
shows other two incomes via generalization as they
conditionally allowed to disclose their income. This
clearly shows the utility of using our proposed model.
It demonstrates that it can extract more information
from data providers.

Theorem 1: Let p, q and r denote the probability
that a data provider gives consent of a particular
attribute for AIP, PIP and CIP respectively. Assum-
ing that these probabilities remain the same from
data provider to data provider. Then the conditional
based access control model extracts more information
than the model proposed by Byun et al. (2008).

Proof : Let n be the total number of data
providers. If p and q are the probabilities that a
given data provider gives consent of a particular
attribute for AIP and PIP. Then the average num-
bers of data providers who give consent for AIP is
np. That means by using the model of Byun et al.
(2008), the average number of data providers who
give consent for AIP of a particular attribute is np.
If we use our model then the average number of data
providers who give consent to disclose their their
data for a certain purpose with some conditions is
nr. So by using the conditional based access control
model total average number of data providers whose
information is accessible is (np + nr). Since n and p
both are positive so (np + nr) is always greater than
np. This means that it is enable to extract more
information from customers by using the conditional

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

139

based access control model.

In our model, the collected data is used for
different purposes on the basis of the data providers
requirements. For using the CIP, both privacy and
usability of data can be achieved as it filters out the
values by performing a purpose compliance. By using
a hypothetical database and the extracted outcome
in Table 5, it shows clearly the data utility and data
providers information is protected. It showed by
Theorem 1 that our proposed model extracts more
information with assuring privacy.

5 Access control

Among the various possible techniques to determine
access purpose, in this paper we utilize the method
where the users are required to explicitly state their
access purposes when they try to access data. That
is, users provide an access purpose for each query
they issue.

5.1 Compliance Check

Consider the purpose tree in Figure 2 and it encoded
into a relation pt-table as shown in Table 6. The first
column p−id represents the identification number
of each purpose node, the second column p−name
represents the name of each purpose node, and
the third column parent is used to capture the
hierarchical relationships among purpose nodes. The
column code is the binary encoding of each purpose.
For example, in Table 6 the purpose B is encoded
as ‘0×100’ in hexadecimal representation, while the
purpose E is encoded as ‘0×020’ in hexadecimal
form. The last three columns aip−code, cip−code
and pip−code are precalculated encodings of purpose
implications. As we know, when a purpose ri is
used as an AIP, it means that every descendant of
ri, including ri itself is allowed. For example, the
purpose D in Figure 2 used as an AIP implies that
access is allowed for the purpose of D as well as G,
H, I and J. Thus, the aip−code of D contains the
implied set of D, which is the sum of the encodings of
D, G, H, I and J. Note that aip−code and cip−code
of each purpose is same as in the long run both are
allowed. The pip−code of a particular purpose rj
is computed similarly by summing the encodings
of every descendant and ancestor of rj with the
encoding of rj itself.

A

B C D

E F
G H

I J

Figure 2: Purpose Tree

An access purpose is compliant with an intended
purpose if and only if the access purpose is not
prohibited by PIP and it is allowed by both AIP
and CIP. Thus, the purpose compliance check can be
done with two bitwise AND an operation as follows:

AIP, CIP and PIP, say ap−code, aip−code,
cip−code and pip−code respectively, the access
purpose is compliant with the intended purpose if
and only if

(ap−code & cip−code)=0∧(ap−code & aip−code)6=0 ∨
(ap−code & pip−code)=0∧(ap−code & aip−code)6=0 ∨
(ap−code & pip−code)=0∧(ap−code & cip−code)6=0.

where, & is bitwise AND operator, ∧ is logical AND
operator and ∨ is logical OR operator. Conflicts
among the AIP, CIP and the PIP for the same
data element are resolved by applying the denial-
takes-procedure policy where PIP overrides AIP
and CIP, and CIP overrides AIP. The computation
for purpose compliance check is illustrated in Table 7.

5.2 Query modification

It is a natural expectation that privacy-preserving
access control techniques ensures a query result
contains only the data items that are allowed or
conditionally allowed or completely prohibited for
the access purpose of the query. This expectation
is achieved in this paper using query modification
Stonebraker & Wong (1974). It is important to
notify that query modification provides powerful and
flexible controls without requiring any alteration in
underling mechanisms and that it is supported in a
major commercial Data Base Management System
(Oracle Corporation 2002). Our query modification
algorithm is outlined in Table 7.

The complexity of our query modification al-
gorithm is in O(n), where n is the number of
attributes accessed by a given query. The method
Modifying−Query is invoked only if the access
purpose of the query is verified to be acceptable
by the validate function. If the access purpose
is unacceptable, then query is rejected without
further being processed. The query modification
algorithm checks both the attributes referenced in
the projection list and the attributes referenced in
predicates. As the attributes in the projection list
determine what data items will be included in the
result relation of a query, it may seem enough to
enforce privacy policy based only on the attributes
in the projection list. However, the result of a query
also depends on the predicates, and not enforcing
privacy constraints on the predicates may introduce
inference channels. The abounding algorithm filters
out a tuple if any of its elements that are accessed is
conditionally allowed or prohibited with respect to
the given access purpose. For example, consider a
query,

SELECT name, income, address
FROM Table 3
FOR Marketing Purpose.

Suppose there is a customer record of which name
is allowed for marketing, income is conditionally
allowed for Marketing but the address is prohib-
ited for this purpose. Then our algorithm only
excludes address of this record from the query result
and income information is visible anonymzing the
customer’s name or income information reveal via
generalisation. So according to our proposed model

CRPIT Volume 92 - Database Technologies 2009

140

Table 6: Pt-table
p−id p−name parent code aip−code cip−code pip−code

1 A - 0×200 0×3FF 0×3FF 0×3FF
2 B 1 0×100 0×130 0×130 0×330
3 C 1 0×080 0×080 0×080 0×280
4 D 1 0×040 0×04F 0×04F0 0×24F
5 E 2 0×020 0×020 0×020 0×320
6 F 2 0×010 0×010 0×010 0×310
7 G 4 0×008 0×00B 0×00B 0×24B
8 H 4 0×004 0×004 0×004 0×244
9 I 7 0×002 0×002 0×002 0×24A
10 J 7 0×001 0×001 0×001 0×249

income information of this customer is still usable for
Marketing purpose instead of excluding other records.

The following example illustrates how our algo-
rithm modifies queries. This example is a revised
version of Byun et al. (2008) where purpose encoding
of Marketing is assumed to be ‘0×200’. For the query

SELECT name, income
FROM table 3
FOR Marketing Purpose,

modified query becomes

SELECT name, income
FROM Table 3
WHERE Comp−Check(’0×200’,
name−aip, name−cip, name−pip)
AND Comp−Check(’0×200’,
income−aip, income−cip, income−pip).

Table 7: Query Modification Algorithm

Comp−Check (ap, aip, cip, pip)
/? This function is required for query modification ?/
Returns Boolean
if (ap & cip)=0 and (ap & aip) 6= 0
return True;
else if (ap & pip)=0 and (ap & aip) 6= 0
return True;
else if (ap & pip)=0 and (ap & cip) 6= 0
return True;
else False;

Modifying−Query (Query Q)
Returns a modified privacy-preserving query Q
Let R1,· · ·, Rn be the relations referenced by Q
Let P be the predicates in WHERE clause of Q
Let a1,· · ·,am be the attributes referenced in both
the projection list and P
Let AP be the access purpose encoding of Q
for each Ri where i=1,.,n do
if (Comp−Check (AP, Ri.aip, Ri.cip, Ri.pip)=False) then
return ILLEGAL-QUERY;
end if;
end for;
return Q without modified P;

6 Comparison

There are some related works on privacy preserva-
tion. The closest works related to this article are
Hippocratic databases (Agrawal et al. 2002) and
purpose based access control model (Byun et al.
2008). In this section we will compare our proposed
model with these two models.

Agrawal et al. (2002) proposed Hippocratic
databases that incorporate privacy protection within
relational database system. The proposed technique
uses privacy metadata, which consist of privacy
policies and privacy authorizations stored in two
tables. The authors proposed a strawman design for

Hippocratic databases. This design identified the
technical challenges and problems in designing such
databases. But the authors did not consider the
concepts of purpose. By contrast, in our proposed
model we investigated more sophisticated concepts
of purpose. We used conditional purpose and the
association of different purposes with a data element
which are not considered in their work.

Byun et al. (2008) provided a comprehensive
framework for purpose and data management. They
argued that in order to protect data privacy, the
notion of purpose must play a major rule in access
control model. The authors proposed approach
is based on intended purposes, which specify the
intended usage of data, and access purposes, which
specify the purposes for which a given data element
is accessed. They also argued that traditional access
control models focus on which user is performing
which action on which data objects but privacy
policies are concerned with which data object is
used for which purposes. The authors proposed
purpose based access control model (PBAC) allows
multiple purposes to be associated with each data
element and also supports explicit prohibitions.
Although their proposed model designed on the basis
of customers requirements and so does not violate
privacy, the main drawback of this model is the
information loss. In that model customers are given
only two options whether their private data can be
used or not for certain purposes instead of giving
more possible options. But we strongly believe that
by giving more options to customers data extractions
can be easily achieved. By contrast, the proposed
model in this paper provides three more options
that help enterprises to extract more information
from customers, assuring privacy. This criteria is
achieved theoretically by Theorem 1 in Subsection
4.1. This clearly shows the utility and usability of
our proposed model in a effective and trustworthy
way.

7 Conclusion

Although privacy preserving desires a secure infras-
tructure and relies on access control technology, it
is not a security problem but it is related to a data
management problem. Purposes play a significant
role in the field of database management system
privacy preserving techniques. In this paper we in-
troduced conditional based access control model for
privacy protection in database system that enables
enterprise to operate as a reliable keeper of their
customers data. The basic concepts of the proposed
conditional based access control model are discussed
and it has shown the possibility to extract more
information from customers by providing a secure
privacy policy. The study reveals that this model
achieves a better progress than the other access

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

141

control models in the area of privacy preserving
in data mining environment. The utility of the
proposed conditional based access control model is
illustrated through a practical example. We also
discussed the algorithm to achieve the compliance
check between access purpose and intended purposes.
The effect of the proposed access control can be
extremely useful for internal access control within an
organization as well as well as information sharing
between organizations. The enterprise can use this
technology to enforce the privacy promises they make
and to enable their customers to maintain control
over their data. It would also help researchers, users
and the associated people in the area of data mining.

Our proposed approach provides a complete struc-
ture for privacy preserving access control model. On
the basis of this approach, a significant further work
still needs to be done. Our future work includes ex-
tending this model in the Role-based Access Con-
trol (RBAC), Dynamic Purpose-based Access Control
(DPBAC) and in the other access control systems.

References

Agrawal, R., Kiernan, J., Srikant, R. & Xu, Y. (2002),
Hippocratic databases, in ‘28th International Con-
ference on Very Large Databases (VLDB)’.

Agrawal, R., Bird, P., Grandison, T., Kiernan, J.,
Logan, S. & Xu, Y. (2005), Extending relational
database systems to automatically enforce privacy
policies, in ‘ICDE’, pp.1013-1022.

Al-Fedaghi (2007), Beyond Purpose-based privacy ac-
cess control, in ‘18th Australian Database Confer-
ence (ADC)’.

Barker, S. & Stuckey, P.N. (2003), Flexible access
control policy specification with constraint logic
programming, in ‘ACM Transaction on Informa-
tion and System Security’, Vol. 6(4), November.

Bertino, E., Jajodia, S. & Samarati, P. (1996), Data-
base security: Research and practice, in ‘Informa-
tion systems’.

Bertino, E., Byun, J.W., & Li, N. (2005), Privacy-
Preserving database system, in ‘FOSAD’, pp. 178-
206.

Byun, J., Bertino, E. & Li, N. (2005), Purpose based
access control of complex data for privacy protec-
tion, in ‘Symposium on Access Control Model And
Technologies (SACMAT)’.

Byun, J., Bertino, E. & Li, N. (2008), ‘Purpose based
access control for privacy protection in relational
database systems’, VLDB J 17(4), 603–619.

Denning, D., Lunt, T., Schell, R., Shockley, W. &
Heckman, M. (1988), The seaview security model,
in ‘The IEEE Symposium on Research in Security
and Privacy’.

Federal Trade Commission(2000), Privacy online:
Fair information practices in the electronic mar-
ketplace: A report to congress, May. Available at
www.ftc.gov/reports/privacy2000/privacy2000.pdf.

Forrester Research (2001), Privacy concerns cost e-
commerce $15 billion. Technical report, September.

IBM, The Enterprise Privacy Authoriza-
tion Language (EPAL). Available at
www.zurich.ibm.com/security/enterprise-
privacy/epal.

LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrish-
nan, R., Xu, Y. & DeWitt, D. (2004), Disclosure in
Hippocratic databases, in ‘The 30th International
Conference on Very Large Databases (VLDB)’, Au-
gust.

Marchiori, M. (2002). The platform for privacy prefer-
ences 1.0 (P3P1.0) specification. Technical report,
W3C, April.

Massacci, F., Mylopoulos, J. & Zannone, N. (2005),
Minimal Disclosure in Hierarchical Hippocratic
Databases with Delegation, in ‘The 10th Europran
Symposium on Research in Computer Security’,
September 12-14.

OASIS, Core and hierarchical role based access con-
trol (rbac) profile of xacml v2.0. Available at
http://www.oasis-open.org/.

OASIS, Extensible access control markup lan-
guage (xacml) 2.0. Available at http://www.oasis-
open.org/.

OASIS, Privacy policy profile of xacml v2.0. Available
at http://www.oasis-open.org/.

Oracle Corporation (2002), The Virtual Pri-
vate Database in Oracle9iR2: An Oracle
Technical White Paper,January, Available at
www.oracle.com.

Rizvi, S., Mendelzon, A. O., Sudarshan, S. & Roy, P.
(2004), Extending query rewriting techniques for
fine-grained access control, in ‘SIGMOD Confer-
ence’, pp.551-562.

Powers, C.S., Ashley, P. & Schunter, M. (2002), Pri-
vacy promises, access control, and privacy man-
agement, in ‘The 3rd International Symposium on
Electronic Commerce’.

Sandhu, R. & Jajodia, S. (1991), Toward a multi-
level secure relational data model, in ‘ACM Trans-
actional Conference on Management of Data (SIG-
MOD)’.

Sandhu, R. & Chen, F. (1998), The multilevel rela-
tional data model, in ‘ACM Transaction on Infor-
mation and System Security’.

Stonebraker, M. & Wong, E. (1974), Access control in
a relational database management system by query
modification, in ‘ACM CSC-ER Proceedings of the
1974 Annual Conference’, January.

World Wide Web Consortium (W3C), Platform
for Privacy Preferences (P3P), Available at
www.w3.org/P3P.

Yang, N., Barringer, H. & Zhang, N. (2007), A
Purpose-Based Access Control Model, in ‘Third In-
ternational Symposium on Information Assurance
and Security’, pp. 143-148.

CRPIT Volume 92 - Database Technologies 2009

142

Information Retrieval in Structured Domains

Vincent W. L. Tam and John Shepherd
School of Computer Science and Engineering

University of New South Wales,
UNSW Sydney, NSW 2052, Australia

vincetam@cse.unsw.edu.au and jas@cse.unsw.edu.au

Abstract
In this work, we investigate utilizing the structure of a
website to increase the effectiveness of document
retrieval within a structured domain. In particular we
examine various methods to combine evidence within the
website in order to improve the quality of pages returned..

Keywords: Information retrieval, Structured IR, Passage
retrieval

1 Introduction
Information retrieval is a broadly studied topic.
Significant research efforts have been focused on
document retrieval from World Wide Web. We aim to
refine document retrieval within a website by improving
the quality of document relevance against queries. We
achieve this by taking into consideration the evidence
collected from pages that are related to the document
under inspection.

