CONFERENCES IN RESEARCH AND PRACTICE IN
INFORMATION TECHNOLOGY

VOLUME 77
THEORY OF COMPUTING 2008

AUSTRALIAN COMPUTER SCIENCE COMMUNICATIONS, VOLUME 30, NUMBER 4

@ Research
AUSTRALIAN
COMPUTER & B gucation

SOCIETY







THEORY OF COMPUTING 2008

Proceedings of the

Fourteenth Computing: The Australasian Theory
Symposium (CATS 2008), Wollongong, NSW, Australia,
January 2008

James Harland and Prabhu Manyem, Eds.

Volume 77 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library. Q

iii



Theory of Computing 2008. Proceedings of the Fourteenth Computing: The Australasian Theory
Symposium (CATS 2008), Wollongong, NSW, Australia, January 2008

Conferences in Research and Practice in Information Technology, Volume 77.

Copyright (©2008, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:

James Harland

School of Computer Science and Information Technology
RMIT University

124 La Trobe Street

Melbourne 3001,

Australia

Email: jah@cs.rmit.edu.au

Prabhu Manyem

School of Information Technology and Mathematical Sciences
University of Ballarat

P.O. Box 663

Ballarat Victoria 3353

Australia

Email: p.manyem@ballarat.edu.au

Series Editors:

Vladimir Estivill-Castro, Griffith University, Queensland
John F. Roddick, Flinders University, South Australia
Simeon Simoff, University of Technology, Sydney, NSW
crpit@infoeng.flinders.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office

Sydney 1230

New South Wales

Australia.

Conferences in Research and Practice in Information Technology, Volume 77
ISSN 1445-1336
ISBN 978-1-920682-58-3

Printed December 2007 by Flinders Press, PO Box 2100, Bedford Park, SA 5042, South Australia.
Cover Design by Modern Planet Design, (08) 8340 1361.

The Conferences in Research and Practice in Information Technology series aims to disseminate the results of
peer-reviewed research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv



Table of Contents

Proceedings of the Fourteenth Computing: The Australasian Theory Symposium
(CATS 2008), Wollongong, NSW, Australia, January 2008

Preface . ... ... .. vii
Programme Committee........ ... ... .. . . . viii
Organising Committee... ... ... ... .. .. . . . ix
CORE - Computing Research and Education ................................... xi
ACSW Conferences and the Australian Computer Science

Communications . ... ... .. xii
ACSW and CATS 2008 SPONSOIS . ........c.oiinii e XV

Keynote

Chipping Away at P vs NP: How Far Are We from Proving Circuit Size Lower Bounds? ........... 3

Eric Allender

Contributed Papers

Logic and Types

The Inhabitation Problem for Intersection Types. ... .. ...t 7
Martin Bunder

Weak Parametric Failure Equivalences and Their Congruence Formats........... ... .. ... ... .. 15
Xiaowetr Huang, Li Jiao and Weiming Lu

Modelling for Lazy Clause Generation . ............... e 27
Olga Ohrimenko and Peter Stuckey

Optimisation

The Core Concept for 0/1 Integer Programming . .............outuuuunnneeeee i 39

Samuel Huston, Jakob Puchinger and Peter Stuckey

An ILP for the metro-line crossing problem . ......... ... .. i 49
Maitthew Asquith, Joachim Gudmundsson and Damian Merrick

A Multidimensional Bisection Method for Unconstrained Minimization Problem .................. 57
FElena Morozova

Optimal Joint Vendor-Buyer Inventory Strategy for Deteriorating Items with Salvage Value ........ 63
Nita H. Shah, Ajay S. Gor and Hui Wee

Parameterised Complexity

Tractable Cases of the Extended Global Cardinality Constraint ........... ... ... ... .. ... ...... 67
Marko Samer and Stefan Szeider



Parameterized Complexity of the Clique Partition Problem.......... ... .. ... .. .. ... ........ 75
Egbert Mujuni and Frances Rosamond

The Parameterized Complexity of Regular Subgraph Problems and Generalizations................ 79
Luke Mathieson and Stefan Szeider

Graph Algorithms

Well-covered Graphs and Greedoids . ...t e e 87
Vadim Levit and Eugen Mandrescu

On the Non-existence of Even Degree Graphs with Diameter 2 and Defect 2 ...................... 93
Mirka Miller, Minh H. Nguyen and Guillermo Pineda-Villavicencio

Graph Classes and the Complexity of the Graph Orientation Minimizing the Maximum Weighted
OUBAEETEE . ot ettt et e e e e e e e 97
Yuichi Asahiro, Fiji Miyano and Hirotaka Ono

Algorithms

Generating Balanced Parentheses and Binary Trees by Prefix Shifts ........ ... . ... ... ... 107
Frank Ruskey and Aaron Williams

Testing Embeddability Between Metric SPaces . ... ..ot e 117
Ching-Lueh Chang, Yen-Wu Ti and Yuh-Dauh Lyuu

On the Efficiency of Pollard’s Rho Method for Discrete Logarithms. .. ........................... 125
Shi Bai and Richard P. Brent

Verifying Michael and Scott’s Lock-Free Queue Algorithm using Trace Reduction ................. 133
Lindsay Groves

Author Index .. ... 143

vi



Preface

The fourteenth Computing: The Australasian Theory Symposium (CATS) is being held at the University
of Wollongong, Australia during January 22-25, 2008. We received 28 submissions, out of which 17 were
accepted. Each paper was thoroughly refereed by at least three reviewers from an international programme
committee, followed by a healthy discussion among committee members.

The keynote speech will be delivered by Eric Allender from Rutgers University, New Jersey, USA.
Professor Allender is a world renowned authority on Computational Complexity. He is a Fellow of the
ACM, as well as being an ACM Distinguished Scientist.

A greater number of academics from around the world participated in the programme committee this
year than previous years. The year is also notable in that students made a major contribution to a significant
proportion (about one-third) of the accepted papers. This clearly forebodes a bright future for CATS.

We take this opportunity to thank the programme committee members and reviewers for all their hard
work, and to the University of Wollongong for hosting the event. Congratulations to all authors whose
submissions were accepted for presentation.

Welcome to all speakers, the keynote speaker, and other delegates to CATS. We wish you an enjoyable
and productive time at Wollongong, and hope that the meeting serves as a platform for exciting new
research initiatives in theoretical computer science.

James Harland
RMIT University
Prabhu Manyem
University of Ballarat

CATS 2008 Programme Chairs
January 2008

vii



Programme Committee

Chairs

James Harland, RMIT University, Melbourne
Prabhu Manyem, University of Ballarat, Australia

Members

Argimiro Arratia, University of Valladolid, Spain

Richard Brent, Australian National University, Canberra

Hajo Broersma, University of Durham, UK

Cristian Calude, University of Auckland, NZ

Jeremy Dawson, Australian National University, Canberra

Thomas Erlebach, University of Leicester, UK

Graham Farr, Monash University, Melbourne

Joachim Gudmundsson, NICTA, Sydney

Venkatesan Guruswami, University of Washington, Seattle

Seokhee Hong, NICTA and the University of Sydney, Sydney
Costas Iliopoulos, Kings College, London

Mike Johnson, Macquarie University, Sydney

Jens Palsberg, UCLA

David Pearce, Victoria University of Wellington, NZ

R. Ramanujam, Institute of Mathematical Sciences, Chennai, India
Joe Ryan, University of Ballarat, Australia

Matthias Stallmann, North Carolina State University, USA
Richard Taylor, Defence Science and Technology Organisation, Canberra
Hans van Ditmarsch, University of Otago, NZ

Additional Reviewers

Shane Culpepper
Rod Downey
Mohammad Farshi
Eldar Hajilarov
Kamal Lodaya
Daniel Marx
Somnath Sikdar
Daniel Morales Silva
Alwen Tiu

Emlyn Williams
Zhiyou Wu

David Yost

viii



Organising Committee

Welcome

I would like to welcome you to the University of Wollongong and ACSW 2008.

The Ilawarra is a scenic, yet diverse, band of coastline stretching 85km south from the Royal Na-
tional Park through to Wollongong, Shellhabour and the seaside town of Kiama. Wollongong has a strong
industrial heritage and has attracted people from all around the world. The cosmopolitan nature of
Wollongong has made it a truly global city where everyone feels at home. Some of the attractions you
must see while in the city include the Nan Tien temple, Wollongong City Gallery, Science Centre and
Planetarium.

Established in 1951, the University of Wollongong has forged a distinctive identity among Australian
and international universities. An enterprising institution with a personalised style, UOW is confidently
building an international reputation for quality research and education. With campuses stretching from
Wollongong to Dubai, UOW has a total of 22,754 domestic students and 9,114 international students. The
School of Computer Science and Software Engineering is one of the four schools in the Faculty of Informatics
and has 38 academic and general staff. The school houses research hubs including Centre for Computer
and Information Security Research, Centre for Visual Information Processing and Content Management,
Centre for Intelligent Systems Research, and Decision System Laboratory.

ACSW 2008 includes the following conferences:

Australasian Computer Science Conference (ACSC),

— Australasian Database Conference (ADC),

Australasian Computer Education Conference (ACE),

— Computing: The Australian Theory Symposium (CATS),

Asia-Pacific Conference of Conceptual Modelling (APCCM),

Australasian User Interface Conference (AUIC),

— Australasian Symposium on Grid Computing and Research (AUSGRID),

— Australasian Workshop on Health Data and Knowledge Management (HDKM),

— Australasian Information Security Workshop:Privacy Enhancing Systems (AISW), and the
— Australasian Computing Doctoral Consortium (ACDC).

The nature of ACSW requires the cooperation of many people. I would like to thank all those who have
worked to ensure the success of ACSW2008 including the Organizing Committee, the Conference Chairs
and Programme Committees, the invited speakers and the delegates.

Professor Philip Ogunbona

Head, School of Computer Science and Software Engineering
University of Wollongong

January, 2008

General Chair

Professor Philip Ogunbona, School of Computer Science and Software Engineering, University of Wollongong

Organising Committee Members

Mrs Meghan Gestos

A /Prof Willy Susilo

A /Prof Yi Mu

Dr Zhiquan Zhou

Prof Aditya Ghose

Dr. Dr Yang-Wai Chow

ix






CORE - Computing Research and Education

CORE welcomes all delegates to ACSW2008 in Wollongong.

ACSW, the Australasian Computer Science Week continues to grow with new conferences becoming
entrenched in the week. As the premier annual Computer Science event in Australia and New Zealand,
it provides an unparalleled opportunity for the wide community of Computer Science academics and re-
searchers to meet, network, promote IT research and be exposed to the latest research in other areas of
IT. The research presented at each conference is of the highest standard and essential for the growth and
future of our region, in an ever more competitive world.

Despite desperate pleas from industry and government for IT staff, 2007 has again offered little growth
in student numbers, particularly undergraduates, in ICT courses. This has affected almost all member
departments and resulted in many CORE stalwarts retiring or taking redundancy. Many members have
been active in a number of activities designed to address the issue but we do not yet seem to be winning
the hearts or minds of potential students, their parents or careers advisors.

ACS, with whom we work closely, has released a new Core Body of Knowledge, CBOK. This provides
us with the opportunity to rethink our courses but whether these will attract any more students remains
to be seen.

A major activity for CORE this year has been a continuation of the 2006 ranking of ICT conferences
and journals in preparation for the RQF. This activity drew considerable interest and input from many
members.

Thank you all for your contributions in 2007 and we look forward to an interesting 2008.

C Omputing Jenny Edwards

R President, Computing Research and Education
esearch

January, 2008
¢ Baw
ducation



ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2010 (Proposed). Communications Volume Number 32. Host and Venue - Queensland University of Technology,
Brisbane, QLD.
2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.

2008. Volume 30. Host and Venue - University of Wollongong, NSW.

2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.

2006. Volume 28. Host and Venue - University of Tasmania, TAS.

2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.

2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.

2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue
- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.

2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.

2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,
ACT. First running of AUIC.

1999. Volume 21. Host and Venue - University of Auckland, New Zealand.

1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and
Curtin University. Venue - Perth, WA.

1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.
ADC held with DASFAA (rather than ACSW) in 1997.

1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS
joins ACSW.

1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -
Glenelg, SA.

1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first
time separately in Sydney.

1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.

1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).

1991. Volume 13. Host and Venue - University of New South Wales, NSW.

1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information
Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.

1988. Volume 10. Host and Venue - University of Queensland, QLD.

1987. Volume 9. Host and Venue - Deakin University, VIC.

1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.

1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.

1984. Volume 6. Host and Venue - University of Adelaide, SA.

1983. Volume 5. Host and Venue - University of Sydney, NSW.

1982. Volume 4. Host and Venue - University of Western Australia, WA.

1981. Volume 3. Host and Venue - University of Queensland, QLD.

1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.

1979. Volume 1. Host and Venue - University of Tasmania, TAS.

1978. Volume 0. Host and Venue - University of New South Wales, NSW.



Conference Acronyms

ACE. Australian/Australasian Computing Education Conference.

ACSAC. Asia-Pacific Computer Systems Architecture Conference (previously Australian Computer Architecture
Conference (ACAC).

ACSC. Australian/Australasian Computer Science Conference.

ACSW. Australian/Australasian Computer Science Week.

ADC. Australian/Australasian Database Conference.

AISW. Australasian Information Security Workshop.

APBC. Asia-Pacific Bioinformatics Conference.

APCCM. Asija-Pacific Conference on Conceptual Modelling.

AUIC. Australian/Australasian User Interface Conference.

AusGrid. Australasian Workshop on Grid Computing and e-Research.

CATS. Computing - The Australian/Australasian Theory Symposium.

HDKM. Australasian Workshop on Health Data and Knowledge Management.

Note that various name changes have occurred, most notably the change of the names of conferences to reflect a
wider geographical area.

xiii



Xiv



ACSW and CATS 2008 Sponsors

We wish to thank the following sponsors for their contribution towards this conference. For an up-to-date
overview of sponsors of ACSW 2008 and CATS 2008, please see http://www.cs.uow.edu.au/conf/acsw08/.

University of Wollongong

University of Wollongong, Australia

®

AUSTRALIAN
COMPUTER
SOCIETY

Australian Computer Society

Computing
Research
& Education

CORE - Computing Research and Education

P
RMIT
UNIVERSITY

School of Computer Science and Information Technology

Q
&y
>
Zz
2

School of Information Technology and Mathematical Sciences

XV






Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

KEYNOTE



CRPIT Volume 77 - Theory of Computing 2008



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Chipping Away at P vs NP: How Far Are We from Proving
Circuit Size Lower Bounds?

Eric Allender

Rutgers, the State University of New Jersey
Piscataway, New Jersey, USA

Many people are pessimistic about seeing a resolution to the P vs NP question any time soon. This
pessimism extends also to questions about other important complexity classes, including two classes that
will be the focus of this talk: TC? and NC*.

TCO captures the complexity of several important computational problems, such as multiplication,
division, and sorting; it consists of all problems computable by constant-depth, polynomial-size families of
circuits of MAJORITY gates. TCY is the subclass of TC? solvable with circuits of depth d. Although TC°
seems to be a small subclass of P, it is still open if NP = TCS.

NC! is the class of problems expressible by Boolean formulae of polynomial size. NC! contains TC?,
and captures the complexity of evaluating a Boolean formula.

Any proof that NP is not equal to TC? will have to overcome the obstacles identified by Razborov and
Rudich in their paper on “Natural Proofs”. That is, a “natural” proof that NP is not equal to TCP yields
a proof that no pseudorandom function generator is computable in TCP?. This is problematic, since some
popular cryptographic conjectures imply that such generators do exist. This leads to pessimism about the
even more difficult task of separating NC! from TCP.

Some limited lower bounds are within the grasp of current techniques, however. For example, several
problems in P are known to require formulae of quadratic size — but this seems to be of little use in trying
to prove superpolynomial formula size. Along similar lines, it is known that, for every d, there is a constant
¢ > 1 such that the formula evaluation problem (one of the standard complete problems for NC!) requires
TCg circuits of size at least n°.

It might not seem too outrageous to hope to obtain a slightly stronger lower bound, showing that there
is a ¢ > 1 such that this same set requires uniform TC? circuits of size n¢ (regardless of the depth d). We
show that this would be sufficient to prove that TCY is properly contained in NC!.

This is joint work with Michal Koucky, Czech Academy of Sciences, Prague.



CRPIT Volume 77 - Theory of Computing 2008



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

CONTRIBUTED PAPERS



CRPIT Volume 77 - Theory of Computing 2008



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

The Inhabitation Problem for Intersection Types

M W Bunder!

1 School of Mathematics and Applied Statistics
University of Wollongong
Wollongong NSW 2522 AUSTRALIA
Email: mbunder@uow.edu.au

Abstract

In the system AA of intersection types, without w, the
problem as to whether an arbitrary type has an inhab-
itant, has been shown to be undecidable by Urzyczyn
in [10]. For one subsystem of AA, that lacks the A-
introduction rule, the inhabitation problem has been
shown to be decidable in Kurata and Takahashi [9)].
The natural question that arises is: What other sub-
systems of AA, have a decidable inhabitation prob-
lem?

The work in [2], which classifies distinct and
inhabitation-distinct subsystems of AA, leads to the
extension of the undecidability result to AA without
the (n) rule. By new methods, this paper shows, for
the remaining six (two of them trivial) distinct sub-
systems of AA, that inhabitation is decidable. For
the latter subsystems inhabitant finding algorithms
are provided.

Keywords: Lambda Calculus, Type Theory, Intersec-
tion Types, Inhabitation.

1 Introduction

In simple (Curry-style) type theory (see for example
Hindley [8]), not every closed lambda term (or com-
binator) has a type. Coppo and Dezani-Ciancaglini
in [7] extended simple type theory to include intersec-
tion types and the universal type w, in their system
all A—terms have types.

We consider the type assignment system T Ay (or
simply AA), which is that of [7], without w, in which
all closed A—terms with normal form have types. We
will be interested in the inhabitation problem which

asks if it can be decided whether, for a type «, there
is a term X such that F X : « in a given type the-
ory. For AA the inhabitation problem was shown to
be undecidable by Urzyczyn in [10]. For a subsystem
of AA, that lacks the A-introduction rule, the inhab-
itation problem has been shown to be decidable in
Kurata and Takahashi in [9]. We detemine which, of
the other natural subsystems of AA, as identified in
[2], have a decidable inhabitation problem, in some
cases this follows easily from the work in [9] and [10].
We also provide algorithms which allow us to find an
inhabitant X for a type «, in the decidable systems.

Before doing this we need to detail the type sys-
tems and list some results from [2].

Copyright (¢)2008, Australian Computer Society, Inc. This pa-
per appeared at Computing: The Australasian Theory Sympo-
sium (CATS2008) Wollongong, NSW, Australia. Conferences
in Research and Practice in Information Technology, Vol. 77.
Editors, Eds. James Harland and Prabhu Manyem. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

1.1 Definition (Types)

The set of types T is given by:
1. a,b,c,..., atoms (or type variables) are types.
2. If a and (3 are types so are (o« — (3) and (a A f3).

A type a — (3 is called an —-type. A type a A
is called an A-type.
The usual bracketing rules of logic will apply.

1.2 Definition (Statements)

If M is a A-term and « a type, M : « is a statement.

1.3 Definition (Judgements)

If A is a set of statements {z1 : a1,...,2, @ ay}
where x1,...,x, are distinct variables and M : « is a
statement, A - M : « is a judgement.

1.4 Definition (Postulates for the Type As-
signment System T A),)

(Var) Az:abkz:a
AFM:a— 0 AFN:«
(— E)
AFMN:(
Ax:abFM:f3
(= 1)
AFXeM:a—f
AFM:« AFM:p
(AD) AFM:ang
(AE) AFM:ang AFM:ang
AFM:« AFM:p3
() AFXx.Nzx:a x ¢ FV(N)
K AFN:a

AF M : « (or more formally A Fxp M : «) will
represent: A F M : « can be derived from the above
postulates.

The system T' Ay, will usually be abbreviated to
AA.

An alternative formulation of AA uses a preorder
<onT.



CRPIT Volume 77 - Theory of Computing 2008

1.5 Definition (<)

Axioms

(1) a<a

2) a<aAa

3) aNf<a

4) anp<p

5 (o HAla—r) Sa—BAy

Rules

6) a<pB<y = a<y

(7)) a<d &p<py = aANB<d NG
B) atd &pB<p = od—=pF<la—p.

In Definition 1.4 the (AE) and (1) rules can be
replaced by:

< AFM:«
(<) AFM:3

We will be interested in the following subsystems
of AA.

a<p

1.6 Definition (Notation for Type Systems)

We will denote the system involving the judgements of
Definition 1.3 for types, with postulates (Var), (— E)
and (— I), by A( ) and provability in this system by
F. Systems with additional rules will be denoted by
A(AI),M(AI,n) etc and the corresponding provabil-
ity by Far,Fary ete. Clearly A is AN(AI, AE,n) or
AN ).

We will use A and ) for Curry’s simple type the-
ory. This is A\( ) and - without the use of A in Defi-
nition 1.1(iii) and (AI) and (AE) in Definition 1.4.

We will write A, B,C, ... for arbitrary type sys-
tems.

1.7 Definition (Inhabitation)

If A is one of the type systems of Definition 1.6, we
say that a type « is inhabited if (3M) 4 M : a.

Note that a being inhabited does not imply that
there is any algorithm that guarantees to find an in-
habitant of a.

1.8 Definition (Inhabitation Problem)

The question as to whether, in a system A, it can
be decided if an arbitrary type is inhabited or not is
called the inhabitation problem of A.

Urzyczyn showed in [10] that the inhabitation
problem for AA is undecidable. Kurata and Taka-
hashi have shown in [9] that the problem is decidable
for A\(<). Note that their method does not include an
algorithm for finding an inhabitant for a given type.

In [2] we studied and classified the various subsys-
tems of AA. We found that some of the subsystems
A and B were equivalent in the sense that:

Va,M)[Fa M:a < bFp M:a] (1)
This is denoted by A ~; B.

Additional systems A and B had equivalent inhab-
itation problems in that

Va)[AN)FAN:a < (GN)FpN:a] (2)

This is denoted by A ~5 B.
Any pair of systems satisfying (2) that we found
also satisfied

Va,M)[FaM:a = FpM:a]V (3)
NMVa,M)[Fg M:a = FaM:q]
Work in [2] showed that systems equivalent in the

(2) - (3) sense come in the following groups (or inhab-
itation equivalence classes).

21 AN [= )\é/\I, AE,n) ~1 A(ALL <)), MAILAE)
2)  MAID),AAIn)

(4)  A(AE),A(AE,7)

(5)  A() [=1 An)]

Note that A(<) and A(AE,n) are distinct systems
that are both “AA without (AI)”. (a Ab— bAais
inhabited in A(<) but not in A(AE,7).)

Urcyczyn’s work in [10] for AA and the inhabita-
tion equivalence of the systems in Group 1 lead to:

1.9 Theorem

The inhabitation problems for the
AN, AATL <) and A(AI, AE) are undecidable.

The work of Kurata and Takahashi in [9] shows
that A(<) is decidable. As the systems in Group 3
are equivalent it follows that:

systems

1.10 Theorem

The inhabitation problems for A(<), A(<, AE,n) and
A<, AE) are decidable.

The system considered by Kurata and Takahashi
was actually A\(<) with (w), but the addition or dele-
tion of (w) does not affect the result.

We will show below, using generation lemmas
proved in [2], that inhabitation problems for the sys-
tems in Groups 2, 4 and 5 are also decidable. We
will in fact provide algorithms to find inhabitants for
arbitrary types in these systems.

Note that in systems that do not have both (AE)
and (AI) or the full strength of (<), we may have

AFM:ang

but not AFM:[BA
and AFM:anN(BAa)
but not AFM:(anhp)Aa.

Notation We write a; A ... A a,, to represent one of
the possible bracketings of a; A ... A ay,.

Of course, via the formulas as types isomorphism,
a type in a type system can be considered as a the-
orem of a logic and its inhabitant as a proof of that
theorem. The logics corresponding to the intersection
type systems however, are not particularly simple (see
Venneri [11] and Bunder [5] and [6]) and it is easier
to examine decidability for the type theories rather
than for the corresponding logics.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

2 Inhabitation for A( )

It is easy to show that any valid judgement I' - « in
() can be transformed into a valid judgement IV - o/
in A by replacing all distinct A-types in I" and « by
distinct atoms. Hence as A\( ) &5 A(n):

2.1 Theorem

The inhabitation problems for the systems A( ) and
A(n) are decidable.

If « is a type, an inhabitant of «, or a guarantee
that there is none in A\( ) and A(n), can be provided
by an inhabitant finding algorithm, such as that in
3], for A, applied to the o . (The methods used in
3] are a simplified version of the Ben-Yelles algorithm
(see [4] and Hindley [8]).)

2.2 Example

7= (aAb— ¢) = aAb — (aAb — ¢ — (aAb)Ad) —
(aAb)Ad
Let T=(e—c)—oe—(e—c— f)—f.
Using the algorithm of [3] for A:
r1:e —c¢ xo:eand x3:
X129t ¢, Taxa(x122) : f.
So b Arjxexs.wsxa(rime) : 7' and
F x93 2320 (T122)

e — ¢ — f, give

Our proof of the decidability of the inhabitation
problem for A(AE) requires some additional notation
and a number of preliminary lemmas.

3 Notation

3.1 Definition (Long Subterms)

An occurrence of a subterm N of a term M is said to
be long in M if (i) N = z;X;...X,, and the occur-
rence is not part of NX,, 41 or (i) if N = Azy ... 25.Q
and the occurrence is not part of Axg./N.

3.2 Definition (Positive and Negative Sub-
types)

1. 7 is a positive subtype of 7.

2. If @« — B is a positive (negative) subtype of 7
then « is a negative (positive) subtype of T and
0 is a positive (negative) subtype of 7.

3. If a A is a positive (negative) subtype of 7, «
and [ are positive (negative) subtypes of 7.

3.3 Definition (Long Subtypes)

An occurrence of a subtype « of a type 7 is said to
be a long —-subtype of 7 if the occurrence is not the
aina (8 — «ain 7.

An occurrence of a subtype a in 7 is a long A-
subtype of 7 if the occurrence is not the v in an a A 3
or BA«in T.

3.4 Example

—(anb—(c—d)— &) A(f = g).

7 and ¢ are long positive — and A subtypes of
7 (— A-subtypes).

aNb,c — d and f are long negative — A-subtypes
of 7.

aNb— (¢ —d) — eand f — g are long positive
—-subtypes of 7.

a and b are long negative —-subtypes of 7.

¢, e and g are long positive A-subtypes of 7.

d is a long negative A-subtype of 7.

3.5 Definition (Nontrivial Intersections)

A nontrivial intersection is any one other than one of
the form a A ... A «.

4 The Generation Lemma for A\(AE)

The Generation Lemma follows directly from the
work in [2], modified using Definition 1.11 and Lemma

4.3(v) of [2].

4.1 Lemma Generation Lemma for A\(AE)
If
Ak M: « (4)
then one of the following holds:
1. M=z, (38)z:LeA& B =N . AaA. . ABy.
2. M=PQ, (36,7) Abpg P:y— [

AbF g Q:v
where the derivations are shorter than those of
Dand =G A...AaA...ABy.

3. M=Xe.N, (38,7) Ajx:B8FAg N :v
where the derivation is shorter than that of (4) and

a=(B—7).
5 The Main Lemma for A\(AE)

A derivation is said to have a cut if it has a use of
(— E), as in Definition 1.4, where A M : o — [ is
derived by (— I), or a use of (AI) followed immedi-
ately by a use of (AE) (or an equivalent use of (<)).
A derivation is normalised if it has no cuts.

It is well known (see [1]) that all derivations in
AN with w can be normalised. All terms appearing
in such derivations are in normal form. This result
clearly applies to AA and its subsystems as well.

5.1 Definition
The type of a variable z,, in a derivation of

L1 T,y Zp :TnbFa N«

will be defined to be 7, (i) if 1 < m < n, or, (ii) if
Aty M is introduced into N by (— I) from

T1:Tlyeres T i T Ea M : 3.

In the derivation ( is defined to be the type of the
occurrence of M in N.

For systems without (AI) the type of a variable
and the type of a term introduced, as a subterm, into
a normalised derivation are uniquely defined. For sys-
tems with (A) an occurrence of a term may have a
finite set of types in a derivation.



CRPIT Volume 77 - Theory of Computing 2008

5.2 Lemma

Ifzy:m,...,20 : Tw FAE N : @, there exists a term
M in B-normal form such that no two distinct vari-
ables of M have the same type and also:

1.
Tjy  Tjyse- Ly, T Fap Mo (5)
where {j1,...,7¢} € {1,...,n}.
2. For every occurrence of a long subterm P of M
with
FV(P) = {.’Eil,. ..,.’L‘ik}
there are types 7;,,...,7;, and 3 such that
Xiy S Tiyy-v oy iy P Tip, FaE P B (6)
where:
(I) 7,,..., 7, are long negative —A-subtypes of T =
T] = ... Tp — Q.

(IT) If P is of the form Ax,...z;.R, § has a long pos-
itive — A-occurrence in « or a long negative — A-
occurrence in one of 7;,,...,T;, .
(IIT) If P is of the form z, Py ... P, (t > 0), 8 has a
long positive A-occurrence in « or a long negative A-
occurrence in one of 7;,, ..., 7;, . Also 8 has a negative
occurrence in « or a positive occurrence in one of
TigseeosTipe -

Proof (i) If N’ is the 8-normal form of N there is
a normalised derivation of
T1 Tl s Ty T FAe N (7)

If in (7) a long subterm zsQ;...Q: of N’
has type a1 — — a, — 7, where 7«
is an atom or an intersection, this is replaced
by Axg...Tgru—1.7sQ1...Qrxq ... Tg4u—1, Where
Zg,-.-Tqru—1 are variables not in N’, ¢ > n and
Tq+i—1 = o5 for ¢ = 1,...,u. When all such changes
to N’ are made call the result N”.

Next free or bound variables z, and z,, with
the same type in N”, are identified. For example
Azq.Cr[Azy.Clag, ©,p]] becomes A\x,.C[Axzp.Clzy, ,]].
If 1 <p,q <n, x4 can be omitted from the left hand
side of the I in (7). None of these changes alter any
subtypes of 7.

When all such changes have been made we have
M and (7) becomes (5).

(ii) Let the variables in M other than z1,...,z, be
Tpgl,---,Tm and their types be 741, .., Tin-

Casel M =P.

In this case # = « and (6) is (5) with any z; ¢
FV(M) omitted. (This can always be done in a nor-
malised derivation). (I) and (II) clearly hold and if P
is of the form z,. P;...P; it follows from Lemma 4.1(ii)
that 8 has a positive occurrence in 7., so (III) holds.

We now prove the remaining cases by induction on
M.

Case 2 M =xz;M;...M,. (p>0)and P is, or is in,
an M;.
By Lemma 4.1(ii) applied p times we have:

Ty 1 Tjys- T (T, FAE T i1 — ... — oy — &
and
Tjy  Tjye oy gy, - T FaAE Myt @

where E =& A ... AaAN... AN and 1 <5 <p.

We have (6) and (I) by the induction hypothesis,
after leaving out variables not free in P. Also by the
induction hypothesis, if P is of the form A\z,...x;. R
and (8 does not have a long negative — A—occurrence
in one of 7;,,...,7,, it has a long positive — A-
occurrence in o and so a long negative one in 7; and
a long positive one in «. Thus (IT) holds.

If P is of the form z,.P;...P;, [ has a long positive
A-occurrence in a; (and so a long negative one in 7;)
or a long negative A-occurrence in one of 7;,, ..., 7, .
Also 8 has a negative occurrence in ¢; (and so a
positive one in 7'12 or a positive occurrence in one of

Tiyy e Tip,- Lhus (III) holds.

Case 3 M = Az, 41.Q, where P is, or is in, Q.

By Lemma 4.1 (iii)

Ty P Ty ey Ljy t Tigs Tngl Tl FaAE @ 1§
where a = 7,41 — &.

By the induction hypothesis and the omission of
variables that are duplicated or not free in Q, (6)
and (I) hold. If P is of the form Az,..z;.R, B has
a long positive A-occurrence in £, and so in «, or a
long negative A-occurrence in one of 7y, ..., 7,41. If
this is in 7,41 it has a long positive A-occurrence in
«. (Note that P can’t be @, in this case, as then P
is not long in M.) Thus (II) holds.

If P is of the form x,.P;... P, (8 has a long positive
A-occurrence in ¢ (and so in «) or a long negative A-
occurrence in one of 7;,, ..., 7;, . If this is in 7,41 this
is a positive A-occurrence in «. Also § has a negative
occurrence in £ (and so in «) or a positive occurrence
in one of 7,,...,m,. If this is 7,41, this is negative
in @. Thus (III) holds.

Note 1. In many modern trteatments of A—calculus,
clashes of bound variables, as introduced in part (i) of
the proof, though strictly allowed, are avoided. The
identification of variables with the same types, in this
proof, and that of Lemma 8.2, simplifies the proof
and leads to finitely bounded inhabitation search al-
gorithms for A(AE) and A(AT) in Sections 6 and 9.
2. In the lemma corresponding to 5.2 in [3] (and also
in the Ben-Yelles algorithm in Hindley [8]), we could
assume that M was in long normal form, which meant
that every long subterm of M, formed by application
had an atomic type. Here we can only assume that
M must have an atomic or an intersection type. For
example M = zix5 in:

z1:a—=b—c)N(e— f),z2:a,

z3:(b—=c)N(e—=f) = gbap z3(z122) 1 g

cannot be expanded to \z4.x12x214 Where x1x2x4 has
an atomic type.

5.3 Lemma
If

Ab g M:T, (8)

N appears in M and is introduced into the derivation
of (8) by

A g N:a (9)
where A C A/, then if
A'bap Pia (10)
where FV(P) C FV(N), we have
AFn g [P/NIM : T (11)



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

where in [P/N]M only the given occurrence of N with
type «, introduced in (9), is replaced by P.

Proof By induction, on M.
Case 1 M = N then A’ = A and (11) is (10).

Case 2 M = RQ where N is (in) R or Q
By Lemma 4.1 (ii)

AFR:~v— 0

AFQ:~v

where B=0G1A...ATNA...A\ (.
By the induction hypothesis we have

AFag [P/NJR:v— 0
or Abap [P/N]Q vy

and (— E) and (AE) gives (11).

Case 3 M = Az.R where N is (in) R
By Lemma 4.1 (iii) we have

Ax:BF g Ry

where 8 — v =1T.
( The result follows by the induction hypothesis and
—I).

6 The Type Inhabitant Search Algorithm for
AMAE)

Aim Given a — A-type 7, to find a A-term M such
that
l_/\E‘ M:T

Step 1 To each distinct long negative — A-subtype
of 7 assign a distinct variable, giving a list:

L1 T1y---3Tm * Tm

Step 2 For each type 7; = a A 8 from Step 1 write
r; : a,x; : (3, repeat the procedure if @ or § are
intersections. Identical types for the same x; may
be omitted, identical types may also be obtained for
distinct x;s.

Step 3 For each set A C {z1,...,2,,} and for each
( that has both a long positive A- and a negative
occurrence in 7 find an N , by application and (AE),
such that FV(N) C A and N : 3, if there is not
already such an N.

Step 4 For each set A C {x1,...,2,,} and each
which has both a long positive and a long negative
— A-occurrence in 7, if possible, find a term N by
abstraction with respect to some or all of the vari-
ables found in Step 1 such that FV(N) C A and
N : 3, if there isn’t already such an N. (More than
one abstraction with respect to the same variable is
allowed.)

If after a Step 4 a closed M : 7 is found stop. If
not continue with further applications of Steps 3 and
4 until no new terms are created. If that happens,
without forming M : 7,7 has no inhabitants. This

same algorithm, without Step 2, can be used to find
inhabitants in A( ) of \.

6.1 Example
T=(a—=bA(c—>d) —arhc—d

Stepl z1:a—bA(c—d), z2:aANc
Step 2 xz5:a, z3:cC
Step 3 z122:bA(c —d), v129 : ¢ = d, T12029 1 d

Step 4 AL1X2.21%2L2 & T.

6.2 Example
T=[a—=b—c)ha—b—b— (]
Stepl z1:(a—b—c)Aa, z2:b
Step2 z1:a—b—c z1:0a
Step 3 xz1x1:b—c, 11175 :C

Step 4 Arixo.x171 : T and Ax1x0T0. 212122 ;T

6.3 Theorem

Given a type 7, the Type Inhabitant Search Al-
gorithm for A(AE) will produce an inhabitant in (-
normal form for 7 in A(AE) and A(AE,n), or show
that there is no such inhabitant in either system.

Proof By Lemma 5.2, if 7 has an inhabitant, it has
one M in -normal form with no two variables of the
same type.

Also by Lemma 5.2, Step 1 of the algorithm pro-
vides us with a finite set of typed variables which is
the largest set that need appear in M. Step 2 pro-
vides each of these variables with a finite (possibly
empty) set of additional types which includes all the
types these variables need take in M.

Lemma 5.2 also provides us with all the composite
types subterms of M can have and these again form
a finite set. By Lemma 5.3, once we have a subterm
for M with a certain set of free variables, there is no
need to look for another with a superset of this set
of free variables. Hence the number of terms that
can be formed is finite and these are systematically
constructed by Steps 3 and 4.

As the inhabitant Search Algorithm for A(AFE) is
inherently finite, if it terminates without having found
an inhabitant for 7, then 7 has none.

Given that AM(AE) ~o AAE,n) and that A(AE)
is a subsystem of A\(AE,n), this algorithm also finds
inhabitants of 7 in A(AE,n) or shows that there are
none.

7 The Generation Lemma for A(A])

The Generation Lemma follows directly from the
work in [2], modified using Definition 1.11 and Lemma
4.3(iv) of [2].

7.1 Lemma Generation Lemma for A\(AI)

If
A l_/\[ M« (12)

where M is in normal form, then one of the following
holds:

1. M=z, (38)z:8 eA&a=FAN...AS.

1"



CRPIT Volume 77 - Theory of Computing 2008

12

2. M= .PQ7 (Elﬂl,al,...ﬁk,ak)A |—/\[ P 51 —
a;
Abar Q: ;.
for 1 <4 <k, where a = a3 A... A ai and the

derivations, together, are shorter than those of
(12).

3. M= )\JZN, (361,’)/1,...
N’yl

for 1 <i <k, where a = (81 = y1)A ... A Bk — &)
and each derivation is shorter than that of (12).

aﬁ]ﬁf}/k‘) wa : ﬁi }_/\I

8 The Main Lemmas for A\(AI)

The two lemmas below are generalisations of two lem-
mas used in [3] to prove that the inhabitation find-
ing algorithm for simple type theory, that appears
there, is valid. The situation here is little more com-
plex because one occurrence of a subterm of X in
A Far X ¢ 7 can have more than one type in the
derivation.
For example with = : 8 we might prove:

Absrde.M: 0 — «
and with x : v, we might prove:
Abpar A M v — 9,
and so by (AI):
Abpr de.M: (8 — a)A(y—9).

So not only Az.M, but also z, can have more than
one type in a derivation.

8.1 Lemma

If X is in normal form, U is an occurrence of a sub-
term of X which has types a; ... ax in the derivation
of A bar X @ 7, then if V, with FV(V) C FV(U),
can also be assigned types aq,...,ax, given A, and
if the types of F'V(V) are the same as they were for
FV(U), then

Abar XU =V]:T.

Proof By induction on X, as in Lemma 5.3.

8.2 Lemma

If
STpiTebAr Z T (13)

then there is an X =g Z in B-normal form such that:

T1 P T1y. -

1. No two distinct variables of X have the same set
of types.

2. For some {i1,...,ix} C{1,...,¢},

Ty P Tigs ey T S Tiy FAT X 0T (14)

3. Each type of each variable z;; in Az;, ...7; . X
that is used in a derivation of (14), will have a
long negative — - occurrence in 7' =71, — ... —

Tiy — T

4. Each occurrence of a composite subterm Y of X,
that is, in the derivation of (14), an abstraction,
or is long and formed by application, will have a
type which is a long positive A-occurrence in 7’.

Proof (i), (ii). Theorem 4.13 of [1] proves that every
7 satisfying (13), with AA for A(AI), has a B-normal
form. Clearly this also holds for A(AI). Subject re-
duction can be proved for A(AI), by standard means,
so (13) holds with nf(Z) for Z.

If nf(Z) contains two variables x,, and x4, with the
same set of types, we can change, by Lemma 8.1, all
occurrences of z, to x,, without altering any types.
Also we can drop one of two, now identical x, : 7,
and z4 : 7, from x; : T,...,2¢ : T,. We then have
(14), so (i) and (ii) hold.

(iii), (iv) By induction on the length of X.

If X, which is in normal form, is formed by appli-
cation, X = x;, X1 ... X,, then by Lemma 7.1(ii) and
(i) we have:

iy S Tiyy-o oy Tig i Tip, Far iy 01— ... — B — 0
iy T Tiys-e-sZiy 2T, Ear Xyt Br (15)
for 1 <r<m,wherer=0A...AN03, 1 <t<kand
Tip, =1 = oo = B — B

If 2, = x;,,7;, = 7;, has a long negative — -

occurrence in 7/, so (iii) holds.

If z;; is in X, for some r, then, by the induction
hypothesis (iii), 7;; has a long negative — - occurrence
inm, —... =7, — B

If this occurrence isin 73, — ... — 7;, —, thisis a
long negative — - occurrence in 7’. If it is in 3,, then
7;; has a long positive — - occurrence in 7;, and so a
long negative — - occurrence in 7’. Hence (iii) holds.

If Y is a long composite subterm of X formed by
application, it may be X itself, in which case (iv)
holds with 7 as the type of Y.

Otherwise Y is (in) an X,.. By the induction hy-
pothesis (iv), applied to (15), we have that this oc-
currence of Y has a type with a long positive A -
occurrence in 7, — ... — 7;, — . If the occur-
rence is in 7, — ... — 7, —, it is also one in 7. If
the occurrence is in 3., as 0, has a long negative —
- occurrence in 7;, and so a positive one in 7/, each
type of Y has a long positive A - occurrence in 7/, i.e.
(iv) holds.

If X is formed by abstractions, X = Az; .V,
then by Lemma 7.1 (iii)

. . ) . S
l'il.Til,...,xik.ﬁk,fﬂik+l.’7' F/\]V-ﬂ (16)

for1<s<wand 7= (! = BY)A...A(TY = BY).

As the derivation of (14) can come via (16), for
1 <s <u, and (AI), any types 7;; of the variable z;,
used in the derivation of (14) , must be used in the
derivation of (16) for at least one value of s.

By the induction hypothesis (iii), applied to (16),
we have that each 7;; has a long negative — - occur-
rence in 7, — ... —» 7, — 7° — [(° and so in 7'.
Thus (iii) holds.

If Y is formed by application and is long in X, it
is also long in V, so, by the induction hypothesis (iv),
each occurrence of Y, in the derivation of (16), for
some s,1 < s < u, has a type with a long positive A
- occurrence in 7, — ... = 7, — 7° — (3% and so in
7’. So (iv) holds.

If Y is formed by abstraction and is (in) V, the
result (iv) holds by induction hypothesis (iv).

If Y is X, (iv) holds as the type of Y is 7.

The A(AI) Inhabitant Search Algorithm, given be-
low, is a generalised version of the algorithm for A
given in [4]. The latter, in turn, is a simplified ver-
sion of the Ben-Yelles Algorithm for A (see Hindley

[8])-



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

9 The A(AI) Inhabitant Search Algorithm

Aim To find a A-term X such that, foralli,1 <i¢ < k

LT T i T A X 06 (17)
where Xz ... 2, has (i) a minimal number of distinct
variables and (ii) a minimal total number of occur-
rences of these variables.

Notes 1. To find an inhabitant X of a type 7, we
only need to solve (17) for n = 0,k =1, and §; = 7,
but we require to solve more general versions of (17)
in the process.

2. For no value of m and £ (1 < m < £ < n)

is 7 = 7, for all 4,1 < i < k, as otherwise
X[z := x] will be a solution of (17) where X[z, :=
Tm]T1 ... Te—1Tpy1 ... Ty has fewer distinct variables
than Xxq...z,

3. We assume that no two instances of (17), for
distinct values of i, are identical.

4. We will call a set of judgements, such as (17),
for 1 < i < k, with a common set of variables on the
left of the - and a common unknown A-term, such
as X, on the right of the I, a simultaneous set of
judgements (ssj).

5. An ssj of the form

1‘1.7’1,...7l‘n.Tn|—/\1Y.(5i

for 1 <1 < k is said to be equivalent to the ssj (17).
6. In the algorithm we will construct a tree where
the nodes are ssj’s, with (17) at the root.

Step 1 If in (17) 7} = d; for some j (1 < j < n)
and all 7, (1 < i < k), then the tree consists only of
the root, the ssj (17), and the algorithm stops with
X = Zj.

Otherwise, if 7§ =} — ... — (. — §; for all i,
1 < i <k, construct a group of ssj’s

Ty T Tt Th bar Xy 1 B (18)
each with 1 <4 < k, provided there is no ssj equiv-
alent to (18) for any t1(1 < ¢t; < r) in the branch
from (17) to the root of the tree. If there is such an
equivalent ssj, (17) has no solution.

For each T; of the appropriate form, that is not

excluded in this way, there is a group of ssj’s of the
form (18) with 1 < ¢; < r, that appears in the tree
directly below (17).

If all of the ssj’s in a group have a solution, found
by going back to Step 1, then (17) has as solution
X :.Tle...Xr.

If there is no solution of (18) for any ¢;, there is
no solution of (17) for that value of j, and the tree is
not extended below the ssj’s in the group with that
value of j.

If there is no solution of (17) for any value of j or

no T} is of the right form and if §; = 77, ; — ; for all

1 (1 <i<k), goto Step 2. If &; = o; Ny, for some
i, go to Step 3.

Step 2 If 7, # T for some i and all j the ssj

T1 Ty Tt Ty Par X (19)
with 1 < ¢ < k, appears directly below (17) in the
tree (as a singleton group), provided no equivalent ssj
appears in the branch from (17) to the root of the tree.
(19) is then solved by returning to Step 1. If there is

a solution then the solution to (17) is Azp41.X.

Ifri,, = ’7'; for some j and all 4,1 < i < k, the ssj

LTy Ty T Ear X iy (20)
appears directly below (17) in the tree, provided no
equivalent ssj appears in the branch from (17) to the
root.

(20) is solved by returning to Step 1. If there is a
solution, then X = Az;.X".

Step 3 We assume that (17) is ordered so that
this ¢ = k. In each of the four cases below we add a
new ssj directly below (17) in the tree (as a singleton
group), provided no equivalent ssj has appeared in
the branch from (17) to the root.

1. If7F, ...

tinct from each 77, ... S Tos
from each other the ssj is

TE ay, and Tl,...7 7k~ are both dis-
0; for 1 < j < k, and

Ty T T T A X 6 (21)

for 1 <i < k+1, where 03, = ag, Op+1 = Yk, and
Ttk = Ttk“ forl1 <t<n.

2.1t ™, ., tF ap is  distinct from each
Tf ce, 705 but T, 7E Ok, =
.. .,78,8; for some j,(1 < j < k) or
= Tf,...,TT]f,ak the new ssj is similar to (17)
but with oy, instead of .

3. It o7k 4, is  distinet from  each
T n,éj, but 7F,..., 78 ap = Tf, T8

for some j, (1 < j < k) the new ssj is similar to
(17) but with ~y, for dy.

4. F Tt = ..., 7,0 and
Ttk = T{,...,Tn,é for some j
and r,1 < j,r < k, the new ssj is similar to (17),

but with 1 <i <k —1.
In each case now go back to Step 1.

We now prove that the algorithm is effective.

9.1 Theorem

The A(AI) Inhabitation Search Algorithm provides a
solution X for (17), for all i(1 < ¢ < k) or a guarantee
that there is no solution, by generating a tree with an
ssj at each node and (17) at the root. No node will
have more than rs+ 1 nodes directly below it and no

branch is longer than 25"~ where r is the number
of long negative —-subtypes of

a:(Tllﬂ...HTnlﬂfh)/\.../\(Tfﬂ .Hn’fﬂék)

and s is the number of long positive A-subtypes of .

Proof In the algorithm, Step 1 considers all the pos-
sible ways in which (17) can be derived by (Var) or
using (— E) as the final step, Step 2 considers the
ways in which (17) can be derived by (— I) as a fi-
nal step and Step 3 the ways in which (17) is derived
using (AI) as a final step. Any X satisfying (17), for
1 < i <k, must be found in an indefinitely extended
tree.

Coming down any branch of the tree from the root,
the algorithm has each unknown A-term as a subterm
of the ones above it. If the step above it is Step 1
(other than Tt =0;for 1 <i < k) or Step 2, it will be

13



CRPIT Volume 77 - Theory of Computing 2008

14

a proper subterm of the terms higher in the branch.
If on a branch there is an ssj

T :Tli,...,xp ZT; Far Xe, o1, :ﬂzlmts (22)
for 1 <1 < g, appearing below an equivalent ssj
:E:Tf,...,xp:T;; Far Xey o1, :5;:1__% (23)

(ie. Bf, 4. = Bi, 4, for 1 < i < q), then Xy, 4,
is a proper part of Xy, .+, , as there must be at least
one nontrivial Step 1 or a Step 2 between the ssj’s.
This however means that X, ;. is a shorter solution
than X, ¢, of the ssj (23), so the branch from (23) to
(22) does not lead to an X satisfying (i) and (ii). So
‘Ehe)algorithm rightly does not search branches below
22).

We now show that the tree must be finite.

By Lemma 7.1 (17) holds for 1 < i < k, if and
only if

Far Ax1...x2,.X .

By Lemma 8.2 the variables in Az ...xz,.X, and so
in X, have types which are long negative —-subtypes
of a.. Let there be r of these.

In a node (i.e. an ssj)

zlsTf,...,xm:TZﬁFMY:ﬂi (24)

for 1 < i </, as by the algorithm the types of differ-
ent variables are distinct and n < m < r, there can
be at most (r — n)! different sequences 7,41, ..., Tm.

Also by Lemma 8.2, each 3; is a long positive A-
subtype of «. Let there be s of these. Then there
can be at most s(r — n)! distinct judgements, of the
form (24) in the tree generated by the algorithm and
as each node (i.e. each ssj) in the tree consists of a
subset of this set of judgements, there can be no more
than 25("=™)" distinct nodes (ssj’s) in the tree.

Given that there can be no two equivalent ssj’s on
any branch, no branch can be longer than 25("—™)',

Below any ssj, such as (24), there can be at most
m groups of ssj’s resulting from Step 1, where m < r.
Each group can have no more than s members. Also
below (24) there can be an ssj stemming from Step 2
or 3. Thus there can be no more than rs 4+ 1 nodes
below any node in the tree.

9.2 Corollary
The inhabitation problem for A(A)is decidable.

9.3 Example
To find X such that

Far X:(a—a—ana)A((a—b)— (b—a)—a—Db)

Step 3
|
FarX:a—a—ala
Far X:(a—b)—(b—a)—a—b
|
Step 2 (X = Az1.X)
|
z1:abar X'a—ana
r1:a—bbar X'(b—a)—a—b

Step 2 (X' = Azo.X")
|

z1:a, xo:abpar X" taNa
zi:a—b zo:b—abla X" :a—b

|
Step 3

z1:a, xa:abar X" ta
z1:a—b, xo:b—aklar X" :a—b

|
Stepl X" =ux;
So X = A\z129.21.

10 Conclusion

The inhabitation problem is decidable for the
systems A(<), M, AE, 7)), M(S,AE), MAI), MAIn),
AMAE),\N(AE,n),A(), and A(n) and undecidable for
AN, AN, <) and A(AT,AE).

We have given inhabitant finding algorithms for
MO, M), AMAE), AMAE, ), \(AI) and A(AL, 7).

References

Barendregt, H.P., Coppo, M., Dezani, M. (1983), ‘A
filter lambda model and the completeness of type
assignment’, Journal of Symbolic Logic 48, 931—
940.

Bunder, M.W. (2002), ‘A classification of intersection
type system’; Journal of Symbolic Logic 67, 353—
362.

Bunder, M.W. (2000), ‘Proof finding algorithms for
implicational logics’, Theoretical Computer Science
232, 165-186.

Bunder, M.W. (1995), ‘Ben-Yelles-type algorithms
and the generation of proofs in implicational logics’,
University of Wollongong, Department of Mathe-
matics Preprint Series 3/95.

Bunder, M.W. (2002), ‘Intersection type for lambda
terms and combinators and their logics’, Journal of
the Interest Group in Propositional Logic 10, 357—
378.

Bunder, M.W. (2003), ‘Intersection type systems and
logics related to the Meyer-Routley system B4,
Australasian Journal of Logic 1, 43-55.

Coppo, M. & Dezani, M. (1978), ‘A new type-
assignment for lambda terms’, Archiv Math. Logik
19(2), 139-156.

Hindley, J.R. (1987), Basic Simple Type Theory,
Cambridge University Press.

Kurata, T. & Takahashi, M. (1995), Mining associa-
tion rules between sets of items in large databases,
in ‘Lecture notes in Computer Science’, Vol. 902,
TLCA ’95. M. Dezani and G. Plotkin (eds) pp. 297—
311.

Urzyczyn, P. (1999), ‘The emptiness problem for
intersection types’, Journal of Symbolic Logic
64, 1195-1215.

Venneri, B. (1994), ‘Intersection types as logical for-
mulae’; Journal of Logic and Computation 4, 109
124.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Weak Parametric Failure Equivalences and Their Congruence Formats

Xiaowei Huang'

Li Jiao?

Weiming Lu!

! Academy of Mathematics and System Science,
Chinese Academy of Sciences, P.R. China.
Email: xwhuang@amss.ac.cn

2 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, P.R. China.

Abstract

Weak equivalences are important behavioral equivalences
in the course of specifying and analyzing the reactive
systems using process algebraic languages. In this pa-
per, we propose a series of weak equivalences named
weak parametric failure equivalences, which take two
previously-known behavioral equivalences, i.e., the weak
failure equivalence and the weak impossible future equiv-
alence, as their special cases. More importantly, based
on the idea of the structural operational semantics, a se-
ries of rule formats are further presented to congruence
format for their corresponding weak parametric failure
equivalences, i.e., a specific equivalence is further congru-
ent in any languages satisfying its corresponding congru-
ence format. This series of rule formats reflect the gradual
changes in the weak parametric failure equivalences. We
conclude that, when the weak parametric failure equiva-
lences become coarser, their corresponding rule formats
turn tighter.

Keywords: weak failure equivalence, rule formats, struc-
tural operational semantics

1 Introduction

When using process algebraic languages to specify the
distributed systems, a suitable semantic equivalence is
usually necessary for reasoning and analyzing. There exist
various semantic equivalences to be applied in various sit-
uations. An equivalence relation is reflexive, symmetric,
and transitive.

Behavioral equivalences are based on the observabil-
ity and thus equivalences may differ by the notions of ob-
servability (van Glabbeek, 2001, 1993). A natural classi-
fication of behavioral equivalences is that a given behav-
ioral equivalence may be strong or weak. Their differ-
ence mostly exists in the ways of dealing with the internal
transitions, which are generally denoted as 7 transitions.
Strong equivalences regard 7 transitions the same as the
observable actions. Weak equivalences, on the other hand,
suppose them unobserved by the outer-world. Therefore,
when the given distributed systems are further reactive
systems, the weak equivalences/preorders are more suit-
able than the strong equivalences/preorders. A reactive
systems can be seen as a black box, which computes by
reacting to the stimuli, e.g., input and output, from its en-
vironments, and thus no internal transitions can be wit-
nessed from the outside. In this paper, we will focus on
the weak equivalences.

Copyright (©2008, Australian Computer Society, Inc. This paper
appeared at the Computing: The Australasian Theory Symposium
(CATS2008), University of Wollongong, New South Wales, Australia
. Conferences in Research and Practice in Information Technology (CR-
PIT), Vol. 77, James Harland and Prabhu Manyem, Ed. Reproduction
for academic, not-for profit purposes permitted provided this text is in-
cluded.

Among various weak semantic equivalences, the weak
failure equivalence and the weak impossible future equiv-
alence are two interesting semantic equivalences. The
weak impossible future equivalence is strictly finer than
the weak failure equivalence. The weak failure semantic
is usually denoted, by its denotational characterization, as
a set of weak failure pairs. Two processes are weak failure
equivalent iff they have the same set of weak failure pairs.
Likewise, the weak impossible future semantic is usually
denoted as a set of weak impossible future pairs and two
processes are weak impossible future equivalent iff they
have the same set of weak impossible future pairs.

Looking into the two pairs, we find that their first pa-
rameters both express the abilities: some process p exe-
cutes a sequence of observable actions and evolves into
another process p’. The difference exists in their second
parameters. The second parameter of a weak failure pair
is a set of actions which are not enabled by p’, and the
second parameter of a weak impossible future pair is a set
of action sequences which are not enabled by p’.

Based on these observations, we define a series of
weak equivalences, called weak parametric failure equiv-
alences. Like the above two weak equivalences, a weak
i-failure pair with i € NU{w} is only different in its second
parameter with the weak failure pair, where N is the set of
natural numbers and w is the cardinality of N. Its second
parameter is a set of action sequences which are not en-
abled by p’ and the lengthes of these action sequences do
not exceed i. Therefore, the plain weak failure equivalence
is the weak 1-failure equivalence in our framework and the
weak impossible future equivalence is the weak w-failure
equivalence. Furthermore, with the increasing of the para-
metric i, the weak i-failure equivalence becomes finer.

Structural Operational Semantics (SOSs) (Plotkin,
2004) have been widely used in defining the meanings of
the operators in various process algebraic language, such
as CCS (Milner, 1989) and ACP (Baeten, 1990). The main
idea of SOSs is: at first, each process is represented by a
closed term and has some out-going transitions to com-
municate with outer world; then, these processes are co-
ordinated by some specified rules, which are called tran-
sition rules, to get a higher-level process. As a result, the
out-going transitions of this higher-level process are deter-
mined by the out-going transitions of its sub-processes.

Transition System Specifications (TSSs) (Groote,
1992), which borrowed from logic programming, form a
theoretical basis for SOSs. By imposing some syntactic
restrictions on TSS, one can retrieve so-called rule for-
mats. From a specified rule format, one may deduce some
interesting properties. Among these properties, one of
the most important is whether or not a behavioral equiv-
alence is congruent for a TSS in this rule format. A con-
gruence is an essential equivalent property - namely that
we can ’substitute equals for equals’ (Milner, 1999). We
will use language as an alias of the TSS. Up to now, some
rule formats have been presented to meet the behavioral
equivalences, for examples, GSOS format (Bloom, 1995)
and ntyft/nxyft format (Groote, 1993) have been proved to

15



CRPIT Volume 77 - Theory of Computing 2008

16

be congruent on strong bisimulation, de Simone (Simone,
1985) format was proved to be congruent on failure equiv-
alence, and so on.

However, more works have been done on pursuing a
suitable rule format for a given strong equivalence. On
the contrary, much less attentions were paid on the rule
formats for weak equivalences. More specifically, to our
knowledge, no congruence formats have been presented
for the weak failure equivalence or the weak impossible
future equivalence.

In the paper, we will propose a series of rule for-
mats for the newly defined weak parametric failure equiv-
alences. In fact, weak 1-failure format is presented for the
weak 1-failure equivalence, weak finite failure format is
for the weak i-failure equivalences with 1 < i < w, and
weak w-failure format is for the weak w-failure equiva-
lence. Then, we prove that the weak parametric failure
equivalence can be preserved after composition if the lan-
guage is in its corresponding rule formats, i.e., these rule
formats are all congruence formats for their corresponding
equivalences.

Here, we want to sketch out two critical points in pur-
suing these rule formats:

The first critical point is on the feasibility of allow-
ing the rules with 7-conclusion. Rules with 7-conclusion
are an important class of rules in classical process alge-
braic languages, notable examples include hiding operator
of CSP and parallel composition operator of CCS. How-
ever, not all behavioral equivalences can be preserved un-
der these rules, as is pointed out in Rensink and Vogler
(Rensink, 2007) that the acceptance testing equivalence
may not be preserved under the hiding operator. In this
paper, we will take a close look into these rules. In fact,
the weak i-failure equivalences with i < w may not be
preserved under these rules, but the weak w-failure equiv-
alence, i.e., the impossible future equivalence, can survive
these rules.

The second critical point is whether or not the patience
rules for receiving arguments are prerequisite in the rule
formats for a given weak parametric failure equivalence.
Patience rules, which are used to smooth the evolvement
of 7 transitions of subprocesses, are usually necessary in
rule formats for weak equivalences. However, since pa-
tience rules are defined in accordance with the arguments
of an operator, they can be divided into three classes: pa-
tience rules for active arguments, patience rules for re-
ceiving arguments and patience rules for other arguments.
Though patience rules for active arguments are generally
needed, patience rules for receiving arguments are not
necessary for some rule formats. We find that, for the
weak 1-failure format, patience rules for receiving argu-
ments are not prerequisite by the help of the exclusion of
rules with 7-conclusion. On the other hand, they are pre-
requisite for the weak i-failure format with i > 1.

As a result, the weak finite failure format is tighter
than the weak w-failure format because the rules with 7-
conclusion should be excluded from the language in the
weak finite failure format, and the weak 1-failure format
is tighter than the weak finite failure format since it may
further exclude the patience rules for receiving arguments
from the language. Therefore, we can conclude that, when
the weak parametric failure equivalences become coarser,
their corresponding rule formats turn tighter.

Finally, we want to say more on the newly-proposed
weak i-failure equivalences with 1 < i < n. In fact,
we have not found their niche applications, though they
can be used in most applications of the 1-failure equiva-
lences. The reasons that we introduce these intermediate
weak equivalences are that

1) they can smooth the changes between the weak 1-
failure equivalence and the weak w-failure equivalence,

2) their congruence format is also an intermediate for-
mat between the weak 1-failure format and the weak w-
failure format, and

3) most importantly, we want to make clear the techni-
cal reasons why there exist differences between the weak
1-failure format and the weak w-failure format. Take it
more concrete, from the weak w-failure format to the weak
1-failure format, the reason why the rules with 7 conclu-
sion are excluded is that the parameter i degrades from
infinite to finite, and the reason why the patience rules for
receiving arguments are not necessary is that, no matter
how they are presented in the language, only the set of
next one, but not next finite or infinite, observable actions
remains unique.

The structure of this paper is: in the section 2, we
will introduce some preliminaries, mainly on the behav-
ioral equivalences and the rule formats in Structural Op-
erational Semantics. Then in Section 3, we will put for-
ward the formal definitions on the weak parametric failure
equivalences. Intuitive motivations on their rule formats
will be exhibited with examples in Section 4. Section 5 is
devoted to the formal definitions of the rule formats, and
the proofs on the congruence theorems. And then, in Sec-
tion 6, we will conclude the paper.

2 Preliminaries on Behavioral Equivalences and
Rule Formats

Let Act denote a set of names which will be used to label
on events and Act* be the set of all action sequences. We
usually use a, b, ... to range over the actions in Act, and use
A, B, ... to range over subsets of actions in Act. 7 is gen-
erally used to denote the internal action which can not be
observed by the outer world, and we use @, , ... to range
over the actions in Act U {t}. 6, i, 0, ... is to range over the
sequences of actions. @, ', ... is to range over the sets of
sequences. p, ¢, ... will be used to represent processes.

Any behavioral semantics of some process p can be
characterized by a function O(p) (van Glabbeek, 2001).
O(p) constitutes the observable behaviors of p. The equiv-
alence relation ~¢ can be defined by p ~g g & O(p) =
O(q). The readers are referred to van Glabbeek (van
Glabbeek, 2001, 1993) for comprehensive reviews of the
behavioral equivalences.

SOS has been widely accepted as a tool to define oper-
ational semantics of processes. A TSS is a formalization
of SOS (Plotkin, 2004). The readers are referred to Aceto,
Fokkink and Verhoef (Aceto, 2001) for a comprehensive
review on SOS.

Definition 2.1 (Aceto, 2001) Let V = {x;, x,,...} be a
set of variables. A signature X is a collection of function
symbols f ¢ V equipped with a function ar : ¥ — N. The
set T(X) of terms over a signature X is defined recursively
by: 1) V C T(Z); 2) if f € T and 1y, ..., tuy) € T(Z), then
f(, ..., tar(f)) e TX).

A term c() is abbreviated as ¢. For r € T(X), var(r)
denotes the set of variables that occur in . T(X) is the
set of closed terms over Z, i.e., the terms p € T(X) with
var(p) = 0. A X substitution € is a mapping from V to
T(X).

In the paper, we will use p,gq,... to range over the
closed terms, and call them processes.

Definition 2.2 A positive X-literal is an expression

t— ¢ anda negative X-literal is an expression ¢ + with
t,t' € T(X) and @ € Act U {t}. A transition rule over X is

an expression of the form % with H a set of Z literals (the

premises of the rule) and C a positive Z-literal (the con-
clusion). The left- and right-hand side of C are called the
source and the target of the rule, respectively. Moreover, if

H__ (hen define ante(r) = H, cons(r) = {t = v},

r=—=

’

t
and the output of r as «.
A TSS, written as (X, V), consists of a signature £ and
a set ¥ of transition rules over X. A TSS is positive if the
premises of its rules are positive. In the paper, we often
use language as an alias of the TSS.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Definition 2.3 Let X be a signature. A context C of n
holes over X is simply a term in T(Z) in which n variables
occur, each variable only once. If 71, ..., #, are terms over X,
then C(#y, ..., t,) denotes the term obtained by substituting
t; for the first variable occurring in C, t, for the second
variable occurring, etc. Thus, if xi, ..., x,, are all different
variables, then C(xy, ..., x,) denotes a context of n holes in
which x; is the ith occurring variable.

Then, we can give the definition on the congruence of
an equivalence in a language.

Definition 2.4 Let £ = (X,¥) be a language. An
equivalence relation ~ is congruent on language L iff
Vi€ {lyosn) 2 py ~ @i = C(P1ses Pa) ~ C(1s )
for any context C of n holes in language £, where p; and
q; are closed terms, i.e., processes, over X.

Definition 2.5 Let X be a signature. A transition re-
lation over X is a relation Tr € T(X) X Act U {t}x T(Z).
Element (p,a, p’) of a transition relation is written as
p—p.

Thus a transition relation over X can be regarded as a
set of closed positive Z-literals(transitions).

Furthermore, for an action sequence 6 = @j...a,, if

there exist py, ..., p, € T(Z) such that p iR 12 NN

s
D, then we call ¢ a trace of p, denoted as p — or p SN

@y

In weak semantics, the weak transition relations and
the weak traces are also needed to be defined. Let p be a

. a ™ a T
process, we write p = iff p ————, where 7" denotes
any number of internal transitions. Hence, for an observ-

able action sequence ¢ = aj...a,, p =6> iff p = =,

By imposing some syntactic constraints on TSS’s, we
will obtain the so-called rule formats with some properties
on their induced operational semantics. Within these prop-
erties, it is specially important that whether a behavioral
equivalence can be preserved in the languages with this
format. Some rule formats have been proposed to meet the
numerous behavioral equivalences, such as GSOS format,
de Simone format, ntyft/nxyft format, etc. The readers are
referred to Mousavi, Reniers and Groote (Groote, 2007)
for a latest review on the rule formats.

The de Simone language will be employed as our start-
ing point in retrieving the rule formats for the weak para-
metric failure equivalences.

Definition 2.6 (Simone, 1985) Let X be a signature.
A transition rule r is in de Simone format if it has the

i = Yikiel  where 1 C {1, ..., ar(f)} and the
f(xls -~-’xar(f)) —1
variables x; and y; are all distinct and the only variables
occuring in r. Moreover, the target t € T(X) does not
contain variable x; for i € I and has no multiple occurrence
of variables.

Below, two special classes of rules are defined. They
will be discussed in the paper. The first class is the pa-
tience rules, and the second class is the rules with 7-
conclusion.

Definition 2.7 (Aceto, 2001; Groote, 2007) Let
L = (Z,%¥) be a de Simone language, and f
be a function symbol in X. A rule of the form

form

T ’
X; — X, . .
! L withl <i<n

SO ey Xy ooy Xn) = f(X1 ey Xy ey Xp)
is called a patience rule of the ith argument of f.

In the following, a rule is called a plain rule if it is not
a patience rule.

Definition 2.8 (van Glabbeek, 2005) Let £ = (£, V)
be a de Simone language, and f be a function symbol in
Y. An argument i € N of an operator f is active if f has
a rule in which x; appears as left-hand side of a premise.
A variable x occurring in a term ¢ is receiving in ¢ if ¢ is
the target of a rule in which x is the right-hand side of a
premise. An argument i € N of an operator f is receiving

if a variable x is receiving in a term ¢ that has a subterm
f(t, ..., t,) with x occurring in #;.

Then, the set of all arguments Arg of an operator can
be divided into three classes: active arguments Arg,, re-
ceiving arguments Arg, and others Arg,, which is in-
spired by van Glabbeek (van Glabbeek, 2005). Therefore,
Arg = Arg, + Arg, + Arg,.

Similarly, patience rules of an operator can be divided
into three classes. It should be noted that an argument
may be both an active argument and a receiving argument,
ie., Arg, N Arg, # ¢. However for clarity, from now
on, if we say that an argument is a receiving argument,
then it should not be an active argument , i.e., receiving ar-
guments below are only those receiving arguments which
are not active arguments simultaneously. Therefore, Arg,,
Arg, and Arg, will be disjoint.

Definition 2.9 Let £ = (Z,¥) be a de Simone lan-
guage, and f be a function symbol in 2. A rule of the form

H

————— is called a rule with 7-conclusion, if it
f(X1y ooy Xy) —
is not a patience rule and there exists at least one positive
2 literal in H.

An notable example of the rules with 7-conclusion,
which will be used in Section 4.2, is the first transition

rule of the hiding operator in CSP as follows.
@ ’ @ ’
— —
pliA: —L2L p—p
p/A— p'/A p/A— p'/A
Like the definition of a rule with T-conclusion, a transi-
tion rule is a rule with 7-premise iff there exists a positive

a €A a¢A

% literal like 7 - 7 iniits premises. It is trivial that patience
rules are rules with T-premise.

Before concluding this section, we will presume a
small set of operators with default operational semantics:
nil : means the successful termination.

a-X:a‘Xi>X

Xmy: X=X VoV XX
XBHY - X XHY —>Y XHY > X HY
Y 5 Y
XEEY%XEETY' ]
XeY:XeY —X Xov—Y
Xy X=X X—X X>Y -5y

X>V-5X XY XY

where a € Act. Operators H, ®, >> are used to substi-
tute the + operator and the prefixing with 7, because many
weak equivalences may not be preserved under the + op-
erator of CCS. We call this language B (Ulidowski, 2000).

Using these operators, ap + bq, tap +tbp and ap + tbq
can be represented by ap H bg, ap ® bp and ap > bq,
respectively.

3 Weak Parametric Failure Equivalences

Before presenting the formal definitions of the weak para-
metric failure equivalences, two canonical equivalences,
i.e., the weak failure equivalence and the weak impossi-
ble future equivalence, will be introduced. As we will see,
they both are the special cases of the weak parametric fail-
ure equivalences.

Definition 3.1 (0, A) € Act* X P(Act) is a weak failure

pair of process p iff there exists some p’ such that p =

P AANS(P') = 0, where S(p') = {a € Act | p’ =). The
set of all weak failure pairs of process p is called the weak
failure of p, denoted by 7 (p).

Weak Failure Equivalence ~: for any two processes
pand g, p ~; qiff F(p) = F(q).

Definition 3.2 (o, ®) € Act* X P(Act”) is a weak im-
possible future pair of process p iff there exists some p’

such that p SN PPADNT(p) =0, where T (p') =1{0 €

s
Act* | p" =}. The set of all weak impossible future pairs

17



CRPIT Volume 77 - Theory of Computing 2008

18

of process p is called the weak impossible future of p, de-
noted by 77 (p).

Weak Impossible Future Equivalence ~;;: p and ¢
are two processes, p ~;r q iff 77 (p) = IF (q).

As can be seen in the above definitions, the difference
between the weak failure pair and the weak impossible
future pair exists on their second parameters. The second
parameter of the weak failure pair is a set of actions which
cannot be enabled by p’. On the other hand, the second
parameter of the weak impossible future pair is a set of
action sequences which cannot be enabled by p’.

By the above observation, we put forward the defini-
tion on the weak parametric failure equivalences:

Definition 3.3 (o, ®) € Act* X P(Act*) is a weak i-
failure pair of process p iff there exists some p’ such that

p == p' AONT(p,i) = 0, where T(p', i) = {6 € Act" |

s
p’ = A|6] < i}. The set of all weak i-failure pair of pro-
cess p is called the weak i-failure of p, denoted by F (p, i).

Weak Parametric Failure Equivalences ~}: for any

two processes p and g, p ~} qiff F(p,i) = F(q,i).

Also, we will often say that p and g are weak i-failure
equivalent if p ~’f q.

It is trivial that, in this framework, the weak fail-
ure equivalence is the weak 1-failure equivalence and the
weak impossible future equivalence is the weak w-failure
equivalence. In fact, S(p’) = 7(p’,1) and T(p’) =
T, w).

The proposition below says that if p and g are weak j-
failure equivalent with 1 < j < w, then they are also weak
i-failure equivalent for i < j.