Websites are normally organised according to some
structure (based on an information architecture) to make
it more convenient for users to navigate the site. Often,
the URL structure of pages reflects this organisation.
These observations raise the issue of whether we can
make use of the structure/organisation to improve search.
The work in this paper sets out to explore this issue by
trying to answer the following questions

1. Do surrounding pages of articles carry useful

information to improve the quality of results in
ranking documents against queries?

2. How to define the set of related pages for the
above purpose and how to define the range of
this set?

Our approach to answering these questions was to
conduct information retrieval experiments on websites
that were known to conform to a well-defined,
hierarchical structure. The goal of these experiments was
to determine how to use the information in related pages
to improve relevance scoring. Such experiments, of
course, could prove only that the approach is effective for
sites that follow this structure.

Copyright © 2009, Australian Computer Society, Inc. This
paper appeared at the 20th Australasian Database Conference
(ADC 2009), Wellington, New Zealand. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 92. A. Bouguettaya, X. Lin, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

2 Related Works
In this section we review several streams of research that
motivated our experiment.

2.1 URL Structure
URLs of web pages have already been used to improve
retrieval results. Keywords in URLs usually provide hints
for information retrieval, and this has been utilized in
search engines (and by “search engine optimisers”) to
enhance rankings of retrieved pages. There are also
known uses of URLs as evidence to categorize pages in
websites (e.g. Kules, Kustanowitz and Shneiderman
2006, Shih, and Karger 2004) where the pages are
organised into hierarchies of subjects within the website.
Under this assumption, URLs of web pages provide
information on how the pages are categorized. Clearly,
not all websites follow such conventions (e.g. many of
the increasing number of dynamically-generated
websites). However, a sufficient number of websites are
organised by URL to make it worthwhile to consider this
approach.

2.2 XML Element retrieval
A major stream of research that is related to our work is
information retrieval in structured documents. This
research focuses mainly on text retrieval from XML
documents. XML documents are well-structured articles
with tags to define elements within the articles.
Information retrieval from XML documents aims to
retrieve elements that closely match the queries. This
stream of research is inspired by the Initiative for the
Evaluation of XML retrieval (INEX). Our work differs
from XML retrieval in that our targeted documents are
individual pages within a website instead of elements
contained in articles. Elements contained in articles have
a well-defined unit (the article) to draw information about
the context of the elements from (e.g. Kimelfeld, Kovacs,
Sagiv and Yahv 2007). On the other hand, there is no
clear boundary for this part-whole relationship for web
pages. The range and number of documents to be
included as related pages is not well-defined. To identify
such boundaries was part of our research objective. A
second difference between our work and XML retrieval is
that queries in XML retrieval can specify the context of
the desired results via Xpath. This is the case if the
schema of the XML documents is known beforehand (e.g.
Beigbeder 2007, Carpineto, Romano and Caracciolo
2007). Besides, the element tags of XML documents
carry additional information for retrieval in the form of
element attributes and element names. This helps in

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

143

defining the function of the elements (e.g. Abstract,
summary, title). In our setting, such information is not
available to assist with document retrieval.

2.3 Passage Retrieval
Another stream of research that is similar to our work is
passage retrieval. This research focuses mainly on
enhancing search results by returning passages within
documents instead of the whole documents, or enhancing
document retrieval by collecting evidence of relevance
from individual passages (Wilkinson 1994). It has been
shown that combining evidence from this part-whole
relationship helps in returning more relevant passages
during retrieval (Callan 1994, Sigurbjörnsson, Kamps and
Rijke 2004). Our research was inspired by this finding,
and adopts a similar approach to draw evidence from
surrounding pages to enhance retrieval results.

2.4 Structures among web pages
Previous works on document retrieval have also explored
the use of hyperlink structure. PageRank (Brin and Page
1998) and HITS (Kleinberg 1999) are two of the most
widely used algorithms in this category. This work differs
from our research in that it focuses mainly on the
association between different websites. PageRank and
HITS assigned a score of authority (together with a hub in
the case of HITS) to websites. They calculate relevance
of documents by incorporating this score during retrieval.
This is not appropriate in our setting of retrieving pages
from a single website. If we used such schemes, retrieval
results would always be biased towards authority
pages/page-groups, regardless of what users put in as
queries. In particular we do not want to focus on ranking
pages by their global importance within the site.

In addition, search engines like Google (Brin and Page
1998) utilize information propagation to enhance retrieval
results. In particular, search engines propagate words
from link anchors to their target pages and these anchor
words play an important role during retrieval (Glover,
Tsioutsiouliklis, Lawrence, Pennock and Flake 2002).
This is similar to our proposal of using extra information
from other pages, but instead we are looking at words
from pages that surround the target page rather than
words that refer to this page.

2.5 Vector space model and Cosine similarity
The vector space model (Salton 1971) and the cosine
similarity algorithm are widely used to rank documents
against queries. Our experiments calculated relevance
based on these models. We extended the scoring
mechanism of documents against queries by combining
relevance score of surrounding pages returned by these
models. Since the focus of this research was to examine
the effectiveness of combining evidence collected from
related pages in a structured domain, we did not in
particular examine and compare the uses of other models
e.g. BM25 (Robertson, Walker, Jones, Hancock-Beaulieu
and Gatford 1994), nor any other approaches of adopting
the vector space model. Given the popularity of such

models we believe that this provided a reasonable and
understandable platform to perform such tests.

3 Method

3.1 Structure of a website
We first describe the relationships among documents by
using the URL of each page to construct a relationship
graph.

Exploring page relationships by URLs is
comparatively cheap in processing and is readily
available. Websites often use a directory/folder hierarchy
to reflect the organisation of information in the site, and
this structure is reflected in the URLs. Our approach to
determine relatedness of pages attempts to exploit this by
considering that if a page was included in a folder it is
likely that this page has a similar “context” to other pages
under the same folder. Sub-folders typically contain
documents which specialise the context of their parent
folder. Users of such sites often exploit the hierarchical
structure as a basis for navigating through the site. Figure
1 shows a scenario with a hierarchical collection of
folders, along with their corresponding URLs.

Figure 1: A folder-subfolder relationship scenario.

Folders “bbb” and “ccc” are sub-folders in “AAA”.
The URLs of the folders reflect this hierarchy.

The first step is to establish an ancestor/descendent

relationship among web pages, based on their URLs. If D
is a page in a web-site, the URL(D) denotes its web
address. The URLs of index pages (e.g. index.html)
are normalised by removing the page component and
treating them as a directory name. A page D1 is defined to
be an ancestor of another page D2 if URL(D1) is a prefix
of URL(D2), i.e.

URL(D2) = URL(D1) /*

Based on the ancestor/descendent relationship, we

introduce a distance function Dist(D1,D2) which measures
the number of pages d separating the two pages along
their URL paths. Dist(D1,D2) is defined as follows:

CRPIT Volume 92 - Database Technologies 2009

144

 Dist(D1, D2) = 0, if D1 and D2 is not related.
 Dist(D1, D2) = d, if D2 is a descendent of D1

 Dist(D1, D2) = -d, if D1 is a descendent of D2

3.2 Relevance of Documents
We adopt the vector space model and cosine similarity to
calculate the similarity sim(q,d) of a document against a
query:

∑ ∑
∑

×

⋅
=

2
.

2
.

..)(
),(

qtdt

qtdt

ww

ww
dqsim

where wt.d is the tfidf score of a term w in the document d,
given by the following formula:

)ln(. n
Ntfw dt ×=

tf = term frequency of the term w in the document
N = total number of indexed document
n = total number of documents that contain w.

Documents are ranked by their sim(q,d) score.

3.3 Implementation
We store every term in the index. Terms are stemmed
using the Porter Stemming algorithm (Rijsbergen,
Robertson and Porter 1980) and stored with their term
frequencies and tfidf scores. The sum of square of terms’
tfidf for each page (the wt.d

2 part in sim(q,d)) was also
calculated and stored in the index for more efficient
retrieval.

To obtain the distance measure Dist(D1,D2), we
compare page URLs retrieved from the index at runtime.
The URLs stored in the index are pre-processed as
follows: removing duplicate URLs, removing redundant
‘/’ characters, removing index page filenames, appending
‘/’ to the end of URLs for index pages. Dist(D1,D2) is
then calculated by counting the difference in the number
of ‘/’ characters in the URLs if one of their URLs is a
prefix of the other.

3.4 Evidence from other documents
We combine the relevance score of surrounding
documents with the initial score obtained from cosine
similarity. We introduce a variable, factor λ, to adjust the
relative weights of the surrounding evidence score and
the initial similarity score. The λ factor has a value
between 0 and 1; its use is shown below.

We also introduce a variable rLimit to adjust the
definition of “related pages”. To be precise, rLimit is the
maximum distance allowed between two pages for them
to be treated as related pages. For example, if rLimit is set
to 1 we only considered pages that are one document

away from the one we are looking at along the path of
URL.

3.4.1 First Approach
Our first attempt accumulated the relevance score directly
from related documents. The relevance score for
document d with respect to query q is given by:

∑
∈

×+×−=
Rd

n
n

dqsimdqsimdF σλ),(),()1()(1

)),((log2 ndddistλσ =

where R is the set of documents with dist(d, dn) ≠ 0, and
|dist(d, dn)| <= rLimit.

Notice that in this formula, we take the absolute value
of dist(d,dn) in defining the set R. We therefore do not
explicitly distinguish between ancestor pages and
descendent pages. The factor σ is introduced to account
for the fact that the further away a document is from d,
the smaller the effect it should be affecting d.

3.4.2 Second Approach
The first approach we adopted is a simple framework to
combine scores of surrounding documents. There were
two shortcomings in this attempt. Firstly it did not take
into account sibling documents in the structure we
introduced. Secondly there existed a bias to pages that
had a lot of related pages. These were usually pages that
were indices to folders that contained many child pages.
To account for these we introduce our second set of
formulae for document relevance. Note that the score is
computed in two stages as described below.

Stage I

∑
∈

×+×−=
Rd

n
n

dqsimdqsimdF σλ),(),()1()("2

)),((log2 ndddistλσ =

where R is the set of documents with dist(d, dn) < 0, and
|dist(d, dn)| <= rLimit.

Stage II (final score used)

 ∑
∈

×+×−=
Rd

n
n

dFdFdF σλ)(")(")1()(222

)),((log2 ndddistλσ =

where R is the set of documents with dist(d, dn) > 0, and
dist(d, dn) <= rLimit.

We split the scoring process into two stages. In the

first stage we accumulate cosine similarity scores from

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

145

descendents of pages. In the second run, we do the
reverse, accumulating similarity scores returned in the
first run from ancestors. The motivation for doing so was
that in our setting in defining website structure, a
document could have more than one child page, while
each document belongs to a single parent page. In other
words, a document belongs to one and only one folder,
but a folder usually consists of more than one document.
Therefore splitting the accumulation of score into two
stages ensures that the child pages can share the biased
scores from their parents returned in the first run.

Another advantage of this formula is that it captures
the effect of both the parent-child relationship and the
effects of sibling pages in the folder. This is because in
obtaining the results during the first stage, the parent's
score has been affected by all of its children. Therefore in
the second run, when we combine evidence collected
from parent pages with their updated similarity scores,
the effect of sibling pages is propagated to every child
page of the parent. Figure 2 shows an example of this.

Figure 2: An example illustrating how evidence

from sibling pages is propagated to “Child 1”.

3.4.3 Third Approach
The first two attempts in our experiments accumulated
the sim(q,d) score of surrounding documents as evidence
to refine the relevance of the documents during retrieval.
In our third formula we also wanted to take into account
the length of each document explicitly. Not only does this
give us a closer approximation to the original cosine
similarity approach, but it also accounts for the bias to
pages with more children mentioned above, without the
need to split the process into two runs. This is done by
dividing the sum of the dot product for each related page,
after taking the factor λ into account, by the length of all
documents that have been included in the calculation:

∑∑ ∑∑

∑ ∑∑

×
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
+×⋅

=
2

.

2
.2

.

..
..

3

)(
)(

qt
R d

dt
dt

R d

qtdt
qtdt

w
w

w

ww
ww

dF

n

n

n

n

α

α
σ

)),((log
)1(

2 ndddist=

−=

α
λσ

where R is the set of documents with dist(d, dn) ≠0, and
|dist(d, dn)| <= rLimit.

Notice that this formula is similar to the cosine
similarity function, the difference being that we have
factored down the effect of related documents by their
distance from the inspecting document. The formula also
treats every document individually in calculating the
vector length instead of adding all the vectors before
calculating the length. Given the sparsely distributed
vector space property of text in a retrieval system we
believe this is a reasonable approximation, and avoids the
need to re-calculate variable document length at runtime.
As mentioned in section 3.3, the sum of squares of wt.d
was pre-calculated and stored in the index and therefore
was readily available.

4 Experiments
We tested our algorithms on the websites of computing
courses at the University of New South Wales. Our
sample websites contained on average more than 1500
pages each. A set of queries was derived from questions
that were asked on the course forums, so should represent
realistic requests for information from the course
websites.

In the evaluation we manually determined if a
retrieved page was relevant, relevant but not helpful, or
irrelevant from a number of subjects. We then assigned a
score of 2, 1 and 0 respectively to the retrieved
documents and took the average from the manual scores.
We evaluated the effectiveness of different approaches by
picking the first five ranked documents for each approach
and calculating the total relevance score for these
documents. The final result of each run was expressed in
a precision ratio calculated from the abovementioned
method. The tests were carried out by varying the factor λ
in each formula. We also obtained two runs for each
formula by setting rLimit to 1 and to infinity respectively.

The larger λ is, the more we weight evidence collected
from related documents. When rLimit was equal to 1, the
set of related pages were limited to pages that are directly
related along the URL path. In other words, only those
that surround the pages were used. On the other hand
with rLimit set to infinity we took into consideration all
pages along the path, with the effect of pages being
factored by the distance from the inspecting page as
described in our formulae. We compared each run with
the baseline method of cosine similarity.

CRPIT Volume 92 - Database Technologies 2009

146

5 Results and Discussion
The precision ratios for our example queries are presented
as follows.

Query Baseline
F1

(λ =0.25)
F1

(λ =0.5)
F1

(λ =0.75)
1 0.3 0.2 0.2 0.2
2 0.3 0.4 0.4 0.4
3 0.3 0.3 0.1 0.1
4 0.7 0.4 0.3 0.3
5 0.2 0.4 0.4 0.4
6 0.1 0.3 0.3 0.3
7 0.1 0.3 0.3 0.3
8 0.2 0.2 0.2 0.2
9 0.3 0.1 0.3 0.4

10 0.3 0.4 0.2 0.1
11 0.2 0.2 0.1 0.2
12 0 0.1 0 0.1
13 0.2 0.3 0.3 0.1
14 0.6 0.8 0.8 0.8
15 0.4 0.3 0.2 0

Average 0.28 0.31 0.27 0.26

Table 1: F1 with rLimit = 1

Query Baseline
F1

(λ =0.25)
F1

(λ =0.5)
F1

(λ =0.75)
1 0.3 0.2 0.2 0.2
2 0.3 0.3 0.3 0.3
3 0.3 0.1 0.1 0.1
4 0.7 0.4 0.3 0.3
5 0.2 0.4 0.4 0.4
6 0.1 0.3 0.3 0.3
7 0.1 0.2 0.2 0.2
8 0.2 0 0.2 0.2
9 0.3 0.1 0.3 0.4

10 0.3 0.2 0.1 0.1
11 0.2 0.1 0.1 0.1
12 0 0.1 0 0.1
13 0.2 0.1 0.1 0.1
14 0.6 0.8 0.8 0.8
15 0.4 0 0 0

Average 0.28 0.22 0.23 0.24

Table 2: F1 with no rLimit

Table 1 and Table 2 compare the results of retrieval using
Formula 1 against the baseline method, which was cosine
similarity. While table 1 showed the ability to obtain a
similar result to the baseline method, table 2 showed
inferior results. As we had earlier point out, Formula 1
would bias to pages that contained many child pages and
we found that this was exactly the case when we looked
in details into the pages returned by the algorithm.
Nevertheless, by setting rLimit = 1 the results had been
better than that without rLimit. In particular we obtained

better results than the baseline when rLimit = 1 and λ =
0.25. This showed that under certain circumstances, we
did benefit from collecting context evidence from
surrounding documents. The implication of having better
results with λ < 0.5 was that while we took into account
of related documents, we shouldn’t forget the importance
of the initial similarity score of the documents
themselves. In other words, the initial score of documents
should still be the major deciding factor, yet we could
benefit from taking into account other evidence with
comparatively less weight.