Proposition 3.4 Let | <i < j < w, p and g are two
processes. If p ~/ g then p ~j£ q.

Proof By the definition of weak parametric failure
equivalences, p ~} q ifft F(p,j) = F(g,j). Then,
F(p,i) = F(q,i) can be obtained from Definition 3.3,
F(p,j) =7 (g, j)and 1 <i < j < w. Therefore, p ~ q.
(]

Before concluding this section, an alternative charac-
terization of the weak parametric failure equivalences are
to be presented. This alternative characterization will be
useful in obtaining the rule formats.

Proposition 3.5 Let p, g be two processes. For 1 <i <
w, p le q iff

1) for any o € 7 (p,w) and p’ with p = p’, there
exists ¢’ such that g SN q and T (¢',i) €T (p', ), and

2) for any o € 7 (¢,w) and ¢’ with g = q’, there
exists p’ such that p = pand T (p’,i) CT (¢, 0).

Proof (<) It is enough to prove that ¥ (p, i) = ¥ (g, i).
If it is not true, then, without loss of generality, suppose
that there exists some (o, @) € (Act* X P(Act*)) such that
(o, ®) € F(p,i) but (o, D) ¢ F (g, ).

By (o, @) € ¥ (p, i) and the definition of weak i-failure
pair in Definition 3.3, there must exists some p’ such that

p=p ADNT(p,i) = 0.

By p = p’ and the hypothesis, there exists ¢’ such
that ¢ N q and 7(q¢',i) € T(p’,i). Then, from ® N
T(p',i) =0, we have ® N T (¢',i) = 0.

Therefore, there exists ¢’ such that ¢ = g’ and ® N
T(q’,i) = 0, which contradicts with (o, @) ¢ F(q, i).

(=) By the symmetry, we need only prove the first
point. Suppose that o is any trace in 7 (p, w) and p’ is a
process such that p = p’. Let ® = L,—T(p Hwith I,
is the set of all action sequences whose lengthes are not

exceed number i. Then, we have (o, ®) € F(p, Q).
By Definition 3.3, (o, @) € ¥ (g, i). Hence, there exists

some ¢’ such that g = q and ® N7 (q’,i) = 0. By

Figure 1: p and g are weak 1-failure equivalent, but p/{d}
and ¢g/{d} are not weak 1-failure equivalent.

it

Figure 2: p; and g, are weak 2-failure equivalent, but
p1/{d} and ¢, /{d} are not weak 2-failure equivalent.

O = I;” -7 (p’, i), we have (I;'” -7, )NT(q,i)=0.
Therefore, 7 (q¢’,i) C 7 (p’,i). O

4 Intuitive Motivations on Rule Formats

This section gives several representative examples to show
some intuitive motivations on the rule formats of the weak
parametric failure equivalences. However, we do not want
to discuss them from the scratch, only the two critical
points sketched in the introduction are to be mentioned:
the first subsection is to observe the feasibility of adding
rules with 7-conclusion; the second subsection is to in-
spect the necessity of the patience rules for receiving ar-
guments.

It should be noted that, in this section, we mainly con-
cern the intuitive motivations. The results retrieved in this
section will be formally defined and proved in the next
section. Also, as the starting point, we assume the basic
language B which has been introduced in section 2.

4.1 On Rules with 7-conclusion

Let’s see an example in Figure 1 and Figure 2. Firstly, the
two graphs in Figure 1, i.e., p and g, are weak 1-failure
equivalent. However, after hiding d actions, p/{d} is not
weak 1-failure equivalent to g/{d}, which can be seen from
the weak 1-failure pair (a, {c}) € F(g/{d}, 1) but (a, {c}) ¢
F(p/{d},1). If we take the weak 2-failure equivalence
into consideration, we may find that p and ¢ are not yet
weak 2-failure equivalent, because (a, {b,db}) € F(q,1)
but (a, {b,db}) ¢ ¥ (p, 1).

As for the weak 2-failure equivalence, p; and g, the
two graphs in Figure 2, are weak 2-failure equivalent.
However, this equivalence also cannot be preserved after
hiding d actions. In fact, for any weak i-failure equiva-
lence with i < w, a similar counterexample exists. On the
contrary, the weak w-failure equivalence can be preserved
under the hiding operator.

Generalizing to any rules with 7-conclusion, a com-
mon characterization of these rules is that they all con-
sume the observable actions of the subprocesses and pro-
duce 7 transitions at the same time. Therefore, we conjec-
ture that any weak i-failure equivalence with i < w will
probably be broken under the rules with 7-conclusion, but
the weak w-failure equivalence will be preserved.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

fipup)

PG %

(Z]Z
c1 C2 i c2 c2 /K
b b: bs bs
N\

/ 5? bs bs T
b2
/

Figure 3: p; and ¢, p, and ¢, are weak i-failure equiva-
lent for i € N U {w}.

fpup2)

fanq)

a: ai
az a2 az
\ . T 53 \\
b2
/

Figure 4: f(p1, p2) and f(q1, q») are weak 1-failure equiv-
alent but not weak 2-failure equivalent.

S

4.2 Patience Rules for Receiving Arguments

N

Similarly, see an example in Figure 3, Figure
and Figure 5. Consider adding the rules r

(4] ’ (5] ’ b] ,
X] = X, Xp — X, X] — X3
@ = @ > 13 =
fx1, x2) — g(x], x3) g(x1,x2) — h(x2)
b3 ’ by ,
x| — X XX

- , Ty = and their associated pa-
3 . 2 .
h(xy) — nil h(xy) — nil
tience rules for active arguments into language B. Note
that g(x1, x2) has its second argument as a receiving argu-
ment.

Let p1, p2, q1,q> be the processes shown in Figure 3.
It can be easily verified that p, ~} q1 and p; ~} q>.

According to the above rules, we have f(pi,p») and
f(q1,g2) shown in the two graphs of Figure 4. Now,
f(p1, p2) and f(q1, q») are also weak 1-failure equivalent,
ie., f(p1,p2) ~J1, f(q1,q2). Therefore, It seems that pa-

tience rules for receiving arguments are not prerequisite
for the weak 1-failure equivalence.

When it turns to the weak 2-failure equivalence, we
also have p; ~f, g1 and p, ~3, ¢». However, f(p1,p2)

and f(qi1,q») are not weak 2-failure equivalent yet, be-
cause (a1, {aybs}) is a weak 2-failure pair of f(p;, p») but
not a weak 2-failure pair of f(q;, g2). Hence, the weak 2-
failure equivalence is not preserved under the above rules.
However, if we further add patience rule for the second
argument of g(xj, x,) into language B, then f(p,, p>) and
f(q1,q>) is the two graphs in Figure 5. Now, it can be eas-
ily verified that f(pi, p2) ~12, f(q1,q2). Therefore, adding

the patience rules for receiving arguments may preserve
the weak 2-failure equivalence.

In fact, we will assert, in the next section, that the pa-
tience rules for receiving arguments are prerequisite for
the weak i-failure equivalence with i > 1, but, they are not
necessary for the weak 1-failure equivalence.

fanq)

ai

az az
i \ b5
™,

T

b2

Figure 5: f(p1,q1) and f'(p2, q2) are weak 2-failure equiv-
alent.

5 Rule Formats for Weak Parametric failure Equiv-
alence

After the intuitive observations in the preceding section,
we will, in this section, present formally the rule formats
for the weak parametric failure equivalences. In fact, as
stated in the introduction, we will present three different
rule formats: weak 1-failure format for the weak 1-failure
equivalence, weak finite failure format for the weak i-
failure equivalence with 1 < i < w and weak w-failure
format for the weak w-failure equivalence.

5.1 Formal Definitions on the Rule Formats

The de Simone language is employed as our starting point
in retrieving the rule formats for the weak parametric fail-
ure equivalences.

Definition 5.1.1 A de Simone language £ is in weak
1-failure format if

1) patience rules are the only rules with 7-premises,

2) patience rules for active arguments are prerequisite,

3) rules with 7-conclusion are not permitted.

Following it, the weak finite failure format is:

Definition 5.1.2 A de Simone language £ is in weak
finite failure format if

1) patience rules are the only rules with T-premises,

2) patience rules for active arguments and receiving ar-
guments are all prerequisite,

3) rules with T-conclusion are not permitted.

Then, the weak w-failure format for the weak w-failure
equivalence is to be presented.

Definition 5.1.3 A de Simone language £ is in weak
w-failure format if

1) patience rules are the only rules with T-premises,
and

2) patience rules for active arguments and receiving ar-
guments are all prerequisite.

It should be pointed out that the exclusion of rules with
7-conclusion and the allowance of dropping the patience
rules for receiving arguments are not two separated re-
strictions. In fact, to obtain the effect of the allowance
of dropping the patience rules for receiving arguments in
the weak 1-failure format, the exclusion of rules with 7-
conclusion is a precondition. We will prove this conclu-
sion in Lemma 5.3.5.

Below, we will study the relations between the above
three rule formats. To fulfil this purpose, we need to define
the “tighter than’ relation between rule formats.

Definition 5.1.4 Let A and B be two rule formats. A is
tighter than B iff, for any languages £ = (£, ¥) in format
A, all transition rules in ¥ are also in format B. Moreover,
A is strictly tighter than B iff A is tighter than B and there
exists some languages £ = (Z,¥) in format B such that at
least one of the transition rules in ¥ are not in format A.

Theorem 5.1.5 The weak 1-failure format is strictly
tighter than the weak finite failure format and the weak
finite failure format is strictly tighter than the weak w-
failure format.

19



CRPIT Volume 77 - Theory of Computing 2008

20

Proof Comparing Definition 5.1.1 and Definition
5.1.2, patience rules for receiving arguments are not yet
necessary for weak 1-failure format. Therefore, for any
languages £ in weak 1-failure format, its transition rules
will also be in weak finite failure format. Likewise, Defi-
nition 5.1.2 and Definition 5.1.3 are only different on the
rules with 7-conclusion. Therefore, after refusing all rules
with 7-conclusion, any languages £ in weak finite failure
format will have its transition rules in the weak w-failure
format.

The strictness between weak 1-failure format and weak
finite failure format can be witnessed by the languages in
Section 4.2. introducing the patience rules for receiving
arguments, it is a weak finite failure language. However,
patience rules for receiving arguments are not in weak 1-
failure format. The strictness between weak finite failure
format and weak w-failure format can be witnessed by in-
troducing the hiding operator of CSP into any weak w-
failure language. The obtained languages are still weak
w-failure languages. However, one of transition rules of
hiding operator is not in weak finite failure format. O

5.2 Ruloids And Ruloid Theorems On The Two For-
mats

Ruloids and the ruloid theorem originated from the works
of Bloom (Bloom, 1995, 1990) for the GSOS format. In
this section, we will introduce the ruloids and the ruloid
theorem for the weak w-failure format. And the ruloids
and the ruloid theorem for the other two formats can be
retrieved in the same way. The ruloid theorems will be
useful for the proving the congruence theorems in the next
three subsections.

For a language £ = (Z,¥) in the weak w-failure for-
mat, the ruloids Z(C, a), for a context C of n holes and an
action a, are a set of expressions like the transition rules:

o
{xi = xl}ier

C(X1soir Xn) = D1, coer V)

(D

such that y; = x] fori € I and y; = x; for i ¢ I, where
I € {1,2,...,n}. These expressions characterize all possi-
ble behaviors of the context C in the language.

It should be noted that context D does not need to have
exactly n holes. In fact, after leaving out the copying oper-
ation in the de Simone format (the weak w-failure format
is a subformat of the de Simone format), the number of the
holes of D should be less than or equivalent to n. But for
convenience, in form (1), we still write it as D(yy, ..., y,,).

Furthermore, two properties are needed to be imposed
on Z(C,a), we call them soundness property and com-
pleteness property, by a little abusing the terminologies.

Definition 5.2.1 Let £ = (X, V) be a language in the
weak w-failure format, and C(xy, ..., x,) be any context of
n holes in L. A set Z(C, ) of ruloids of form (1) are
ruloids of context C and action «, with @ € Act U {1}, iff

1) Soundness. Let r € Z(C, @) be a ruloid of form

(1). If T is a closed X substitution such that T(x;) % Cx)
for all i € I, then there must exist a context D such that

LC(XL wees X)) > TDG, e V) o
2) Completeness. Let C be any closed X substitution. If

C(C(x1y ey X)) (—Y>, then there must exist a ruloid » of form

(1) in ruloids Z(C, @), and T(x;) — for all i € I.

Below, we will present a strategy to retrieve the ruloids
of context C and action «, and then prove that the obtained
ruloids satisfy the above two properties, which form the
ruloid theorem.

Strategy 5.2.2 Let £ = (%,¥) be a language in the
weak w-failure format. C(xy,...,x,) is any context of n
holes in £ and a € Act U {t} is an action.

1) If C € V, ie., C is a variable, then Z(C,a) =
@

7
X = X ).
R

X=X

2)If C = f(xy,...,x,) with f € X and ar(f) = n, then
Z(C,a) = (f,a), where (f, @) denotes the set of all rules
in ¥ whose source is f(x, ..., X,) and output is a.

3) If C is any context. We can rewrite C(xy, ..., X,) as
f(C[X1], ..., Cu[Xin]), where f € X and ar(f) = m. Note
that X, N X; = O with 1 < i,j < mandi # j. Without
loss of generality, we may suppose that X; = x;jXp...Xim,
for C; is a context of m; holes. Now, let » be any ruloid
of form (1) in (f, @) and Z(C;, a;) be ruloids of context C;
and action ¢; retrieved by induction on this strategy. Then,
any ruloids in Z(C, @) can be obtained by the following
steps:

i) pick out randomly from Z(C;, «;) a rule r;, for all
1el;

ii) substitute the variables x; in r; with x;;, for all 1 <
J<mg;

iii) substitute x; it x; in the premise of r with ante(r;),
foralliel.

4) Z(C, a) is the set of all possible ruloids that can be
retrieved from step 3). O

Theorem 5.2.3 Let £ = (X,'¥) be a language in the
weak w-failure format, and C(xy, ..., x,,) be any context of
n holes in L. The set of ruloids Z(C, «) obtained from the
Strategy 5.2.2 are ruloids of context C and action o with
a € Act U {71}.

Proof First, the obtained ruloids Z(C, @) of context
C and action « are all in form (1), which can be easily
retrieved from the construction procedure in the Strategy
5.2.2.

Second, the obtained ruloids Z(C, @) of context C and
action « satisfy the soundness property. Let r € Z(C, )
be a ruloid of form (1), where C is a context of n holes and
a € ActU{t} is an action. T is a closed X substitution such

that T(x;) X C(x}) for all i € 1. Make an induction on the
context C.

i) if C € V, then, without loss of generality, suppose
C = x. The soundness property is trivial from Z(C, ) =

a
{)C—>X }
a

X —> X

i) if C = f(xy, ..., x,), then Z(C, @) = (f,@). There-
fore, the soundness property is guaranteed by the transi-
tion rules;

iii) if C is any context of n holes, then, from the strat-
egy, there exist contexts Ci[Xi], ..., C;y[Xin] such that, af-
ter substitution, ante(r;) is a part of the premise of r for
1 < i £ m, where r; € Z(C;, ;). Now, by the hy-
pothesis, C is a closed X substitution making all premises
of r enable. Hence, cons(r;) is enabled, which means
that C;[X;] — D;[¥;] for all 1 < i < m. Further-
more, C is rewritten as f(C[X1], ..., Cu[X;n]). Therefore,
the transition rules in (f, @) guarantee the enableness of
C(X1, oy Xp) .

Third, the obtained ruloids Z(C, @) of context C and
action a satisfy the completeness property, which can also
be easily retrieved from the construction procedure of the
Strategy 5.2.2. O

As we can see that, for a ruloid of form (1), its premises
need not include all x; for 1 < i < n. However, we can add

X; 5 x;, for i € {1,...,n}\, into the premises, as in the
form (2). And form (1) and form (2) are equivalent when
any closed X substitution T is applied on them. In this

case, C(x;) 5 C(x}) denotes that subprocess {(x;) executes
no transition.
@; €
{x; = xYier{X = X i1, mpu @
(07
Clxy, ooy X) = D1, - Yn)




Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Like the definitions on the transition rules, we can also
define the patience ruloids and ruloids with 7-conclusion.

Theorem 5.2.3 Let £ = (X,¥) be a language in the
weak w-failure format, and C(xy, ..., x,) be any context of
n holes in L. The set of ruloids Z(C, @) obtained from
the Strategy 5.2.2 is the ruloids of context C and action «
satisfies a € Act U {1}.

Proof Firstly, the obtained ruloids Z(C, @) of context
C and action « are all in form (1), which can be easily
retrieved from the construction procedure in the Strategy
5.2.2.

Secondly, the obtained ruloids Z(C, @) of context C
and action a satisfy the soundness property. Let r €
Z(C, @) be a ruloid of form (1), where C is a context of
n holes and @ € Act U {1} is an action. T is a closed

substitution such that T(x;) X C(x) foralliel.

i) if C € V, then, without loss of generality, suppose
C = x. The soundness property is trivial from Z(C, @) =
(L),

x> x

i) if C = f(xy, ..., X,), then Z(C, @) = (f, ). There-
fore, the soundness property is guaranteed by the transi-
tion rules;

iii) if C is any context of n holes, then by
Strategy 5.2.2, C(xi,...,x;,) can be rewritten as
f(Ci(Xy), ..., Cin(X,,)) for some operator f € X and
ar(f) = m, and ante(r) consist of anti(ry), ..., ante(r,),
where r; € Z(C;, ;) for all 1 < i < m. By the assumption
of the soundness property that ante(r) is enabled in closed
¥ substitution C. Therefore, by the induction hypothesis,
cons(ry), ...,cons(ry,) are all enabled in L. This means
that G(Ci(X))) —= (DY) for all 1 < i < m. In fact,
cons(ry), ..., cons(ry) constitute ante(f). Still by the
induction hypothesis on operator f, the transition rules in
(f, @) guarantee the enableness of C(xy, ..., x,) 5,

Last, the obtained ruloids Z(C, «) of context C and
action « satisfy the completeness property, which can also
be easily retrieved from the construction procedure of the
Strategy 5.2.2. O

As we can see that, for a ruloid of form (1), its premises
need not include all x; for 1 < i < n. However, we can add

X; 5 x;, for i € {1,...,n}\I, into the premises, as in the

form (2). In this case, C(x;) 5 C(x}) denotes that subpro-
cess C(x;) executes no transition.

Trv— Q
C('x17 b4 'xn) - D(yl’ A4 yn)

The € transition will not be added to the TSS. In fact, a
TSS is a pair (£, V), where X is a set of function symbols
and YV is a set of transition rules assigned to the function
symbols. Therefore, even no ruloids are in the TSS.

The introducing of € transition is to substitute the ru-
loids of form (1) with the ruloids of form (2), since these
two forms are equivalent when any closed X substitution
C is applied. In fact, we want to express a viewpoint that,
for any ruloid r, it should have two different but equivalent
forms, i.e., form (1) and form (2).

For the equivalence between form (1) and form (2), we

want to take an example to show it. Let x; N x} be any

e-premise in some ruloid r. In fact, it denotes that, when
ruloid r is applied in some X substitution T, subprocess
C(x;) is not fired at all. Also, if the form (1) of r is applied,
the same results are retrieved.

The introducing of € transitions and thus form (2) will
make Lemma 5.3.1 and its proof prone to be compre-
hended. In Lemma 5.3.1, we will see that, in the weak w-
failure languages, when process C(pj, ..., p,) evolves into
C’(p1, ..., p,) by applying a ruloid and produce a transition
(observable action or 7 transition), each subprocess p; will

also evolve into p; and produce a transition (observable
action, T transition or € transition).

Based on the ruloids and the ruloid theorem, we may
restate several classes of rules, which have been defined
previously, with the notion of ruloids. And, they will be
more intuitive and prone to be used in the following.

The first class of rules which we concern is the patience
rules. As their counterparts, the definition of patience ru-
loids is as follows.

Definition 5.27.4

Xi — X

A ruloid of the form

withl <i<n

C(X1y eey iy eey Xp) = C(X1yeees X}y ey Xy)
is called a patience ruloid of the ith argument of the
context C.

In the following, a ruloid is called a plain ruloid if it
is not a patience ruloid. Similar to the division in the pa-
tience rules, we also need to divide the patience ruloids
into three classes, i.e., patience ruloids for active argu-
ments, patience ruloids for receiving arguments and pa-
tience ruloids for other arguments.

In fact, Strategy 5.2.2 has already provided a canoni-
cal way to retrieve this division. Let £ be a de Simone
language and C be any context of n holes in it.

1) If only adding the patience rules for active argu-
ments into the language, then, after using Strategy 5.2.2,
the patience ruloids in Z(C, 1) are patience ruloids for ac-
tive arguments.

2) If further adding the patience rules for receiving
arguments into the language, then, after using Strategy
5.2.2, the patience ruloids in Z(C, 1) are patience ruloids
for active arguments and receiving arguments. Therefore,
getting rid of the patience ruloids for active arguments, we
can obtain the patience ruloids for receiving arguments.

This division is obtained indirectly from Strategy 5.2.2
and patience rules, and thus it is hard to be used in the
following. Here, we will propose another division which
is directly based on the arguments of a context.

Definition 5.2.5 Let £ = (X,¥) be a weak w-failure
language, and C be any context of n holes. The ith argu-
ment of the context C is active if there exists a plain ruloid
r of form (1) in Z(C, 7) such that x; appears as left-hand
side of a premise. The ith argument of the context C is
receiving if it is not active and there exist another con-
text D and a plain ruloid r of form (1) in Z(D) such that
C(x}, ...,x;) appears as the target of r and x; appears as
right-hand side of a premise.

Below, we will prove that these two divisions are in-
deed equivalent, i.e., a patience ruloid of some context C
is a patience ruloid for active (resp. receiving, other) argu-
ment obtained from Strategy 5.2.2 and patience rules iff
it is a patience ruloid for active (resp. receiving, other)
argument defined by Definition 5.2.5.

Proposition 5.2.6 The division defined by Definition
5.2.5 is equivalent to the division obtained from Strategy
5.2.2 and patience rules.

Proof (<) Let £ = (£,V) be a de Simone language,
and C be any context of n holes.

If only adding the patience rules for active arguments
into the language, we need to prove that each active ar-
gument of the context C defined by Definition 5.2.5 has a
patience ruloid. We will prove by making an induction on
the context C and Strategy 5.2.2.

1) If C € Vor C € %, then it can be easily obtained
from Strategy 5.2.2 and Definition 2.8.

2) If C is any context, then it can be rewritten as
f(Ci(X1), ..., Cy(Xy)). Assume that contexts Cy,...,Cp,
satisfy that each active argument has a patience ruloid.

3) We need to prove that each active argument of C de-
fined by Definition 5.2.5 has a patience ruloid. Suppose
that the ith argument of C is an active argument. Then,
by Definition 5.2.5, there exists a plain ruloid » of form
(1) in Z(C, 1) such that x; appears as left-hand side of a
premise. By Strategy 5.2.2, x; must appear as left-hand

21



CRPIT Volume 77 - Theory of Computing 2008

22

side of a premise of some context. Without loss of gen-
erality, assume that x; is the kth argument of the C;. By
the induction hypothesis, the kth argument of C; is active
and thus has a patience ruloid. Also by Strategy 5.2.2, the
Jjth argument of functor f is active and thus has a patience
ruloid. Therefore, we have that the ith argument of C has
a patience ruloid by Strategy 5.2.2 and the above two pa-
tience ruloids for C; and f, respectively.

If further adding the patience rules for receiving argu-
ments into the language, we need to prove that each re-
ceiving argument of the context C defined by Definition
5.2.5 has a patience ruloid. Assume that the ith argument
of context C is receiving. Then, by Definition 5.2.5, there
exist another context D and a plain ruloid r of form (1) in
Z(D) such that C(x1, ..., x;) appears as the target of r and
x; appears as right-hand side of a premise. We will prove
by making an induction on context C and Strategy 5.2.2.

1) If C € Vor C € %, then, by Definition 2.8, the ith
argument of C is receiving. Therefore, it should have a
patience rule by the hypothesis. By Strategy 5.2.2, each
patience rule is also a patience ruloid.

2) If C is any context, then it can be rewritten as
f(Ci1(Xy), ..., Cin(Xyn)). Assume that contexts Cy,...,Cy,
satisfy that each receiving argument has a patience ruloid.

3) We need to prove that the ith argument of C de-
fined by Definition 5.2.5 has a patience ruloid. By Strat-
egy 5.2.2, x; must appear as right-hand side of a premise
of some context. Without loss of generality, assume that
x; is the kth argument of the C;. By the induction hypoth-
esis, the kth argument of C; is receiving or active and thus
has a patience ruloid. Also by Strategy 5.2.2, the jth ar-
gument of functor f is receiving or active and thus has a
patience ruloid. Therefore, we have that the ith argument
of C has a patience ruloid by Strategy 5.2.2 and the above
two patience ruloids for C; and f, respectively.

(=) It is trivially true since, according to Strategy
5.2.2, each rule is also a ruloid. That is to say, we may first
obtain the division on patience rules from the division on
patience ruloids in Definition 5.2.5, and then using Strat-
egy 5.2.2 to obtain the division from Strategy 5.2.2 and
patience rules. O

The second class of rules is the rules with T conclusion.
Likewise, we may define the ruloids with 7 conclusion as
their counterparts.

DeﬁnitionH 527 A ruloid of the form

is called a ruloid with

C()C], ey .Xn) ;> D(}’l, o0y )’n)
7-conclusion, if it is not a patience ruloid and there exists
at least one positive X literal in H.

Also, we want to show that the exclusion of rules with
7-conclusion is equivalent to the exclusion of ruloids with
T-conclusion.

Proposition 5.2.8 Let £ be a weak w-failure language,
and C(xy, ..., x,) be any context of n holes. If no rule with
T-conclusion is allowed, then no ruloid with T-conclusion
can be in Z(C, 1), and vice versa.

Proof This can be easily obtained from a fact that, by
Strategy 5.2.2, the output of any ruloid is in fact the output
of some rule. O

5.3 Weak 1-Failure Format for Weak 1-Failure
Equivalence

In this subsection, several necessary lemmas are to be pre-
sented and the usage of them to prove the congruence the-
orems in the following three subsections has been listed
in Table 1. The symbol +/ in the table denotes that some
lemma is to be used in the proof of the congruence theo-
rem for the corresponding format. For example, the con-
gruence theorem for the weak w-failure format needs the
first three lemmas, i.e., Lemma 5.3.1, Lemma 5.3.2 and
Lemma 5.3.3.

The following lemma states that, in the weak w-failure
languages, any weak trace of a composite process may be

Table 1: The Usage of Lemmas in Section 5.3 in Proving
the Congruence Theorems

format\ Lemma 53.1 532 533 534 535

3.
1-failure format v v v v
finite failure format v v v v
vV N

w-failure format

decomposed into weak traces of its subprocesses. Besides,
this lemma also holds in weak finite failure languages and
weak 1-failure languages.

Lemma 5.3.1 Let £ = (Z,¥) be a weak w-failure lan-
guage, and C(xy, ..., X,,) be any context of n holes. Sup-
pose that T is any closed ¥ substitution mapping x; into
pi. If o is a trace in 7 (C(py, ..., pn), w), then, for all
1 <i < n, there is a trace o; in 7 (p;, w) such that, when

o loa]
C(p1, ..., pn) = C'(p}, ..., Py), We have p; = pi.
Proof Since C(p, ..., pn) = C'(p}, ..., py), we have

C(Prsees Pn) = Co(P10s s Pu0) — CiPi1s s Pu1) —
2 Co(Pims wees Pam) = C' (D5 s p), Where V1 < j <
m: a; € ActU{t} and 0’ = «aj...cr, is equivalent to o if
all its 7 transitions are omitted.

We will prove this lemma by making an induction on
the length of o'.

1) 0’| = 1. Let 0’ = a. By the completeness prop-
erty of the ruloids, there should be a ruloid of form (1)

in Z(C,a), and p; 2 forall i € I. As is shown be-
fore that, we have a ruloid of form (2) corresponding

with form (1). Therefore, there exist p; = p; for all
i € Iand p; — pforalli € {l,..,n} -1, ie., when
C(p1y s Pu) = C’(p}, ..., py), we have p; = p; for all
ieland p; ; p;forallie{l,..,n} -1

2) Assume that, when |o7| = m — 1 with m > 1, if

o is a trace in 7 (C(py, ..., pn),w) then, for all 1 < i <
n, there should be a trace o; in 7 (p;, w) such that, when

o o ,
C(p1,.... pn) = C'(p}, ..., py), We have p; = pi.
3) For 0’| = m, suppose that C(pi,..,p,) =

0% 0% A
Co(Pi0s s Pr0)  —>  Ci(Pits oo Pu1)  — .
Cm(plm, L) an) =

C'(p},..-p,). By the induction
hypothesis, when C(py,...,pn) = Co(pi0s - Pro) N

a? A1
Ci(pi1s s Pn1) — oo — Cpt(P1m=1)» > Prm=1)) =

o}
C"(p{,...py), we have p; = p/.
C"(pYs.sp))

@,
CoPims oos Pom) = C' (P}, ... py), We have p!’ = pl.
Therefore, when C(p1, ..., pn) = C'(p}, ... Py), We have

Now, when
A

Cr1(P1gn=1)» > Pn(m=1)) =

"oy
T Oy

pi = p: O

The following lemma states that, in the weak w-failure
languages, the weak trace equivalence will be preserved
and the composite processes can reach the same contexts
after same weak traces. The definition of weak trace
equivalence is that: two processes p and g are weak trace
equivalent, denoted as p ~; ¢, iff they have the same
set of weak traces, i.e., p ~; q iff T(p,w) = T (q,w).
This lemma also holds in weak finite failure languages and
weak 1-failure languages.

Before that, we need one more definition on delay pro-
cesses. Suppose that o € 7 (p,w) for some process p,

then delay processes of p =2 are those satisfying that 1)
if |o| = 0, then p itself is the delay process, and 2) if



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

lo| > 1, then let ¢ = ¢0’a and delay processes are those

processes p’ such that p =4 .

Lemma 5.3.2 Let £ = (Z,¥) be a weak w-failure lan-
guage, and C(x, ..., x,) be any context of n holes. Suppose
that € and § are any two closed X substitution mapping x;
into p; and g, respectively. If forall 1 <i < n, p; ~; q;,
then

1) for any trace o € 7 (C(py, ..., pu), ) and some con-

text C’ such that C(p1, ..., pn) = C'(p}, ..., p,), there ex-

ist g}, ..., q,, such that C(qy, ..., ¢») = C'(q}, - q)), and
2) if there exists a patience ruloid for the ith argument

T
of context C’ then g; can be any process such that g; =
q;, and if there does not exist a patience ruloid for the ith
argument of context C’ then g; can be any delay processes

of g; é where o7; is obtained by decomposing o into the
weak traces of subprocess p;.
Proof Suppose that o is a trace of C(py, ..., pn), and

C(pis.es Pn) = C'(p},....py). By Lemma 5.3.1, when
C(P1s s pa) = C' (P, ..., pl), We have p; = p! for all
1 < i < n. Then, by p; ~, g;, we have g; = for all
1<i<n.

For C(py,...., pn)

a 0%

C(P1y s P) = Co(P10s s Pu0) —> C1(Pits s Pu1) —

A ’ ’ ’ .
o = Co(P1ms oo Pam) = C'(p}, ..., p;), where V1 < j <
m: aj € Act U{t} and 0’ = a...a,, is equivalent to o if
all its 7 transitions are omitted.

Suppose that the sequence of plain ruloids applied in

the above procedure is r;7;...r¢. It is enough to show that
C(qi, ..., qn) can also apply ruloids rr,...r; in the same or-

= C'(p},....py), we have

o
der, and C(g1, ..., ) = C'(q}, ..., q;,) for some ¢, ..., q;,.
Furthermore, if there exists a patience ruloid for the ith ar-
gument of context C’ then g} can be any process such that

Ti . . . .
qi = ¢;, and if there does not exist a patience ruloid for
the ith argument of context C” then ¢ can be any delay

processes of g; =
We will prove it by making an induction on k.
1) k = 0. Then, C = C’ and only patience ruloids

are applied when C(py, ..., pn) = C'(p},.... py) and thus
o=71".ByLemma5.3.1,0; = t" forall 1 <i < n. There-

. T
fore, there must exist g, ..., g;, such that C(qy, ...,q,) =
C'(q}, ..., qy) since an extreme 'possibiliFy is that qi = q. for
all 1 <i < n. Now, if there exists a patience ruloid for the
ith argument of context C’ then ¢; can be any process such

that g; SN g; by the soundness property of ruloids and
the definition of patience ruloids. On the other hand, if
there does not exist a patience ruloid for the ith argument
of context C’ then ¢ can be g;.

2) Assume that, when k = m — 1 with m > 1, the above
statement holds.

3) For k = m, suppose that, C(pi,..., pn) =

s
c’(py,...py) and C"(p},...py) = C'(p},...p)).
where the first k — 1 plain ruloids of rir,...r; are applied

when C(pi, ..., p,) = C"(p//,...,p}/) and the kth plain

s
ruloid are applied when C”(p{, ..., p;/) = C'(p}, ..., p;)-
By Lemma 5.3.1, there exist o, 6; forall 1 < i < n

such that p; = p; and p? % p;- By pi ~: qi, we have

06
qi —.

Then, by the induction hypothesis, C(qj,...,q,) can
also apply the first k—1 ruloids and reaches C" (g7, ..., q),).
Moreover, if there exists a patience ruloid for the ith argu-
ment of context C” then g}’ can be any process such that

Ti . . . .
gi = ¢, and if there does not exist a patience ruloid for
the ith argument of context C” then ¢}’ can be any delay

process of g; =,
Furthermore, for all 1 < i < n, let ¢ be any delay

process of g; = such that qi AN q’ é There always
exists a such g} since g; g

Suppose that the kth ruloid ry is in form (1). Then,
by the definition of the weak w-failure format, all argu-
ments in / have corresponding patience ruloids since they
are all active arguments of C”” by Definition 5.2.5. There-
fore, by the soundness property of the ruloids, we may
apply the patience ruloids for the arguments in / and ob-

117 117

tain C"(q//, ... ) = C"(g}’,...q"), such that " = q

ifi ¢ I and q” i if i € 1. Then, also by the sound-
ness property of the ruloids, ruloid r; will be applied and

o .
C//(q/l//’.“, q;l//) — C’(q/llll,“., q’/‘[///)’ Where ql/'/// = q’II lf

i ¢ Iand g” is any process satisfying g;” N q;"" if
iel
Now, we can see that g
Tid;
=2
Finally, if there exists a patience ruloid for the ith argu-
ment of context C’ then ¢’””” may evolve into any process

i

11
i

is indeed a delay process of

11y
i

g; such that g = q; and thus g} may be any process

;i .
such that g; = ¢;. On the other hand, if there does not ex-
ist a patience ruloid for the ith argument of context C’ then

117

let g} be g;’”, and thus g’ is any delay process of g; g O

As a strengthened results of the above lemma, Lemma
5.3.3 below will show that, in weak finite failure languages
and weak w-failure languages, if the ith argument is nei-
ther an active argument nor a receiving argument, i.e., is
an other argument, then g; can be g; or any process such

that g; = g;. Though we only prove this lemma in weak
w-failure languages, it also holds in weak finite failure lan-
guages.

Lemma 5.3.3 Let £ = (Z,¥) be a weak w-failure lan-
guage, and C(xy, ..., x,) be any context of n holes. Suppose
that C and § are any two closed X substitution mapping x;
into p; and g;, respectively. For all 1 < i < n, p; ~ ¢,
and thus for any trace o € 7 (C(py, ..., Pn), w) and some

context C’ with C(py, ..., pn) = C'(p}, ..., py), there exist

q;, ---» g, such that C(qi, ..., q,) = C'(q}, - qy)- Now, if
the ith argument of C” is an other argument, then g; can be

g; or any process such that g; — q..
Proof Like the proof of Lemma 5.3.2, suppose that
the sequence of plain ruloids applied in the procedure

o .
C(p1s e Pn) = C'(plser Pp) 1S F1T2. T
We will prove it by making an induction on k.
1) k = 0. Then, C = C’ and only patience ruloids

are applied when C(py, ..., pn) = C'(p), ..., py) and thus
o = 7*. In this case, we can let g} be g; if the ith argument
of C’ is an other argument.

2) Assume that, when k = m—1 with m > 1, the lemma
holds.

3) For k = m, suppose that, C(pi,..,p,) =
C"(p{,...py) and C"(p{,...p)) =é> C' (P}, PO)s
where the first k — 1 (Plain ruloids of ryr,...r; are applied
when C(py,...,p,) = C”(p{,...,p;) and the kth plain
ruloid are applied when C”(pY, ..., p;)) :6> C'(pys s DY)-

However, observe that the ith argument of C”” cannot
be in set / of ruloid ry. Or else, the ith argument of C” will

23



CRPIT Volume 77 - Theory of Computing 2008

24

be at least a receiving argument by Definition 5.2.5. We
separate it into two cases:

i) If the ith argument of C” is an active argument or a
receiving argument, then it has a patience ruloid since the
language £ is a weak w-failure language. Therefore, by

Lemma 5.3.2, g; can be any process such that g; g q.
with 6; = 7.

ii) If the ith argument of C” is an other argument, then,
by the induction hypothesis, g can be g; or any process

such that ¢; — q;. Now, since L is a weak w-failure
language, no patience ruloid for the ith argument of C”
and the ith argument of C’. Therefore, ¢; is just ¢/, and

thus ¢/ can be g; or any process such that g; = q;. Then,

by 6; = 7, g/ can be g; or any process such that g; gl q;.
O

Note that, the above lemma does not hold in weak 1-
failure languages since patience ruloids for receiving ar-
guments are needed when proving it. Therefore, it will
not be used when proving the congruence theorem for the
wean |-failure format.

The following lemma shows that, in a weak finite fail-
ure language, if a process executes an action sequence
(weak trace) with length k, then, at the same time, all the
lengthes of the action sequences executed by its subpro-
cesses may not exceed k. This lemma also holds in weak
1-failure languages.

Lemma 5.3.4 Let £ be a weak finite failure language.
C(xy,...,x,) is any context of n holes in L. Suppose
that T is any closed X substitution mapping x; into p;.
If C(py,...,pn) is a process and o is a weak trace of
C(p1, ..., pn), then each p; will execute a weak trace o;
at the same time, for 1 < i < n. We can conclude that
V1 <i<n:|oj <kwhen|o| =k.

Proof By Lemma 5.3.1, if C(py, ..., p,) is a process and
o is a weak trace of C(py, ..., pu), then each p; will execute
a weak trace o7; at the same time. We also need to prove
that |o;| < k when |o| = k.

We will prove it by making an induction on |o7| = k.

1) k = 0. Then, C(p1,....,pn) = C'(p},..., py). By
the definition of the weak w-failure format, the ruloids ap-
plied in this procedure can only be patience ruloids or ru-
loids with 7 conclusion. By the hypothesis, no rules with
7 conclusion are present in £, and thus, by Proposition
5.2.8, no ruloids with 7 conclusion are present in Z(C, 7).

Therefore, when C(py, ..., pn) N C’(p}, ..., py), only pa-
tience ruloids are applied. However, from the definition of
patience ruloids and its corresponding ruloids in form (2),

Di —T>pl’. or p; L>p: forall 1 <i<n. And || = ¢/ = 0.
2) Assume that, when k = m — 1 with m > 1, we have
|oi| < k when |o| = k.

3) For k = m, let 0 = o’a. Then, we have

Cproaep) > CWeep) = (Pl
Extending it, we obtain that C(py,..., pn) é
C'(Pl Pl - CUPLLpl) D PP )
C'(ps s DY)-

B}I/ Lemma 5.3.1; for all 1 < i < n, there exist p; ;

g a; i ,
P = p; = p; = pi.

It is trivial that |0’'| = m — 1. Therefore, by the in-
duction hypothesis, we have || < m — 1. Also, when

C" (P}, pl) — C'(pl,.pl) and C2(p3, ... p2) —
C'(p}, . pp)s IT*| = 0. Therefore, by the induction base,
we have |o}| = |o?| = 0. Furthermore, |a;| < 1 can be
obtained by the ruloids of form (2).

Inall, |oy| < k when |of| = k. O

The following lemma shows that, in weak 1-
failure languages, process C(pi,..., Pir...,Pn) and
C(p1, ..., P}, ..., Pn) have the same sets of next observable

. . T . .
actions if p; — p;} and the ith argument is not an active
argument.

Lemma 535 Let £ = (X,¥) be a weak 1-
failure language, and C(xy, ..., x,) be any context of n
holes. Suppose that T is any closed X substitution
mapping x; into p;,. If the ith argument is not an

active argument of C(xy,...,x,) and p; N p;, then
T(C(p1, s Pis o P)y 1) = T(C(P1s s P oovs Pu)s ).
Proof Without loss of generality, suppose that p =
C(p1,..-pis .., pn) and g = C(py, ..., p}, ..., pn), where C is
any context of n holes in the language L. Let A} = {a €

Actlp é} and Ay = {a € Actlp =a>}. We need to prove
A = A,. Consider the next ruloid which will be applied.
1) If the next ruloid is a patience ruloid, then it should
be a patience ruloid for active argument, since £ is a weak
1-failure language. However, applying the patience ruloid
will not produce observable actions for C(pj, ...pi, ..., Pu)
and C(p1,...,p},...,pn)- Because the ith argument is

not an active argument, C(pi,...pi, .., Pjs-ees Pp) SN

.
C(p1,..-pi» ...,p}, v Pp) @nd C(p1, ...Pls ooy Pjs oves Pp) —
C(pl,...pl'.,...,p’i,...,pn) when the jth argument of con-

text C is an active argument and p; SLIN p}. Now, it is
enough to consider the set of next observable actions of

C(p1,..-pi» ...,p;, .., Pn) and C(py, ...p;}, ...,p;, wees P

2) If the next ruloid is a plain ruloid, then it should not
be a ruloid with 7 conclusion, since £ is a weak 1-failure
language. Suppose that the applied ruloid r is in form (1),
then the ith argument is not in / since it is not an active
argument. Therefore, by the soundness property of the
ruloids, the p; will not be fired when applying the ruloid r.
Furthermore, since p and g are only different in p; and p/,
we have A| = A,. O

5.4 Weak 1-Failure Format for Weak 1-Failure
Equivalence

Now, we will prove the congruence theorem for the weak
1-failure format.

Theorem 5.4.1 The weak 1-failure format is a congru-
ence format for the weak 1-failure equivalence.

Proof It is enough to prove that if V1 < j < n :
P ~} g; then C(p1, ..., pn) ~} C(q1,...,qn), where C
is any context of n holes in a weak 1-failure language
L. By the symmetry of the alternative characteriza-
tion of weak 1-failure equivalence in Proposition 3.5, we
only need to prove that if V1 < j < n : p; ~} qj,

then, for any o € 7(C(p1, ..., pn), w) and C'(p}, ..., p;)

with C(p1, ..., pn)
C'(q},....q,) such that C(qi,...,q,) = C'(q},....q;)
and 7(C'(q},.--q,),1) S T(C'(p},....,p,),1). Ob-
serve that, though it needs only there exists some
C"(qY,....q)) such that C(qy,...,q,) = C"(q},....q;)
and 7(C"(q,....q,), 1) < T(C'(p},..., py), 1), we will
prove in the following that we can safely let C” be C’,
and thus we write C" (g7, ..., q,) as C'(q}, ... qp)-

T .
= C'(p},...p,), there exists

By Lemma 5.3.1, when C(p1, ..., p) = C' (P, ... Pl)),
there exists p; ; p;. for all subprocess p; with 1 <
J < n. Similarly, for all @ € 7(C'(p},..., p,), 1), when

S
C'(pys s D) é, we have p} = for all subprocess p;
with 1 < j < n. Let A;. be the set of all ;. Note that, for
some a € A, there may exist several ¢; corresponding with



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

it. And we should add all of them into the set A;.

Then, by Lemma 5.3.4, the exclusion of the rules with
T-conclusion will make the length of ¢; not exceed 1, i.e.,
Yo; € A;. : |61 < 1. Therefore, for all 1 < j < n, we have

ALCT (Pl D).
Now, by p; ~}. q; and Proposition 3.5, there exists

some ¢/; such that g; REN q;and 7(q), 1) € T(p), D.

By Lemma 5.3.2, o is also a trace of C(qy, ..., g,) and
C(q1, .-y qn) = C'(q},....q;). Observe that, it is pos-
sible that q;’ is not equivalent to q;.. The reason is that,
from Lemma 5.3.2, we can only obtain that, there exist

qy,....q, such that C(qy, ..., gn) = C'(qy,....qy;), but not
the very ¢, ..., g, which are obtained from p; ~}. q; and
Proposition 3.5.

By Lemma 5.3.2, if the jth argument of C’ is an active

o
argument, then q}’ can be any process such that g; = q}’

o
and thus we may let q}’ be q;. safely since g; = q}. On
the other hand, if the jth argument of C’ is not an active
argument, then no patience ruloids are present in the lan-

(on
guage. Therefore, q}’ can be any delay process of g; =,
Note that, for q;., there must exist some delay process q;.'

o .
such that g; SN q;.’ = q;..

Now, by Lemma 5.3.5 and q;.’ T—> q;., we assert
that 7(C'(¢7, -...q;)), 1) = T(C'(q],-..»qy), 1). Note that,
there may exist several arguments of C’ such that they
are not active arguments. However, we can finally ob-
tain 7(C'(q}, ....q;)), 1) = T(C'(q;; ..., q;,), 1) by applying
Lemma 5.3.5 for several times.

Moreover, by T(q}, 1) ¢ T(p}, 1), we have
T(C(G)s s q0)s 1) ST (C'(Pses P .

Finally, we obtain that 7(C'(¢},....q;),1) C
T(C'(pls s pp)s D). O

5.5 Weak Finite Failure Format for Weak i-Failure
Equivalence

The following is the congruence theorem for the weak fi-
nite failure format.

Theorem 5.5.1 The weak finite failure format is a con-
gruence format for the weak i-failure equivalence with
I <i<ow.

Proof Similar with Theorem 5.4.1, it is enough to
prove thatif V1 < j < n: p; ~}, g then C(py, ..., pn) ~},
C(q1,---»qn), where C is any context of n holes in a weak
1-failure language L. By the symmetry of the alternative
characterization of weak i-failure equivalence in Propo-
sition 3.5, we only need to prove that if VI < j <

n . p; ~ff q;j, then, for any o € T(C(pi,..., pn), w)

and C'(p}, ..., pl) with C(p1,... p) = C'(Pl, ..., pL),
there exists C’(q},...,q;) such that C(qi,...,q,) =
C'(q} - qy) and T(C'(q), . q7), D) S T(C' (P, oo ), D).

By Lemma 5.3.1, when C(py, ..., p,) = C'(pys - D)),
there exists p; RN p} for all subprocess p; with1 < j < n.

B
Similarly, for all 6 € ®, when C’(p}, ..., p,) =, we have

s
P = for all subprocess p; with 1 < j < n. Let @’ be the

set of all §;. Note that, for some ¢ € ®, there may exist
several ¢; corresponding with it. And we should add all of
them into the set CD;..

By Lemma 5.3.4, the exclusion of the rules with 7-
conclusion will make the length of ¢; not exceed i, i.e.,

Yo; € (I); : 6] < i. Therefore, for all 1 < j < n, we have
(I); C T(p}, i).

o
Now, by p; ~} q,, there exists some q;. such that g ==
q;and T(q), 1) < T (P’ D)
By Lemma 5.3.2, o is also a trace of C(qj,...,q,) and
C(q1s--sqn) N C'(qy,....qy). Moreover,
1) if the jth argument of C’ is a receiving argument
or an active argument, then it has a patience ruloid since

the language is a weak finite failure language. Therefore,
by Lemma 5.3.2, we can let ¢/ be ¢’; since ¢/ can be any

T
process such that g; = q}’, and

2) if the jth argument of C” is an other argument, then,
by Lemma 5.3.3, we can let q}’ be g; or any process such

aj ..
that g; = q}’. We want to separate it into two cases:

i) if q;.’ is any process such that g; ; qfl.’, then we can
also let q;.’ be q;..

ii) if q}’ is g;, then q;. and q;.’ are both delay processes
since the jth argument of C’ is an other argument and thus
no patience ruloid for it. Therefore, we can obtain that

" —

97 =4 = q;.

In all, we can always let q}' be q}, i.e., C(q1,..or qn) =
C'(qys - qp)-

Moreover, by T(q;., i) C T(p;., i), we have
T(C(q)> - q)» D) S T(C'(PYs v D)5 D)5 O

5.6 Weak w-Failure Format for Weak w-Failure
Equivalence

The congruence theorem for the weak w-failure format is
as follows.

Theorem 5.6.1 The weak w-failure format is a congru-
ence format for the weak w-failure equivalence.

Proof Similar with Theorem 5.4.1, it is enough to
prove thatif V1 < j <n: p; ~‘;.’ qj then C(py, ..., pn) ~‘;?
C(qi, ..., qn), where C is any context of n holes in a weak
1-failure language L. By the symmetry of the alternative
characterization of weak w-failure equivalence in Proposi-
tion 3.5, we only need to prove thatif V1 < j<n: p; ~‘;’

q;, then, for any o € 7(C(p1, ..., ), w) and C'(p, ..., p)
with C(p], cees pn)

C'(q), - q,) such that C(qi, ..., q,) = C'(¢},....q,) and
TG} s @), ) S T(C' (P, oo P> ).
By Lemma 5.3.1, when C(py, ..., pu) = C' (P}, s PO)s

a .
- C’(p’l,...,p;,), there exists

aj
there exists p; = p} for all subprocess p; with 1 < j < n.
s
Similarly, for all 6 € ®, when C’(p, ..., p,) =, we have

S
p} = for all subprocess p; with 1 < j < n. Let <D} be the

set of all ¢;. Note that, for some ¢ € ®, there may exist
several ¢; corresponding with it. And we should add all of
them into the set CI);..

Therefore, for all 1 < j < n, we have (D} c T(p}, w).

o

Now, by p; ~‘}’ q,, there exists some q} such that g; =
q} and T(q}, w) C T(p}, w).

By Lemma 5.3.2, o is also a trace of C(qy, ..., g,) and

(o

C(q1,...qn) = C'(q}, ..., q;). Moreover,

1) if the jth argument of C’ is a receiving argument
or an active argument, then it has a patience ruloid since

the language is a weak w-failure language. Therefore, by
Lemma 5.3.2, we can let q;' be q;. since q;.’ can be any

g
process such that g; = ¢, and

25



CRPIT Volume 77 - Theory of Computing 2008

26

2) if the jth argument of C’ is an other argument, then,
by Lemma 5.3.3, we can let q;’ be g or any process such

aj ..
that g; = q}’. We want to separate it into two cases:

i) if q}’ is any process such that g; REN q;.’, then we can
also let ¢/ be ¢’

i) if ¢/ is g;, then ¢’; and ¢/ are both delay processes
since the jth argument of C’ is an other argument and thus
no patience ruloid for it. Therefore, we can obtain that

v a—

97 =4 = q;.
In all, we can always let q}’ be q’i, i.e., C(q1,..s qn) =

C' ()5 - G-
Moreover, by T(q}, w) ¢ ‘T(p},a)), we have

T(C' (g} s ), w) S T(C (P, ey pp)s ). O

6 Conclusions

In the paper, we first introduce a series of behavioral
equivalences, named weak parametric failure equiva-
lences, which take the weak failure equivalence and the
weak impossible future equivalence as their special cases.
Then, based on the idea of Structural Operational Seman-
tics, rule formats are proposed to meet these behavioral
equivalences. By the intuitive opinions and formal proofs,
we have shown that these rule formats are all congruence
formats of their corresponding behavioral equivalences.

An advantage of these rule formats is that we can
easily decide whether a behavioral equivalence is con-
gruent under a given operator. In fact, for any behav-
ioral equivalences, one of the most frequently-asked prob-
lems is whether or not it can be preserved under some
frequently-used operators, such as prefixing, choice, par-
allel composition, etc., in classical process algebraic lan-
guages like CCS (Milner, 1989), CSP (Hoare, 1985) and
ACP (Baeten, 1990). Generally, there exist two ways to
deal with this problem: The first one is to prove the con-
gruence properties of these operators one by one. It is a
straightforward and intuitive way, but may be somewhat
clumsy. The second one is to pursue a rule format for this
specified behavioral equivalence. And the given behav-
ioral equivalence can be preserved under any operators in
this format.

However, we have noticed that equivalences in strong
notion, such as strong bisimulation and decorated trace se-
mantics, were paid more attentions to than equivalences
in weak notion, such as weak bisimulation and testing
theory. In fact, almost all classical strong equivalences
have found their corresponding rule formats, but much
less works have been done on the rule formats of weak
equivalences, especially on the rule formats of the equiv-
alences in testing theoretical notions. And more specifi-
cally, no rule formats have been presented to be congru-
ence formats for the weak failure equivalence or the weak
impossible future equivalence. The difference may exist
in the increasing complexity after introducing 7 transitions
by weak equivalences. The aim of our paper is to make a
progress along this direction.

References

R.J. van Glabbeek. The Linear Time - Branching Time
Spectrum I: The Semantics of Concrete, Sequential Pro-
cesses. In J.A. Bergstra, A. Ponse, and S.A. Smolka,
editors, Handbook of Process Algebra, chapter 1, pages
3-100. Elsevier, 2001.

R.J. van Glabbeek. The Linear Time - Branching Time
Spectrum II: The semantics of sequential systems with
silent moves. In E. Best, editor, Concur’93, LNCS 715,
pages 66-81. Springer-Verlag, 1993.

R. Milner. Communication and Concurrency. Prentice-
Hall, 1989.

M.R. Mousavi, M.A. Reniers, J.F. Groote (2007). SOS
formats and meta-theory: 20 years after. Theoretical
Computer Science 373, pages 238-272.

L. Aceto, W.J. Fokkink and C. Verhoef. Structural Oper-
ational Semantics. In J.A. Bergstra, A. Ponse and S.A.
Smolka, editors, Handbook of Process Algebra, Chap-
ter 3, pages 197-292. Elsevier, 2001.

G.D. Plotkin. A Structural Approach to Operational Se-
mantics. The Journal of Logic and Algebraic Program-
ming 60-61, 17-139, 2004.

J.C.M. Baeten and W.P. Weijland. Process Algebra. vol-
ume 18 of Cambridge Tracts in Theoretical Computer
Science, Cambridge University Press, 1990.

J.E. Groote and F.W. Waandrager. Structural Operational
Semantics and Bisimulation as a Congruence. Informa-
tion and Computation 100(2), 202-260, 1992.

R.D. Simone. Higher-level synchronising devices in
Meiji-SCCS. Theoretical Computer Science 37, 245-
267, 1985.

J.E. Groote. Transition System Specifications with Nega-
tive Premises. Theoretical Computer Science 118, 263-
299, 1993.

B. Bloom, S. Istrail and A. R. Meyer. Bisimualtion can’t
be Traced. Journal of the ACM 42(1), 232-268, 1995.

A. Rensink, W. Vogler. Fair testing. Information and Com-
putation, Volume 205, Issue 2, February 2007, Pages
125-198.

R.J. van Glabbeek, On Cool Congruence Formats for
Weak Bisimulations. In D.V. Hung and M. wirsing, edi-
tors, Proceedings International Colloquium on Theoret-
ical Aspects of Computing, LNCS 3722, page 331-346.
Springer, 2005.

L. Ulidowski, Finite Axiom Systems for Testing Preorder
and De Simone Process Languages. Theoretical com-
puter Science, 239(1):97-139, 2000.

C.A.R. Hoare, Communicating Sequential Processes,
Prentice-Hall, Englewood Cliffs, NJ, 1985.

R.J. van Glabbeek, The Meaning of Negative Premises
in Transition System Specification II. The Journal of
Logic and Algebraic Programming 60-61, pages 229-
258, 2004.

B. Bloom. Structural operational semantics for weak
bisimulations. Theoretical Computer Science 146,
pages 27-68, 1995.

B. Bloom. Ready Simulation, Bisimulation, and the Se-
mantics of CCS-Like Languages. PhD thesis, MIT,
1990.

R. Milner. Communicating and Mobile Systems: the n-
Calculus. Cambridge University Press, 1990.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Modelling for Lazy Clause Generation

Olga Ohrimenko? and

Peter J. Stuckey!?

L NICTA Victoria Research Lab

2 Department of Comp.

Sci. and Soft. Eng,

University of Melbourne, Victoria 3010, Australia,
Email: {olgao,pjs}@csse.unimelb.edu.au

Abstract

Lazy clause generation is a hybrid SAT and finite
domain propagation solver that tries to combine
the advantages of both: succinct modelling using
finite domains and powerful nogoods and back-
jumping search using SAT technology. It has been
shown that it can solve hard scheduling problems
significantly faster than SAT or standard finite do-
main propagation alone. This new hybrid opens
up many choices in modelling problems because
of its dual representation of problems as both fi-
nite domain and SAT variables. In this paper
we investigate some of those choices. Arising out
of the modelling choices comes a novel combina-
tion of bounds representation and domain prop-
agation which creates a form of propagation of
disjunctions. We show this novel modelling ap-
proach can outperform more standard approaches
on some problems.

1 Introduction

We consider the problem of solving Constraint Sat-
isfaction Problems (CSPs) defined in the sense of
[7], which can be stated briefly as follows:

We are given a set of variables, a do-
main of possible values for each variable,
and a set (read as a conjunction) of con-
straints. Each constraint is a relation de-
fined over a subset of the variables, lim-
iting the combination of values that the
variables in this subset can take. The
goal is to find a consistent assignment of
values to the variables so that all the con-
straints are satisfied simultaneously.

Finite domain propagation systems solve CSPs
using elaborate search strategies working in tan-
dem with propagation to reduce the search space
by removing inconsistent assignments as early as
possible. There has been a significant amount of
research on how to solve CSPs by encoding them

Copyright (©2008, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Computing: The Aus-
tralasian Theory Symposium (CATS2008), Wollongong, NSW.
Conferences in Research and Practice in Information Technol-
ogy(CRPIT), Vol. 77. James Harland and Prabhu Manyem,
Ed. Reproduction for academic, not-for profit purposes per-
mitted provided this text is included.

in a Boolean clausal representation and then using
Boolean satisfiability (SAT) solver to find a solu-
tion. Although this approach is quite successful for
some problem classes, on other problems it turns
out that the brute-force translation of the problem
is too big to be handled effectively.

Finite domain propagation solvers effectively
represent the possible values of variables by a set
of choices which can be naturally modelled as
Boolean variables. Recently [11] we described how
we can mimic a finite domain propagation engine,
by mapping propagators into clauses in a SAT
solver. This immediately results in strong nogoods
for finite domain propagation. We showed how we
can convert propagators to lazy clause generators
for a SAT solver. The resulting system can solve
scheduling problems significantly faster than gen-
erating the clauses from scratch, or using Satis-
fiability Modulo Theories [10] solvers with differ-
ence logic. The resulting hybrid [11] combines the
advantages of SAT solving, in particular power-
ful and efficient nogood learning and backjumping,
with the advantages of finite domain propagation,
simple and powerful modelling and specialized and
efficient propagation of information.

In this paper we extend our previous work by
exploiting the possibilities that the new system of-
fers.

We show that this approach allows indepen-
dence between the Boolean representation of in-
teger variables and the propagators that act upon
them. This representation independence leads to
a new type of propagation: mixing bounds repre-
sentation and domain propagators. The new prop-
agator results in disjunctive propagation, where
new information is created by propagation which
is disjunctive in nature, even though the propaga-
tor was not a disjunctive at the start. Since the
underlying SAT representation of propagation can
represent disjunctive information efficiently, it al-
lows us to create new “disjunctive propagators”
from scratch.

The next section introduces notations and the
lazy clause generation solving approach. We then
explore modelling choices that arise in lazy clause
generation solving, in particular we show that the
choice of propagator can be independent of the
choice of Boolean variable representation. In Sec-
tion 4 we discuss the implementation of lazy clause
generation and how it has to be extended to sup-

27



CRPIT Volume 77 - Theory of Computing 2008

28

port new features of the modelling. We give ex-
perimental results in Section 5, and then conclude.

2 Lazy Clause Generation

2.1 Finite Domain Propagation

We consider a set of integer variables V. A domain
D is a complete mapping from V to finite sets of
integers. We can understand a domain D as a
formula A,ep(v € D(v)) stating for each variable
v that its value is in its domain.

Let D1 and D5 be domains and V' C V. We say
that Dy is stronger than Do, written Dy C Ds, if
D1 (v) C Da(v) for all v € V and that Dy and Do
are equivalent modulo V, written D1 =y D, if
D, (v) = Dy(v) for all v € V. The intersection of
Dy and D, denoted D; M Dy, is defined by the
domain D;(v) N D2 (v) for all v € V.

We use range notation: [l..u] denotes the set
of integers {d | I < d < u,d € Z}. We assume an
mitial domain Dy such that all domains D that
occur will be stronger i.e. D C D;p¢.

A wvaluation 6 is a mapping of variables to val-
ues, written {x1 — di,...,z, — d,}. We extend
the valuation 6 to map expressions or constraints
involving the variables in the natural way. Let vars
be the function that returns the set of variables ap-
pearing in an expression, constraint or valuation.
In an abuse of notation, we define a valuation 6 to
be an element of a domain D, written 8 € D, if
6(v) € D(v) for all v € vars(6).

A constraint is a restriction placed on the al-
lowable values for a set of variables. We define
the solutions of a constraint ¢ to be the set of
valuations # that make that constraint true, i.e.
solns(c) = {0 | (vars(0) = vars(c)) N (F6(c))}

We associate with every constraint ¢ a set of
propagators. A propagator f for ¢ is a monoton-
ically decreasing function on domains such that
for all domains D C Dj,;: f(D) T D and {0 €
D| 0 € solns(c)} = {6 € f(D)]| 0 € solns(c)}.
This is a weak restriction since, for example, the
identity mapping is a propagator for any con-
straint.

Example 1 A common propagator fy for the con-
straint x # y is

f(D)(x) = D(x)—{d}, if D(y) = {d}
f(D)(z) = D(x), 9therw1se
f(D)(y) = D(y)—{d}, if D(z) = {d}
f(D)(y) = D(y), otherwise
f(D)(v) = D(v), v {z,y}
Let Dl(x) = {3547556} and Dl(y) = 5}, then
f(D1)(z1) = {3,4,6} and f(D1)(y) = {5}. 0

A propagation solver for a set of propagators F’
and current domain D, solv(F, D), repeatedly ap-
plies all the propagators in F' starting from domain
D until there is no further change in resulting do-
main. solv(F, D) is the weakest domain D' T D
which is a fixpoint (i.e. f(D’) =D’) for all f € F.
In other words, solv(F, D) returns a new domain

defined by
solv(F,D) = gfp(A\d.iter(F,d))(D)
iter(F,D) = [ecr f(D).

where gfp denotes the greatest fixpoint w.r.t C
lifted to functions.

2.2 Atomic Constraints and Propagation
Rules

In order to convert propagation to clauses we need
to extract the “pointwise” behavior of a propaga-
tor. To do so we use atomic constraints and prop-
agation rules.

An atomic constraint represents the basic
changes in domain that occur during propagation.
For integer variables, the atomic constraints rep-
resent the elimination of values from an integer
domain, i.e. x < d, x > d, x # d or x = d where
x € V and d is an integer. Note these correspond
to events in a propagation engine: upper bound
change, lower bound change, domain change and
fixing the variable. We also consider the atomic
constraint false which indicates that unsatisfiabil-
ity is the direct consequence of propagation.

Define a propagation rule as C' — ¢ where C'
is a conjunction of atomic constraints, and c is a
single atomic constraint such that = C — ¢. A
propagation rule C' ~— ¢ defines a propagator (for
which we use the same notation) in the obvious
way

(C— c)(D)(w) = vars(c) ={vinED — C

D(v) otherwise.

{ {6(v) |0 € DN solns(c)}

In another words, C' — ¢ defines a propagator
that removes values from D based on ¢ only when
D implies C.

A propagator f implements a propagation rule
C — ciff = D — C implies | f(D) — ¢ for all
D C Dy

Example 2 The propagator fg of Example 1 im-
plements the following propagation rules (among
many others) for Djpit(2) = Dinit(y) = [1.. u].

r=d — y#d, I<d<u
y=d — x#d, I<d<u a

A set of propagation rules F' C rules(f) imple-
ments [ iff solv(F, D) = f(D), for all D C Dj;:.

In order to translate a propagator f to Boolean
clauses we want to have a concise representation
in terms of propagation rules, rep(f), such that
rep(f) implements f.

Example 3 Consider the reified difference in-
equality ¢ = b < x+c¢ < y where D;y,:(b) = {0, 1},
Dipnit(z) = [l..u], Dinit(y) = [l..u]. Then a set
of propagation rules rep(f) implementing the do-
main propagator f for c is

b>21Ax>2d — y=d+c
b>21ANy<d — xz<d-—c
b<O0ANz<d — y<d+c—1
b<OAy>d — x>d—c+1
r2zd—ct+1Ay<d — b<0
r<dAy>d+c¢ — b>1



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

where | < d < u, except for the last two where
l—c<d<u+e O

A bound propagation rule only makes use of
atomic constraints of the form z < d, x > d and
false. We can classify a propagator f as a bounds
propagator if it has a representation rep(f) which
only makes use of bounds propagation rules.

Example 4 The propagator in Example 3 is
clearly a bounds propagator. A bounds propaga-
tor f, for the constraint x # y is defined by the
propagation rules for Dyt (2) = Dinit(y) = [1.. u]
where | <d < u:

r<dhNz>2dAhy<d — y<d-1
r<dAz>dAy>d — y=>d+1
y<dAhyz2dAhz<d — xz<d—1
y<dANy=2dAhxz>d — z>=2d+1 O

2.3 SAT and Unit Propagation

A proposition p is a Boolean variable from a uni-
verse of Boolean variables, P. A literal [ is either:
a proposition p, its negation —p, the false literal
1, or the true literal T. The complement of a
literal I, =l is =p if [ = p or p if [ = —p, while
-1l =Tand =T = L. A clause C is a disjunction
of literals. An assignment is either a set of literals
A excluding 1| such that Vp € P.{p,—p} € A, or
the failed assignment {L}. We define A T {L},
and AU A = AU A unless the union contains
L or {p,—p} for some literal p in which case
AU A = {1}

An assignment A satisfies a clause C' if one of
the literals in C appears in A. A theory T is a set
of clauses. An assignment is a solution to theory
T if it satisfies each C' € T'.

A SAT solver takes a theory T and determines
if it has a solution. Complete SAT solvers typ-
ically involve some form of the DPLL algorithm
which combines search and propagation by recur-
sively fixing the value of a proposition to either T
(true) or L (false) and using unit propagation to
determine the logical consequences of each deci-
sion made so far. The unit propagation algorithm
finds all unit resolutions of an assignment A with
the theory T. It can be defined as follows where
C denotes a clause:

{3 VieC—le A

Au{l} AN eC,,~lgA,
VI'e (C\{l}).-l'e A
otherwise

UP(A,T) = Up.(Aa.||oer up(a, C))(A)

Example 5 Given the theory T = { —p; V p2 V
p3V—psV—ps, p1 VP2, p4V—ps} and the assignment
Ay = {—p2,ps} unit propagation on p; V pa adds
p1, and on pgV —ps adds py, then unit propagation
with the first clause adds ps. Hence UP(A1,T) =
{p1, P2, 3, P4, D5} O

up(4,C)

2.4 Lazy Clause Generation

The lazy clause generation hybrid solver defined
in [11] works as follows. We execute a SAT solver

using a Boolean representation of the integer vari-
ables of the problem. When the SAT solver reaches
an assignment A on these Boolean variables we
calculate a corresponding domain D to A, and ex-
ecute the propagators f € F' on D. Any propaga-
tion rule r in rep(f) that creates new information
(that is r(D) # D) is converted to a clause and
added to the SAT solver. Unit propagation on this
new clause will cause the assignment A to change
to agree with r(D).

We represent an integer variable x with domain

Dinit(x) = [l..u] using the Boolean variables

z=1],...,[x=u] and [z <I],...,[r <u-1].
The variable [z = d] is true if = takes the value
d, and false if x takes a value different from d.
Similarly the variable [z < d] is true if x takes a
value less than or equal to d and false if z takes a
value greater than d.

Not every assignment of Boolean variables is
consistent with the integer variable z, for example
{[z = 3], [z < 2]} requires that z is both 3 and
< 2. In order to ensure that assignments repre-
sent a consistent set of possibilities for the integer
variable x we add the clauses DOM (x) to the SAT
solver

Slr<dVz<d+1] I<d<u-—

ﬁ[[x—d]]\/[[azgd]] I<d<u

Slz=dV-fz<d-1] I<d<u
[[xfl]]\/ [ <]

[r=dV-]z<dV]z<d—1] I<d<u
[[x*u]]\/ lz <u-1]

These clauses encode [[ac d] — [r <d+1] and

[x=d] < ([[x<d ﬂ[[z<d71]] We let

DOM = U{DOM (v) | v € V}.

Any unit fixpoint A of DOM (x) can be con-
verted to a domain for variable z:

domain(A)(x) ={ d € Dinit(z) | Y]] € A.
vars(l) ={z} =z =dE ¢}

that is the domain of all values for z that are con-
sistent with all the Boolean variables related to x.

Example 6 For example the assignment A =

[[$1 < 10]] [[111 < 5]] [[1]1 = 7]] ﬁ[[q;l = 8]]7
zo < 11], —fz2 < 5]] 10]] 3 < —2]} is
con51stent with 1 = 6 xl =9 and T, =

hence domain(A)(xz1) = {6,9,10}. For the re-
maining variables domain(A)(z2) = [6..11] and
domain(A)(z3) = [—1..10]. Note that for brevity
A is not a fixpoint of DOM (z1) since we are
missing many implied literals such as —[z; = 5],
-z = 12], ete.

The propagators F' are run on the created do-
main, and each propagation rule that creates new
information is converted to a Boolean clause. This
is straightforward since we can map atomic con-
straints to Boolean literals. The mapping [lit is

29



CRPIT Volume 77 - Theory of Computing 2008

30

defined as: (where Djpi(z) = [1..u])
lit(false) = L
L _ [x=d] I<d<u
lit(x =d) = L otherwise
. . Sle=d] I<d<u
lit(z # d) = T otherwise
T d>u
lit(r <d) = { L d<l
[x < d] otherwise
T d<l
lit(z>d) = { L d>u
—Jx <d—1] otherwise

We can transform a propagation rule r to a
clause cl(r) by:

c(C—c)=( \/ =lit(dh)) v lit(c)
ceC
Example 7 Given the domain D corresponding

to assignment A from Example 6, imagine a prop-
agator f fires the propagation rule

<10AzZ9 26— 23<1
This is transformed into the clause
Sz < 10] V [z

This clause is added to the SAT solver. Unit prop-
agation using the assignment A and the clause
above adds the new information [z3 < 1] to get
assignment A’. O

2<5]]\/[[.T3<1]]

Just as we can convert an assignment A to a
domain D, we can convert a domain D to an as-

signment
assign(D,x) = {lit(c) | z € D(x) E ¢,
x € vars(z)}
) {3 JveV.D(w) =
assign(D) { Upey assign(D, v) otherwise

Using the lazy clause generation we can show
that the SAT solver maintains an assignment
which is equivalent to the domains. In particular if
we have clauses representing all the propagators F'
then unit propagation is guaranteed to be at least
as strong as finite domain propagation.

Theorem 1 ([11]) Let rep(f) be a set of prop-
agation rules implementing propagator f. Let
A = UP(assign(D),DOMUJ{cl(r) | f €
For € rep(f)}). Then A = {1} or A D
assign(solv(F, D)) O

3 Modelling Choices

Lazy clause generation proved to be a powerful
approach to tackling finite domain problems with
large amounts of search. In [11] we show that
it can solve hard open shop scheduling problems
more efficiently than pure SAT approaches and
other finite domain solvers using the same model

(Laborie [6] shows how to tackle hard schedul-
ing problems using finite domains solvers by us-
ing complex resource constraints and specialized
searching methods).

In this paper we explore some of the modelling
possibilities that the novel solving technology of
lazy clause generation allows.

3.1 Laziness and Eagerness

An important choice in the lazy clause generation
approach is whether to implement a propagator
lazily (which is the default) or eagerly. The eager
representation of a propagator f simply adds the
clauses cl(r) for all r € rep(f) into the SAT solver
before beginning the search. This clearly can im-
prove search, since more information is known
apriori, but the size of the clausal representation
may make it inefficient.

Example 8 The representation of the domain
propagator for disequality x # y where D,y (z) =
Dinit(y) = [l..u] requires 2(u — I + 1) binary
clauses. Hence it is possible to model eagerly.
The representation of the bounds propagator
for z1 + -+ + xp, < k where Djpi(z1) = -
Dipnit(zn) = [0.. 1] has "Cy = nl/((n — k)'k:')
propagation rules. Clearly it is impossible to rep-
resent this eagerly for large n and k. O

In practice eager representation is useful for
constraints that have very small representations.

3.2 Variable representation

The lazy clause generation approach represents
variables domains of possible values in dual man-
ner: a Boolean assignment and a domain D on in-
teger variables. There are a number of choices of
how we can represent integer variables in terms of
Boolean variables. The default choice (full integer
representation) is described in the previous sec-
tion and was used in [11]. We present new choices
below.

3.2.1 Non-continuous variables

We can represent an integer variable where
Dzmt( = {dy,...,d,} where d; < d;j+1,1 <
it < n, and the values are noncontinuous. This
requires fewer Boolean variables, and fewer do-
main constraints then representing the domain
[dy..dyn]. The Boolean representation uses vari-
ables[[zf lL1<i<nand [z <d;],1<i<n.

The clauses DOM (x) required to maintain con-
sistency of the Boolean assignment are:

Sz <d]V]r<dip1] 1<i<n-—1
ﬁ[[x—d]]\/[[:r<d]] 1<i<n
Slz=d]Vor<di—1] 1<i<n
[z =di]V-lz < di
[[:C:di]]\/ﬁ[[:rgd]] [r<diza] 1<i<n
[x =dn] V[z < dn-1]



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

3.2.2 Bounds variables

We can represent an integer variable only using
the bounds variables [z < d],l < d < u where
Dijnit(x) = [l..w]. While this means we cannot
represent all possible subsets of [I..u], it has the
advantage of requiring fewer Boolean variables,
and the domain representation requires only the
clauses:

Al <d]V]r<d+1] I<d<u-1

3.2.3 Non-continuous bounds variables

We can clearly restrict the representation of non-
continuous variables to bounds only analogously,
just using the Boolean variables [z < d;]

3.3 Propagator and variable representa-
tion independence

In a usual finite domain solver we are restricted
so that if we use bounds variables, they must be
restricted to only occur in bounds propagators. In-
deed in [11] we use this observation to avoid using
full integer variables for variables that only occur
in bounds propagators. In the lazy clause genera-
tion solver we can separate the variable representa-
tion from the propagator type. To do so we make
use of the more flexible clausal representation of
propagators of the lazy clause generation solver.

With this separation the propagation engine
can work without knowing whether integer vari-
able zx is a full integer, non-continuous, or bounds
variable, since the translation of assignments to
domains, and from propagation rules to clauses,
completely captures the relationship between the
Boolean representation and the integer variable.

Because of this separation we can indepen-
dently choose which propagator we will use to rep-
resent a problem, without considering the variable
representation. Hence for an individual constraint
we can choose any of the propagators for that con-
straint.

3.3.1 Non-continuous variables

We extend the translation of atomic con-
straints lit to map atomic constraints involv-
ing non-continuous variable x where Dj,;(x) =

{di,...,dn} as follows:

. L dg {di,... dn
. T d¢{d,... d,
lit(x #d) = [z = di] d%gil }
T d>=d,
lite <d) = { L d<d
[[ZL' < dJ] d; <d< d1+1
T d< dy
lit(r >d) = { L d>d,
ﬁ[[.%' < dl]] d; <d< di+1

Note that each atomic constraint is translated as
a single literal.

Example 9 Consider the translation of the prop-
agation rules xt =3 — y #3 and ¢ # 3 — y = 3,

where Djpnie(x) = {0,3,5} and Dyt (y) = {1,2,4}.
The resulting clauses are =[x =3]V T or T (the
f[:[mlways]]true clause) and [z = 3]V L or equivalently
T = 3.

3.3.2 Bounds variables

We extend the translation of atomic constraints lit
to map atomic constraints involving bounds vari-
able & where Dj,;t(x) = [1..u] as follows:

[« < d] d=1

[z<dA-[z<d-1], I<d<u
lit(zx =d)=¢ -z <u-—1] d=u

L otherwise

-z <d d=1

Sl <d|Vzr<d-1], I<d<u
lit(z # d)=¢ [r <u-1] d=u

T otherwise

The translations of + < d and x > d are as for
full integer variables. Note that these translations
now no longer guarantee to return a single literal.

Clearly “Boolean integer” variables x where
Dinit(x) = [0..1] can be represented as bounds
only variables without loss of expressiveness since
<0 =0 (z=1).

We can translate any propagation rule to a con-
junction of clauses by simply applying lit as before.
This creates (a possibly non-clausal) Boolean for-
mulae which can be transformed to conjunctive
normal form.

Example 10 Consider the translation of the
propagation rule x = 3 — y # 3, where x and y
are bounds only variables. The resulting formula
is [z <3] v [z <2]V [y <2]V-[y < 3], which
is a clause already.

Consider the translation of the propagation rule
x # 3 — y = 3. The resulting formula is
[z <2] vz <3V (Jy <3]A-[y <2]). The
conjunctive normal form is

[z < 2]V [y <3|
[z <3]V[y <3

Sz < 2]V afy < 2]
[z <3]V-ly <2]

It would appear that the conversion of propaga-
tion rules including bounds variables could lead to
an exponential explosion in the number of clauses
required to represent them. By restricting the con-
version of the rules to clauses which may actually
be able to cause unit propagation, in fact we can
represent them with at most 2 clauses.

Lemma 1 If domain D = domain(A) is such that
D(z) E x # d where x is a bounds only variable,
then D(z) =x 2d+1 or D(z) Eax<d—1.

Proof: Now A can only include literals [z < d']
or =[x < d'] for some d’. Hence domain(A)(x) is
a range domain. If D(z) = = # d then either
D)Exz>d+1lorD(x)Ex<d-—1. O

31



CRPIT Volume 77 - Theory of Computing 2008

32

Define the bounds simplification bs(r) of a
propagation rule r = C' — ¢, for domain D =
domain(A) for some assignment A which fires the
rule, as follows. Replace each atomic constraint
x # d appearing in C where z is a bounds only
variable by either x < d—1 or x > d+1, whichever
holds in D. The resulting propagation rule can
create at most 2 clauses.

Theorem 2 The conjunctive normal form of the
clausal representation of bs(r) involves at most 2
clauses.

Proof: Each atomic constraint appearing in the
left hand side of bs(r) is translated as a single
Boolean literal. The only conjunction that can
occur in the translation is if the right hand side
is an atomic constraint x = d and zx is a bounds
variable. The resulting CNF has two clauses. [

Example 11 Consider the translation of the
propagation rule r = z # 3 — y = 3 where z
and y are bounds variables ranging over [0..10].
Suppose the domain that causes it to fire is D =
domain(A) where A = {[x <1]}. Then D(z) =
[0..1] and D(z) Fz < 2 and bs(r) =z < 2 —
y = 3. The translation to Booleans is the formula
[z < 2]V (Jy < 3] A -y < 2]), which in CNF is
(~[z < 2] vy <3 A(—[z < 2] vy < 2]). Note
that the two clauses from Example 10 that are
missing could not fire in A. O

There is an important new behaviour that
arises when we consider using domain propagators
on bounds variables. The result of propagation is
always a clause of a form

c(C—c¢) =Veec(=lit(d)) V lit(c),

where —lit(¢') are all false in the current assign-
ment and lit(c) is either undefined or false in the
current assignment. Previously lit(c) was always a
single literal, hence we could guarantee unit prop-
agation would apply, and set lit(c) to true. Now
there is a possibility that lit(c) is itself a disjunc-
tion and unit propagation will not apply.

Example 12 Consider the execution of the do-
main propagation for x # y (Example 1) where
x and y are bounds variables on the assignment
A = {[z < 3], [z <2]}. Then in the correspond-
ing domain(A)(x) = {3} and the propagation rule
x = 3 — y # 3 fires. The resulting clause
is [z <3]V[r<2]Vv-y<3]V][y<2]. No
unit propagation is possible using A and this new
clause.

In fact the domain propagator for z # y applied
to bounds variables x and y generates exactly the
same clauses as the bounds propagator, but it gen-
erates them earlier!

3.3.3 Disjunctive propagators

The discussion at the end of the last subsection
motivates examining a new possibility. Propaga-
tion rules are designed so that the result of the
propagation is a single atomic constraint, which

can then be represented immediately as a change
in domain. Given that we will convert the prop-
agation rules to clauses in any case we can ex-
tend them to allow disjunction on the right hand
side. A disjunctive propagation rule has the form
ciN---Ncp — ¢cpg1 V- Ve, The translation to
clauses is clear cl(c1 A+ - Acp — Cpp1 Ve -Vem) =
= lit(er) V-V lit(en) Vit(ens1) Ve Vit (epim)-
Presently we restrict our implementation to only
support disjunctive propagation rules with at most
two literals on the right hand side.

Example 13 Consider the constraint | — y| >
k for constant k > 0. The bounds propagator
for this constraint has representation given by the
propagation rules: (where I +k > u — k)

r2liNr<unNy<l+k-1
rz2liNnz<uANy>2u—k+1
y2lAhNy<uAhx<l+k-1
y2lhNy<uAz>u—k+1

LTT1
BRewe

WAV A
NS
+ 1
o T o

A more eager version of this propagator fires when
the range on one variable is small enough to guar-
antee some (disjunctive) constraints on the other
variable. It is defined by the disjunctive propaga-
tion rules: (where I+ k > u — k)

r>2IlANx<u
yzlhy<u

— yzltkVy<u—k
— x=2l+kVvVe<u—E&

Disjunctive propagators can be seen as a more
eager form of lazy clause generation.

4 Implementation

The creation of a practical lazy clause genera-
tion solver involves many more considerations than
were addressed in Section 2.4. To build the sys-
tem we add a cut down propagation engine into a
SAT solver and modify it as a lazy clause gener-
ator. We first describe this process as defined in
[11] and then describe the extensions required.

The SAT solver applies unit propagation, and
when it reaches a fixpoint it calls the propagation
engine. The new literals set by the SAT solver are
converted into domain changes in the propagation
solver, and these “events” queue up propagators
for execution.

The first propagator in the queue is then exe-
cuted. If it causes propagation, then the clausal
representation of the first propagation rule that
fires is added to the SAT solver and unit propa-
gation is applied. When the SAT solver finishes
we re-execute the same propagator (which is still
at the head of the queue) to search for another
firing propagation rule. When there are no more
firing rules the propagator is removed from the
queue and the next propagator considered. The
reason we add clauses as soon as possible is to
detect failure as soon as possible. Unit propaga-
tions may schedule (or re-schedule) propagators.
The process continues until the propagation queue
is empty and unit propagation is at fixpoint. At
this point the SAT solver makes a decision about
a literal to set true and search continues.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

On failure the propagation queue is cleared,
and the SAT solver backtracks up the trail of de-
cided and inferred literals. For each canceled lit-
eral we undo the domain change on the corre-
sponding integer variable in the propagation en-
gine.

A subtle point we have not addressed is why we
do not worry about a propagator creating dupli-
cates of clauses corresponding to its propagation
rules, particularly since we can execute the prop-
agator repeatedly simply to create all the propa-
gation rules that fire for one domain. The reason
is that since a propagator f is only run at domain
D = domain(A) for an assignment A which is a
unit propagation fixpoint, then if cl(r) is already
in the SAT solver then r cannot fire on domain D
(it has no new information).

Example 14 Consider the propagation of the
constraint x = y with Djpit(2) = Dinit(y) =
[0..4]. After the SAT solver sets —[z = 2] and
—[y = 3] the first propagation rule that fires is
x # 2 — y # 2. This is added as the clause
[x = 2]V -]y = 2] and propagated to set =y = 2].
Returning to the propagation engine the, the prop-
agator for x = y is still head of the queue. The
original propagation rule no longer fires since y # 2
is not new information. Hence the next propaga-
tion rule y # 3 — x # 3 is considered.

The extensions of lazy clause generation we
consider in this paper require modifications to the
implementation. The reason is that using domain
propagators on bounds variables, or more gener-
ally disjunctive propagators means that we can not
be sure that a newly added clause does not already
exist (has not previously been added) since it may
not cause unit propagation with the current as-
signment.

This requires two modifications to the ap-
proach. First disjunctive propagators at the head
of the queue must store an index of propagation
rule processed last, and clear this index every time
the propagator queue is cleared. This is to avoid
them regenerating the same propagation rule when
they are still the head of the queue. Secondly, be-
fore adding a clause corresponding to a disjunctive
propagation rule we need to check that it is not al-
ready in the SAT solver.

We could build a separate data structure to
record which clauses have been sent to the solver.
To avoid the complexity and space required to do
this we re-use existing data structures in the SAT
solver. Suppose a propagation rule C' — ¢1 V ¢y
already has its corresponding clause C1 in the SAT
solver. All literals in the clause except lit(cy)
and lit(c2) must be false in the current assign-
ment, otherwise the propagation rule would not
fire. The SAT solver keeps track of at least two
literals in each clause which are not false, the so-
called watched literals, in order to detect unit prop-
agations. Hence lit(c1) and lit(ce) must be the
watched literals for Cl. To check if Cl appears in
the SAT solver already, we check all clauses where
lit(cy) is a watched literal (the SAT solver provides
this data structure), and see if one is identical to
Cl.

This check is reasonably expensive, but much
cheaper than looking at all clauses involving lit(cy)
since it will be the watched literal in few of them.

5 Experimental results

All experiments are performed on a 3.4GHZ In-
tel Pentium D with 4Gb RAM running on Debian
Linux 4. The lazy clause generation system is built
using MiniSat [9] version 2.0 beta. We compare
our results against a highly optimized propagation
solver Gecode 1.3.1 [3]. Eager models are run on
MiniSat version 2.0 beta.

5.1 alldifferent propagators

The disequality alldifferent([x1,...,%y]) con-
straint requires that V1 <14 < j < n,z; # ;.

In the lazy clause generation solver we can rep-
resent the disequality constraint x # y in a num-
ber of ways: (a) using the domain propagator fy
from Example 1, (b) using the bounds propagator
f» from Example 4, and (c) using (bounds) prop-
agators F;. for the reified set of constraints by V bs,
by © x4+1 <y, by < y+1 < x. In fact the last two
representation have exactly the same propagation
behaviour

Lemma 2 Let D(by) = D(be) = [0..1], then
solv(F,., D) ={z.y} solv({fp}, D).

Proof: Suppose a propagation rule for f; fires in
D. Assume it has the form x > dAx < dAy >
d — y > d+ 1, reasoning for the other rules is
analogous. Then the propagation rule y > d A x <
d — by < 0 from by < y+ 1 < z fires. Hence
the propagation rule by < 0 — by > 1 from by V by
fires, and hence therule by > 1Az > d — y > d+1
from b; & x + 1 < y fires.

In the reverse direction suppose a propagation
rule for F. fires in D modifying = or y. Assume
it is of the form by > 1Ax > d — y > d + 1,
reasoning for other rules is analogous. Then since
by > 1 is true, and is not true in D, either a rule
z<dANy>d+1— b >1firesor by <0 —
b1 > 1 fires.

Suppose a rule of the first kind fired. Now d’' >
d since x > d and x < d both hold and d +1 >
d’' + 1 otherwise y > d + 1 is not new information.
This is a contradiction

Hence the second rule must fire. Since by < 0
is now true, a rule of the form y > d’' Az < d’ —
bs < 0 must have fired for some d”. Since the
first rule creates new information y > d + 1 is
stronger that y > d” hence d > d”. But since
D ensures both £ > d and z < d” we have that
d>d'">x>d,sod=d". Hence D ensure that
r >d, x <dand y > d and hence f; fires the
rulex > dAe <dAy>d— y>d+ 1, causing
y=>d+1. O

There are more complex propagators for
alldifferent([z1,...,2,]) (see the survey [15])
that implement more complex rules based on Hall
sets [4]. A hall set H is a subset of {z1,...2,}

33



CRPIT Volume 77 - Theory of Computing 2008

34

such that |H| > |S| where S = Uy,egD(v)|. If
|H| > |S| the propagation rule is

NveH NdeDipis(v)—s U 7 d — false

If |H| = |S| the propagation rules are for each
v e{xy,...,xy,} —Handd €8

NveH NieDini(v)-s vV #F d o v' # d'

The domain propagation of Regin [12] implements
all propagation rules for all possible Hall sets.
Given there are exponentially many Hall sets,
these stronger propagators do not necessarily lead
to advantage in lazy clause generation.

5.2 Quasigroup Completion Problems

A n x n latin square is a square of values x;;,1 <
1,7 < n where each number [1..n] appears exactly
once in each row and column. It is represented by
constraints

alldifferent([z;1, ..., Tinl, i

1< n
alldifferent([z1j,...,%nj], 1< j<n

ININ

The quasigroup completion problem (QCP) is a
latin square problem where some of the z;; are
given. These are challenging problems which ex-
hibit phase transition behaviour. We use examples
from the 2006 Constraint Satisfaction Solver Com-
petition [2].

Table 1 compares the user time for finding the
first solution of quasigroup completion problems of
size 15 x 15 for various modelling possibilities. The
choices are 3 letter codes: eager or lazy modelling,
bounds or full integer representation, and bounds
(f»), domain (f4) or reified (F,.) propagators for
representing disequality. Note that for the eager
approach with bound variable representation the
clauses for the bound and domain propagator are
exactly the same, and thus we write eb(bd) to
denote ebb and ebd. We also compare against
Gecode [3]. For eager modelling the time for con-
structing the clausal representation is included, it
is either 0.01 or 0.02 seconds. The benchmarks
0-9 are satisfiable while 10-14 are unsatisfiable.
We omit lbr from the tables, since they are not
competitive for these benchmarks.

The eager approaches are best for these exam-
ples, while the 1fd combination is the best lazy
approach. This is interesting as the bounds rep-
resentation is quite poor for the lazy approach,
but better than the domain representation for the
eager approach. The larger the search required
the poorer Gecode performs in comparison to the
SAT /hybrid approaches.

Table 2 shows the results on 25 x 25 QCP prob-
lems in order to see the trend for modelling choices
as size increases. These problems are hard for
Gecode, taking hours to complete. In 6 out of 15
instances 1fd improves upon the eager approach
efd, and overall it solves the whole suite faster.
Even though QCP problems are small (the cost of
eager clause generation is less than 0.10 seconds)

the lazy approach avoids the overhead of exam-
ining many useless clauses, and hence starts out-
performing the eager approach as the problem size
grows. Interestingly eb(bd) is still better than the
lazy approach 1fd for these problems, even though
the lazy bounds representations are poor. Exam-
ining the novel combination lbd we see that for
2 instances it gives the best results, and it suf-
fers significantly greater overhead because it has
to check for duplicate clauses. With a dedicated
systems for duplicate clause checking it could be
improved further.

Table 3 shows the search space for each ap-
proach. While Ifd has the overhead of propagator
execution compared to efd and eb(bd) it usually
requires less search, since only the used clauses
are counted for the search heuristic. Clearly there
is an overhead for the full integer representation.
When 1bd leads to around the same search space
as Ifd it is twice as fast.

5.3 Magic Squares Problems

A n xn magic square is a square of values x;;,1 <
1,7 < n where each number in [1 . nﬂ occurs ex-
actly once and each row, column and major diag-
onal adds to the same number (s = n(n? +1)/2).
It is represented by one alldifferent constraint,
and 2n + 2 linear equations.

In Table 4 we compare various modelling
choices for magic square problems, for finding the
first solution (F) and all solutions (A)(for small
problems). The * entries arise since the eager ap-
proach eb(bd) could not search for all solutions
(A) since this required modifying the SAT solver.

For these problems, the first fail search strategy
of Gecode is clearly much better than the VSIDS
search used by our hybrid. The eager modelling
approach quickly fails since just the generation of
the clauses for Y "', z;; = s requires more than
400 seconds. The additional variables [z = d] in
the full integer variable representation cause too
much overhead for these example, the bounds rep-
resentations are clearly superior. Of these the
hybrid disjunctive propagator performs well. In-
terestingly lbr which has the same propagation
strength as lbb is superior on the harder prob-
lems. This may be because nogoods can make use
of the Boolean reification variables to record more
pertinent information about failures.

5.4 CELAR Radio Link Frequency Assign-
ment Problems

The CELAR Radio Link Frequency Assignment
Problems [1] consist of a set of radio frequencies
and a set of radio links to assign a frequency to
each radio link. Some pairs of radio links must be
an exact distance apart in frequency, while other
should be at least some distance apart. We use
the first 5 problems (where all constraints are mu-
tually satisfiable) while minimizing the maximum
frequency used. The set of possible frequencies F
is non-continuous:

{24141 <i <11} U {24 14i]18 < i < 28}
U{8 + 14i|29 < i < 30} U {8 + 144[46 < i < 56},



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Table 1: QCP 15 x 15 instances: user time

Time(sec)
Benchmark ofd [eb(bd) | Tfd [ Tbd | Tbb | gecode
Gep-T5-120-0xt [0.05 |  0.02 [0.03 [0.14[0.64 | 0.02
qep-15-120-Text | 0.04 | 0.04 [ 0,06 | 0.22 | 0.74 | 0.08
qep-15-120-2ext | 0.08 | 0.02 | 0.05 | 0.16 | 0.74 | 454.53
qep-15-120-3.ext | 0.05 | 0.04 | 0.14 | 0.26 | 0.84 |  0.19
qep-15-120-4ext | 020 | 0.02 [ 0,02 | 0.33 | 0.65 | 550
qep-15-120-5ext | 0.15 | 0,09 | 0.21 | 0.62 | 2.52 | 117.08
qep-15-120-60xt | 0.04 | 0.02 [ 0.01 | 0.17 | 1.01 | 38.01
qep-15-120-Text | 0.11| 013 [ 029 | 0.24 | 0.97 | 1.28
qep-15-120-8ext | 0.05 |  0.10 [ 0.04 | 0.18 | 0.76 | 6.70
qep-15-120-9ext | 0.08 | 014 | 0.24 | 0.27 | 078 || 1685.44
qcp-T5-120-T0.ext [ 0.06 | 0.04 [ 0.04 | 0.20 | 0.55 | 1044.80
qep-15-120-T1ext | 0.03 | 0.05 | 0.01 | 032 | 0.41 |  47.64
qep-15-120-12.ext | 0.03 | 0,01 | 0.02 | 0.04 | 0.41 | 86229
qep-15-120-13.ext | 0.16 | 0.30 | 0.17 | 0.21 | 1,57 | 179.18
qep-15-120-T4.oxt | 0.02 | 0.01 | 0.01 | 0.01 | 0.62 || 2034.72
Arith mean 0.08 | 0.07 [0.09 [ 0.22 [ 0.88 | 431.83
Geom mean 0.06 0.04 | 0.05 | 0.17 | 0.78 24.67

Table 2: QCP 25 x 25: user time

Time(sec)
Benchmark ofd [eb(bd) | 1td| Tbd| 1bb

qcp-25-264-0ext | 114.07 | 65.56 | 149.88 | 85.80 | 242.73
qep-25-264-1ext | 832.31 | 108.37 | 99.84 | 374.77 | 1346.06
qep-25-264-2_ext | 15.40 | 44.40 | 12.25 | 47.34 | 144.92
qep-25-264-3ext | 542.61 | 273.36 | 442.57 | 532.47 | 1655.22
qep-25-264-d_ext | 265.00 | 268.84 | 24.87 | 418.33 | 1136.17
qep-25-264-5_ext | 108.60 | 146.36 | 341.25 | 158.62 | 4810.77
qep-25-264-6_ext | 255.60 | 185.53 | 130.06 | 127.91 | 871.80
qep-25-264-Text | 35.36 1.52 | 34.07 | 7826 | 269.61
qep-25-264-8_ext 9.52 |  48.36 | 81.10 | 171.35 | 998.53
qep-25-264-9ext | 27.80 | 153.52 | 286.20 | 710.96 | 1043.52
qcp-25-264-10ext | 30.02 | 125.67 | 165.77 | 346.78 | 631.13
qep-25-264-11ext | 0.14 0.06 | 0.10]| 0.17 7.16
qep-25-264-12.ext | 0.23 0.21| 0.24| 032] 11.90
qep-25-264-13ext | 0.36 029 | 034] 0.34 9.83
qcp-25-264-14_ext | 107.82 | 131.88 | 175.01 | 176.97 | 901.36
Arith mean 156.3% | 103.60 | 120.57 | 215.37 | 938.71
Geom mean 26.40 | 23.75 | 30.31| 53.07| 326.03

using only 44 values in the range [16..792] of
777 possible values. We model the problem using
bounds propagators for |z — y| > k (see Exam-
ple 13), and model |z — y| = k using the bounds Prob
propagators for |[x —y| > kAx—y < kAy—z < k.

We compare the full integer representation,

Table 6: CELAR problems: user time

User Time(sec)
1fb Inb Ibb | lob || gecode
scen01 | 285.22 | 13.67 | 104.65 | 9.37 > 400
scen02 2.03 | 0.16 0.86 | 0.11 > 400

non-continuous representation, bounds represen- scen03 | 39.90 | 3.16 | 20.06 | 2.19 > 400
tation, and non-continuous bounds representation. scen04 2.17 | 0.16 0.88 | 0.10 0.46
For the full integer representation we statically scen05 2.25 | 0.17 0.96 | 0.10 0.34

add constraints —[z =d],d € [16..792] — F to
the SAT solver, while for the bounds representa-

tion we statically add the constraints —[z < d;] v
[x < di11] where d; and d;41 are consecutive val-
ues in F. We also compare with Gecode using
reified constraints to represent |z — y| > k as
r—y=2kVy—x>k.

The results for the various modelling choices
are shown for: user time in Table 6, failures in
Table 7, and unit propagation executed in Ta-
ble 8. Clearly the non-continuous representations
are significantly better than the continuous rep-

resentations, they involve around 20x fewer vari-
ables. The failure results show that it is not the
results of a better search because there are fewer
Boolean variables to branch on, instead it is sim-
ply the overhead of more unit propagations to deal
with the larger number of variables.

This clearly shows the benefit of separation of
propagator implementation from variable repre-
sentation. The propagator is highly effective on

35



CRPIT Volume 77 - Theory of Computing 2008

36

Table 3: QCP 25 x 25: conflicts (000s)

Benchmark

Conflicts/Failures

efd

eb(bd) | Itd [ 1bd | Ibb

qcp-25-264-0_ext 212
qcp-25-264-1_ext | 1037
qcp-25-264-2_ext 44
qcp-25-264-3_ext 814
qcp-25-264-4_ext 417
qcp-25-264-5_ext 210
qcp-25-264-6_ext 397
qcp-25-264-7_ext 84
qcp-25-264-8_ext 30
qcp-25-264-9_ext 70

117 [ 159 | 174 ] 588
178 | 119 | 626 | 2498
99| 29| 125| 463
393 | 399 | 892 | 3284
405 | 42| 760 | 2424
256 | 325 | 345 | 7890
282 | 161 | 273 | 1701
9.6 | 60| 178 | 631
96 | 102 | 352 | 2142
261 | 291 | 1301 | 2307

qcp-25-264-10_ext 76
qcp-25-264-11_ext 0.2
qcp-25-264-12_ext 1.6
qcp-25-264-13_ext 4.1
qcp-25-264-14_ext | 192

Arith mean 239
Geom mean 64

61| 53| 137 | 736

Table 4: Magic squares: user time

nT User Time(sec)

eb(bd) 1fd Ibd Ibb Ibr || gecode
3F 0.16 0.00 0.00 0.00 0.00 0.00
3A * 0.00 0.00 0.00 0.00 0.00
4F 8.92 0.04 0.04 0.01 0.16 0.01
4A * | 866.38 | 745.87 | 810.84 | 803.09 2.26
5F > 400 | 307.15 1.04 1.19 0.79 0.81
6F > 400 | 31.87 0.39 | 99.92 | 17.50 0.00
7F > 400 | > 400 | > 400 | > 400 | > 400 5.25

Table 7: CELAR problems: Conflicts/Failures

Prob Conflicts/Failures

1fb Inb 1bb lob || gecode
scen01 | 5036 | 4542 | 4160 | 4247 —
scen02 202 127 180 261 —
scen03 | 3039 | 2380 | 2667 | 2553 —
scen04 7 6 2 1 31
scen05 17 22 36 24 74

Table 8: CELAR problems: unit propagations

Unit Propagations
Prob b Tnb Tbb Tob
scen01 | 177561515 | 13081789 | 133403108 | 7133763
scen02 1969516 183084 1732660 112612
scen03 43087573 3608960 38598246 | 1918102
scen04 628192 36289 304949 17368
scen05 901257 65516 1375927 47145

the non-continuous Boolean representations with-
out being modified.

Interestingly for these problems the disjunctive
propagator explained in Example 13 does not im-
prove upon the bounds propagator.

6 Related Work and Conclusion

The motivating earlier work for the lazy clause
generation approach was twofold.

The paper [5] described a hybrid binary deci-
sion diagram (BDD) and SAT solver for solving
problems involving set variables, which used the
SAT solver as nogood engine for a BDD propaga-
tion solver. The hybrid leaves control of search to
the BDD solver, and does not include integer vari-
ables. Lazy clause generation imbeds the propa-
gation engine in the SAT solver and puts the SAT
solver in charge of search. Set variables have only a
single possible Boolean representation so the mod-
elling choices we explore here do not arise.

The paper [14] explained how to statically en-
code linear arithmetic constraints into CNF (hence
eager modelling) using the propositions [z < d].
The approach is manifestly impractical when the
linear constraint involves a significant number of
variables (as illustrated by e.g. magic squares 5).
The lazy clause generation approach makes the en-
coding of linear arithmetic possible for large linear
constraints, and allows encoding of arbitrary prop-
agators.

There are propagation solvers which allow dif-
ferent representation of integers, in particular Min-
ion [8] and Gecode [3]. All representations either
support all atomic constraints or are restricted in
the propagators they can be used. The views ap-



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Table 5: Magic squares: conflicts

nT Conflicts/Failure

eb(bd) 1fd Ibd Ibb Ibr || gecode
3F 15 3 9 14 12 6
3A * 31 34 43 34 36
4F 51 569 560 160 1326 892
4A * 11000776 | 898347 | 1050572 | 869813 || 235545
5F — | 201531 7578 8149 3212 72227
6F — 53332 2991 | 137545 | 21644 27
7F — — — — — || 481301

proach of Gecode [13] allows variables defined by
simple constraints to be seen as mappings from
atomic constraint to atomic constraints, and hence
has some similarity with the mapping idea of this
paper. For example a variable y = x+ 3 effectively
rewrites atomic constraint like x > 4 to y > 6 and
vice versa. It would be useful to include views in
the lazy clause generation solver, since it reduces
the number of Boolean variables required.

In this paper we examine the modelling choices
that arise when using the lazy clause generation
hybrid solving approach devised in [11]. We find
that the separation of choice of propagator from
Boolean variable representation leads to an in-
creased number of modelling choices. The di-
rect representation of non-continuous variables is
clearly advantageous, and there is some evidence
that the use of disjunctive propagators (domain
propagators for bounds variables) can improve
upon other modelling approaches.

References

[1] B. Cabon, S. de Givrey, L. Lobjois, T. Schiex,
and L.P. Warners. Radio link frequency as-
signment. Constraints, 4(1):78-89, 1999.

[2] CSP competition 2006.

http://cpai.ucc.ie/06/Competition.html.

[Jun07].
[3] GECODE. www.gecode.org. [Feb07].

[4] P. Hall. On representatives of subsets.
Journal of the London Mathematical Society,
10:26-30, 1935.

[5] P. Hawkins and P.J. Stuckey. A hybrid BDD
and SAT finite domain constraint solver. In
P. Van Hentenryck, editor, Proceedings of
the Practical Applications of Declarative Pro-
grammang, number 3819 in LNCS, pages 103—
117. Springer-Verlag, 2006.

[6] P. Laborie. Complete MCS-based search:
Application to resource constrained project
scheduling. In Proceedings IJCAI 2005, pages
181-186, 2005.

[7] Alan K. Mackworth. Consistency in networks
of relations. Artificial Intelligence, 8(1):99-
118, 1977.

[8] Minion. minion.sourceforge.net. [Feb07].

[9] MiniSat. www.cs.chalmers.se/Cs/Research/
FormalMethods/MiniSat/. [Dec06].

[10] R. Niewenhuis, A. Oliveras, and C. Tinelli.
Abstract DPLL and abstract DPLL modulo
theories. In LPAR’04, volume 3452 of LNAI,
pages 36-50, 2004.

[11] O. Ohrimenko, P.J. Stuckey, and M. Codish.
Propagation = lazy clause generation. In
C. Bessiere, editor, Proceedings of the 13th
International Conference on Principles and
Practice of Constraint Programming, LNCS,
page to appear. Springer-Verlag, 2007.

[12] J-C. Regin. A filtering algorithm for con-
straints of difference in CSPs. In Proceedings
of the Twelfth National Conference on Arti-
ficial Intelligence, volume 1, pages 362-367,
Seattle, WA, USA, 1994. AAAI Press.

[13] Guido Tack, Christian Schulte, and Gert
Smolka. Generating propagators for finite set
constraints. In Fréderic Benhamou, editor,
12th International Conference on Principles
and Practice of Constraint Programming, vol-
ume 4204 of Lecture Notes in Computer Sci-
ence, pages 575-589. Springer, 2006.

[14] N. Tamura, A. Taga, S. Kitagawa, and
M. Banbara. Compiling finite linear CSP to
SAT. In Proceedings of CP-2006, volume 4204
of LNCS, pages 590-603, 2006.

[15) W.J.  van  Hoeve. The  alld-
ifferent constraint: a survey.
http://arxiv.org/abs/cs/0105015, 2001.

37



CRPIT Volume 77 - Theory of Computing 2008

38



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

The Core Concept for 0/1 Integer Programming

Sam Huston? Jakob Puchinger!? Peter Stuckey!?

L NICTA Victoria Laboratory
2 Department of Computer Science and Software Engineering,
University of Melbourne, Victoria 3010, Australia,
Email: {shuston, jakobp,pjs}@csse.unimelb.edu.au

Abstract

In this paper we examine an extension of the
core concept for the 0/1 Multidimensional Knap-
sack Problem (MKP) towards general 0/1 Integer
Programming (IP) by allowing negative profits,
weights and capacities. The core concept provides
opportunities for heuristically solving the MKP,
achieving higher quality solutions and shorter run-
times than general IP methods. We provide the
theoretical foundations of the extended core con-
cept and further provide computational experi-
ments showing that we can achieve similar com-
putational behavior for extended MKP instances
with negative weights, profits and capacities.

1 Introduction

The core concept for the 0/1 Multidimensional
Knapsack Problem (MKP) (Puchinger et al. 2006,
2007) has been shown to be very effective in
providing opportunities for heuristically solving
the MKP, achieving higher quality solutions and
shorter run-times than general IP methods. In this
paper we will examine the possibilities of extend-
ing the core concept towards general 0/1 Integer
Programming (IP).

The Multidimensional Knapsack Problem
(MKP) is defined as:

maximize 2z =

subject to Zwijxjgci, i=1,....m (2)

z; €{0,1}, j=1,...,n, (3)

where the profits p;, the weights w;;, and the ca-
pacities ¢; are all positive. Allowing negative val-
ues for those parameters results in general 0/1 In-
teger Problems. This is because it is possible to

Copyright (©2008, Australian Computer Society, Inc. This pa-
per appeared at Computing: The Australian Theory Sympo-
sium (CATS 2008), Wollongong, Australia. Conferences in Re-
search and Practice in Information Technology, Vol. 77. James
Harland and Prabhu Manyem, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

transform any 0/1 IP into this format. (Bertsimas
& Tsitsiklis 1997)

The aim of the core concept is to reduce the
original problem to a core of items for which it is
hard to decide whether or not they will occur in
an optimal solution. All variables corresponding
to items outside the core are fixed to their optimal
values.

The core of a given MKP is defined with re-
spect to some ordering of the variables in the prob-
lem. The ordering results in variables that are ex-
pected to be in the knapsack (set to one) occur
before those which are not expected to be in the
knapsack (set to zero). Given the optimal solu-
tion of the MKP the exact core is defined as the
set of variables from the first variable that takes
the value zero to the last variable that takes the
value one. In order to devise an exact core for a
given MKP, the optimal solution has to be known.
However, being able to heuristically obtain good
approximations to cores and solve those smaller
problems, may lead to high quality solutions in
short computational times.

The underlying concept of such a heuristic is
to order the items of the MKP according to a spe-
cific efficiency measure. This ordering will allow to
partition the items into three sections. The first
section which contains items which are included
in the knapsack (variables set to one). The second
section, named the approximate core, containing
the items which may or may not be included in
the knapsack (variables set to either one or zero).
Finally the third section contains the items which
are not included in the knapsack (variables set to
zero). The aim is to have the approximate core
closely mimic the exact core.

The following example illustrates the core con-
cept for a small 2-dimensional knapsack problem.
The variables are ordered by an efficiency measure
described later. The first line shows the optimal
integer solution, while the second line shows the
optimal solution to the LP-relaxation of the prob-
lem. The exact core is shown in bold in the first
line, while an approximate core (adding 2 variables
around the non 0-1 LP solution values) is shown
in bold in the second line.

IPJI[1]0]JO0O[1] O 1 [0]0]0

IP{1]1]1[1[1[0.96]0.23[0[0][0

39



CRPIT Volume 77 - Theory of Computing 2008

40

In the remainder of the paper, we first intro-
duce the core concept in the context of its previous
uses. We then extend the efficiency measure used
for MKPs to general 0/1 Integer Programs, and
prove that the efficiency measure is tightly related
to the optimal solution. In Section 4 we show the
result of experiments illustrating the effectiveness
of the approximate core computations, the loss of
precision that arises from restricting the problem
to an approximate core, and the improvement in
best solutions found if we use approximate cores.

2 Background

2.1 The Multidimensional
Problem

Knapsack

A comprehensive overview of practical and the-
oretical results for the MKP can be found in
the monograph on knapsack problems by Kellerer
et al. (Kellerer et al. 2004). Solving the MKP
with heuristic methods seems to be the method of
choice for the bigger instances described in the lit-
erature, since no exact method is known for solving
these instances to optimality. Besides exact tech-
niques for solving small to moderately sized in-
stances, based on dynamic programming (Gilmore
& Gomory 1966, Weingartner & Ness 1967) and
branch-and-bound (Shih 1979, Gavish & Pirkul
1985), many kinds of meta-heuristics have been
applied to the MKP (Glover & Kochenberger 1996,
Chu & Beasley 1998). See (Raidl & Gottlieb 2005)
for a recent survey and comparison of evolution-
ary algorithms for the MKP. The hybrid tabu-
search methods presented in (Vasquez & Hao 2001,
Vasquez & Vimont 2005) are currently yielding the
best known results for the commonly used bench-
mark instances.

2.2 The core concept for KP and MKP

The core concept was first presented for the clas-
sical 0/1-Knapsack Problem (KP) (Balas & Zemel
1980) and led to very successful knapsack al-
gorithms (Martello & Toth 1988, Pisinger 1995,
1997). These ideas were also studied in the con-
text of bi-criteria knapsack problems in (Gomes da
Silva et al. 2005). The core concept was success-
fully extended to the MKP (Puchinger et al. 2006,
2007), leading to highly competitive heuristic al-
gorithms.

It should be noted here that the KP core con-
cept is not effective for producing good heuris-
tic solutions for strongly correlated problem in-
stances. Pisinger (Pisinger 1995) discusses why
these problems are difficult to solve using the
core concept. We would expect similar results for
strongly correlated general 0/1 IP problems.

The classical greedy heuristic for KP packs the
items into the knapsack in decreasing order of their

efficiencies L as long as the knapsack constraint
wj

is not violated. The same ordering also defines
the solution structure of the LP-relaxation, which
consists of three parts: The first part contains all
variables set to one, the second part consists of
at most one split item (s), whose corresponding

LP-value is fractional, and finally the remaining
variables, which are always set to zero, form the
third part.

The precise definition of the core of KP intro-
duced by (Balas & Zemel 1980) requires the knowl-
edge of an optimal integer solution z*. Assume
that the items are sorted according to decreasing
efficiencies and let

a:=min{j | 2} = 0}, b:=max{j | zj = 1}.
o Lo @)
The core is given by the items in the interval
C = {a,...,b}. It is obvious that the split item
is always part of the core. If the split item would
not be part of the core, the core would either start
after the split item or end before it. The first case
is impossible, since this would break the capacity
constraint. The second case would contradict the
optimality of the solution, because we would still
be able to add more items to the knapsack without
violating the capacity constraint.

These ideas have been expanded to MKP with-
out major difficulties (Puchinger et al. 2006,
2007). The main difference is that the choice of
the efficiency measure is not obvious for the MKP
any more. The efficiency measure:

€; = &,
Sj

where s; = Z u;w;j, and u; are the dual vari-
able values of the LP-relaxation of the MKP, pro-
vided the best theoretical and practical results

Let x* be an optimal solution and assume that
the items are sorted according to the decreasing
efficiency measure e, then define

a:=min{j [z} =0} and b:=max{j|z] =1}
(5)
The core is given by the items in the interval
= {a,...,b}, and the core problem (MKPC)

is defined as

maximize z = ij:cj +p (6)
jec
subject to Zwijxj <c—w,t=1,...,m
jec

z; €{0,1}, jeC, (8)

with ]5 = Z?;ll Pj and ’LTJZ' = Z?;ll Wiy, T =
1,...,m.

In contrast to KP, the solution of the LP-
relaxation of MKP does not consist of a single frac-
tional split item, but its up to m fractional values
give rise to a whole split interval S := {s,...,t},
where s and ¢ are the first and the last index of
variables with fractional values after sorting by ef-
ficiency e.

The split interval S, has been precisely char-
acterized. Let ™" be the optimal solution of the
LP-relaxation of MKP.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Theorem 1 ((Puchinger et al. 2006, 2007))
For efficiency values e; we have:

1 if €j>1,
oy’ =3 €[0,1]if e; =1, (9)
0 Zf €j<1.

3 Extending the core concept

As mentioned above, the main goal of this paper is
to extend the core concept to general 0/1 Integer
Programs. We show how the efficiency measure for
the classical MKP problem can be adapted in such
a way that the ordering of the variables according
to this measure remains valuable for devising good
approximate cores. We further provide a charac-
terization of the structure of the LP relaxation of
the 0/1 Integer Program.

We take all 0/1 IP problems to be trans-
formable into the same structure as MKP, see
equation 1.

Such a transformation is possible for any
0/1 IP, see any linear programming text book,
(e.g. (Bertsimas & Tsitsiklis 1997)). This means
that the only difference between MKP and this for-
mulation of 0/1 IP problems is that the coefficients
are permitted to take either positive or negative
values.

We extend the previously defined efficiency
measure e; to create a tuple based measure. We
introduce ordering variables, o; which take values
representing a section of the ordering. Variables
x; are sorted in decreasing (lexicographic) order
of efficiency (0j,¢€;), in other words they are first
sorted by section variable, 0;, and then efficiency
value e;.

These extensions are implemented as indicated
in equation 10:

=~

OB B e 5 =T oS
~—

ifp; >0As; <0

ifp; >0As;=0

ifp; =0As; <0

if p; > 0As; >0

ifpj <0/\Sj <0 (10)
ifp;=0As;=0

if p; =0As; >0

) ifpj<0/\sj:

) ifpj<0/\8j>0

= ot o

~— — — O —

(Oj’ej) -

3

AAA/_\,_\,_\,_\/_\,_\

=N W

3

The ordering is designed to minimize the size
of the split interval, which is completely contained
in section 0; = 4. Our experiments in Section 4
show that the center of the core and the center
of the split interval are close for our benchmark
instances.

The sections o; € {7,6,5} contain items that
are purely beneficial: they either increase profit or
“on average” remove weight from the optimal so-
lution without decreasing profit. They are ordered
to maximize profit and removal of weight. Simi-
larly the sections o; € {1,2,3} contain items that

are purely detrimental to the problem: they ei-
ther decrease profit or add weight. Again they are
ordered to maximize profit and removal of weight.

Using this efficiency measure the nature of the
split interval can be characterized as follows. Let
™" be the optimal solution of the LP-relaxation
of general 0/1 IP.

Theorem 2

1 ifej > 1 oro; > 4,
LpP :
zym =4 €10,1] if e;j =1 and oj =4,
0 if0<e; <1oro; <4.
(11)

Proof The dual LP (DLP) associated with the
LP-relaxation of the general 0/1 IP formulation is
given by:

m n
minimise Z ciu; + Z v;  (12)
i=1 j=1

m

subject tonijui +v; >pj,i=1,..,n (13)
i=1

u,v; >0,i=1,...,m,j=1,..,n, (14)

where u; are the dual variables corresponding to
the problem’s constraints and each v; corresponds
to the inequality x; < 1. For the optimal primal
and dual solutions the following complementary
slackness conditions hold for j =1,...,n. .

T <Z WijU; + Vj —pj> =0 (15)

- vUj (.Tj — 1) =0 (16)

(For more details on linear programming du-
ality and complementary slackness conditions,
refer to any textbook on linear programming,
e.g.(Bertsimas & Tsitsiklis 1997).)

We illustrate the result for each section in the
definitions of the ordered tuple (05, e;).

Consider the top 3 sections (o; € {7,6,5}).
Clearly in each case we have that p; > s;. Hence
satisfying equation (13) requires that v; > 0.
Therefore equation (16) implies that z; = 1.

Consider the bottom 3 sections (o; € {1,2,3}).
Clearly in each case p; < s;. Hence the expression
2211 wi;u; + v; — p; or equivalently s; 4+ v; — p;
is greater than 0, since v; > 0. In order to satisfy
equation 15 z; = 0.

For section (4, g—j) we consider two cases. If
e; = 1;—; > 1 then p; > s; since s; > 0 and the

same reasoning as for cases o; € {7,6,5} applies,
whileif e; < 1then p; < s; and the same reasoning
as cases o; € {1,2,3} applies.

For section (4, ;—j) we consider two cases. If

e; = ;—; > 1 then p; > s; since p; < 0 and the

same reasoning as for cases o; € {7,6,5} applies,

Y|



CRPIT Volume 77 - Theory of Computing 2008

42

while if e; < 1 then p; < s; and the same reasoning
as cases 0; € {1,2,3} applies.

For the remaining case, e¢; = 1 and o; = 4,
there is nothing to prove.

O

The ordering within the top and bottom groups
o;j € {1,2,3}, and o; € {5,6,7} is not set by the
proof, these orderings are based upon maximizing
profit. Other possible orderings could be consid-
ered for these groups without changing our char-
acterization of the split interval.

An illustration of the ordering (o;,¢;) is given
in Table 1. This example shows some of the sec-
tions described above. As predicted by the theo-
rem, the split interval exists entirely within section
05 =

4 Computational experiments

4.1 Benchmark Problems

All of the following computational experiments
were performed on a 3GHz Intel Pentium D with 4
Gb RAM, using the programming language Mer-
cury and the commercial mixed integer program-
ming solver CPLEX 10.0.

In order to study the core concept on 0/1 IP
we generated example problems using the Chu
and Beasley (Chu & Beasley 1998) benchmark in-
stances for the MKP, as the starting point.

These benchmark problems consist of classes
of randomly created instances for each combina-
tion of n € {100, 250,500} items, m € {5,10,30}
constraints and tightness ratios 0.25,0.50.75. The
tightness ratio refers to the ratio between the con-
straint value and the sum of the corresponding
weights.

..
a=——€{02505,07} (17
Do jo1 Wi

Weights are integers between 0 and 1000. Prof-
its are generated by the equation:

m

pi =24 4 [500r] € {0.25,0.5,0.75}
i=1

where r; is a random number generated from (0, 1].
For each permutation of n, m and «, 10 instances
are provided.

In order to generate 0/1 Integer Programs with
negative values we multiply a random percent-
age of the weights and profits of a given problem
by —1. The percentages used are 5%, 10%, 20%.
Larger percentages of negative values were tried,
however the problems quickly became optimally
solvable in short run-times.

The set of profits and the set of all weights are
operated on separately. This ensures that there is
a fixed percentage of negative profits and a fixed
percentage of negative weights. Combinations of
different percentages of negative weights and prof-
its were tried, however almost invariably this made
the problems easier and thus faster to solve.

This process will change the tightness ratio. In
order to maintain the tightness ratio the capacities
have to be adjusted:

n ~
Ci * 23:1 Wi, j

S Wiy

w;, j represents the original weights, w; ; represents
the adjusted weights, and ¢; represents the new
constraint value. Since the sum of the adjusted
weights may become negative, it is possible that
the new capacity ¢; will also be negative.

It can be seen that the generated problems are
general 0/1 IP problems. There are nine classes
of generated problems for each combination of n
and m, corresponding to three different tightness
ratios, and the three percentages of negative coef-
ficients.

C; =

4.2 0/1 IP Core Analysis

We provide empirical results supporting our adap-
tation of the efficiency measure e, (see Table 2).
This table shows information about actual cores
when the above efficiency function is utilized. The
problems shown in these tables are based upon
the smaller instances in Chu and Beasley’s bench-
mark library (Chu & Beasley 1998). Specifically
these problems use n = 100,m € {5,10}, and
n = 250,m = 5. These problems were cho-
sen because they are solvable in reasonable run-
time. This means that the optimal solutions can
be found, and the size of the core can be deter-
mined.

The tables show the averaged values over 10
problem instances. Average values listed include
size of the split interval (|S.|), size of the exact core
(|Ce|), percentage that the split interval covers the
exact core (ScC), percentage that the exact core
covers the split interval (ScC), and the distance
between the center of the split interval and the
center of the exact core (|Cgist|) as a percentage
of the number of items in the problem.

The table entries for 0% negative coeflicients
shows that the newly defined efficiency value pro-
vides equivalent results for standard MKP prob-
lems as those reported in (Puchinger et al. 2006,
2007). As expected from Theorem 2, negative val-
ues do not increase the size of the split interval.
The size of the split interval and the core actu-
ally decreases as the number of negative weights
increases. The center of the core remains close
to the center of the split interval. These results
show that the chosen ordering, based on the opti-
mal dual variable values of the LP-relaxation, is a
good indicator of the actual location of the core.

4.3 Approximate core algorithm

In order to evaluate the influence of negative val-
ues on solution quality and run-times an approxi-
mate core algorithm was implemented. This algo-
rithm is similar to the algorithm implemented by
(Puchinger et al. 2006, 2007). The approximate
core is generated by adding 0 items to either side
of the center of the split interval. The values of



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Weighti Weights Profit | s, (0j,e;) | LP [1IP
1 1 T [ 089 (7,0.80) | 1.00 | 1
9 12 7 | 517 (7,074) | 1.00 | 1
0 0 8 0.00 (6,8.00) | 1.00 | 1
-2 13 12 0.24 (4,50) 1.00 | 1
5 0 19 | 377 (45.04) | 1.00 | 1
5 4 3| 431 (4,1.44) | 1.00 | 1
16 21 18 14.88 (4,1.21) | 1.00 | 1
13 15 14 11.81 (4,1.19)] 100 | O
6 10 5 | 587 (41.17)] 1.00 | 1
20 -8 14 14.00 (4,1.00) | 0.71 | 1
6 11 6 [ -6.00 (4,1.00)[0.85] 0
20 16 15 17.22 (4,0.87) | 0.00 | 0
10 8 6 8.61 (4,0.70) | 0.00 | O
-1 14 4 | 263 (4,0.66) | 0.00 | 0
14 9 5 11.76 (4,0.43) | 0.00 | O
16 -3 3 11.66 (4,0.26) | 0.00 | O
7 23 9 | 219 (4,0.24) | 0.00 | 0
-1 10 0 | 059 (3.1.69) | 0.00| 0
7 0 -5 5.28 (1,0.95) | 0.00 | O
24 10 -9 19.43 (1,0.46) | 0.00 | 0

Table 1: Example 2-dimensional 0/1 IP problem. The 3 sections are separated based upon the IP
solution. This example shows an exact core using the efficiency measure defined in Theorem 2.

e - 0% negative weights e - 5% negative weights
0% negative profits 5% negative profits

n m « [Se]  1C] ScC  CcS  Cust | [Se] [C] ScC  CcS  Cust
100 5 0.25 | 5.00 20.20 28.12 100.00 3.30 | 5.00 20.00 31.58 100.00 2.90
0.5 | 5.00 22.10 27.49 100.00 3.45 | 5.00 15.90 28.33 86.00 2.65
0.75 | 5.00 20.00 26.32 100.00 3.40 | 5.00 14.80 35.91 98.00 3.50
250 5 0.25| 2.00 12.68 18.16 100.00 2.46 | 2.00 13.36 17.35 100.00 3.12
0.5 | 2.00 12.20 18.45 100.00 1.38 |2.00 9.60 21.47 100.00 1.20
0.75 | 2.00 10.40 20.18 100.00 1.56 | 2.00 10.96 21.04 100.00 1.92
100 10 0.25| 10.00 23.20 46.57 100.00 2.90 | 9.90 25.80 42.74 96.67 3.45
0.5 | 9.80 25.80 48.17 96.00 3.10 | 9.70 23.70 44.06 100.00 3.00
0.75| 970 1830 54.36 94.00 3.00 | 9.20 16.90 60.09 93.19 2.45
Average 5.61 18.32 31.98 98.89 2.73 | 5.53 16.75 33.62 97.10 2.69

e - 10% negative weights e - 20% negative weights

10% negative profits 20% negative profits

n m « [Se]  1C] ScC  CcS  Cust | [Se] [C] ScC  CcS  Cust
100 5 0.25| 5.00 23.60 2231 100.00 4.30 | 5.00 18.60 29.55 100.00 2.70
0.5 | 5.00 19.40 27.11 100.00 3.00 | 4.60 9.80 57.68 95.50 1.20
0.75 | 480 1240 47.28 98.00 1.60 | 2.50 16.90 30.34 86.67 7.00
250 5 0.25| 2.00 10.36 20.27 100.00 1.22 | 2.00 10.52 20.22 98.00 2.02
0.5 | 2.00 11.72 18.79 100.00 2.22 |2.00 884 24.31 100.00 1.94
0.75| 2.00 7.28 30.13 98.00 1.24 | 1.56 6.08 40.80 100.00 1.74
100 10 0.25| 9.70 24.20 4219 9789 4.05 | 9.70 28.00 37.91 100.00 4.15
0.5 | 9.50 20.10 49.20 97.00 3.20 | 8.40 20.10 47.86 98.89 3.35
0.75| 880 14.30 65.99 9270 2.05 | 430 13.80 35.51 92.50 4.05
Average 5.42 15.92 35.92 98.18 254 | 4.45 1474 36.02 96.84 3.13

Table 2: Split intervals, core sizes, mutual coverage of the split interval and cores, distances of the centers
for various percentages of negative values. (Values are averaged over 10 instances of each problem.)

43



CRPIT Volume 77 - Theory of Computing 2008

44

0 were chosen to approximately reflect the size of
the actual cores detected in the previous section:
0 € 0.1n,0.15n,0.2n,0.1n+ 2m, 0.2n + 2m.

The problems shown in these tables are based
upon the smaller instances in Chu and Beasley’s
benchmark library (Chu & Beasley 1998). They
are the same set of problems used to investigate
the actual core sizes in the previous section.

The results of this experiment are shown in Ta-
ble 3. It shows the average values over 10 problems
with the same tightness ratio. Values shown for
the original problem include the average optimal
IP solution for the problem (%), then the average
amount of CPU-time taken to produce the opti-
mal IP solution in seconds (t[s]). Values shown
for each core include the average percentage dif-
ference between the optimal IP solution(z*) and
the IP solution produced by the core problem(z),
(Yoopt = 100% (2* — 2)/z*), the number of times the
optimal solution was reached (#), and the average
CPU-time taken to solve the core IP, as a percent-
age of the CPU-time taken to solve the original IP
problem, %t = 100 * (tcore/toriginal)-

The solution to the approximate cores are (on
average over 10 problem instances) always within
0.7 % of the optimal solution. The results shown in
Table 3 show that smaller approximate core sizes
produce a significant increase in speed. However
they are less likely to produce the optimal solu-
tion, and on average produce solutions of lesser
quality than the larger cores. As the percentage
of negative values increases the problems become
faster to solve. Larger negative percentages were
examined, however run-times were too small to see
any benefit from the core concept.

4.4 Larger 0/1 IP with Fixed Time Runs

We now investigate fixed-time runs over larger
problem instances. These tests are performed
over instances which are currently very hard or
not at all solvable to optimality. The instances
used are based on the hardest benchmarks pro-
vided by Chu and Beasley (Chu & Beasley 1998),
n = 500, m € 5,10, 30

Again these problems were adjusted to contain
negative values in a manner similar to the prob-
lems above. All of the results shown here are per-
formed over problems with 10% negative weights,
and 10% negative profits. The constraints are also
adjusted accordingly.

Table 4 shows the best feasible solution for the
original problem and the core problems as a per-
centage of the LP solution, ( %.p = 100 % (LP —
IP)/LP). These values are averaged over 10 in-
stances of similar problems. Standard deviations
are provided as subscripts. The smallest values for
each row are highlighted in bold. This table also
shows the number of times a particular core size
has lead to the best solution for a problem, (#).
The final column for each core size is the average
number of nodes explored in the branch and cut
tree used by CPLEX.

The experiments show that for the considered
time limits the results obtained on the core prob-
lems are, on average, better that the results ob-

tained from the original problem. There is also a
inverse relationship between the size of the core
and the number of nodes explored. As the size of
the core decreases the number of nodes explored
increases. The best average results for a time
limit of 500 seconds is § = 0.2. It can be seen
that smaller time limits provide best results with
smaller approximate core sizes.

5 Related Work

The most closely related work to this paper
is the application of the core concept to the
MKP  (Puchinger et al. 2006, 2007). We ex-
tend the results therein to general 0/1 Integer Pro-
grams, and show that the core concept continues
to be valuable in the more general case.

Recently, very interesting results have been
achieved with heuristics for 0/1 Mixed Integer
Programming Problems with the goal of devising
better feasible solutions earlier in the optimiza-
tion process. Local Branching (Fischetti & Lodi
2003) combines local search and general branch-
and-bound by introducing local branching con-
straints forcing the search to explore the neigh-
borhoods of current feasible solutions first.

In Relaxation Induced Neighborhood Search
(RINS) (Danna et al. 2005) subproblems for find-
ing better feasible solutions are solved at some
nodes of the branch-and-bound tree. The subprob-
lems are obtained by fixing the variables having
identical values in the current best feasible solution
and in the current solution of the LP-relaxation,
leaving the remaining variables free.

RINS and local branching are local-search
based ideas, reducing the subproblems to certain
neighborhoods around a currently feasible solu-
tion. Our approach requires an LP solution only,
and does not make use of feasible solutions at all.

6 Conclusions

We have extended the core concept, previously
successfully used for finding better solutions to
Multiple Knapsack Problems to general 0/1 In-
teger Programs. We provided an ordering of the
variables using dual information, which results in
a compact split interval just as for the standard
MKP. This ordering is used to reduce the size of
the tackled instances and obtain near-optimal so-
lutions in shorter run-times. Our computational
experiments show, that for challenging 0/1 Integer
Programs with a large number of variables com-
pared to the number of constraints, the core con-
cept provides better solutions than directly solving
the original problem using a commercial solver. In
the future we plan to test our approach on other
widely used large 0/1 IP benchmarks.

Acknowledgements

National ICT Australia is funded by the Aus-
tralian Government’s Backing Australia’s Ability
initiative, in part through the Australian Research
Council.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

5 % negative weights, 5 % negative profits

no core 0=0.1In 0 =0.15n 0 =0.2n 0=0.In+2m 0=02n+2m
n m o z t[S] %opt # %t %opt # %t %opt +# %t %opt # %t %opt +# %t
100 5 0.25 | 26603 1.97 10.113 3 5 [0.014 &8 3010004 9 51 [ 0.004 9 51 [ 0.000 10 82
0.50 | 44666 1.71 | 0.072 5 6 [0.001 9 210000 10 46 |0.000 10 46 | 0.000 10 73
0.75 | 60387 0.51 [ 0.025 7 14 1 0.013 8 43| 0.011 9 60 | 0.011 9 60 | 0.000 10 66
250 5 0.25| 68598 56.11|0.007 7 39 |0.004 8 70 |0.003 9 119 0.004 8 70 | 0.003 9 130
0.50 | 113794 93.78 | 0.000 10 22 | 0.000 10 47 | 0.000 10 68 |0.000 10 42 |0.000 10 66
0.75 | 152330 42.46 | 0.002 7 39 | 0.000 10 62 | 0.000 10 65 |0.000 10 45 |0.000 10 70
100 10 0.25 | 24211 16.94 | 0.614 1 0 [0.133 6 3 10.026 7 16 | 0.000 10 57 | 0.000 10 74
0.50 | 43587 21.50 | 0.287 1 0 | 0.068 6 3 10011 9 18 | 0.000 10 69 | 0.000 10 94
0.75 | 59130 4.49 | 0.081 6 2 10018 7 12 |0.000 10 35 |0.000 10 62| 0.000 10 72

Average 65923 26.61]0.133 5.2 14 [ 0.028 8.0 32 [0.006 9.2 53 [0.002 9.6 56 ]0.000 99 &1

10 % negative weights, 10 % negative profits

no core 0=0.1In 0 =0.15n 0 =0.2n 0=0.In+2m 0=02n+2m
n m « z t[S] %opt # %t %opt # %t %opt # %t %opt # %t %opt # %t
100 5 0.25 ]| 28582 2.04 | 0.136 2 6 [0.067 6 38 [0.000 10 57 [0.000 10 57 ]0.000 10 75
0.50 | 45222 1.92 | 0.061 4 5 10.004 8 3010000 10 47 |0.000 10 47 | 0.000 10 74

0.75 | 59180 0.16 | 0.003 8 23 | 0.000 10 47 |0.000 10 66 |0.000 10 66 |0.000 10 81

250 5 0.25| 74521 44.80| 0.000 10 30 | 0.000 10 46 | 0.000 10 68 | 0.000 10 39| 0.000 10 71
0.50 | 116296 36.00 | 0.001 9 33 | 0.000 10 56 | 0.000 10 66 |0.000 10 43 | 0.000 10 73
0.75 | 150236 6.49 | 0.000 10 45 | 0.000 10 62 |0.000 10 71 |0.000 10 61 |0.000 10 75
100 10 0.25 | 25581 28.60 | 0.673 1 0 |0.201 5 3 10.038 8 20 | 0.000 10 62| 0.000 10 95
0.50 | 44562 35.82 | 0.194 3 0 |0.003 8 2 |10.000 10 16 |0.000 10 56 | 0.000 10 79
0.75| 58563  0.77 | 0.031 8 9 [0.027 9 27 ]0.002 9 41 | 0.000 10 64 | 0.000 10 79
Average 66971 1740 0.121 6.1 17 [0.034 84 35| 0.004 9.7 50 |0.000 10.0 55| 0.000 10.0 78

20 % negative weights, 20 % negative profits

no core 0=0.In 0=0.15n 0=0.2n 0=0.In+2m 0=02n+2m
n m o z t[S] %opt # %t %opt # %t %opt +# %t %opt # %t %opt +# %t
100 5 0.25] 34071 0.70 [0.117 4 1310008 9 42 [0.000 10 67 [0.000 10 67 [0.000 10 93
0.50 | 46970 0.14 [ 0.008 9 24 | 0.000 10 48 | 0.000 10 58 |0.000 10 58 |0.000 10 it
0.75 | 56538 0.03 | 0.029 7 40 |0.006 8 63| 0.006 8 60 | 0.006 8 60 | 0.006 8 77

250 5 0.25| 85206 33.14|0.006 & 30 | 0.000 10 48 | 0.000 10 70 | 0.000 10 45| 0.000 10 81
0.50 | 118236 8.60 | 0.000 10 38 | 0.000 10 55 | 0.000 10 72 |0.000 10 52 |0.000 10 86
0.75 | 142169 0.21 | 0.000 10 39 | 0.000 10 61 | 0.000 10 64 |0.000 10 60 |0.000 10 75
100 10 0.25| 29090 13.36 | 0.604 1 0 {0190 5 5 10.048 7 18 | 0.001 9 64 | 0.000 10 77
0.50 | 45267 2.68 | 0.203 6 2 10.000 10 13| 0.000 10 40 |0.000 10 76 | 0.000 10 97
0.75 ] 55821 0.06 [ 0.033 7 24 |0.021 8 48 |0.000 10 57 |0.000 10 67 | 0.000 10 83
Average 68152 6.55 [ 0.111 6.9 23 [0.025 89 43 [ 0.006 94 56 |[0.001 9.7 610001 98 83

Table 3: Solving different sized cores for various percentages of negative values to optimality. (All values shown are averaged over 10 problem instances)

45



CRPIT Volume 77 - Theory of Computing 2008

Time Limit = 5 Seconds
original problem 0=0.In 0 =0.15n 0=0.2n
n m o« %rp #  Nnodes %Lp #  Nnodes %rp #  Nnodes %rp #  Nnodes
500 5 0.25] 0.1209.921 2 16421 | 0.114¢.905 4 31847 | 0.1160.022 3 26955 0.1179.014 4 24337
0.50 | 0.067¢.011 2 15976 | 0.05190912 9 31901 0.0619.011 4 27587 0.0619.017 3 23958
0.75 | 0.041p.004 5 18598 | 0.041g9904 8 32791 0.0420.006 6 29194 0.0420.005 6 27454
500 10 0.25] 0.4380p.024 O 8061 0.35290485 6 23208 0.3830.051 3 15496 0.3649.037 6 13707
0.50 | 0.171p.020 2 8262 0.163¢9025 4 23548 0.16509.023 5 15865 0.1750.036 3 13743
0.75 | 0.0970.018 3 9765 0.0930.011 6 22537 0.0940.013 4 17021 | 0.092p012 5 15421
500 30 0.25] 1.2200.115 2 2977 1.1915105 3 10262 1.2300.044 3 7881 12149113 2 6014
0.50 | 0.5620.040 O 3088 0.5070.042 6 10649 0.5360.018 1 8181 0.4959 047 5 6101
0.75 | 0.285¢.021 2 3627 0.2820.036 2 11431 0.2830.015 2 8715 0.2730.021 4 6593
Average 0.3330.031 2.0 9642 0.3100,034 5.3 22019 0.3230,023 3.4 17433 0.3150,034 4.2 15259
Time Limit = 50 Seconds
original problem 0=0.In 0 =0.15n 0=0.2n
n m o« %rp #  Nnodes %Lp #  Nnodes %rp #  Nnodes %rp #  Nnodes
500 5 0.25] 0.103p9.016 3 172471 | 0.1009.015 5 330280 | 0.100g.015 6 272642 | 0.0999015 7 249998
0.50 | 0.049¢.011 6 181177 | 0.0465.00s 9 328066 | 0.0480.011 8 287341 | 0.0479.000 8 260145
0.75 | 0.038p.004 6 188492 | 0.0380.0904 7 322998 | 0.038p.004 8 289610 | 0.038p.004 9 275409
500 10 0.25] 0.331g.026 2 85187 | 0.301g.0190 4 231031 | 0.296¢9 924 6 150726 | 0.3129.031 4 132856
0.50 | 0.144p019 3 88829 0.13309.014 4 235044 | 0.1350.014 5 156361 | 0.1319.016 4 136481
0.75 | 0.082p.010 4 107407 | 0.077g.010 8 233931 | 0.078p.012 5 171427 | 0.0799.012 5 157293
500 30 0.25 | 1.108¢.076 1 33855 | 1.0450 066 6 102129 | 1.0980.077 2 78250 1.0949.080 2 62556
0.50 | 0.4779.030 2 34741 | 0.458p034 5 104797 | 0.4670.006 2 80025 0.4700.035 3 62627
0.75 | 0.270p.019 O 38640 0.2540.024 3 111507 | 0.254p027 6 87269 0.2550.024 1 65981
Average 02890023 3.0 103422 0.2720,022 5.7 222198 02790023 5.3 174850 02810025 4.8 155927
Time Limit = 500 Seconds
original problem 0 =0.In 0 =0.15n 0=0.2n
n m o %rLp #  Nnodes %rp #  Nnodes %rLp #  Nnodes %rLp #  Nnodes
500 5 0.25]0.092p0;7 10 1468306 | 0.0925911 10 2156859 | 0.092p017 10 2038741 | 0.092¢.011 9 1844037
0.50 | 0.0450.008 9 1474390 | 0.0440 007 10 2282445 | 0.0449 907 10 2184819 | 0.0459.00s 9 1968420
0.75 | 0.0383.004 10 1051111 | 0.038p.004 10 1170739 | 0.038p.904 10 1193311 | 0.0383.004 10 1133267
500 10 0.25 | 0.291¢.022 1 752103 | 0.2660.007 4 1973083 | 0.2699.024 5 1190391 | 0.274p.018 4 1070741
0.50 | 0.1250.018 3 804076 | 0.120¢.011 5 2064695 | 0.119¢.015 6 1247341 | 0.124g014 3 1131538
0.75 | 0.0779.011 7 1013516 | 0.076¢.011 8 2359838 | 0.0750.010 7 1530181 | 0.0750010 9 1409720
500 30 0.25] 0.982p088 3 312874 | 0.982p.026 3 990696 | 0.974¢.025 2 759324 | 0.952g9973 3 610611
0.50 | 0.431p.013 3 318599 | 0.428¢.031 2 1024538 | 0.427y.017 3 772248 | 0.429¢ 021 3 620238
0.75 | 0.238p.017 2 368143 | 0.228p018 5 1081771 | 0.2359.020 2 858274 | 0.233(.021 3 670913
Average 0.2580.0201 5.3 840346 | 0.253p.016 6.3 1678296 | 0.25309.015 6.1 1308292 | 0.251g.0920 5.9 1162165

Table 4: Fixed time runs of larger benchmark instances. Various core sizes are shown for 10% negative coefficients. All values shown are averaged over 10
problem instances.

46



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

References

Balas, E. & Zemel, E. (1980), ‘An algorithm for
large zero-one knapsack problems’;, Operations
Research 28(5), 1130-1154.

Bertsimas, D. & Tsitsiklis, J. N. (1997), Introduc-
tion to Linear Optimization, Athena Scientific.

Chu, P. & Beasley, J. (1998), ‘A genetic algo-
rithm for the multidimensional knapsack prob-
lem’, Journal of Heuristics 4(1), 63-86.

Danna, E., Rothberg, E. & Le Pape, C. (2005),
‘Exploring relaxation induced neighborhoods to
improve MIP solutions’, Mathematical Program-
ming, Series A 102, 71-90.

Fischetti, M. & Lodi, A. (2003), ‘Local Branching’,
Math. Programming Series B 98, 23-47.

Gavish, B. & Pirkul, H. (1985), ‘Efficient algo-
rithms for solving the multiconstraint zero-one
knapsack problem to optimality’, Mathematical
Programming 31, 78-105.

Gilmore, P. & Gomory, R. (1966), ‘The theory and
computation of knapsack functions’, Operations
Research 14, 1045-1074.

Glover, F. & Kochenberger, G. (1996), Crit-
ical event tabu search for multidimensional
knapsack problems, in I. Osman & J. Kelly,
eds, ‘Metaheuristics: Theory and Applications’,
Kluwer Academic Publishers, pp. 407-427.

Gomes da Silva, C., Climaco, J. & Figueira,
J. (2005), Core problems in bi-criteria 0,1-
knapsack: new developments, Technical Report
12/2005, INESC-Coimbra.

Kellerer, H., Pferschy, U. & Pisinger, D. (2004),
Knapsack Problems, Springer.

Martello, S. & Toth, P. (1988), ‘A new algorithm
for the 0-1 knapsack problem’, Management
Science 34, 633—644.

Pisinger, D. (1995), ‘An expanding-core algorithm
for the exact 0-1 knapsack problem’, European
Journal of Operational Research 87(1), 175-187.

Pisinger, D. (1997), ‘A minimal algorithm for
the 0-1 knapsack problem’, Operations Research
45(5), 758-767.

Puchinger, J., Raidl, G. & Pferschy, U. (2006),
The core concept for the multidimensional knap-
sack problem, in ‘Evolutionary Computation in
Combinatorial Optimization - EvoCOP 2006’,
Vol. 3906 of LNCS, Springer, pp. 195-208.

Puchinger, J., Raidl, G. & Pferschy, U. (2007),
The multidimensional knapsack problem: Struc-
ture and algorithms, Technical Report 006149,
National ICT Australia, Melbourne, Australia.
submitted for publication.

Raidl, G. & Gottlieb, J. (2005), ‘Empirical anal-
ysis of locality, heritability and heuristic bias
in evolutionary algorithms: A case study for
the multidimensional knapsack problem’, Fwvo-
lutionary Computation 13(4), 441-475.

Shih, W. (1979), ‘A branch and bound method
for the multiconstraint zero-one knapsack prob-
lem’; Journal of the Operational Research Soci-
ety 30, 369-378.

Vasquez, M. & Hao, J. (2001), ‘A hybrid approach
for the 0-1 multidimensional knapsack prob-
lem’; Proceedings of the 17th International Joint
Conference on Artificial Intelligence pp. 328—
333.

Vasquez, M. & Vimont, Y. (2005), ‘Improved
results on the 0-1 multidimensional knapsack
problem’, European Journal of Operational Re-
search 165(1), 70-81.

Weingartner, H. M. & Ness, D. N. (1967), ‘Meth-
ods for the solution of the multidimensional 0/1
knapsack problem’, Operations Research 15, 83—
103.

47



CRPIT Volume 77 - Theory of Computing 2008

48



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

An ILP for the metro-line crossing problem

Matthew Asquith'?

Joachim Gudmundsson

3 Damian Merrick?3

1 Sophos Pty Ltd, North Sydney, Australia

2School of Information Technologies, University of Sydney, Australia.