Query Baseline
F2

(λ =0.25)
F2

(λ =0.5)
F2

(λ =0.75)
1 0.3 0.6 0.6 0.6
2 0.3 0.4 0.3 0.3
3 0.3 0.2 0.2 0.2
4 0.7 0.9 0.8 0.8
5 0.2 0.4 0.2 0.2
6 0.1 0.3 0.1 0.1
7 0.1 0.3 0.2 0.2
8 0.2 0 0 0
9 0.3 0.5 0.6 0.6

10 0.3 0.6 0.3 0.3
11 0.2 0.1 0.4 0.3
12 0 0 0 0
13 0.2 0.3 0 0
14 0.6 0.8 0.6 0.6
15 0.4 0.2 0 0

Average 0.28 0.37 0.29 0.28

Table 3: F2 with rLimit = 1

Query Baseline
F2

(λ =0.25)
F2

(λ =0.5)
F2

(λ =0.75)
1 0.3 0.6 0.6 0.6
2 0.3 0.3 0.4 0.3
3 0.3 0.2 0.2 0.2
4 0.7 0.9 0.8 0.8
5 0.2 0.4 0.2 0.2
6 0.1 0.3 0.1 0.1
7 0.1 0.1 0.2 0.2
8 0.2 0 0 0
9 0.3 0.5 0.6 0.6

10 0.3 0.2 0.2 0.3
11 0.2 0.3 0.4 0.3
12 0 0 0 0
13 0.2 0.1 0 0
14 0.6 0.8 0.6 0.6
15 0.4 0.2 0.2 0.2

Average 0.28 0.33 0.30 0.29

Table 4: F2 with no rLimit

Table 3 and Table 4 compare the results of retrieval using
Formula 2 against the baseline method. This formula was
designed with the aim to alleviate the bias towards the

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

147

parent-child relationship presented with our proposed
way to define website structure. In addition to that, the
formula also took advantage of capturing the effect of
sibling pages. The effect of this was obvious. As seen in
the tables, we succeeded in improving retrieval results
from that of Formula 1 in all cases.

From Table 4 we see that we obtained a much
improved results when comparing the results to Table 2.
With no rLimit, the bias in F1 we mentioned above would
propagate along the path to every level in the hierarchy
and therefore deteriorate document relevance. Although
we had factored down the effect of pages that are further
apart by the σ factor, the accumulation of scores from a
group of pages might have too large an effect and
therefore pages were still heavily affected. On the other
hand having alleviated the bias with F2 we could see
from Table 4 that the retrieval quality benefited from
taking context along the path. The best result was
obtained when λ = 0.25.

Similarly, from table 3, we had the best retrieval
results when λ = 0.25. When comparing Table 3 and
Table 4 we found improvement in results when rLimit = 1
and λ = 0.25. This is similar to the findings with Formula
1.

Query Baseline
F3

(λ =0.25)
F3

(λ =0.5)
F3

(λ =0.75)
1 0.3 0.4 0.4 0.2
2 0.3 0.4 0.4 0.5
3 0.3 0.2 0.2 0.2
4 0.7 0.4 0.4 0.4
5 0.2 0.2 0.2 0.1
6 0.1 0.3 0.3 0.3
7 0.1 0.3 0.4 0.2
8 0.2 0 0 0
9 0.3 0.1 0.2 0.2

10 0.3 0.7 0.7 0.5
11 0.2 0.2 0.2 0.2
12 0 0 0.1 0.1
13 0.2 0.3 0.3 0.3
14 0.6 0.6 0.6 0.6
15 0.4 0.4 0.4 0.4

Average 0.28 0.30 0.32 0.28

Table 5: F3 with rLimit = 1

Table 5 and Table 6 show the results of applying

Formula 3 to the retrieval. While we managed to obtain
slightly better results with the case when setting rLimit =
1, the results with no rLimit is less obvious. Formula 3
incorporated distance into the calculation of documents
scores. We obtained the best results with λ = 0.5 and
rLimit = 1. When comparing the approach of Formula 3
with the other formulae, Formula 3 was designed so that
we did not have to worry about the effect of having very
many related documents, which was the cause of the poor
result cases when using Formula 1. In comparing results
of Formula 1 and Formula 3 we found that this has been
successful. However Formula 2 is superior to Formula 3.
We believe that splitting the process into two runs, not
only alleviates the problem of having too many related

documents, but also more effectively takes into account
the similarity score of sibling pages.

Query Baseline
F3

(λ=0.25)
F3

(λ =0.5)
F3

(λ =0.75)
1 0.3 0.4 0.4 0.2
2 0.3 0.3 0.3 0.4
3 0.3 0.2 0.2 0.2
4 0.7 0.4 0.4 0.4
5 0.2 0.2 0.2 0.1
6 0.1 0.3 0.2 0.2
7 0.1 0.2 0.2 0.2
8 0.2 0 0 0
9 0.3 0.1 0.2 0.2

10 0.3 0.6 0.6 0.5
11 0.2 0.1 0.1 0.2
12 0 0 0.1 0.1
13 0.2 0.3 0.3 0.3
14 0.6 0.6 0.6 0.6
15 0.4 0.2 0.4 0.4

Average 0.28 0.26 0.28 0.27

Table 6: F2 with no rLimit

To sum up, the best results were obtained from Table 3
when Formula 2 was used, with λ = 0.25 and rLimit=1.
The worst results were obtained when we used Formula 1
without setting rLimit. This reinforced our belief that the
use of evidence without distinguishing pages as ancestors
or descendents would be inferior in our setting because
there is a 1-to-m relationship, whereas a parent could
have more than one child page and therefore the
accumulation of evidences from them resulted in bias to
these pages. Our two attempts to solve the bias, namely
by splitting the runs into two separate single direction
accumulation of score along the paths of related pages so
as to allow the other pages to share this bias, and to take
document length into account, have been successful.
Apart from Formula 1, our results suggest that retrieval is
more effective when context from related pages is taken
into consideration.

In any case, we observed that we always obtained
better results if used only the immediate surrounding
pages as related pages (i.e. rLimit = 1). This suggests an
answer to our second research question of “how to define
the ranges of related pages to assist in improving the
results of information retrieval?” We believe the reason
for this was that the further away an ancestor is from a
page, the more general context it has (and thus is less
directly relevant to the query). On the other hand the
further away a descendent is from a page, the more
specific context it carries (and this context may be
irrelevant to the query). Nonetheless in all of our
approaches we observe that retrieval results do benefit
from taking surrounding context into calculation.

Another point that is worth noting is that the first two
formulae we used depend on the cosine similarity that we
are comparing to. In other words, these aimed to improve
the retrieval results among a pool of already retrieved

CRPIT Volume 92 - Database Technologies 2009

148

documents. This can be observed by the fact that the
individual score of each run on each query did not vary
much. If the cosine similarity method was not able to
draw the relevant documents set from the index then
Formula 1 and Formula 2 can at most improve slightly on
the results but wouldn’t had a much better results
returned. On the other hand Formula 3 is less dependent
on the original results set given by cosine similarity and
we therefore observed cases that either improve much or
vice versa. Nevertheless, from our observation, with the
right settings of environment variable λ and rLimit, the
retrieval results were improved.

6 Conclusion and Future works
In this work, we have conducted preliminary experiments
to show that for websites where the underlying domain
structure is reflected in the URLs of the documents,
retrieval results can be improved by taking into account
evidence collected from related articles. We utilized the
URLs in order to explore the hierarchy of the website and
draw related pages from this hierarchy. We also showed
that it is most effective when only immediately
surrounding documents were used instead of taking into
account every document along the related path. Although
we are yet to perform further experiments on approaches
other than re-ranking the documents returned by cosine
similarity, our experiment has shown that it is worthwhile
to draw evidence of context from other documents in the
website.

Having gained encouraging results from our tests, the
next stage is to perform more tests (more queries, more
webistes) to provide a stronger base of evidence for such
effects. In addition we aim to improve our formula in
calculating similarities of documents and queries. In
particular, as mentioned in the previous section, Formula
1 and Formula 2 rely on the initial scores obtained by
cosine similarity. We therefore would be interested to
look for better algorithms, so that our retrieval system
would not only to make improvement based on the cosine
similarity score, but also look for relevant documents that
might be missed by it.

In addition we would try on retrieval algorithm other
than cosine similarity to test on the effect of our approach
to draw evidence from related page. We could then
combine various scoring methods to enhance retrieval
results further.

Besides, we would like to perform tests to see if the
order of modifying scores according to the hierarchy is
important. We have already carried out similar tests with
Formula 2, in which we split the formula into two runs. In
future research, we would examine the order of applying
score to ancestors and descendents in each run.

Finally apart from using URLs as hints to categorize
pages, we would also like to examine the use of other
structure, including linkages among pages within a
website, to test the effectiveness of drawing evidence
from related pages that utilizes other structure within the
website. This might enable us to deal with websites, such
as Wikis and CMSs, where the domain structure of the
site is not directly reflected in the URL structure.

7 References
Beigbeder, M. (2007): Structured content-only

information retrieval using term proximity and
propagation of title terms. In Proceedings of INEX
2006, page 200-212.

Brin, S. and Page, L (1998): The anatomy of a large-scale
hypertextual web search engine. In Proceedings of the
7th International World Wide Web Conference, pages
107-117.

Callan, J. (1994): Passage-level evidence in document
retrieval. In Proceedings of the 17th ACM-SIGIR
Conference on Research and Development in
information retrieval, pages 302-310.

Carpineto, C., Romano, G., Caracciolo, C. (2007):
Information Theoretic Retrieval with structured
Queries and Documents. In Proceedings of INEX 2006,
pages 178-184.

Glover, E., Tsioutsiouliklis, K., Lawerence, S., Pennock,
D. M. and Flake G. W. (2002): Using web structure for
classifying and describing web pages. In Proceedings
of the 11th international conference on World Wide
Web. Pages 562-569.

INEX: Initiative for the Evaluation of XML Retrieval,
2007

Kimelfed, B., Kovacs, E., Sagiv, Y. and Yahav, D.
(2007): Using Langauge models and the HITS
Algorithm for XML Retrieval, Proceedings of INEX
2006, pages 253-360.

Kleinberg, J (1999): Authoritative sources in a
hyperlinked environment. Journal of the ACM, 46:604-
632.

Kules B., Kustanowitz J. and Shneiderman, B. (2006):
Categorizing web search results into meaningful and
stable categories using fast-feature techniques. In
Proceedings of the 6th ACM/IEEE-CS joint conference
on Digital libraries.

Robertson, S. E., Walker, S., Jones, S., Hancock-
Beaulieu, M. and Gatford, Mike. (1994): Okapi at
TREC-3. NIST Special Publication 500-226, Overview
of the Third Text Retrieval Conference (TREC-3).

Salton, G. (1971): The SMART Retrieval System –
Experiments in Automatic Document Processing,
Prentice-Hall, Inc., Upper Saddle River, NJ, 1971.

Shih, L. K. and Karger D. R. (2004): Using URLs and
table layout for web classification tasks, In Proceedings
of the 13th international conference on World Wide
Web, pages 193-202.

Sigurbjörnsson, B., Kamps, J. and Rijke, M. (2004): An
Element-Based Approach to XML Retrieval. In INEX
2003 Workshop Proceedings, pages 19-26.

Wilkinson, R. (1994): Effective retrieval of structured
documents. In Proceedings of the 17th ACM-SIGIR
Conference on Research and Development in
information retrieval, pages 311-317.

Van Rijsbergen, C. J., Robertson, S. E. and Porter, M. F.
(1980): New models in probabilistic information
retrieval. London: British Library. (British Library
Research and Development Report, no. 5587).

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

149

CRPIT Volume 92 - Database Technologies 2009

150

CSC: Supporting Queries on Compressed Cached XML

Stefan Böttcher, Rita Hartel
University of Paderborn,

Computer Science, Fürstenallee 11,
33102 Paderborn, Germany

+49 52 51 60 66 62, +49 5251 60 66 12

stb@uni-paderborn.de, rst@uni-paderborn.de

Abstract
Whenever a client frequently has to retrieve, to query and
to locally transform large parts of a huge XML document
that is stored on a remote web information server, data
exchange from the server to the client may become a
serious bottleneck that simply limits scaling of the amount
of information that can be processed locally on the client
by a client-based application.

We present Compressed Structure Caching (CSC) as a
solution that reduces the amount of data exchange by a
combination of the following techniques: compression of
the XML document’s structure, client-side caching of the
structure and of already received XML content, inference
and optimized loading of the content needed on the client
to answer a given query.

We provide a performance evaluation that demonstrates
that our approach significantly reduces the amount of data
exchange from server to client. .

Keywords: XML, Caching, Compression.

1 Introduction

1.1 Motivation
XML has become a standard data exchange format in
many information sources e.g. in the web, and XPath has
become a key standard for context sensitive search in
huge XML documents.

We consider scenarios, in which client applications
need to process large fragments of huge XML documents
that are provided on remote web servers, and where the
data exchange from the server to the client is a bottleneck.
These scenarios require techniques that minimize data
transfer between the server-side XML information source
and the client submitting queries. In order to reduce the
data transfer, two techniques are possible: compression of
exchanged data, and caching and reuse of previous query
results. Both techniques have been investigated
independently of each other, but are challenging to
combine.

Copyright © 2009, Australian Computer Society, Inc. This
paper appeared at the 20th Australasian Database Conference
(ADC2009), Wellington, New Zealand. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 92. A. Bouguettaya, X. Lin, Eds. Reproduction for
academic, not-for-profit purposes permitted provided this text is
included.

Our approach combines both techniques, i.e., it is
based on caching and reusing compressed XML
information which the client has previously downloaded
from the server. The problem considered in this paper is
how to reduce the amount of XML data exchange
between server and client by intelligent server-side XML
fragment compression and by a client-side caching and
integration strategy for compressed XML data, such that
XPath queries can be executed on cached compressed
data on the client.

1.2 Limitations of related approaches
Related approaches follow two different directions called
query shipping and data shipping. Query shipping means
that each client C that cannot answer a given query Qi
from its cache sends Qi to the information server that
executes Qi on the information source IS, i.e. computes
R=Qi(IS) and returns the result R to C. The returned
result R is stored in the cache and can be used to answer a
second query Qk if a compensation query Qc exists such
that Qk applied to the information source IS returns the
same answer as applying Qc to R. More formally, the
returned result R can be used to answer a second query
Qk if it can be proved that Qk(IS) = Qc(R). The proof
techniques suggested by e.g. (Balmin et al. 2004),
(Mandhani and Suciu 2005), (Xu and Ozsoyoglu 2005)
aim at showing that Qk is equivalent to Qc o Qi, which is
sufficient to prove that Qk(IS) = Qc(Qi(IS)) = Qc(R).