3 NICTA*, Sydney, Australia.

Email: {joachim.gudmundsson,damian.merrick}@nicta.com.au

Abstract

In this paper we consider a problem that occurs when
drawing public transportation networks. Given an
embedded graph G = (V, E) (e.g. the railroad net-
work) and a set H of paths in G (e.g. the train lines),
we want to draw the paths along the edges of G such
that they cross each other as few times as possible.
For aesthetic reasons we insist that the relative order
of the paths that traverse a vertex does not change
within the area occupied by the vertex. We prove
that the problem, which is known to be NP-hard, can
be rewritten as an integer linear program that finds
the optimal solution for the problem.

In the case when the order of the endpoints of
the paths is fixed we prove that the problem can be
solved in polynomial time. This improves a recent
result by Bekos et al. (2007).

1 Introduction

In 1931, graphic designer Harry Beck first proposed
that passengers would be more interested in how train
lines connect rather than the true geographical lay-
out of stations in a city (Garland 1994). His con-
cept of the metro map was so successful that it has
been adopted by virtually every subway company in
the world. Similar diagrams have been used to visu-
alise wiring layouts (Benkert et al. 2006) and more
abstract connected information, such as website net-
works (Sandvad et al. 2001). This has motivated re-
cent research on how to automate their construction
through the use of computer algorithms.

The construction of metro maps can be broken
down into a sequence of steps. First, one finds an em-
bedding of the network that balances true geographi-
cal positioning with diagrammatic simplicity. Second,
the individual lines representing the train routes are
embedded into this graph. Any routes that share sta-
tions in the same sequence need to be given a line or-
dering and the positions of any crossings are assigned.
Finally, a labelling of the stations and important fea-
tures is added to the drawing.

Previous research has primarily focused on the
first and third step. Hong et al. (2006) present force-

(*) National ICT Australia is funded through the Australian
Government’s Backing Australia’s Ability initiative, in part
through the Australian Research Council.

Copyright (©2008, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Computing: The Aus-
tralasian Theory Symposium (CATS2008), Wollongong, NSW,
Australia. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 77, James Harland and Prabhu
Manyem, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

directed graph drawing approaches to metro map lay-
out, which are also used to produce metro map lay-
outs of non-geographical networks. Slower but more
geographically accurate optimisation-based methods
are detailed by Stott & Rodgers (2004), and more
recently by Nollenburg & Wolff (2005). They ap-
proached the layout problem using a mixed-integer
program (MIP) approach, a well-established method
to solve linear equations. Merrick & Gudmundsson
(2006a,b) propose an alternative method to solve the
metro map layout problem. Their method simplifies
polygonal chains by allowing them a threshold from
which they can move from their original locations.

The final step of the above construction is la-
belling, i.e. writing the names of stations on the
diagram, preferably in such a way that both the la-
bels and the rest of the diagram are clearly readable.
Labelling maps in general is a computationally hard
problem (Formann & Wagner 1991). Many variations
of the map labelling problem have been investigated;
Wolff & Strijk (2007) maintain an extensive bibliogra-
phy on the topic. Within the context of metro maps,
only a limited amount of work has been done on la-
belling. Hong et al. (2006) proposed using a simu-
lated annealing algorithm and a greedy heuristic for
labelling, but noted that the results required manual
editing to be acceptable. Nollenburg (2005) produced
fully-automatic labelling by incorporating additional
constraints into the MIP approach (Nollenburg &
Wolft 2005), which was demonstrated to be feasible
on the S-Bahn RheinNeckar system, a network of 108
vertices and 111 edges. Nollenburg presents this as an
initial attempt at automatic labelling; there are some
label overlaps in the solutions produced. Generating
metro map labelling solutions for large networks re-
mains an open problem.

However, hardly any research has been done on
the problem of embedding the individual lines in a
map. Note that even when the geometric embedding
of the network is given, finding a good ordering of the
individual lines along the network is far from simple.
In this paper we will focus on placing the lines such
that the number of crossings is minimised. This cri-
terion has been noted as one of the most important
characteristics in ensuring diagrams are easy to com-
prehend (Purchase et al. 1996). The first research
devoted to the drawing of metro lines was published
by Benkert et al. (2006). They introduced the follow-
ing problem:

Problem 1 Benkert et al. (2006) Given an embed-
ded graph G = (V,E) and a set H of paths in G,
draw the paths along the edges of G such that they
cross each other as few times as possible.

Their research was dedicated solely to looking at
a very restricted case where the crossings can only be
minimized along a single edge. They devise a dynamic
programming algorithm that can solve any instance

49



CRPIT Volume 77 - Theory of Computing 2008

50

@mNetz miv}

Figure 1: A map illustrating the tram, subway and train lines in Berlin.

in O(n?) time. Their discussion for extending their
algorithm for use in more general cases concludes that
interactions between terminating lines would hinder
the use of dynamic programming.

Recently Bekos et al. (2007) proved that the prob-
lem is NP-hard even in the case when the underlying
graph G is a path. They also considered a special case
when the position of the terminators!are fixed (termi-
nators are the start and endpoint of a path in H), and
proved that in this case the problem can be solved in
polynomial time if the underlying graph is a path or
a tree. They call this problem the Metro-line crossing
minimization problem with terminals at fized station
ends (MLCM-FixedSE).

In this paper we prove that the MLCM-FixedSE
problem can be computed in polynomial time for any
underlying graph G (Corollary 2). In the case when
the terminators are not fixed then the problem can
be solved using integer linear programming.

1.1 Definitions and preliminaries

A metro map is a connected graph G = (V, E) rep-
resenting the layout of, for example, a transportation
system. Let H be a set of paths of G representing the
individual routes traversed through the network, such
as the subset of stations a train passes. In Fig. 2a, G
is the underlying network and H is the set of three
different train lines (one with thick solid lines, one
with thin solid lines and one with dashed lines).

A (metro) line is an individual paths’s depiction
in the network. In metro maps, each line is usually
drawn separately in a unique colour. This means each
line will have an ordering at each vertex with respect
to any other lines that share a common edge. If the
relative order of two lines changes between two in-
cident vertices then the two lines must intersect be-
tween the vertices. We define this as an edge crossing.
This is illustrated in Fig. 2a, where the order of the
two lines changes between u and v. As opposed to
an edge crossing, a vertex crossing occurs inside a
vertex. This often results in the corresponding dia-
grams becoming harder to understand and therefore
it is only used for crossings that cannot be placed
along an edge. This can only occur if two subgraphs

! Terminator is sometimes called a terminal in the literature.

g and h in H share a common path consisting of a
single vertex v and both have degree two at v, see
Fig. 2b-c. A terminator of a subgraph h € H is a
vertex v where degp(v) = 1, i.e. h terminates at v if
degp, (v) = 1, see Fig. 3b.

In most metro maps, all lines terminate on the out-
side of the other lines travelling in parallel, as shown
in Fig. 3a. This is to emphasise that a line terminates
at that station. We call this the periphery condition.
The problem we will study in this paper can now be
formulated as follows:

Problem 2 Given a graph G = (V,E) and a set H
of paths of G, find an order of lines at every vertex
v € V that minimises the total number of edge cross-
ings between the paths in H and fulfils the periphery
condition.

Recall that this problem is denoted the MLCM
problem with terminals at station ends (MLCM-SE)
in (Bekos et al. 2007).

We say that a crossing between two subgraphs g
and h in H is forced if changing the positions of any of
the terminators of g or h cannot prevent the crossing
from occurring, as illustrated in Fig. 3b. A feature
of an optimal solution is that there cannot be any
redundant crossings between any pair of subgraphs g
and h € H, thus there will be at most one crossing
between g and h along a common subpath between
them. This will be proven in the next section.

2 An ILP approach

Recall that Bekos et al. (2007) showed that the prob-
lem is NP-hard even in the case when the underlying
graph is a path. In this section we prove that the
problem can be solved using ILP. Our approach works
in four steps:

1. For each pair of lines g, h € H compute all (max-
imal) common subpaths 61(g, h), ..., dmn(g,h).

2. Each common subpath d(g,h) is converted into
a set of crossing rules C' encoding the relations
between the terminators of g and h.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Figure 2: (a) A graph representation of a metro map. (b) A valid vertex crossing at v between g and h since
their common subpath is v. (c) An invalid vertex crossing at v between g and h since v is a subset of their

common subpath.

3. The positions of these terminators and the num-
ber of crossings in G is determined using an in-
teger linear program.

4. The actual line ordering at each vertex is decided.

Note that the only step that cannot be performed
in polynomial time is step 3. If we assume that
the terminators are fixed (MLCM-FixedSE problem)
then Bekos et al. (2007) showed that the problem can
be solved in polynomial time for the very restricted
case when the underlying graph G is a tree. Below
we will prove that the problem can be solved in poly-
nomial time for any underlying graph G.

We start with some important properties of an op-
timal solution. First we show that any optimal so-
lution cannot contain any redundant crossings, i.e.
where two lines cross more than once in a single com-
mon subpath.

Theorem 1 In an optimal solution every pair of
lines in H will cross at most once along any common
subpath.

Proof. The proof is done by contradiction. Consider
an optimal solution S and assume that there exists a
pair of lines g and h in H that cross twice along a com-
mon subpath P = (p1,pa,...,px) in G. To simplify
the description it is assumed that P is a horizontal
path with p; to the left of p;yq, for 1 < i < k. If
there is more than one pair of subpaths along P that
cross twice then assume that g and h is the topmost
pair along P. Let ¢, and c, denote the number of
crossings along P between the subpaths in H and g,
and between the subpaths in H and h, respectively.
Without loss of generality it is assumed that ¢, < ¢,
and that g is positioned above h at p; and p; as ﬁ—
lustrated in Fig. 4a.

Consider the following modification to S, de-
noted S’, where g is moved such that it lies above
h along P. That is, the part of g below h is moved
such that g lies immediately above h in this interval,
see Fig 4b. We claim that the number of crossings in
S’ is less than the number of crossings in S. We will
have two cases:

(i) If g and h is the only pair of subpaths along P
that cross twice then the number of crossing in
S’ will have decreased with two. Because of the
periphery condition no subpath f could termi-
nate in between the two crossings between g and
h. As a result a subpath f intersecting g and
h after the modification must have intersected g
and h h before the modification. Thus, no more
crossings have been introduced.

(i) In the case when there is more than one pair of
subpaths along P that cross twice then we con-
sider a subpath f € H. It is not hard to see

that the only configuration that may increase the
number of crossings is if f crosses h, but not g,
twice in S. In this case the number of crossings
in §” would increase by two, since f would cross
both ¢ and h twice in S’. However, this con-
tradicts the above assumption that g and h are
the topmost pair of subpaths along P that cross
twice.

In both cases we get a contradiction, thus the theorem
follows. |

The next observation follows from the above the-
orem.

Observation 1 Consider two lines g and h in H,
and let t(h) be a terminator of h at a vertex v of
G. Changing the order of h at v can only affect the
number of crossings between g and h if v belongs to a
common subpath of g and h.

Proof. Consider a common subpath without any ter-
minators of g and h. The observation follows trivially
from the fact that the interval order at the endpoints
of their common subpaths is fixed and, according to
Theorem 1, g and h cannot intersect twice. [ |

A somewhat stronger result can be obtained using
exactly the same arguments.

Corollary 1 Let t(g) be a terminator of g € H at
vertex v and let hy,ho € H. Changing the order of
t(g) at v can only affect the number of crossings be-
tween hy and ha, along a common subpath 0(hy, hs),
if v belongs to §(hy, ha).

Figure 3: (a) Terminators for g at v and h at u fulfill-
ing the periphery condition. (b) Illustrating a forced
edge intersection between g and h.

51



CRPIT Volume 77 - Theory of Computing 2008

52

(b> D1 b2 Dk
f——
g __4 NEER - - === 4 ,~\__
h===7-- ‘ -

Figure 4: (a) Relative terminator position directions.
(b) Relative terminator position directions.

Theorem 2 Once the terminator positions are fixed,
we can decide in O(|H|* - |E|) time if there will
be 0 or 1 crossings between each pair of sub-
paths g and heH along any common subpath P =
(V0, U1y« -+, Un).

Proof. The most time consuming step is to compute
a list of all the maximal common subpaths. These can
easily be computed in O(|H|? - |E|) time by testing
every pair of paths in H.

Consider a common subpath P of g and h, where
g and h do not both share a terminator at vy or v,,.
Now, both end vertices of P must either have unique
subsequent vertices or contain a defined terminator
position for both g and h. In either case, g and h
have a well defined relative line ordering at each end
vertex of P (the periphery condition guarantees this
in the latter case). By Theorem 1, whether the rel-
ative order of g and h is different between vy and
v, determines whether there will be one or no forced
crossing.

In the case where g and h both have degree 1 at a
terminator v; € {vg, vy, } (share a terminator), if both
g and h are positioned on the same side of vy, their
ordering (and thus the number of crossings) can no
longer be uniquely determined. Here, we can always
choose an ordering which ensures no crossing. |

From the above proofs, we can conclude that once
the terminating positions are fixed, we can compare
all common subpaths between all lines to determine
the total crossing number of the graph. Note, that
the crossing number is no longer related to the edge
at which any fixed crossings occur inside the common
subpaths and the actual ordering at each vertex can
be decided at a later stage. Therefore the number
of crossings is determined entirely by the positions of
terminators.

(a) Vo (%] Um—1 Um,

Figure 5: (a) A maximal common subpath §(g,h) of
the lines g and h. (b) A possible common subpath
with interactions of terminators between g and h.

2.1 Converting common subpaths to crossing
rules

A list of all the maximal common subpaths can be
obtained in O(|H|? - |E|) time by testing every pair
of lines. We will now examine the conditions which
can lead to an edge crossing between two lines along
a common subpath.

Once a list of all common subpaths has been re-
trieved from GG, we can represent their potential cross-
ings as a set of rules dependent solely on the po-
sitions of the terminators. Clearly, a crossing be-
tween two lines g and h can only occur along a com-
mon subpath. Consider one such common subpath
d(g,h) = (vo,v1,...,0m). Without loss of generality,
assume that the vertices of §(g, h) lie on a horizontal
line and that v; lies to the left of v;41, for 0 < i < m,
as shown in Fig. 5a. To determine whether g and
h will intersect along 6(g, h) we examine the relative
ordering of g and h at the end vertices vy and v, of
d(g, h). If the ordering changes, there must be exactly
one edge crossing placed on an edge along §(g, h), ac-
cording to Theorem 1 (Fig. 5b shows an example). If
at least one of the lines has a terminator at vg or v,,
then changing the terminator positions will switch the
relative ordering and thus decide whether there will
be a crossing or not. Since the ordering must change
along the common subpath, a crossing will always re-
sult from one of two possible cases:

Case 1: (g is above h at vg) AND (g is below h at

Upm,), OF
Case 2: (h is above g at vg) AND (h is below g at
U )-

We will label each case as a crossing rule ¢ and
let C be the set of all crossing rules. Each individ-
ual ordering restriction (e.g. “g is above h at v”) at
a vertex v € P is called a condition. We can rewrite
each condition as a boolean variable, and each case as
a boolean expression joining the conditions. For ex-
ample, the first case above can be written g,°A—g,™,
where g; denotes a boolean variable that is true if g is
ordered above h at vertex v, or false otherwise. Since
hg is equivalent to —gy, we can write the second case

above as =g,° A g™

If the conditions of a crossing rule c¢ are all true,
then ¢ will be given a value of 1. Alternatively, if
any condition is false, ¢ will be set to 0. In this way,
the crossing rules act as counters for the number of
crossings between lines, for a given line ordering. The
condition for whether a line g is above a line h at a
vertex v € P is dependent on the degree of both g
and h at v. Note that we are only interested in the
cases v = vg and v = v, as these are the endpoints
of the common subpath at which the ordering of two
lines may differ.

Using the above list of conditions, each common
subpath will now be represented as two distinct cross-
ing rules that can never be simultaneously true. For
example, in the common subpath (vg, v1,. .., vm,) be-
tween g and h in Fig. 5a, examination of the end
vertices shows the two crossing rules to be the follow-
ing:

gr° A—gpm and  —g° A g

Alternatively, Fig. 5b contains a common subpath
with a fixed ordering at vg. The corresponding con-
ditions are no longer dependent on the position of
a terminator but are instead Boolean statements of
whether the ordering is present:

(true) A =g, and (false) A g;™.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Figure 6: Conversion to constraints — cases 1 and 2.

Since the second crossing rule can never have all its
conditions true, its corresponding ¢ will always be 0,
and we do not need to add it to the set C.

The number of crossing rules in C' is dependent on
the total number of common paths between each pair
of subpaths in H. If every common subpath starts
and ends with at least one terminator, i.e. there are
no fixed crossings, each subpath can at most form two
common subpaths with each other subpath. There-
fore, |C| = O(|H|?) in this case. With fixed crossings
allowed, there can be a large number of common sub-
paths between each pair of subpaths in H. Hence, in
the worst case, |C| = O(|H|? - | E|).

With each potential crossing of H in G represented
as a crossing rule ¢ € C, the crossing number is the
minimum sum of all crossing rules ¢ € C over all
valid line orderings. In the following sections, we will
present two different methods to compute this cross-
ing number.

2.2 Transformation of the rules into an ILP

Integer Linear Programming (ILP) is an established
method of finding solutions to optimization problems
that can be expressed in terms of an objective func-
tion subject to a series of constraints. ILP solvers
(such as CPLEX) use highly optimised branch and
cut techniques in order to provide an optimal solu-
tion. This has been a highly effective method for
finding solutions to more general crossing minimisa-
tion problems (Buchheim et al. 2005).

In our ILP formulation, every terminator con-
tained in at least one crossing rule is represented as
a unique binary variable ¢,(v), which is true if the
terminator of line h at v is ordered “above” all con-
tinuing lines, or false if it is ordered “below”. To
simplify the description of the ILP, we take the same
assumption as in Section 2.1, that the vertices lie on
a horizontal line, ordered from left to right (“above”
and “below” are then defined intuitively). For each
crossing rule ¢, an additional unique binary variable
w, is added to the objective function. This allows us
to represent each rule as a constraint that forces its
w, to be set to 1 if all its conditions are true, i.e. if
there is a crossing. Therefore, the objective function
is a summation of all potential crossings.

Consider a maximal common subpath (g, h) =
(vo,...,Um) of g and h. Let T C {tg(vo),
tg(vm),tn(vo), tn(vm)} be the binary variables cor-
responding to the set of terminators (if any) of g and
h within the subpath 6(g,h). We can now incorpo-
rate each crossing rule into the ILP by adding one or
more constraints, according to the following rules (see
Fig. 6-7):

1. If |T| = 0 (i.e. there are no terminators in §(g, h):

(a) If (g;,° A=gpm )V (—gp” Agp™) is always true
then the constraint w. > 1 is added.

(b) I (g,° A=gpm )V (mgy° Agpm) is always false
then the constraint w. > 0 is added.

2. If |T| = 1, then there is one terminator t €
T, and we look at which position of ¢ makes
(910 A=gy™) V (—gp° A gpm) true (i.e. generates
a crossing):

(a) If ¢, then the constraint —t + w, > 0 is
added.

(b) If —t, then the constraint ¢ + w, > 1 is
added.

3. If |T| = 2, then (g,° A —g,™) V (—g;° Ag,™) is
dependent on the positions of two separate ter-
minators t1,t5 € T.

(a) If t1,to are on the same line (either g or h),
then we add the two constraints —¢y + ¢ +
we > 0 and t; — t9 +w. > 0.

(b) If t1,ts are on different lines, but both ter-
minate at the same vertex (either vg or vy, ),
then we consider which conditions cause
(910 A=gpm )V (—g,° Agp™) to become true:

i. If t1 A —to, then the constraint —t; +
to + w. > 0 is added.

ii. If =t; Ats, then the constraint t; —to +
w, > 0 is added.

(¢) If t1,to are on different lines and terminate
at different vertices (one at vy and one at
Um), then we add the two constraints ¢, +
to + w, > 1 and —t; — to + w, > —1.

4. If |T| = 3, then constraints are added according
to case 3b above, applied to the two terminators
that share a vertex — the third terminator does
not influence the number of crossings.

5. If |T| = 4, then we add the two constraints
tg(vo) —tg(vm) — th(vo) + th(vm) +we > —1 and
—tg(vo) + tg(vm) + th(vo) — th(vm) + we > —1.

We now give a small example. Consider the graph
and the lines in Fig. 8a. Using the above rules the
instance can be converted to an ILP. Consider the
four common subpaths. We get:

i and h): case la = w; > 1

(

(¢ and j): case 2a = —t;(v2) + wp >0

(g and h): case 3b-ii = t4(vo) — tn(vo) + w3 > 0.
(

h and j): case 3¢ = t(va) +tj(v2) + wa > 1 and
7th(U4) — tj(vg) + w4y Z 71.

53



CRPIT Volume 77 - Theory of Computing 2008

54

3(a) 3(b)
Vo Um Vo
g
. . A ___ -
’/’ ___________ \\\h ¢
—tg(vo) + tg(vm) + we =0
tg(vo) — tg(vm) +we >0

tg(’Uo) — th<1}0) +w. >0

Figure 7: Conversion to constraints — cases 3a, 3b and 3c.

As a result we have:

Minimize wy + wy + w3 4+ wy
subject to w, > 1
tj (Ug) +wy, > 0
tg(vo) — th(vo) +ws > 0
th(va) +tj(ve) +wg > 1
—th(va) —tj(v2) +wg > —1

An optimal solution of the ILP will clearly fix the
order of the terminators while minimising the number
of intersections.

Theorem 3 An instance of the line ordering problem
with the periphery condition can be transformed into
an ILP in O(|H|? - |E|) time, where H is the set of
metro lines and V is the set of vertices in the input
network.

3 A heuristic

Above we showed how the problem can be rewritten
as an ILP. However, even though there are fast tools
for solving ILPs in practice, they still require expo-
nential time in the worst case. In this section we con-
sider a heuristic algorithm for the problem. We show
that if a certain condition is fulfilled by the input, the
heuristic produces an optimal solution.

There are situations where nested relations be-
tween terminators impede a local approach. In such
cases, a wrong decision may lead to a solution that
differs significantly from the global optimum. How-
ever, there are cases where the optimal terminator
position can be chosen locally. For other cases, we
can estimate the likelihood of a given terminator po-
sition being the optimal position. The general idea of
the heuristic is to greedily choose a position for the
terminator whose estimated likelihood of optimality
is the highest. When the position of this terminator
is fixed, it will force a line ordering at the end of any
other common subpaths that contain it, and we can
continue iteratively. We call any terminators whose
positions have yet to be fixed unresolved terminators.

Consider a crossing rule ¢ € C induced by two
lines ¢ and h along the maximal common subpath
5(g,h) = (voy...,vm). If ¢ depends on an unresolved
terminator ¢ at vy then it can be grouped into two
categories depending on the ordering at v,,:

e Fixed: If the ordering at v,, has already been
fixed, then the position of ¢ directly determines
whether a crossing is introduced or not.

e Relation: If the ordering at v,,, has not been fixed
then we cannot immediately decide which posi-
tion of ¢ will cause an extra crossing. For each
pair of terminators with a relation, there will be
two of these crossing rules as there are two pos-
sible pairs of terminator positions that can cause
a crossing.

The above categories are defined symmetrically for
an unresolved terminator at v,,. These categories will
help us to calculate a certainty value, denoted w(t),
for each unresolved terminator ¢. To calculate w(t)
we need to define the following three values:

e fr(t) and fp(t): How many crossings are un-
avoidable if one position of ¢ is chosen, i.e. the
number of fixed crossing rules involving ¢. They
are calculated as the number of crossings if ¢ were
to be positioned at the top (fr(t)) or at the bot-

tom (f5(t)).

e 7(t): An upper bound on the number of crossings
that could potentially occur if one position of ¢
is chosen over the other. It is calculated as the
number of unresolved terminators with a relation
with ¢.

Once all crossing rules have been checked, our cer-
tainty value for an unresolved terminator ¢ is calcu-
lated as u(t) = |fr(t)— fg(t)]—7(t). The algorithm is
straight forward. Let T be the set of all terminators,
and iteratively perform the following steps until 7" is
empty:

1. Compute the value wu(t) for every terminator
tel.

2. Select the terminator ¢t € T with highest u(¢) and
fix it in the position that locally minimises the
number of crossings.

3. Remove t from T.

Since we have O(|H|? - |E|) crossing rules and
O(|H|) terminators, this algorithm runs in O(|H|* -
|E|) time in the worst case. Interestingly, it can be
shown that under certain conditions, the algorithm is
guaranteed to find an optimal solution.

......

Figure 8: (a) Conversion of a graph to an ILP. (b) A
situation where terminator positions can be decided
locally.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Theorem 4 The algorithm finds an optimal solution
if every terminator t € T is sequentially resolved with
u(t) > 0.

Proof. We will prove that the first terminator ¢ can
always be locally chosen if u(t) > 0. Suppose fr(t) =
fe(t). In this case, r(t) = 0 for u(t) > 0, which
implies that the terminator has no relations with any
other unresolved terminators and it is easy to see that
either position of ¢ can be chosen.

Now suppose fp(t) > fr(t). This means that at
most, the number of crossings prevented by choosing
the bottom position for ¢ will be () — | fr(t) — fB(t)|.
However, if u(t) > 0, then r(t) — | fr(t) — fB(¢)| <0,
meaning it is not possible to locally save any cross-
ings by choosing the bottom position. When the
terminator position is fixed, up to r(¢) additional
crossings may be introduced to the other termina-
tors with relations to ¢. But we also saved a mini-
mum of | fr(t) — fr(t)| fixed crossings at ¢, and hence,
|fr(t) — fB(t)] = r(t). Therefore, locally choosing ¢
cannot lead to a worse solution if u(¢) > 0. The same
can be shown symmetrically for fr(t) > fp(t). Once
t is fixed, we can treat G as a new graph with a fixed
position of t. Thus, the above process can be repeated
until all terminators are resolved. |

In most metro maps and wiring diagrams, the ma-
jority of lines branch off into different paths. Con-
sequently, the relations between the terminators are
generally sparse and rarely nested. Therefore, they
will in many cases be solvable in polynomial time —
on the condition that w(t) > 0 for every termina-
tor greedily selected. The heuristic can be applied
to the general case but without any approximation
bound; preliminary experiments have shown that the
obtained solution may be far from the optimum.

4 Line Ordering

With the positions of the terminators fixed and the
crossing number determined, we still need to order
the lines along each edge. This includes the placement
of any inevitable crossings and, importantly, ensuring
the chosen ordering does not introduce any redundant
crossings. In this section, we describe how to perform
this ordering process by transforming to an existing
problem in circuit layout.

In the previous sections we focussed on the case
when H is a set of paths. In this section we allow H
to be a set of binary trees.

Crossing minimisation problems have already been
extensively researched in both the graph drawing
community (Buchheim et al. 2005, Eades et al. 1986)
and in the circuit design community (Groenveld 1989,
Marek-Sadowska & Sarrafzadeh 1995). Groenveld
(1989) defined the problem of finding a configuration
of wires (or nets) on a circuit board that minimises the
number of times they cross. Note that the terminals
of the wires are fixed. This became known as the Con-
strained Crossing Minimization Problem (CCMP).
The problem was investigated by Marek-Sadowska
& Sarrafzadeh (1995) who added an additional con-
straint to more accurately reflect circuit boards. Any
unavoidable crossings must be distributed in sepa-
rate regions due to the fact that wire crossings take
up physical space. This added a level of complex-
ity to the CCMP and the new problem was named
the Crossing Distribution Problem (CDP). Here wires
travel through a planar layout of regions. The ends
of the wires are referred to as terminals and the posi-
tion of a terminal is fixed on the perimeter of a region.
The problem is to find an ordering of the wires at the
boundaries of each region that both minimises the to-
tal number of crossings and distributes any inevitable

crossings amongst the regions according to a predeter-
mined quota (Marek-Sadowska & Sarrafzadeh 1995).

A transformation of a metro map into an instance
of the CDP would allow us to use a solution to the
CDP to find a line ordering at each vertex, once the
terminator positions have been decided. Since the
periphery condition ensures all terminating lines fin-
ish on the outside, terminators are the equivalent of
terminals lying on the perimeter of a circuit board re-
gion - the chosen side of the terminator merely affects
its position along this perimeter. Marek-Sadowska &

Sarrafzadeh (1995) presented an O(m - £3/2) time al-
gorithm for the CDP, where £ is the number of cross-
ings and m is the number of regions. In our setting
we have m = O(|E|) and £ = O(|H|? - |E)).

Suppose we have chosen the terminator positions
for a graph G (Fig. 9a). Let the degree of a vertex v
in G be denoted by deg(v). In the first step, we find
all distinct maximal paths P = (v, v1, ..., Um—1,Um)
where deg(vg) # 2, deg(vy,) # 2 and every interme-
diate vertex has degree 2. Each such path P will
become a region rp in the circuit board, as shown in
Fig. 9b.

Additionally, each vertex v € V with deg(v) > 3
will be represented by its own region r,. Since we wish
to minimis the number of crossings that are placed
inside vertices, we set the crossing quota to be the
number of forced vertex crossings. In the case when
H is a set of paths, this will always be 0. Also, any
path P containing v as an end vertex will define a
region boundary between 7, and rp. The ordering
returned by the following algorithm for any region
boundary between 7, and rp will define the ordering
at r, with respect to the edge incident to v in P.

If a path P contains any terminators between the
vertices (v1,...,Um—1), place them on the perimeter
of rp as terminals. The ordering of the terminals is
determined directly according to the positions of the
corresponding terminators. For any vertex shared by
two terminators, we order the terminators around the
perimeter such that no crossings between the corre-
sponding subpaths are introduced. Now the CDP al-
gorithm will return the line orderings at each vertex
at the end of each path (see Fig. 9c).

For the orderings of the vertices inside each path
P, we will represent P as a separate rectangle, with
the ordering at each end corresponding to the output
from the previous step. Any terminators are placed
along on their corresponding sides in the same way
as their circuit board equivalent in the previous step.
Now, straight lines are drawn to connect the start and
end of the corresponding subpaths on the rectangle of
the path P. The ordering of these lines at the ends of
the rectangle induces the ordering of the correspond-
ing subpaths. From the above transformation, the
main theorem of this section follows.

Theorem 5 Given positions for the terminators of
the subgraphs in H, a placement of H in G that does
not introduce any redundant crossings can be com-

puted in O(|H|? - |E|?) time.

By simply combining Theorem 2 and Theorem 5
we obtain:

Corollary 2 The MLCM-FizedSE problem can be
solved in O(|H|? - |E|2) time.

5 Concluding remarks

ments

and acknowledge-

We believe that all the results in this paper can be
generalised to the case when H is a set of binary trees.
However, the description of this case is very long and

55



CRPIT Volume 77 - Theory of Computing 2008

56

Figure 9: (a) A graph with terminator positions chosen. (b) Transformation into a circuit board instance.

(¢) Output from the CDP algorithm.

somewhat tedious, and is therefore omitted. The
inter§>sted reader can find more details in (Asquith
2007).

The transformation described in Section 2 has
been implemented, but so far only very preliminary
experiments have been done.

We would like to thank Michael Forster and Marc
Benkert for interesting discussions during the initial
stages of this work. Finally, we would like to thank
the reviewers for their diligent work.

References

M. Asquith (2007), The Metro map line ordering
problem, Honours thesis, School of IT, University
of Sydney, 2007.

M. Bekos, M. Kaufmann, K. Potika & A. Symvo-
nis (2007), Line Crossing Minimization on Metro
Maps, in ‘Proceedings of the 15th International
Symposium on Graph Drawing’, 2007.

M. Benkert, M. Néllenburg, T. Uno & A. Wolff
(2006), Minimizing Intra-Edge Crossings in Wiring
Diagrams and Public Transportation Maps, in
‘Proceedings of the 14th International Symposium
on Graph Drawing’, 2006.

C. Buchheim, D. Ebner, M. Jinger, G. Klau,
P. Mutzel and R. Weiskircher (2005), Exact Cross-
ing Minimization, in ‘Proceedings of the 13th In-
ternational Symposium on Graph Drawing’, 2005.

P. Eades, B. McKay & N. Wormald (1986), On an
edge crossing problem, in ‘Proceedings of the 9th
Australian Computer Science Conference’, 1986.

M. Formann & F. Wagner(1991), A Packing Problem
with Applications to Lettering of Maps, in ‘Pro-
ceedings of the 7th Annual ACM Symposium on
Computational Geometry’, 1991.

K. Garland (1993), Mr Beck’s Underground Map,
Capital Transport Publishing, 1994.

G. Groenveld (1989), On global wire ordering for
macro-cell routing, in ‘Proceedings of the 26th
ACM/IEEE Conference on Design Automation’,
1989.

S.-H. Hong, D. Merrick & H. A. D. do Nascimento
(2006), Automatic visualisation of metro maps.
Journal of Visual Languages & Computing, 17(3):
203-224, 2006.

M. Marek-Sadowska & M. Sarrafzadeh(1995), The
Crossing Distribution Problem, IEEE Transactions
on Computer-Aided Design, 14:423-433, 1995.

D. Merrick & J. Gudmundsson (2006), Increasing the
Readability of Graph Drawings with Centrality-
Based Scaling, in ‘Proceedings of the Asia-Pacific
Symposium on Information Visualisation’, 2006.

D. Merrick & J. Gudmundsson (2006), C-Directed
Path Simplification for Metro Map Layout, in ‘Pro-
ceedings of the 14th International Symposium on
Graph Drawing’, 2006.

M. Nollenburg (2005), Automated Drawing of Metro
Maps, Master Thesis, Fakultéat fiir Informatik, Uni-
versitdt Karlsruhe, Germany, 2005.

M. Néllenburg & A. Wolff (2005), A Mixed-Integer
Program for Drawing High-Quality Metro Maps, in
‘Proceedings of the 13th International Symposium
on Graph Drawing’, 2005.

H. Purchase, R. Cohen & M. James (1996), Validating
Graph Drawing Aesthetics, in ‘Proceedings of the
3rd International Symposium on Graph Drawing’,
1996.

E. Sandvad, K. Grgnbak, L. Sloth & J. Lindskov
Knudsen(2001), A metro map metaphor for guided
tours on the Web: the Webvise guided tour sys-
tem, in ‘Proceedings of the 10th International ACM
Conference on World Wide Web’, 2001.

J. Stott & P. Rodgers (2004), Metro map layout using
multicriteria optimization, in ‘Proceedings of the
8th International Conference on Information Visu-
alisation’, 2004.

A. Wolff & T. Strijk (2007), The Map-Labeling
Bibliography, Accessed on 24 May 2007,

http://illwww.ira.uka.de/map-labeling/bibliography/.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

A Multidimensional Bisection Method
for Unconstrained Minimization Problem

E.Y. Morozova

Applied Mathematics Department
Herzen State Pedagogical University of Russia
48, Moika Emb., St.-Petersburg, 191186, Russia

melena65@mail.ru

Abstract

An extension of a new multidimensional bisection
method for minimizing function over simplex is proposed
for solving nonlinear unconstrained minimization
problem. The method does not require a differentiability
of function, and is guaranteed to converge to the
minimizer for the class of strictly unimodal functions.
The computational results demonstrating an effectiveness
of algorithm for minimizing nonsmooth functions are
presented.

Keywords: Convex set, n-dimensional simplex, strictly
unimodal function, direct search methods, nonlinear
unconstrained optimization.

1 Introduction

The problem considered here is an unconstrained
minimization problem, which has the general form:

f(x) > min, xe R", (P)
where f:R" — R is a bounded below continuous strictly

unimodal function.

We use the following definition of strict unimodality.
Definition. Let D be a bounded closed convex set in R".
Function f:D — R is strictly unimodal over set D iff

for any segment Ac D #Arg min{f(x)|x € A} =1,

where «# A» is the cardinality of set 4.

The multidimensional bisection method (Baushev and
Morozova, 2007) allows to solve constrained
minimization problem when the feasible region is n-
dimensional simplex. This method generalizes a one-
dimensional bisection method for the case n>1 using a
recursive procedure. This paper will present an extension
of the multidimensional bisection method for solving
problem (P). This method does not require a
differentiability of function f, and is guaranteed to
converge to the minimizer for the class of strictly
unimodal functions.

It is known a class of methods that do not explicitly use
derivatives - direct search methods for unconstrained

Copyright © 2008, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Computing: The Australasian
Theory Symposium (CATS2008), Wollongong, New South
Wales, Australia. Conferences in Research and Practice in
Information Technology, (CRIPT), Vol. 77, James Harland and
Prabhu Manyem, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

optimization. Recent researches have shown the global
convergence of pattern search algorithms (a class of
direct search methods) for the case when function f is
continuously differentiable (Aude & Dennis, 2003,
Torczon, 1997). The advantage of the multidimensional
bisection method presenting in this paper is that it
convergence does not require an assumption about
differentiability of function ' and method allows to find
the minimizer of nonsmooth functions.

In point 2 we describe the multidimensional bisection
method (MBM) for minimizing function over simplex. In
point 3, the details of the extension of MBM for solving
the unconstrained minimization problem are presented. In
point 4 some numerical results illustrate the robustness of
the method.

2 The Multidimensional Bisection Method

The problem considered is
f(x)>min, xeS§, 6))

where S - a n-dimensional simplex in R", and f— a
continuous function.
1. Case n=1.

The one-dimensional bisection algorithm solves the
problem

£(x)— min, xe[a,b], 2)

where f is a strictly unimodal function over segment
[a,b].

Let  bis(f,a,b,¢)

dimensional bisection procedure. The inputs for this
procedure are: the procedure for calculation values of f,

denote the recursive one-

the segment [a,b] and the accuracy &. The outputs are

the estimations x, for the minimizer x* and f,, for the
value of the minimum of the function f over the
segment [a,b].

The iteration of the recursive procedure includes the

following steps.
Step 0. If b—a > ¢, go to step 1, otherwise stop.

Step 1.
a+b , a+c ,, b+c . ,
= == ,b=T,f(C),f(a),f(b)~
Step 2.

If f(a)< f(c)< f(b"),set b=b".
If (@)= f(c)= f(b),set a=a'.

57



CRPIT Volume 77 - Theory of Computing 2008

58

If f(c)<min{f(a").f(b)},set a=a', b=b'.
Step 3. Execute bis( f,a,b,&) with new inputs.

2. Case n>1.
Let S be a n-dimensional simplex. Let fix the vertex

7" and denote by V',..,V" the opposite vertices. Set for
each ¢ €[0,1]
S, =conv{V’ +1(V' =V°),. V17" =V} . (3)
The set S, is the n—1-dimensional simplex for
0<t<l1.
Set x, =argmin{f(x)|xeS,}. Each simplex S, for
0<t<1l part the initial simplex S in two sets:
conv{Vo,St} and conv{S,,S,}. Fig. 1 illustrate an

example of the partition of the simplex S for the case
n=3.

Figure 1: The partition of the simplex S

Let bissimpl(f,SS,,SS,.d,&) denote the recursive

procedure in case n>1. The inputs for this procedure
are: the procedure for calculation values of f, boundary
simplices SS, and SS,, the current dimension d and the

accuracy ¢ The outputs are the estimations x, for the
minimizer x* and £, for the value of the minimum of the
function fover the set conv{SS,,SS,} . Originally d is

equal n, then this parameter varies depending on the
dimension of the simplex where the point of a minimum
is searched. Actually this parameter at first decreases to
value 1, and then increases to value d=n. Three circles of
such calculations we consider as the iteration with
number k. Denote by 7* the estimation of a minimum of
the function /' and by x* the estimation of the point x .
The parameter d and the outputs must be declared as
global variables and its initial values must be defined
before starting procedure bissimpl(f,SS,,SS,,d,¢€) .

More concretely the preliminary step includes the
following destinations:

S8, =8, =V", 85, =58 =com{V',..V"}
to (7), d=n;

according

xo,xl,fo,f1 we define in a such way that the

condition
maxifk —fk_l‘,ka —xk_l“}< £ 4)

be failed.

Step 1.
If (4) is hold, stop. Otherwise set o, =SS, o, =55,
and go to step 2.

Step 2.
If d=1, execute bis(f,a,b,e) with a=SS,, b=S5S,
Otherwise, go to step 3.

Step 3.
Two cases are possible.

1) SS, and SS, are d-dimensional simplices. Let

Vs, Vs, »oVss, and Vg Vo ...V be  vertices  of
simplices SS, and SS, accordingly. Then we define
S, 8, S5 by

2 4 4

S, = conv{VSOSI -i—t(VSOS2 —VSOSl ),VSISl +I(Vs1s7 —Vslsl ),
' (5)
Vi (Ve Vi )}

2) One of the sets SS,, SS, is a vertex, another is d-

dimensional simplex. In this case S, S, S, are defined

2 4 4
by (3). Set d =d—1.

Step 4.
For each of simplices S, S, S, the following actions

2 4 4
must be done:

1) Fix a vertex V in the simplex S, and let
V',..,V" be an opposite vertices.

2) Execute bissimpl(f,SS,,SS,.d,¢)
values SS, =V’ and SS, = conv{Vl,...,V"} :

Step 5.
Let x x2, x) and f} f7, f. be results of the previous

with new

step (for S, S, S, accordingly).
2 4 4
If f2<f <f) setSS =085 =35,.
7
Iff)>f1>f) set SS,=S, SS,=0,.

4

If f, <min{f},f}}, set S, =5,,S8,=5,.
4

4

Set d =d+1.
Step 6.
Execute bissimpl(f,SS,,SS,,d,&) with current inputs.

The following theorem presents the convergence result.
Theorem. Let x(s) be the final estimation of the

o . . * . . .
minimizer x for the function f where f* is a continuous
strictly unimodal function over n-dimensional simplex S

then lim x(g)=x".
£—>0



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

3 The main algorithm

Consider problem (P). The algorithm consecutively
solves the following constrained optimization problems:

f(x) > min, x e §*, (6)
where S* is a n-dimensional simplex in R", k is a number

of iteration, k=0, 1, 2,.... Each of problems (6) is solved
by the multidimensional bisection method described

above. Let x* = {arg min f(x)|x e Sk} . The algorithm

constructs simplexes S* using two basic operations of
reflection and shift, so that x*™' €intS*, and generates a

sequence of points {x"} with decreasing vales of f:

SO <SG, keN.
This iterative process stops when point x* eintS*. A
more formal description of the algorithm is as follows:

Step 1.
Choose S° = conv{vo’i |i = 0,...,n} - an arbitrary initial
simplex. Set &=0.

Step 2.
Call the procedure bissimp! which solves problem (1).

Step 3.
Finding barycentric coordinates

420, i=0,.,n, D 4 =1 (7)

i—0
of the point x* € §* = conv{vk’f |i = O,...,n} )
Step 4.

If x* e IntS*, then set x" = x*, stop; otherwise go to step
5.

Step 5.
We have x* €8S*. Construction of the simplex $*"' by
the procedure reflect(v’,...,v",x*, Ay,...,4,,60) (we shall

describe reflect below).
Step 6.
Set k=k+1. Go to step 2.

Now consider step 5 in details and describe the
procedure reflect(v’,...,v",x*, Ay,..., A,,60).
The inputs for this procedure are:
{vi|i=0,...,n} of the

the vertices

simplex S*, the point
Xt = {arg min f(x)|x e S"} , barycentric coordinates (7),
small positive number #. The outputs are the vertices

{vk“’i li = 0,...,n} of new simplex S**'. Let
Io(v):{i|/1,.(v):0} ,1=0,..,n,
L(v)={i]4 ()0}, j=0,..n.

The procedure reflect includes two following operations
(at iteration with number k):

1. Reflection. This move reflects the points v*' for
all iel,(v) through the point x*:

PR +2(xk —vk'i) forall i e, (V)

2. Shifi. Parallel displacement of the vertices
VMV for all  iel (v),jel (v) of the

simplex S**' along vector (xk —x° ), where x° -
centroid of S**':
e H(xk —x") forall iel,(v),
VI =y +6’<xk —xc) forall jel (v),
where @ - some small positive number.

Then S*'= conv(vk”’[ |i = 0,...,n)

x* e IntS**" (figure 2).

and we get

Figure 2: Construction of the simplex S**' in space R

Remark. Note that we get an g-approximate solution to
the original minimization problem (P), where € is an
input for procedure bissimpl.

The following lemma is needed to prove the convergence
of our algorithm.

Lemma. Let f be continuous strictly unimodal function
on the set D and let segment [x‘,xz}cD. If

x’ eInt [xl,xz] and f(xl)< f(x3), then
f<x3)sf(x2).

Proof. Assume that f (x3) > f (xz) . Then there is
x elnt [xl,xz} =arg max{f(x)‘x € [x] ,x ]} and there
5, 6
increases over segment [x* —(Z,x*J and decreases over
segment [x*,x* +52] . Then f(x* ) ) = f(x* +52) by
virtue of continuity of the function f, i.e. the points
x =0, and x +3, are minimizers of the function f over

are positive numbers such that function f

segment [x* —-5,x + 52} that contradicts to definition of
strict unimodality. O

The following theorem presents the convergence result.
Theorem. If f:R" — R is a bounded below continuous
strictly unimodal function, S° is an arbitrary simplex,
{xk}, k=0,1,2,.. and S',S%,..., S*,... are found by the

59



CRPIT Volume 77 - Theory of Computing 2008

60

above described algorithm then there is number &~ such
that x" = {argminf(x) |x e R"} cintS* .

Sketch of proof. The algorithm of this paper generates the
sequence {x"} and x* = {argminf(x) |xe Sk} L If
x* eintS*, then x* solves problem (1) by virtue of strict
unimodality of function f. If x* € 8S*, then x* €int $*"
according to the rule of construction of simplex S**'.
Let T* be the nearest to the point x* 7 —1-dimensional

face of simplex S*. We shall show that x* e ',

Assume that x* eT*. Consider segment [xk ,x*] . Let
y* be the point of intersection of face I'* with segment
[x",x*] . Then f(x" ) < f(y" ) > f(x*), that contradicts
to lemma. So, x*er*. Let
o= p(x*,l“k): min{p(x*,y)|y € l"k} . We shall show
that liminf p, =0 . Let z* be the point of emergence of
ray x* +t(x* —xK) from simplex S* and 7, = p(zk,x*).

Sequence 7, is monotonically decreasing to zero,

limz, =0. So, liminf p, =0. Thus, there is number K

such that x" = {argminf(x) |xe R”} cintS* .o

4 The numerical results

We implemented the multidimensional bisection method
discussed above in MATLAB. The program was tested
for different examples of minimization of nonsmooth
functions. Some of numerical results we present in this
section, some other examples can be found in (Morozova,
2000).

Example 1. Minimization of Dennis-Wood function.
Consider the following variant of Dennis-Wood function
(Dennis & Wood, 1987):

1 2 2
f(x)= Emax{"x—cl [ ole-el} ®)

where ¢, =(1,-1) ¢, =—¢, . This function is continuous

and strictly convex, but its gradient is discontinuous
everywhere on the line x, =x, .

As shown in some works (Kolda and others, 2003,
Torczon, 1991) such of direct search methods as
compass search, multidirectional search algorithm can
fail to converge to the minimizer of function (8).

We will illustrate the convergence of our algorithm to the
minimizer of function (8).

The level sets of function (8) and the sequences of the
simplexes S* are shown in figure 3.

The sequence of the points x* generated by our algorithm

converges to the minimizer x°(0,0) as shown in figure
3. The regular simplex with centre (1.5;-1) and the

length of edge /=1 was chosen as an initial simplex.

The accuracy ¢ was chosen equal 107°. Figure 4

illustrates decreasing function values at the each of six
iteration.

Figure 3: The level sets of the function (3),
the sequences of the simplexes S* and {xk

X*(On O)n ﬁnin: 1

45 T T T T T T T T
I I I I I I I I
I I I I I I I I
O I I I I I I I

F o4l __d___%___i___i___i___|
I I i [ [ [ i I
u I I I I I I I I
I I I I I I I I
n I I I I I I I I

c 35F——————————A-—— 4= - ——f — =~ —— —— — —
I I I I I I I I
t I I I I I I I I
i I I I I I I I I
I I | I I I | I

oI i e B e it S Mt el iy
I I I I I I I I
n I I I I I I I I
I I I I I I I I

P e i e e R B A e i
v e I I I I I I
a | N | ‘ ‘ ‘ ‘
I I I I I I

I e R T A
u | | [ | | | |
¢ ‘ ‘  N— ‘ ‘
I I I I I I

S 15F-----—-—--9---"9-—-"—"7-"-"—"t-"~——rF~———-1——— -
I I I I e I I
I I I I | Seememenn | I
I I I I I . | I
I I I I I L .

Iterations
Figure 4: Decreasing function values
at the each iteration

Table 1 shows the computational results for each of 6
iterations.

Iteration, k Minimizer ¥ s f(Xk)
0 x"(1.4910;-0.4382)  4.1368
1 x'(0.9821;0.4123) 2.1370
2 x*(0.7575;0.7575) 1.5738
3 x*(0.4884; 0.4884) 1.2385
4 x*(0.1717;0.1717) 1.0295
5 x*(0.0000; 0.0000) 1.0000

Table 1: Iterative results



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Example 2. Minimization of McKinnon function.

This example was chosen for comparing with the most
popular direct search method — the Nelder-Mead
algorithm (Nelder and Mead, 1965) which convergence is
proved only for dimension 1 and some limited results for
dimension 2 (Lagarias and others, 1998). At the same
time there are examples of family of functions in R
(McKinnon, 1998) which demonstrate that the Nelder-
Mead simplex algorithm can fail to converge to a
stationary point of f. Consider the following function of
this family:

f(x,y)={

Function (9) is strictly convex and has up to three
continuous derivatives. As shown in (McKinnon, 1998) if

360x" +y+y*, x<0
6x> +y+y°, x>0

&)

the initial simplex is S° = conv{vo,vl,vz} ,
v’ =(0,0), V' =(4,4,), v =(L1),

1+433 p) _1—\/§
- b

A= g o (10)

then all vertices in the Nelder-Mead method converge to
a nonminimizing point.

We illustrate that our algorithm applied to the function
(9) converges to the minimizer. The initial simplex was

equal S° = conv{vo,vl,vz} , where vertices v°,v',v*, and
values A,,4, where chosen according to (10). The
accuracy ¢ was chosen equal 107°. As shown in figure 5,
x°(0.0542,-0.0381) € 88, f(x°)=-0.0190.

After constructing new simplex S' and performing the
first iteration of our algorithm we  have

point x' (0,-0.5) with function value f(x')=-0.25.

point

Point x' eintS" is the minimizer of function (9).

15,
(\
|
1l I
<
05/ ‘
0,
o4l
(s
5
_0.5,
S1
_1 L
[ee]
_15 Il Hl\‘\ Il Il Il Il I
1 05 0 05 1 15 2

x
Figure 5: The level sets of the function (9),
the sequences of the simplexes S* and {Xk}

The level sets of function (9), the sequences of the
simplexes $* and the minimizers x* are shown in figure
5. Figure 6 illustrates decreasing function values at the
each of two iteration.

05— ———F———F———F———————
R
| | | | | | | |
F 72 T v I S
u S T T E S R T
] S e
C | | | | | | | |
L S S S N S S S N IO N
i | | i T T i | |
o ’00000000000000000000 | | | |
| I I I | | | |
n 0051 - — - oL
S T T E S R T
| | | | | | | |
Vo0l --———q—— -4t —— =~~~ ——
a | | | | | | | |
1 | | | | | | | |
R e
| | | | | | | |
€ | | | | | | | |
I R S e R e E i S R
| | | | | | | |
25—~ -1 - 20000600000 000040 0004
1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45

Iterations

Figure 6: Decreasing function values
at the each iteration

Example 3.Minimization of nonsmooth function.

The basic advantage of our algorithm is that it guarantees
the convergence for a nonsmooth functions. Consider the
following family of nonsmooth functions:

n

S(xy)=2)x=a ] +2|y=b,
k=1

k=1

", (1)

where a, and b, are some pairwise different real
numbers, 7z is an odd number, 0 < p <1. If we sort the
numbers a, and b, in increasing order then the medium
point minimizes function (11).

Figure 7 illustrates the convergence of our algorithm for
this family of functions when p = %,n =11 and the

numbers a, and b, were chosen from the uniform
distribution on the segment [0,1]. Point x* €intS* is the

minimizer of function (11). Figure 8 illustrates decreasing
function values at the each of three iterations.

Table 2 shows the computational results for each of 3
iterations.

Iteration, k& Minimizer xSt f (xk)
0 x*(17; 2) 17.4847
1 x'(4.6858;0.5711) 8.2839
2 x7(0.6649; 0.5711) 3.1503

Table 2: Iterative results

61



CRPIT Volume 77 - Theory of Computing 2008

62

30; p
Ve
s/
//
20f
15}
10}
~ 5
0 =
5F
10k
15+
20 ]
20 15
X
Figure 7: The level sets of the function (11),
the sequences of the simplexes S* and {xk}
xmin = 0,6649; ymin = 0,5711; fmin = 3,1503
2 ; ; ; ; ,
F
u 20
n
C
t
i15
o
n
v 10
a
1
u
e s
S
Figure 8: Decreasing function values
at the each iteration
5. Conclusion

We have exposed our algorithm for the class of strictly
unimodal functions only. However one can show that the
algorithm can be applied for a wider class of functions,
namely, we consider the class of functions @, where § -

the n-dimensional simplex, defined as follows: fe®g
iff for any segment A = S each local minimum of fover

this segment is also a global minimum of the function f
over this segment. The class ® contains a subclass of

strictly unimodal functions over set S. Function (11)
considered in last example 3 is belong to the class @ .

References

Baushev  AN., Morozova EY  (2007): A
multidimensional bisection method for minimizing
function over simplex. Lectures notes in engineering
and computer science, 2:801-803.

Aude C. Dennis J.E. (2003): Analysis of Generalized
Pattern Searches. SIAM J. Optim, 13(3):889-903.

Torczon V. (1997): On the convergence of Pattern Search
Algorithms. SIAM J. Optim, 7(1):1-25.

Dennis, J. E., Woods, Jr. and Daniel, J. (1987):
Optimization on microcomputers: The Nelder-Mead
simplex algorithm, in New Computing Environments:
Microcomputers in Large-Scale Computing, A. Wouk,
ed., SIAM, Philadelphia, 116-122.

Morozova, E.Y. (2006): The direct search recursive
algorithm for minimizing function of several
variables. The Review of applied and industrial
mathematics, 13(5):783-796. (In Russian).

Kolda, T. J., Lewis, R. M., Torczon, V. (2003):
Optimization by Direct Search: New Perspectives on
Some Classical and Modern Methods. SIAM Review,
45(3):385-482.

Torczon, V. (1991): On the convergence of the
multidirectional search algorithm. SIAM J. Optim.,
1:123-145.

Nelder J.A. and Mead R. (1965): A simplex method for
function minimization. Computer Journal, 7: 308-313.
Lagarias J.C., Reeds J.A., Wright M.H. and Wright P.E.
(1998): Convergence properties of the Nelder Mead
simplex algorithm in low dimensions. SIAM J. Optim,

9: 112-147.

McKinnon, K.I.M. (1998): Convergence of the Nelder-
Mead simplex method to a non-stationary point. SIAM
J. Optim, 9: 148-158.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Optimal Joint Vendor-Buyer Inventory Strategy for Deteriorating
Items with Salvage Value

Nita H. Shah', Ajay S. Gor’ and H. M. Wee’

'Department of Mathematics, Gujarat University, Ahmedabad — 380 009
*Pramukh Swami Science & H. D. Patel Arts College, Kadi — 382 715
Gujarat, India
*Industrial Engineering Department, Chung Yuan Christian University,
Chungli 32023, Taiwan, ROC

Email: nita_sha_h@rediffmail.com, weehm@cycu.edu.tw

Abstract

This study develops a joint optimal inventory strategy
for both the buyer and the vendor when the expired
stocks have salvage value, and are subject to constant
rate of deterioration. It is shown numerically that the
joint approach results in a significant cost reduction
when compared with an individual decision by the
buyer. We also observed that although the joint total
cost decreases, the buyer’s cost increases due to larger
order. To motivate the buyer to continue to replenish
larger order quantity, a permissible delay in payments is
offered by the vendor to the buyer. A negotiation factor
is introduced to share the benefits of both the parties; the
vendor and the buyer.

Keywords : Joint total cost, Deterioration, salvage value,
permissible delay in payments.

1 Introduction

In the existing literature, most of the inventory models are
derived from the buyer’s point of view. This optimal
decision policy may not be advantageous in economic
terms for the vendor. Thus, there is need to derive a joint
policy which turns out to be win-win strategy for both;
the vendor and the buyer. Clark and Scarf (1970) studied
the vendor-buyer integration for the first time. Banerjee
(1986) extended Clark and Scarf’s model by introducing
finite replenishment rate. Goyal (1988) extended
Banerjee’s model by relaxing the assumptions of the
lot-for-lot production.

The above stated models assumed that the units in
inventory remain in utility for the period under review.
However, blood components, fruits and vegetables,
alcohol, medicines, fashion goods etc looses its utility

*Corresponding author: Professor H. M. Wee is a faculty
in the Industrial Engineering Department from Chung
Yuan Christian University, Taiwan.

Copyright © 2008, Australian Computer Society, Inc.
This paper appeared at the Computing: The Australasian
Theory Symposium (CATS 2008), Wollongong,
Australia. Conferences in Research and Practice in
Information Technology, Vol. 77, James Harland and
Prabhu Manyem, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

with the passage of the time. The loss of utility, spoilage,
decay or evaporation is categorized as deterioration.
Raafat (1991), Shah and Shah (2000), Goyal and Giri
(2001) gave up-to-date review of the research articles on
deteriorating inventory.

In the preceding review articles, the models assumed that
deteriorated units have no sale value. They are considered
lost. However, in practice, vendor can offer to his buyer
reduced unit cost for the deteriorated stocks. In this
article, the joint vendor-buyer inventory system for
deteriorating items with salvage value is developed. A
negotiation factor is used to facilitate benefit sharing
through offering permissible trade credit to the buyer;
thus making cooperation relationship more realistic and
mutually beneficial.

2 Mathematical Model

The mathematical model is developed on the basis of the
following assumptions:

1. A system consists of single vendor and single

buyer.

The demand rate is deterministic and known.

The replenishment rate is infinite.

Lead — time is zero or negligible.

Shortages are not allowed.

The deterioration rate 1is

proportional to on hand inventory.

7. There is no repair or replacement of the
deteriorated units during the cycle time.

8. The permissible credit period is used to motivate
the buyer to cooperate in the joint inventory
system.

ANl el N

constant and

The following notations are used

© : Deterioration rate (0 < 86 <1)

d :  Demand rate

C, : Vendor’s unit cost

Cp : Buyer’s unit cost (C, > C,)

oCy : Salvage value associated with deteriorate units
for the vendor (0< o <1)

oCp : Salvage value associated with deteriorate units
for the buyer

A, : Vendor’s ordering cost

63



CRPIT Volume 77 - Theory of Computing 2008

64

A, : Buyer’s ordering cost

h, : Vendor’s annual holding cost per time unit

hy :  Buyer’s annual holding cost per time unit

T :  Vendor’s replenishment cycle time

Ty : Buyer’s replenishment cycle time

n :  Buyer’s order times during [0, T]

I,(t) : Vendor-buyer combined inventory level

I,(t) : Buyer’s inventory level

TC, : Vendor’s annual total cost per time unit

TC, : Buyer’s annual total cost per time unit

TC : Annual total cost for both the vendor and the
buyer

The stocks on hand are depleted due to demand and
deterioration. The instantaneous states of inventory for
both the vendor and the buyer at any instant of time ‘t’
can be represented by the following differential
equations:

dlp(t) _ T
T+elb(t)_ d,0<t< = 2.1

and

¥+le(t)=—d,0 <t<T (2.2)

With the boundary conditions

Ib (I) = Oa IV (T) = 0: Ib (0) = Imb (maXimum
n

inventory carried by the buyer) and I, (0) = I,
(maximum inventory carried by the vendor), the
solutions of the differential equations are

T
0 —
Ib(t):g e(“ t]—l ,OStSI (2.3)
0 n
and
1(t) = %[ee(T_t) —1}, 0<t<T (2.4)

Hence, the maximum lot-sizes for the buyer and the
vendor are

e
Imb(t) =—len —1 (25)
0
and
_droer
I = 5[ ¢ ~1] (2.6)
respectively.

During [0, T], the total inventory holding cost for
the buyer is given by

T/n
IHC, = nhy j Io(t)dt
0
oT
= nh i en —e—T—l 2.7)
0’ n

The actual vendor inventory level in the integrated
two-echelon inventory model is the difference between
the vendor-buyer combined average inventory level and
the buyer average inventory level. Hence, the actual
vendor’s holding cost in the interval [0, T] is

T T/n
IHC,=h, | J T (t)dt-n | T (t)dt
b
0" 0
d ot
=h, —|eT —1-n|en -1 (2.8)
92

In the time period, [0, T], the deterioration cost for the
buyer is

T
CDb = an |:Imb - d—:|
n

oT
:an9 en —e—T—l (2.9)
0 n

and for the vendor is

CD, =C, [Imv—dT —n(lmb—d—Tﬂ
n

or

—cV% T —1-n|en -1 (2.10)

The salvage value of the deteriorated units for the buyer
during [0, T] is

oT
SV, =naCy, g en —e—T—l
0 n

(2.11)

and the salvage value of the deteriorated units for the
vendor during [0, T] is

q ot
svvzélcv6 M —1-nlen -1 (2.12)
The ordering cost for the buyer is
OC, =nA, (213)



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

and for the vendor is

OC, =A, (2.14)
The buyer’s total cost per time unit is given by
1
TC, = T [THCy + CDy, + OC, — SV
0T
= nhb i e n _ ﬁ — 1
6’T n
0T
— A
+nCy(1 —a)i en —G—T—l + D%
0T n

(2.15)

Similarly, the vendor’s total cost per time unit is
1
TC, = T [IHC, + CDy + OC, — SV,]
oT
~h, i T —1-n|en —1
0T
T
A
+Cy(1 a)— T _1—nlen -1 ||+
T
(2.16)

The annual joint total cost; TC is the sum of TC, and
T

TC,. Since, T, = —, TC is a function of continuous
n

variable; Ty and discrete variable; n.
3 Computational Algorithm
There are two cases to be discussed.

Case 3.1 When the buyer and the vendor make strategic
decision independently.

For the buyer to minimize TC,, obtain T, by setting

JTC,
JT,

=0.

For the vendor, minimum TC, can be obtain by putting T
=nT, and also satisfying

TCy(n—1) > TCy(n) < TCy(n + 1) 3.1
Then the total annual cost (say) TCy; without considering

integration is

TCny = min {min TC,) + TC, } 3.2)

Case 3.2 When the buyer and the vendor make decision
jointly.

The optimum value of cycle time T, and n can be
obtained by following necessary conditions.

JdTC

ﬁ =0 3.3)
and

TCn—-1)=TC(n)<TC(n+1) 3.4)
The total cost considering joint decision (say) TCj, is
TC; = rTmn (TC, + TC,) 3.5

Since TCj is less than TCyy, there is total cost saving
(say) Sy = TCyy — TC;. Let the buyer’s cost savings, Sy, be
defined by S, = aS; where 4 is the negotiation factor for
benefit sharing. When & = 1, all total cost savings benefit
the buyer only, for & = 0, total cost savings benefit the
vendor only and when 4 = 0.5 the total cost savings are
equally distributed between the buyer and the vendor. If r
is the interest rate, the present value of the unit cost after
time M is e™. The length of the buyer’s credit period M
can be computed by solving the equation

dCy (1 —e™) =S5,
which gives

M—ll[ dCy } (3.6)
r | dC, —BS;

The percentage of the joint total cost reduction (PJCR) is
defined as

PJCR = x100 (3.7)

NJ
4 Numerical Example and Sensitivity Analysis
Consider the following parametric values in proper units.
[d, CV, Cb, AV, Ab, hV, hb, O(a ea ra [3] =

[40000, 10, 12, 3000, 600, 1, 1.32, 0.2, 0.1, 0.03,
0.5]

Cases  Without joint With joint decision
decision

n 3 1

Ty 0.1145 0.2795

T 0.3435 0.2795

TGy 1047291 14959.58

TC, 17047.68 10734.51

TC 27520.59 25694.09

PICR - 6.64 %

M (yr) - 0.0635

Table 4.1: The optimal solution without and with
joint decision

65



CRPIT Volume 77 - Theory of Computing 2008

66

a 0.0 0.2 0.3 0.4

TCns 28966 27520 26768 25995

TC, 27002 25694 25014 24316

PJCR 6.78 6.63 6.55 6.46

(in %)

M 0.0683 = 0.0634 0.0609 0.0584
Table 4.2: Sensitivity analysis of the proportion

salvaged (o)

© 0.05 0.10 0.15 0.20

TCns 24323 27520 30378 32986

TG, 23448 | 25694 28279 300644

PJICR  6.21 6.63 6.91 7.10

(in %)

M 0.525 0.0634 0.0729 0.0814

Table 4.3: Sensitivity analysis of the deterioration
rate (8)

d 24000 32000 40000 48000

TCns 21335 24623 27520 30139

TG, 19918 22988 | 25694 29008

PJCR (in %) 6.645 6.640 = 6.63 6.634

M 0.0822 0.0710 | 0.0634 0.0579

Table 4.4: Sensitivity analysis of the demand rate
(d)

hy, 0.792 1.056 | 1.32 1.584

TCyy 26330 26906 27520 28156

TG, 22516 24158 @ 25694 17142

PJCR (in %) 1448 10.21 | 6.63 3.601

M 0.1327 0.0955 @ 0.0634 0.0352

Table 4.5: Sensitivity analysis of the buyer’s holding

cost (hy)

In Table 4.1, the comparative study of two cases without
and with joint decision. For the joint decision with
deterioration, it is observed that the buyer’s total annual
cost and cycle time increases. The vendor benefits § 6313
while the buyer looses $ 4487 (when o = 0, it is less than
Yang and Wee (2005). Therefore, the buyer will be
reluctant to go for joint strategy. To motivate the buyer to
cooperate, the vendor offers the buyer a credit period of
23 days. The joint total cost is reduced by 6.64 %.

The sensitivity analysis of the proportion salvaged (o) is
carried out in Table 4.2. It is found that the total annual
cost and credit period for both the strategies decreases.
Thus, increase in salvage value decreases permissible
delay period. This is because instead of throwing away
deteriorated units, the vendor is disposing them at a lower
price and the buyer can reduce his total cost and so
decreasing the permissible delay period is justified. For
Table (4.3) and Table (4.4), i.e. increase in deterioration

rate forces the buyer to buy more to fulfill his demand
and hence to optimize his total cost, so delay period
should be increased. The same applies for the case when
there is a decrease in demand. Thus, for these two
scenarios, the buyer-vendor should go for joint strategy. It
is also shown that increasing the buyer’s holding cost
decreases the trade credit significantly (Table 4.5).

5 Conclusions

In this article, we develop a joint optimal vendor-buyer
inventory strategy for deteriorating items with salvage
value. It is observed that incorporating the salvage value
results in a reduced joint total annual cost of the vendor
and the buyer. However, the buyer’s cost increases more
when the joint decision is taken. To motivate the buyer’s
co-operation, trade credit offered to the buyer is
incorporated in the model. With increasing holding cost,
deterioration rate and decreasing salvage value, joint
decision is especially beneficial to both parties.

References:

Banerjee, A. (1986), ‘A joint economic lot-size model for
purchaser and vendor’, Decision Sciences, 17,292 —311.

Clark, A. J. and Scarf, H. (1960), ‘Optimal policies for a
multi-echelon inventory problem’, Management Science,
6,475 —-490.

Goyal, S. K. (1988), ‘A joint economic lot-size model for
purchaser and vendor: A comment’, Decision Sciences,
19,236 —241.

Goyal, S. K. and Giri, B. C. (2001), ‘Recent trends in
modeling of deteriorated inventory’, European Journal of
Operational Research, 134, 1 — 16.

Raafat, F. (1991), ‘Survey of literature on continuously
deteriorating inventory model’, Journal of the
Operational Research Society, 42,27 — 37.

Shah, Nita H. and Shah, Y. K. (2000), ‘Literature survey
on inventory models for deteriorating items’, Economic
Annals, XLIV, 221 —237.

Yang, P. C. and Wee, H. M. (2005), ‘A win-win strategy for an
integrated vendor-buyer deteriorating inventory system’,
Mathematical Modeling and Analysis, Proceeding of the 10-th
International Conference MMA2005 & CMAM?2, Trakai, 541 —
546.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Tractable Cases of the Extended (Global Cardinality Constraint*

Marko Samer

Stefan Szeider

Department of Computer Science
Durham University, UK
Email: {marko.samer,stefan.szeider}@durham.ac.uk

Abstract

We study the consistency problem for extended global
cardinality (EGC) constraints. An EGC constraint
consists of a set X of variables, a set D of values, a
domain D(x) C D for each variable x, and a “car-
dinality set” K(d) of non-negative integers for each
value d. The problem is to instantiate each variable x
with a value in D(x) such that for each value d, the
number of variables instantiated with d belongs to the
cardinality set K (d). It is known that this problem
is NP-complete in general, but solvable in polynomial
time if all cardinality sets are intervals.

First we pinpoint connections between EGC con-
straints and general factors in graphs. This allows us
to extend the known polynomial-time case to certain
non-interval cardinality sets.

Second we consider EGC constraints under restric-
tions in terms of the treewidth of the value graph
(the bipartite graph representing variable-value pairs)
and the cardinality-width (the largest integer occur-
ring in the cardinality sets). We show that EGC
constraints can be solved in polynomial time for in-
stances of bounded treewidth, where the order of
the polynomial depends on the treewidth. We show
that (subject to the complexity theoretic assump-
tion FPT ## W[1]) this dependency cannot be avoided
without imposing additional restrictions. If, how-
ever, also the cardinality-width is bounded, this de-
pendency gets removed and EGC constraints can be
solved in linear time.

Keywords: Global constraints, general factor prob-
lem, bounded treewidth, parameterized complexity,
dynamic programming, domain consistency

1 Introduction

Constraint satisfaction is a powerful formalism for en-
coding a wide range of combinatorial problems and is
therefore attractive for both practitioners as well as
theorists (Rossi et al. 2006). Special purpose con-
straints with non-constant arity, often referred to as
global constraints, occur frequently in constraint mod-
eling. Efficient propagation algorithms for such con-
straints are important for the performance of con-
straint solvers (van Hoeve & Katriel 2006). Cur-
rently the Global Constraint Catalog (Beldiceanu
et al. 2005) lists 276 global constraints.

*Research supported by the EPSRC, project EP/E001394/1.
Copyright (©2008, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Computing: The Aus-
tralasian Theory Symposium (CATS2008), Wollongong, New
South Wales, Australia. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 77, James Harland
and Prabhu Manyem, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

In the sequel we focus on extended global cardi-
nality constraints (EGC constraints, for short), con-
straints that occur frequently in constraint modeling
and are known as global_cardinality (Beldiceanu et al.
2005), egee (Bessiére et al. 2004), distribution (Bour-
dais et al. 2003), and card_var_gce (Régin & Gomes
2004). An EGC constraint is specified by a set D of
values, a set X of variables where each variable x € X
ranges over a set D(z) C D of values, and sets K (d)
of non-negative integers associated with values d € D;
we refer to the sets K (d) as cardinality sets. The EGC
constraint requires that the number of variables in X
instantiating to a value d must belong to the cardi-
nality set K (d). More specifically, an EGC constraint
with variables X and domain D is consistent if there
is a mapping a : X — D such that

1. a(x) € D(z) holds for all variables z € X, and

2. {z € X :a(x) =d}| € K(d) holds for all val-
ues d € D.

The value graph provides a convenient visualization of
the relationship between variables and values present
in an EGC constraint; it is the bipartite graph with
vertex sets X and D where an edge joins a variable x
with a value d if and only if d € D(z). Figure 1 shows
an EGC constraint and its value graph.

K(a) K®b) K(c) K(d) K(e)

{0,3} {1,2y {1} {o0,2} {1,3}
a b c d e

U v w T Y z
D(u) D(v) D(w) D(z) D(y) D(2)
{a,b} {a,c} {a,c,d} {d,e} {a,e} {a,b,e}

Figure 1: An EGC constraint and its value graph.
The constraint is satisfied by a(u) = b, a(v) = ¢,
a(w) =d, a(z) =d, a(y) =e, and a(z) =b

We refer to the largest integer occurring in the car-
dinality sets of an EGC constraint as the cardinality-
width of the constraint. For example, the constraint
in Figure 1 has cardinality-width 3.

We consider the following decision problem:

EGCC-CONSISTENCY
Instance: An EGC constraint C.
Question: Is the constraint C' consistent?

Quimper et al. (2004) have shown that EGCC-
CONSISTENCY is NP-complete. However, as observed

67



CRPIT Volume 77 - Theory of Computing 2008

68

by Régin (1996), EGCC-CONSISTENCY can be de-
cided in polynomial time by network flow algorithms
if all cardinality sets are intervals (such constraints
are called global cardinality constraints). As we will
see in Section 3, both results are special cases of an
earlier result of Cornuéjols.

Contributions of this paper

We explore properties of EGC constraints that ad-
mit polynomial-time consistency checking even in the
presence of non-interval cardinality sets.

We discuss connections between EGCC-
CONSISTENCY and the general factor problem
for graphs as introduced by Lovész (1970, 1972).
This connection seems not to be known in the
constraint satisfaction literature. In view of this
connection, a general result of Cornuéjols (1988) for
the general factor problem allows us to generalize
Régin’s polynomial-time result from intervals to
“2-gap free” cardinality sets.

The main technical contributions of this pa-
per are concerned with the complexity of EGCC-
CONSISTENCY under structural restrictions. In par-
ticular, we consider instances whose value graphs
have bounded treewidth. We present a dynamic pro-
gramming algorithm that allows to decide EGCC-
CONSISTENCY in polynomial time for instances of
bounded treewidth. This algorithm can be easily
extended to perform also domain-filtering efficiently,
that is, to remove from the domains of the variables
those values that do not participate in a solution of
the constraint. Domain filtering is an important task
in the context of constraint solving (van Hoeve & Ka-
triel 2006).

The polynomial that bounds the running time of
our dynamic programming algorithm depends on the
treewidth of the instance. However, if we addition-
ally bound the cardinality-width, this dependency
is removed and the algorithm runs in linear time.
The question arises whether this dependency can be
avoided without bounding the cardinality-width. We
answer this question negatively, subject to the com-
plexity theoretic assumption FPT # WJ[1] (see Sec-
tion 6).

As a corollary, we obtain that Lovasz’s general fac-
tor problem, parameterized by the treewidth of the
input graph, is W[1]-hard. This result may be of in-
dependent interest.

The remainder of the paper is organized as follows.
In Section 2 we give basic definitions and background
on constraints and treewidth. In Section 3 we discuss
the connection between EGC constraints and general
factors in graphs, and we give a tractability result
applying general results of Cornuéjols and Courcelle.
In Section 4 we present the dynamic programming
algorithm for instances of bounded treewidth; in Sec-
tion 5 we extend this algorithm to domain filtering.
In Section 6 we prove the W[1]-hardness result.

2 Preliminaries

2.1 Constraint Satisfaction

A constraint network consists of a finite set X of vari-
ables, a finite set D of wvalues, and a finite set of
constraints. Each variable z € X ranges over a set
D(xz) C D of values, the domain of z. Each con-
straint C' specifies the allowed combinations of values
for a set var(C) C X of variables, the scope of C'; the
arity of a constraint is the cardinality of its scope. An

assignment is a mapping « that assigns to each vari-
able z € X a value a(z) € D(x). An assignment o
satisfies a constraint C' if « instantiates the variables
in the scope of C' such that an allowed combination
of values is formed. An assignment that satisfies si-
multaneously all constraints is a solution of the con-
straint network. A constraint C' is consistent if it
is satisfied by at least one assignment, and it is do-
main consistent if for every variable x € var(C) and
every value d € D(z) there exists an assignment o
that satisfies C' and instantiates x with d. Given a
constraint C', domain filtering is the task of removing
values d from domains of variables x € var(C) if there
is no assignment that satisfies C' and instantiates x
with d. What we call domain filtering is sometimes
called “complete” domain filtering in order to em-
phasize that all superfluous values are removed from
domains, in contrast to weaker forms of domain filter-
ing that only achieve “range consistency” or “bounds
consistency” (van Hoeve & Katriel 2006).

For an EGC constraint C with set X of variables
and set D of values we say that C' is over (X, D). The
input size of an EGC constraint C' over (X, D) is of

order [[Cf =3 ;e x (ID(@)[ +1) + 3 4e p (1K (D) +1).
Thus, for the value graph G = (V, E) of C, we have
Vi+IE <[Cl |

Note that we consider the EGC constraint as an
intensional constraint. Typically, global constraints
are considered as intensional constraints since for
many global constraints an eztensional representation
(where all combinations of values that satisfy the con-
straint are explicitely listed) would require exponen-
tial space. Domain filtering and consequently test-
ing for domain consistency or comnsistency is trivial
for extensional constraints as these properties can be
read off from the constraint relation. For intensional
constraints, however, testing for domain consistency
or consistency is nontrivial and known to be NP-
complete for several classes of constraints (Bessiére
et al. 2004, Quimper et al. 2004), in particular for
the EGC constraint. Note that whenever domain fil-
tering can be accomplished in polynomial time for
a constraint, then its consistency can be checked in
polynomial time as well (Bessiére et al. 2004), but the
converse does not hold in general (Sellmann 2003).

2.2 Tree Decompositions

Treewidth is an important graph invariant which
is a measure of “tree-likeness.”  For graphs of
treewidth bounded by a constant many other-
wise intractable problems become tractable, e.g., 3-
colorability, Hamiltonicity, etc. It is generally be-
lieved that many practically relevant problems actu-
ally do have low treewidth (Bodlaender 1993).

The treewidth of a graph G = (V, E) is defined via
the following notion of decomposition: a tree decom-
position of G is a pair (T, x), where T is a tree and
X is a labeling function with x(t) C V for every tree
node t such that the following conditions hold:

1. Every vertex of G occurs in x(t) for some tree
node ¢.

2. For every edge uv of G there is a tree node ¢t such
that u,v € x(t).

3. For every vertex v of G, the tree nodes ¢t with
v € x(t) induce a connected subtree of T' (“Con-
nectedness Condition”).

The width of a tree decomposition (T, x) is the cardi-
nality of a largest set x(¢) minus 1 among all nodes ¢
of T. A tree decomposition of smallest width is opti-
mal. The treewidth of a graph G is the width of an
optimal tree decomposition of G.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Note that a graph G = (V, E) of treewidth k has at
most k|V| edges (Kloks 1994). Thus if & is bounded
by a constant, then |E| = O(|V).

In principle, one can compute in linear time an
optimal tree decomposition of graphs with treewidth
bounded by some constant k (Bodlaender 1996); how-
ever the running time of the known linear-time algo-
rithm imposes a huge hidden constant. In practice
one often prefers to obtain tree decompositions via
heuristics. An important class of tree decomposition
heuristics are based on finding an appropriate lin-
ear ordering of the vertices (Bodlaender 2005, Koster
et al. 2001).

Once a tree decomposition of small width is found,
one tries to solve the problem under consideration by
dynamic programming via bottom-up traversal of the
tree decomposition. For such an approach it is often
convenient to consider tree decompositions in the fol-
lowing normal form (Kloks 1994): A triple (T, x,r)
is a nice tree decomposition of a graph G if (T, x) is
a tree decomposition of G, the tree T is rooted at
node r, and each node of T is of one of the following
four types:

1. a leaf node: a node having no children;

2. a join node: a node t having exactly two chil-
dren t1,t2, and x(t) = x(t1) = x(t2);

3. an introduce node: a node t having exactly one
child ¢, and x(¢) = x(¢') U {v} for a vertex v
of G;

4. a forget node: a mnode t having exactly one
child ¢, and x(t) = x(t') \ {v} for a vertex v
of G.

Note that for every vertex v of G that does not occur
in x(r) there is exactly one node t, with parent ¢,
such that v € x(t,) and v ¢ x(¢,) (¢, is a forget
node). If v occurs in x(r) we set t, = r. In both
cases we say that t, is the final node of v.

For every constant k, given a tree decomposition
of a graph G of width k, one can effectively obtain in
linear time a nice tree decomposition of G with O(n)
nodes and of width at most k (Kloks 1994).

3 EGC Constraints and General Factors in
Graphs

3.1 Applying Cornuéjols’s Theorem

Lovész (1970, 1972) introduced the following prob-
lem, known as the general factor problem:

GENFACTOR

Instance: A graph G = (V, E) and a map-
ping K that assigns to each vertex v € V a
set K(v) C {0,...,d(v)} of integers, where
d(v) denotes the degree of v in G.

Question: Is there a subset F' C E such that

for each vertex v € V' the number of edges
in F incident with v is an element of K (v)?

Clearly, EGCC-CONSISTENCY is the special case
of GENFACTOR where G is bipartite with biparti-
tion (X, D) and K(v) = {1} for all v € X. Thus,
similar to EGC constraints, we call the sets K (v) car-
dinality sets and we call the largest integer occurring
in the cardinality sets of a GENFACTOR instance its
cardinality-width.

Let I be a class of finite sets of non-negative in-
tegers. We denote by GENFACTOR(K) and EGCC-
CONSISTENCY (K) the respective problems restricted
to instances where all cardinality sets belong to the

class KC. A set K of integers has an s-gap if there ex-
ists an integer ¢ such that min(K) < ¢ < max(K) and
{i,...,i+s—1}NK = (. We denote by Z; the class of
s-gap free sets of non-negative integers. Note that 7;
is nothing but the class of non-negative intervals. We
can state Régin’s above mentioned result as follows.

Proposition 1 (Régin (1996)). EGCC-CoNSsIs-
TENCY (Z1) can be decided in polynomial time.

The following dichotomy result fully classifies the
problem GENFACTOR(K).

Theorem 2 (Cornuéjols (1988)). If K C I, then
GENFACTOR(K) can be decided in polynomial time.
Otherwise, GENFACTOR (K ) is NP-complete.

Actually, the reduction given by Cornuéjols (1988)
shows that the NP-hardness case of Theorem 2 even
holds if the graph is bipartite and the vertices on one
side have cardinality sets {1}, the vertices on the
other side have cardinality sets drawn from the
class KC. Hence, it follows that the dichotomy stated in
Theorem 2 also holds for EGCC-CONSISTENCY(K).

Corollary 3. If K C Z,, then EGCC-CONSISTENCY
can be decided in polynomial time. Otherwise,
EGCC-CONSISTENCY (K ) is NP-complete.

Thus EGCC-CONSISTENCY(Z2) can be decided in
polynomial time, a proper generalization of Propo-
sition 1. A further consequence of Corollary 3 is the
NP-completeness of EGCC-ConNsISTENCY({{0,3}}),
which gives the following.

Corollary 4. EGCC-CONSISTENCY is NP-complete
for instances of cardinality-width at least 3.

3.2 Applying Courcelle’s Theorem

Courcelle’s Theorem (Courcelle 1987) provides a pow-
erful tool for showing that certain graph properties
can be checked in linear time for graphs of bounded
treewidth. One only needs to define the considered
property in terms of a certain formalism (Monadic
Second Order Logic, MSO) where one is allowed
to quantify over sets of vertices and sets of edges
(see, e.g., Downey and Fellows’ book (Downey &
Fellows 1999) for further details and examples). In
fact, with Courcelle’s Theorem it is easy to establish
the following.

Proposition 5. The problems GENFACTOR and
EGCC-CONSISTENCY can be decided in linear time
for instances having both bounded treewidth and
bounded cardinality-width.

Let us sketch the proof. Note that we only need
to consider GENFACTOR since it contains EGCC-
CONSISTENCY as a special case. Let G = (V, E) with
cardinality sets K (v), v € V, be an instance of GEN-
FACTOR with cardinality-width m. We may assume,
w.l.o.g., that all vertices have degree at least two,
as vertices of degree 0 or 1 can be easily eliminated.
Let Ki,...,Kom+1 be an enumeration of all subsets
of {0,...,m}. We assign to every vertex v of G an in-
teger i(v) such that K (v) = K;(,). Now we construct

a graph G’ from G by attaching to every vertex v
of G new neighbors vy,...,v;) of degree 1. Since
the added vertices are of degree 1, we can distinguish
them from the old vertices. The new vertices allow
us to reconstruct the cardinality sets K (v). Since m
is a constant, we can define predicates Py, ..., Pom+1
such that P;(v) is true for a vertex of G’ if and only
if v is of degree at least 2 and has exactly ¢ neigh-
bors of degree 1 (equivalently, v belongs to G and
K(v) = K;()). It is now easy to state an MSO sen-

tence that is true for G’ if and only if G has a general

69



CRPIT Volume 77 - Theory of Computing 2008

70

factor that meets the cardinality conditions imposed
by the sets K(v). Hence Proposition 5 follows from
Courcelle’s Theorem.

In the above construction it was essential that the
cardinality-width is bounded, since otherwise we
could not confine us to a finite number of predi-
cates P;. The question arises whether this limita-
tion can be overcome by a different, more sophisti-
cated approach. We will return to this question in
Section 6, where we will provide a negative answer.
Namely we will show that EGCC-CONSISTENCY, pa-
rameterized by the treewidth alone, is complete for
the parameterized complexity class W[1]. Hence one
cannot expect the existence of an algorithm that
solves EGCC-CONSISTENCY (or GENFACTOR) for in-
stances of bounded treewidth within a running time
that is bounded by a polynomial of order independent
of the treewidth.

Algorithms obtained via Courcelle’s Theorem are im-
practical as the linear running time involves a huge
hidden factor. Therefore we propose in the next sec-
tion an efficient combinatorial algorithm based on dy-
namic programming.

4 Efficient Consistency Checking

In the following we consider an EGC constraint C
over (X, D) together with a nice tree decomposi-
tion (T, x,r) of the value graph of C. Let m denote
the cardinality-width of C'. For every node ¢t of T let
var(t) denote the set of variables in x(¢) and let val(t
denote the set of values in x(t). We define var*(¢
as the union of var(t’) for tree nodes ¢’ that belong
to the subtree rooted at ¢; val*(t) is defined simi-
larly. Thus, var*(t) \ var(t) and val*(t) \ val(t) are the
sets of variables and values, respectively, that are al-
ready “forgotten” at tree node t; similarly X \ var*(t)

and D \ val*(¢) are the sets of variables and values,
respectively, that are “not yet introduced” at tree
node ¢.

With every tree node ¢ we associate the set A(t) of
partial assignments « : X, — val*(¢) defined on sets
of variables X,, C var*(t) such that

1. a(x) € D(z) for all z € X, (a respects domains),

2. var*(t)\var(t) C X, (« is defined for all forgotten
variables), and

3. {z € var*(t) : a(x) = d}| € K(d) for all d €
val®(t)\ val(¢) (o respects cardinality sets for for-
gotten values).

A record of a tree node t is a mapping
R:x(t) — val(t) U{u,x}U{0,1,2,...,m}
such that the following two conditions are satisfied:

1. R(z) € (val(t) N D(z)) U {U,*} for z € var(t);

2. R(d) €{0,1,2,...,max(K(d))} for d € val(t).
We use records to represent the partial assignments «
in the set A(t): R(x) = U means that « is not defined
for z, and R(x) = * means that o maps x to a value
that is already forgotten. More specifically, we say

that a record R of a tree node t represents an assign-
ment o € A(t) if the following two conditions hold:

1. For all € var(t)
alz) if a(z) € val(t),

if a(z) € val(t)* \ val(t),
U otherwise (i.e., if = € var(t) \ Xo);

2. for all d € val(¢)
R(d) = |{z € var*(t) : a(z) = d }|.

Note that in general a record can represent an un-
bounded number of assignments, and every assign-
ment in A(t) is represented by exactly one record R
of t. We say that a record R of t is valid if it represents
some assignment « € A(t).

The following lemma follows directly from the def-
initions.
Lemma 6. C is consistent if and only if there is a
valid record R of the root r such that R(x) # U for
all x € var(r) and R(d) € K(d) for all d € val(r).

The next five lemmas will allow us to compute the
valid records of a tree node from the valid records of
its children.

Lemma 7 (Join nodes). Let t1,t2 be the children of
t. A record R of t is valid if and only if there are valid
records Ry and Ry of t1 and to, respectively, such that

1. for all x € var(t) one of the following holds
(a) R(z) = Ri(z) = Ra(x) € DU {U};
(b) R(xz) = Ri(z) = x and Ra(z) = LJ;
(¢) R(x) = Ra(z) = x and Ry(z) = U;

2. R(d) = Ri(d)+Ra(d)—|{x € var(t) : R(z) = d }|
for all d € val(t).

Proof. Let R be a valid record of t. By definition,
R represents an assignment o € A(t). For i = 1,2
let o = avar=(z,) be the restriction of a to var*(t;).
Since o € A(t) it can be easily verified that also «; €
A(t;), i = 1,2. Let R; be the (valid) record of ¢;
that represents a;, ¢ = 1,2. It remains to check that
for R, Ry, and Ry the two properties stated in the
lemma hold. Let x € var(¢). If Ry(x), Re(x) € D(x)U
{U}, then R(z) = Ri(x) = Ra(x), since var(t) =
var(t1) = var(tz) and X, Nvar(t) = X,, Nvar(t;) =
Xa, Nvar(te). If Ri(z) = x and Ra(z) = U, then
aq(z) € val*(t1) \ val(t1) and © ¢ X,,; hence a(z) €
val®(t) \ val(t), and so R(z) = x. Symmetrically, if
Ri(z) = U and Ra(x) = *, then R(z) = x. Thus the
first property of the lemma holds for R, R;, and Rs.
It is easy to see that R(d) = Ri(d) + Ra(d) — |{z €
var(t) : R(x) = d }| for all d € val(t), hence the second
property holds as well.

Conversely, let R be a record of ¢, and assume that
there are valid records Ry and Ry of t; and ¢, re-
spectively, such that the two properties stated in the
lemma hold. Let a; € A(t1) and ae € A(t2) be as-
signments that are represented by R; and Rg, respec-
tively. By the connectedness condition of a tree de-
composition, it follows that the sets var*(¢;) \ var(¢;)
and var*(t3) \ var(tz) are disjoint. Hence, we can com-
bine 1 and as to an assignment o : X, — D, defined
for the set X, = Xo, UXq,, with a(z) € D(x) for all
z € X,. It is easy to check that a corresponds to R,
hence R is a valid record of t. O

The proofs of the following four lemmas are
straightforward.

Lemma 8 (Introduce variable). Let t be an introduce
node with child t' such that var(t) = var(t')U{xo} and
val(t) = val(t'). A record R of t is valid if and only if
there is a valid record R’ of t' such that R'(z) = R(z)
for all x € var(t'), and one of the following prevails:

1. R(z¢) = U and R(d) = R'(d) for all d € val(t),



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

o] yae

i [=] (=N ]
o~ ol

QR [* | *(C|w
H=lo|lo|e

~lolo|olo| o
Ry
B
-
~
IS

oclaojolo|@|R|(re|e|e|CIC|IC|IC|IC|IC|<

N[ == OO [(NN = =N ==~ oo
N W[N] =N OO (N = oo o

N ==l e
=N |= o= (o o

-
&
&
2
]
o |*|*|C
= =1k
=l=o|—|a

Za w a e t7 ts w o a e
y o to U o0 1 U o0 o0
* 0 z,a *~ 0 0 w,a,e w,a,e ~ 1 0
* 1 a 1 1 a 1 0
a 1
z a b
] ii) é ” tio  t11 w a
] 2 e
a 1 1 z,a,b to u 1 ‘ w,e ‘ w,a ‘ 5 (1)
a 2 0 * 0 a 1
b 0 2
b 1 1
w T e tiz tia v w a
a tia 0 u o L *x 0
0o 1 a,b 0 e 1 w,x,e v, W, a * U 0
L * * 0 * a 1
a *x 1
u a b tie ti7
w oz voow
u o o u,a,b tis Lo ‘ w, x v, W ‘ *
a 1 0 I > U
b 0 1
w_ z tig 19 vow ¢
oo
LU o
U d 1 ‘ w,x,d ‘ ‘ v, w,c ‘ 0 ¢ 1
d 1 1
4 d 2 c U 1

Figure 2: A nice tree decomposition of the value graph of the EGC constraint in Figure 1 with tables repre-
senting valid records. Rows with gray background indicate the result after domain filtering.

2. R(xzo) = do for some do € val(t) N D(xg) such
that R(dy) = R'(do)+1 and R(d) = R'(d) for all
d € val(t) \ {do},

Lemma 9 (Introduce value). Let t be an introduce
node with child t' such that val(t) = val(t')U{do} and
var(t) = var(t'). A record R of t is valid if and only if
there is a valid record R’ of t' such that the following
conditions hold:

1. for all x € var(t)

d € {U} U ({do} N D(x))
R(z) = {R’(:v)

if R'(x) =L;
otherwise;

2. for all d € val(t)

R(d) = {g/a(cdf var(t) : R(x) = do }|

Lemma 10 (Forget variable). Let t be a forget node
with child t' such that var(t) = var(t') \ {zo} and
val(t) = val(t'). A record R of t is valid if and only if
there is a valid record R of t' such that R'(x¢) # U
and R(z) = R/(z) for all z € var(t) U val(t).

Lemma 11 (Forget value). Lett be a forget node with
child t' such that val(t) = val(t') \ {do} and var(t) =

if d = do;

otherwise;

71



CRPIT Volume 77 - Theory of Computing 2008

72

var(t'). A record R of t is valid if and only if there is a

valid record R’ of t' such that the following conditions
hold:

1. R'(do) € K(do);

2. for all x € var(t) we have

L if R'(z) = do;
R(z) = {R’(x) otherwise; ’

3. R(d) = R/(d) for all d € val(t) = val(t') \ {do}.

Theorem 12. EGCC-CONSISTENCY can be decided
in linear time for instances having both bounded
treewidth and bounded cardinality-width.

Proof. Let k,m > 0 be arbitrary constants. We
are given an EGC constraint C over (X,D) with
treewidth and cardinality-width bounded by k and m,
respectively. Let n denote the number of vertices of
the value graph of C. We compute a nice tree de-
composition (T, x,r) of the value graph of C such
that the width of the tree decomposition is at most &
and T has O(n) nodes. This can be accomplished in
time O(n) (see the discussion in Section 2.2).

With every tree node ¢t of T we associate the
set M(t) of valid records of ¢. We can compute the
sets M (t) via a bottom-up traversal of T' as follows.
For a leaf node t we can compute M (t) just by con-
sidering all possible rows R with R(z) € val(t) U {U}
for x € var(t) and R(d) = |[{z € var(t) : R(z) = d }|
for d € val(t). The number of records of a node ¢ is
at most

[val(t) U {U, x }|ar @1Vl OF < max (k + 1, m)F+,

i.e., bounded purely in terms of the constants k
and m. Lemmas 7-11 ensure that for computing M (¢)
of a non-leaf node ¢t we only need to know the
sets M (t') of the children ¢’ of ¢: For a join node ¢
with children ¢; and t2 we compute M (t) by com-
bining all pairs of records Ry € M(t1), Re € M(t2),
and by checking the conditions of Lemma 7. The
time required for each pair is bounded in terms of the
constants k and m. Hence, given M (t1) and M (t2),
we can compute M (t) in constant time. Computing
the sets M (t) for introduce and forget nodes ¢ ac-
cording to Lemmas 8-11 is even simpler. Hence we
can compute the sets M(t) for all O(n) tree nodes ¢
in time O(n). According to Lemma 6 we can decide
comnsistency of C' by examining the records in M (r) at
the root .

Figure 2 shows a nice tree decomposition of the value
graph of the constraint of Figure 1, together with the
sets M (t) as computed according to the proof of The-
orem 12. Records are specified as table rows (the
meaning of table rows with gray backgrounds will be
discussed in the next section).

5 Efficient Domain Filtering

Consider an EGC constraint C' over (X, D). For each
pair x € X and d € D(x) let Clx = d] denote the
EGC constraint obtained from C' by instantiating x
with d (that is, z gets removed and K (d) gets replaced
with K'(d) ={j—1:j € K(d)\ {0} }). Evidently, C
is domain consistent (recall the definition in Section
2.1) if and only if all constraints C[z = d] for z € X
and d € D(x) are consistent. Hence, domain fil-
tering for EGC constraints of bounded treewidth
and bounded cardinality-width can be carried out in
quadratic time, using the algorithm of Theorem 12 for

each pair € X and d € D(z). However, the follow-
ing approach allows domain filtering in linear time.

As in the previous section, let C' be an EGC con-
straint over (X, D). We assume that treewidth and
cardinality-width of C are bounded by constants k
and m, respectively. Let (T, x,r) be a nice tree de-
composition of the value graph of C' such that the
width of the tree decomposition is at most k and T
has O(n) nodes, n = | X |+ |D|.

We call a record R of a tree node t solution-valid
if R represents the restriction afya-(s of a solution

a: X — D of C to var*(t). Note that every solution-
valid record is valid. The following lemma is a direct
consequence of the definitions (recall from the end of
Section 2.2 the notion of “final node”).

Lemma 13. C' is domain consistent if and only if

1. for every pair x,d with x € X and d € D(x)
there exists a solution-valid record R of some tree
node t with R(x) = d, and

2. for every pair d,j with d € D and j € K(d) there
exists a solution-valid record R at the final node
of d such that R(d) = j.

Hence, if we have computed all solution-valid
records of all tree nodes, then we have solved the
domain filtering task. With every tree node t of T
we associate the set M(t) of valid records and the
set M'(t) € M(t) of solution-valid records of t. The
sets M(t) are computed in linear time by the algo-
rithm described in the proof of Theorem 12. Next
we describe how we can compute the subsets M'(t)
by means of a top-down traversal of T'. This process
is illustrated in Figure 2 where solution-valid records
are indicated as table rows with gray background.

For the root r we can easily compute M’(r)
from M(r) since, according to Lemma 6, a valid
record R at r is solution-valid if and only if R(z) # U
for all x € var(r) and R(d) € K(d) for all d € val(r).

Consider a join node t with children ¢4, ts, and as-
sume that we have already computed the set M’(t).
It follows from Lemma 7 that a valid record Ry of 1
is solution-valid if and only if there is a solution-
valid record R of t and a valid record Rs of to
such that for the records R, Rj, Ro the properties
stated in Lemma 7 hold. Hence, we can compute the
sets M'(t1) and M'(t2) from M’(t) in time that only
depends on the constants & and m. Similarly, for an
introduce or forget node ¢ with child ¢, a record R’
of ¢’ is solution-valid if and only if there is a solution-
valid record R of ¢ such that the properties stated in
one of the Lemmas 8-11 hold. Thus if we know M’ (t)
we can compute M'(') in time that only depends on
the constants k and m.

Since T has O(n) many nodes, we have shown the
following result.

Theorem 14. Domain filtering for extended
global cardinality constraints can be carried out in
linear time if both treewidth and cardinality-width
are bounded.

6 W][l]-Hardness for Parameter Treewidth

We return to the question raised at the end of Sec-
tion 3 of whether bounding the cardinality-width is
dispensable in Proposition 5. The framework of pa-
rameterized complexity (Downey & Fellows 1999) of-
fers concepts and tools for answering this question.
Let us briefly review the main concepts of this frame-
work; for an in-depth treatment we refer to other
sources (Downey & Fellows 1999, Flum & Grohe 2006,
Niedermeier 2006).



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

In parameterized complexity one considers prob-
lems in two dimensions: one dimension is the usual
size n of the instance and the second dimension is the
parameter (usually a positive integer k). A parame-
terized problem is called fixed-parameter tractable if it
can be solved in time O(f(k)-n®) for some computable
function f and constant ¢ that is independent of the
parameter. FPT denotes the class of fixed-parameter
tractable decision problems. The parameterized com-
plexity classes W[1] € W[2] C --- C W[P] contain
problems that are believed to be not fixed-parameter
tractable (Downey & Fellows 1999); all inclusions are
believed to be proper. There are different kinds of
evidence for assuming that W[1] # FPT. For exam-
ple, W[1] # FPT would imply that the Exponential
Time Hypothesis fails (cf. Flum & Grohe (2006)). A
parameterized problem P reduces to a parameterized
problem @ if we can transform an instance (z, k) of P
into an instance (2/, g(k)) of @ in time O(f(k) - |x|°)
(f,g are arbitrary computable functions, ¢ is a con-
stant) such that (z,k) is a yes-instance of P if and
only if (2/, g(k)) is a yes-instance of Q.

The CLIQUE problem asks whether, given a graph G
and an integer k, G contains a complete subgraph on k
vertices. CLIQUE (with parameter k) is a W[1]-com-
plete problem (Downey & Fellows 1999). Below we
shall use the special case of the problem where the
vertex set of the given graph is partitioned into k in-
dependent sets. As observed by Fellows et al. (2007),
CLIQUE remains W[l]-complete under this restric-
tion. This follows by the following reduction. Given
G = (V,E) and k, take disjoint copies Vi,...,Vj
of V; let v; denote the the copy of v in V;. We con-
struct the graph G = (V/,E’) with V' = UleVi
and E' = {wuw; :uv € E,1 <i<j <k} Nowitis
easy to verify that G has a clique on £ vertices if and
only if G’ has a clique on k vertices.

Theorem 15. EGCC-CONSISTENCY parameterized
by the treewidth of the value graph is W[1]-hard.

Proof. We give a reduction from CLIQUE. Consider
an instance consisting of a graph G = (V| F) and an
integer k. As discussed above, we may assume that V'
is partitioned into independent sets Vi,...,Vy. Let
V; = {o},...,0"} and let N = max?_, n; + 1.

We will construct an EGC constraint C' such that
C is consistent if and only if G has a clique on ver-
tices v{[l] k[k] with j[i] € {1,...,n;}. The gen-
eral idea is ‘that C consists of k parts Py, ... Pk
where the i-th part encodes the selection of v gt
from V;. Any two parts P; and R/ are connected

via a value dg; . Assume w.lo.g. i < i'. If P; se-
lects vertex v} Uit instantiates j[i] many variables
with value dy; y; if Py selects vertex vg/[l], it in-

stantiates N - j[i'] many variables with value dg; ;/y.
Now K (dy;,y) is defined to contain exactly the inte-

gers jli]+N-j[i’] such that v/ and v") are adjacent
in G. Since j[i], j[i'] < N, each integer in K (dg; )
corresponds uniquely to a certain pair (j[i], j[i']).
More specifically, the constraint C' is defined as
follows. For every 1 < i < k we introduce a value d;.
For every 1<i<k ‘and 1 < j < n; we introduce a

variable 27 and a value . For every i,i’ € {1,...,k},
1 # 1, and 1 < j < n; we introduce a set Xm., of
variables such that
i (i if i < i;
| X7l = {N -j otherwise.

Finally, for every 1 < i < ¢ < k we introduce a
value dy; 3. Domains and cardinality sets are defined

as follows:

D(z]) = {did]}

D(z) = {di,d{iﬂ-/}} for x € Xijﬂ-,

K(di) = {1}

K(d]) = (0,14 X veqn, ki |Xij,i’|}
K(dgiiy) = {IX{0[+ X751 vjv), € B,

1<j<mn 1<j <ny}.

This completes the construction of C; see Figure 3 for
an illustration.

1 1 J J L2 s
X'Ll?'"’Xi,k le""7Xi,k Xz‘,l""’Xiyk

dginy d{i,ky

Figure 3: The i-th part of the value graph of the
constraint constructed in the proof of Theorem 15.

Claim 1: C is consistent if and only if G has a clique
of size k.

Assume that S = {v{m, e ,vi[k}} induces a clique
in G. We define an assignment « for C as follows.
We put

: d; - if j[i] = j;
i ] 5
alr) = {dz otherwise
and for z € Xii/ we put
alw) = {df otherwise.

It can be easily checked that « satisfies C.
Conversely, let a be an assignment that satisfies C.
For every i € {1,...,k} there is exactly one j €

{1,. nl} with a(z Z) = d;, since K(d;) = {1}. Let
S = { i J[k} We show that S mduces a
clique in G To this aim, choose 1 < 3 < ¢/ < k ar-
bitrarily. It follows from the definition of C' that the
variables mapped to dy; iy are exactly the variables
in the sets Xj[i,] and X.j,[i./]. We have |Xf[;,]| = j[i],
R = N i), and jli) + N -l € K(dgin)-
Since j[i], j[i'] < N, j[i] + N - j[i'] € K(dg;,y) im-
plies that vj [ and vj T are adjacent in G. Since i
and i’ were chosen arbltrarily, it follows that all ver-
tices in S are adjacent to each other, i.e., S induces a
clique in G. Hence Claim 1 is shown.

Claim 2: The treewidth of the value graph of C is at
most (g) + 1.

73



CRPIT Volume 77 - Theory of Computing 2008

74

Let W = {dgy : 1 < i < < k}. If we delete
all vertices in W from the value graph of C, then we
are left with a collection of k disjoint trees. Hence
without the vertices in W, the value graph admits
a tree decomposition of width 1. Now adding W to
all the bags of this tree decomposition yields a tree
decomposition of the full value graph of G. The width
of this tree decomposition is |W|+1 = (g) +1. Hence
Claim 2 is shown.

Since the construction of C from G can certainly
be carried out in polynomial time (polynomial in G
and k), we have a reduction from the W[l]-com-
plete CLIQUE problem to EGCC-CONSISTENCY with
parameter treewidth. Hence the latter problem
is W[1]-hard. O

Corollary 16. GENFACTOR parameterized by
treewidth is W[1]-hard.

7 Conclusion

We have studied extended global cardinality con-
straints under structural restrictions. = We have
shown that (complete) domain filtering and consis-
tency checking for these constraints can be carried
out in linear time if the parameters treewidth and
cardinality-width are both bounded by arbitrary con-
stants. Furthermore we have shown that consis-
tency checking is NP-hard if the cardinality-width
is bounded alone and W/[1]-hard if the treewidth is
bounded alone. Furthermore we have pointed out the
connection between extended global cardinality con-
straints and global factors of graphs. By means of this
connection we could identify the largest class of car-
dinality sets that admits polynomial-time consistency
checking. An empirical evaluation of our theoretical
results is left for future research. We hope that our
work stimulates further research on global constraints
under structural restrictions as well as the develop-
ment of fixed-parameter algorithms for other global
constraints.

References

Beldiceanu, N., Carlsson, M. & Rampon, J.-X.
(2005), ‘Global constraint catalog’, Technical Re-
port T2005:08. Swedish Institute of Computer Sci-
ence, Stockholm, Sweden.

Bessiére, C., Hebrard, E., Hnich, B. & Walsh, T.
(2004), The tractability of global constraints, in
‘Proceedings of the 10th International Conference
on Principles and Practice of Constraint Program-
ming (CP’04)’, Vol. 3258 of LNCS, Springer-Verlag,
pp. 716-720.

Bodlaender, H. L. (1993), ‘A tourist guide through
treewidth’, Acta Cybernetica 11(1-2), 1-22.

Bodlaender, H. L. (1996), ‘A linear time algorithm
for finding tree-decompositions of small treewidth’,
SIAM Journal on Computing 25(6), 1305-1317.

Bodlaender, H. L. (2005), Discovering treewidth, in
‘Proceedings of the 31st Conference on Current
Trends in Theory and Practice of Computer Sci-
ence (SOFSEM’05)’, Vol. 3381 of LNCS, Springer-
Verlag, pp. 1-16.

Bourdais, S., Galinier, P. & Pesant, G. (2003), HI-
BISCUS: A constraint programming application to
staff scheduling in health care, in ‘Proceedings of
the 9th International Conference on Principles and
Practice of Constraint Programming (CP’03)’, Vol.
2833 of LNCS, Springer-Verlag, pp. 153-167.

Cornuéjols, G. (1988), ‘General factors of graphs’,
Journal of Combinatorial Theory, Series B
45(2), 185-198.

Courcelle, B. (1987), ‘Recognizability and second-
order definability for sets of finite graphs’, Tech-
nical Report 1-8634. Université de Bordeaux, Bor-
deaux, France.

Downey, R. G. & Fellows, M. R. (1999), Parameter-
ized Complezity, Springer-Verlag.

Fellows, M. R., Hermelin, D. & Rosamond, F.
(2007), ‘On the fixed-parameter intractability and
tractability of multiple-interval graph problems’,
Manuscript.

Flum, J. & Grohe, M. (2006), Parameterized Com-
plexity Theory, Springer-Verlag.

van Hoeve, W.-J. & Katriel, I. (2006), Global con-
straints, in F. Rossi, P. van Beek & T. Walsh, eds,
‘Handbook of Constraint Programming’, Elsevier,
chapter 6, pp. 169-208.

Kloks, T. (1994), Treewidth: Computations and ap-
prozimations, Springer-Verlag.

Koster, A. M. C. A., Bodlaender, H. L. & van Hoesel,
S. P. M. (2001), ‘Treewidth: Computational exper-
iments’, Flectronic Notes in Discrete Mathematics
8.

Lovéasz, L. (1970), The factorization of graphs, in
‘Combinatorial Structures and their Applications’,
Gordon and Breach, pp. 243-246.

Lovédsz, L. (1972), ‘The factorization of graphs IT’,
Acta Mathematica Academiae Scientiarum Hun-
garicae 23, 223-246.

Niedermeier, R. (2006), Invitation to Fized-
Parameter Algorithms, Oxford University Press.

Quimper, C.-G., Lépez-Ortiz, A., van Beek, P. &
Golynski, A. (2004), Improved algorithms for the
global cardinality constraint, in ‘Proceedings of the
10th International Conference on Principles and
Practice of Constraint Programming (CP’04)’, Vol.
3258 of LNCS, Springer-Verlag, pp. 542-556.

Régin, J.-C. (1996), Generalized arc consistency for
global cardinality constraint, in ‘Proceedings of the
13th National Conference of the American Associ-
ation for Artificial Intelligence (AAAT96)’, AAAI
Press, pp. 209-215.

Régin, J.-C. & Gomes, C. P. (2004), The cardinality
matrix constraint, in ‘Proceedings of the 10th In-
ternational Conference on Principles and Practice
of Constraint Programming (CP’04)’, Vol. 3258 of
LNCS, Springer-Verlag, pp. 572-587.

Rossi, F., van Beek, P. & Walsh, T., eds (2006), Hand-
book of Constraint Programming, Elsevier.

Sellmann, M. (2003), Cost-based filtering for shorter
path constraints, in ‘Proceedings of the 9th In-
ternational Conference on Principles and Practice
of Constraint Programming (CP’03)’, Vol. 2833 of
LNCS, Springer-Verlag, pp. 694-708.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Parameterized Complexity of the Clique Partition Problem

Egbert Mujuni*!

Frances Rosamond?

I Department of Mathematics
University of Dar-es-Salaam
Box 35062, Dar es Salaam
Tanzania
Email: emujuni@maths.udsm.ac.tz

2 Parameterized Complexity Research Unit
University of Newcastle
Callaghan, Australia
Email: frances.rosamond@newcastle.edu.au

Abstract

The problem of deciding whether the edge-set of a
given graph can be partitioned into at most k cliques
is well known to be NP-complete. In this paper we
investigate this problem from the point of view of pa-
rameterized complexity. We show that this problem
is fixed parameter tractable if we choose the number
of cliques as parameter. In particular, we show that
in polynomial time, a kernel bounded by k2 can be
obtained, where k is the number of cliques. We also
give an O(2((k+3)10ek)/2p) algorithm for this problem
in K -free graphs.

1 Introduction

The problem of finding a minimum set that covers
or partitions the edge-set of a given graph arises in
many applications (e.g., see (15)). The problem is
defined as follows: Let G be a graph. A set § =
{G1,Ga,...,Gg}, k> 1 of subgraphs of G is called a
covering of G if E(G) = UE_| E(G;). If each element
of S is a clique, then S is called a clique cover of G. A
clique partition is a clique cover § in which each edge
belongs to exactly one member of S; that is, for two
distinct C,C” € § it follows that E(C) N E(C") = 0.
The clique partition problem asks whether a given
graph G has a clique partition of size at most k.

The clique partition problem is known to be NP-
complete in general graphs (14). The problem re-
mains NP-complete even for Ky-free graphs (16).

In this paper we investigate the parameterized
complexity of this problem using the framework de-
veloped by Downey and Fellows (5). Here we give a
quick review of parameterized complexity theory. For
a detailed discussion we refer the reader to (5) or (13).
In parameterized complexity theory, we consider the
input of an instance of a parameterized problem as
consisting of two parts; that is, a pair (I, k), where
I is the main input and k (usually an integer) is a
parameter. We say a problem of size n and parame-
ter k is fixed parameter tractable if the problem can

* The reseach has been supported by International Sci-

ence Programme (ISP) of Sweden, under the project titled
“The Eastern African Universities Mathematics Programme
(EAUMP)”.
Copyright (©2008, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Computing: The Aus-
tralasian Theory Symposium (CATS2008), Wollongong, NSW,
Australia. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 77, James Harland and Prabhu
Manyem, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

be solved in time O(f(k)n®), where f denotes a com-
putable function and ¢ denotes a constant which is
independent of the parameter k. Therefore, a param-
eterized algorithm may provide an efficient solution
to a problem whose parameter is reasonably small.

Clustering problems have wide applicability (See
for example, (2; 7; 8; 11)). The problem (EDGE)
CLIQUE COVER in general graphs is an impor-
tant NP-complete problem that has received consid-
erable attention. Clique Cover in general graphs is
hard to approximate in polynomial time and noth-
ing better than a polynomial approximation factor is
known (1). However Gramm et al. (See (9) and also
(10)) show that CLIQUE COVER is fixed-parameter
tractable with respect to the parameter k, the number
of cliques, and has a kernel of size 2*.

CLIQUE COVER

Instance : A graph G = (V, E)
Parameter :  An integer k
Question : Is there a set of at most k cliques

in G such that each edge in E
has both its endpoints in at least
one of the selected cliques?

Gramm et al. (9; 10) describe an exact algorithm
based on search tree techniques. Combining their ker-
nelization rules with a sophisticated search tree algo-
rithm, they were able to obtain an FPT algorithm for
CLIQUE COVER that can solve problem instances
on graphs of several hundred vertices efficiently.

The key difference between CLIQUE COVER
and our problem, CLIQUE PARTITION, is whether
the cliques share edges or not. Although we have
not implemented our kernelization rules, they are
polynomial-time data reduction techniques similar to
those of Gramm et al. that significantly shrink the
input, and then for the reduced instances one can use
search tree, exhaustive search or other algorithms to
efficiently find optimal solutions in reasonable time.

More formally, in this paper we study following
parameterized problem:

CLIQUE PARTITION

Instance : A graph G = (V, E)

Parameter :  An integer k

Question : Is there a set of at most & cliques

in G such that each edge in E
has both its endpoints in exactly
one of the selected cliques?

We develop a set of reduction rules that in poly-
nomial time replace a given CLIQUE PARTITION
instance (G, k) consisting of a graph G and a nonneg-
ative integer k by a “simpler” instance (G’, k") such

75



CRPIT Volume 77 - Theory of Computing 2008

76

that (G, k) has a solution iff (G, k') has a solution.
An instance to which none of the reduction rules ap-
plies is called “reduced” with respect to these rules.
A parameterized problem such as CLIQUE PARTI-
TION (the parameter is k) is said to have a problem
kernel if, after the application of the reduction rules,
the reduced instance has size f(k) for a function f
depending only on k. It is a well-known result from
parameterized complexity theory that the existence of
a problem kernel implies fixed-parameter tractability
for a parameterized problem (5; 13) and (10).

Main Results: In this paper we show that
CLIQUE PARTITION has a kernel bounded by k2,
hence it is fixed parameter tractable. We also give an
O(2((k+3)10g k)/2) algorithm for K4-free graphs.

Notations: All graphs considered in this paper
are undirected finite graphs without loops and mul-
tiple edges. Let G = (V, E) be a graph. A clique is
complete subgraph of G that is not necessarily max-
imal. The set of neighbours of a vertex v is denoted
by N(v), and we set N[v] = N(v)U{v}. For T C V,
we set N(T) := J,er N(v) . If V! C V, we denote
by G[V’] the subgraph of G induced by V'. We refer
the reader to (3) for graph theoretic terminology not
defined in this paper.

2 Kernelization

In this section we present a set of reduction rules
which leads to a problem kernel consisting of at most
k? vertices. We show that if these rules are not appli-
cable to an instance (G, k) of CLIQUE PARTITION
and G has more than k? vertices then we conclude

that G does not have a clique partition of size at most
k.

Definition 1 A kernelization for a parameterized
problem L is a transformation which maps an in-
stance (I,k) onto (I' k') (which is called a problem
kernel) such that:

1. K <k and |I'| < g(k) for some computable func-
tion g

2. The transformation from (I,k) onto (I')k') is
computable in polynomial time.

3. (I, k) is a yes-instance of L if and only if (I', k")
a yes-instance of L

The function g(k) is called the size of a kernel for
L. The following result is well known.

Lemma 2 (6) A parameterized problem is fized-
parameter tractable if and only if it has a kerneliza-
tion.

We first present simple reduction rules that can be
easily applied to simplify an instance of the CLIQUE
PARTITION problem; trivially we may assume that
k> 1.

e Rule 1: Given an instance (G, k) of CLIQUE
PARTITION and a vertex v € V(G) of degree
0, then the answer to (G, k) is yes if and only if
(G — v, k) is yes.

e Rule 2: Given an instance (G, k) of CLIQUE
PARTITION and a vertex v € V(G) of degree
1, then the answer to (G, k) is yes if and only if
(G —v,k—1) is yes.

e Rule 3: Given an instance (G, k) of CLIQUE
PARTITION and an edge e = uv € E(G) such
that N(u) NN (v) = 0, then the answer to (G, k)
is yes if and only if (G — {e},k — 1) is yes.

Clearly, the following is true.

Lemma 3 Rules 1-3 are correct and they can be exe-
cuted in O(n?) time, where n is the number of vertices
of the input graph.

Definition 4 e A clique partition S of a complete
graph G is said to be trivial S if it consists of a
single clique.

e Let G be a complete graph. Denote by p(G) the
cardinality of a minimum non-trivial clique par-
tition of G.

Lemma 5 Suppose G is a complete graph on n ver-
tices. Then p(G) = n.

Lemma 5 is just a corollary of the following result
of de Bruijn and Erdos (1948), which was stated in
terms of set theory.

Theorem 6 (4) Suppose Ai,..., A, are subsets of
the set A = {a1,...,an}, and that A; # A, 1 <
i < m. If each pair {a,,as} occurs in one and
only one A;, then m > n, and equality holds if
and only if ezther 1) Ay = {ai,... san-1}, A =
{a1,ant, ..., Ap = {an—1,an} or (2) n is of the form
n=k(k+ 1) 1 and all the A;’s have precisely k + 1
elements, and each a; occurs in exactly k + 1 of the
A;’s, 1<z<m 1<5<n.

In the terminology of graph theory, Theorem 6
says that if S is a non-trivial clique partition of the
edges of K, then |S| > n and equality holds if and
only if S consists of one clique on n — 1 vertices and
n—1 copies of K5 incident with a single vertex of K,,,
or n is of the form n = k2 + k+1 and S consists of n
copies of Kjy1, where each vertex of K, belongs to
exactly k + 1 cliques of S.

Lemma 7 Let G be a graph. Let S be a clique parti-
tion of G of size k. If G' C G is a complete subgraph
of G on more than k vertices, then there is an element
C € S such that G’ C C.

Proof: If the edges of G’ are covered by more than one
clique of S, then by Lemma 5, they must be covered
by more than k cliques. This implies in turn that
|S| > k, which is a contradition to the hypothesis.
o
With this lemma at hand, we can state the follow-
ing reduction rule.

e Rule 4: Let (G,k) be an instance of CLIQUE
PARTITION. Suppose that v is a vertex such
that |N[v]| > k and the graph G* induced by
N{v] is a clique, then the answer to (G, k) is yes
if and only if (G', k') is yes, where G' = G — v —
E(G*) and k' =k — 1.

Lemma 8 Rule 4 s correct.

Proof: First suppose that (G, k) is true. Let & =
{C1,...,Cn}, m <k, be a clique partition of G, and
let G* be as defined in Rule 4. It follows that G* i
a maximal clique. Since G* is a clique on more than
k vertices, Lemma 7 implies that there is an index 4
such that G* C C;. However, since G* is a maximal
clique, it follows that G* = C;. Therefore, S—{C;} is
a clique partition of G’ with m — 1 < k — 1 elements;
ie, (G, k) is true.

Now suppose that (G’,k — 1) is true. Then (G, k)
is true because G is the edge-disjoint union of G’ and
G*, and G* is a complete graph.

S

We say that an instance (G, k) of CLIQUE PAR-
TITION is reduced (with respect to Rules 1-4) if none
of the reduction rules can be applied.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Theorem 9 Suppose an instance (G, k) of CLIQUE
PARTITION is reduced and that it does have a solu-
tion of size at most k. Then G has at most k? vertices.

Proof: Suppose a reduced instance (G, k) of CLIQUE
PARTITION has the answer yes. Let & be a clique
partition of G of size at most k. We claim that each
element of S has at most k vertices.

Suppose to the contrary that there is a clique
C € S with more than k vertices. Since Rule 4 is
not applicable, each vertex of C' has a neighbour in
G which does not belong to C'. This implies that
each vertex of C belongs to another unique clique
in §. However, by the definition of the CLIQUE
PARTITION problem, if C, and C, are cliques in
S — {C} containing x,y € C, respectively, = # y,
then Cy # Cy. Thus |S| > k, which is a contradition.
We may now conclude that each element of S has at
most k vertices.

Note that S covers the vertices of GG, since Rule 1
is not applicable. Therefore

V(@) <Y IV(C)| <k xmax{|C|: C € §} <&
ceS

This completes the proof the theorem.
o

Remark 10 As can be seen from the proof of The-
orem 9, Rule 2 and Rule 3 have no impact there
(i.e., Theorem 9 remains true if we restrict the re-
ductions to applying Rules 1 and 4 only). However,
we included Rule 2 and Rule 3 because they may be
used to reduce the size of the input graph, and hence
speedup the computations. For example, Gramm et
al.(9) experimented with disabling one of their more
complicated and expensive rules. They found that for
larger cover sizes over 80, the rule nearly doubles the
range of instances that can be solved smoothly and is
clearly worthwhile.

As a consequence of Theorem 9, we have

Corollary 11 CLIQUE PARTITION is fized pa-
rameter tractable.

3 Algorithm

In the previous section it was shown that CLIQUE
PARTITION has a kernel of size k2. We now de-
scribe an algorithm that decides CLIQUE PARTI-
TION. The algorithm is based on bounded search
tree. We proceed as follows. Let instance (G, k)
be a reduced instance of CLIQUE PARTITION. We
choose an edge wv such that |[N(u) N N(v)| is min-
imum, and then enumerate a set S of all cliques in
the graph induced by N(u) NN (v). Branch according
to the elements of K € S by adding the clique K’
induced by {u,v} UV (K) to the clique partition, and
we set G := G — E(K'). The recursion stops as soon
as a solution is found or k cliques are generated with-
out finding a solution. This algorithm is presented
Figure 1.

We analyze the algorithm in Figure 1 as follows.
Let n and A be the number of vertices and maximum
degree of G, respectively. |N(u)NN(v)| < A. So|S| €
O(22). Thus, each non-leaf node in the searching

tree has at most O(22) children. Since the depth of
tree is bounded by k£ and we can test each leaf in
linear time, the algorithm computes the solution in
O(2%%n). Note that, since G is reduced, A < k2.

C_Partition(Graph G, Set C, Integer k)
begin
Reduce(G,k) .
if F(G) =0 Return TRUE.
else if k=0 Return FALSE.
else
choose uv € E(G) such that
[N(u) " N(v)| is minimum.
find a set § of all clique in
G[N(u)N N ().
for each K €§
K':=V(K')U{u,v}.
C':=CU{G[K"]}.
K:=k—1.
H:=G- E(K').
if C_Partition (H, C', k')
Return TRUE.
end for
Return FALSE.
end.

Figure 1: Algorithm for CLIQUE PARTITION in
general graphs.

4 K4-Free Graphs

As mentioned in the introduction, the classical de-
cision version of the CLIQUE PARTITION problem
remains NP-hard even for Ky-free graphs (16). We
now present a fixed-parameter algorithm for CLIQUE
PARTITION in this class of graphs. First note that
any non-trivial clique in this class of graphs must be
K5 or K3.

Observation 12 Let (G,k) be an instance of
CLIQUE PARTITION, where G is K4-free. If G con-
tains an edge wv such that [N(u) NN (v)| > EEL then
G does not have a clique partition of G of size at most

k.

Theorem 13 Let G be a Ky-free graph.  Then
the CLIQUE PARTITION problem can be solved in
O(2((k+3)log k)/2)) time, where n is the number of
vertices of G.

Proof: We construct a bounded search tree T of height
k and each node of T" has at most k41 children. Each
node is associated with a set C of edge-disjoint cliques,
a subgraph H = G — Jgee E(C) and k' = k — [C],
where C is a partial clique cover constructed at each
step of the algorithm. For the root, we have H := G,
C:=0and k' := k.

We recursively proceed as follows: At a node i, we
choose an edge uv € E(H). If |[Ny(u) N Ng(v)| >
k' +1

“==, we stop searching in this branch as we know H

does not have a clique partition of size at most k’,
by Observation 12. Otherwise, we create a child for
uv and one child for each vertex w € Ny (u) N Ny (v).

Thus, this node has at most Kl 41 = K43 children.

Repeat this expansion for each child node, using
the depth-searching strategy. Note that since we add
one clique to the partial solution C at each expansion,
the size of C at level [ is also [. The recursion stops as
soon as a solution is found or k cliques are generated
without finding a solution. 7 has at most k(F+3)/2 =

2(k+3)log k/2 nodes. At each node we need O(n) time
to compute the set N(u) N N(v). Hence, the total

77



CRPIT Volume 77 - Theory of Computing 2008

running time is O(2((k+3)1ogk)/2p),
o
Proof of the above theorem yields a fixed parame-
ter algorithm for the CLIQUE PARTITION problem
in the class of K4-free graphs. The algorithm is given
in Figure 2.

C_Partition(K,-free (G, Set C, Integer k)
begin
if E(G) — E(C) =0 Return TRUE.
else if k=0 Return FALSE.
else
choose an edge wv € E(G)
if [N(u)NN(v)| > &L
Return FALSE.

else
C'=CU{{u,v}}.
Ki=k—-1.
H:=G - {w}.

if Clique_Partition (H, C', k')
Return TRUE.
else
for each w € N(u)N N(v)
C':=CU {{u,v,w}}.
ki=k-1.
H =G — {uw,uw,vw}.
if C_Partition (H, C', k')
Return TRUE.
end for
Return FALSE.
end.

Figure 2: Algorithm for CLIQUE PARTITION in K-
free graphs.

5 Concluding Remarks

We have obtained the first fixed-parameter tractabil-
ity result for the clique partition problem, when
the number of cliques is the parameter. It would
be interesting to improve our algorithm for clique
partition. The parameterized complexity hierarchy:

P C Lin(k) C Poly(k) C FPT C W[1]...

leads to the natural question of whether CLIQUE
PARTITION is in Lin(k), or to show that a kernel
of linear size in k is not possible. It is interesting that
k-CLIQUE COVER is probably not in Poly(k) even
though it is in FPT.

Acknowledgments

We are gratefully acknowledge the assistance of Mike
Fellows, who originally suggested the problem and
provided valuable discussions. We thank Hebert
Fleischner for stimulating discussions and providing
various references. This paper was done while the
first author was enjoying the hospitality of the Vienna
Technical University, Austria, which is gratefully ac-
knowledged.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann,
A. Marchetti-Spaccamela, and M. Protasi. Com-
plexity and Approximation: Combinatorial Op-

78

timization Problems and Their Approximability
Properties. Springer, 1999.

[2] M. Benson, L. Carlsson, G. Guillot, M. Jernis,
M. A. Langston, M. Rudemo, and B. Andersson.
A network-based analysis of allergen-challenged
CD4+ T cells from patients with allergic rhinitis.
Genes and Immunity 7 (2006) 514-521.

[3] G. Chartrand and L. Lesniak. Graphs € Digraphs.
Chapmand&:Hall, third edition, 1991.

[4] N.G. de Bruijn and P. Erdos. On a combinatorial
problem. Indag. Math. 10, pages 421-423, 1948.

[5] R. Downey and M. Fellows. Parameterized Com-
plexity. Springer-Verlag, 1999.

[6] R. Downey, M. Fellows, and U. Stege. Param-
eterized complexity: A framework for system-
atically confronting computational intractability.
AMS-DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, 49, pages 49—
99, 1999.

[7] J.D. Eblen, I.C. Gerling, A.M. Saxton, J. Wu,
J.R. Snoddy, and M.A. Langston. Graph Algo-
rithms for Integrated Biological Analysis, with
Applications to Type 1 Diabetes Data. Clustering
Challenges in Biological Networks, W. A. Chao-
valitwongse, ed., World Scientific (2007).

[8] M.R. Fellows, M.A. Langston, F.A. Rosamond
and P. Shaw. Efficient parameterized preprocess-
ing for cluster editing. Proc. FCT 2007, Springer
Verlag, Lecture Notes in Computer Science 4598
(2007) 312-321.

[9] J. Gramm, J. Guo, F. Hiiffner, and R. Nieder-
meier. Data reduction, exact, and heuristic algo-
rithms for Clique Cover. Proc. 8th ACM-SIAM
ALENEX, ACM-SIAM (2006) 86-94. Long ver-
sion to appear in The ACM Journal of Experi-
mental Algorithmics.

[10] J. Guo and R. Niedermeier. Guest column: Invi-
tation to data reduction and kernelization. ACM
SIGACT NEWS 38 (March 2007) 31-45.

[11] M.A. Langston, A.D. Perkins, D.J. Beare,
R.W. Gauldie, P.J. Kershaw, J.B. Reid, K. Win-
penny, and A.J. Kenny. Combinatorial Algo-
rithms and High Performance Implementations
for Elucidating Complex Ecosystem Relationships
from North Sea Historical Data. Proceedings of the
International Council for the Exploration of the
Sea Annual Science Conference (2006).

[12] W. Moon and L. Moser. On cliques in graphs.
Israel. J. Math. 3, pages 23-28, 1965.

[13] R. Niedermeier. Invitation to Fized-Parameter
Algorithms. Oxford Lecture Series in Mathemat-
ics and Its Applications. Oxford University Press,
2006.

[14] J. Orlin. Contentment in graph theory : Cover-
ing graphs with cliques. Indagationes Math. 39,
pages 406-424, 1977.

[15] F.S. Roberts. Applications of edge coverings by
cliques. Discrete Appl. Math. 10, pages 93-109,
1985.

[16] Ma Shaohan, W.D. Wallis, and Wu Ju Lin.
The complexity of the clique partition number
problem. Nineteenth Southeastern Conference on
Combinatorics, Graph Theory, and Computing
(Baton Rouge, LA, 1988). Congr. Numer. 67,
pages 59-66, 1988.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

The Parameterized Complexity of Regular Subgraph Problems and
Generalizations

Luke Mathieson!

Stefan Szeider!

IDepartment of Computer Science
University of Durham
South Road
Durham
DH1 3LE, UK

Email: {luke.mathieson,stefan.szeider}@durham.ac.uk

Abstract

We study variants and generalizations of the problem
of finding an r-regular subgraph (where r > 3) in a
given graph by deleting at most k vertices. Moser
and Thilikos (2006) have shown that the problem
is fixed-parameter tractable (FPT) if parameterized
by (k,r). They asked whether the problem remains
fixed-parameter tractable if parameterized by k alone.
We answer this question negatively: we show that if
parameterized by k alone the problem is W{l]-hard
and therefore very unlikely fixed-parameter tractable.
We also give W[1]-hardness results for variants of the
problem where the parameter is the number of vertex
and edge deletions allowed, and for a new generalized
form of the problem where the obtained subgraph is
not necessarily regular but its vertices have certain
prescribed degrees. Following this we demonstrate
fixed-parameter tractability for the considered prob-
lems if the parameter includes the regularity r or an
upper bound on the prescribed degrees in the gener-
alized form of the problem. These FPT results are
obtained via kernelization, so also provide a practical
approach to the problems presented.

Keywords: Parameterized Complexity, Regular Sub-
graphs

1 Introduction

The problem of deciding whether a graph contains
a non-trivial (i.e., degree at least three) regular sub-
graph has a long history in the field of complexity the-
ory. Chvatal et al. (1979) give an NP-completeness
result for the CUBIC SUBGRAPH problem (i.e., the
problem of deciding whether a given graph has a 3-
regular subgraph). Plesnik (1984) shows that the Cu-
BIC SUBGRAPH problem remains NP-complete even
when restricted to a planar bipartite graph with max-
imum degree 4, and that the r-REGULAR SUBGRAPH
problem with r > 3 is NP-complete even for bipartite
graphs of degree at most 7 + 1. Cheah and Corneil
(1990) extend this and show that the same result
holds for general graphs. Stewart (1994, 1996, 1997)
gives a series of results for further constraints.

From a parameterized complexity perspective (see
Section 4 for a basic introduction) there are a few
natural parameterizations, by either the size of the
subgraph, by the number of vertices or edges to re-
move to obtain a regular subgraph, or by the regu-

Copyright (©2008, Australian Computer Society, Inc. This
paper appeared at the Computing: The Australasian The-
ory Symposium (CATS 2008), University of Wollongong, New
South Wales, Australia. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 77, James Harland
and Prabhu Manyem, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

larity desired. Moser and Thilikos (2006) show that
the problem of finding an r-regular induced subgraph
on k vertices, parameterized by k is Wl1]-hard. They
also show that the VERTEX DELETION TO REGU-
LAR SUBGRAPH problem (which they call k-ALMOST
r-REGULAR GRAPH) where the goal is to delete at
most k vertices leaving an r-regular graph, is fixed-
parameter tractable when parameterized by (k,r),
with a problem kernel with O(kr(r + k)?) vertices.
Stewart (2007) points out how the fixed-parameter
tractability of VERTEX DELETION TO REGULAR
SUBGRAPH parameterized by (k,r) can be established
by means of general logical methods. They also state
that the complexity of VERTEX DELETION TO REG-
ULAR SUBGRAPH parameterized by k alone is an open
problem.

In this paper we answer Moser and Thilikos’s ques-
tion, showing that VERTEX DELETION TO REGULAR
SUBGRAPH is W(l]-hard. We also explore several
other variations of the problem, resulting in further
hardness and tractability results.

The problems that we cover in this paper come
in a few basic forms, centred around two general
themes, whether the problem is parameterized by the
number of deletion operations (deletion operations
are explained in Section 2.2), k, or the number of
deletion operations and the regularity of the graph,
(k,r). This results in the following basic definition:

DELETION TO REGULAR SUBGRAPH

Instance: A graph G = (V,E), two nonnegative
integers k and r.

Question: Is there an r-regular subgraph of G
obtainable by at most k deletions?

It is interesting to alter what deletion operations
are available. If we restrict the operations to vertex
deletion only, then we have VERTEX DELETION TO
REGULAR SUBGRAPH.

We can also further impose that we require ezactly
k operations be performed, giving EXACT DELETION
TO REGULAR SUBGRAPH.

It is also of interest to generalize both the desired
degree and the cost of a deletion. To this end instead
of aiming to have each remaining vertex be of degree
r we introduce a degree function 6. The contribution
of each edge to this total, and the cost of deleting an
edge or vertex is described by a weight function p.
This results in the following generalization:

WEIGHTED DELETION TO CHOSEN DEGREE SUB-
GRAPH

Instance: A graph G = (V, E), nonnegative integers
k and r, a weight function p : VU E — NT and a
degree function § : V. — {0,...,r}.

Question: Is there a subgraph H of G obtainable
by deletions of total cost at most k& where for each

79



CRPIT Volume 77 - Theory of Computing 2008

80

vertex v in VI(H), 3 cp(,) p(€) = 6(v)?

Of course we may also demand here that the cost
be exact as well.

In this paper we show that in all examined cases
parameterization by k alone gives W/[1]-hardness,
but parameterization by (k,r) gives fixed-parameter
tractability. In fact if » = 0 the problem is equiva-
lent to VERTEX COVER, and is thus fixed-parameter
tractable. We also give several hardness results for
other problems that prove useful in completion of
the result. Hardness is shown by reduction from
MurLTI-COLOURED CLIQUE, a very useful problem,
introduced by Fellows et al. (2007). Fixed param-
eter tractability is shown via kernelization. This is
a particularly useful technique as it provides a poly-
nomial time preprocessing algorithm (in the form of
polynomial time reduction rules). This leaves a prob-
lem kernel which may then be solved by any chosen
means, whether that be an exact method, approxi-
mation algorithm, or heuristic such as a genetic algo-
rithm or simulated annealing. For a fuller treatment
of kernelization in the context of parameterized com-
plexity and preprocessing see the survey of Guo and
Niedermeier (2007).

2 Preliminaries

2.1 Graph Theory and Notation

Throughout this paper we will refer only to simple,
undirected graphs. Given a graph G the vertex (edge)
set of G will be denoted V(G) (E(G)) except specific
labels are given. The edge between two vertices v and
v will be denoted uv (or equivalently vu). The degree
of a vertex u will be denoted d(u).

As this paper focuses on graph modification prob-
lems, we also define the following operation for a
graph G and a set S of vertices: G—S = G[V(G)\ 5],
where G[X] is the subgraph of G induced by vertex
set X.

2.2 Graph Modification

There are two basic operations to modify a graph to
obtain a subgraph, vertex deletion and edge deletion.
These operations alter a graph G = (V, E) into a new
graph G' = (V') E’). Deleting an edge uwv simply
removes that edge from the graph (ie., B/ = E\
{uv}). Deleting a vertex u removes that vertex, and
any incident edges (i.e., V' = V \ {u}, B/ = E\
{wv|veV}).

In this paper we also use weighted versions of these
operations, which are defined in the natural fashion.
Given a weighted edge or vertex, the cost of deletion
is simply that weight. Note particularly that when
a vertex is deleted the cost is simply the weight of
the vertex alone, not the weight of the vertex plus
the weights of the incident edges, even though they
are also removed (this is completely equivalent to the
normal definition for unweighted graphs, where the
cost of deleting a vertex is one operation, regardless
of any incident edges).

2.3 Some Parameterized Complexity Theory

Here we will briefly introduce some relevant, key
concepts of parameterized complexity. For a more
in-depth introduction and study see the books of
Downey & Fellows (1997), Flum & Grohe (2006) and
Niedermeier (2006). For the sake of clarity any prob-
lem is understood to be a decision problem unless ex-
plicitly stated otherwise (and the parameterized com-

plexity classes that are referenced are defined for de-
cision problems).

Traditionally problems have been analyzed in one
dimension, that of the size n of the input. The dif-
ficulty of solution of a problem with respect to this
measure forms the fundamental basis of traditional
complexity theory, and in particular the classes P and
NP. Parameterized complexity adds a second mea-
sure, that of a parameter k, which is given as a spe-
cial part of the input. Then, analogously to the def-
initions of P and NP, a series of complexity classes
are defined with respect to their apparent difficulty
of solution with respect to this two-dimensional mea-
sure. If a problem has an algorithm that runs in time
O(f(k)p(n)), where p is a polynomial and f is any
computable function of k, then the problem is fized-
parameter tractable, or in the class FPT. Naturally
there are problems that are suspected not to be in
FPT. These problems are members of various param-
eterized complexity classes, most commonly W t] for
some fixed ¢ > 1. Hardness (or completeness) in re-
gards to such a class gives an analogous intuition to
a problem being NP-hard in the classical structure.
That is, it is not likely to be in FPT (i.e., not likely
to have an algorithm that runs in time O(f(k)p(n))
as above).

Supporting this theory are many techniques for
proof either of membership of FPT or of W[t]-
hardness. Here we give a brief introduction to those
techniques salient to this paper.

FPT Reductions

An FPT reduction is the parameterized complexity
equivalent of a P-time many-one reduction in classi-
cal complexity theory. It is the primary method of
demonstrating that two problems are of equivalent
complexity, and that a particular problem is Wt]-
hard. Given two parameterized problems II; and Ils,
an FPT reduction II; <gppr Il; is a mapping from
IT; to I that maps an instance (I, k) of II; to an
instance (I, k') of II; such that

1. k¥ = h(k) for some computable function h,

2. (I,k)is a YEs-instance of IT; if and only if (I, k')
is a YEs-instance of II5 and

3. the mapping can be computed in time
O(f(k)p(|I])), where f is some computable
function of the parameter k alone and p is a
polynomial.

Then if II5 is in FPT, II; is also in FPT and if II; is
W t]-hard, II5 is also W[t]-hard. If two such mappings
exist, one from II; to IIy and another from Iy to Ily,
then the two problems are equivalent (with respect to
FPT reductions) .

The classes Wt], t = 1,2,..., are defined as equiv-
alence classes of certain parameterized problems un-
der FPT reductions. The classes form the chain FPT
C WIJ1] € WJ2] C ..., where all inclusions are be-
lieved to be strict.

Reduction Rules and Kernelization

One of the key techniques of parameterized complex-
ity is that of reduction to problem kernel (kerneliza-
tion). A problem is kernelizable if and only if given
an instance (I, k) of the problem, where I is the (clas-
sical) input and k is the parameter, it is possible to
produce in polynomial time an instance (I’, k') where
|I'| < g(k') and k' = h(k) for computable functions
g and h, and (I,k) is a YES-instance if and only if
(I' k') is a YEs-instance. It can be shown that if a



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

problem is kernelizable in this sense, then it is fixed-
parameter tractable (and vice versa). Kernelization
is normally accomplished by the application of reduc-
tion rules to the instance. Estivill-Castro et al. (2005)
give a recent example of the application of kerneliza-
tion, along with more explanation of the theory.

2.4 A Useful Construction: The Fixing Gad-
get

Throughout the paper it will be useful to have a gad-
get that allows us to regularize any given graph. The
following construction produces an almost r-regular
graph, where all vertices have degree r except two
with degree » — 1. The first part of the construction
consists of a vertex ¢, aset L = {ly,...,1,} of vertices,
r edges cl;, r further vertices M = {m4,...,m,}, and
edges such that each vertex m; € M has an edge to
each vertex I; € L except when i = j. Then c has
degree 7, as does each vertex in L. FEach vertex in
M has degree r — 1. Let C' be the graph constructed
so far, we then make a copy C’, and add an edge be-
tween each vertex in M C V(C) to its corresponding
vertex in M’ C V(C’), except between for m, and
m... Thus each vertex now has degree r, except m,.
and m!., which have degree » — 1, and will be used
as attachment points. We will refer to an instance of
this construction as a fizing gadget. See Figure 1 for
an example.

Note that it is also possible to use the following as
an alternative in some cases: Take the complete graph
K,1 on r+1 vertices (so all vertices have degree r),
then compute a matching (of size at most (r +1)/2).
Each edge of the matching can then be broken as
needed to provide two edges to join the clique to the
rest of the graph. This second construction cannot be
used in the hardness proofs however, as it introduces
(non-trivial) cliques into the graph.

Figure 1: Fixing gadget for r = 3.

3 Hardness Results

The reduction for our hardness results will be
from the STRONGLY REGULAR MULTI-COLOURED
CLIQUE problem, a variant of the MULTI-COLOURED
CLIQUE problem which was shown to be W/[l]-hard
by Fellows et al. (2007). The problem is defined as
follows:

MuLTI-COLOURED CLIQUE

Instance: A graph G = (V, E), vertex-coloured with
k colours.

Parameter: k.

Question: Does G contain a properly coloured
k-clique?

This problem may be alternately defined with the
original graph being properly vertex-coloured, with-
out changing its complexity. The STRONGLY REG-
ULAR MULTI-COLOURED CLIQUE problem is defined
similarly, but with each vertex in the input graph hav-
ing degree d to each colour class (so each vertex has
degree kd), where d is an arbitrary integer.

Recall that the CLIQUE problem asks if a given
graph has a k-clique. CLIQUE is W{1]-complete when
parameterized by k. We then define the following
special case of CLIQUE:

REGULAR CLIQUE

Instance: A regular graph G = (V, E), an integer k.
Parameter: k.

Question: Does G contain a k-clique?

Before we proceed to the main result, we need first
to prove some preliminary lemmas.

Lemma 3.1. REGULAR CLIQUE is W([1]-complete.

Proof. Membership in W/[1] follows immediately as
the problem is a special case of CLIQUE. To prove
hardness we reduce from CLIQUE. Let (G, k) be an
instance of CLIQUE. We construct an instance (G', k)
of REGULAR CLIQUE by first taking G and modify-
ing it. Let A be the maximum degree of G, then
choose 1 to be A if A is even, or A+ 1 otherwise (i.e.,
r = A+ (A mod 2)). We will now demonstrate how
to make the graph r-regular. We can now use the
fixing gadget construction presented in Section 2.4
to increase the degree of each vertex as necessary by
attaching as many fixing gadgets as necessary by the
two attachment vertices. This attachment is made be-
tween a vertex v and an instance of the fixing gadget
by adding the edges between each attachment vertex
and v (or perhaps only one of these edges, as below).
If the degree of the vertex is initially even, then this
is an integral number of fixing gadgets. In the case
where the degree of the vertex is initially odd, the
vertex will reach degree » — 1 by this method, and we
will have to take another degree r — 1 vertex and at-
tach one fixing gadget attachment vertex to the first,
and the other attachment vertex to the second. Note
that there is an even number of vertices of odd de-
gree in G (and G’ initially, an immediate corollary
of the basic theorem ) _, d(v) = 2|E|), and thus
there is an even number of vertices requiring an odd
increase of degree (i.e., where r — d(v) is odd), as we
have chosen 7 to be even. Thus there is always some
pairing of such vertices as necessary. Let G’ denote
the constructed graph.

Now if there were a k-clique in G, there will cer-
tainly be a clique in G’ on k vertices, since G is an
induced subgraph of G’. Further note that the fix-
ing gadgets added to create G’ contain no cliques,
and can introduce no non-trivial cliques (as the two
attachment vertices in a fixing gadget are not adja-
cent), thus if there is a clique on k' vertices in G,
it must be contained within the vertices that corre-
spond to the vertices of GG, thus G has a k-clique.
Clearly the construction of the new instance can be
done in polynomial time (and thus is a polynomial-

time reduction, and subsequently an FPT reduction).
a

Lemma 3.2. STRONGLY REGULAR MULTI-

COLOURED CLIQUE is W{1]-complete.

Proof. Again W[1] membership follows as the prob-
lem is a special case of CLIQUE.