Unfortunately, the compensation query approaches are
applicable to very small subsets of XPath only. Even
worse, it can be shown that already for very small subsets
of XPath the search for compensation queries is NP hard.

As a consequence most queries can not profit from the
cache when using query shipping and the same XML
fragments may be shipped as a part of an answer again
and again.

Data shipping means that all the data needed to answer
a query Qi is shipped to the client such that Qi can be
answered locally. For example, approaches like (Böttcher
and Türling 2004), (Koch, Scherzinger and Schmidt
2008), and (Marian and Siméon 2003) have been
developed to compute the so called read set of a query,
which is an easily computable superset of the data that has
to be accessed to answer the query.

For the purpose of reducing data transfer, the data
shipping approach has the following advantages: A client
can determine very fast which part of the data needed to
answer the query can be read from its cache, and in the
long run, the data shipping approach to query processing

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

151

increases the number of possible cache hits. Although
data shipping ensures a greater amount of cache-hits than
query shipping, a huge amount of data must be transferred
for queries the read-set of which is very large, e.g. queries
that count data or queries that involve a long search on the
XML structure. In other words, the disadvantage of data
shipping is an increase of transferred data that is not
needed to answer a query.

Regarding the advantages and disadvantages of query
shipping and data shipping, our goal is to combine the
advantages of both query processing approaches.
Although there is a trade-off between additional data
transfer and number of cache-hits, we show that our
approach results in a significant reduction of overall data
transfer between the web-information source and the
client.

1.3 Problem description
The problem investigated is how to improve web
information caching in such a way that the overall data
exchange needed between the web information source and
the client is reduced for arbitrary XPath queries. This
includes XPath queries which have to search or to
navigate in a large part of the structure of an XML
document and XPath queries that use axes beyond the
limited sub-classes that have been investigated for
compensation queries.

1.4 Contributions
This paper proposes a novel approach to caching of XML
web information, called Compressed Structure Caching
(CSC) that combines the following properties:

1. It separates a huge XML document that is provided
on a web information server into its constituent parts:
its tree structure and its values of text constants and
of attributes.

2. It extracts and compresses the structure of the XML
document to a compressed tree (CT) including the
element names and attribute names and transfers the
CT to the web clients that want to work on the XML
document.

3. The client can decide based on the CT whether or not
he has enough knowledge to answer the query on its
own, i.e., without sending the query to the server and
retrieving the query results from the server.

4. Web clients submit queries to the server which infers
from each client query which text and attribute values
are required on the client to answer the query. The
required values are compressed and sent to the
server.

5. Finally, the client caches the CT plus the compressed
values and evaluates its queries on these compressed
structures.

We have implemented and comparatively evaluated
our system (CSC) with two other approaches, i.e.
querying uncompressed data, and querying compressed
data that is not kept in the cache. Our results show that
SCS clearly outperforms the two other approaches.

1.5 Paper organization
The remainder of this paper is organized as follows. In
Section 2, we explain the key ideas of the general solution
and show the system architecture. Section 3 describes a
specific solution instance for which we have done the
performance evaluation and the evaluation results.
Section 4 describes related work and Section 5 contains a
summary and the conclusions.

2 Key ideas of the CSC solution
We first give an overview of the system architecture and
thereafter describe the key ideas and design decisions of
our implementation of CSC.

2.1 System architecture
The overall architecture of our CSC system is shown in
Figure 1.

Figure 1. Overview of the system architecture

The server that provides the huge XML information
source separates the XML tree structure from the values
of the XML leaf nodes, i.e. texts and attributes, and
compresses the XML structure without the XML leaf
node values separately.

When a client submits its first query to the server, the
server transfers the highly compressed XML structure to
the client. Additionally, for each query, the server collects
all the XML document’s leaf nodes in document order
that are needed for query evaluation, but that are not
contained in the client’s cache. The server compresses
this XML leaf node constant list and sends it to the client.
Finally, the client evaluates the query.

Before the client sends further queries to the server, it
checks whether the query can be answered locally or
requires more XML leaf node data. Only if data is
missing, in the client’s cache, the client submits the query
to the server.

2.2 Key idea of CSC
The key idea of the implementation is that client and
server use the same XPath evaluator EV with one
exception: the implementation of the access to constant
values. The main requirement to EV is that the program
code accessing constant values is isolated, e.g. it is done

CRPIT Volume 92 - Database Technologies 2009

152

in a function getValue(XPathQuery, currentContextNode)
for which a server implementation exists that differs from
the client implementation. Client implementation and
server implementation communicate via the constant
exchange buffer explained below. All other operations of
the XPath evaluation EV are implemented only once, and
are used in an identical fashion on the server side and on
the client side.

Client and server use the same XPath evaluator, in our
case an evaluator based on a reduced instruction set RIS.
RIS consists of the following operations:
• fc: Returns the first-child of the current context node

ccn.
• ns: Returns the next-sibling of the current context

node ccn.
• label: Returns the label of the current context node

ccn if ccn is an element or an attribute node.
• parent: Returns the parent of the current context node

ccn.
• node type: Returns the node type (i.e., either element,

attribute, or text node) of the current context node
ccn.

• getValue: Returns the text value of the current
context node ccn if ccn represents a text node or the
text value of an attribute.

Other operations of CoreXPath are reduced to these
operations using rewrite rules as presented in (Böttcher
and Steinmetz 2007a).

The main goal of the constant exchange is to send only
those constants from the server to the client that are really
needed. This will save most of the data exchange, because
the constants are much more difficult to compress than the
structure.

The key idea is to use the same XPath evaluator on the
server and on the client side. The server’s evaluator only
picks those constants from the document that are needed
on the client side. These constants are packed together,
are compressed using string compression (e.g. in our case
bzip2), and finally are submitted to the client and
decompressed. As the evaluation order of XML nodes on
the client side and on the server side are identical, the
constant order picked by the server is identical to the
constant order required by the client. Therefore, the
server simply writes picked constants sequentially into the
buffer that is compressed, submitted to the client and
decompressed at the client side. And the client simply
reads the constants from the decompressed buffer one by
one.

2.3 Separation of structure and text constants
Due to the semi-structured nature of an XML document,
the document structure contains a lot of redundancies,
while the text data does contain fewer redundancies.
Therefore, the document structure alone can be
compressed much better than text and attribute values
alone or the XML document as a whole combining
structure and constants. For example, the overall
compression ratio achieved for different XML documents
including structure plus text data reaches compression
ratios of 10% up to 30%, i.e., it reduces the document size
by a factor of 3.3 up to 10. However, the compression

ratio achieved for structure only of the same XML
documents is between 0.3% and 10%, i.e., it reduces the
document structure size by a factor of 10 up to 330.
Furthermore, nearly all XPath queries access significantly
more inner XML document nodes which are part of the
XML structure than they access leaf nodes which contain
the text or attribute values.

Therefore, we propose to separate the structure from
the text constants and compress both parts separately.
Compression approaches that perform such a separation
of structure and constants and that support queries and
even modification on the generated compressed XML at
the same time are e.g., BSBC (Böttcher, Hartel and
Heinzemann 2008) and DTD subtraction (Böttcher,
Steinmetz and Klein 2007). In general, any compressor
that separates structure from text constants and that
support queries and modification on the generated
compressed XML can be integrated in our approach to
Compressed Structure Caching (CSC) as well.

2.4 Caching the complete structure, but
constants only on demand

Due to the strong compression achievable for structure, it
is much more likely that the complete structure can be
kept in the cache than that the complete XML document
or huge fragments of it can be stored in cache. Therefore,
one of the key ideas of CSC is to keep the complete
compressed document structure within the client’s cache.

However, the constants are loaded into the client’s
cache on demand, i.e., only when they are needed in order
to answer a query. The benefit of this idea is that the inner
XML document nodes, i.e. the huge majority of nodes
needed for query processing is already available in the
cache, whereas only a small minority of nodes, i.e. the
leaf nodes really accessed, have to be loaded if not
already present in cache.

As the complete document structure and a subset of the
text constants are known on the client, the XPath
evaluation can be started at the client side in order to
determine, whether or not text constants or attribute
values are missing. That means that the client can decide
based on its XML cache, whether or not it contains
already all the data needed to answer the queries.

In contrast, other approaches like the proof techniques
suggested by e.g. (Balmin et al. 2004), (Mandhani and
Suciu 2005), (Xu and Ozsoyoglu 2005) aim at showing
that a so called compensation query applied to the cache
returns the same results as the original query applied to
the server’s database.

Unfortunately, the compensation query approaches are
applicable to very small subsets of XPath only and even
worse, it can be shown that already for very small subsets
of XPath the search for compensation queries is NP hard.

2.5 Pointer-less identification of constants
Pointers from the XML structure into a compressed text
or attribute value constant buffer may speed-up query
processing, but the addition of pointers to the compressed
structure of an XML document will significantly blowup
size of the compressed structure, usually by more than
100%. In comparison, a pointer-less technique to address

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

153

the relevant constants significantly reduces the space
needed for the compressed XML structure.

Therefore, CSC uses a constant identification
technique that avoids the need for pointers from the
compressed structure to the compressed constant values.
This constant identification technique saves cache space
to store larger XML structures and thus reduces the data
transfer from the server to the client.

The key idea used by CSC is the following.
As the XPath evaluation can be started on the

document structure, the evaluation order gives an implicit
order of the needed text constants. When the server uses
the same evaluation order as the client, the server can
send compressed text constants in this evaluation order,
and the client receives the constant in the evaluation order
needed. Therefore no explicit pointers or identification of
the constants is needed - neither to transfer constants, nor
to insert the constants in the cache, nor to use the
constants on the client side. This pointer-less access to the
needed constants results in a significant reduction of
transferred data.

Note that other caching techniques, e.g. (Böttcher and
Türling 2004) use an additional addressing or
identification schema for XML nodes, as e.g. the
ORDPATH numbering scheme (O'Neil et al. 2004), in
order to integrate additional data from the server into the
client’s cache. This address information requires cache
memory and has to be transferred, both being avoided by
our CSC approach.

2.6 Constant identification on the server side
On the server side, a modified XPath evaluator not only
evaluates the query, but simultaneously collects all the
constants of accessed XML leaf nodes in evaluation
order, which in our special case is XML document order.
Form this collection of accessed XML leaf node
constants, all the constants that are already known to the
client’s cache are deleted during the same scan through
the XML document by a technique described in Section
2.7. Thereby, the result of this server side query
evaluation is a list of constant values of accessed XML
leaf elements in evaluation order, except the values of
those leaf elements that are already stored in the client’s
cache. This list of constants is transferred to the client
without any additional identification information, as this
information is implicitly known to the client because of
the document structure and the evaluation order.

2.7 Constant usage on the client side
The server and the client have to agree on a common
XPath evaluator to ensure that the evaluation order of
constants is the same on server and on client.

Before sending the query to the client, the client tries
to evaluate the query on its cache. During evaluation it
will either realize, that no constant data is missing. In this
case, no data has to be transferred between server and
client. If on the other hand, the client realizes, that its
cache does not store all the leaf node values needed to
answer a query independently of the server, the client
sends the XPath query string to the server. There it is
evaluated by a modified XPath evaluator that collects

only those values of texts and attributes that are accessed,
but not contained in the client’s cache in order to answer
the query. The values collected by the XPath evaluator
are compressed and sent to the client. After having
received the list of constants, the client can continue the
query evaluation. Whenever a constant value is missing,
the client consumes the next constant value from the list,
stores it on the current position within the compressed
document and uses it for client evaluation. As client and
server have agreed on the same evaluation order, this
ensures, that the next constant value received from the
server is the next constant value the client needs.

This allows a compression and decompression
technique of string constants where the server simply
pipes in strings into the compressed stream to the client
and the client simply extracts them one by one.

2.8 How to avoid the transferal of leaf nodes
that are stored in the client’s cache

In order to prevent the server from sending constants to
the client that are already stored in the client’s cache,
either the server has to know, which constants are stored
within the client’s cache, or the client has to tell the server
which constants are still stored in the cache.

To avoid sending the same XML leaf constants several
times, we have adopted and slightly modified an approach
of (Böttcher and Türling 2004). Each query string
submitted from the client to the server is stored in a
client-specific query list on the server. The server
compares this query list with the IDs of old queries to
compute the list of cached queries, i.e. those queries, the
results of which are still stored in the client’s cache. The
list of cached queries and the actual query are combined
to compute the missing constants. Here missing constants
denote the constants needed to answer the actual query on
the client-side that are not yet contained in the cache, i.e.
which are the cache-misses and have to be sent from the
server to the client. To avoid reading the XML source
multiple times, we use a streaming-based approach to
read the whole XML document in a single pass only
based on (Olteanu et al. 2002) and (Böttcher and
Steinmetz 2007a), and apply multiple queries, i.e. the
actual query and the cached queries in parallel on this
stream. This provides an easy way to compute the leaf
nodes accessed by the actual queries and the leaf nodes
accessed by the cached previous queries in a single run on
the compressed XML file. Only those leaf nodes that are
not yet present in the client’s cache are collected in
document order, are compressed, and are then sent to the
client.

2.9 How the client embeds the received
constants

CSC has to adapt its pointer-less identification of
constants to the situation that some, but not all constants
are already present in the client’s cache. This means that
for each leaf node visited by the client’s XPath evaluator,
the evaluator has to know whether the constant is stored
in the cache or is contained in the stream of constants
retrieved from the server.

CRPIT Volume 92 - Database Technologies 2009

154

This can be achieved by using one bit for each leaf
node in the cached structure telling the XPath evaluator
whether the constant has to be read from the client’s
cache or from the stream of constants provided by the
server.

3 Performance evaluation
Our performance evaluation was done with BSBC
(Böttcher, Hartel and Heinzemann 2008) as structure
compression tool and Bzip2 as text compressor.

3.1 Summary of BSBC
In our performance evaluation, we have used BSBC on
both, the client and the server, as the compressor that
generates queryable and updateable compressed XML
data and as the tool that performs queries on BSBC
compressed XML data.

BSBC is an XML compressor based on element name
encoding on the one hand, and on sharing of common
sub-trees on the other hand. The BSBC XML compressor
separates the XML constants from the XML element
names and attribute names and from the nesting of start
tags and end tags, i.e. the compressed document structure
of an XML document consists of the following parts:

i. A bit stream representing the tree structure of the
element nesting in the XML tree, without storing any
label information. In the bit-stream, each start-tag is
represented by a ‘1’-bit and each end-tag is
represented by a ‘0’-bit.

ii. Inverted element lists, containing a mapping of
element and attribute names to ‘1’-bit positions
within the bit stream.

iii. A so called DAG pointer list. The DAG pointer list
represents the shared sub-trees, and it consists of a
list of pointers from a parent element to the repeated
sub-tree occurring previously within the document
structure.

In addition to the document structure, BSBC stores the
constants, i.e., the text and attribute values in form of
separate constant containers based on the parent element
name and compresses each constant container using the
generic compressor BZip2.

3.2 Performance evaluation environment
We have implemented Compressed Structure Caching
using Java 1.5. We have evaluated Compressed Structure
Caching on a dataset created by the XMark Benchmark
(Schmidt et al. 2002) using creation factors from 0.0001
to 0.1 and yielding document sizes from 34 kB (factor
0.0001) up to 11.3 MB (factor 0.1).

We compared three different models
• CSC: Compressed Structure Caching described in

this paper that initially transfers the whole structure
compressed by BSBC. For each query, only the
missing constants of XML leaf nodes are
transferred, and they are transferred in a compressed
way.

• Compression: The query results are computed on the
server and the results are only compressed by BSBC

before transferring them to the client, i.e. caching is
not used.

• Direct: The query results are computed on the server
and are transferred to the client in an uncompressed
way.

3.3 Performance results
In order to compare the three models, we have executed
the queries shown in Table 1 sequentially and have
measured the total data volume transferred from server to
the client.

ID Query

q0 /site/people/person[phone or homepage]/name

q1 /site/people/person[descendant::watches]

q2 /site/regions/europe/item/name

q3 /site/people/person/address/city

q4 /site/open_auctions/open_auction/bidder

q5 /site/closed_auctions

q6 /site/people

q7 /site/open_auctions

q8 /site/categories

q9 /site

q10 /site/regions/europe

Table 1. Queries used to evaluate the proposed
approach

Figures 2 and 3 show the transferred data volume for
the documents created with factors 0.0001 and 0.1. A
comparison of both figures demonstrates that after a
certain amount of queries, Compressed Structure Caching
(CSC) transfers less data than the compressed model that
transfers itself less data than the direct model. The bigger
the document on the server is, the earlier this effect can be
realized: For the document XMark 0.0001, the structure
cache transfers less data than the compressed model only
from query q9 on, whereas it transfers less data from
query q6 up for document XMark 0.1.

Figure 2. Transferred data volume for XMark 0.0001

XMark 0.0001

0

10000

20000

30000

40000

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

Queries

d
at

a
vo

lu
m

e(
B

yt
es

)

CSC Compression Direct

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

155

Figure 3. Transferred data volume for XMark 0.1

Figure 4. Transferred data volume
for different document sizes

This is mainly due to the relative size of the
compressed structure which is initially transferred from
server to client, and which is 10% of the document size
for XMark 0.0001, but only 3% of the document size for
XMark 0.1.

We can take a closer look on this effect in Figure 4:
When using the compressed model without caching, the
data volume that has to be exchanged can be reduced to
the size of 55% to 26%, compared to the data volume
exchanged with the Direct strategy using neither caching
nor compression. The reduction of the exchanged data
volume is better for larger XML documents.

When using the compressed model with caching, the
data volume that has to be exchanged can be reduced
even significantly better, i.e. to the size of 33% to 14%,
compared to the data volume exchanged with the Direct
strategy using neither caching nor compression. Again,
the reduction of the exchanged data volume is better for
larger XML documents.

To summarize, it can be seen, that even for relative
small document sizes and few queries, by using
Compressed Structure Caching, the data volume can be
reduced up to 13% compared to the direct model and up
to 50% compared to using the compressed model.

4 Related work
Although both, web data caching and XML compression,
contribute to a reduction of the data transfer from server
to client, the fields of web data caching and XML
compression have mostly been investigated independently
of each other.

There has been a lot of work in XML compression,
some of which does not support query processing on
compressed data, e.g. (Liefke and Suciu 2000), and most
of which support querying compressed data, but not
querying cached compressed data, e.g. (Buneman, Grohe
and Koch 2003), (Busatto, Lohrey and Maneth 2005),
(Cheng and Ng 2004), (Ng et al. 2006), (Zhang, Kacholia
and Özsu 2004).

Contributions to the field of caching range from
concepts of querying and maintaining incomplete data,
e.g. (Abiteboul, Segourin and Vianu 2001), over caching
strategies for mobile web clients, e.g. (Böttcher and
Türling 2004), to caching strategies based on frequently
accessed tree patterns, e.g. (Yang, Lee and Hsu 2003). In
comparison, our approach allows for XPath queries using
filters and comparisons with constants even on
compressed cached XML.

Different approaches have been suggested for checking
whether an XML cache can be used for answering an
XPath query. On the one hand, there are contributions,
e.g. (Balmin et al.2004), (Mandhani and Suciu 2005),
(Xu and Ozsoyoglu 2005), that propose to compute a
compensation query. These approaches can also be used
on compressed XML data, but they are NP-hard already
for very small sub-classes of XPath. On the other hand,
containment tests and intersection tests for tree pattern
queries have been proposed, and could in principle be
used for deciding whether a given XPath query can be
executed on the cached data locally. However, such
intersection tests and containment test are NP-hard for
rather small subsets of XPath expressions (Benedikt, Fan
and Geerts 2005), (Hidders 2003). In comparison, our
approach uses a fast difference computation that can be
done within a single scan through the compressed XML
file.

In comparison to all other approaches, our technique is
to the best of our knowledge the only strategy that
combines the following advantages: it caches the
relatively small compressed XML structure and supports
XPath queries on it, transfers only constants that are really
needed for query evaluation and uses a pointer-less
transfer format, and it uses an intelligent server strategy to
identify those leaf nodes not yet stored in the client’s
cache.

5 Summary and Conclusions
Whenever data exchange with XML-based information
sources is a bottleneck, it is important to reduce the
amount of exchanged XML data. Our CSC approach
combines two reduction techniques for exchanged data,
i.e. caching and XML compression. Furthermore, CSC
supports XPath query evaluation on cached compressed
XML data, and is not limited to a small XPath subset like
tree pattern queries. Additionally, CSC takes advantage of
caching the small compressed XML structure and

XMark 0.1

0

2500000

5000000

7500000

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q1
0

Queries

d
at

a
vo

lu
m

e(
B

yt
es

)

CSC Compression Direct

Scaling document sizes

0.00%

25.00%

50.00%

75.00%

100.00%

0.0001 0.001 0.01 0.1

XMark factor
CSC Compression Direct

CRPIT Volume 92 - Database Technologies 2009

156

provides an intelligent technique for transferring only
those XML leaf node constants from the XML
information server to the client that are really needed for
query evaluation and that are not yet stored in the client’s
cache.

Finally, we have provided a performance evaluation
that shows that a significant reduction in data exchange
can be achieved by CSC.

An interesting extension of our research is to consider
modification of compressed data on the client side or the
server side. Modification of compressed XML data
without complete decompression has been solved in
(Böttcher and Steinmetz 2007b), and it seems to be
promising to apply this to our compressed XML cache.
Furthermore, cache updates and consistency between an
XML server and an XML cache have been solved for
uncompressed XML (Böttcher 2006).

Therefore, we consider it a promising challenge to
combine all three aspects caching, compression and
consistent updates in future work.

As XPath is used in other important XML standards
like XSLT and XQuery, we consider it a challenging
research topic to enhance the results presented here in
such a way that they are applicable to XQuery or XSLT
as well.

6 References
Abiteboul, S., Segourin, L. and Vianu, V. (2001):

Representing and querying XML with incomplete
information. Proceedings of the Twentieth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, Santa Barbara, California, USA,
ACM Press.

Balmin, A., Özcan, F., Beyer, K.S., Cochrane, R. and
Pirahesh, H. (2004): A Framework for Using
Materialized XPath Views in XML Query Processing.
(e)Proceedings of the Thirtieth International
Conference on Very Large Data Bases, Toronto,
Canada, 60-71, Morgan Kaufmann.

Benedikt, M., Fan, W. and Geerts, F. (2005): XPath
satisfiability in the presence of DTDs. Proceedings of
the twenty-fourth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, New
York, NY, USA, 25-36, ACM Press.

Böttcher, S., Hartel, R. and Heinzemann, C. (2008):
BSBC: Towards a succinct data format for XML
streams. Proceedings of the Fourth International
Conference on Web Information Systems and
Technologies, Funchal, Portugal, 13-21, INSTICC
Press.

Böttcher, S. and Steinmetz, R. (2007a): Evaluating XPath
Queries on XML Data Streams. Data Management.
Data, Data Everywhere, 24th British National
Conference on Databases, Glasgow, UK, 101-113,
Springer.

Böttcher, S. and Steinmetz R. (2007b): Data Management
for Mobile Ajax Web 2.0 Applications. Database and
Expert Systems Applications, 18th International
Conference, DEXA 2007, Regensburg, Germany, 424-
433, Springer.

Böttcher, S., Steinmetz, R. and Klein, N. (2007): XML
index compression by DTD subtraction. Proceedings of
the Ninth International Conference on Enterprise
Information Systems, Funchal, Madeira, Portugal, 86-
94.

Böttcher, S (2006): Cache Consistency in Mobile XML
Databases. Advances in Web-Age Information
Management, Hong Kong, China, 300-312, Springer.

Böttcher, S. and Türling, A. (2004): Caching XML Data
on Mobile Web Clients. Proceedings of the
International Conference on Internet Computing, IC
'04, Las Vegas, Nevada, USA, 150-156, CSREA Press.

Buneman, P., Grohe, M. and Koch, C. (2003): Path
Queries on Compressed XML. Proceedings of 29th
International Conference on Very Large Data Bases,
Berlin, Germany, 141-152, Morgan Kaufmann.

Busatto, G., Lohrey, M. and Maneth, S. (2005): Efficient
Memory Representation of XML Dokuments, Database
Programming Languages, 10th International
Symposium, Trondheim, Norway, 199-216, Springer.

Cheney, J. (2001): Compressing XML with multiplexed
hierarchical models. Proceedings of the 2001 IEEE
Data Compression Conference (DCC 2001),
Snowbird, Utah, USA, 163-172, IEEE Computer
Society.

Cheng, J. and Ng, W. (2004): XQzip: Querying Com-
pressed XML Using Structural Indexing. Advances in
Database Technology - EDBT 2004, 9th International
Conference on Extending Database Technology,
Heraklion, Crete, Greece, 219-236, Springer.

Hidders, J. (2003): Satisfiability of XPath expressions.
Database Programming Languages, 9th International
Workshop, DBPL 2003, Potsdam, Germany, 21-36,
Springer.

Koch, C., Scherzinger, S. and Schmidt M. (2008): XML
Prefiltering as a String Matching Problem. Proceedings
of the 24th International Conference on Data
Engineering, Cancun, Mexico, 626-635, IEEE.

Liefke, H. and Suciu, D. (2000): XMill: An Efficient
Compressor for XML Data, Proceedings of the 2000
ACM SIGMOD International Conference on
Management of Data, Dallas, Texas, USA, 153-164,
ACM.

Ng, W., Lam, W.Y., Wood, P.T. and Levene M. (2006):
XCQ: A quer14ziable XML compression system.
Knowledge and Information Systems, 10(4):421-452.

Mandhani, B. and Suciu, D. (2005). Query caching and
view selection for XML databases. Proceedings of the
31st international conference on Very large data bases,
Trondheim, Norway, 469-480, ACM.

Marian, A. and Siméon, J. (2003): Projecting XML
Documents. Proceedings of 29th International
Conference on Very Large Data Bases, Berlin,
Germany, 213-224, Morgan Kaufmann.

Olteanu, D., Meuss, H., Furche, T. and Bry, F. (2002):
XPath: Looking Forward. XML-Based Data
Management and Multimedia Engineering – EDBT

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

157

2002 Workshops, Prague, Czech Republic, 109-127,
Springer.

O'Neil, P.E., O'Neil, E.J., Pal, S., Cseri, I., Schaller, G.
and Westbury, N.(2004): ORDPATHs: Insert-Friendly
XML Node Labels. Proceedings of the ACM SIGMOD
International Conference on Management of Data,
Paris, France, 903-908, ACM.

Schmidt, A., Waas, F., Kersten, M., Carey, M.,
Manolescu, I. and Busse, R. (2002): XMark: A
benchmark for XML data management. Proceedings of
28th International Conference on Very Large Data
Bases, Hong Kong, China, 974-985, Morgan
Kaufmann.

Xu, W. and Ozsoyoglu, Z.M. (2005): Rewriting XPath
queries using materialized views. Proceedings of the
31st international conference on Very large data bases,
Trondheim, Norway, 121-132, ACM.

Yang, L.H., Lee, M.-L. and Hsu, W. (2003): Efficient
mining of XML query patterns for caching.
Proceedings of 29th International Conference on Very
Large Data Bases, Berlin, Germany, 69-80, Morgan
Kaufmann.

Zhang, N., Kacholia, V. and Özsu, M.T. (2004): A
Succinct Physical Storage Scheme for Efficient
Evaluation of Path Queries in XML. Proceedings of the
20th International Conference on Data Engineering,
Boston, MA, USA, 54-65, IEEE Computer Society.

CRPIT Volume 92 - Database Technologies 2009

158

Ranking-Constrained Keyword Sequence Extraction
from Web Documents

Dingyi Chen1 Xue Li1 Jing Liu1,2 Xia Chen1

1 School of Information Technology and Electrical Engineering
The University of Queensland,
Brisbane, Qld 4072, Australia,
Email: xueli@itee.uq.edu.au

2 School of Computer Science and Electronic Engineering
Xidian University,

Xi’an, 710071, China,
Email: neouma@163.com

Abstract

Given a large volume of Web documents, we consider
problem of finding the shortest keyword sequences for
each of the documents such that a keyword sequence
can be rendered to a given search engine, then the
corresponding Web document can be identified and
is ranked at the first place within the results. We
call this system as an Inverse Search Engine (ISE).
Whenever a shortest keyword sequence is found for
a given Web document, the corresponding document
can be returned as the first document by the given
search engine. The resulting keyword sequence is
search-engine dependent. The ISE therefore can be
used as a tool to manage Web content in terms of
the extracted shortest keyword sequences. In this
way, a traditional keyword extraction process is con-
strained by the document ranking method adopted
by a search engine. The significance is that the whole
Web-searchable documents on the World Wide Web
can then be partitioned according to their keyword
phrases. This paper discusses the design and imple-
mentation of the proposed ISE. Four evaluation mea-
sures are proposed and are used to show the effective-
ness and efficiency of our approach. The experiment
results set up a test benchmark for further researches.

1 Introduction

Search engine eg., Google, Yahoo, or Live Search,
helps user find Web pages on a given subject us-
ing keywords. Knowing the right keywords, a user
is able to locate relevant Web resources in a short
time. However, as Kleinberg points out [1], search
engines are not able to provide direct answers if user
only knows what he/she wants, but does not know
the right keywords to search. This would raise an in-
teresting question: How can we extract a sequence of
keywords from a Web document, so that once user
knows this keyword sequence, he/she would be able
to locate the document immediately? Thus the Web

This project is supported by Australian ARC Discovery Project
DP0558879.

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the 20th Australasian Database Conference
(ADC 2009), Wellington, New Zealand, January 2009. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 92, Athman Bouguettaya and Xuemin Lin, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

search problem could become a problem of approx-
imating or mapping the keywords specified by user
into the keyword sequences that can represent doc-
uments uniquely. This kind of ranking-constrained
keyword extraction process is termed inverse search.

Inverse search as a common psychological process
can be used for users to remember the Web pages
that they have visited. For example, a tourist might
wish to find the best place to watch insects that emit
lights at night in Australia. Neither knowing proper
terms of the insects nor the place where those insects
inhabit, he/she tried “firefly Australia”, but none of
the search results is about the insects, because this
kind of insects is usually referred as “glowworm” or
more specifically, Arachnocampa. After many tri-
als, he/she finally learnt that glowworm can be seen
in Springbrook National Park near Gold Coast and
would want to use a few words to represent these rel-
evant pages. Indeed, the exact URLs of these pages
can be recorded as bookmarks in a Web browser.
However, long URL addresses are generally difficult
to memorise or to speak out, therefore they are not
suitable for oral communications. Instead of mem-
orising the whole URL, the tourist can just refer to
the keywords “glowworm” and “Springbrook” in case
his/her friends are also interested. To an on-line
advertiser, this Web site could be uniquely identi-
fied and advertised by buying these two words (or
the word Arachnocampa) from the search engine. So
when user searches for these words, the associated
Web page will be returned at the first place in the
search results. On the other hand, a Web page may
be uniquely identified by extracting the features of its
content and making an index on it.