It is useful to sketch the reduction from CLIQUE
to MULTI-COLOURED CLIQUEas given by Fellows et
al. (2007). Given an instance (G,k) of CLIQUE,
construct an instance of MULTI-COLOURED CLIQUE
(G, k') by taking k vertex disjoint copies Gy, ...,Gk
of GG, assigning each G; a different colour. Then for
every pair of vertices u,v in G, if uv is an edge, add
the edges u;v;, for all 4,7, where a; is the vertex in
G; corresponding to vertex a in G. Let &' = k. Then
if there were a k-clique in the original instance, there

81



CRPIT Volume 77 - Theory of Computing 2008

82

will be a properly coloured clique in the new instance,
and vice versa.

We may use the same construction to reduce
REGULAR CLIQUE to STRONGLY REGULAR MULTI-
CoOLOURED CLIQUE. The result follows immediately.
O

Theorem 3.3. VERTEX DELETION TO REGULAR
SUBGRAPH and DELETION TO REGULAR SUBGRAPH
are W([1]-hard for parameter k.

Proof. Consider an instance (G, k), with G = (V, E),
of STRONGLY REGULAR MULTI-COLOURED CLIQUE.
Note that G is kd-regular and each vertex has exactly
d neighbours in each colour class. We denote the set
of vertices of colour i by V; (1 < i < k). Then V =

Ule Vi forms a partition of V. Observe also that
each colour class is of the same size, denote this size
as s (e, |Vi| =sforall 1 <i<k).

We construct an instance (G',k'), with G' =
(V',E’), of DELETION TO REGULAR SUBGRAPH by
first defining k sets V/ (1 < ¢ < k) such that for each
vertex v € V; we add a vertex v’ to V;. We add all
possible edges between pairs of vertices in the same
set V/. We will call each of these subgraphs a colour
class gadget or class gadget for short.

For each edge uv in G where u € V; and v € V}
with ¢ # j, we add to G’ two vertices u!, and v/,
with the edges u'ul,, ul, v}, and v),v’. For each pair

V! and V] (where i # j) of class gadgets, denote

t}Lle set of these new vertices and edges as F;;. We
denote by PZJ the set of all vertices u,, € P;; where
u’ € V. Furthermore, for each pair of vertices u, and
), in the same P;; we add the edge u,ul, to P}; if u
and v’ belong to the same class gadget and u # u'.
We call each such P;; a connection gadget, and each

PZ’] a side of the connection gadget. There are (g)
connection gadgets in total. Figure 2 gives a sketch

of the structure of a connection gadget.

Figure 2: A sketch of illustrating the arrangement of
the connection gadgets.

At this point we have k gadgets corresponding to
the k colour classes in the original graph, each with s
vertices of degree (s — 1) +d(k — 1), and (’2“) gadgets
corresponding to the “inter-colour-class” edges, each
with 2sd vertices of degree 2 + (s — 1)d (sd vertices
in each half). Now we choose r for the instance such
that » > max((s — 1) + d(k — 1),2 + (s — 1)d), and
r = s+ 1 modulo 2 (i.e., r is of opposite parity to s).
In particular we may choose the smallest r such that
this is true.

Now we add for each class gadget V; a gadget V;”
that contains r+1 — ((s — 1) +d(k — 1)) vertices with
s edges per vertex, such that each vertex in V/ is
adjacent to every vertex in the class gadget V/. We
refer to V' as a degree gadget. We then add a further
set of fixing gadgets as before to complete the degree
of each vertex in the degree gadget to r + 1. Note

that by choosing r to have opposite parity to s, we
guarantee that this is possible (if s is odd, r will be
even and each vertex will require r 4+ 1 — s additional
edges, which is even, and thus achievable; if s is even,
r will be odd, then r+ 1 — s is again even, and we can
complete the construction). Thus each vertex in each
class gadget and degree gadget has degree one too
many, but the fixing gadgets attached to each degree
gadget have the correct degree.

We similarly adjust the connection gadgets by
adding two degree gadgets, each with r+1—24(s—1)d
vertices, one for each side of the connection gadget.
Every vertex in the degree gadget is connected to ev-
ery vertex in its associated side of the connection gad-
get. Again we complete the degree of vertices in the
degree gadgets to r + 1 by adding fixing gadgets, and
as before, by the choice of r we can guarantee that
this can be done (if s is even, r is odd and r + 1 — sd
is even, if s is odd, r is even and r + 1 — sd is even).
Thus each vertex in the connection gadgets has de-
gree r + 1, as does each vertex in the degree gadgets.
Each vertex in each fixing gadget has degree 7.

Now we set k' = k + 2(’;)
Claim 3.1. 'The following statements are equivalent:

1. (G, k) is a YEs-instance of STRONGLY REGULAR
MuLTtI-COLOURED CLIQUE.

2. (G’',K') is a YEs-instance of VERTEX DELETION
TO REGULAR SUBGRAPH.

3. (G, k) is a YEs-instance of DELETION TO REG-
ULAR SUBGRAPH.

(1 = 2) Assume that (G,k) is a YEs-instance
of STRONGLY REGULAR MULTI-COLOURED CLIQUE.
Then there exist k vertices vy, ..., v, one from each
colour class, that form a properly coloured clique. As-
sume without loss of generality that v; € V;. Then we
can delete from G’ the corresponding vertices v; from
V{, and the pairs of vertices (vf), and (v}),; from
P;; that correspond to the edges in the clique. Then
each remaining vertex in each class gadget has had
precisely one incident edge removed from it, as have
the vertices in each degree gadget associated with the
class gadget. So the components corresponding to
the colour classes and their immediate extension are
now r-regular. Similarly each vertex in every connec-
tion gadget and their associated connetion gadgets
has had exactly one incident edge removed, either by
the vertex removed from the connection gadget, or
from the parent vertex in the class gadget (but never
both). Now each vertex in these gadgets has degree
precisely r. We have chosen one vertex from each
V/, and two vertices from each P;;, giving a total of
E =Fk+ 2(];) vertices, thus (G, k') is also a YEs-
instance of VERTEX DELETION TO REGULAR SUB-
GRAPH.

(2 = 3) Assume that (G’, k') is a YES-instance of
VERTEX DELETION TO REGULAR SUBGRAPH. Then
clearly it is also a YES-instance of DELETION TO
REGULAR SUBGRAPH.

(3 = 1) Assume that (G',k’) is a YES-instance
of DELETION TO REGULAR SUBGRAPH. Then there
are k+2(%) deletions that can be made to make G’ -
regular. Obviously we cannot delete any vertices from
the fixing gadgets in the graph. Further we cannot
delete any vertices from the degree gadgets, as this
would reduce the degree of their attached fixing gad-
gets. Thus the deleted vertices must come from class
and connection gadgets. Again there must be pre-
cisely one vertex from each such component, if there
is less than one in such a component, the degree of
at least some of the vertices in that component will



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

remain r + 1, if there are more than one, the degree
of some vertices in the component will drop below r.
Also note that for each vertex u, deleted from one side
of a connection gadget, the vertex deleted in the other
side must be the vertex v,. If it were not, then at least
one vertex in each side would have degree r —1. Also,
the vertex deleted from each side of each connection
gadget must be attached to the vertex deleted from
the adjacent class gadget, otherwise the vertices at-
tached to vertices deleted from the class gadget will
have degree at most » — 1. Thus we can see that
if (G', k') is a YES-instance, the set of vertices to be
deleted is very precise and restricted. In fact, if we are
to use only the allotted budget of k + 2(’;), we must
choose precisely one vertex from each class gadget,
and two vertices from each connection gadget, where
the vertices from the connection gadget component
are connected to the vertices deleted from the two
class gadgets it is associated with. Similarly, assume
that some edge deletion is used, but then each edge
deletion can only reduce the degree of two vertices,
leaving us with too many edges to delete, or vertices
of degree less than . So clearly the only operation
that can be used in this case is vertex deletion. Thus
we may more precisely claim that if (G, k) is a YES-
instance for DELETION TO REGULAR SUBGRAPH, it
must be via vertex deletion alone. Thus it is clear
that if (G', k') is a YEs-instance for DELETION TO
REGULAR SUBGRAPH, then (G,k) must be a YES-
instance of STRONGLY REGULAR MULTI-COLOURED
CLIQUE. The solution for (G, k) is the set of vertices
{v1,...,v;}, one from each colour class, correspond-
ing to the k vertices chosen from the class gadgets.

The edges of the clique correspond to the 2(];) ver-
tices chosen from the connection gadgets.

We can construct G’ from G in polynomial time, as
we are adding only (47 +3)(2r+2s—s—sd—dk+1)
vertices, where r,s,d < n, thus it is also an FPT
reduction, and we have the desired result. O

We also note that the above proof suffices if we
also include the operation of edge addition, giving
the following:

Corollary 3.4. EDIT TO REGULAR SUBGRAPH pa-

rameterized by the number of edit operations k is
W(1]-hard.

We may also consider the similar problem of find-
ing a regular subgraph of an unknown regularity (i.e.,
when r is not given):

Corollary 3.5. DELETION TO SOME REGULAR
SUBGRAPH parameterized by the number of edit op-
erations k is W[1]-hard.

Proof. Given an instance (G, k) of DELETION TO
REGULAR SUBGRAPH, we construct an instance
(G', k) of DELETION TO SOME REGULAR SUBGRAPH
as follows:

We simply add one r-regular connected compo-
nent with more than k vertices. This can be done
by taking, for example, k fixing gadgets and con-
necting them in a ring. We clearly cannot alter this
component within the budget, thus the only possi-
ble solution is the same as that for (G,k). Thus
if (G, k) is a YEs-instance of DELETION TO SOME
REGULAR SUBGRAPH, (G, k) must be a YES instance
of DELETION TO REGULAR SUBGRAPH. Naturally if
(G, k) is a YEs-instance of DELETION TO REGULAR
SUBGRAPH, the same solution will result in a regu-
lar graph in (G',k), so (G',k) is a YES-instance of
DELETION TO SOME REGULAR SUBGRAPH. ]

Of course the same proof again suffices for the edit
version of the problem.
We also obtain the following result.

Corollary 3.6. WEIGHTED DELETION TO CHOSEN
DEGREE SUBGRAPH parameterized by the number k
of edit operations is W [1]-hard.

Proof. Clearly DELETION TO REGULAR SUBGRAPH,
is a restriction of WEIGHTED DELETION TO CHOSEN
DEGREE SUBGRAPH, with p(e) = 1, p(v) = 1 and
0(v) = r for each edge e and vertex v. O

Once again we may make a similar claim for the
edit version of the problem, WEIGHTED EDIT TO
CHOSEN DEGREE SUBGRAPH.

4 Fixed Parameter Tractability

Moser and Thilikos (2006) give several tractability
results for regular induced subgraph problems, and
in doing so contribute several significant and natural
ideas that are of use in the more general setting of this
paper. Several of the reduction rules that we develop
have direct analogs in their paper, and in particular
we use their notion of a “clean region”. We however
exploit the structure available more fully, using an-
notation. In this case annotation proves a powerful
tool for generalizing, and thus simplifying the prob-
lem. We are thus able to get more general results that
include their results as special cases. In particular we
avoid the complex clean region replacement that they
undertake as the annotation allows a simpler repre-
sentative replacement. Abu-Khzam & Fernau (2006)
give a further examination of annotation with respect
to kernelization.

4.1 Definitions

First we will define various terms that allow a more
elegant treatment of the result.

Given a graph G, a function § : V. — {0,...,r}
and a function p : VUE — NT. We say a vertexv € V
is clean if 3 ¢ g,y p(€) = 6(v). Then a clean region is

a set of clean vertices that form a connected subgraph.
Note that not all edges incident on the vertices of the
clean region need have both endpoints in the clean
region. We can greedily calculate the collection of
maximal clean regions in a graph in polynomial time.
Note that these maximal clean regions are disjoint. In
general when we refer to a clean region, we will mean
a maximal clean region, though strictly the results
are unaffected.

A clean region is independent if there are no edges
from the clean region to any vertex outside the clean
region.

Given a clean region C we call the set of vertices
not in C' adjacent to a vertex in C' as the boundary of

It is also notationally convenient to define the de-
gree of a vertex v restricted to a set X of vertices as
dx (v). So dx(v) is the number of neighbours of v that
are in the set X, and we extend this notation to sets of
vertices, for example the degree of a boundary B re-
stricted to its clean region C'is do(B) = ), g dc(b).

It is also useful to define a weighted degree func-
tion d” : V — N7 such that for each vertex v,
d?(v) = X cep(nP(e). As above we denote the

weighted degree of a vertex v restricted to a set of
vertices X as d5 (v) and extend it as before to sets.

83



CRPIT Volume 77 - Theory of Computing 2008

84

4.2 Weighted Deletion to Chosen Degree
Subgraph

In this section we consider the WEIGHTED DELE-
TION TO CHOSEN DEGREE SUBGRAPH problem as
defined earlier, but parameterized by both the num-
ber of deletions k£ and the maximum desired degree 7.

4.2.1 Reduction Rules

Let (G, (k,r)), with G = (V, E), be an instance of
WEIGHTED DELETION TO CHOSEN DEGREE SUB-
GRAPH. The following reduction rules produce
from (G, (k,r)) an equivalent instance (G’, (k',r")) of
DELETION TO CHOSEN DEGREE SUBGRAPH. For all
reduction rules r’ = r.

Reduction Rule 1: If there exists a vertex v € V with
d*(v) < 6(v), then G' = G — {v}, ¥ =k — p(v).

Reduction Rule 2: If there exists a vertex v € V with
d(v) > k+r, then G’ = G —{v}, ¥ =k — p(v).

Reduction Rule 3: If there exists an independent
clean region C CV, then G' =G - C, k' = k.

Reduction Rule 4: If there exists a clean region C
with a vertex b in its boundary where df.(b) > §(b),

then G' =G~ C, K =k -3 ccp(v).
This also gives an algorithmically useful corollary.

Corollary 4.1. If there exists a clean region C with
a vertex b in its boundary such that d7,(b) > 6(b) and

> vec P(V) >k, then (G, (k,r)) is a No-instance.

Reduction Rule 5: If there exists a clean region C'
with boundary B such that )  _~p(v) > k and

for each boundary vertex b we have df.(b) < 4(b),
then for each b € B, set p(b) = k + 1 and set
5(b) =6(b) — dp(b), and G' =G - C, k' = k.

Reduction Rule 6: If there exists a clean region C,
with boundary B such that Reduction Rules 4 and
5 do not apply, (i.e., there are no boundary vertices
with excessive weighted degree into the clean region,
and the weight of the clean region is not larger than
k), then modify the instance as follows:

1. Add a new vertex v such that p(v) = > .- p(c),
and §(v) = d(C).

2. For each boundary vertex b € B, add an edge bv
such that p(bv) = df,(b).

3. Delete C.
4. Set k' = k.

Note that the vertex v added in Reduction Rule 6
is a special vertex in that we allow it to have p(v) > 7.
This does not affect the existence of a solution, and if
desired, a less elegant, alternate reduction rule can be
substituted where the region is replaced by a series of
vertices each with p at most r. In the kernelization
this increases the size of X (only) by a factor of at
most k.

Lemma 4.2. Reduction Rules 1-6 are sound. That
is, each reduction rule takes an instance (G, (k,r)) of
WEIGHTED DELETION TO CHOSEN DEGREE SUB-
GRAPH and produces an instance (G',(K',r")) of
WEIGHTED DELETION TO CHOSEN DEGREE SUB-
GRAPH such that (G, (k,r)) is a YES instance if and
only if (G, (K',r")) is a YES instance.

Proof. Rule 1: Clearly v cannot remain in the final
graph unmodified, but as we cannot add edges, there
is no way of increasing the degree of v. Thus v must
be deleted as part of any solution.

Rule 2: If v were to remain in the final graph, we
must either delete more than k edges or neighbouring
vertices, each with weight at least 1, which we cannot
do. Thus the only possibility is to delete v.

Rule 3: Clearly an independent clean region needs
no changing, thus we can safely ignore it, as it will
play no role in the solution.

Rule 4: If there were such a b, then at least one
of the edges from b into the clean region must be
deleted, but then a vertex v of the clean region would
now have weighted degree less than §(v), and would
have to be deleted (as per Reduction Rule 1). This
would obviously cascade, resulting in the entire clean
region being deleted. Thus the only possible option
is to delete the clean region.

Rule 5: As with Reduction Rule 4, deletion of
any vertex or edge in the clean region or between the
clean region and the boundary would require the clean
region to be deleted entirely. As the clean region is
of total weight greater than k, it obviously cannot be
deleted within a cost k solution. Thus it suffices to
increase the weight of each vertex in the boundary,
as these cannot be deleted either, and reduce their
degree funtion appropriately.

Rule 6: As C is a clean region, deletion of any
vertex or edge in the clean region or boundary will
result in the entire clean region being deleted, thus
it is sufficient to represent the clean region as one
appropriately weighted clean vertex. O

4.2.2 Kernel Lemma

Lemma 4.3 (Kernel Lemma). If (G = (V, E), (k,r))
is reduced under Reduction Rules 1-6 and |V| >
k4 k(k +7r) + kr(k + r), then (G, (k,7)) is a No-
instance for WEIGHTED DELETION TO CHOSEN DE-
GREE SUBGRAPH.

Proof. Assume that (G = (V,E),(k,r)) is a YEs-
instance for k-DELETION 7-REGULAR SUBGRAPH.
Further assume that the instance is reduced under
Reduction Rules 1-6. Let S be the set of edges and
vertices deleted as part of the solution, |S| < k (more
particularly p(S) < k). As any edge in the solution
is adjacent to only two vertices, our worst case oc-
curs when the solution is all vertices, so it suffices to
only consider S. Further let H be the set of vertices
consisting of the endpoints of any edges in S and the
neighbours of any vertices in S, and X = V\{HUS}.
Note that H is a cut-set seperating S and X. Figure
3 gives an example of this partitioning for an example
graph with r = 3.
We make the following claims:

Claim 4.1. |H| < k(k+7r).

No vertex has degree greater than (k + r), other-
wise the graph is not reduced under Reduction Rule 2.
Thus if S were all vertices, they could have at most
(k + r) neighbours each. As H is the entire neigh-
bourhood of S, |H| < [S|(k + 1) = k(k + ).

Claim 4.2. |X| < kr(k+r).

X must consist only of clean regions, otherwise S
is not a solution. Each vertex h in H can have at
most r neighours in X, otherwise .S is not a solution.
If h were adjacent to a clean region with total weight
greater than k, this region would have been removed
under Reduction Rule 5, thus it can only be adjacent
to small clean regions. As the graph is reduced, each
of these clean regions contains precisely one vertex,



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Figure 3: Example of the partitioning described in
the Kernel Lemma. r = 3.

by Reduction Rule 6. Thus each h can have at most
r neighbours. As there are k(k + r) such vertices,
| X| < kr(k+7).

Claim 4.3. There are at most k+k(k+r)+kr(k+7r)
vertices in G.

[V| = |S|+ |H| + |X|. By Claims 4.2 and 4.1,
|H| < k(k+ ), and |X| < kr(k 4+ r). There are no
other vertices in the graph, otherwise the graph is
not reduced under Reduction Rules 3 and 4. Thus as
IS| <k, V| <k+k(k+r)+kr(k+r).

Then by Claim 4.3, if (G = (V, E), (k,r)) is a YESs-
instance for WEIGHTED DELETION TO CHOSEN DE-
GREE SUBGRAPH, then |V| < k+k(k+r)+kr(k+7).
Thus the Kernel Lemma holds. (]

To complete the proof of FPT membership, we
need to demonstrate that the Reduction Rules can
be executed in polynomial time. Clearly Reduction
Rules 1 and 2 can be carried out in linear time, and
each can be applied at most k£ times. Thus Reduction
Rules 1 and 2 contribute O(kn) to the running time.

We can calculate the clean regions of the graph
greedily in linear time, with the boundary calculated
at that time. Thus an independent clean region can
be identified in linear time, and deleted in linear
time. Similarly any clean region with a vertex b in
its boundary such that dZ.(b) > &(b), can be iden-
tified quickly. Similarly regions to which Reduction
Rules 5 and 6 apply can be identified at this point,
and replaced or removed as required. This can be
done at most k£ times, thus Reduction Rules 3, 4, 5
and 6 contribute O(kn) to the running time.

This leads immediately to the following theorem:

Theorem 4.4. WEIGHTED DELETION TO CHOSEN
DEGREE SUBGRAPH is fized-parameter tractable for
parameter (k,r).

In particular an instance (G, (k,r)) of WEIGHTED
DELETION TO CHOSEN DEGREE SUBGRAPH with n
vertices and m edges can be solved in time O(kn +
f(k,r)), where f(k,r) is the running time of whatever
algorithm or heuristic is applied to the kernel (whose
size is bounded, so the running time is guaranteed
to be a function of (k,r). A simple approach would
be the application of a bounded search tree which
branches on which problem vertex or edge to delete,
which gives a running time of O((k3 + 2k?r + kr?)¥).

Note that if we have a graph where initially p(v) =
1, p(e) = 1 and 6(v) = r for each vertex v and edge
e, then this is precisely the DELETION TO REGULAR
SUBGRAPH problem, thus we also gain the following
result:

Corollary 4.5. DELETION TO REGULAR SUBGRAPH
is fized-parameter tractable for parameter (k,r).

4.2.3 The Exact Case

The previous proof can be modified easily to demon-
strate fixed-parameter tractability for the EXACT
WEIGHTED DELETION TO CHOSEN DEGREE SUB-
GRAPH problem. In this case we are interested in
deleting elements with a total weight of k. Thus we
may be interested in deleting elements where the dele-
tion does not fix the degree of some vertex, it simply
adds to the total cost. However, the only areas where
we may delete these from that are not already in-
cluded in the kernel are independent clean regions of
‘low” weight (< k).

Of course we need not retain all such indepen-
dent clean regions on the chance that they may be
needed. Obviously any independent clean region of
weight greater than k can still be removed without
consequence, it could never be part of any solution of
cost k. So we need only concern ourselves with in-
dependent clean regions of weight less than or equal
to k. Recall that a clean region is defined as a set
of vertices, thus in particular, the weight of a clean
region is the sum of weights of the vertices, not the
edges.

Notice also that given a sufficient quantity of in-
dependent clean regions of a given weight (say i), we
could never use all of them, and thus need only retain
a small number. Thus if we replace Reduction Rule
3, we can adjust our kernel size appropriately:

Reduction Rule 8a: If there exist more than |k/i] in-
dependent clean regions of weight i < k, delete all
but |k/i] of them, k' = k.

Then we may modify the Kernel Lemma as follows:

Lemma 4.6 (Exact Kernel Lemma). If (G =
(V,E), (k,r)) is reduced under Reduction Rules 1-6
(with Rule 3a replacing Rule 3) and |V| >k + k(k +
r)+kr(k+r)+k?, then (G, (k,r)) is a No-instance for
ExAcT WEIGHTED DELETION TO CHOSEN DEGREE
SUBGRAPH.

Proof. We begin with the following claims:

Claim 4.4. There are no independent clean regions
of size greater than k.

As each vertex has weight at least 1, a clean region
of size greater than k& must have weight greater than k,
thus if one remained, the graph would not be reduced
under Reduction Rule 3a.

Claim 4.5. There are at most k2 vertices in indepen-
dent clean regions.

By Reduction Rule 3a, there are at most |k/i]
independent clean regions of weight ¢. The largest size
of any such region is k (by claim 4.4). Thus the total
size is S0 |k/ili < 8 (k/i)i= " k=K.

The proof of the KernellLemma now follows as be-
fore, simply with the new claims taken into account.

The new reduction rule can clearly be enacted in
polynomial time, we need only greedily keep the first
few independent clean regions we find of each weight,
which can be accomplished at the start of the algo-
rithm in linear time.

Theorem 4.7. EXAcT WEIGHTED DELETION TO
CHOSEN DEGREE SUBGRAPH is fized-parameter
tractable for parameter (k,r).

85



CRPIT Volume 77 - Theory of Computing 2008

86

As before, we also gain the following result as a
special case:

Corollary 4.8. Exact DELETION TO REGULAR
SUBGRAPH is fized-parameter tractable for parameter

(k,r).
5 Conclusion

We have answered Moser and Thilikos’s open ques-
tion, and shown that VERTEX DELETION TO REG-
ULAR SUBGRAPH is W/[1]-hard when parameterized
by the number k of vertex deletions. The problem
remains hard when we extend the operations avail-
able to include edge deletion and/or edge addition.
The generalized version of the problem WEIGHTED
DELETION (EDIT) TO CHOSEN DEGREE SUBGRAPH
is also W[1]-hard when parameterized by the number
k of deletions.

If we include r as an additional parameter how-
ever, all the problems examined are fixed-parameter
tractable, most notable being that WEIGHTED DELE-
TION TO CHOSEN DEGREE SUBGRAPH is fixed-
parameter tractable under such a parameterization
with a problem kernel of at most k+k(k+r)+kr(k+r)
vertices. DELETION TO REGULAR SUBGRAPH is also
fixed-parameter tractable with the same kernel, but
we also demonstrate a method that allows avoidance
of clean region contraction, which may be useful in
practice. Similarly the exact versions of the problems
remain tractable with the same parameterization.

As our FPT results derive from kernelization, this
paper also provides several useful polynomial-time
preprocessing algorithms producing bounded problem
kernels which can then be solved by any method of
choice, such as heuristics or approximations.

References

Abu-Khzam, F. & Fernau, H. (2006), Kernels: Anno-
tated, Proper and Induced, in ‘International Work-
shop on Parameterized and Exact Computation
2006 (IWPEC’06)’, Lecture Notes in Computer Sci-
ence, Springer, pp. 264-275.

Cheah, F. & Corneil, D. G. (1990), The Complexity of
Regular Subgraph Recognition, ‘Discrete Applied
Mathematics’, 27, pp. 59-68.

Chvatal, V., Fleischner, H., Sheehan, J. &
Thomassen, C. (1979), Three-regular Subgraphs of

Four Regular Graphs, ‘Journal of Graph Theory’,
3, pp. 371-386.

Downey, R. & Fellows, M. (1997), Parameterized
Complezity, Springer.

Estivill-Castro, V., Fellows, M., Langston, M. &
Rosamond, F. (2005), FPT is P-Time Extremal
Structure I, in ‘Algorithms and Complexity in
Durham 2005 (ACiD’05)’, Texts in Algorithmics,
College Publications, pp. 1-41.

Flum, J. & Grohe, M. (2006), Parameterized Com-
plexity Theory, Springer.

Guo, J. & Niedermeier, R. (2007), Invitation to Data
Reduction and Problem Kernelization, ‘SIGACT
News’, 38(1), pp. 31-45.

Fellows, M., Hermelin, D. & Rosamond, F. (2007), On
the Fixed-Parameter Intractability and Tractabil-
ity of Multiple-Interval Graph Problems, Unpub-
lished Result.

Moser, H. & Thilikos, D. (2006), Parameterized Com-
plexity of Finding Regular Induced Subgraphs,
in ‘Algorithms and Complexity in Durham 2006
(ACiID’06)’, Texts in Algorithmics, College Publi-
cations, pp. 107-118.

Niedermeier, R. (2006), Invitation to Fized-
Parameter Algorithms, Oxford University Press.

Plesnik, J. (1984), A Note on the Complexity of
Finding Regular Subgraphs, ‘Discrete Mathemat-
ics’, 49, pp. 161-167.

Stewart, I. A. (1994), Deciding Whether a Planar
Graph has a Cubic Subgraph is NP-Complete, ‘Dis-
crete Mathematics’, 126(1-3), pp. 349-357.

Stewart, I. A. (1996), Finding Regular Subgraphs in
Both Arbitrary and Planar Graph, ‘Discrete Ap-
plied Mathematics’, 68(3), pp. 223-235.

Stewart, I. A. (1997), On Locating Cubic Subgraphs
in Bounded-degree Connected Bipartite Graphs,
‘Discrete Mathematics’, 163(1-3), pp. 319-324.

Stewart, I. A. (2007), On the Fixed-Parameter
Tractability of Parameterized Model-Checking
Problems, ‘Information Processing Letters’, to ap-
pear.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Well-Covered Graphs and Greedoids

Vadim E. Levit!?

Eugen Mandrescu?

! Department of Computer Science and Mathematics
Ariel University Center of Samaria,
Ariel 40700, ISRAEL,

Email: levitv@ariel.ac.il

2 Department of Computer Science
Holon Institute of Technology,
Holon 58102, ISRAEL,

Email: eugen m@hit.ac.il

Abstract

G is a well-covered graph provided all its maximal
stable sets are of the same size (Plummer, 1970). S
is a local mazimum stable set of G, and we denote
by S € U(G), if S is a maximum stable set of the
subgraph induced by S U N(S), where N(S) is the
neighborhood of S.

In 2002 we have proved that U(G) is a greedoid for
every forest G. The bipartite graphs and the triangle-
free graphs, whose families of local maximum stable
sets form greedoids were characterized by Levit and
Mandrescu (2003, 2007a).

In this paper we demonstrate that if a graph G has
a perfect matching consisting of only pendant edges,
then U(G) forms a greedoid on its vertex set. In
particular, we infer that U(G) forms a greedoid for
every well-covered graph G of girth at least 6, non-
isomorphic to C7.

Keywords: local maximum stable set, greedoid, very
well-covered graph, unique perfect matching.

1 Introduction

Throughout this paper G = (V, E) is a simple (i.e., a
finite, undirected, and without multiple edges) graph
with vertex set V = V(G) and edge set F = E(G).
The vertices z,y € V(G) are called adjacent if they
are the endpoints of some edge in G, and we write
xy € E(G). We assume also that zz ¢ E(G), for
every ¢ € V(G), i.e., G is loopless. If X C V, then
G[X] is the subgraph of G induced by X. By G —
W we mean the subgraph G[V — W], if W C V(Q).
We also denote by G — F the partial subgraph of G
obtained by deleting the edges of F, for F' C E(G),
ie, G—F = (V,E—F), and we write shortly G —e,
whenever F' = {e}.

The neighborhood of a vertex v € V is the set
Nw)={{w : w €V and vw € E}, and N[v] =
{v}UN(v). If IN(v)| = [{u}| = 1, then v is a pendant
vertex and vu a pendant edge of G. By pend(G) we
mean the set of all pendant vertices of G.

K, C, denote, respectively, the complete graph on
n > 1 vertices, and the chordless cycle on n > 3
vertices, i.e., K1 = ({v1},0) and

K,={v:1<i<n}{vwv;:1<i<j<n}),n>2,

Copyright (©2008, Australian Computer Society, Inc. This
paper appeared at the Computing: The Australasian Theory
Symposium (CATS’08), Wollongong, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 77, James Harland and Prabhu Manyem, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

while C,, has
V(Cy) ={vi : 1 <i<n},

E(Cy) =A{vivit1:1 <i<n—1}U{v1v,}).

A vertex v € V(G) is called simplicial if G[N|v]]
is a complete subgraph of G.

We denote the neighborhood of some A C V by
Ng(A)={veV —-A:N@w)NA+#0D} and its closed
neighborhood by Ng[A] = AUN(A), or shortly, N(A)
and N[A], respectively, if no ambiguity.

A tree is a cycle-free connected graph, while a for-
est is cycle-free graph.

A stable set in G is a set of pairwise non-adjacent
vertices. A stable set of maximum size will be referred
to as a mazimum stable set of G, and the stability
number of G, denoted by a(G), is the cardinality of
a maximum stable set in G. In the sequel, by Q(G)
we denote the set of all maximum stable sets of the
graph G.

A set A C V(G) is a local mazimum stable set
of G if A is a maximum stable set in the subgraph
induced by N[A], ie., A € Q(G[N[A]]), (Levit and
Mandrescu 2002). Let ¥(G) stand for the set of all
local maximum stable sets of G. Notice that Q(G) C
U(@G) is true for every graph G.

Clearly, every set S C pend(G) belongs to ¥(G).
Nevertheless, there exist local maximum stable sets
that do not contain pendant vertices. For instance,
{e,g} € ¥(G), where G is the graph from Figure 1.

9 f

a b c d e
@ @

Figure 1: A graph having various local maximum sta-
ble sets.

A matching in a graph G = (V,E) is a set of
edges M C FE such that no two edges of M share
a common vertex. A mazimum matching is a match-
ing of maximum size p(G). A matching is perfect
if it saturates all the vertices of the graph. Let us
recall that G is a Konig-Egervdry graph provided
a(G) + w(G) = |V(G)]. Tt is known that every bi-
partite graph is a Konig-Egervary graph as well.

A graph G is well-covered if every maximal stable
set of G is also a maximum stable set, i.e., it belongs
to Q(G). If, in addition, G has no isolated vertices and
[V(G)| = 2a(G), then G is very well-covered (Favaron
1982). For instance, the graph depicted in Figure 1
is well-covered, but not very well-covered, while the
graph from Figure 2 is very well-covered.

In other words, each stable set of a well-covered
graph is contained in a maximum stable set, e.g., the

87



CRPIT Volume 77 - Theory of Computing 2008

88

G

Figure 2: A very well-covered graph whose unique
perfect matching has non-pendant edges.

graph H from Figure 3. Since there is no maximum
stable set S of G such that {b,d} C S, the graph G
in Figure 3 is not well-covered.

f g

Figure 3: H is well-covered; G is not well-covered.

Well-covered graphs were defined by Plummer
(1970). A number of classes of well-covered graphs
were completely described; e.g., well-covered bi-
partite graphs (Ravindra 1977), very well-covered
graphs (Favaron 1982), well-covered block graphs and
unicyclic graphs (Topp and Volkmann 1990), well-
covered graphs of girth > 6 (Finbow, Hartnell and
Nowakowski 1993), well-covered cubic graphs (Camp-
bell, Ellingham and Royle 1993), well-covered graphs
that contain neither 4- nor 5-cycles (Finbow, Hartnell
and Nowakowski 1994), 4-connected claw-free well-
covered graphs (Hartnell and Plummer 1996), well-
covered simplicial, chordal, and circular arc graphs
(Prisner, Topp and Vestergaard 1996), well-covered
Kénig-Egervary graphs (Levit and Mandrescu 1998).
A survey on this subject is due to Plummer (1993).

In fact, well-covered graphs are exactly those
graphs for which the greedy algorithm constructing
maximum stable sets vertex by vertex always yields
a maximum stable set, no matter how its greediness
makes it to chose vertices of a graph. For general
graphs, the problem of finding a maximum stable set,
is NP-hard.

While, in general, it is co-INP-complete to deter-
mine if a given graph is well-covered (Chvéatal and
Slater 1993, Sankaranarayana and Stewart 1992), rec-
ognizing weighted well-covered graphs with bounded
A(G) can be done in polynomial time (Caro et al.
1998, Zverovich 2004), where A(G) equals the max-
imum vertex degree of the graph G. Tankus and
Tarsi (1996, 1997) showed that claw-free well-covered
graphs can be recognized in polynomial time.

It is easy to prove the following.

Proposition 1.1 Every graph having a perfect
matching consisting of pendant edges is very well-
covered.

The converse of Proposition 1.1 is not gener-
ally true (e.g., the graph G depicted in Figure 2).
Moreover, there are well-covered graphs without per-
fect matchings, (e.g., K3). Nevertheless, follow-
ing Favaron’s characterization for very well-covered

graphs (i.e., Theorem 1.2), one can assert that “hav-
ing a perfect matching” is a necessary condition for
very well-coveredness.

A matching M in a graph G satisfies Property P
if for every edge zy € M,

N(z)NN(y) =0 and
N(x) — {y} is adjacent to all of N(y) — {x}.

Theorem 1.2 For a graph G without isolated ver-
tices the following are equivalent:

i) G is very well-covered;

it) there is a perfect matching in G that satisfies
Property P;

(iil) there exists at least one perfect matching in G
and every perfect matching in G satisfies Property P.

By H o K; we mean the graph obtained from H
by appending a single pendant edge to each vertex of
H. Let us notice that H o K is very well-covered and
a(HoKy) = |V(H)|. Moreover, Finbow, Hartnell and
Nowakowski (1993) showed (Theorem 1.3) that, un-
der certain conditions, every well-covered graph must
be of this form.

Theorem 1.3 Let G be a connected graph of girth
greater than five, which is isomorphic to neither Cr
nor Ki. Then G is well-covered if and only if its
pendant edges form a perfect matching, i.e., G = H o
K for some graph H.

In other words, Theorem 1.3 shows that, apart
from K; and C7, connected well-covered graphs of
girth > 6 are very well-covered. Consequently, a tree
T # K could be only very well-covered, and this is
the case if and only if ' = H o K for some tree H (for
additional details, see Ravindra 1977, Favaron 1982,
Levit and Mandrescu 1999).

The following theorem concerning maximum sta-
ble sets in general graphs, due to Nemhauser and
Trotter Jr. (1975), shows that some stable sets can
be enlarged to maximum stable sets.

Theorem 1.4 FEvery local mazimum stable set of a
graph is a subset of a maximum stable set.

The graph W from Figure 1 has the property
that every S € Q(W) contains some local maxi-
mum stable set, but these local maximum stable sets
are of different cardinalities: {a,d, f} € Q(W) and

a},{d, f} € ¥(W), while for {b,e,g} € Q(W) only
e, g} € U(W).

However, there exists a graph G satisfying the
equality ¥(G) = Q(G), e.g., G = C,, for n > 4.

A greedoid (Bjorner and Ziegler 1992, and Korte
et al. 1991) is a set system generalizing the notion of
matroid.

Definition 1.5 A greedoid is a pair (V,F), where
F C 2V is a non-empty set system satisfying the fol-
lowing conditions:

(Accessibility) for every non-empty X € F there is an
x € X such that X —{z} € F;

(Ezxchange) for any X,Y € F,|X| = |Y|+ 1, there is
anx € X =Y such that Y U{z} € F.

Recall that a matroid is a set system (V,F)
that satisfies both the ”exchange property” and the
"hereditary property”, saying that : if X € F and
Y C X | then Y € F. Evidently, any matroid is
also a greedoid. It is clear that the family of all sta-
ble sets of a graph is a matroid if and only if G is a
disjoint union of complete graphs, which means that,
necessarily, G must be well-covered of a specific form.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

If G is well-covered, ¥(@G) is a matroid if and only
if each S € Q(G) consists of only simplicial vertices,
because Q(G) C U(G) and every v € S, by hereditary
property, satisfies {v} € ¥(G) , i.e., G[N[v]] must be
a complete graph.

The notion of matroid was defined by Whitney
(1935). Later Edmonds (1971)characterized a ma-
troid as a hereditary set system for which a class of
linear optimization problems can be solved by greedy
algorithms. Korte and Lovédsz (1991) introduced the
greedoid in an attempt to generalize this characteri-
zation to accessibility systems.

It is worth mentioning that if (V, F) is a greedoid
and X € F, |X| =k > 2, then according to accessi-
bility property, one can build a chain

{21} C {z1, 22} C {21, ...,

W CAzyy ey} C {2k = X

such that {z1,...,x;} € F, for each j € {1, ...,k — 1}.
Such a chain we call an accessibility chain of X.
For example, ¥(G1) is a greedoid and

{a} C {a,b} C {a,b,c}

is an accessibility chain of {a,b,c} € ¥(G;), where
(G is presented in Figure 4.

$3} C ...

Gl G2
c b

Figure 4: G1,Gy are very well-covered graphs, but
only for G; it is true that every S € Q(G;) has an
accessibility chain.

Levit and Mandrescu (2002) proved the following.

Theorem 1.6 For every forest T, W(T') is a greedoid
on its vertex set.

The case of bipartite graphs having a unique cy-
cle, whose family of local maximum stable sets forms
a greedoid, is studied in Levit and Mandrescu (2001,
2005). The general case of bipartite graphs was
treated in Levit and Mandrescu (2003), while for
triangle-free graphs we refer the reader to Levit and
Mandrescu (2007) for details. Nevertheless, there ex-
ist non-bipartite and non-triangle-free graphs whose
families of local maximum stable sets form gree-
doids. The families ¥(G1), ¥(G2), ¥(G3), U(Gy4) of
the graphs in Figure 5 are greedoids. Let us no-
tice that G is very well-covered and Gj3 is well-
covered, while G5, G4 are not well-covered and also

non-triangle-free.
G
G

Figure 5: Graphs whose family of local maximum sta-
ble sets form greedoids.

In this paper we prove that in a well-covered graph
G of girth at least 6, but different from C7, the family
U(@G) of local maximum stable sets forms a greedoid
on its vertex set.

2 Results

It is easy to see that no maximum stable set of Cr
admits an accessibility chain. The graph G in Fig-
ure 6 shows that even if some S € Q(G) admits an
accessibility chain, this is not necessarily true for all
maximum stable sets. The case of the graph H from
Figure 6 is different: each maximum stable set of H
has an accessibility chain, and the reason is given in
Proposition 2.1.

H

G a b
® ®

Figure 6: {a,c, f},{a,g,e} € Q(G), but only {a,c, f}
admits an accessibility chain.

Proposition 2.1 Every mazimum stable set of the
graph G = H o K1 has an accessibility chain.

Proof. Clearly, a(G) = n, where |V(H)| = n, and
each S € Q(G) satisfies S N pend(G) # 0.

We prove by induction on n that every S € Q(G)
has an accessibility chain.

For n = 1, the assertion is clearly true.

For n =2, let S = {z1,22} € Q(G). Then at least
one of x1,x2 is pendant, say x;. Hence, the chain is
{z1} C {z1,22} =S

Suppose that the assertion is true for k < n.

Let G = (V,E) = Ho K; be with |V (H)| = n, and
let S € Q(G).

Since S Npend(G) # 0, let a; € S Npend(G). If

N(al) = {bl}, then G — {a1,b1} = (H — {bl}) o Kl.
Hence, we have that

Sn—l =S5 - {al} S Q(G — {al,bl}),
and by induction hypothesis, there is a chain

{1} C {z1, 22} C ... C {21, 22, ., Tp—1} = Sn—1

such that {z1,x9,...,2x} € (G — {a1,b1}) for each
k e {1,..,n —1}. Since Ng(a1) = {b1}, it follows
that
NG({xla T2, "'7‘7’.]6} U {al}) =
= Ne—{ar.by {21, 22, o2 }) U {br},

and therefore {z1,x2,...,2t} U{a1} € ¥(G), for ev-
ery k € {1,....,n —1}. Clearly, {a1} € ¥(G), and
consequently, we obtain the chain:

{a1} C{ay, 21} C {a1, 21,22} C ...

xn—l} = {al} U Sn—l = 57

such that {al,xl,xQ, ey} € ¥(G) for every k from
{1,...,m — 1}, i.e., S has an accessibility chain. m
Let us notlce that Proposition 2.1 is not valid for
each very well-covered graph; e.g., Cy is very well-
covered, but no S € Q(C}) has an accessibility chain.

. C{ay, 1, 2, ..oy

Remark 2.2 If S consists of only isolated vertices
of H, then S € V(H o Ky), because, in this case,
S C pend(G).

Remark 2 31IfS zs stable in H and NH(S) #0,
then S ¢ W(H o K1), because for each a € Ny(5),
the set }U {u:u € pend(H o K1) N NHoKl(S)} is
stable in H o K1 and larger than S.

89



CRPIT Volume 77 - Theory of Computing 2008

90

Remark 2.4 If v is an isolated vertex of the graph
H and S € W(H o Ky), such that S N Nyox, [v] =0,
then SU{v} € ¥(H o K).

Lemma 2.5 If H has no isolated vertices and S is a
stable set in G = Ho K7, then the following assertions
are equivalent:
i) S € U(G);

i) S = S;USy, where 0 # 51 C pend(G) and
Sy CV(H),Nu(S2) C Ng(S1);

(iii) G[Ng[S]] = H' o K3, for some subgraph H' of
H, and S € Q(H' o K7).

Proof. Let us denote:
V(H)={v; : 1 <i<n},

V(G)=V(H)U{u; : 1 <i<n},
E(G)=EH)U{uw;:1<i<n}.
Notice that

OZ(G):H,S():{IQISZSTL}EQ(G)

and So =pend(G), since H has no isolated vertices.

(i) = (ii) Assume that S € U(G).

Let S1 = SNpend(G) and Sy = SNV (H). Clearly,
S1 # 0, because S has an accessibility chain.

If S = (), then the assertion is clearly true.

Suppose that Sy # 0. If Ng(Ss) € Ng(Si1), then
there must be some v € Ny (S2) such that uy ¢ S,
i.e., uy ¢ S1. Hence, we get that

{ur} U (Ng[S] -

is a stable set in G[N¢[S]] larger than S, in contra-
diction with S € ¥(G).

(it) = (ii1) Let S3 = {ug : vp, € Sa}. Then we
infer that

V(H))

G[Ng[S]] = G[S1 U S3] = H' o K1,
for some subgraph H' of H. In addition, we have also
that

|S] = |S1|+1S2] = |S1] +|S3| and S1USs € Q(G[S]).

Consequently, we deduce that S € Q(H' oK) as well.
(i) = (i) As S € Q(G[N¢g[S]]), it follows, by
definition, that S € U(G). =
Now we are able to prove the main result of the

paper.
Theorem 2.6 The family V(H o K1) is a greedoid.

Proof. Let G = H o K; and Sy € ¥(G), i.e., Sy is a
maximum stable set, of size say ¢, in Hy = G[N[Sp]].

According to Lemma 2.5, G[N[So]] = Hg, o K; for
some subgraph Hg, of H, and by Proposition 2.1, we
infer that there exists a chain

{z1} C {x1, 22} C a1, 20,23} C ...

.. C {.’E17£C27... $q,1} C {(ﬂhxz,... iCq,l,itq} = So,

such that all S, = {a:1, T, ..., T}, 1 < k < g, are local
maximum stable sets in Hy. Since Nu,[Sk] = N [Sk],
it results that S, € U(G), for any k € {1,...,q}. In
other words, ¥(G) satisfies the accessibility property.
We have to show now that U(G) satisfies also the
exchange property.
Let us consider X,Y € ¥(G) be such that

Y| =|X|+1=m+1.

According to Lemma 2.5(ii), the sets X and Y can
be decomposed as follows:

X=XiUXoand Y =Y, UY5,

where X, X5,Y7,Y5 satisfy the corresponding con-
ditions, i.e., X; and Y; are non-empty subsets of
pend(G), while X, Y5 are subsets of V/(H), such that
Nu(X5) C Ng(X,) and Nyg(Va) € Ne(V3).

Since Y is stable, X € ¥(G), and |X| < |Y], it
follows that there exists some y € Y — X, such that
y ¢ Ng[X]. In particular, it means that X U {y} is
stable. To check whether X U {y} € ¥(G), we have
to analyze the two following cases (see Figure 7).

2 3 4 5

6 7 8

Figure 7: X and Y are local maximum stable
sets that illustrate the cases 1 and 2, respectively.
(a) Y ={1,2,3,4,6}, X = {6,7,8,9}, having their
upper parts Y] = {6} c X; = {6,7,8}; and
b)Y = {1,2,3 4} {4 5,6}, with their upper
parts Y1 = {2,3,4} € X1 = {4,5}.

Case 1. Y7 C X;.

Firstly, we deduce that y € Y;. Lemma 2.5(%)
implies that Ng(y) C Ng(Y1). Since V7 C Xy,
it follows that Ng(Y1) € Ng(X1). Hence, we get
Np(y) € Ng(X1). Therefore, we have that

X1 Cpend(G), X2 U{y} CV(H),
and

Nu(Xo U{y})

Consequently, according to Lemma 2.5(ii), we may
infer that the stable set X U {y} is, actually, a maxi-
mum local stable set in G.

Case 2. Y1 € X;.

In this situation, one can choose as y every vertex
z € Y1 — X4, because clearly, both conditions

— Nu(X2) U Ni({y}) € No(X0).

z€Y — X and X U{z} € ¥(Q)

are satisfied.

Therefore, U(G) satisfies the exchange property as
well.

In conclusion, ¥(G) is a greedoid on the vertex set
of G. m

Let us notice that ¥(C) is not a greedoid, because
every S € ¥(C7) has |S| # 1.

Corollary 2.7 Let G be a well-covered graph of girth
greater than five, which has no connected components
isomorphic to C7;. Then U(G) is a greedoid on the
vertex set of G.

Proof. Firstly, if G = K; = ({a},0), then ¥(K;) =
{{a}} and it is clearly a greedoid.

Secondly, if G is a connected well-covered graph
of girth > 6, isomorphic to neither C7 nor K, then
Theorem 1.3 implies that G = H o K; for some graph
H. Further, according to Theorem 2.6, ¥(G) is a
greedoid.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

If G is disconnected, and Gy, i € {1, ..., ¢}, are its
connected components, then clearly,

U(G) =T (G1) UT(G2) U... UT(G,,).

and, to complete the proof, one has to take care of
every connected component G;, independently. m

3 Conclusions

We showed that ¥(G) is a greedoid on the vertex set
of a well-covered graph G, which is well-covered of
girth > 6 and non isomorphic to C7. Since Cj is well-
covered, while ¥(C5) is not a greedoid, one can ask to
characterize well-covered graphs of girth < 5, whose
families of local maximum stable sets form greedoids.

Recently, as proved by Levit and Mandrescu
(2007b), each very well-covered graph G of girth > 5
must be of the form G = H o K; for some graph H.
Therefore, Corollary 2.7 is true for very well-covered
graphs of girth > 5.

References

1]

2]

[10]

[11]

[12]

[13]

Bjorner, A. and Ziegler, G. M. (1992), Introduc-
tion to greedoids, in N. White (ed.), Matroid Ap-
plications, 284-357, Cambridge University Press.

Campbell, S. R., Ellingham, M. N. and Royle, G.
F. (1993), A characterization of well-covered cu-
bic graphs, J. Combin. Math. Combin. Comput.
13 pp. 193-212.

Y. Caro, Y., M. N. Ellingham, M. N. and Ramey,
J. E. (1998), Local structure when all maximal
independent sets have equal weight, STAM Jour-
nal of Discrete Mathematics 11 pp. 644-654.

Chvétal, V. and Slater, P. J. (1993), A note
on well-covered graphs, in ‘Quo Vadis, Graph
Theory?’, Annals of Discrete Math. 55, North-
Holland, Amsterdam, pp. 179-182.

Edmonds, J. (1971), Matroid and the greedy al-
gorithm, Math. Programming 1, pp. 127-113.

Favaron, O. (1982), Very well-covered graphs,
Discrete Mathematics 42 pp. 177-187.

Finbow, A., Hartnell, B. and Nowakowski, R. J.
(1993), A characterization of well-covered graphs
of girth 5 or greater, Journal of Combinatorial
Theory, Ser B 57 pp. 44-68.

Finbow, A., Hartnell, B. and Nowakowski, R. J.
(1994), A characterization of well-covered graphs
that contain neither 4- nor 5-cycles, Journal of
Graph Theory 18 pp. 713-721.

Hartnell, B., Plummer, M. D. (1996), On 4-
connected claw-free well-covered graphs, Dis-
crete Applied Mathematics 64 pp. 57-65.

Hedetniemi, S. T. and Laskar, R. (1984), Con-
nected domination in graphs, in Graph Theory
and Combinatorics, Eds. B. Bollobas, Academic
Press, London, pp. 209-218.

Korte, B., Lovdsz, L. and Schrader, R. (1991),
Greedoids, Springer-Verlag, Berlin.

Levit, V. E. and Mandrescu, E. (1998), Well-
covered and Konig-Egervary graphs, Congressus
Numerantium 130 pp. 209-218.

Levit, V. E. and Mandrescu, E. (1999), Well-
covered trees, Congressus Numerantium 139 pp.
101-112.

[14]

[19]

[20]

28]

[29]

Levit, V. E. and Mandrescu, E. (2001), Uni-
cycle bipartite graphs with only uniquely re-
stricted maximum matchings, in C.S. Calude, M.
J. Dinneen and S. Sburlan eds. ‘Proceedings of
the Third International Conference on Combina-
torics, Computability and Logic, (DMTCS’1)’,
Springer, pp. 151-158.

Levit, V. E. and Mandrescu, E. (2002), A new
greedoid: the family of local maximum stable
sets of a forest, Discrete Applied Mathematics
124 pp. 91-101.

Levit, V. E. and Mandrescu, E. (2003), Local
maximum stable sets in bipartite graphs with
uniquely restricted maximum matchings, Dis-
crete Applied Mathematics 132 pp. 163-174.

Levit, V. E. and Mandrescu, E. (2005), Unicycle
graphs and uniquely restricted maximum match-
ings, Electronic Notes in Discrete Mathematics,
22 pp. 261265.

Levit, V. E. and Mandrescu, E. (2007a),
Triangle-free graphs with uniquely restricted
maximum matchings and their corresponding
greedoids, Discrete Applied Mathematics,
doi: 10.1016/j.dam.2007.05.039 (in press).

Levit, V. E. and Mandrescu, E. (2007b), Some
Structural Properties of Very Well-Covered
Graphs, Congressus Numerantium (accepted).

Nemhauser, G. L. and Trotter, E., Jr. (1975),
Vertex packings: structural properties and algo-
rithms, Mathematical Programming 8 pp. 232-
248.

Plummer, M. D. (1970), Some covering concepts
in graphs, Journal of Combinatorial Theory 8
pp. 91-98.

Plummer, M. D. (1993), Well-covered graphs : a
survey, Quaestiones Mathematicae 16 pp. 253-
287.

E. Prisner, E., Topp, J. and P. D. Vestergaard, P.
D. (1996), Well-covered simplicial, chordal, and
circular arc graphs, Journal of Graph Theory 21
pp. 113-119.

Ravindra, G. (1977), Well-covered graphs, J.
Combin. Inform. System Sci. 2 pp. 20-21.

Sankaranarayana, R., Stewart, L. K. (1992),
Complexity results for well-covered graphs, Net-
works 22 (3) pp. 247-262.

D. Tankus, D. and Tarsi, M. (1996), Well-
covered claw-free graphs, Journal of Combina-
torial Theory Ser. B 66 pp. 293-302.

D. Tankus, D. and Tarsi, M. (1997), The struc-
ture of well-covered graphs and the complexity
of their recognition problems, Journal of Combi-
natorial Theory Ser. B 69 pp. 230-233.

Topp, J. and Volkmann, L. (1990), Well-covered
and well-dominated block graphs and unicyclic
graphs, Mathematica Panonica 1/2 pp. 55-66.

Whitney, H. (1935), On the abstract properties
of linear independence, Amer. J. Math. 57 pp.
509-533.

Zverovich, 1. E. (2004), Weighted well-covered
graphs and complexity questions, Moscow Math-
ematical Journal 4 pp. 523-528.

91



CRPIT Volume 77 - Theory of Computing 2008

92



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

On the non-existence of even degree graphs with diameter 2 and
defect 2

Mirka Miller!? Minh H. Nguyen?!

Guillermo Pineda-Villavicenciol*

1 School of Information Technology and Mathematical Sciences
University of Ballarat
P.O.Box 663, Vic 3353, Australia

Emails: m.miller@ballarat.edu.au, gpinedavillavicencio@students.ballarat.edu.au

2 Department of Mathematics
University of West Bohemia
Pilsen, Czech Republic

3 Hutchison Managed Service
Ericsson Australia
112-118 Talavera Road, North Ryde, NSW 2113, Australia
Email: minh.n.nguyen®@ericsson.com

4 Department of Computer Science
University of Oriente
Santiago de Cuba, Cuba

Abstract

Using eigenvalue analysis, it was shown by Erdos et al.
that, with the exception of Cy, there are no graphs
of diameter 2, maximum degree d and d? vertices.
In this paper, we show that graphs of diameter 2,
maximum degree d and d?-1 vertices do not exist for
most values of d, when d is even, and we conjecture
that they do not exist for any even d greater than 4.

Keywords: Moore
gree/diameter problem

graphs; diameter 2; de-

1 Introduction

There are many famous and difficult graph-
theoretical problems that arose over the past four
decades from the design of interconnection networks
(such as local area networks, parallel computers,
switching system architecture in VLSI technology,
and many others). Perhaps one of the most promi-
nent problems is the degree/diameter problem which
is to determine, for each d and k, the largest order
ng of a graph of maximum degree d and diameter
at most k. It is easy to show that ng < Mg where
Mgy, is the Moore bound, given by
ngr < Md,k =1+d+d(d— 1)++d(d—1)k_1

For a survey of the degree/diameter problem, see
Miller et al. (2005).

In this paper we concentrate on the case when the
diameter is equal to 2. Since a graph of diameter 2
and maximum degree d may have at most d? + 1 ver-
tices, it was asked in (Erdds et al. 1980): Given non-
negative integer numbers d and A (defect), is there
a graph of diameter 2 and maximum degree d with
d? +1 — A vertices? It was proved in (Hoffman et al.

Copyright (©2008, Australian Computer Society, Inc. This pa-
per appeared at the Fourteenth Computing: The Australasian
Theory Symposium (CATS2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 77, James Harland and Prabhu Manyem, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

1960) that if A = 0 then there are unique graphs cor-
responding to d = 2,3,7 and possibly d = 57. The
case A = 1 was solved by Erdos et al. (Erdos et al.
1980). In this paper we consider the case A = 2 and
prove that graphs of defect 2 do not exist for most
values of degree d in the case when d is even.

We refer to a graph of maximum degree d, diame-
ter k > 2 and order Mg, — A (A>1)asa (d k,A)-
graph. Let G be a (d, k, A)-graph.

Definition 1 Let u be a vertex in G. A vertex v in
G is called a repeat of u with multiplicity m,(u) (1 <
my(u) < A) if there are exactly m,(u) + 1 different
paths of lengths at most k& from u to v.

It is immediate that

Observation 1 Verter u is a repeat of v with multi-
plicity m,, (v) if and only if v is a repeat of u with the
same multiplicity.

A repeat with multiplicity 1 will be called a single
repeat, a repeat with multiplicity 2 will be called a
double repeat, a repeat with multiplicity A will be
called a mazimal repeat.

We denote by Rs(u) the set of all repeats of a
vertex u in G. Taking into account the multiplicities
of repeats, we denote by R,,(u) the multiset of all the
repeats of a vertex u in GG, containing each repeat v
of u exactly m, (u) times.

Let u be a vertex in G. We denote by N (u) the set
of all neighbours of u. If A is a multiset of vertices of
G, then N(A) denotes the multiset of all the neigh-
bours of the vertices of A. We use R,,(A) to denote
the multiset of all the repeats of all vertices in A.

Proposition 1 If G is regular then, for all u €

V(G),
Z my(u) = A.

vERS(u)

[ R (u)| =

O

Definition 2 A subset S of V(G) is called a closed
repeat set if R, (S) = S. A closed repeat set is min-
imal if none of its proper subsets is a closed repeat
set.

93



CRPIT Volume 77 - Theory of Computing 2008

94

Definition 3 A repeat subgraph Hg of a closed re-
peat set S of G is a multigraph whose vertex set
V(Hg) = S and the number of parallel edges between
a vertex u and any of its repeats, say v € R,,(u),
equals the multiplicity m, (u).

We observe that

Observation 2 If A <1+ (d—1)+...+(d—1)k!
then G is reqular.

It is also true that

Observation 3 If G is regular then the repeat graph
Hg of G is A-regular.

Note that instead of writing “a vertex x is adjacent
to a vertex y” we write x ~ y, and if = is not adjacent
to y then we write x ~ y. Unless explicitly shown
where necessary, by u; and u; (¢ # j) we shall mean
two distinct vertices.

2 Structural properties of (d,2,2)-graphs

In this section we consider graphs of diameter 2 with
defect 2. Such graphs do not exist for d < 2. Let G
be a (d,2,2)-graph for d > 3. From Observation 2,
we have that

Observation 4 Every (d,2,2)-graph for d > 3 is
reqular.

Let us consider repeat configurations in (d,2,2)-
graphs. Let u be a vertex of a (d,2,2)-graph. Then
there are two possibilities:

e u has two single repeats, r;(u), i = 1, 2.

e u has one double (maximal) repeat, r(u) =
r1(u) = r2(u), with multiplicity 2.

With respect to repeats in G, there are five possi-
ble repeat configurations, as depicted in Fig. 1.

(7 u

ri(u)  ra(u) r(u) ri(u)  ra2(u)

ii. Type 1

18 bo o R r2(w)

iv. Type 2a

iii. Type 2¢

v. Type 2b

Figure 1: Possible repeat configurations for vertex u
in a (d,2,2)-graph.

We will denote the set of vertices of each type by
Type 0, Type 1, Type 2a, Type 2b and Type 2c, as
shown in Fig. 1. We denote by ng, n1, n2q, Nop, Nac
the number of vertices of the corresponding repeat
types.

Fig. 2 shows the only known (d,2,2)-graph (for
even)d) whose uniqueness is shown in (Broersma et al.
1988).

We observe the following

Observation 5 ng + nq + nag + nap + noe = d2 — 1.

Figure 2: The only known (d, 2, 2)-graph for even d.

For the purpose of this paper, we shall consider
each pair of parallel edges in Hg as a cycle of length
2.

Observation 6 Hg is the union of cycles of lengths
> 2, each cycle a minimal closed repeat set of G.

From now on, each cycle in Hg will be called a
repeat cycle.

The following structural properties of G were
proved in (Nguyen et al. 2007).

Theorem 1 (Nguyen et al. 2007) In a (d,2,2)-graph
G, if d is even then ng = 3 and nop, = d° — 4.

Corollary 1 (Nguyen et al. 2007) ngp, =0 (mod 2).

Let the vertices ug,u1,us form a triangle in G,
denoted by T', and let Yo be the subset of all vertices
of type 2b in N(ug)|J N(u1) | N(uz). Then Top is a
minimal closed repeat set. We shall call Tg;, the outer
repeat cycle of T in Hg. Note that Yop is the set of
vertices at distance 1 from T, and Yo, (1T = (). The
number of vertices of Yo is 3(d — 2).

Fig. 3 illustrates a labeled partial structure of G,
in the case when d is even, which shows the cycle
uguiue and its outer repeat cycle. Since Yop contains
all vertices of type 2b and Yo is a minimal closed
repeat set, by Corollary 1, there exists in Hg another
cycle T4, , also of the same size as Yoy, that is, 3(d—2).
Note that, in Fig. 3, ug ~ u3q—4 and usqg—s ~ ugq—16-
This is because us and ugq_16 belong to Yo, whereas
ugd—3 and usq—4 belong to Y5,

d—4
u
Ul U
d— 4 d—4
u: U3d—4
U4 U3d—5
U3d— Ugd—17

U3d= U9d—1

Figure 3: An illustration of the neighbourhood of T’
in G for even d.

Lemma 1 (Nguyen et al. 2007) Let T be a triangle
in G and let Yo be the outer repeat cycle of T in
Hg. Let C; be any repeat cycle in Hg of length t > 4
such that there exists in G an edge between a vertex
on Yo, and a vertex on Cy;. Then either t = %|T25|

ort=0 (mod [Yapl).



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

3 On the non-existence of (d,2,2)-graphs for
even d

In this section, we shall prove that for most values of
even d, (d,2,2)-graphs do not exist.
From Theorem 1, it immediately follows that

Corollary 2 G is not vertex-transitive for even de-
gree d.

Lemma 2 For even d > 6, every cycle, other than
the triangle in Hg, has length 3k(d — 2), for some
k>1.

Proof. As demonstrated in Section 2, Hg contains
one cycle of length 3 and at least two cycles of length
3(d — 2). Let ujusug be the triangle T' of G and let
v1...U3(d—2) be the outer repeat cycle Yo of T in
Hg such that the repeats of v; (1 < j < 3(d—2)) are
U(G—1)( mod (3(d—2))) AN V(j41)(mod (3(d-2)))- Without
loss of generality, let us suppose that u; ~ vy and
Uy ~ vg in G.

Let the a;, ¢ = 1,...,b, be the lengths of the cycles
in Hg and let a1 = 3, a2 = as = 3(d — 2) correspond
to T, Top and T, , respectively. Thus, f = 22;4 a; =
(d—2)(d—4).

Let Cy, be an arbitrary cycle in Hg (j # 1,2,3).
Then, by Lemma 1, either a; = d — 2, or a; =
0 (mod 3(d — 2)). Suppose that a; = d — 2. Denote
by w1, ..., wq—2 the vertices of C,; such that the re-
peats of wg (1 < k < d— 2) are W(k—1) ( mod (d—2))
and W(k41) (mod (d—2))-

We know that the vertices of C,; must reach the
vertices of T' through the vertices of Yq,. Without
loss of generality, suppose that wy ~ v; and wy ~ va.
However, since (d — 2) is not divisible by 3 when d
is even, by the Neighbourhood Theorem, u; and w;
would then have at least three common neighbours,
namely v1,v4_1 and vog_3. This is clearly impossible.

Therefore, each a; (4 < i < b) must be a multiple
of 3(d —2). O

Theorem 2 For evend >4, ifd # 1

(mod 3) then
there is no (d,2,2)-graph.

Proof. Let b be the number of cycles in Hg. Let
a;, for © = 1...b, be the lengths of these cycles, de-

noting by a; the triangle. Then as 2?21 a; =d?>—1,
by Lemma 2, we have that 2?22 a; = 3(d—2)k =
d>—4 = (d—2)(d+2). Therefore, d+2 =0 (mod 3).
O

By counting the total number N5 of 5-cycles in G,
we derive some further necessary conditions for the
existence of G.

Theorem 3 For
(d—2)(d*42d*—2d—25)

10
is no (d,2,2)-graph.

even d > 4, if N5 =
is mot an integer then there

The results of Theorems 2 and 3 improve the upper
bound for the order of (d,2,2)-graphs so that ng o <
d? — 3 for infinitely many even degrees d. For d > 10,
the first 50 values of d for which G might still exist
are shown in Table 1.

We conclude this paper by posing the following

Conjecture 1 For even d > 6, (d,2,2)-graphs do
not exist.

10 22 34 40 52 64 70 82 94

112 124 130 142 154 160 172 184 190
214 220 232 244 250 262 274 280 292
310 322 334 340 352 364 370 382 394
412 424 430 442 454 460 472 484 490

Table 1: The first 50 values of d for which a (d, 2, 2)-
graph might still exist for even d.

4 Acknowledgement

We greatfully acknowledge support from the ARC
grant DP0450294.

References

Broersma, H.J. & Jagers, A.A. (1988), The unique 4-
regular graphs on 14 and 15 vertices with diameter
2, Ars Combinatoria 25C, 55-62.

Erdos, P., Fajtlowicz, S. & Hoffman, A. J. (1980),
Maximum degree in graphs of diameter 2, Networks
10, 87-90.

Hoffman, A.J. & Singleton, R.R. (1960), On Moore
Graphs with diameters 2 and 3, IBM J. Res. Deuv.
64, 15-21.

Miller, M. & Sirédn, J. (2005), Moore graphs and be-
yond: A survey of the degree/diameter problem,
Electronic Journal of Combinatoric DS14, 1-6.

Nguyen, M.H. & Miller, M. (2007), Structural proper-
ties of graphs of diameter 2 with defect 2, preprint.

100
202
304
400
502

95



CRPIT Volume 77 - Theory of Computing 2008

96



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Graph Classes and the Complexity of the Graph Orientation
Minimizing the Maximum Weighted Outdegree*

Yuichi Asahiro?

Eiji Miyano® |

Hirotaka Ono?

! Department of Social Information Systems, Kyushu Sangyo University,
2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.

Email: asahiro@is.kyusan-u.ac. jp

2 Department of Systems Innovation and Informatics, Kyushu Institute of Technology,
680-4 Kawazu, lizuka, Fukuoka 820-8502, Japan.

Email: miyano@ces.kyutech.ac. jp

3 Department of Computer Science and Communication Engineering, Kyushu University,
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Email: ono@csce.kyushu-u.ac. jp

Abstract

Given an undirected graph with edge weights, we are
asked to find an orientation, i.e., an assignment of a
direction to each edge, so as to minimize the weighted
maximum outdegree in the resulted directed graph.
The problem is called MMO, and is a restricted vari-
ant of the well-known minimum makespan problem.
As previous studies, it is shown that MMO is in P
for trees, weak N'P-hard for planar bipartite graphs,
and strong N'P-hard for general graphs. There are
still gaps between those graph classes. The objective
of this paper is to show tight thresholds of complex-
ity: We show that MMO is (i) in P for cactuses, (ii

weakly A'P-hard for outerplanar graphs, and also (iii

strongly N'P-hard for Ps-bipartite graphs. The latter
two are minimal superclasses of the former. Also, we
show the N'P-hardness for the other related graph
classes, diamond-free, house-free, series-parallel, bi-
partite and planar.

Keywords: graph orientation, min-max optimization,
NP-hardness, cactus, (outer)planar, (Py-)bipartite,
series-parallel, house-free, diamond-free.

1 Introduction

1.1 Problem and Summary of Results

Let G = (V, E, w) be an undirected and edge weighted
graph, where V| E and w denote the set of nodes,
the set of edges and a positive integral weight func-
tion w : E — Z%, respectively. An orientation A of
the graph G is a set of an assignment of a direction
to each edge {u,v} € E, i.e., either (u,v) or (v,u)
is contained in A. The weighted outdegree of w is

> tuwres: w({u,v}). In this paper, we consider the
(u,v)EA

problem of finding an orientation such that the max-
imum weighted outdegree is minimum in the resulted

*This work is partially supported by Grant-in-Aid for Scientific
Research on Priority Areas 16092222 and 16092223, and by Grant-
in-Aid for Young Scientists (B) 17700022, 18700014 and 18700015.

TCurrently visiting Dept of Computer Sci and Eng, University

of Washington, Seattle, WA 98195-2350, USA.
Copyright (©2008, Australian Computer Society, Inc. This pa-
per appeared at the Fourteenth Computing: The Australasian
Theory Symposium (CATS2008), Wollongong, NSW, Aus-
tralia. Conferences in Research and Practice in Information
Technology, Vol. 77. James Harland and Prabhu Manyem, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

11 1.1

¢ 1I 2I>3 113 ¢ I 21\3 1:‘I3
2 2 2 2
@ (b)

Figure 1: Example of MMO: (a) An edge weighted
graph, and (b) an orientation.

directed graph. We call this problem Minimum Maxi-
mum Outdegree (MMO). See Fig. 1 for an example of
an edge weighted graph and its orientation in which
the maximum weighted outdegree is 3 (optimal).

MMO has several applications. For example, such
orientations can be used in efficient dynamic data
structures for graphs that support fast vertex adja-
cency queries under a series of edge operations (Bro-
dal & Fagerberg 1999). Also, MMO can be consid-
ered a variation of art gallery problems (e.g., (Chv’atal
1975, O’Rourke 1987)) and the minimum makespan
problem (e.g., (Lenstra, Shmoys & Tardos 1990)). In
particular, we will discuss the minimum makespan
problem in the next subsection.

MMO can be solved in polynomial time if all the
edge weights are identical (Asahiro, Miyano, Ono, &
Zenmyo 2007, Kowalik 2006, Venkateswaran 2004),
but it is NP-hard in general (Asahiro, Miyano, Ono,
& Zenmyo 2007, Asahiro, Jansson, Miyano, Ono, &
Zenmyo 2007). Even with non-identical weights, the
problem can be also solved in polynomial time if the
input graph is limited to a tree (Asahiro, Miyano,
Ono, & Zenmyo 2007), while for planar bipartite
graphs it is still (weakly) NP-hard.

As many other studies on the computational com-
plexity, it is valuable to consider the frontier between
subproblems we know to be solvable in polynomial
time and those we know to be N'P-hard. In this pa-
per, we focus on the structure of the input graphs
related to the A"P-hardness. Fig. 2 shows the current
state of knowledge on the complexity of MMO, includ-
ing the results in this paper. The figure represents
that for example, cactus is a superclass of tree at the
bottom. As another example, Ps-bipartite is a super-
class of bipartite and cactus, but bipartite and cactus
are not comparable, and so on. All the reductions
to show the A'P-hardness are done by simple graphs
except outerplanar graphs, which we will explain in
a later section. Namely, the weak A'P-hardness of
series-parallel graphs is proved with simple graphs,

97



CRPIT Volume 77 - Theory of Computing 2008

98

general graphs. S(1)

P,-bipartite: S(*) house-free: S(*) diamond-free: S(*)

bipartite: S(*) .
[previously W(2)]

R

& e PR)

*

planar: S(*)
[previously W(2)]

cactus: P(*)

Figure 2: State of knowledge on the complexity of MMO. (W: Weakly N'P-hard, S: Strongly NP-hard, (1):
The results in (Asahiro, Jansson, Miyano, Ono, & Zenmyo 2007), (2): The results in (Asahiro, Miyano, Ono,

& Zenmyo 2007), (*): The results in this paper).

but that of outerplanar graphs is proved with multi
graphs, and so the complexity for simple outerpla-
nar graphs is still open. Additionally, we propose a
pseudo-polynomial time algorithm for series-parallel
graphs, which shows the tightness of our weak NP-
hardness result in a sense; MMO for simple outerpla-
nar graphs is either in P or weakly NP-hard.

1.2 Related Work

As mentioned before, another aspect of the problem
MMO is scheduling; MMO is regarded as a special
case of minimum makespan or scheduling on unrelated
parallel machines (R||Ciyqq in the now-standard nota-
tion): Given a set J of jobs, a set M of machines, and
the time p;; taken to process job j € J on machine
i € M, its goal is to find a job assignment so as to
minimize the makespan, i.e., the maximum process-
ing time of any machine. For an undirected graph,
let us regard the nodes as the machines and the edges
as the jobs. From the viewpoint of scheduling, MMO
has the following two restrictions: (i) Each job must
be assigned to exactly one of pre-determined two ma-
chines, and (ii) the processing time of each job does
not depend on the machines.