An Inverse Search Engine (ISE) accepts a Web
document as input and returns a shortest sequence of
keywords that can be used to uniquely identify this
document through a search engine. That is, after
querying on the keyword sequence, the given Web
document should be returned as the first search re-
sult by the search engine. In the rest of this paper,
the term target page refers to the given input Web
document, and the shortest keyword sequence (short-
est KS) refers to a minimum (in keyword counting)
ordered-list of terms that can make the target page
ranked top in the search results. We use the terms
of ‘Web document’ and ‘Web page’ interchangeably
when the discussion is focused on their content.

For a keyword sequence being shortest, we define
the following three characteristics:

• Minimum number of words in sequence —
A minimum number of keywords that are ex-
tracted from a web document. The words are
ordered and used as a query on the Web.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

159

• Uniquely identifying the document on the
Web — When a search engine uses this keyword
sequence, it will locate it uniquely and rank it as
the first one in the search result.

• Search-engine dependent — Since different
search engines may have different document
ranking methods, for a given Web document, we
are interested in finding the keyword sequence
that can make the given document be ranked at
the top of the search results by a given search
engine. So, different search engines may have
different keyword sequences used as queries to
make the given document being ranked top.

It should be pointed out that although Page Rank
[2] affects the ranking of Web pages of keyword-based
search results, our ISE as a content-based approach
is considered to be independent from the URLs that
link the given Web page to others.

Typical search engines treat a search query as a
sequence of keywords. This is because the order of
search keywords may indicate either the relevant im-
portance of keywords or the occurring order of key-
words. For example, a query of “search engine” is dif-
ferent from “engine search”, for the former is looking
for an information system to obtain lists of references
matched with specific criteria; while the latter might
be finding a Web site that compares mechanical en-
gines.

Keyword sequence is useful in many fields. In sci-
entific publishing, authors are required to provide a
list of words which point out the main topics of the
paper for searching and indexing purposes. The im-
portant topic usually appears first in a keyword se-
quence.

Automatic keyword extraction from documents
has been implemented in a few systems. For example,
Microsoft Word can generate keywords from given
documents. The extraction techniques suggested by
[11, 10] can induce keyword-generating rules from the
existing document/keyword pairs. Indeed, the key-
words generated by those methods reflect the content
of target documents to some extent. However, those
extracted keywords cannot be used in a ranking pro-
cess that can bring a Web-deployed document to the
top position in a search. This, however, could be the
most desired feature to Web surfers. On the other
hand, most of those keyword-extraction methods are
based on the supervised learning that prefers to work
with a high-quality training set, which in many cir-
cumstances, is not available.

The main idea of this paper is to combine the key-
word extraction with a document ranking process.
In order to test the keyword sequence extracted by
the system, a search engine will be used to feed with
the extracted keyword sequence and to obtain a list
of Web pages that the given Web page is included
and ranked high. To this end, the implementation
of ISE faces a twofold-problem. Firstly, many search
engines limit their total number of daily accesses for
an automatic client application. Yahoo allows 5,000
queries per day, while Google and Live Search (succes-
sor of MSN Search) only allow 1,000. So the number
of queries made by ISE should be as small as possi-
ble. Secondly, search engines also limit the character-
length of queries for security and performance rea-
sons. For example, Google allows at most 2048 char-
acters and MSN allows only 2501. Thus, the ISE-
generated keyword sequence should contain as fewer
words as possible.

To find out the shortest KS, there is always a naive
way by using a brute-force method to exhaustively

1From the HTML source code of http://www.google.com and
http://www.msn.com

search for the solution. However, this will be com-
putationally very expensive and infeasible. We pro-
pose a heuristic method to discover the shortest KS.
Our method consists of three stages: embracing, ex-
panding, and eliminating. Firstly the target page is
embraced by a seed, i.e., an initial candidate KS that
ranks target page in a work range such as top 100, or
a larger number to be decided experimentally. Then
the candidate KS is extended in order to improve the
ranking of the page in that search engine. Finally,
the terms in the candidate KS is reordered and sur-
plus terms are eliminated. In this case, the result of
ISE is search engine dependent, that is, the short-
est KS that tops the target page in Google does not
necessarily top the target page in Yahoo.

We have developed a framework of four measures
for the evaluation of the effectiveness and efficiency
of ISE. These measures are: (1) the success rate that
is a count of the shortest KSs that can be obtained
from different Web pages; (2) the top-one rate which
tells the percentage of the obtained shortest KSs that
actually top the target pages; (3) the shortness that
reflects whether the ISE is KS-size efficient; and (4)
the impoliteness that indicates whether the ISE sends
too many queries to bother a search engine.

Keyword sequence extracted by ISE has three ad-
vantages. (1) Keyword sequence can be used as a
digest of corresponding Web content. It can be a
phrase that captures the topic of document. It can
also be used as a query to get the target page from
the Web. In this case, the best representative key-
words become the best query words. (2) The training
to the keyword extraction process is now performed
by a search engine that provides feedback through its
ranking process. So ISE does not need to collect a
large volume of training data set for keyword extrac-
tion. (3) Keyword sequence as a shorthand of Web
document can be used to index the Web content so to
improve the search engine efficiency. It can be used
by online advertisement or other Web-based applica-
tions where the key phrases are uniquely associated
with certain services or functions.

This paper is organised as follows. Section 2 ad-
dresses the influential related work. Section 3 ex-
plains our proposed approach. Section 4 illustrates
our experimental results. Section 5 provides the con-
clusions.

2 Related Work

There are two types of keyword-extraction ap-
proaches: (1) domain-dependent methods that are
based on the supervised machine-learning models
and require large training corpora, and (2) domain-
independent methods that do not require training cor-
pora.

A keyword is a meaningful term that has some
importance in a document. It can be identified using
the term frequency (TF) [8]. The intuition is that the
important concepts are likely to be referred to more
times than others. However, this might not be true in
the situation that the terms are frequent in all docu-
ments that have the similar content. In this case, the
documents cannot be differentiated from each other.
As an alternative, we can rank the candidate key-
words based on the inverse document frequency (IDF)
[9].

Frank et al., [3] introduced an automatic key-
word extraction algorithm namely KEA, based on a
domain-specific machine learning model. It employs
lexical and information retrieval methods to identify
candidate keyphrase from document. It calculates
the feature values for each candidate and uses Naive
Bayes machine to predict the overall probability of

CRPIT Volume 92 - Database Technologies 2009

160

keyphrases. The features used in the algorithm in-
clude TF × IDF and the positions of their first oc-
currences.

Kelleher et al., [5] enhanced the KEA by introduc-
ing a feature of “Semantic Ratio (SR)” which makes
KEA adapted to Web corpus. The SR of a phrase
is calculated by dividing the number of occurrences
of the phrase in the current document by the num-
ber of times it occurs in all documents directly hyper-
linked to that document. The idea is based on the as-
sumption that the semantics connection between Web
documents is measurable by counting the neighbours
of a Web document (in a way similar to the Page
Rank) and that the subject matter (identified by the
keyphrases) of the document is therefore in some way
related to their content. They concluded that the hy-
perlink information can be used to improve the effec-
tiveness of automatic keyphrase extraction by 50%.

Yih et al., [10] demonstrated that by using extra
features, such as the TF × IDF vectors, the meta
data in Web pages, and the query-frequency informa-
tion from Microsoft MSN query logs, their learning
algorithm can substantially outperform KEA.

In the context of extracting keywords from Web
documents, it is impossible to collect a large enough
training data set for all possible types of Web content.
So the domain-independent keyword extraction which
does not require training corpus is considered in our
approach.

Matsu and Ishizuka [6] proposed a keyword extrac-
tion algorithm from a single document without using
any training corpus. The method firstly extracts a
set of frequent terms from the given document. Then
a set of co-occurrences between a term and a set of
frequent terms is generated. If the probability distri-
bution of a co-occurrence between term t and a set of
frequent terms is biased to a particular subset of fre-
quent terms, then term t is believed to be a keyword.
In this case, the degree of bias of the co-occurrence
between a term and a set of frequent terms is regarded
as an indicator of the term importance.

Our work shares a similar idea from the Implicit
Query System [4] and the Robust Hyperlinks [7]. The
Implicit Query System can automatically generate
query words or phrases from an email and send them
to an Internet search engine in order to find docu-
ments that are relevant to the email. Their method
can extract the special features from emails, such as
the words used in subject line. The system also uses
query logs from the Microsoft MSN Search to avoid
picking up the words or phrases that would never be
queried by real-life users. In this way, the system
can dramatically reduce the total number of candi-
date queries. Their method uses a training data set
with a logistic regression training process.

The Robust Hyperlinks is another keyword extrac-
tion method that extracts text signatures from Web
pages. These signatures serve as search queries to lo-
cate Web pages once the hyperlinks fail. In [7], text
signatures are acquired through the TF-IDF vectors.
This approach can be very effective for Web directory
maintenance and digital libraries, because the total
number of documents is known in advance. However,
it is difficult, if not impossible, to provide a sufficient
large collection of Web pages to produce IDF based
on the unlimited number of Web documents.

In our work, the keyword learning is not based on
a large collection of documents, but on the feedback
given by a search engine in its ranking process. For a
given keyword sequence extracted from a document,
the higher ranking of the document has, the better
that the keyword sequence represents the document.
The system can learn directly from the feedback sup-
plied by search engine to find out the best query words
or phrases for a given Web page without training on

a corpus. The next section discusses the design of
Inverse Search Engine (ISE).

3 Inverse Search Engine (ISE)

A query rendered to a search engine is in the form of a
text string (keyword sequence) k. A sorted list of Web
documents D will be returned as the search result of
k. The relationship between search result list D and
the search engine function SE can be expressed as:

D = [d1, d2, . . . di, dn] ← SE(k) (1)

where the i-th result is referred as di and n is the
maximum search range, which defines the maximum
number of returned Web documents.

In contrast to SE , an inverse search engine (ISE)
accepts a target page ď as input and returns the short-
est keyword sequence ǩ which makes the target page
ď be ranked at the top of the results of a search en-
gine. In other words, the problem is: Given a target
document ď and a search engine SE(k), find a target
keyword sequence ǩ, which is the shortest keyword se-
quence that makes the target document ď be ranked
at the first (d1 = ď) of the search results, as shown in
Formula 2:

ǩ ← ISE(ď), such that
Rank(ǩ, ď) = 1

(2)

where

Rank(k, d) =
{

i if d ∈ D, di = d
−1 if d /∈ D. (3)

The ISE architecture is shown in Figure 1. As
we can see that the input of ISE is a Web document
ď. The final output of ISE is the shortest keyword
sequence ǩ. During the process, an initial keyword
sequence k is fed into a Search Engine then a list of
documents D is returned from the Internet with ď is
one of them and ranked high. This process is repeated
until ď is ranked at the top. After a further process
that eliminates any superfluous words, k becomes the
final output ǩ.

Figure 1: ISE Architecture

There are two naive methods that can exhaus-
tively search for the resulting shortest KS. One is a
bottom-up approach namely incremental brute-force.
This approach tries all the possible word permutation
from uni-gram to n-gram until the shortest keyword
sequence is found. The other is a top-down approach
namely shrinking brute-force. This approach starts
from the keyword sequence that represents the whole
content of the target page. Then, the system itera-
tively removes the “less informative” words from the
candidate keyword sequence until the target page falls
from its first rank in the search results. Clearly, ex-
haustive search for the shortest keyword sequence is

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

161

expensive. The both brute-force methods therefore,
are not desirable due to their time complexity.

We consider a heuristic approach to determining
an initial candidate KS, so that the search results
will contain the target page. The system then makes
the target page progressively ranked higher by refin-
ing the candidate KS. Our ISE strategy consists of
three stages: embracing, expanding and eliminating.
At embracing stage, ISE finds an initial candidate
KS, whose results contain the target page; then at
expanding stage, the target page is topped by adding
the words that can highly differentiate the target page
from others; and finally at eliminating stage, the can-
didate KS is shrunk to a minimal size, and yet it can
still make the target page ranked at the first place in
the search results.

3.1 Embracing Stage

The objective of embracing stage is to determine a
seed KS that would qualify the target page entering
into a ranking process. Two simple heuristic strate-
gies are used for the initial seed generation: from title
and from single important words.

Intuitively, seed contains words that describe the
target page. Such important words can be found
in the HTML keyword fields, URL anchor text, and
emphasising HTML tags such as <title>, headings
(<h1> or <h2>), bold/italic (/<i>) tags, or the
text in larger fonts. Seed might be among terms in
emphasised text fragments because those terms imply
either their importance or relevance. The pseudo code
of embracing strategy “From Single Word” is listed in
Algorithm 1. The input of the algorithm is the target
page ď; while the out of the algorithm is a seed s and
a list of important terms T .

Algorithm 1 Embracing stage with strategy
“From Single Word”.

1: function EmbraceFromSingleWord(ď)
2: ď 7→ T . Terms extracted from ď is stored in

term list T .
3: for ∀t : t ∈ T do
4: if t appears between emphasising tags

then
5: t.w ← 10 . Emphasised terms weight:

10
6: else
7: t.w ← 1 . Normal terms weight: 1
8: end if
9: end for

10: Sort T from “heavy” to “light”
11: s ← ∅
12: for τ ← 1 to ` do . τ : length of seed.
13: for θ ← 1 to Θ do
14: Set the candidate seed ŝ by choosing τ

terms ([tθ, tθ+1, . . . , tθ+τ−1]) from T
15: D ← SE(ŝ)
16: if 1 ≥ Rank(ŝ, ď) < Rank(s, ď) then
17: s ← ŝ
18: end if
19: end for
20: if s 6= ∅ then
21: return (s,T) . Seed found.
22: end if
23: end for
24: return (s,T) . s = ∅, Seed not found.
25: end function

To hedge against exhaustive search, three constant
control parameters are applied to ISE algorithms.
They are the maximum search range ε, which limits

the number of maximum returned results; the maxi-
mum trial keyword sequence Θ, which limits the num-
ber of trials for different size; and the maximum key-
word sequence length `. If no seed can be found in
the iteration, we consider this stage fail and will not
proceed further.

The title of Web page is usually important because
it is either a summary of Web page content, or the rel-
ative paths from the home Web page. It is possible
to locate the target page by merely using its titles
as the initial keyword sequence. Though the HTML
specification does not mention the limitation of the
title length, in practice, titles are seldom longer than
one hundred characters because the title bar of Web
browser windows usually does not have a sufficient
space to display long titles. For the Web pages with
no title, the first sentence within the HTML typeset-
ting/emphasising tags can be treated as a title. If
such feature still does not exist, then we use the first
sentence of body text. The pseudo code of embracing
strategy “From Title” is listed in Algorithm 2. The
input of the algorithm is the target page ď (as well
as the title of the target page d.t). The output of the
algorithm is a seed s and a list of important terms T .

Algorithm 2 Embracing stage with strategy
“From Title”.

1: function EmbraceFromTitle(ď)
2: ď 7→ T . Terms extracted from ď is stored in

term list T .
3: for ∀t : t ∈ T do
4: if t appears between emphasising tags

then
5: t.w ← 10 . Emphasised terms weight:

10
6: else
7: t.w ← 1 . Normal terms weight: 1
8: end if
9: end for

10: Sort T from “heavy” to “light”
11: ŝ ← ď.t
12: s ← ∅
13: if Rank(ŝ, ď) >= 1 then
14: s ← T
15: return (s,T) . Seed found.
16: end if
17: for τ ← 1 to `− length of ď.t do . τ : length

of seed.
18: for θ ← 1 to Θ do
19: Append τ terms ([tθ, tθ+1, . . . , tθ+τ−1])

from T to candidate seed ŝ
20: D ← SE(ŝ)
21: if 1 ≥ Rank(ŝ, d) < Rank(s, d) then
22: s ← ŝ
23: end if
24: end for
25: if s 6= ∅ then
26: return (s,T) . Seed found.
27: end if
28: end for
29: return (s,T) . s = ∅, Seed not found.
30: end function

To choose a seed for it being more readable, pop-
ular, or user acceptable, the weight for each term in
the word list can be multiplied by a word importance
function M(t) when an importance word list T is
available, where t is a word. The higher return value
of the function indicates the more likely the word is
to be chosen for seeding. For example, ‘glowworm’
should have a higher weight than ‘Arachnocampa’, as
‘glowworm’ is a word easier to remember. A typical
implementation for word importance is the word fre-

CRPIT Volume 92 - Database Technologies 2009

162

quencies, except for the words in stopword list which
should return 0. School teachers may like to set the
return values of coarse words to 0 to prevent students
from viewing inappropriate Web pages. The impor-
tant word list is re-sorted after the weight of words
in the list are updated. However, there is no such
a universal word importance function currently avail-
able, we treat each word equally in our current design
and the tests of the effectiveness of word importance
function is not included in our experiments.

3.2 Expanding Stage

The objective of expanding stage is to find a candi-
date KS that makes the target page be ranked at the
top of the search results. The seed derived at embrac-
ing stage is used as the initial candidate KS for the
expanding. New terms from the important term list
T shall be added to candidate KS until the candidate
KS tops the target page.

The current selection method of appending new
terms is based on the inverse document frequencies
(IDFs) of those terms appeared within the documents
of set D. The terms with low document frequencies
(DFs) are more likely to improve the rank of the tar-
get page. The main reasons are that (1) they narrow
down the range of documents to search, (2) they pro-
vide the search engine with indexes of all terms, and
(3) they return only the documents that contain the
keywords in query.

Document frequency is calculated based on For-
mula 4:

DF (t) = |d : d 3 t, d ∈ D − ď| (4)

After DF of each term in the target page is cal-
culated, the term with the lowest DF is appended to
the candidate KS. If the rank of the target page im-
proves after appending term t, the term appending is
repeated until the candidate KS tops the target page.
Otherwise the second lowest DF term is appended
and tested, and so forth.

During the process of expanding, a phenomenon
called Search Engine Shading might occur such that
none of the terms in Tď would improve the rank of
the target page at the expanding stage. The Search
Engine Shading refers that the target document ď is
“shaded” by other documents whose ranks are ahead
of ď and whose terms form the supersets of that of
the target document. For instance, two documents,
d1: “Cats are better than dogs” and d2: “Cats are
not better than dogs”. are accessible for a search en-
gine. The term sets of d1 and d2 are: { ‘Cats’, ‘are’,
‘better’, ‘than’, ‘dogs’} and { ‘Cats’, ‘are’, ‘better’,
‘than’, ‘dogs’, ‘not’ } . That means Td1 ⊆ Td2 . If
d2 is ranked ahead of d1, there might be no way to
rank d1 ahead of d2 in the process. So when encoun-
tering Search Engine Shading, we need to relax the
constraints and to return the candidate KS in order
to make the target page ranking higher.

The pseudo code of expanding stage is listed in Al-
gorithm 3. The input parameters of the algorithm are
the target page ď, the term list T , and the seed s from
embracing stage. The algorithm returns a candidate
KS k.

Search Engine Shading can be detected if the can-
didate KS k cannot top the target document when
the algorithm stops.

3.3 Eliminating Stage

The objective of eliminating stage is to delete super-
fluous terms in the candidate KS (denoted as k in
the algorithm). A naive way to discover superfluous

Algorithm 3 Expanding stage.

1: function Expanding(ď,T ,s)
2: k ← k̂ ← s
3: for t : t ∈ T do k̂ ← k̂ + t
4: if Rank(k̂, ď) = 1 then
5: k ← k̂
6: return k
7: else if then1 < Rank(k̂, ď) < Rank(s, ď)
8: k ← k̂
9: return k ←Expanding(ď,T ,k̂)

10: end if
11: end for
12: return k . Search Engine Shading

encountered.
13: end function

terms is to test every permutation of terms in k. How-
ever the time complexity of this method is

∑|k|
i=0 P

|k|
i ,

which is not desirable for a middle sized candidate KS.
For instance, there could have 9,864,100 permutations
for a 10-word candidate KS, and every permutation
would issue a query to search engine.

In order to reduce the number of tests, we start
elimination from the leading terms in KS until the
elimination would make the target page fall from its
top rank, or the terms in the candidate KS are all
tested. The pseudo code of elimination process is
listed in Algorithm 4. The input parameters of the
algorithm are the target page ď and the candidate KS
k from expanding stage. The algorithm returns the
shortest KS ǩ.

Algorithm 4 Eliminating stage.

1: function Elimination(ď,k)
2: ǩ ← k.
3: Let Tk be the list of terms in k.
4: for t : t ∈ Tk do k′ ← Elimination(ď,ǩ)
5: if 1 ≤ Rank(k′, ď) ≤ Rank(ǩ, ď) and k′ is

shorter than ǩ then
6: ǩ ← k′ . Shorter KS found.
7: end if
8: end for
9: return ǩ . the shortest KS found.

10: end function

There are still some cases that the found KS is not
the shortest. Other than Search Engine Shading, a
possible reason of this problem is that there is a limit
of the query length for the search engine efficiency
and its security control. The process of finding the
shortest KS may also fail if the character-length of
KS is longer than the length-limit of a query.

3.4 Limitations

The proposed approach would not work in following
circumstances [7]:

Non-indexed Web page: Embracing stage will fail
if the target page is not searchable by a search
engine.

Dynamic Web page: Page content is subject to
constant changes. These pages include service
pages, dynamic HTML and search result pages
from other search engines or from a database.

Non-textual resource: If the target page does not
contain textual information, then it is impossible
for embracing stage to extract keyword.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

163

Modern mainstream search engines have many ad-
vanced search functions such as phrase search, in-link,
regular express, and non-negative search. However,
these innovative search methods are hardly applica-
ble to digital libraries or on intranets. For a wider
applicability of ISE the above advanced features are
not considered in the design of ISE.

4 Experiments

The experiments are designed to evaluate the effec-
tiveness and efficiency of our ISE implementation.
The ISE effectiveness is considered as whether a
shortest KS can be successfully obtained. And if it
is able to top the given target document. While the
ISE efficiency is considered as whether the number
of queries is reasonably small in order to obtain a
shortest KS. It should be pointed out that the actual
runtime analysis is not suitable here for ISE efficiency
evaluation, as the runtime of ISE can heavily rely on
the network traffic, which may not be always stable.

The effectiveness and efficiency of embracing
strategies “FromSingleWord” and “FromTitle” are
examined and compared with different search engines.
The data set preparation, the evaluation methodol-
ogy, and the results of experiments are shown in the
rest of this section.

4.1 Experimental Data

The ISE implementation is tested with two major
search engines: Live Search and Yahoo. We have
also performed the experiments with Google, how-
ever, after we finished the experiments, we found out
that Google’s terms of service 2 states that the auto-
matic querying clients are not allowed without sepa-
rate permission. Since our application for the permis-
sion has not yet been granted by Google, we cannot
provide our experimental results on Google in this pa-
per. Though the results are consistent to the other
two search engines.

To verify our proposed approach, a shortest KS
is required for every target page. But only a brute-
force search can guarantee to found such shortest KSs.
Here we provide pseudo shortest keyword sequences
for each target page in test. A pseudo shortest
KS is generated from randomly concatenated terms
which were selected from the titles of category and
sub-category of a very large and well-known project
namely, Open Directory Project (ODP) 3. In this
way their titles and category/subcategory can form
a unique identification of their corresponding Web
documents. Therefore the criteria of the effectiveness
are set objectively. All Web documents of the Open
Directory Project can be potentially used as target
pages and used as the initial search result regarding
to the given pseudo shortest KSs. In other words, a
pseudo shortest KS can guarantee that it will top the
target page, even it is not always the actual one that
could be found by a brute-force approach.

Since the evaluation sets from search engine ven-
dors are not available yet, a pseudo shortest KS is a
necessary devil. Indeed, the web pages indexed by
pseudo shortest KSs tend to rank higher, but evalu-
ation cannot proceed without knowing the existence
of the shortest KS. Pseudo shortest KS also ensures
the target pages be searchable. Establishing an ex-
perimental search engine seems plausible, however, a

2http://www.google.com/accounts/TOS
3see http://dmoz.org/. “The Open Directory is the most widely

distributed data base of Web content classified by humans. The
Open Directory powers the core directory services for the Web’s
largest and most popular search engines and portals, including
Netscape Search, AOL Search, Google, Lycos, HotBot, DirectHit,
and hundreds of others.”

nearly enterprise-level search engine is required, oth-
erwise the conclusions might be misleading because a
shortest KS can be found in a few steps, not to men-
tion an ad-hoc ISE function need to be developed for
the experimental search engine.

For each search engine, 100 pseudo shortest KSs
have been automatically generated in 10 different
sizes (from one-word to 10-word). After excluding
the non-HTML files (e.g., PDF or Microsoft Word
files), 96 Web documents are used as the testing tar-
get pages for Yahoo and 99 for Live Search.

Other types of files are to be supported in fu-
ture, as non-HTML files such as pdf, postscript, Mi-
crosoft Word documents, and Powerpoint slides, are
now all searchable in modern search engines. Differ-
ent parsers should be used to handle those formats.

4.2 Evaluation Methodology

The effectiveness of ISE is measured by the success
rate and top-one rate. The success rate (SR) shows
whether ISE can successfully get the shortest KSs. It
is defined as:

SR =
Nǩ

N
(5)

where Nǩ is the number of the shortest KSs found,
and N is the number of the target pages. The top-one
rate (TR) shows whether a obtained shortest KS can
top the corresponding target page. It is defined as:

TR =
Tǩ

Nǩ

(6)

where Tǩ is the number of obtained shortest KSs that
top the target pages. The top-one rate is also in-
versely proportional to the occurrence of the Search
Engine Shading problem. An ISE implementation is
considered effective if both the SR and TR are in high
percentage (i.e., close to 100 percent).

The efficiency of ISE is measured by the average
shortness and average impoliteness. The shortness
(SH) shows whether the obtained shortest KSs are
shorter than the pseudo shortest KSs. It is defined
as:

SH =
|k|
|ǩ| (7)

where |k| and |ǩ| are the numbers of terms in the
pseudo shortest KS and in the shortest KS found. ISE
is efficient if the computed shortness is greater than
1. The impoliteness (IP) shows whether ISE is polite
to the search engine, that is, ISE is impolite when it
sends a large number of queries to a search engine. IP
is an important measure because it implies not only
the inefficiency of ISE, but also the extra network
traffic and search engine load. Moreover, some search
engines may have daily query-quota for their client
applications. The impoliteness is defined as:

IP = log10 q (8)

where q is number of queries sent to search engine to
obtain a shortest KS. For a single automatic client
like our ISE implementation, the daily query-quota
stated by most search engines is 1000. Therefore, our
ISE implementation is deemed to be acceptable if the
impoliteness score is below 3 (i.e., the magnitude of
the query-quota).

4.3 Results

4.3.1 Effectiveness Evaluation

The effectiveness of ISE with different embracing
strategies is compared in this section. Table 1

CRPIT Volume 92 - Database Technologies 2009

164

Table 1: Success Rate of Embracing Strategies
FromSingleWord FromTitle

Live Search 94.95 % 98.99 %
Yahoo 90.63 % 89.58 %

Table 2: Top-one Rate of Embracing Strategies.
FromSingleWord FromTitle

Live Search 100.00 % 100.00 %
Yahoo 100.00 % 100.00 %

presents the success rate (SR) of ISE with various
embracing strategies in Live Search and Yahoo. High
success rates suggest that both the seed and shortest
KSs can be found in most cases.

Table 2 presents the top-one rate (TR) of ISE with
various embracing strategies in Live Search and Ya-
hoo. The results are perfect. These results show that
whenever a shortest KS is found, it tops the given
target page. In other words, if a seed can be obtained
at embracing stage, then the shortest KS based on
the seed will top the target page. Results in Table 2
also show that there is no occurrence of Search En-
gine Shading. However, we cannot safely conclude
that Search Engine Shading will never happen, be-
cause we have only tested a limited number of target
pages (i.e., 96 for Yahoo and 99 for Live Search).

4.3.2 Efficiency Evaluation

The efficiency of ISE of different embracing strate-
gies are compared in this section. Figures 2 and 3
illustrate the comparisons of the sizes of candidate
KSs (a seed is also a candidate KS) at every stage.
In these figures, the solid and shading bars on the
left represent the sizes of the candidate KSs of the
“FromSingleWord” strategy, while bars on the right
are for the “FromTitle” strategy at embracing stage.
In order to compare the sizes among that of pseudo
shortest KSs and candidate KSs, the sizes of pseudo
shortest KSs are shown as the hollow wide bars on
the left. A shorter KS size suggests a better KS-size
efficiency. From these figures, it can be seen that the
sizes of candidate KSs are seldom larger than that of
the pseudo shortest KSs. This implies that most of
the ISE-generated shortest KSs are not very long. We
also observed that the sizes of the final shortest KSs
are almost identical to their corresponding seeds in
“FromSingleWord” strategy, while the sizes of the fi-
nal shortest KSs are slightly shorter than that of their

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

F
ou

nd
 K

S
 s

iz
e

Pseudo KS Size

LiveSearch: length of KS in each stage

Original

embrace
expand

eliminate

embrace
expand

eliminate

TitleSingleWord

Figure 2: Live Search: Size of Candidate KS at Each
Stage.

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

F
ou

nd
 K

S
 s

iz
e

Pseudo KS Size

Yahoo: length of KS in each stage

Original

embrace
expand

eliminate

embrace
expand

eliminate

TitleSingleWord

Figure 3: Yahoo: Size of Candidate KS at Each Stage.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8 9 10

S
ho

rt
ne

ss

Pseudo KS Size

LiveSearch: Pseudo KS Size by Shortness

SingleWord
Title

Figure 4: Live Search: Shortness Comparison be-
tween Embracing Strategies.

corresponding seeds in “FromTitle” strategy.
The shortness analysis is shown in Figures 4 and 5,

and Table 3. A greater-than-one shortness score indi-
cates that ISE is KS-size efficient. From these results,
it can be seen that the both of our embracing strate-
gies are KS-size efficient. Moreover, the embracing
strategy “FromSingleWord” is better than “FromTi-
tle” in terms of KS-size efficiency.

Figures 6 and 7 compare the numbers of queries
required to obtain candidate KSs at every stage. In
these figures, the solid and shading bars on the left
show the numbers of queries required to obtain the
candidate KSs for the embracing strategy “FromS-
ingleWord”, while the bars on the right are for the
embracing strategy “FromTitle”. A small number of

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8 9 10

S
ho

rt
ne

ss

Pseudo KS Size

Yahoo: Pseudo KS Size by Shortness

SingleWord
Title

Figure 5: Yahoo: Shortness Comparison between Em-
bracing Strategies.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

165

Table 3: Contingency Table for Average Shortness of
Search Engines.

FromSingleWord FromTitle
Live Search 2.39 1.88
Yahoo 2.72 1.72

Table 4: Average Impoliteness of Search Engines.
FromSingleWord FromTitle

Live Search 1.59 1.27
Yahoo 1.26 1.01

queries suggests a better query efficiency. In these fig-
ures, most queries are issued at embracing stage, fol-
lowed by eliminating stage, and in most cases, the ex-
panding stage is rarely performed. This implies that
the seeds could have already topped the target pages
in nearly all cases. Figures 6 and 7 also show that
the most shortest KSs can be obtained within 1000
queries, which is below the daily query-quota of the
most search engines.