In (Lenstra, Shmoys & Tardos 1990), a polyno-
mial time 2-approximation algorithm for the general
R||C sy and its 3/2 inapproximability are shown.
Still there has been gap between these upper and
lower bounds; it is one of the well-known open prob-
lems(Schuurman & Woeginger 1999). To tackle this
kind of situation, it is a natural way to restrict the
input as a reasonable subclass: In (Gairing, Liicking,
Mavronicolas, & Monien 2004), a polynomial time
2 — 1/k-approximation algorithm is proposed, un-
der the assumption that the processing times of jobs
are integers and k is the maximum among them.
Also, (Asahiro, Jansson, Miyano, Ono, & Zenmyo
2007) considers a further restricted problem in which
the processing time of each job is either 1 or k,
and then proposes a polynomial time 2 — 2/(k + 1)-
approximation algorithm for & > 3, and shows that
3/2 inapproximability still holds for this restricted
case even with k = 2. In brief summary, the approxi-
mation ratios of those algorithms are slightly smaller
than two, and the same (3/2) lower bound is shown
for the restricted case. However, any tight bound be-
tween 3/2 and 2 has not been found for about two
decades. The contribution of this paper, from the
viewpoint of scheduling, is to make clear what kind
of structure of the instances is really difficult to solve.

2 Preliminaries

2.1 Definitions

Let G = (V,E,w) be an edge weighted undirected
graph, where V and F are node and edge sets, re-
spectively, and w is a positive integral weight func-
tion w : E — Z*. V(G) and E(G) also denote the
node set and edge set of the graph G, respectively.
We denote the undirected edge whose endpoints are
u and v where u < v in lexicographic order by {u, v},
and denote the directed edge (or arc) from u toward v
by (u,v). An orientation A of the graph G is a set of
an assignment of a direction to each edge {u,v} € E,
i.e., A contains exactly either one of (u,v) and (v, u).
Also A({u,v}) denotes the direction (u,v) or (v, u) of
an edge {u,v} in A.
For a node v, dg(v) denotes the degree of v in G,
e., da(v) = |[{{v,u} | {v,u} € E}|. The weighted
outdegree (or, simply outdegree) dg,(A,v) of a node v
under an orientation A of the graph G is defined as
the total weight of outgoing arcs of v, i.e.,

dé(A,v) = Z w({u,v}).

{u,v}€E: (v;u)eA

For simplicity we also use d(v) and d* (A, v) instead of
dg(v) and df(A,v) if the graph G we are discussing
is clear. Then the cost of an orientation A of a graph
G is defined to be Ay (G) = max,ey {d&(A,v)}.

A path P of length [ is denoted by a sequence of
nodes such as P = (vg,v1,v2,...,v;). Also a cycle
C of length [ is denoted by C' = (v1,ve,...,v;,v1).
In this paper, a cycle always refers a simple cycle,
namely, for the cycle C, v; # v; for any ¢ and j. A
node in a cycle is a gate if it is adjacent to any node
that does not belong to the cycle, so that the degree
of the gate is at least three.

A graph is a cactus if every edge is part of at most
one cycle. The definition of the series-parallel graphs
is little bit complicated (p.100 of (Gross & Yellen
2004)):

Definition 1 A series-parallel graph with distin-
guished terminals I and r is denoted (G,l,r) and is
defined recursively as follows:

e The graph consisting of a single edge {vi,va} is
a series-parallel graph (G,l,r) with | = v and
T = V2.

o A series operation (G1,11,71)®s(Ga, la, r2) forms
a series-parallel graph by identifying r1 with ls.
The terminals of the new graph are ly and 2.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

o A parallel operation (Gi,l1,m1) ©p (Go,l2,72)
forms a series-parallel graph by identifying Iy
with ly and r1 with ro. The terminals of the new
graph are ly and r1.

o A jackknife operation (G1,l1,71) @; (Go,l2,72)
forms a series-parallel graph by identifying
with ly; the new terminals are 11 and r1.

The definitions of graph classes except cactus and
series-parallel in this paper, s.t., house-free, diamond-
free and so on, can be found in (Brandstidt, BangLe,
& Spinrad 1987, Gross & Yellen 2004). We would
like to note here that tree, bipartite, cactus, house-
free, and diamond-free are obviously recognized in
polynomial time (See also, e.g., (Kloks, Kratsch, &
Miiller 2000)). Also, there are efficient recognition
algorithms for outerplanar, series-parallel, and pla-
nar that run in linear time (Mitchell 1979, Valdes,
Tarjan, & Lawler 1982, Hopcroft, & Tarjan 1974).
However, it is N'P-hard to recognize Pj-bipartite
graphs (Hoang, & Le 2001).

2.2 Problem S-MMO and Basic Properties

The problem that we consider in this paper is the
minimization of the maximum outdegree of a given
undirected graph with edge weights. We formally de-
fine our problem as follows.

Problem: S-MINIMUM MAXIMUM OUTDEGREE
(S-MMO)

Input: An undirected graph G = (V, E, w), where
w is an edge weight function w: £ — S.

Output: An orientation A that minimizes Ay (G).

If we have no restriction on the weight function
w (just it should be a positive integral function), our
problem is Z*T-MMO. In this paper, we mainly con-
sider the problem for the case of S ={1,2,...,k}.

Let A*(G) denote the cost of an optimal ori-
entation OPTg of the graph G, ie., A*(G) =
Aopr, (G). We say a graph orientation algorithm is
a o-approximation algorithm if Ayr.¢(G)/A*(G) < o
holds for any graph G, where ALG is an orientation
obtained by the algorithm for G. Every orientation
has the following trivial lower bound caused by the
maximum weight wpax of edges (Asahiro, Miyano,
Ono, & Zenmyo 2007): For a graph G and any orien-
tation A, Ap(G) > Wax, 80 that A*(G) > Wmax-

The following property of a cactus is very simple
but plays a key role to construct the polynomial time
algorithm in the next section.

Proposition 2 In a cactus G in which dg(v) > 2
for allv € V, there always exists a cycle with at most
one gate.

Proof: We prove this proposition by contradiction.
Suppose that all cycles have at least two gates. Let
C be a cycle of length I, C = (v1,va,...,v;,01).
Without loss of generality, assume that v; is a
gate, i.e., there exists a node xo ¢ V(C) adjacent
to vy. Since d(z2) > 2 by the assumption, there
also exists a node x3 adjacent to xo. Similarly, for
a node x; reachable from vy, there exists a node ;1
adjacent to x;. Consider a path P starting from
vi, P = (vi,22,...,2p) for p > 2. If 2; = v, for
some 2 < 7 < pand 2 < h <, there exists a cy-
cle C" = (v, 2, -+, 2;(= vp), Vh—1,...,02,01). The

Figure 3: Proof of Proposition 2.

cycles C and C’ share the edge {vi, v}, which con-
tradic)ts that G is a cactus. (See Fig. 3 (a) in which
h=3

Hence, we assume that such a node z; does not ex-
ist. It turns out to happen x; = vy or x; = x, for some
7 and 2 S h S 7 — 1, i.e., C{/ = <U1,Z‘2, e ,331'_1,.231‘(:
v1)) or C8 = (xp, Tpa1,-..,Ti—1, (= xp)), respec-
tively, is a cycle with the gate x;. Since we assumed
that every cycle has at least two gates, there must ex-
ist another gate g # v1 in CY, or g € {@p41,...,Ti—1}
in C¥, respectively. We can replace C by C7 or C¥
and vy by g in the above discussion and then con-
tinue. However, since the number of the nodes in G is
bounded, eventually a contradiction occurs, namely,
the cycle C7 or C4 has only one gate or G is not a
cactus. (See Fig. 3 (b)) O

3 Polynomial Time Algorithm for Cactuses

In this section, we present a polynomial time al-
gorithm for cactuses. First we introduce a re-
laxed version (S,T)-MINIMUM MAXIMUM OUTDE-
GREE ((S,T)-MMO) of the original problem S-MMO
and show its several propositions in Sec. 3.1. In
Sec. 3.2, we describe an algorithm to solve the de-
cision version (S,7)-MMO(K) of (S,T)-MMO. Fi-
nally, the proposed polynomial time algorithm to
solve (S, T)-MMO will be given in Sec. 3.3.

3.1 Relaxed Problem (S,7)-MMO

We relax S-MMO to a problem whose input graph
has node weights as well as edge weights. Before de-
scribing the problem formally, we define some nota-
tions analogously to those for edge weighted graphs
in Sec. 2.1.

Let G = (V, E, f,w) be a node and edge weighted
undirected graph, where V' and E are node and edge
sets, respectively, and f and w are positive integral
weight functions f : V — Z* and w : E — Z*. The
weighted outdegree (or, simply outdegree) dJCS (A,v) of
a node v under an orientation A of the graph G is
modified to the weight of v itself plus the total weight
of outgoing arcs of v, i.e.,

d& (A, v) = f(v) + >

{u,v}€E: (v,u)€A

w({u,v}).

Definitions of the others, e.g.,, degree, orientation,
cost of an orientation, etc., are the same as before.
Then the new problem is defined as follows.

Problem: (S,7)-MINIMUM MAXIMUM OUTDE-
GREE ((S5,T)-MMO)

Input: An undirected graph G = (V, E, f,w),
where f is a node weight function f:V — T,
and w is an edge weight function w: £ — S.

Output: An orientation A that minimizes Ap(G).

99



CRPIT Volume 77 - Theory of Computing 2008

100

Theorem 3 Consider a mnode and edge weighted
graph G = (V, E, f,w), an edge weighted graph G° =
(V,E,w), and a constant c. If f(v) =c for allv €V,
then Ap(G) = AA(G) + ¢ for any orientation A. O

From the above theorem, we obtain the follow-
ing corollary in a straightforward way, and so N'P-
hardness results for S-MMO (by the previous stud-
ies and in this paper as well) are directly applied to
(S, T)-MMO.

Corollary 4 For a node and edge weighted graph
G = (V,E, f,w), (S,T)-MMO is equivalent to S-
MMO, if f(v) =0 for allve V. O

For simplicity, we denote (S5, ¢)-MMO to repre-
sent (S, {c})-MMO, that is f(v) = ¢ for all nodes.
For a pair of graphs G = (V,E, f,w) and G' =
(VI E', f',w'), G' is a subgraph of G if V! C V,
E’ C E, and w'(e) = w(e) for all e € E’. A sub-
graph G’ of G is called a proper subgraph of G if an
additional condition f'(v) = f(v) for all v € V' is
satisfied. Note that in this paper we will only see
subgraphs satisfying that f’'(v) > f(v) for all nodes.
Here we extend the definition of the orientation: An
orientation A of a graph G may contain (u, v) or (v, u)
for {u,v} & E(G). This extension does not affect the
value of (out)degrees by definition. When we have to
deal with w({u,v}) for {u,v} ¢ E(G), we just con-
sider w({u,v}) =

In the followmg, we state four propositions 5, 6,
7, and 8. These propositions are utilized in order to
develop the polynomial time algorithms for cactuses.
Proposition 5 shows a relationship between optimal
costs for two graphs only node weight functions of
which are different. Propositions 6 and 7 are on the
optimal costs for proper subgraphs of a graph. Then
in Proposition 8, we take a look at the optimal costs
for non-proper subgraphs. Since they are not difficult
to show, we omit the proofs for these propositions.

Proposition 5 Consider two graphs G =
(V,E, f,w) and G' = (V,E,f,w) such that
f) < f'(v) for allv € V. Then A*(G) < A*(G)

U

olds.

Proposition 6 For a graph G, its proper subgraph
G' = G—e fore € E(G), and a pair of orientations A
of G and N of G', s.t., N = A\ {A(e)}, the following
three conditions are satisfied:

(i) Ar(G') = An(G),

(ii) An(G) > An(G), and
(iii) A*(G) > A*(G"). O

Proposition 7 For a graph G, its proper subgraph

G' = G—v forv € V(QG), and a pair of orientations A
of G and N of G, s.t., N = A\ {A({v,u}) | {v,u} €

E(G)}, the following three conditions are satisfied:
(i) Aa(G') = A (G),

(1) An(G) > An(G'), and

(iii) A*(G) > A*(G"). O

Proposition 8 Consider a gmph G = (V,E, f,w)
and its edge e = {u,v}, , flu) + wle) > K
for a constant K. If A*( ) < K, then (v,u) €
OPTg and also A*(G) = A*(G) for the subgmph
G = (V,E',f',w'), where E' = E\ {e}, f'(v) =

F0) +wle), ['lw) = f(z) for all 2 € V' {0}, and
w'(e) = w(e) for all e € E'. O

3.2 Decision Problem (S5,T)-MMO(K)

In this section, we consider a decision version (S, T)-
MMO(K) of (S,T)-MMO and present a polynomial
time algorithm to solve it, which is the main part of
the algorithm to solve {1,...,k}-MMO for cactuses.

Problem: (S,7)-MMO(K)

Input: An undirected graph G = (V,E, f,w),
where f is a node weight function f:V — T,
and w is an edge weight function w: F — S.

Question: Is there an orientation A such that
Apr(G) < K?

Remind that any orientation has cost at least the
maximum edge weight wmax, SO it is assumed to be
K > wWmax- Again, (5,0)-MMO(K) is considered as
a decision version of S-MMO.

We first introduce three procedures OutAll,
FixEdge, and OrientCycle, which are used in the
proposed algorithm AlgCactus. The first procedure
OutAll(G, A,v) (Fig. 4) determines orientations for
all edges connecting to a node v, and then remove
v and the edges from the (current) graph G. The
second procedure FixEdge(G, K, A, e) (Fig. 5) deter-
mines an orientation for an edge e and then remove e
from the (current) graph G, which is based on Propo-
sition 8. The last procedure OrientCycle(G, A, C)
(Fig. 6) determines an orientation for a cycle C having
at most one gate. Fig. 7 shows a detailed description
of the whole algorithm AlgCactus. The correctness
and time complexity of the algorithm AlgCactus are
shown in the two lemmas below in this section.

Fig. 8 depicts an example execution of AlgCactus
for a graph (Fig. 8(a)) with K = 3, where nodes
and edges drawn by dotted lines are removed and the
numbers in boxes represent node weights greater than
0. First, OutAll is applied to the node s (Fig. 8(b)),
so that there is no node and edge satisfying the con-
dition (1) or (2) in AlgCactus. Next, OrientCycle is
applied to the cycle C' (Fig. 8(c)) in which the node
t is the gate, and then the edge {¢,u} is processed by
FixEdge (Fig. 8(d)). Eventually, we obtain an final
(optimal) orientation by applying, say, OutAll to the
node t of the graph in Fig. 8(d), and then FixEdge to
the remaining edge.

Lemma 9 The algorithm AlgCactus outputs correct
answers for (S,T)-MMO(K).

Proof: Let the final orientation constructed by
AlgCactus be Ay that is constructed regardless of
the outputs of AlgCactus, "Yes’ or 'No,” for the in-
put graph. Note that orientations for some edges may
not be determined in Ay when the algorithm outputs
'No.” The algorithm AlgCactus determines a part of
the orientation Af and constructs a subgraph by re-
moving nodes anc{ edges step by step. We prove that
such a constructed subgraph is sufficient to be con-
sidered in order to obtain correct answers, i.e., all the
nodes removed from the input graph have outdegree
at most K under Ay, and the optimal cost of such a
subgraph is at most that of the input graph.

(Step 1: OutAll) Let two graphs before and after
an application of OutAll be G; and Hi, respectively.
Also A; denotes the current orientation at the end
of Step 1. By definition, OutAll does not change
the value of f(u) for any node w, and so H;p is a
proper subgraph of Gy. Therefore, A*(G1) > A*(Hy)
holds from Proposition 7. Since Ay O A; and orien-
tations for all the edges connecting to the node v that



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Procedure 0utAll(G,A,v)

Input: A graph G = (V| E, f,w), a (partial) ori-
entation A, and a node v € V.

Step 1: Add (v,u) to A for all {u,v} € E.

Step 2: Remove the node v and its connecting
edges from G.

Figure 4: Procedure OutAll

Procedure FixEdge(G, K, A,e)

Input: A graph G = (V, E, f,w), a constant K,
a (partial) orientation A and an edge e =
{u,v} € E.

Step 1: If f(u) +w(e) > K, then add (v,u) to A,
and set f(v) = f(v) + w(e). Otherwise, add
(u,v) to A, and set f(u) = f(u) + w(e).

Step 2: Remove the edge e from G.

Figure 5: Procedure FixEdge

Procedure OrientCycle(G,A,C)

Input: A graph G = (V| E, f,w), a (partial) ori-
entation A, and a cycle C = (v1,v9,...,v;,v1
having at most one gate.

Step 1: If C has no gate, then

(a): Orient the edges of C in one direction
along C, i.e., add (vi,vs2), (vo,v3), ...,
(v, v1) to A.

Otherwise, i.e., C' has exactly one gate, say,
v1, execute the following:

(b): If w(gvl,vg}) < w({v1,v}), then add
v1,V2), (V2,v3), ..., (v, v1) to A and set
f(o1) = fv1) + w({vr,v2}).

(c): Otherwise, add (v1,v;), (vi,vi—1), ..,
(v2,v1) to A and set f(vi) = f(v1) +
w({vy,v}).

Step 2: Remove all the nodes and edges of C' ex-
cept the gate from G.

Figure 6: Procedure OrientCycle

is removed by OutAll are already determined in Aq,
d&(Ap,v) = d5(Ar,v) < K.

We can consider other orientations than A; in re-
lation to the edges connecting to v, for example, one
edge {v,x} is oriented inward as (z,v). By such an
orientation, we obtain a graph H; in which f(z) is
equal to f(z) in Gy plus w({x,v]}), although f(x)
in H; equals to that in G;. The difference be-
tween H; and Hj is only the weight f(x), and from
Proposition 5, A*(Hj) > A*(H;) holds. Hence, if
A*(Gh1) < K, then A*(H;) < K also holds. (It may
hold that A*(Hj) > A*(G;)) Therefore, it is suffi-

Algorithm AlgCactus(G, K)
Input: A cactus G = (V, E, f,w) and a constant
K.

Output: Yes (and an orientation A), or No .
Step 0: Set A :=0), and G’ :=G.
Step 1: If there exists a node u € V(G'), s.t.,

)+ Y wlueh) <K, (1)
{u,v}eE(G")
then execute OutAl1l(G’, A, u).

Step 2: If there exists an edge e = {u,v} € E(G),
s.t.,

f(u) +wle) > K, (2)
then execute FixEdge(G', K, A, e).

Step 3: Repeat Steps 1 and 2, until there is nei-
ther a node nor an edge satisfying the condi-
tions (1) or (2).

Step 4: If f(v) > K for some node v € V(G'),
then output 'No’ and halt.

Step 5: Remove isolated nodes (if exist) from G’.
If G’ is empty, output "Yes’ (and A) and halt.

Step 6: Find a cycle C' having at most one gate.
Execute OrientCycle(G’, A, C), and then re-
turn to Step 1.

Figure 7: Algorithm AlgCactus

Figure 8: Example execution of AlgCactus: (a) Input
graph, (b) application of OutAll to the node s, (c
application of OrientCycle to the cycle C, and (d
application of FixEdge to the edge {t,u}.

cient to consider only Hi, to solve (S,T)-MMO(K).

(Step 2: FixEdge) Let the two graphs at the be-
ginning and the end of Step 2 be G2 (= Hy above) and
Hs, respectively. From Proposition 8, we can see that
it A*(Gy) < K, then A*(G2) = A*(Hsz). Note that
no node is removed at Step 2 of AlgCactus. There-
fore, again it is sufficient to consider only Hs, to solve
(S, T)-MMO(K).

(Step 3: Repeating Steps 1 and 2) By repeat-
ing Steps 1 and 2, we finally obtain a graph H,
which is a subgraph of the input graph G. From the
above discussions on Steps 1 and 2, we observe that
A*(G) > A*(H). Therefore, since all the nodes al-

101



CRPIT Volume 77 - Theory of Computing 2008

102

ready removed have outdegree at most K under the
current orientation and also under the final orienta-
tion Ay, what we need to do is to consider the optimal
cost for H to solve (S, T)-MMO(K).

(Steps 4 and 5: Halting criteria) If there exists a
node v in H having f(v) > K, then it is apparent that
A*(H) > K and so A*(G) > K. Therefore we answer
'No.” The rest of the case is that every node v in H has
f(w) < K. Even if an isolated node is removed, the
(current) orientation A is not modified at all, and the
outdegree of the removed node does not change under
Ay. If the graph is turned to be empty after removing
all the isolated nodes, its optimal cost is trivially zero.
Namely, A*(H) = max,cy ) {f(v)} < K. Also since
all orientations for all edges have already determined
in A, A is the final orientation Ay. In addition to that
the removed nodes at Steps 1 have outdegree at most
K under Af(= A) as mentioned above. Therefore we
can conclude that the answer is "Yes.’

(Step 6: OrientCycle) Gg and Hg denote the
two graphs at the beginning and the end of Step 6,
respectively. All the nodes have degree at least 2 in
G, because, otherwise a contradiction occurs: All
isolated nodes, that is, the nodes having degree 0
are removed in Step. 5. Suppose that there exists
a node u in Gg such that dg,(u) = 1, and let the
edge connecting to u be e. Since the degree of u
is one, f(u)+ > ¢, vyem(as) WH{u, v}) = fu) + wle)
holds, which means that either of the conditions (1)
and (2) is always satisfied. However, this contra-
dicts that the fact that Gg is obtained after repeat-
edly applying Steps 1 and 2 until there does not ex-
ist such a node (Step 3). From this observation and
Proposition 2, there always exists a cycle C' having at
most one gate. Let a cycle with at most one gate be
C=(vi,...,v,v1) (I >2).

Case (a): C has no gate. In this case, Step. 1(a)
of OrientCycle is applied to the cycle C'. Since there
is no node in C satisfying the condition (2), every
node in C' has outdegree at most K under the ori-
entation determined in Step. 1(a) of OrientCycle
and also under the final orientation Ay. Since C has
no gate, C' is a maximal connected component, so
that C' and Hg does not share any nodes and hence
A*(Gg) > A*(Hg). [End of Case(a)]

Case (b): C has exactly one gate. Let the
gate be vy without loss of generality, and suppose

w({vy,v2}) < w({v1,v}) (The discussion for the case
w({vy,v2}) > w({v1,v}) is similar). In this case,
Step. 1(b) of OrientCycle is applied to C.

Consider a node v € {vg,...,v}. Since v is not a
gate, d(v) = 2 holds. Let the two edges connecting
to v be e; = {u,v} and e3 = {¢,v}. For v and ey, eq,
neither conditions (1) nor (2) does not hold. Hence,
if the optimal cost is at most K, we cannot orient
e1 and ey as (v,u) and (v,t) at the same time by
the condition (1) in order to obtain an orientation
whose cost is at most K. Also both of f(v) + w(eq)
and f(v) +w(ez) are at most K by the condition (2).
This situation is true for all the nodes in C' except
the gate v1. Therefore, under the orientation A, the
outdegree of every node in C' except v; is at most K.

There are two other possibilities for the
orientation of C' in order to construct a fi-
nal orientation whose cost is at most K:
I As ) {(vi,w), (v, v1-1), - - ., (v2,v1)},
which is in  the reverse direction  of
that by OrientCycle, and (H; Arr )
{(Ula 'UQ), ('UQ, 03)7 ) (Uiflv Ui)a (vi+17 Vi), (vi+2a viJrl)v
ooy (v, v1—1), (v1,v1)} for some ¢ # 1, in which both
of the two edges connecting to the gate vy in C
are oriented outward. By the conditions (1) and
(2), another orientation has the cost greater than

K. Let Hél) and HéH) denote the subgraphs that
can be obtained by those orientations A; and Ajj,
respectively, i.e., by removing the nodes in C' except
the gate vy, and increasing f(v1) by w({vi,v;}) and
w({v1,v2}) +w({v1,v}), respectively. From Proposi-

tion 5, A*(H") > A*(Hg) and A*(H{'") > A*(Hy)
hold, since f(v1) in Hg is smaller than those in Hél)

and HéH). Therefore, it is sufficient to consider the
graph Hg to solve (S,T)-MMO(K).
[End of Case (b)]
From the above discussions, by Step 6, the re-
moved nodes have outdegree at most K under Ay
and for the resulted graph Hg, A*(Gg) > A*(Hg)
holds. In conjunction with the discussions above, the
nodes removed so far at Steps 1, 2, 5 and 6 have
outdegree at most K under the orientation Ay, and
also A*(G) > A*(Hg) holds. Then, in order to solve
(S, T)-MMO(K) for the input graph G, what we need
to do in the rest is to solve (S,T)-MMO(K) for the
graph Hg by returning to Step 1. g

The following proposition gives the time complex-
ity of the algorithm AlgCactus.

Proposition 10 AlgCactus runs in O(|E|*) time.

Proof: At Steps 1, 2, and 6, orientation of at least
one edge is determined. Therefore the total number
of processing those steps, and thus Steps 3, 4, and 5
also, are bounded above by O(|E|). Since each step
can be done by scanning nodes and edges in O(|E|)

time, the total running time is O(|E|?). O

Although we omit the proof, the running time of
AlgCactus can be reduced with a careful preprocess-
ing:

Lemma 11 The algorithm AlgCactus runs in
O(|E|) time with preprocessing done in O(|V|]log |V])
time. U

3.3 Polynomial Time Algorithm

In this section, we show that {1, ..., k}-MMO is solv-
able in polynomial time by proving an upper bound
of optimal costs of orientations for cactuses:

Lemma 12 For any cactus G, A*(G) < fmax +
2Wmax for (S, T)-MMO, where fmax and wmax are the
mazimum weights of nodes and edges, respectively.

Proof: The proof is constructive. First we apply
Steps 0 through 5 of AlgCactus except for Step 4
to G with K = fiax + 2wWmax, by which the removed
nodes have outdegree at most fiax + 2wWmax under the
final orientation, and remaining nodes have outdegree
0 under the current orientation at the end of Step 5.
Then we modify Step 6 of AlgCactus as follows and

apply it.

Step 6”: Find a cycle C = (vy,v2,..
ing at most one gate.

., U1, v1) hav-

e If C' does not have a gate, add
(v1,v2), (v2,v3), ..., (v, v1) to A.
e Otherwise, i.e., C' has exactly one gate,
say, v;. Add (v1,v;) and (v1,v2), (ve,v3),
. (v—1,v1) to A.

Then remove C' except the gate and return to
Step 1.




Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

By this modified Step 6, we observe that

e Every remaining node v has outdegree f(v) un-
der the current orientation at the end of Step 6.

e If C has the gate v;, v; has outdegree at most
f(v1) + 2wmax under the final orientation.

e The nodes removed at Step 6’ except v; and the
gate v; have outdegree at most fiax+wmax under
the final orientation.

Repeating the procedures, all the nodes are re-
moved from the graph at last, and all the removed
nodes have outdegree at most fiax + 2Wmax under the
final orientation. Therefore, A*(G) < fmax + 2Wmax
holds. Il

Remind that we assume that node and edge weight
functions f and w are integral functions in this pa-
per. Therefore, we can obtain optimal orientations for
(S, T)-MMO by solving O(log(fmaz + Wmaz)) times
the (S,T)-MMO(K) in a binary search manner on
K for wpax < K < frax + 2wWnax from the above
lemma. Based on the Lemma 11, (S, T)-MMO is solv-
able in polynomial time O(|V|log |V|+ |E|log( fmax +
Wmax)) for cactuses (Note that the preprocessing for
AlgCactus has to be done only once). In a straight-
forward way, we obtain the following theorem for
{1,...,k}-MMO (= ({1,...,k},0)-MMO):

Theorem 13 {1,...,k}-MMO is solvable in polyno-
mial time O(|V]log|V| + |E|logk) for cactuses. [

4 Pseudo-polynomial Time Algorithm for
Series-Parallel Graphs

In this section, we describe the main idea of a pseudo-
polynomial time algorithm solving {1,...,k}-MMO
for series-parallel graphs. The algorithm is a dy-
namic programming-based one, which utilizes a de-
composition tree(Valdes, Tarjan, & Lawler 1982) de-
fined by the series, parallel and jackknife operations.
It is known that determining whether a given graph
G = (V,E) is a series-parallel graph can be done in
linear time (Wimer & Hedetniemi 1988, Borie, Parker
& Tovey 2002). Moreover, we can also obtain a de-
composition tree T' of G in linear time if G is a series-
parallel graph.

For an arbitrary series-parallel graph (G,l,r),
where [ and r are left and right terminals, respec-
tively, and two values w; € {0,1,...,wg(l) def

> urerc w{lLuh)} and w, € {0,1,... , we(r)
2 iruyen) W{r,ub)}, we define

WSP(G, 1,7, w,w,)

def

= mAinUeH‘l/a(é) {dé’;(A, v)

dé (A, l) = w,
d&(Ar) =w, |7
where A is an orientation for G.

In a decomposition tree, let us assume that a
(sub)tree Ty, is composed from its subtrees T, and T,
by an operation series, parallel, or jackknife, where
T,,T, and T, correspond to (Ga,la,74), (Go,lp,78)
and (Ge,l,rc), respectively. Roughly speaking, for
series, parallel, and jackknife operations, the follow-
ing equations (3), (4), and (5) hold, respectively:

WSP(G(Z’ laa Ta, Wi, wT)
WSP(Gy, lp, 16, wi, wy),
(3)

= min max
Wp,We

WSP(G(:, le,Te, We, wr)a
Wp + We

Algorithm AlgSP(G)
Input: A series-parallel graph G = (V, E, w).
Output: A*(G).

Step 0: Construct a decomposition tree T for G,
and let [ and r be two terminals of G.

Step 1: For all w; = 0,1,...,wg(l) and w, =
0,1,...,wg(r), compute WSP(G,I,r, w,w,
in a recursive manner by equations (3), (4
and (5).

Step 2: Output miny, ., WSP(G,I,r, w, wy).

Figure 9: Algorithm AlgSP

WSP(G(Z, layra; wi, wT’)

WSP(Gy, ly, ry, Wei, Wey ),
WSP(Gc,lc,rc;wcl;wCT)7 (4)

wi, Wy

= min max
Wy twe=wy,
Wyt wer=wp

WSP(Ga,laaraawlva)
WSP(Gb,lbarbawl’wb’f‘)’
), ¢ (5)

= min max

Wyt we=wr,
Wer

WSP(GC)Z(17T(!7wCl7wCT‘
Wy (: Whr + wcl)

The above equations (3), (4) and (5) show a prin-
ciple of optimality, which yields an algorithm based
on the dynamic programming. Fig. 9 shows the algo-
rithm. Now we discuss the time complexity of A1gSP.
As mentioned above, Step 0 is done in O(|E|) time. In
Step 1, we keep wg(l) X wg(r) WSP values for each
(G,l,7), and if we have all WSP values for its two
children, the evaluation of equations (3), (4) and (5
can be done in wg, (1) X wa, (le), wa, (la) X wa, (rq
and wg, (rq) X wa, (r.) time, respectively. All of these
are bounded by k2?|V|?. The number of recursions is
at most | E|, so this step is done in O(|E|k?|V|?). Step
2 can be done also in O(k?|V'|?) time. Therefore the
total running time of AlgSP is O(k?|E||V|?), which
is pseudo-polynomial for the input size. More details
will appear in journal version.

Theorem 14 {1,...,k}-MMO is solvable in pseudo-
polynomial time O(K%|E||V|?) for series-parallel
graphs. O

5 NP-hardness

In this section, we show the ANP-hardness of
{1,...,k}-MMO for restricted graph classes: outer-
planar, series-parallel, planar, bipartite, P,-bipartite,
diamond-free, and house-free. We again note that
outerplanar, P,-bipartite, diamond-free, and house-
free are minimal superclasses of cactus (Brandstadt,
BangLe, & Spinrad 1987). The following theorem
shows the weak A'P-hardness of {1,..., k}-MMO for
(multi) outerplanar graphs, but its proof is quite easy.

Theorem 15 {1,...,k}-MMO is weakly N'P-hard
for (multi) outerplanar graphs.

Proof: The proof is by a polynomial time reduc-
tion from the weakly N"P-hard problem PARTITION

103



CRPIT Volume 77 - Theory of Computing 2008

104

S

g

Figure 10: Proof of Theorem 15.

([SP12] on p.223 of (Garey & Johnson 1979)): Given
a set S = {s1,82,...,8,} of n positive integers, de-
termine if there erists a subset S’ C S such that
ZsieS’ Si = ZsieS\Sf Si-

We construct an edge weighted graph G =
(V,E,w) from an instance of PARTITION. Let the
instance of PARTITION be S = {s1,$2,...,8,}. The
node set V consists of two nodes, V = {s,s’}. The
edge set E contains n multiple edges ey, es, ..., e,
connecting between the nodes s and s’, where the
weight of each edge e; is equal to s;, i.e., w(e;) = s;.
The graph G is clearly outerplanar. Let us define
W =3, cg si/2. This reduction is obviously done in
polynomial time. See Fig. 10 for an example of the
case S ={1,2,4,5,6}.

We consider that the situation s; € S (or s; € S’)
corresponds to orient the edge e; from s to s’ (or
s’ to s) in G. If there is a set 8" C S such that
Dsies Si = Dges\g i = W, then both of the out-

degrees of s and s’ in G is equal to W under the corre-
sponding orientation, which is an optimal orientation.
Otherwise, either of them has outdegree greater than
w. O

The NP-hardness of {1,...,k}-MMO for series-
parallel graphs is again proved by a reduction from
PARTITION. Since the constructed graph in the
above proof is also a series-parallel graph, the N'P-
hardness for series-parallel graphs also holds straight-
forward. However, the constructed graph in the above
proof is a multigraph, and thus, the A"P-hardness has
been proved only for multigraphs. The objective of
the following theorem is to show the A"P-hardness for
simple graphs; however it is not applicable to outer-
planar graphs.

Theorem 16 {1,...,k}-MMO is weakly N'P-hard
for series-parallel graphs.

Proof: From an instance S = {s1,82,...,8,} of
PARTITION, we construct an edge weighted graph
G = (V,E,w). The node set V is divided into two
types: (i) Subset nodes s and s’, and (ii) Item nodes
v; and v} for each s;. The total number of nodes is
2n + 2. Let us define W =3 _¢si/2. The edge set
E contains 3n edges, {s,v;}’s, {v;,v;}’s and {v}, s'}’s
for 1 < ¢ < n. As for the weights of the edges,
w({s,v;i}) = w{v},s'}) = s;, and w({v;,vl}) =W
for 1 < ¢ < n. This reduction is done in polyno-
mial time. See Fig. 11 for an example of the case
S =1{1,2,4,5,6} again.

We prove that there is an orientation A of G such
that Ap(G) < W if and only if there exists a set
S’ C S such that Esies' s; = W in the following.

(If part) Suppose that there exists a subset S’
such that ZS,ES’ s; = W. Consider the follow-

ing orientation A according to S’: If s; € S’, then
(s,vi), (v5,v}), and (v}, s") are in A; otherwise (s, v}),
(vi,v;), and (v;, s) are in A. Under this orientation
A, dY(A,s) = dT(A,s') = W. Also, if s; € S, then

dt(A,v;) = W and d(A,v)) = s; hold; otherwise

Figure 11: Proof of Theorem 16.

dt(A,v;) = s; and dT(A,v]) = W hold. Therefore,
since all the nodes have outdegree at most W under
A, Ap(G) < W holds.

(Only If part) This part is shown by proving that if
there exists an orientation A of G such that Ax(G) <
W, there exists a subset S’ C S such that D eicgr Si =

W. Suppose that such an orientation A exists.

Since w({vi, vi}) = W for all s, we observe that
either of v; and v, has outdegree at least W under
any orientation. If (v;,v) € A, (s,v;) is also in A,
because, otherwise d*(A,v;) > W that contradicts
the assumption Ap(G) < W. Similarly, if (v}, v;) €
A, then (s',v]) € A, too. Let J denote the set of
indices 4’s such that (s,v;) € A. The outdegree of
sunder Ais dT(A,s) = 3, ., w({s,vi}) = X, si-
For an index j ¢ J, the edge {s,v;} is oriented as
(vj,8) € A, and thus the edge {v;,v}} is oriented
as (v}, vj), because, otherwise the outdegree of v; is
greater than W. Since (v}, v;) € A, (s',v}) is also in

A. Then, it holds that d* (A, s") > 37, ; w({s',v]}) =
Digs si = 2W —d (A, s). Since Ay(G) < W, both
of d™(A,s) < W and dT(A,s’) < W must hold, by
which we have dt(A,s) = d"(A,s’) = W and then
Diessi=W. .

Now we go to the strong NP-hardness proofs. We
show that {1, k}-MMO for bipartite or planar graphs
is AP-hard. Both proofs are based on polynomial
time reductions from variants of SAT problem: Given
a set U = {x1,...,x,} of Boolean variables and a
CNF formula ¢ = /\ciGC ¢;, where C is a set of

clauses over U, determine if there exists a truth as-
signment for ¢.

Before explaining the reduction, we introduce sev-
eral variants of SAT. At-Most-3SAT(2L) is a restric-
tion of SAT where each clause includes at most three
literals and each literal (not variable) appears at most
twice in a formula. It can be easily proved that At-
Most-3SAT(2L) is N'P-complete by using problem
[LO1] on p. 259 of (Garey & Johnson 1979).

We call a CNF formula planar if graph G(¢) =
(V,E), where V.= U U C and E contains exactly
edges {z,c} such that either x or T belongs to the
clause ¢ for x € U and ¢ € C. It is known that Planar
SAT (or 3SAT), where an input CNF is restricted to
be planar, remains N'P-complete (Lichtenstein 1982).

We call a CNF formula monotone if each clause
contains either only negative literals or only positive
literals, and it is known that Monotone SAT, where
an input CNF is restricted to be monotone, remains
NP-complete (Gold 1978) (Also see [LO2] on p.259
of (Garey & Johnson 1979)). Monotone At-Most-
3SAT(2L) is a restriction of Monotone SAT where
each clause includes at most three literals and each
literal (not variable) appears at most twice in a for-



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Literal gadget

mula. We can see that Monotone At-Most-3SAT(2L)
is also N'P-complete by the following reduction: Let
¢i =V, ep, TaV V4, en, To be a clause of an arbitrary
At-Most-3SAT(2L) instance ¢, where P; (resp., N;) is
the set of positive (resp., negative) literals in ¢;. We
define a new variable z., for each ¢;. Then a new
monotone formula ¢ = /\cieC (x( vV \/waepi xa) A

(Te; V Va,en, To) has a truth assignment if and only

if ¢ has a truth assignment. Furthermore, ¢’ is still
an instance of At-Most-3SAT(2L) because the num-
bers of appearances of original literals are same as
¢ and new literals z.,’s and T;,’s appear exactly
once for each. Hence Monotone At-Most-3SAT(2L)
is (strongly) AN'P-complete.

We first show the strong NP-hardness of {1,k}-
MMO for bipartite graphs.

Theorem 17 For any integer k > 2, {1,k}-MMO is
strongly N'P-hard for bipartite graphs.

Sketch of Proof: We only give a polynomial time re-
duction from Monotone At-Most-3SAT(2L), and omit
the proof of its correctness. Suppose that a formula
¢ of Monotone At-Most-3SAT(2L) with n variables
{z1,...,2,} and m clauses {c1,..., ¢y} is given. We
call a clause positive (resp., negative) if it contains
only positive (resp., negative) literals. For ¢, we con-
struct a graph G, including two gadgets that mimic
(a) literals and (b) clauses, and also (c) a special gad-
get. (a) Each literal gadget consists of two nodes
labeled by z; and T; and one edge {z;,T;} between
them, corresponding to variable x; of ¢. The weight
of {z;,T;} is k. (b) Each clause gadget is one node
labeled by c;, corresponding to clause c; of ¢. The
clause gadget c¢; is connected to at most three nodes
in the literal gadgets that have the same labels as the
literals in the clause c;, by edges of weight 1. For
example, if c; = x VyV z is appeared in ¢, then node
1 is connected to nodes z, y and z. (See Fig. 12.)
(¢) The special gadget is a cycle of 2k nodes, say
81,82, - . ., Sk, and 2k edges where each edge of the cy-
cle has weight k. If a positive (resp., negative) clause
consists of ¢ variable(s), then it is connected to nodes
81,83, ., 82(k—i)—1 (resp., 82,84, ..., Sg(k,iJrl)) in the
special gadget by edges of weight 1. Hence, the degree
of every clause node is exactly k£ + 1. Note that G is
bipartite, since nodes associated with positive (resp.,
negative) clauses are connected only to positive (neg-
ative) literal nodes or s; nodes with odd (resp., even)
i in the special gadget, and vice versa. Also, this
construction can be done in polynomial time.

For this bipartite G4, we can show that the fol-
lowing holds: (i) If ¢ is satisfiable, A*(G4) < k. (ii)
If ¢ is not satisfiable, A*(Gy) > k + 1 (The detailed
proof is omitted). O

By the proof of Theorem 17, we obtain the follow-
ing corollary.

Corollary 18 Even for bipartite graphs, {1,k}-
MMO has mno pseudo-polynomial time algorithm
whose approximation ratio is smaller than 1 + 1/k
unless P = N'P. O

Since neither the graph house nor diamond is bi-
partite, a bipartite graph is also a house-free and
diamond-free graph. Also a bipartite graph is a Pj-
bipartite graph by definition, we obtain the following
corollary, too.

Corollary 19 {1,k}-MMO is strongly N'P-hard for
Py-bipartite, house-free, and diamond-free. Moreover,

X X Z z
%.. | Clause gadget O —— Weight k
S T a— Weight 1

Positive clause
C,=XVyvz

Negative clause
c,=XVYy

Special gadget

Figure 12: Proof of Theorem 17.

for these graph classes, {1,k}-MMO has no pseudo-
polynomial time algorithm whose approximation ratio
is smaller than 1+ 1/k unless P = NP. ]

Next we show the strong N'P-hardness of {1, k}-
MMO for planar graphs.

Theorem 20 For any integer k > 2, {1,k}-MMO is
strongly N'P-hard for planar graphs.

Sketch of Proof: We use a reduction similar to that
in Theorem 17. Instead of Monotone At-Most-3SAT,
we use the reduction from Planar 3SAT. Again, we
only show the reduction and proof is omitted.
Suppose Planar 3SAT instance ¢ and its planar
drawing are given. For such an instance, we con-
struct a graph G'¢ including gadgets associated with
a) variables and (b) clauses, and (c¢) special gadgets.
a) A variable gadget of x consists of 3] nodes and 3l
edges, where [ is the number of appearances of x in ¢.
For convenience, we assume that variable x appears
in clauses ¢y, ca, ..., ¢, and in the given planar draw-
ing ¢;’s are drawn in this order (Fig. 13, top). Then

we prepare 20 nodes labeled by z(® and 2, and [

nodes labeled by dV. This labeling corresponds to
the ordering of ¢;’s. For these nodes, we put edges
{z® 20} with weight k, {z(®,d»} with weight 1
and {d®, z(+D} with weight 1, for i = 1,2,...,1
(I+1 = 1). Note that a variable gadget itself is
planar. (b) Each clause gadget is one node labeled by
¢;, corresponding to clause ¢; of ¢ (same as the proof
of Theorem 17). We connect clause gadgets to nodes
of variable gadgets as follows: Again, assume that
a variable x appears in clauses cq,ca,...,¢. In the
variable gadget of x, we prepared 21 nodes, (), z(?)
for : = 1,...,1, whose numbering corresponds to the
index of ¢;’s. Then, we connect edges according this
numbering; if x (resp., Z) appears in ¢;, then put edge
{cj, D} (vesp., {cj,@}) with weight 1 (Fig. 13,
bottom). Since ¢ is 3CNF, ¢; is connected to at most
three nodes in variable gadgets. (c) A special gadget
is a cycle of k + 1 nodes and k + 1 edges where each
edge of the cycle has weight k. We prepare a special
gadget for each clause gadget and for each node d(®
in a variable gadget. If a clause consists of one (two
or three, resp.,) variable(s), then it is connected to k
(arbitrary k — 1 or k — 2, resp.,) nodes in its special
gadget by edges of weight 1. For each node d¥, it is
connected to k — 1 nodes in its own special gadget by

105



CRPIT Volume 77 - Theory of Computing 2008

106

Special gadget ER Special gadget
¢ O Special gadget O C,

Figure 13: Proof of Theorem 20.

edges of weight 1. Hence, the degree of every clause
node or every node d is exactly k + 1.

Note that G:b is planar because we can consider G;
is obtained by replacing each variable node of planar
G(¢) with the corresponding variable gadget, which
does not violate its planarity.

We can say that (i) If ¢ is satisfiable, A*(G7) < k.
(ii) If ¢ is not satisfiable, A*(G7) > k + 1. (The
detailed proof is omitted.) O

By the proof of Theorem 20, again we obtain the
following corollary.

Corollary 21 Ewven for planar graphs, {1,k}-MMO
has no pseudo-polynomial time algorithm whose ap-

prozimation ratio is smaller than 1+ 1/k unless P =
NP. a

6 Conclusion

We have discussed about the complexity of MMO for
several graph classes. The results are shown in Fig-
ure 2. Except others, we would like to note here about
outerplanar graphs. In this paper, we show the weak
NP-hardness for “multi” outerplanar graphs, how-
ever the complexity for “simple” outerplanar graphs
is still unknown. Since we have developed a pseudo-
polynomial time algorithm for series-parallel graphs,
the complexity of MMO for “simple” outerplanar
graphs is either P or weakly N'P-hard, which is one
of the further research topics.

References

Asahiro, Y., Jansson, J., Miyano, E., Ono, H., &
Zenmyo, K. (2007), Approximation algorithms for
the graph orientation minimizing the maximum
Weighted outdegree in ‘Proc. 3rd International
Conference on Algorithmic Aspects in Information
and Management, Lecture Notes in Computer Sci-
ence’, Vol. 4508, pp. 167-177.

Asahiro, Y., Miyano, E., Ono, H., & Zenmyo, K.
(2007), ‘Graph orientation algorithms to minimize
the maximum outdegree’; International Journal of
Foundations of Computer Science, 18(2), pp. 197—
215.

Borie, R., Parker, R., & Tovey, C. (2002), ‘Solving
problems on recursively constructed graphs’, Tech-
nical Report TR-2002-04, Dept. Comp. Sci., Uni-
versity of Alabama.

Brandstadt, A., BangLe, V., & Spinrad, J. P. (1987),
Graph Classes: A Survey, STAM.

Brodal, G. S., & Fagerberg, R. (1999), Dynamic rep-
resentations of sparse graphs, in ‘Proc. 6th Work-
shop on Algorithms and Data Structures, Lecture
Notes in Computer Science’, Vol. 1663, pp. 342—
351.

Chvétal, V. (1975), ‘A combinatorial theorem in
plane geometry’, J. Combinatorial Theory, series
B, 18, pp. 39-41.

Gairing, M., Liicking, T., Mavronicolas, M., &
Monien, B. (2004), Computing Nash equilibria for
scheduling on restricted parallel links, in Proc.
36th ACM Symposium on Theory of Computing,
pp. 613-622.

Garey, M., & Johnson, D. (1979), Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Co., 1979.

Gold, E. M. (1978), Complexity of automaton identi-
fication from given data, Information and Control,

37(3), pp. 302-320.

Gross, J. L., & Yellen, J.(eds) (2004), Handbook of
Graph Theory, CRC Press.

Hoang, C.T., & Le, V.B. ‘Py-free colorings and Py-
bipartite graphs’, Discrete Mathematics and Theo-
retical Computer Science, 4, pp. 109-122.

Hopcroft, J.E., & Tarjan, R.E. (1974), ‘Efficient pla-
narity testing’, J. ACM, 21, pp. 549-568.

Kowalik, L. (2006), Approximation scheme for lowest
outdegree orientation and graph density measures,
in ‘Proc. 17th International Symposium on Algo-
rithms and Computation, Lecture Notes in Com-
puter Science’, Vol.4288, pp. 557-566.

Kloks, T., Kratsch, D., & Miiller, H. (2000), ‘Finding
and counting small induced subgraphs efficiently,’
Information Processing Letters, 74(3-4), pp.115-
121

Lenstra, J. K., Shmoys, D. B., & Tardos., E. (1990),
‘Approximation algorithms for scheduling unre-
lated parallel machines’, Mathematical Program-
ming, 46(3), 259-271, 1990.

Lichtenstein, D. (1982), ‘Planar formulae and their
uses’, SIAM Journal on Computing, 11(2), pp.
329-343.

Mitchell, S.L. (1979), ‘Linear algorithms to recognize
outerplanar and maximal outerplanar graphs’, In-
formation Processing Letters, 9, pp. 229-232.

O’Rourke, J. (1987), Art Gallery Theorems and Al-
gorithms, Oxford University Press.

Schuurman, P., & Woeginger, G. J. (1999), ‘Poly-
nomial time approximation algorithms for machine
scheduling: Ten open problems,” J. Scheduling, 2,
pp. 203-213.

Venkateswaran, V. (2004), Minimizing maximum in-
degree, Discrete Applied Mathematics, 143(1-3),
pp. 374-378.

Valdes, J., Tarjan, R.E., & Lawler, E.L. (1982),
‘The recognition of series-parallel digraphs’ SIAM
J. Computing, 11, pp. 298-313.

Wimer, T.V. & Hedetniemi, S.T. (1988), ‘K-terminal
recursive families of graphs’ Congressue Numeran-
tium, 63, pp. 161-176.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Generating Balanced Parentheses and Binary Trees by Prefix Shifts

Frank Ruskey!

Aaron Williams?

Department of Computer Science
University of Victoria,
Victoria BC, V8W 3P6, Canada,
L URL: http://wuw.cs.uvic.ca/~ruskey
2 Email: haron@uvic.ca

Abstract

We show that the set B, of balanced parenthesis
strings with n left and n right parentheses can be
generated by prefix shifts. If by, b, ..., bs, is a mem-
ber of B,, then the k-th prefix shift is the string
b1,bk, b2, bg—1,bk41,...,b2,. Prefix shift algo-
rithms are also known for combinations, and per-
mutations of a multiset; the combination algorithm
appears in fascicles of Knuth vol 4. We show that
the algorithm is closely related to the combination
algorithm, and like it, has a loopless implementation,
and a ranking algorithm that uses O(n) arithmetic
operations. Additionally, the algorithm can be di-
rectly translated to generate all binary trees by a
loopless implementation that makes a constant num-
ber of pointer changes for each successively generated
tree.

Keywords: Gray codes, Catalan numbers, balanced
parentheses, binary trees, combinatorial generation,
loopfree algorithm.

1 Introduction

Balanced parenthesis strings are one of the most
important of the many discrete structures that are
counted by the Catalan numbers, C,, = (2:)/(71 +1).
The Catalan numbers and the objects counted by
them are extensively discussed in [Stanley (1999).
The online supplement lists 149 distinct discrete
structures counted by the Catalan numbers (Stanley
(20072)).

Binary trees and ordered trees are also counted
by the Catalan numbers; these tree structures are of
paramount importance to computer scientists. There
is a large number of papers dealing with the funda-
mental problem of exhaustively listing and ranking
binary trees. In this paper we develop an algorithm
that has a number of attractive and unique features
as compared with existing algorithms.

Let B¢s be the set of all bitstrings contain-
ing ¢t 1s and s 0Os and satisfying the constraint
that the number of 1s in any prefix is at least as
large as the number of 0s. For example, Bzo =
{11100,11010,11001,10110,10101}. In particular,
B, s is empty if ¢ < s. Furthermore, if ¢ = s then B, ,
can be thought of as the set of all balanced parenthe-
sis strings by mapping 1 to a left parenthesis and 0 to
a right parenthesis. In this case, we sometimes drop
the s from the notation; B, = By, .

Copyright (©2008, Australian Computer Society, Inc. This pa-
per appeared at the Fourteenth Computing: The Australasian
Theory Symposium (CATS2008), University of Wollongong,
New South Wales, Australia. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 77, James
Harland and Prabhu Manyem, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

If bi,b2,...,0¢45s is a member of By,
then the k-th prefix shift is the string
b1,bk, b2, . bg—1,bk41, ..., brys. Note that the

first bit, by is not part of this definition; this is
natural since b; is always 1. Furthermore, it is
impossible to generate B, , if b; is included in the
shifts (e.g., 1Y0° is the only valid shift of both 17101
and 1710°7110). In order to entice the reader into
reading further, below we show the simple iterative
rule, whose successive application will generate By g
using prefix shifts.

Iterative successor rule: Locate the leftmost 01
and suppose that its 1 is in position k. If the (k+1)-
st prefix shift is valid (a member of B, ), then it is
the successor; if it is not valid then the k-th prefix
shift is the successor.

The only string without a 01 is 1*0°, which is the
final string. The initial string is 10171051, Apply-
ing the rule to Bs o gives the sequence 10110, 11010,
10101, 11001, 11100.

This is the first paper that considers whether bal-
anced parentheses can be generated by prefix shifts.
It is known that By ¢ can be generated by transposing
a pair of bits (Ruskey & Proskurowski (1990)), a pair
of bits with only Os in between (Bultena & Ruskey
(1998)), or by transposing one or two pairs of ad-
jacent bits (Vajnovszki & WalsH (2006)). In general
it is impossible to generate By s by transposing only
one pair of adjacent bits (Ruskey & Proskurowsk
(1990)). Our algorithm will be shown to generate B 5
by transposing one or two pairs of bits, but those bits
are not adjacent in general.

An algorithm for generating combinatorial objects
is said to be loopless if only a constant amount of com-
putation is used in transforming the current structure
into its successor. Loopless algorithms are known for
various classes of discrete structures that are counted
by the Catalan numbers. See, for example, the pa-
pers [Roelantd (1991), [Korsh, T.aFolette, & Lipschui
@003), [Najnovszki ([1998), [NVajnovszki & Walsh
(2006) and Makaoka & Violich (200().

Binary trees in their conventional representation of
a node with two pointers can efficiently be generated
by only making a constant number of pointer changes
between successive trees (Lucas, Roelants, & Ruskey
(1993)). This algorithm can be implemented loop-
lessly and is presented in [Knuth (2006). The current
paper gives the basis for another such algorithm.

The approach taken in this paper was initiated
in the papers of [Ruskey & Williamd (2003, 2008) for
generating combinations that are represented by bit-
strings in the usual way. There the bitstrings are also
generated by prefix shifts. It is remarkable how many
of the results of those papers have close analogues
with the results of the current paper. The ordering of
combinations in (Ruskey & Williamd 2008, 2008) was

107


http://www.cs.uvic.ca/~ruskey

CRPIT Volume 77 - Theory of Computing 2008

108

called cool-lex order because of its close connection
with the well-known colex order of combinations. In
a similar spirit, we have dubbed our order “CoolCat”
order because of its close connections with cool-lex
order and with the Catalan numbers.

Relative to a list of objects, the rank of a partic-
ular object is the position that it occupies in the list,
counting from zero.

To summarize, our method has the following prop-
erties:

1. Each successive string differs from its predecessor
by the rotation of a prefix of the string. Further-
more, the list of strings is circular in the sense
that the first and last also differ by a prefix ro-
tation.

2. Each successive string differs from its predecessor
by the interchange of one or two pairs of bits.

3. It has a simple recursive description. This de-
scription does not involve the reversal of sublist,
as is usually the case for Gray codes. The un-
derlying graph is a directed graph; that is, if by
differs from by by a prefix rotation, then in gen-
eral it is not the case that by differs from by by
a prefix rotation.

4. Tt has a remarkably simple iterative successor
rule. This rule was stated above.

5. The iterative successor rule can be implemented
as a loopless algorithm. Also, the successor rule
can be translated to a loopless algorithm for
generating binary trees. No previous listing of
balanced parenthesis strings is simultaneously a
Gray code for the strings and for the correspond-
ing binary trees.

6. It has a ranking algorithm that uses O(n) arith-
metic operations. No previous Gray code for bal-
anced parenthesis strings has this property.

2 Generating Binary Trees

To give the reader a flavor of how useful the itera-
tive successor rule is, in this section we translate the
rule so that it applies to binary trees, as traditionally
implemented on a computer. The result is a loop-
less algorithm that makes at most 16 pointer updates
between successive trees. An implementation of this
algorithm is available from the authors.

The standard bijection between B, , and ex-
tended binary trees with n internal nodes is to as-
sociate each internal node with a 1 and each leaf with
a 0 and then do a preorder traversal of the tree, ignor-
ing the final leaf. If z is a node in a binary tree, then
we use [(z) and r(z) to denote the pointers to the left
and right children of z. Unfortunately, we also need
to maintain the parent of each internal node; this is
denoted p(z).

To update the tree we maintain three pointers: x,
the first node that is not on the leftmost path of inter-
nal nodes; y, the parent of x; and R, the root of the
tree. The assignments below represent parallel exe-
cutions, so that, for example, [a, b] < [b, a] swaps the
two values a and b. The algorithm terminates when
x becomes nil.

According to the iterative successor rule there are
three cases to consider: (a) the string is of the form
1P0911cy, (b) the string is of the form 170710«, with
p > ¢q, and (c) the string is of the form 170P10a.
Below we show the updates that are necessary in each
of the three cases. Important note: The updates to
the parent field are not shown explicitly below, but
every time that an update is done to r(.) or I(.), then

Figure 1: The  trees

corresponding  to
111111000011... — 111111100001.... This is an
example of Case (a).

an update must be done to p(.). E.g., if the update is
r(v) < w, then it should be followed with if w # nil
then p(w) — v.

Case (a): The new string is 17*1091c. This case
occurs when [(z) # nil. The corresponding update to
the binary tree is

[r(y), r(2), U(z), 1(y)] — [r(z), (), 1(y), ]

z —r(y);

Case (b): The new string is 1017~1091c. This case
occurs when {(z) = nil and R # y. The corresponding
update to the binary tree is

[( ( ,r(p(y) ( )7T(I)al(y)ar(y)] —
[(y ,x,r( ) T(p(y)),nﬂ,R];

(R, z] — [y,7(y)];

Case (c): the new string is 17710P*1a. This case
occurs when {(z) = nil and R = y. The corresponding
update to the binary tree is

[1(z),r(y)] < [y,nil]; [R,y,]

After this update the algorithm terminates if z = nil
(i.e., if v is the empty string).

These three cases are illustrated in Figures [ B
andBl Circles are used for internal nodes, squares are
used for leaves, and the triangles represent subtrees
whose structure is not specified (but whose preorder
order must be preserved).

Yy

< [z, z,r(@)];

3 Recursive Structure

In this section we examine the recursive structure of
the CoolCat ordering on balanced parenthesis. In
particular, we provide two recursive formulae and
prove that they produce lists that are identical to
those produced by the iterative rule. A corollary to
this result is that the iterative rule generates every
string in B; ;. For comparison purposes we also pro-
vide the recursive structure for co-lexicographic, or
colex ordering. We begin this section by giving a for-
mal definition of the iterative rule.

The CoolCat iterative rule maps a binary string
b € B; ; to another binary string o(b) € B; ;. When
b does not contain any 010 or 011 as a substring then



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

it is easiest to define o(b) using the following two spe-
cial cases, which simply move the rightmost symbol
into the second leftmost position.

{ 101%07 if b = 11°070 (1a)

o(b) = o o
1119070 if b= 1170701  (1b)

Otherwise, we can assume that b = 11°0071zb’ for
some symbol z and some (possibly empty) string b’.

{ 111°0072b"  ifi=j (2a)
o(b) = o

121000710’ ifi>j (2b)
We inductively let ¢°(b) = b and o*(b) =

o(c*~1(b)) for k > 0, so that we can define an it-
erative list R; ; that uses o.

R:;s = b, o(b), o%(b), ...,a" 1 (b) (3)

where b = 1'0°% and k = |B|. We'll also find it
useful to start the iterative process at the successor
of b, and in fact our first recursive structure will equal
this secondary listing. Instead of starting the iterative
process at the successor of b, this secondary listing
Figure 2: The trees corresponding to  can also be seen as the result of applying o to each
111111000010... — 101111100001.... ~ This is an  string in Ry .

example of Case (b).

St,s = U(b)a 02(b)a B Uk(b) (4)
= o(Rys) (5)

To better illustrate our first recursive formula, let
us begin by examining the recursive structure of the
colex list Ly 4 and then comparing it to the CoolCat
list S4 4. The term colex refers to the fact that the
strings in B; , are in increasing lexicographic order
when each string is read from right to left. The colex
list L 4 can be built recursively from the smaller lists
Ls; for 0 < ¢ < 3. Each of these lists appears as a
column within Figure Bl Notice that in each column
the suffixes beginning with 1 are underlined, and all
of the strings with a given underlined suffix appear
consecutively. In the case of Ly 4 (where t = s) the
suffixes beginning with 1 are 10000, 1000, 100, and
10. Notice that there is no suffix 1 since there is no
string in By 4 with that suffix. However, the suffix

h 1 does appear in Lz o (where ¢ > s) since there is a
string with that suffix in B3 . Finally, in each case
the suffixes are ordered by decreasing number of zeros.
In general each of these observations holds true, and
it leads to the following recursive formula for L; ¢

L1105, Lyq 11057 000 Ly 50110 ifE=s
T Lio1,010%, Ly 11057 L Ly 61 ift > s.

To compact expressions of this kind we introduce ]
to combine short lists of strings into larger lists, and
we restate the recursive formula for L; ; as follows

s—1
H Li 1,10°7"  ift=s (6a)
=0

Figure 3: The trees corresponding to L, =

111111000000101... — 111111100000001....  This ' 5 »

is an example of Case (c). H Li—y,;10°7" ift > s. (6b)
i=0

Now we turn our attention to the recursive struc-
ture of Wy 4 that is illustrated in Figure B As in
colex the suffixes beginning with 1 are underlined and
the strings with a given underlined suffix appear con-
secutively within each list. However, in this case the
suffixes beginning with 1 are ordered by decreasing

109



CRPIT Volume 77 - Theory of Computing 2008

110

L3o L3i Lap L33 Ly
111 1110 11100 111000 11110000
1101 11010 110100 11101000
1011 10110 101100 11011000
11001 110010 10111000
10101 101010 11100100
11010100
10110100
11001100
10101100
11100010
11010010
10110010
11001010
10101010

Figure 4: The recursive structure of colex.

Wso W31 W3, Wjs Wy
111 1011 10110 101100 10111000
1101 11010 110100 11011000
1110 10101 101010 11101000
11001 110010 10110100
11100 111000 11010100
10101100
11001100
11100100
10110010
11010010
10101010
11001010
11100010
11110000

Figure 5: The first recursive structure of CoolCat.

number of zeros, except for the suffix 10° that ap-
pears last instead of first. Of course, there is only a
single string in By ; that has the suffix 10°, namely

1'0%. Amazingly, the alternate placement of this sin-
gle string fully captures the difference between the
recursive structure of CoolCat and colex. We define
the list W, , as follows, and we prove that it is equal
to S¢ s in Theorem [

s—1

[[Weri10°7% 1%0°  ift=s (7a)
Wt = =1

[T Weri10°7, 1f0° it £ > 5.(7b)

=1

Since the recursive structure of W, ; is a reorder-
ing of the strings in L; ; we have the following remark.

Remark 1. W, ; contains each string in By s exactly
once.

An important step towards proving Theorem [ is
the following lemma, that explicitly identifies the first
and last strings that appear in W, , when s > 0.

Lemma 1. For s >0
first(Wy) = 101°710°! (8)
last(Wy5) = 1°0°. (9)

Proof. The value of last(W; ) follows immediately
from ([@). To determine the value of first(W; ) we

have the following

first(Wys) fz'rst(Wt,Ll)lOs_l
first(W;_9.1)110°7 "

first(W;_31)11105*

= first(Wy)1t7105!
= 101t 1'o° L.

O

Now we are in a position to prove the main result
of this section.

Theorem 1. S;; = W, .

Proof. To prove the result we need to show that
within Wy 4 the first string in each sublist is obtained
by applying o to the last string of the previous sublist.
The sublists in Wy ; are slightly different depending

on whether ¢ = s (@) or t > s (), so we proceed in
two cases. First we prove the result when ¢t > s. For
the last transition we have

o(last(Wi_1,1)) = o(1"710°1)
1'0°

which follows from Lemma [0 and the definition of
o ([[M). For the remaining transitions we have, for
1<1<s—1,
o(last(Wi_1 c;10Y) = o(1710%7410%)
101°%0° " 10"
= first(Wt_l,s_iJ,_llOiil)

which follows from Lemma [l and the definition of o
@h). In particular, @H) applies here since ¢ > s and
1> 1 imply that t —1 > s — 3.

Next we prove the result when t = s. For the last
transition we have

o(last(W;_1,5-110)) = o(1'710°7"10)
1'0°
which follows from Lemma [0 and the definition of o

@a). In particular, (Zal) applies here since ¢t = s. For
the remaining cases we have, for 1 <17 < s — 2,

o(last(W;_1..:10%) o(1710°7"10%)
101t—20$—i10’i—1

= fiTSt(Wtfl,sfiJrl ].Oi_l

which follows from Lemma [0l and the definition of o
@H). In particular, 2H) applies here since ¢t = s and
1> 2 imply that t —1 > s — 1. O

Theorem [ allows us to show that the iterative
definition of CoolCat produces lists that are circular.
That is, in both R;, and S;,, the first string can
be obtained by applying ¢ to the last string. More
generally we have the following corollary.

Corollary 1. For any b € By s and k = |By 5|
o®(b) =b.
Proof. We can prove this result by showing that the

list S¢ , is circular. This proves the statement of the
corollary and also proves that R, s is circular by (@)



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

and @). We accomplish our goal through the fol-
lowing chain of equalities that reference Theorem [

Lemma [ and (Tal)

o(last(Sy,s)) o(last(Wes))
a(1'0%)

= 1017105 !
Jirst(Wys)

first(Se.s).

O

Theorem [ also allows us to prove that the iterative
definition of CoolCat generates every string in By s.

Corollary 2. R: s and S; s contain each string in
B, s exactly once.

Proof. The result for S; s follows from Remark [l and
Theorem [l The result for R, follows from the fact
that

a_k(ltos) — 1t0$
for k = |By,s| by Corollary [ and thus R, is a re-
ordering of S; s by @) and @). O

Although the recursive definition of W; , has its
benefits, sometimes it is more convenient to work with
a recursive definition that contains fewer terms. For
example, in Section B we rank the order of the strings
within CoolCat utilizing the following definition

K10 ift=s
K=< K11, 177101 ifs=1
K10, Kio1 61, 17710°1  if 1l <s <t

(10)
In Theorem B we prove that K s is identical to Wy 4
except that it is missing the string 1*0°. The proof
is involved, so we provide an illustration for each of
the three cases of () in Figure B In each column
the overlined and underlined strings denote whether
the number of zeros or ones are being recursively de-
creased, respectively. Strings without an overline or
underline are of the form 1?~10°1 and are not involved
in the next lower level of recursion, while the strings
below the horizontal line are of the form 1¢0¢ and rep-
resent the unique string that is in W, , but is not in
K, . For the sake of saving space we only produce
the columns with a smaller number of zeros, until the
number of zeros equals one.

Ksi Kii Kio  Kuaz Kia _
1011 10111 101110 1011100 10111000
1101 11011 110110 1101100 11011000
11101 111010 1110100 11101000
101101 1011010 10110100

110101 1101010 11010100

101011 1010110 10101100

110011 1100110 11001100

111001 1110010 11100100

1011001 10110010

1101001 11010010

1010101 10101010

1100101 11001010

1110001 11100010

1110 11110 111100 1111000 11110000

Figure 6: The second recursive structure for CoolCat.

Theorem 2. W, =K, ,, 10°.

Proof. We prove the result by a double induction.
The first induction will be on the number of zeros,
and the second induction will be on the number of
ones. For the base case of the first induction we have
s =1 and it is easy to verify that

t
II]ﬂOlt*i
=1

t—1
= J[ror, 1o
=1

W1

= K1, 1.

Now suppose that s = k > 1 and that the theorem
holds for all s < k. At this point we start our second
induction. For the base case of the second induction
we have t = k. In other words the number of ones
is equal to the number of zeros, which is the mini-
mum possible number of ones. We have the following
expression for Wy,

k—1
=[] Wr-1410"7%, 150"
i=1
k—1
= JIWkr-1410""""0, 1%0* "0
i=1
k—1
- ( II'vvk_ldlok—l—z 1k0k—1)0
i=1
= (Wgx-1)0
(Kp.r—1,150*"1)0
= Kpix_10, 170"
= K, 170"

Now to continue with the second induction we sup-
pose that t = k + j, for some j > 0, and that the
theorem holds for all ¢ < k4 j. In other words, we
are supposing that there are j more ones than ze-
ros, and that the theorem holds when there are fewer
than j additional ones. Then we have the following
expression for Wy x

k
= JIWeyj-1410"7, 1¥H0
i=1
k1
TT Wit j1410577, Wi 41, 1540
i=1
k1

The bracketed product has fewer than k zeros and
equals Wy 1 except that it is missing 1¥+70~~1
as its last string. Therefore, by the first induction

RN
= Kipje-10, Wipj1xl, 187705

The second term has fewer than k+j ones. Therefore,
by the second induction we continue as follows
Kijh10, (Kppjorn, 19771081, 1¥H0F
Kk 10, Kipjo1l, 197971051, 17470
= Kyt 1FH0R
This completes the inductive case of the second in-
duction, and so the theorem is true for s = k and all
t > k. This completes the inductive case of the first
induction, and so the theorem is true for all s > 1. O

(H Wk+j1,i10k1i>07 W11, 18908,
=1

11



CRPIT Volume 77 - Theory of Computing 2008

112

Before closing this section we explicitly state the
first and last strings of Ry, since it will be useful in
the next section.

Lemma 2. Fors >0
first(Rys) = 1'0°

171057110
{1t—1081

ift=s

last(Ry,s) if t > s.

4 Algorithm

In this section we present an algorithm to generate
R . That is, we present an algorithm that iteratively
visits each successive string in the CoolCat ordering
starting with 1°0°. The algorithm is remarkably ef-
ficient in terms of time and storage. In particular it
is loopless in the sense that each successive string is
generated in O(1) time, and it is constant extra-space
in the sense that it uses O(1) storage when excluding
the array b that holds the binary string. The array b
uses 1-based indexing, so b[1] is the first value in the
array. For proposition P, the notation [P] means 1
if P is true and 0 if P is false.

As in Section Bl the variable x is used to represent
the position of 1 in the leftmost 01. However, the
variable y is now used to represent the position of
the leftmost 0. The initial values of  and y do not
obey this rule, and they are chosen simply for the
sake of the first iteration. The initial value b = 1t0°
is visited by the visit(b) command on line [l while all
other values of b contain a leftmost 01 and are visited
on line ZII We say that each iteration starts at the
while statement on line[ll During each iteration there
are three possible routes through the if statements
and these three routes correspond exactly to the cases
from Section Bl If b = 170911« (case (a)) at the start
of an iteration then the outer if statement on line [Tlis
not entered. If b = 170P10« (case (c)) then the inner
if statement on line is entered. If b = 170910«
for p > ¢ (case (b)) then the inner else statement
is entered. The general idea of the algorithm is to
maintain x and y and to use their values, and the
values of b[z] and b[y], to determine how b needs to
change from one iteration to the next.

CoolCat(t, s)
Require: t > s >0

1 n«—t+s

2: b — array(1°0%)

3 x—t

4: —t

5: visit(b)

6: while z < n — [t = s] do
7. blx] 0

8: b Y| < 1

90 z<—x+1

10 y«—y+1

11: if b[z] =0

12: if x=2y—2 { Case (c) }
13: r—z+1

14: else

15: blz] —1 { Case (b) }
16: b2] <0

17: T3

18: Y2

19: end

20 end { else Case (a) }
21:  visit(b)

22: end

To prove the correctness of the algorithm we track
the values of the three variables from one visit call to
the next visit. We let by, bs, ... represent the values
taken by variable b at each subsequent visit, and we

use the same convention for x and y. For example,
b1 will be the first and only value of b visited at line
B while by will be the first value of b visited at line
E1 When y; is the smallest value where b;[y;] = 0
then we will say that y; is correct. Likewise when
x; is the smallest value where b;[z;] = 1 and z; > y;
then we will say that x; is correct. For convenience we
also let V4 = b1,ba, ..., b, where by is the last value
of b that is visited before the program terminates.
Ultimately we will show that the program does in fact
terminate, and that V;, = Ry s (Theorem B)). We
refer to the current values of b, x, and y as the current
configuration. From lines we see that b; = 1409,
r1 =t and y; = t, so the initial configuration before
entering the while loop is

b=10° y=t z=t.

By Lemma B first(R: ) = 1°0° so b is initialized to
the correct value. The program terminates once x =
n— (t = s) (line @), where (¢ = s) equals one if t = s,
and zero otherwise. In other words, if ¢ = s then
CoolCat terminates once x = n — 1, and otherwise
it terminates once x = n. Recall that this condition
echoes the two cases of (). Finally, we point out
CoolCat’s explicit requirement that ¢t > s > 0. The
next two lemmas will address the first two iterations
of the algorithm.

Lemma 3. V;, =R, , whent < 2.

Proof. 1t is easy to verify that V;; = 10, Vo1 =
110,101, and V2o = 1100,1010. In the first case
the program does not enter the while loop and in the
last two cases the program terminates after the while
loop’s first iteration. O

Lemma 4. Ift > 2 then by = o(b1), 22 = 3, and
Yo = 2.