The impoliteness analysis is shown in Figures 8
and 9, and Table 4. A small score of impoliteness in-
dicates that ISE is query-efficient. From these results,
the embracing strategy “FromTitle” is more query-
efficient than “FromSingleWord” in most cases.

So far no sign of the Search Engine Shading oc-
curred in our experiments. As there exists a shortest
KS for each target Web page in our experiments, we
have not encountered the circumstances that Search
Engine Shading would occur.

To sum up, our ISE implementation is effective
and efficient, as the success rates and top-one rates are
demonstrated successfully high (> 89%), the short-
ness scores are large (> 1), and the impoliteness
scores are below the threshold (i.e., below the magni-
tude of the query-quota). Our experiments have effec-
tively set up a benchmark for testing all other future
ISE implementations and strategies. The experiment
results also show that the embracing stage (seed gen-
eration) is the most important stage among the three,
as the other two stages make relatively smaller contri-
butions towards the final shortest KS. Thus, finding
the better embracing strategies becomes a key to sig-
nificantly improve the ISE effectiveness and efficiency.

5 Conclusions

Traditional keyword extraction algorithms do not
consider the ranking of documents when keyword is
extracted. This paper has defined a new type of sys-
tem namely, Inverse Search Engine (ISE) to extract
the shortest sequence of keywords from a Web page
such that the keyword sequence can be used in a
Web search and the Web page will be ranked as the
first result by the given search engine. A number of
challenges are addressed and the algorithms are pro-
posed. The main contribution of this paper is the
idea of the ranking-constrained keyword sequence ex-
traction as well as the construction of ISE that can
be used to discover the shortest keyword sequence
for the unique identification of Web documents. The
proposed three-stage algorithms are tested for their
effectiveness and efficiency. An evaluation framework
is proposed and the significant experiment results are
demonstrated. Our experiment results can be re-
garded as a new benchmark for the further research
in this direction.

One important issue still remains: ‘shortest’ is de-
fined as the only one factor. In the real world, met-

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Q
ue

rie
s

m
ad

e

Pseudo KS Size

LiveSearch: Queries made in each stage

embrace
expand

eliminate

embrace
expand

eliminate

TitleSingleWord

Figure 6: Live Search: Pseudo Shortest KS Size by
Queries.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Q
ue

rie
s

m
ad

e

Pseudo KS Size

Yahoo: Queries made in each stage

embrace
expand

eliminate

embrace
expand

eliminate

TitleSingleWord

Figure 7: Yahoo: Pseudo Shortest KS Size by
Queries.

rics such as the length of the keyword and popularity
of the keyword would factor in. For example, one
would prefer “insect lights Australia” over “Arachno-
campa Springbrook”. The shortest keyword sequence
extracted from Web documents can be useful in many
situations, such as Web indexing, content summary,
Web advertisement. However, this usage should not
prevent users from choosing words that they would
prefer or know about, to search for the Web pages
that they want.

Further work will focus on above issues and the
popularity of keywords will be considered. The sys-
tem performance regarding the scalability and sup-
porting different file types will also be considered. In
this case, the so-called Search Engine Shading would
occur. The further experiments on the Search Engine
Shading phenomenon will be given. As the initial em-
bracing strategies can influence the effectiveness and
efficiency significantly, a better embracing strategy
might be designed to improve the ISE performance.

The idea of design and implementation of ISE has
also raised another broad issue that if the whole Web-
searchable documents on the World Wide Web can be
partitioned into individuals according to their key-
word phrases, the certain combination of keyword
phrases could be ‘owned’ by the Web document au-
thors.

References

[1] J. Battelle. John battelle’s searchblog:
Being jon kleinberg. Battellemedia.com
(http://battellemedia.com/archives/000304.php),
February 2004.

CRPIT Volume 92 - Database Technologies 2009

166

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 2 3 4 5 6 7 8 9 10

Im
po

lit
en

es
s

Pseudo KS Size

LiveSearch: Pseudo KS Size by Impoliteness

SingleWord
Title

Figure 8: Live Search: Impoliteness Comparison be-
tween Embracing Strategies.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 1 2 3 4 5 6 7 8 9 10

Im
po

lit
en

es
s

Pseudo KS Size

Yahoo: Pseudo KS Size by Impoliteness

SingleWord
Title

Figure 9: Yahoo: Impoliteness Comparison between
Embracing Strategies.

[2] S. Brin and L. Page. The anatomy of a large-
scale hypertextual Web search engine. Computer
Networks and ISDN Systems, 30(1–7):107–117,
1998.

[3] E. Frank, G. W. Paynter, I. H. Witten,
C. Gutwin, and C. G. Nevill-Manning. Domain-
specific keyphrase extraction. In IJCAI 1999:
Proceedings of the 16th International Joint Con-
ference on Artificial Intelligence, pages 668–673,
San Francisco, CA, USA, 1999. Morgan Kauf-
mann Publishers Inc.

[4] J. Goodman and V. R. Carvalho. Implicit queries
for email. In CEAS 2005: 2nd Conference on
Email and Anti-Spam, 2005.

[5] D. Kelleher and S. Luz. Automatic hypertext
keyphrase detection. In IJCAI 2005: Proceedings
of the 22nd International Joint Conference on
Artificial Intelligence, pages 1608–1609, 2005.

[6] Y. Matsuo and M. Ishizuka. Keyword extraction
from a single document using word co-occurrence
statistical information. International Journal on
Artificial Intelligence Tools, 13(1):157–169, 2004.

[7] T. Phelps and R. Wilensky. Robust Hyperlinks
Cost Just Five Words Each. University of Cal-
ifornia, Berkeley, Computer Science Division,
2000.

[8] C. Salton, G.and Yang. On the specification of
term values in automatic indexing. Journal of
Document, 29(4):351–372, Dec. 1973.

[9] K. Sparck Jones. A statistical interpretation of
term specificity and its application to retrieval.
Journal of Document, 28(1):11–20, March 1972.

[10] W. tau Yih, J. Goodman, and V. R. Carvalho.
Finding advertising keywords on web pages. In
WWW 2006: Proceedings of the 15th interna-
tional conference on World Wide Web, pages
213–222, New York, NY, USA, 2006. ACM Press.

[11] P. D. Turney. Learning algorithms for keyphrase
extraction. IR: Information Retrieval, 2(4):303–
336, 2000.

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

167

CRPIT Volume 92 - Database Technologies 2009

168

Author Index

Andreae, Peter, 67

Böttcher, Stefan, 151
Bobadilla, Jesus, 9
Bouguettaya, Athman, iii
Box, Ilona, 29

Chen, Dingyi, 159
Chen, Xia, 159
Cheung, William K., 115
Choi, Ryan H., 95
Compton, Michael, 105

Daiqin He, Daisy, 105
Danko, Ondrej, 85

Eschner, Lisa, 125

Georgakopoulos, Dimitrios, 5

Hagemann, Stephan, 39
Hartel, Rita, 151
Hinze, Annika, 125

Kabir, Md Enamul, 135
Kirchberg, Markus, 19

Li, Xue, 159
Lin, Xuemin, iii
Lister, Raymond, 29
Liu, Jiming, 115

Liu, Jing, 159

Michel, Yann, 125
Mlýnková, Irena, 77
Moffat, Alistair, 57
Mogin, Pavle, 67

Pupunwiwat, Prapassara, 47

Ravana, Sri Devi, 57
Riaz-ud-Din, Faizal, 19

Schewe, Klaus-Dieter, 19
Serradilla, Francisco, 9
Shen, Heng Tao, 3
Shepherd, John, 143
Skopal, Tomás̃, 85
Speer, Jayson, 19
Stanley, Edward, 67
Stantic, Bela, 47

Tam, Vincent W. L., 143
Taylor, Kerry, 105
Tran, Van T.K., 115

Vossen, Gottfried, 39

Wang, Hua, 135
Wong, Raymond K., 95, 115

Yang, Jian, 105

Proc. 20th Australasian Database Conference (ADC 2009), Wellington, New Zealand

169

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 67 - Conceptual Modelling 2007
Edited by John F. Roddick and Annika Hinze.
January, 2007. 978-1-920682-48-4.

Proc. Fourth Asia-Pacific Conference on Conceptual Modelling (APCCM2007), Ballarat,
Victoria, Australia, January 2007.

Volume 68 - ACSW Frontiers 2007
Edited by Ljiljana Brankovic, Paul Coddington,
John F. Roddick, Chris Steketee, Jim Warren
and Andrew Wendelborn. January, 2007. 978-1-
920682-49-1.

Proc. ACSW Workshops - The Australasian Information Security Workshop: Privacy Enhancing
Systems (AISW), the Australasian Symposium on Grid Computing and Research (AUSGRID),
and the Australasian Workshop on Health Knowledge Management and Discovery (HKMD),
Ballarat, Victoria, Australia, January 2007.

Volume 69 - Safety Critical Systems and Software 2006
Edited by Tony Cant. February, 2007. 978-1-
920682-50-7.

Proc. 11th Australian Conference on Safety Critical Systems and Software, August 2006, Mel-
bourne, Australia.

Volume 70 - Data Mining and Analytics 2007
Edited by Peter Christen, Paul Kennedy, Jiuy-
ong Li, Inna Kolyshkina and Graham Williams.
December, 2007. 978-1-920682-51-4.

Proc. 6th Australasian Data Mining Conference (AusDM 2007), Gold Coast, Australia. Decem-
ber 2007.

Volume 72 - Advances in Ontologies 2006
Edited by Mehmet Orgun and Thomas Meyer.
December, 2006. 978-1-920682-53-8.

Proc. Australasian Ontology Workshop (AOW 2006), Hobart, Australia, December 2006.

Volume 73 - Intelligent Systems for Bioinformatics 2006
Edited by Mikael Boden and Timothy Bailey. De-
cember, 2006. 978-1-920682-54-5.

Proc. AI 2006 Workshop on Intelligent Systems for Bioinformatics (WISB-2006), Hobart, Aus-
tralia, December 2006.

Volume 74 - Computer Science 2008
Edited by Gillian Dobbie and Bernard Mans.
January, 2008. 978-1-920682-55-2.

Proc. 31st Australasian Computer Science Conference (ACSC2008), Wollongong, NSW, Aus-
tralia, January 2008.

Volume 75 - Database Technologies 2008
Edited by Alan Fekete and Xuemin Lin. January,
2008. 978-1-920682-56-9.

Proc. 19th Australasian Database Conference (ADC2008), Wollongong, NSW, Australia,
January 2008.

Volume 76 - User Interfaces 2008
Edited by Beryl Plimmer and Gerald Weber.
January, 2008. 978-1-920682-57-6.

Proc. 9th Australasian User Interface Conference (AUIC2008), Wollongong, NSW, Australia,
January 2008.

Volume 77 - Theory of Computing 2008
Edited by James Harland and Prabhu Manyem.
January, 2008. 978-1-920682-58-3.

Proc. 14th Computing: The Australasian Theory Symposium (CATS2008), Wollongong, NSW,
Australia, January 2008.

Volume 78 - Computing Education 2008
Edited by Simon and Margaret Hamilton.
January, 2008. 978-1-920682-59-0.

Proc. 10th Australasian Computing Education Conference (ACE2008), Wollongong, NSW, Aus-
tralia, January 2008.

Volume 79 - Conceptual Modelling 2008
Edited by Annika Hinze and Markus Kirchberg.
January, 2008. 978-1-920682-60-6.

Proc. 5th Asia-Pacific Conference on Conceptual Modelling (APCCM2008), Wollongong, NSW,
Australia, January 2008.

Volume 80 - Health Data and Knowledge Management 2008
Edited by James R. Warren, Ping Yu, John Year-
wood and Jon D. Patrick. January, 2008. 978-1-
920682-61-3.

Proc. Australasian Workshop on Health Data and Knowledge Management (HDKM 2008), Wol-
longong, NSW, Australia, January 2008.

Volume 81 - Information Security 2008
Edited by Ljiljana Brankovic and Mirka Miller.
January, 2008. 978-1-920682-62-0.

Proc. Australasian Information Security Conference (AISC 2008), Wollongong, NSW, Australia,
January 2008.

Volume 82 - Grid Computing and e-Research
Edited by Wayne Kelly and Paul Roe. January,
2008. 978-1-920682-63-7.

Proc. Australasian Workshop on Grid Computing and e-Research (AusGrid 2008), Wollongong,
NSW, Australia, January 2008.

Volume 83 - Challenges in Conceptual Modelling
Edited by John Grundy, Sven Hartmann, Al-
berto H.F. Laender, Leszek Maciaszek and John
F. Roddick. December, 2007. 978-1-920682-64-4.

Contains the tutorials, posters, panels and industrial contributions to the 26th International
Conference on Conceptual Modeling - ER 2007.

Volume 84 - Artificial Intelligence and Data Mining 2007
Edited by Kok-Leong Ong, Wenyuan Li and Jun-
bin Gao. December, 2007. 978-1-920682-65-1.

Proc. 2nd International Workshop on Integrating AI and Data Mining (AIDM 2007), Gold
Coast, Australia. December 2007.

Volume 86 - Safety Critical Systems and Software 2007
Edited by Tony Cant. December, 2007. 978-1-
920682-67-5.

Proc. 12th Australian Conference on Safety Critical Systems and Software, August 2006, Ade-
laide, Australia.

Volume 87 - Data Mining and Analytics 2008
Edited by John F. Roddick, Jiuyong Li, Peter
Christen and Paul Kennedy. November, 2008.
978-1-920682-68-2.

Proc. 7th Australasian Data Mining Conference (AusDM 2008), Adelaide, Australia. December
2008.

Volume 90 - Advances in Ontologies
Edited by Thomas Meyer and Mehmet Orgun.
September, 2008. 978-1-920682-71-2.

Proc. Knowledge Representation Ontology Workshop (KROW 2008), Sydney, September 2008.

CRPIT Volume 92 - Database Technologies 2009

170

	paper_39.pdf
	1 Introduction
	2 Related Works
	2.1 URL Structure
	2.2 XML Element retrieval
	2.3 Passage Retrieval
	2.4 Structures among web pages
	2.5 Vector space model and Cosine similarity
	3 Method
	3.1 Structure of a website
	3.2 Relevance of Documents
	3.3 Implementation
	3.4 Evidence from other documents
	3.4.1 First Approach
	3.4.2 Second Approach
	3.4.3 Third Approach

	4 Experiments
	5 Results and Discussion
	6 Conclusion and Future works
	7 References

	paper_39.pdf
	1 Introduction
	2 Related Works
	2.1 URL Structure
	2.2 XML Element retrieval
	2.3 Passage Retrieval
	2.4 Structures among web pages
	2.5 Vector space model and Cosine similarity
	3 Method
	3.1 Structure of a website
	3.2 Relevance of Documents
	3.3 Implementation
	3.4 Evidence from other documents
	3.4.1 First Approach
	3.4.2 Second Approach
	3.4.3 Third Approach

	4 Experiments
	5 Results and Discussion
	6 Conclusion and Future works
	7 References

	paper_39.pdf
	1 Introduction
	2 Related Works
	2.1 URL Structure
	2.2 XML Element retrieval
	2.3 Passage Retrieval
	2.4 Structures among web pages
	2.5 Vector space model and Cosine similarity
	3 Method
	3.1 Structure of a website
	3.2 Relevance of Documents
	3.3 Implementation
	3.4 Evidence from other documents
	3.4.1 First Approach
	3.4.2 Second Approach
	3.4.3 Third Approach

	4 Experiments
	5 Results and Discussion
	6 Conclusion and Future works
	7 References