Proof. When t > 2 the program enters the while loop
and after lines [HIT we have the following configura-
tion

b=1%0° y=t+1 z=t+1.
Since b[z] = b[t + 1] = 0 the program enters the outer
if statement on line [l Since ¢ > 2 it does not enter

the inner if statement on line [ and so lines [ and
M@ are executed to give the following configuration

b=101%0° y=t+1 z=t+1.

After line [[A and line [§ we have the following con-
figuration

b=101"10"1 y=2 x=3.

Since the next line to execute is a visit statement we
have by, = 101710~ 1. Therefore, we have proven the
result since b; = 1°0° and o(1°0%) = 1017105~ by

O

@.

The next lemma explains how the algorithm ter-
minates (the values for last(R; ) are recalled from
Lemma ).

Lemma 5. Ift > 1, every b; € By s, and x; is correct
then

11057110
1°-10°1

ift=s

last(Vy,s) = last(Rys) = { ift>s



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Proof. When t = s, the condition on the while loop
isz <n—1. If b, = 171057110 and =, is updated
correctly then xx = n—1, so once by, is visited the pro-
gram will terminate. Furthermore, by (Bal) we have
that z; < n — 1 for all i # k since by the assumption
all b; € By s.

When t > s, the condition on the while loop is
x < n. If bp = 1'710°1 and z}, is updated correctly
then z; = n, so once by is visited the program will
terminate. Furthermore, by (EH) we have that z; < n
for all ¢ # k since by the assumption all b; € By ;. O

Now that the extreme cases of CoolCat have been
accounted for, we can focus on the general behavior of
the algorithm. In particular, 1°0° and 1*~!0°1 have
been dealt with in Lemma Bl and Lemma B respec-
tively, so we need only consider the behavior of the
algorithm on binary strings that contain a leftmost
01 and at least one additional symbol following it. In
other words, we assume that b = 1170091z ... where
z € {0,1}. From Section Bl we recall our iterative
definition for o(b)

ifp=qgand z=0 (1la)

12170091 . .. ifp>qorz=1. (11b)

{ 1117009z ...
Notice that when z = 1 then the left side of ([[Tal) and
([[IO) are identical. Therefore, we can interchange
their roles when the condition of z = 1 is satisfied.
Thus, the conditions in ([[T&) and ([[IH) can be equiv-
alently stated as p = ¢ and p > ¢, respectively. In
fact, the conditions were originally stated this way in
al) and @L); we make the change here since it opti-
mizes the logic of the resulting program. Another way
of stating the equivalence is that if b = 11700P11...
then it does not matter if we move the (2p + 3)rd
symbol or the (2p + 4)th symbol since both are equal
to 1. We now are able to complete this section with
three lemmas. The first two lemmas correspond to
([[ID) (cases (a) and (b) respectively), while the third
lemma corresponds to ([[Tal) (case (c)).

Lemma 6. Suppose z =1, so that b; = 11P00911 .. ..
If x; and y; are correct, then bi11 = o(b;) and x;4q
and y;+1 are correct.

Proof. From the statement of the lemma, we can as-
sume that the current configuration appears below
and the program just satisfied the condition of the
while loop

b=11P00911... y=p+2 z=p+q+3.
After executing lines [HIT the current configuration
becomes

b=11P109%01... y=p+3 z=p+q+4.
Since blz] = 1 the program does not enter the if
statement on line [l and so b;y1, ©;+1, and y; 41 are
equal to their respective values above. From ([1H),
o(b;) = biy1. Furthermore, the values of y;11 and
T;y1 are correct.

Lemma 7. Suppose p > q and z = 0, so that b; =
11P00910. .. with p > q > 0. If x; and y; are correct,
then biy1 = o(b;) and x;y1 and y; 41 are correct.

Proof. From the statement of the lemma, we can as-
sume that the current configuration appears below
and the program just satisfied the condition of the
while loop

b=117P00910... y=p+2 z=p+q+3.

After executing lines [(HIT the current configuration
becomes

b= 11P10900. ..
= 111P0900...

y=p+3 z=pt+q+4

Since b[z] = 0 the program enters the if statement on
line[[ Since z = 2y —2 would imply that p+q¢+4 =
2p + 4 and thus p = ¢, then the if statement on line
is not entered. After executing lines[[H through [I[§
the configuration becomes
b=101P0901... y=2 x=3.

At this point the program makes the next visit in
line 211 so b;+1, wiy+1, and y;4+1 are equal to their
respective values above. From ([ID), o(b;) = biy1.
Furthermore, the value of y;1 is correct. Finally, the
value of x;11 is also correct since p > 0.

Lemma 8. Suppose p = q and z = 0, so that b; =
11P007P10.... If x; and y; are correct, then b;y1 =
o(b;) and ;41 and y;11 are correct.

Proof. From the statement of the lemma, we can as-
sume that the current configuration appears below
and the program just satisfied the condition of the
while loop
b=11P00P10... y=p+2 x=2p+3.
After executing lines [T the current configuration
becomes
b=11P10P00... y=p+3 x=2p+4.
Since blx] = 0 the program enters the if statement
on line [l Since x = 2y — 2 the program enters the
if statement on line After executing line [ the
current configuration becomes
b=11P10P00... y=p+3 x=2p+5.
At this point the program makes the next visit in
line B1l so b;11, wiy1, and y;11 are equal to their
respective values above. From ([[Ial), o(b;) = bit1.
Furthermore, the value of y;41 is correct. However,
can we be certain that the value of z;;; is correct?
Notice that the explicitly displayed portion of b in the
above configuration contains an equal number of 1s
and 0s. Hence, the next symbol must be 1, and so
the value of x;41 is also correct. O

The result of Lemmas is that CoolCat(t,s)
correctly visits and updates first(Ry s), and then cor-
rectly visits and updates every other string in R;  up
to and including last(Ry s) after which it terminates.
Therefore, we have proven the following theorem.

Theorem 3. For allt > s > 0, we have Vi, = Ry .

5 Ranking

In this section we develop a ranking algorithm that
uses O(n) arithmetic operations. We will need to
know the number of elements in K s, which we de-
note by K;s = |Bys| — 1. Table [ shows K, , for
0<s<t<8.

Theorem 4. For all0 < s <t,

t—s—+1/t+s t+s t+ s
Kig+1l=—— = — .
’ t+1 t t t+1

113



CRPIT Volume 77 - Theory of Computing 2008

114

0 1 2 3 4 5 6 7 8
01
111 1
211 2 2
3|11 3 5 5
411 4 9 14 14
511 5 14 28 42 42
61 6 20 48 90 132 132
711 7 27 75 165 297 429 429
8|1 8 35 110 275 572 1001 1430 1430

Table 1: The Catalan triangle. The row ¢, column s
entry is Ky s = t;f{l (1.

Proof. These are well-known properties of the “Cata-
lan triangle” (Knunth (2006), Stanley (1999)). O

Let b = boba - - - byys—1 € Brs. We use p(b) to de-
note the rank of b in the list K; ;. Here is a recursive
description of the ranking process; it follows directly
from (m) Let b’ = bob2 s bt+s—2-

p(b/) if bt+5,1 =0
Kis—1 ifb=110°1 (12)
K15+ p(d’) otherwise.

p(b) =

For example,

p(1010101)

8 + p(10101)
8+ K31+ p(1010)

= 842+ p(101)
= 10+ Ky; -1
10

Note that () ignores trailing Os; the rank there-
fore depends only on the positions of the 1s. If
c1,Co,...,c are the positions occupied by the 1s and
¢ is the minimum value for which ¢, > ¢, then (2
can be iterated to obtain

t
p(clcg...ct) :K(ch_q—l—i- Z Kj,cj—j—l- (13)
Jj=q+1

We now show that there is a nice way to view
the ranking process as a walk on a certain integer
lattice. Refer to Figure [ The walk starts at the
upper left; each 1 is a vertical step down and each 0
is a horizontal step to the right. The vertical edges are
labeled, where the t-th row of vertical edges (counting
from 1) gets labeled as follows from left-to-right: (no
label), Ko, Kt1,...,Ktt—1. The label furthest to
the right in each row is not on an edge. Figure [
illustrates the path for the bitstring 11100110101100.
The square marks the endpoint of the part of the path
that ends at the leftmost 01; i.e, the string 111001 in
the example bitstring. The rank of the bitstring is
obtained by summing the edge labels on the path after
the square, adding the edge label on the edge to the
right of the one that precedes the square (the circled
label in the figure), and then subtracting 1. Thus
p(11100110101100) =4+ 19+ 74+ 109+ 8 — 1 = 213.

To unrank we reverse the process. We use p;, & (m)
to denote the string b € B; ; whose rank in thslis m.
Suppose, for example, that we want the rank 212 bit-
string with t = 8 and s = 6; i.e., p(;G)(ZIZ). We start
where the example path ends. We move to the left
so long as the edge labels exceed the remaining rank,

0
0 1
0 2 4

o |3 [8) 13

!
L !

0 4 13 |27 41

0 5 19 |47 |89 131

0 6 26 |74 |164 |296 428

0 7 34 1109 | 274 |571 | 1000 1429

Figure 7: Ranking 11100110101100.

then move up and repeat. Arriving at the old square,
we are at an impasse; the remaining rank is 7, so we
have yet to encounter the square. So we so up and
the rank becomes 4, which is what remains if we make
the current location (one move above the old square)

the new square. Thus p(_816)(212) = 11001110101100.

We leave it to the reader to turn this description into
an algorithm.

What is the running time of the ranking algo-
rithm? Let n = t+s. Note that [[Z) and [3)) involve
O(n) additions and other operations. We can avoid
computing the entire table by only computing the val-
ues needed along the path. First compute K s, which
takes O(n) arithmetic operations. Then make use of
the following relations which can be checked using
Theorem Ht

(t+1)(t—s)
14+ K1y = 1+ K,,) and
T = o g g L K an
t— 542
14 Kpyq = s(t—5+2) (1+ K.

(t—s+1)(t+s)

Of course, if many ranking/unranking operations are
being performed then it will be better to pre-compute
the K s table.

6 Final Remarks

For future research, it would be interesting to deter-
mine whether the results of this paper can be ex-
tended to the natural 0/1 representation of k-ary
trees, or to ordered trees with prescribed degree se-
quence (Zaks & Richardd (1979)).

We thank the referees for carefully reading this
paper and pointing out a number of typos and places
where the exposition could be improved.

References

B. Bultena & F. Ruskey (1998), An Fades-McKay
Algorithm for Well-Formed Parenthesis Strings, In-
formation Processing Letters, 68, pp. 255-259.

Donald E. Knuth (2005), The Art of Computer Pro-
gramming, Volume 4: Generating all Combinations
and Partitions, Fascicle 3, Addison-Wesley, 150

pages.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Donald E. Knuth (2005), The Art of Computer Pro-
gramming, Volume 4: Generating all Trees; His-
tory of Combinationatorial Generation, Fascicle 4,
Addison-Wesley, 120 pages.

J. Korsh, P. LaFolette, & S. Lipschutz (2003), Loop-
less Algorithms and Schréder Trees, International
Journal of Computer Mathematics, 80, pp. 709-
725.

J. Lucas, D. Roelants, and F. Ruskey (1993), On Ro-
tations and the Generation of Binary Trees, Jour-
nal of Algorithms, 15, pp. 343-366.

D. Roelants (1991), A Loopless Algorithm for Gener-
ating Binary Tree Sequences, Information Process-
ing Letters, 39, pp. 184-194.

F. Ruskey (1979), Simple combinatorial Gray codes
constructed by reversing sublists, 4th ISAAC (Inter-
national Symposium on Algorithms and Computa-
tion), Lecture Notes in Computer Science, #762,
pp- 201-208.

F. Ruskey and A. Proskurowski (1990), Generating
Binary Trees by Transpositions, Journal of Algo-
rithms, 11, pp. 68-84.

F. Ruskey & A. Williams (2005), Generating Com-
binations By Prefix Shifts, Computing and Com-
binatorics, 11th Annual International Conference,
COCOON 2005, Kunming, China, August 16-29,
2005, Proceedings. Lecture Notes in Computer Sci-
ence 3595, Springer-Verlag.

F. Ruskey and A. Williams (2008), The Coolest way
to Generate Combinations, Discrete Mathematics,
to appear, 2008.

R.P. Stanley (1999) Enumerative Combinatorics,
vol. 2, Cambridge University Press, New
York/Cambridge, 1999, xii + 581 pages.

R.P.  Stanley  (2007), Catalan  Addendum,
version of 20 June 2007; 61 pages,
http://www-math.mit.edu/~rstan/ec/.

T. Takaoka (1999), O(1) Time Algorithms for Com-
binatorial Generation by Tree Traversal, The Com-
puter Journal, vol. 42, no. 5, pp. 400-408.

T. Takaoka & S. Violich (2006), Combinatorial Gen-
eration by Fusing Loopless Algorithms, In Proc.
Twelfth Computing: The Australasian Theory
Symposium (CATS2006), Hobart, Australia. CR-
PIT, 51. Gudmundsson, J. and Jay, B., Eds., ACS.
69-77.

V. Vajnovszki (1998), On the Loopless Generation
of Binary Tree Sequences, Information Processing
Letters, 68, pp. 113-117.

V. Vajnovszki & T. Walsh (2006), A loopless two-
close Gray-code algorithm for listing k-ary Dyck
Words, Journal of Discrete Algorithms, Vol. 4, No.
4, pp. 633-648.

R. Walsh, A Simple Sequencing And Ranking Method
That Works On Almost All Gray Codes, Unpub-
lished Research Report, Department of Mathemat-
ics and Computer Science, UQAM P.O. Box 8888,
Station A, Montreal, Quebec, Canada H3C 3P8, 68

pages.

T. R. Walsh (2003), Generating Gray codes in O(1)
worst-case time per word, Lecture Notes in Com-
puter Science 2731, Proceedings of the 4h Interna-
tional Conference, Discrete Mathematics and Theo-
retical Computer Science 2003, Dijon, France, July
7-12, 2003, Springer-Verlag, New York, (2003), 73—
88.

S. Zaks & D. Richards (1979), Generating Trees
and Other Combinatorial Objects Lexicographically,
SIAM J. Computing, 8, pp. 73-81.

115


http://www-math.mit.edu/~rstan/ec/

CRPIT Volume 77 - Theory of Computing 2008

116



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

also have applications to isometry groups and mathe-
matical biology ( ,
), quadratic forms and phyloge-
, theory of quater-
), scalable biological databases
), sequences homology (
) and approximate string matching (
), to name a few.

Unfortunately, as we will see in Section 3, it is
computationally hard to determine whether one met-
ric spaces is similar to another one under various no-
tions of metric similarity. First, deciding whether two
input metric spaces are isometric ( ) is as
hard as the graph isomorphism problem (

), for which no polynomial-time algorithms
are known despite extensive research. Second, con-
sider the problem of deciding, on input L > 1 and
finite metric spaces (M,d) and (M, p), whether or
not these spaces are L-bilipschitz equivalent (

. That is, we
want to decide whether the metric spaces (M, d) "and
(M, p) exhibit a bijective map between them that pre-
serves distances up to multiplicative factors ranging
from 1/L to L. We observe that the results of Kenyon,
Rabani and Sinclair ( ) imply that it
is hard even to approximate the least value of L such
that (M,d) and (M, p) are L-bilipschitz equivalent.
This may be interpreted as saying that it is hard to
approximately compute the level of bilipschitz simi-
larity even between finite metric spaces with the same
ground set. Given the above hardness results, a ran-
domized approximation algorithm with a reasonable
complexity can be an attractive alternative to attack
the problem of determining metric similarity or even
metric embeddability.

An algorithm in the flavor of property testing (

) is one such alternative. It determines
whether a problem instance has a certain property or
is e-far (under a certain distance measure) from hav-
ing such a property, while allowing a small probability
of error. In this paper, we seek an algorithm T that,
when given as input € > 0,L > 1 and given oracle
access to finite metric spaces (M, d) and (N, p) with
|M| < |NJ|, has the following two properties. First, T
accepts if

1/L-d(xz,y) < p(f(z), f(y)) < L-d(z,y)
holds for some injection f: M — N and all (x,y) €
M x M, that is, T accepts if (M,d) is L-bilipschitz
embeddable into (N, p) (

netic analysis (
nions (

). Second, T reJects with
high probablhty if the above 1nequahty fails on at
least an e fraction of pairs (z,y) € M x M for every
injection f : M — N. Such an algorithm T is called a
one-sided tester for bilipschitz embeddability in this
paper. Its query complexity is measured in terms of
the number of times that it queries the metric spaces,
where each query asks for the distance between a pair
of points chosen for that query.

We give a one-sided tester for bilipschitz
embeddability with query complexity at most
O( lf‘%[\[ (|]M|?> +|N|?)). We also show an Q(|N|3/?)
lower bound on the query complexity of any one-sided
tester for bilipschitz embeddability even for the spe-
cial case of finite [M| = |N| and L = 1. If (N,p
is known in advance, queries need only go to (M,d
[M]|1n |N| ).

and the query complexity is shown to be O(
Our results utilize techniques developed by Fischer
and Matsliah ( ) in an earlier
work on testing graph isomorphism.

We also give an extension to the case where the
metric space (N, p) is known in advance but is not
necessarily finite. When (N, p) is a totally bounded

) metric space known a priori, we devise
an algorithm that in a technical sense tests whether a
finite metric space (M, d) is (k, C') quasi-isometrically
embeddable ( , ,
, ) into (N, p), for input pa-
rameters Kk > 1 and C' > 0. The exact statement of
this result is given in Section 6.

This paper is organized as follows. Section 2 gives
the definitions. Section 3 gives the hardness results,
which motivate switching to a property-testing fla-
vored model. Sections 4-5 present upper bound and
lower bounds on the query complexity of one-sided
testers for bilipschitz embeddability. Section 6 ex-
tends the results to testing embeddability of a finite
metric space into a totally bounded metric space. Sec-
tion 7 discusses definitional issues and concludes the

paper.
2 Definitions

Let S be an arbitrary set and ¢ be a positive integer.
We write S for the t-dimensional Cartesian product
of S, and any pair (z,y) € S x S is understood as an
ordered pair unless otherwise specified. A function

s : 9 xS — Risametric on S if for all z,y,z € S,
we have dg(z,y) > 0,dg(x,y) = 0ifand only if z = y,
ds(z,y) = ds(y, z) and dg(z,y) < ds(z, 2) +ds(z,y).
A metric space is a set (called its ground set) endowed
with a metric on it (

Let L > 1, (M,d) be a finite metric space and
(N, p) be a metric space. We say that (M,d) is L-
bilipschitz embeddable into (N, p) if there is an injec-
tive function f : M — N satisfying

1/L-d(z,y) < p(f(z), f(y)) < L-d(z,y) (1)

for all (z,y) € M x M (
). Clearly7 Eq. (1) could
also be written equivalently as

L/L-p(f(x), f(y)) < d(z,y) < L-p(f(x), f(y)):

In this paper, we also say that (M,d) is e-far from
being L-bilipschitz embeddable into (N, p) if, for ev-
ery injection f : M — N, there are at least e/ M|
pairs (z,y) € M x M violating Eq. (1). Similarly,
for Kk > 1 and C > 0, we say that (M,d) is (x,C)
quasi-isometrically embeddable into (N, p) if there is
a function f: M — N satisfying

1/k-d(z,y) = C < p(f(z), f(y)) < k-d(z,y) +C (2)

for all (z,y) € M x M ( ,

, , ). If for every
function f : M — N, Eq. (2) fails on at least ¢|M|?
pairs (z,y) € M x M, then (M,d) is said to be e
far from being (x,C) quasi-isometrically embeddable
into (N, p).

For finite |M| = |N|, we say that (M,d) is
L-bilipschitz equivalent to (N,p) if (M,d) is L-
bilipschitz embeddable into (N, p) (

. Since for finite | M| =
\N|, every injection from M to N is a bijection, it
is easy to see that (M,d) is L-bilipschitz equivalent
to (N, p) if and only if Eq. (1) holds for some bijec-
tion f: M — N and all (z,y) € M x M. Clearly,
L-bilipschitz equivalence is a reflexive and symmetric
relation between metric spaces. For finite |[M| = |N]|,
the minimum value of L > 1 for which (M,d) and
(N, p) are L-bilipschitz equivalent can be thought
of as a measure on the similarity between (M, d)
and (N, p). The smaller this value, the more simi-
lar the metric spaces are. In the extreme case, (M, d)
and (N, p) are 1-bilipschitz equivalent if and only if

117



CRPIT Volume 77 - Theory of Computing 2008

118

they are isometric, that is, there exists a distance-
preserving bijective map (called an isometry) between
them ( ). For € > 0 and finite |M| = |N]|,
we say that (M,d) and (N, p) are e-far from being
L-bilipschitz equivalent if (M, d) is e-far from being
L-bilipschitz embeddable into (N, p). This is the same
as saying that Eq. (1) fails on at least an € fraction of
pairs (z,y) € M x M for every bijection f. If (M,d)
and (N, p) are e-far from being 1-bilipschitz equiva-
lent, they are said to be e-far from being isometric.

When a metric space is given as an oracle, it means

that we can query the oracle for the distance between
any pair of points. Given as input L > 1,e > 0,
positive integers m < n and given oracle access to
finite metric spaces (M, d), (N, p) with |[M| = m and
|N| = n, we are interested in the number of queries
to (M,d) and (N, p)) needed to determine whether
M,d) is L-bilipschitz embeddable into (N, p) or e-
far from being L-bilipschitz embeddable into (N, p).
In particular, we seek an algorithm T that accepts
when (M, d) is L-bilipschitz embeddable into (N, p),
and rejects with high probability when (M,d) is e
far from being L-bilipschitz embeddable into (N, p).
Such an algorithm 7T is said to be a one-sided tester
for bilipschitz embeddability in this paper. Similarly,
an algorithm is a one-sided tester for bilipschitz equiv-
alence (respectively, isometry) if, when we restrict to
finite |M| = |N|, it accepts when (M,d) and (N, p
are L-bilipschitz equivalent (respectively, isometric
and rejects with high probability when (M,d) and
N, p) are e-far from being L-bilipschitz equivalent
respectively, isometric). Finally, a one-sided tester
for quasi-isometric embeddability is given as input
k > 1,C > 0, positive integers m < n and given
oracle access to metric spaces (M, d) and (N, p) with
|[M| = m and |N| = n. It is required to accept if
M,d) is (k,C) quasi-isometrically embeddable into
N, p) and reject with high probability if (M, d) is e
far from being (x, C') quasi-isometrically embeddable
into (N, p).

For € > 0, positive integers m < n and a one-
sided tester T for bilipschitz embeddability, the query
complexity of T with respect to €, m and n is its worst-
case number of queries when it is given €, m,n, any
L > 1 and oracle access to any metric spaces (M, d)
and (N, p) with |M| = m and |N| = n. Here the worst
case is taken over all L > 1 and all metric spaces
(M,d) and (N, p) (of sizes m and n) given as oracles.
The query complexity (with respect to e,m and n)
of a one-sided tester for isometry is defined similarly
except that L is fixed to 1 and m is fixed to equal n.

Let G; = (V, Ey) and G = (V, E3) be undirected
simple graphs ( ). An isomorphism between
G171 and Gy is a bijection m : V. — V such that
for all z,y € V, we have (z,y) € F; if and only if
(m(z),7(y)) € Ez ( ). The graph
isomorphism problem asks whether two undirected
simple graphs exhibit an isomorphism between them

For ¢ > 0, we say that G
and (9 are e-far from being isomorphic if for every
bijection m : V. — V, there are at least e(lg‘) un-
ordered pairs (z,y) € V xV such that (z,y) € E; but
(), 7)) ¢ B, o (1) € By but (x(x),7(0)) ¢

1 .
When an algorithm is given oracle access to an
undirected simple graph G = (V, E), it means that
the algorithm may query the oracle on any (z,y) €
V x V and be informed of whether (z,y) € E. A one-
sided tester for graph isomorphism receives as input
€ > 0, a positive integer n and is given oracle access
to two undirected simple graphs G; = (V, E;) and
G2 = (V, E3) with |V| = n. It must accept if Gy is
isomorphic to G5 and reject with high probability if
(G is e-far from being isomorphic to Gs.

3 Hardness

In this section, we show that the problem of decid-
ing whether two input metric spaces are isometric is
polynomial-time reducible to and from the graph iso-
morphism problem, for which no polynomial-time al-
gorithm has been known despite extensive research.
Furthermore, we show that it is hard even to approx-
imate the least L > 1 for which two input finite met-
ric spaces are L-bilipschitz equivalent. In contrast to
these hardness results, we will show in the Section 4
that there is an efficient one-sided tester for bilips-
chitz embeddability.

We state the following theorem. For its proof
please refer to Appendix 1.

Theorem 1. The problem of testing whether two in-
put metric spaces with the same finite ground set are
isometric is polynomial-time reducible to and from the
graph isomorphism problem.

The problem of approximating the least L > 1 for
which two input finite metric spaces with the same
ground set are L-bilipschitz equivalent is even harder,
provided that NP # P. This is stated in the follow-
ing theorem, which is implicit in the work of Kenyon,
Rabani and Sinclair ( ) (see Propo-
sition 2.2 and Proposition 2.4 in their paper).

Theorem 2. (( )) If there is an
algorithm that, on input any two finite metric spaces
M,d) and (M, p), outputs a number L* > 1 such that
M, d) is L*-bilipschitz equivalent to (M, p) and

4
L < \/g -min{L > 1| (M,d) is L-bilipschitz
equivalent to (M, p)},
then NP = P.

That is, it is hard to approximate to within a mul-
tiplicative /4/3 the minimum value of L > 1 for
which two input finite metric spaces are L-bilipschitz
equivalent.

4 An upper bound on the query complexity

In this section, we give a one-sided tester for bilips-
chitz embeddability. Clearly, this also gives one-sided
testers for bilipschitz equivalence and isometry. For
convenience, we make the following definition.

Definition 1. Let L > 1, (M,d) be a finite metric
space, (N, p) be a metric space and f : M — N be
a function. A quadruple (x,y,u,v) € M? x N? re-
futes f for the L-bilipschitz embeddability of (M,d)
into (N, p) if u= f(x),v= f(y) but

1/L-d(z,y) < p(f(x), f(y) < L-d(z,y)

fails to hold. A set S C M? x N? of quadruples re-
futes f for the L-bilipschitz embeddability of (M,d)
into (N, p) if at least one element of S does. When
L,(M,d) and (N, p) are clear from the context, we
may simply say that a quadruple (z,y,u,v) € M? x
N2 or a set of quadruples refutes f without explicitly
referring to L, (M,d) and (N, p).

The following lemma states that the algorithm
TEST-BILIP in Figure 1 is a one-sided tester for
bilipschitz embeddability.

Lemma 3. On input L > 1, > 0, positive inte-
gers m < n and given oracle access to finite metric

spaces (M, d) and (N, p) with |M|=m and |N| = n,



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

1 if 2 > 1/4 then
2. Query (M,d) and (N, p) for the distances be-
tween all pairs of points;
3. if (M,d) is L-bilipschitz embeddable into
(N, p) then
Accept;
else
Reject;
end if
: elseif2~% %zlthen

v — 1
10  pny «— 422
11: else

© ® ST e

n /lnn,
m em’

3

12: pypo— 2-

m /[lnn

130 pnN «— 2- presy

3

14: end if

15: Construct Q@ € M x M by choosing each pair in
M x M into Qp; independently with probability
P

16: Construct @y € N x N by choosing each pair in
N x N into (Qn independently with probability
PN, using random coin tosses independent from
those used to construct Q,s;

17: if |Qar] > 1000py m? or |Qn| > 1000 py n?
then

18:  Accept without making any queries;

19: else

20:  Query every element of Qs to (M, d);

21:  Query every element of Qn to (IV, p);

22:  if all injections from M to N are refuted by

QM XQN QM2 XN2 then

23: Reject;
24: else

25: Accept;
26:  end if
27: end if

Figure 1: Algorithm TEST-BILIP. The inputs are
L > 1,e > 0 and positive integers m < n. The met-
ric spaces (M,d) and (N, p) are given as oracles and
satisfy |M| =m and |N| = n.

TEST-BILIP accepts if (M,d) is L-bilipschitz em-
beddable into (N, p), and rejects with high probability
if (M,d) is e-far from being L-bilipschitz embeddable
into (N, p).

Proof. If 22 > 1/4, then TEST-BILIP does ex-
haustive queries and accepts exactly when (M, d) is
L-bilipschitz embeddable into (N, p). Hence, we may
assume that

Inn <1/4 (3)

em

in the following.

It is clear that TEST-BILIP accepts whenever
(M, d) is L-bilipschitz embeddable into (N, p).

Now assume that (M,d) is e-far from being L-
bilipschitz embeddable into (N, p) and let f: M — N
be an arbitrary injection. Denote by Sy the set of all
pairs (x,y) € M x M for which the inequality

1/L-d(xz,y) < p(f(z), f(y)) < L-d(z,y)

fails to hold. By assumption we have |Sy| >
€|[M|> = em?. For any (z,y) € Sy, the probability,

taken over the random coin tosses of TEST-BILIP,

that both (z,y) € Qun and (f(z), f(y)) € Qn is
pu pn (although there are two possible assignments

to py and py by TEST-BILIP). Now write Sy =
{(z1,y1), ..., (e, y¢)}. Since f is injective, the pairs

(f(z1), f(y1)),---, (f(xt), f(y:)) are different. Hence,
the 2t events

(z1,91) € Qum

(xhyt). €Qum
(f(z1), f(1)) € Qn

(), f(0)) € Qu

are independent. From this it is not hard to see that
with probability

2
II =pupn) < =pupn)™,
(z,y)eSy

none of (z,y) € Sy satisfies both (z,y) € Qum and

(f(x), f(y)) € @n. Since Qpn X Qn refutes f when
there is a pair (z,y) € Sy satisfying both (z,y) € Qum
and (f(z), f(y)) € @, the probability taken over the
random coin tosses of TEST-BILIP that Qu x Qn
refutes f is at least

2

1—(1—pupn)™.
By the union bound and the fact that there are n™
functions from M to N, with probability at least
2
L—=n"(1-pmpN)™" (4)

over the random coin tosses of TEST-BILIP, every
injection from M to N is refuted by Qu X Qn.
Now there are two cases to consider. The first is

when 2 2 /I8 > 1 In this case, TEST-BILIP sets
pyvy =1land py =4- lf—m” where py < 1 is guaranteed

by Eq. (3). The second case is when 2+ /100 <1,

In this case, TEST-BILIP sets ppy = 2- /100 < 1

and py =27 16“77; where py < 1 is guaranteed
by the facts that py = (%)QpM and m < n. In both
Inn

cases, we have pys py = 4 - 21, resulting in Eq. (4)
to be

m €m2
1—n"(1~prmpnN)
= 1—eXp(m]nn).(1_pMpN)m'pMpN6m2
> 1—exp(mlnn) exp(—puy pn em?)
= 1—exp(—3mlnn).

By the Chernoff bound ( ) and the
fact that m < n, it can be verified that in both
the aforementioned cases of setting pps and py, the
event |Qar| > 1000py m? happens with probabil-
ity exp(—Q(ny/m)) over the random coin tosses of
TEST-BILIP (in fact, for the case of pyy = 1,
the probability that |Qas| > 1000py m? is zero).
Similarly, the event |Qy| > 1000pyn* happens
with probability exp(—(n)). Finally, if [Qn]| <
1000 par m?,|Qn| < 1000px n? and every injection
from M to N is refuted by Qs X Qn, then TEST-
BILIP clearly rejects. The union bound therefore

119



CRPIT Volume 77 - Theory of Computing 2008

120

shows that TEST-BILIP rejects with probability at
least

Q(ny/m)) — exp(=Q(n)),

which is close to 1 for sufficiently large n € N. O

1 —exp(—3mlnn) — exp(—

We now turn to analyze the query complexity of
TEST-BILIP.

Lemma 4. On input L > 1,¢ > 0, positive inte-
gers m < n and given oracle access to finite metric
spaces (M, d) and (N, p) with |[M|=m and |N| =n,
the query complexity (with respect to e,m and n) of

TEST-BILIP is O(y/22 (m? + n?)).

Proof. If 2% > 1/4, then TEST-BILIP does exhaus-
tive queries. The query complexity is m? + n? =

O(\/g(m +n?)). Hence, we may assume that

Inn
— < 1/4
. (5)

in the following.

The query complexity of TEST-BILIP is at most
1000 par m*41000 py n? = O(py m*+pn n?). Again,
there are two cases to consider. The first is is when

o, 1 [lnn > 1. (6)

m YV em
In this case, TEST-BILIP sets pp; = 1 and py =
4121 The second is when Eq. (6) does not hold. In

this case, TEST-BILIP sets py = 2+ .- lf” <1
and py =2 7 16“7”
In the first case,
pum® +pyn’
1
= m’+ 20 g2
em
Eq'g(ﬁ) Inn an? + Inn 4n?
em em
Eq. (5) 1
< 4/ an (4n? + 4n?)
em
Inn
= O/ — (m? ).
(4 (m® 4 02))
In the second case,
Inn Inn
pyr m24py n? = O(mny/ — ) = O(y/ — (m?*+n?)).
em em
O

Combining Lemmas 3-4, we finally arrive at the
the main result for this section.

Theorem 5. TEST-BILIP is a one-sided tester
for bilipschitz embeddability with query complexity

O(y/122 (m? + n?)) with respect to any € > 0 and
any positive integers m < n.

When the space (N, p) is not too large, or more
specifically when n = exp(o(em)), Theorem 5 im-
plies that TEST-BILIP has a query complexity of

o(m? 4+ n?) with respect to €,m and n. That is, most

distances between pairs need not be queried for one-
sided testing of bilipschitz embeddability, provided
that the host space is not excessively large.

When (N, p) is known in advance, a one-sided
tester for bilipschitz embeddability needs only query
the other space (M,d). Equivalently, we could con-
sider one-sided testers for bilipschitz embeddability
that may still make queries to both metric spaces,
while counting only its query complexity concern-
ing (M,d). That is, queries to (IV,p) are regarded
as dummy queries. This gives the following easy ex-
tension of Theorem 5, whose sketch of proof is given
in Appendix II. But this time we use quasi-isometric
embeddability for illustration and to be used later in
Section 6.

Theorem 6. There is a one-sided tester for quasi-
isometric embeddability which, on input k > 1,C' >
0,e > 0, positive integers m < n and given oracle
access to metric spaces (M,d) and (N, p) with |M| =

m and |N| = n, makes O(™22) queries to (M, d).

5 A lower bound on the query complexity

In this section we show a lower bound on the query
complexity of any one-sided tester for isometry. This
will imply the same lower bound for any one-sided
tester of bilipschitz equivalence. For this purpose, we
relate the testing of isometry to testing graph isomor-
phism. The following theorem is due to Fischer and
Matsliah (

Theorem 7. (( )) Let € €
(0, 145) and n be a positive integer. For every one-
sided tester T for graph isomorphism, there are undi-
rected simple n-vertexr graphs G1 and Go such that
given € € (0, ﬁ)m and oracle access to G1 and Ga,

3/2 .
T makes at least %555 queries.

Usmg Theorem 7, it is not hard to give the follow-

ing 200 lower bound on the query complexity of any
one-sided tester for isometry.

Theorem 8. Let ¢ € (0, 555) and n be a positive
integer. The query complexity of any one-sided tester

for isometry is at least % with respect to € and n.
The interested reader is referred to Appendix III
for the proof of Theorem 8

6 Embeddability into possibly infinite spaces

So far we have been dealing with the embeddability
of a finite metric space into another finite one. In
this section, we are interested in testing the embed-
dability of a finite metric space (M, d) into a totally
bounded ( ) metric space (N, p) that is
known in advance. Examples of totally bounded met-
ric spaces include all compact metric spaces (

), which in turn include all closed and bounded
sets 1(n the Euclidean space by the Heine-Borel theo-
rem

Definition 2. (( )) Let (X, d) be any met-
ric space. For 6 > 0, a d-net As of (X,d) is a finite
subset of X such that for every point x € X, there is
any € As with d(z,y) < 6. If (X,d) has a §-net for
every 6 > 0, then (X, d) is totally bounded.

We are now ready to state our main theorem for
this section.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Theorem 9. Let (N, p) be a totally bounded metric
space. Assume there is an algorithm that outputs a J-
net As of (N, p) on input any 6 > 0. Then there is an
algorithm T that, on input k > 1,0 < C' < C,e >0, a
positive integer m and given oracle access to a metric
space (M,d) with |M| = m, satisfies the following
conditions.

1. If (M,d) is (k,C") quasi-isometrically embed-
dable into (N, p), then T accepts.

2. If (M,d) is e-far from being (k,C) quasi-
isometrically embeddable into (N, p), then T re-
jects with high probability.

3. T makes O(w) queries to (M,d).

Proof. Denote by QUASI-ISO the algorithm im-
plied in Theorem 6. The algorithm T first selects a
(C—=C")/2-net A(c_cry/2- Then T runs QUASI-ISO
on input x, C, e, m,|Ac—cry/2| and supplies QUASI-
ISO with oracle access to (M, d) and (Ac—cv)/2,p)-
Clearly, T could satisfy each query of QUASI-ISO by
turning the same query to the corresponding metric
space. Finally, T accepts if and only if QUASI-ISO
accepts. The intuition is that T uses QUASI-ISO to
test (M,d) for (k,C) quasi-isometric embeddability
into (A(c—cr)/2,p)-

Now we prove item 1. The premise of item 1 trans-
lates to the existence of a function f : M — N such
that

1k -d(z,y) = C" < p(f(2), f(y)) < k- d(z,y) + C" (7)

holds for all (z,y) € M x M. Below we define a
function g : M — Ac_cr)s2. For each x € M,

let g(z) be the point in A_cry/2 that is closest
to f(x), breaking ties arbitrarily. Clearly, we have
plg(x), f(x)) < (C —C")/2 for each x € M. There-

fore,

p(f(x), f(y))
< p(f(x),9(z)) + plg(x), 9(v)) + p(g(y), f(y))
< plg(x),9(y)) +C -

for all z,y € M, and in fact
lp(f(z), f(v) — pl9(x),9(y))] < C — C" for all
z,y € M by a similar argument. This and Eq. (7)
give

1/k-d(z,y) — C < p(g9(z),9(y)) < k- d(z,y) +C

for all z,y € M. Therefore, (M,d) is (k,C) quasi-
isometrically embeddable into (A(c_cr)/2, p) and thus
T accepts.

Item 2 is easily justified because its premise triv-
ially implies that (M,d) is e-far from being (k,C)
quasi-isometrically embeddable into (Ac_cv)/2,p),
which results in rejection of 7' with high probability.

Item 3 is established by directly invoking Theo-
rem 6 and calculating the query complexity. O

We briefly justify the applicability of Theorem 9.
It is meant to deal with the case where (M, d) is to be
embedded into an already-known (N, p). In this case,
queries to (N, p) can be answered without actually
making a query. Since (N, p) is known beforehand
and since we usually want to embed metric spaces
into a host metric space with a simple structure, it
is not strange to assume that we can find §-nets for
(N, p). For example, if (N, p) is a closed ball of radius
R > 0 in the 3-dimensional Euclidean space, then it is
easy to find a -net of cardinality O(R3/§2) for (N, p).

7 Concluding remarks

We have defined bilipschitz embeddability and e-
farness from bilipschitz embeddability using injective
functions. Such a definition is justifiable for the fol-
lowing reasons. First, Eq. (1) could be satisfied for
all (xz,y) € M x M only it f : M — N is in-
jective. Second and more importantly, one usually
defines embeddings between metric spaces using in-
jections, and in fact in many (if not most) areas
of mathematics, embeddings are defined using injec-
tions (see, e.g., ( , ,

, . In
contrast, quasi-isometric embeddability is defined via
functions that are not necessarily injective (

), as we did in Section 2. We could also define
the notions of quasi-isometric embeddability and e-
farness from quasi-isometric embeddability using in-
jections by modifying the corresponding definitions in
Section 2 to concern only with injections f : M — N.
That is, we could define (M,d) to be (k,C) quasi-
isometrically embeddable into (N, p) under injections
if Eq. (2) holds for some injection f : M — N and
all (z,y) € M x M. We could also say that (M,d)
is e-far from being (x,C) quasi-isometrically embed-
dable into (N, p) under injections if Eq. (2) fails on at
least an e fraction of pairs (z,y) € M x M for every
injection f : M — N. Theorems 5—6 and 9 can be eas-
ily adapted to give the corresponding tests for quasi-
isometric embeddability under injections. The proofs
are mostly the same except for a few trivial modifi-
cations to Definition 1 and algorithm TEST-BILIP.
The query complexities remain the same. A minor
point is that we have treated pairs selected from a
metric space as ordered ones. They could also be
treated as unordered since the distance function of
any metric space is symmetric. Again, this does not
change our results.

Our definition of e-farness from L-bilipschitz em-
beddability is directly concerned with the least pos-
sible (over all injections f : M — N) fraction of pairs
(z,y) € M x M violating Eq. (1), which is naturally
interpreted as the quality of the best possible embed-
ding f : M — N. This seems as intuitively appealing
feature of our definition. However, other definitions
of e-farness from L-bilipschitz embeddability may also
be worth studying. For example, we may adopt one
of the following definitions for (M, d) to be e-far from
being L-bilipschitz embeddable into (N, p).

1. At least an e fraction of (ordered or unordered)
pairs (z,y) € M x M need to have their d-
distance changed to obtain a metric space that
is L-bilipschitz embeddable into (N, p).

2. Among all (ordered or unordered) pairs in (M x
M)U(N x N), at least an ¢ fraction of them need
to have their d-distance or p-distance changed
so that the modified metric space (M,d) is L-
bilipschitz embeddable into the modified metric
space (N, p).

3. For a reasonable set of edit operations on met-
ric spaces, the least number of edit operations
to turn (M,d) into a metric space that is L-
bilipschitz embeddable into (V,p) is at least
€|M|? (or e|M|, depending on whichever is more
relevant).

4. For a reasonable set of edit operations on met-
ric spaces, the least number of edit operations
on (M,d) and (N, p) to turn (M,d) into being
L-bilipschitz embeddable into (N, p) is at least
e(|M)? + |N|?) (or (M| + |N|), depending on
whichever is more relevant).

121



CRPIT Volume 77 - Theory of Computing 2008

122

Although in these definitions, farness from L-
bilipschitz embeddability may no longer correspond
to the quality of the best possible embedding, tests
for L-bilipschitz embeddability under these defini-
tions may still be worth studying and may provide
new insights.

Appendix I: Proof of Theorem 1

Proof of Theorem 1. We first show the easy reduction
from the graph isomorphism problem to the prob-
lem of testing isometry between finite metric spaces.
Given two graphs G; = (V, E1) and Gy = (V, Es), the
reduction outputs two metric spaces (V,d) and (V, p)
described below. For distinct z,y € V, d(x,y) = 2
if (z,y) € Ey and d(z,y) = 3 otherwise. Also, set
d(xz,z) = 0 for each € V. The metric p is defined
similarly with Fs in place of E;. It is not hard to ver-
ify that (V,d) and (V, p) are metric spaces and they
are isometric if and only if G; is isomorphic to Ga.

Now we turn to the other direction of the re-
duction. Given two finite metric spaces (M, d) and
(M, p), the reduction computes the sets (not mul-
tisets) {d(z,y) | 2.y € M,z # y} and {p(z,y) |
x,y € M,x # y}. Let oy < ... < ay be an enu-
meration of the first set in strictly increasing order
and 31 < ... < (B¢ be that of the second. Assume
that ¢ = ¢ and a; = 3; for 1 < ¢ < ¢, for otherwise
the reduction just outputs any two non-isomorphic
graphs.

The reduction outputs two undirected simple
graphs G; and Gy defined below. It begins with
G1 having vertex set M and the empty edge set,
and proceeds by adding to G; new vertices and new
edges. For each pair of distinct x,y € M, denote by
i(z,y,d) the unique value of i € {1,...,t} satisfying
d(x,y) = a;. The reduction adds 3i(z,y,d) new ver-
tices Vg,y,1,- - s Vs y,3i(z,y,4) a0d also adds new edges

(Z‘, ’Uw,y,l)7 sy (l‘, Uﬂv,y73i(51?~,yxd))

and
(vL%h y)a ) ('Uac,y,Bi(x,y,d)y y)

to Gp. After adding new vertices and edges as above
for each pair of distinct x,y € M, the graph Gj is
finally formed. The graph G is formed similarly with
p in place of d.

Clearly, if (M,d) is isometric to (M, p), then G
and (9 are isomorphic.

Now assume that G is isomorphic to G5. We are
to show that (M, d) is isometric to (M, p). The set of
vertices of G is M U S; where

Sl :{'Ux,y,j | I7y€va7éyal S.] §37’($7y7d)}

is the set of newly added vertices to G1. Similarly, the
set of vertices of G5 is denoted M U Sy where S is
the set of newly added vertices to G. We may assume
without loss of generality that |M| > 2. From the way
we add edges to G (respectively, G2), it is not hard
to see that every vertex in Sy (respectively, So) has
degree exactly two in G (respectively, Ga), and every
vertex in M has degree at least 3 in G (respectively,
G2). Anisomorphism f from G to Gy must therefore
map M one-to-one and onto to M, and S; one-to-one
and onto to S;. Now fix distinct x,y € M arbitrarily.
We are to show that d(z,y) = p(f(x), f(y)), which
implies that f itself (when restricted on M) is an
isometry from (M, d) to (M, p). That f is an isomor-
phism implies

{v | (z,v), (v,y) are edges of G1 and v has

degree exactly 2 in Gy}

= Hul(f(@),u), (u, f(y)) are edges of G2 and
u has degree exactly 2 in Ga}|.

The fact that Sy (respectively, Sa) consists of exactly
those vertices in G (respectively, G2) with degree
two then implies

{v € Sy | (z,v), (v,y) are edges of G1}|
= Hue S| (f(x),u),(u, f(y)) are edges of G2},

which in turn implies that d(z, y) = p(f(z), f(y)). O

Appendix II: Proof of Theorem 6

Sketch of proof of Theorem 6. We modify TEST-
BILIP slightly to prove the theorem. If 22 <

1/4, the modified TEST-BILIP still does exhaustive
queries. Otherwise, TEST-BILIP sets py; = 4 - B2

E€Em

and py = 1 (we let TEST-BILIP do exhaustive
queries to (N, p)). These are different from the origi-
nal assignments of TEST-BILIP to py; and py. Also
modify TEST-BILIP so that after querying Qs and
Qn to (M,d) and (N, pg, it rejects if all functions
(not necessarily injective) from M to N are refuted
by Qum X @N-

Clearly, when 16117" > 1/4, the modified TEST-
BILIP does exhaustive queries and the query com-
plexity also follows. It is also clear that the modi-
fied TEST-BILIP accepts if (M,d) is (x,C) quasi-
isometrically embeddable into (N, p).

Now assume that (M, d) is e-far from being (, C)
quasi-isometrically embeddable into (N, p) and 22 <
1/4. It is clear that the modified assignment of pys =
4. T—m" does not exceed 1. Now fix an arbitrary function

f+ M — N. Similar to in Lemma 3, we define Sy to
be the set of pairs (z,y) € M x M violating

1k -d(z,y) — C < p(f(z), f(y)) < K -d(z,y) + C.

We have |S¢| > em?. Since we do exhaustive queries
to (IV, p), this time f can be refuted by Qur X Qn if
some pair in Sy is put into Q5s. The probability that
Qu X Qn does not refute f is therefore at most

. hll)ﬁ?nz .

1—pu)¥l<(1-14
O

By the union bound, the probability that every func-
tion from M to N is refuted by Qs X Qn is at least

1—n™ (1—4-10nyem® — 1 (1), The probability that
Qu > 1000pa; m? is small, and Qnx > 1000 py n?
happens with probability zero. Therefore, with high
probability Qs X Qn refutes every function from M
to N, and the whole Qs and Q n are queried to (M, d)
and (N, p), respectively, resulting in rejection of the
modified TEST-BILIP.

The number of queries to (M,d) is at most
1000 pps m?, which is easily verified to obey the de-
sired bound. O

Appendix III: Proof of Theorem 8

Proof of Theorem 8. Let T be a one-sided tester for
isometry with query complexity ¢(e,n) with respect
to € and n. Using T, we develop a one-sided tester
T’ for graph isomorphism with query complexity at
most g(e/2,n) with respect to € and n. The theorem
is then immediate from Theorem 7.

On input €,n and given oracle access to two undi-
rected simple graphs G; = (V, E1) and G2 = (V, E3)
with |[V] = n, the algorithm 7" simulates T' on in-
put n,e/2 and provides T with oracle access to two
metric spaces (V,d) and (V, p) described below. The



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

metric space (V, d) is defined by d(x,x) =0for x € V,
d(z,y) = 2 for (z,y) € Fy and d(x,y) = 3 for distinct
z,y € V with (z,y) ¢ Ei. The metric space (V,p)
is defined similarly except that E; is replaced by FEs.
Whenever T' makes a query (z,y) € V x V to the
metric space (V,d) (respectively, (V,p)), T" asks G,
respectively, Go) whether (z,y) € E; (respectively
z,y) € Ey) and then computes d(z,y) (respectively,
p(z,y)) to satisfy the query of T. The query com-
plexity of T” is clearly at most g(e/2,n). Finally, T’
accepts (respectively, rejects) if and only if T accepts
(respectively, rejects).

It is clear that if G; and G5 are isomorphic, then
(V,d) and (V, p) are isometric. Hence T' and thus 7"
accepts.

Now assume that G; and Gy are e-far from being
isomorphic and let 7 : V' — V be any bijection. There
are at least G(I‘;\) unordered pairs (z,y) € V xV
such that either (z,y) € Ey and (n(z),n(y)) ¢ Eo,
or (z,y) € By and (w(z),7(y)) ¢ E1, and it is clear
that any such pair satisfies  # y. This implies the

existence of at least 2¢(1%!) ordered pairs (z,y) € V x

V with d(z,y) # p(m(z),7(y)). Since the bijection 7
(V]

is arbitrary, (V,d) and (V,p) must be Q‘S,lzz) > €/2

far from being isometric, resulting in the rejection of

T and thus 77 with high probability.

References

Apostol, T. M. (1974), Mathematical Analysis, Addi-
son Wesley.

Chévez, E. & Navarro, G. (2006), ‘A metric index
for approximate string matching’, Theoretical Com-
puter Science 352, 266-279.

Chernoff, H. (1952), ‘A measure of the asymptotic
efficiency of tests of a hypothesis based on the sum

of observations’, Annals of Mathematical Statistics
23, 493-507.

Croom, F. H. (2002), Principles of Topology, 1st edn,
Thomson Learning Asia.

David, G. & Semmes, S. (2000), ‘Regular mappings
between dimensions’, Publicacions Matematiques
44, 369-417.

Deza, M. & Laurent, M. (1997), Geometry of Cuts
and Metrics, Vol. 15 of Algorithms and Combina-
torics, Springer.

Dress, A., Huber, K. T. & Moulton, V. (2001), Met-
ric spaces in pure and applied mathematics, in
‘Quadratic Forms and Related Topics’, pp. 121-
139.

Embedding (n.d.), Wikipedia: The Free Encyclopedia.
http://en.wikipedia.org/wiki/Embedding.

Farb, B. (1997), ‘The quasi-isometry classification of
lattices in semisimple Lie groups’, Mathematical
Research Letters 4, 705-717.

Farb, B. & Mosher, L. (1999), ‘Quasi-isometric rigid-
ity for the solvable Baumslag-Solitar groups, I’
Inventiones Mathematicae 137(3), 613-649.

Farb, B. & Mosher, L. (2000), ‘On the asymptotic
geometry of abelian-by-cyclic groups’, Acta Math-
ematica 184(2), 145-202.

Fischer, E. (2001), ‘The art of uninformed decisions:
A primer to property testing’, Bulletin of the Euro-
pean Association for Theoretical Computer Science

75, 97-126.

Fischer, E. & Matsliah, A. (2006), Testing graph
isomorphism, in ‘Proceedings of the 17th annual
ACM-STAM Symposium on Discrete Algorithms’,
pp- 299-308.

Ganyushkin, A. G., Sushchanskii, V. I. & Tsvirkunov,
V. V. (1994), ‘Computations in isometry groups
of finite metric spaces’;, Cybernetics and Systems
Analysis 30(3), 331-347.

Ganyushkin, A. G. & Tsvirkunov, V. V. (1994), ‘On
classification of finite metric spaces’, Mathematical
Notes 56(4), 1023-1029.

Ghys, E. & de la Harpe, P. (1991), Infinite groups as
geometric objects (after Gromou), Ergodic theory,
symbolic dynamics and hyperbolic space, Oxford
University Press.

Goodman, J. E. & O’Rourke, J., eds (2004), Hand-
book of discrete and computational geometry, 2nd
edn, CRC Press, Inc.

Gupta, A. (2000), Embeddings of Finite Metrics, PhD
thesis, University of California, Berkeley.

Indyk, P. (2001), Algorithmic applications of low-
distortion geometric embeddings, in ‘Proceedings
of the 42nd IEEE Symposium on Foundations of
Computer Science’, pp. 10-33.

Johnson, W. B. & Lindenstrauss, J., eds (2003),
Handbook of the Geometry of Banach Spaces, North
Holland.

Kenyon, C., Rabani, Y. & Sinclair, A. (2004), Low
distortion maps between point sets, in ‘Proceedings
of the 36th annual ACM Symposium on Theory of
Computing’, pp. 272-280.

Linial, N. (2002), ‘Finite metric spaces — combina-
torics, geometry and algorithms’, http://www.cs.
huji.ac.il/"nati/PAPERS/icm.ps.gz.

Mao, R., Xu, W., Singh, N. & Miranker, D. P. (2005),
‘An assessment of a metric space database index to
support sequence homology’, International Journal
on Artificial Intelligence Tools 14(5), 867-885.

Matousek, J. (2002), Lectures on Discrete Geometry,
Springer-Verlag New York, Inc.

Miranker, D. P. (2003), ‘Metric-space indexes as a
basis for scalable biological databases’, OMICS: A
Journal of Integrative Biology 7(1), 57—60.

Papadimitriou, C. H. (1994), Computational Com-
plezity, Addison Wesley.

Rudin, W. (1976), Principles of Mathematical Anal-
ysis, 3rd edn, McGraw-Hill.

West, D. B. (2001), Introduction to Graph Theory,
2nd edn, Prentice-Hall.

Weston, J. D. (2001), ‘Vectors as quaternions: A cor-
ner of linear algebra’, The Mathematical Gazette
85(502), 25-35.

123


http://en.wikipedia.org/wiki/Embedding
http://www.cs.huji.ac.il/~nati/PAPERS/icm.ps.gz
http://www.cs.huji.ac.il/~nati/PAPERS/icm.ps.gz

CRPIT Volume 77 - Theory of Computing 2008

124

Testing Embeddability between Metric Spaces

Ching-Lueh Chang!

Yuh-Dauh Lyuu?

Yen-Wu Ti?

! Department of Computer Science and Information Engineering
National Taiwan University,
Taipei, Taiwan,
Email: d95007@csie.ntu.edu.tw

2 Department of Computer Science and Information Engineering
National Taiwan University,
Taipei, Taiwan,
Email: 1yuu@csie.ntu.edu.tw

3 Department of Computer Science and Information Engineering
National Taiwan University,
Taipei, Taiwan,
Email: d91010@csie.ntu.edu.tw

Abstract

Let L > 1,e> 0 be real numbers, (M, d) be a finite
metric space and (N,p) be a metric space (Rudin
1976).  The metric space (M,d) is said to be L-
bilipschitz embeddable into (N,p) if there is an in-
jective function f : M — N with

U/L-d(z,y) < p(f(x), f(y)) < L-d(z,y)

for all z,y € N (Farb & Mosher 1999, David &
Semmes 2000, Croom 2002). In this paper, we also
say that (M,d) is e-far from being L-bilipschitz em-
beddable into (IV,p) if the above inequality fails on at
least an € fraction of pairs (z,y) € M x M for every
injective function f: M — N.

Below, a query to a metric space consists of asking
for the distance between a pair of points chosen for
that query. We study the number of queries to metric
spaces (M,d) and (N,p) needed to answer whether
(M,d) is L-bilipschitz embeddable into (N,p) or e
far from being L-bilipschitz embeddable into (N,p).
When (M, d) is e-far from being L-bilipschitz embed-
dable into (N,p), we allow an o(1) probability of er-
ror (i.e., returning the wrong answer “L-bilipschitz
embeddable”). However, we allow no error when
(M,d) is L-bilipschitz embeddable into (N,p). That
is, algorithms with only one-sided errors are con-
sidered in this paper. When |[M| <| N| are finite,
nlTE (IM]2 + [NJ?))
on the number of queries for determining with one-
sided error whether (M,d) is L-bilipschitz embed-
dable into (N,p) or efar from being L-bilipschitz
embeddable into (N,p). For the special case of fi-
nite |M| = |N|, the above upper bound evaluates to

O(|N|3/2\/M ). We also prove a lower bound of
Q(|N]3/2) even for the special case when |M| = |N|

we give an upper bound of O(

Research supported in part by NSC grant 95-2213-E-002-044.

Copyright (©2008, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Computing: The Aus-
tralasian Theory Symposium (CATS2008), Wollongong, NSW,
Australia. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 77, James Harland and Prabhu
Manyem, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

are finite and L = 1, which coincides with testing
isometry between finite metric spaces (Croom 2002).
For finite | M| = |N|, the upper and lower bounds thus
In|N|

€ )
which depends only sublogarithmically in |N|. We
also investigate the case when (NV,p) is not necessarily
finite. Our results are based on techniques developed
in an earlier work on testing graph isomorphism (Fis-
cher & Matsliah 2006).

match up to a multiplicative factor of at most

1 Introduction

The ability to analyze metric spaces is of growing im-
portance across diverse disciplines as huge bodies of
data await analysis. In bioinformatics, for example,
enormous amounts of data such as DNA sequences
and protein sequences are constantly being produced.
Efficient algorithms and standard computer programs
have been developed over the years for calculating the
distances between DNA or protein sequences, and this
turns the collection of all known DNA and protein se-
quences into a huge metric space. As pointed out by
Linial (Linial 2002), proper analysis of this space is
of great significance to the biological sciences.

The analysis of metric spaces often requires vari-
ous notions of similarity and embeddability between
metric spaces. The philosophy is that, when a met-
ric space is embedded into another metric space such
that the original space is similar to the embedded one,
understandings of the original space may be achieved
through analysis of the embedded one. For exam-
ple, when a metric space is embedded into the Eu-
clidean plane while roughly preserving the distances
between pairs of points, many efficient geometric al-
gorithms that are not available for general metric
spaces become applicable and of great help (Good-
man & O'Rourke 2004). Another advantage is that
embeddings into the Euclidean plane make possible
more succinct representations of the original space
(Goodman & O’Rourke 2004). In respect of these
benefits of metric embedding that preserves similar-
ity between the original and the embedded spaces, it
comes without surprise that such embeddings have
found tremendous applications in graph theory, com-
binatorial optimization, learning theory and com-

putational geometry (Deza & Laurent 1997, Gupta
2000, Linial 2002, Matousek 2002, Johnson & Lin-
denstrauss 2003, Indyk 2001, Kenyon et al. 2004).

Besides, studies on the structures of metric spaces



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

also have applications to isometry groups and mathe-
matical biology (Ganyushkin et al. 1994, Ganyushkin

& Tsvirkunov 1994), quadratic forms and phyloge-
netic analysis (Dress et al. 2001), theory of quater-
nions (Weston 2001), scalable biological databases
(Miranker 2003), sequences homology (Mao et al.

2005) and approximate string matching (Chavez &
Navarro 2006), to name a few.

Unfortunately, as we will see in Section 3, it is
computationally hard to determine whether one met-
ric spaces is similar to another one under various no-
tions of metric similarity. First, deciding whether two
input metric spaces are isometric (Croom 2002) is as
hard as the graph isomorphism problem (Papadim-
itriou 1994), for which no polynomial-time algorithms
are known despite extensive research. Second, con-
sider the problem of deciding, on input L > 1 and
finite metric spaces (M,d) and (M,p), whether or
not these spaces are L-bilipschitz equivalent (Farb &
Mosher 1999, David & Semmes 2000). That is, we
want to decide whether the metric spaces (M, d) and
(M,p) exhibit a bijective map between them that pre-
serves distances up to multiplicative factors ranging
from 1/L to L. We observe that the results of Kenyon,
Rabani and Sinclair (KKenyon et al. 2004) imply that it
is hard even to approximate the least value of L such
that (M,d) and (M,p) are L-bilipschitz equivalent.
This may be interpreted as saying that it is hard to
approximately compute the level of bilipschitz simi-
larity even between finite metric spaces with the same
ground set. Given the above hardness results, a ran-
domized approximation algorithm with a reasonable
complexity can be an attractive alternative to attack
the problem of determining metric similarity or even
metric embeddability.

An algorithm in the flavor of property testing (Fis-
cher 2001) is one such alternative. It determines
whether a problem instance has a certain property or
is e-far (under a certain distance measure) from hav-
ing such a property, while allowing a small probability
of error. In this paper, we seek an algorithm T that,
when given as input € > 0,L > 1 and given oracle
access to finite metric spaces (M, d) and (N,p) with
|M| <| N|, has the following two properties. First, T
accepts if

holds for some injection f: M — N and all (x,y) €
M x M, that is, T accepts if (M,d) is L-bilipschitz
embeddable into (N,p) (Farb & Mosher 1999, David
& Semmes 2000, Croom 2002). Second, T rejects with
high probability if the above inequality fails on at
least an e fraction of pairs (z,y) € M x M for every
injection f : M — N. Such an algorithm T is called a
one-sided tester for bilipschitz embeddability in this
paper. Its query complexity is measured in terms of
the number of times that it queries the metric spaces,
where each query asks for the distance between a pair
of points chosen for that query.

We give a one-sided tester for bilipschitz
embeddability with query complexity at most

O(4/ 1;%' (|M|?> +|N|?)). We also show anQ)( |N|3/?)
lower bound on the query complexity of any one-sided
tester for bilipschitz embeddability even for the spe-
cial case of finite |[M| = |[N| and L = 1. If (N,p

is known in advance, queries need only go to (M,d
[M]In |N| ).

and the query complexity is shown to be O(
Our results utilize techniques developed by Fischer
and Matsliah (Fischer & Matsliah 2006) in an earlier
work on testing graph isomorphism.

We also give an extension to the case where the
metric space (N,p) is known in advance but is not
necessarily finite. When (N,p) is a totally bounded

(Croom 2002) metric space known a priori, we devise
an algorithm that in a technical sense tests whether a
finite metric space (M, d) is (k, C') quasi-isometrically
embeddable (Ghys & de la Harpe 1991, Farb 1997,
Farb & Mosher 1999, 2000) into (N,p), for input pa-
rameters Kk > 1 and C > 0. The exact statement of
this result is given in Section 6.

This paper is organized as follows. Section 2 gives
the definitions. Section 3 gives the hardness results,
which motivate switching to a property-testing fla-
vored model. Sections 4-5 present upper bound and
lower bounds on the query complexity of one-sided
testers for bilipschitz embeddability. Section 6 ex-
tends the results to testing embeddability of a finite
metric space into a totally bounded metric space. Sec-
tion 7 discusses definitional issues and concludes the

paper.
2 Definitions

Let S be an arbitrary set and ¢ be a positive integer.
We write S for the t-dimensional Cartesian product
of S, and any pair (z,y) € S x S is understood as an
ordered pair unless otherwise specified. A function
ds : S x § — R is a metric on § if for all x,y,z € S,
we have dg(z,y) > 0,dg(x,y) = 0ifand only if z = y,
ds(z,y) = ds(y,x) and dg(z,y) < dg(z, z)+ds(z,y).
A metric space is a set (called its ground set) endowed
with a metric on it (Rudin 1976).

Let L > 1, (M,d) be a finite metric space and
(N,p) be a metric space. We say that (M,d) is L-
bilipschitz embeddable into (N,p) if there is an injec-
tive function f : M — N satisfying

1/L-d(z,y) < p(f(z), f(y)) < L-d(z,y) (1)

for all (z,y) € M x M (Apostol 1974, Farb & Mosher
1999, David & Semmes 2000). Clearly, Eq. (1) could
also be written equivalently as

L/L-p(f(x), f(y)) < d(z,y) < L-p(f(x), f(y)):

In this paper, we also say that (M,d) is e-far from
being L-bilipschitz embeddable into (N,p) if, for ev-
ery injection f : M — N, there are at least e/ M|
pairs (z,y) € M x M violating Eq. (1). Similarly,
for Kk > 1 and C > 0, we say that (M,d) is (x,C)
quasi-isometrically embeddable into (N,p) if there is
a function f: M — N satistying

1/k-d(z,y) = C < p(f(z), f(y)) < k-d(z,y) +C (2)

for all (z,y) € M x M (Ghys & de la Harpe 1991,
Farb 1997, Farb & Mosher 1999, 2000). If for every
function f : M — N, Eq. (2) fails on at least ¢|M|?
pairs (z,y) € M x M, then (M,d) is said to be e
far from being (x,C) quasi-isometrically embeddable
into (N,p).

For finite |M| = |N|, we say that (M,d) is
L-bilipschitz equivalent to (N,p) if (M,d) is L-
bilipschitz embeddable into (N,p) (Farb & Mosher
1999, David & Semmes 2000). Since for finite |M| =
|N|, every injection from M to N is a bijection, it
is easy to see that (M, d) is L-bilipschitz equivalent
to (N,p) if and only if Eq. (1) holds for some bijec-
tion f: M — N and all (z,y) € M x M. Clearly,
L-bilipschitz equivalence is a reflexive and symmetric
relation between metric spaces. For finite |[M| = |N]|,
the minimum value of L > 1 for which (M,d) and
(N,p) are L-bilipschitz equivalent can be thought
of as a measure on the similarity between (M, d)
and (N,p). The smaller this value, the more simi-
lar the metric spaces are. In the extreme case, (M, d)
and (N,p) are 1-bilipschitz equivalent if and only if

125



CRPIT Volume 77 - Theory of Computing 2008

126

they are isometric, that is, there exists a distance-
preserving bijective map (called an isometry) between
them ( ). For € > 0 and finite |M| = |N]|,
we say that (M,d) and (N,p) are e-far from being
L-bilipschitz equivalent if (M, d) is e-far from being
L-bilipschitz embeddable into (IV,p ). This is the same
as saying that Eq. (1) fails on at least an e fraction of
pairs (z,y) € M x M for every bijection f. If (M,d)
and (N,p) are e-far from being 1-bilipschitz equiva-
lent, they are said to be e-far from being isometric.

When a metric space is given as an oracle, it means

that we can query the oracle for the distance between
any pair of points. Given as input L > 1,e> 0,
positive integers m < n and given oracle access to
finite metric spaces (M, d), (N,p) with |[M| = m and
|N| = n, we are interested in the number of queries
to (M,d) and (N,p)) needed to determine whether
M,d) is L-bilipschitz embeddable into (N,p) or e-
far from being L-bilipschitz embeddable into (N,p).
In particular, we seek an algorithm T that accepts
when (M, d) is L-bilipschitz embeddable into (N,p),
and rejects with high probability when (M,d) is e
far from being L-bilipschitz embeddable into (N,p).
Such an algorithm 7T is said to be a one-sided tester
for bilipschitz embeddability in this paper. Similarly,
an algorithm is a one-sided tester for bilipschitz equiv-
alence (respectively, isometry) if, when we restrict to
finite |M| = |N|, it accepts when (M,d) and (N,pg
are L-bilipschitz equivalent (respectively, isometric
and rejects with high probability when (M,d) and
N,p) are e-far from being L-bilipschitz equivalent
respectively, isometric). Finally, a one-sided tester
for quasi-isometric embeddability is given as input
k > 1,C > 0, positive integers m < n and given
oracle access to metric spaces (M, d) and (N,p) with
|[M| = m and |N| = n. It is required to accept if
M,d) is (k,C) quasi-isometrically embeddable into
N,p) and reject with high probability if (M,d) is e
far from being (k, C) quasi-isometrically embeddable
into (N,p).

For € > 0, positive integers m < n and a one-
sided tester T for bilipschitz embeddability, the query
complexity of T' with respect to €, m and n is its worst-
case number of queries when it is given e, m,n, any
L > 1 and oracle access to any metric spaces (M, d)
and (N,p) with |M| = m and |N| = n. Here the worst
case is taken over all L > 1 and all metric spaces
(M,d) and (N,p) (of sizes m and n) given as oracles.
The query complexity (with respect to ¢, m and n)
of a one-sided tester for isometry is defined similarly
except that L is fixed to 1 and m is fixed to equal n.

Let G; = (V, E1) and G = (V, E3) be undirected
simple graphs ( ). An isomorphism between
G1 and G5 is a bijection w : V. — V such that
for all x,y € V, we have (z,y) € E; if and only if
(m(z),m(y)) € B2 ( ). The graph
isomorphism problem asks whether two undirected
simple graphs exhibit an isomorphism between them

For ¢ > 0, we say that G
and (2 are e-far from being isomorphic if for every
bijection m : V. — V, there are at least e(lg‘) un-
ordered pairs (z,y) € V xV such that (z,y) € E; but
(). 7)) £ B, o (1) € By but (x(x),7(0) ¢

1 .
When an algorithm is given oracle access to an
undirected simple graph G = (V| E), it means that
the algorithm may query the oracle on any (z,y) €
V x V and be informed of whether (z,y) € E. A one-
sided tester for graph isomorphism receives as input
€ > 0, a positive integer n and is given oracle access
to two undirected simple graphs G; = (V, E;) and
G2 = (V, E3) with |V| = n. It must accept if Gy is
isomorphic to G5 and reject with high probability if
(G is e-far from being isomorphic to Gs.

3 Hardness

In this section, we show that the problem of decid-
ing whether two input metric spaces are isometric is
polynomial-time reducible to and from the graph iso-
morphism problem, for which no polynomial-time al-
gorithm has been known despite extensive research.
Furthermore, we show that it is hard even to approx-
imate the least L > 1 for which two input finite met-
ric spaces are L-bilipschitz equivalent. In contrast to
these hardness results, we will show in the Section 4
that there is an efficient one-sided tester for bilips-
chitz embeddability.

We state the following theorem. For its proof
please refer to Appendix I.

Theorem 1. The problem of testing whether two in-
put metric spaces with the same finite ground set are
isometric is polynomial-time reducible to and from the
graph isomorphism problem.

The problem of approximating the least L > 1 for
which two input finite metric spaces with the same
ground set are L-bilipschitz equivalent is even harder,
provided that NP /&= P. This is stated in the follow-
ing theorem, which is implicit in the work of Kenyon,
Rabani and Sinclair ( ) (see Propo-
sition 2.2 and Proposition 2.4 in their paper).

Theorem 2. (( )) If there is an
algorithm that, on input any two finite metric spaces
M,d) and (M,p), outputs a number L* > 1 such that
M, d) is L*-bilipschitz equivalent to (M,p) and

4
L < \/g -min{L > 1| (M,d) is L-bilipschitz
equivalent to (M,p)},
then NP = P.

That is, it is hard to approximate to within a mul-
tiplicative /4/3 the minimum value of L > 1 for
which two input finite metric spaces are L-bilipschitz
equivalent.

4 An upper bound on the query complexity

In this section, we give a one-sided tester for bilips-
chitz embeddability. Clearly, this also gives one-sided
testers for bilipschitz equivalence and isometry. For
convenience, we make the following definition.

Definition 1. Let L > 1, (M,d) be a finite metric
space, (N,p) be a metric space and f : M — N be
a function. A quadruple (x,y,u,v) € M? x N? re-
futes f for the L-bilipschitz embeddability of (M,d)
into (N,p) if u= f(x),v= f(y) but

1/L-d(z,y) < p(f(x), f(y) < L-d(z,y)

fails to hold. A set S C M? x N? of quadruples re-
futes f for the L-bilipschitz embeddability of (M,d)
into (N,p) if at least one element of S does. When
L,(M,d) and (N,p) are clear from the context, we
may simply say that a quadruple (z,y,u,v) € M? x
N2 or a set of quadruples refutes f without explicitly
referring to L, (M,d) and (N,p).

The following lemma states that the algorithm
TEST-BILIP in Figure 1 is a one-sided tester for
bilipschitz embeddability.

Lemma 3. On input L > 1,e> 0, positive inte-
gers m < n and given oracle access to finite metric

spaces (M, d) and (N,p) with |M|=m and |N| = n,



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

1 if 2 > 1/4 then
2. Query (M,d) and (N,p) for the distances be-

tween all pairs of points;
3. if (M,d) is L-bilipschitz embeddable into

(N,p) then

4: Accept;

5.  else

6: Reject;

7. end if

8: elseif2~% %zlthen

9 pm— L

10: pny<«—4- IE“T’;;

11: else

122 py—2- - %;
m [lnn

13: pN «— 2-

3

Eem

14: end if

15: Construct Qs € M x M by choosing each pair in
M x M into Qp; independently with probability
Pum;

16: Construct @y € N x N by choosing each pair in
N x N into Qn independently with probability
PN, using random coin tosses independent from
those used to construct Qas;

17: if |Qar] > 1000pa m? or |Qn| > 1000 py n?
then

18:  Accept without making any queries;

19: else

20:  Query every element of Qs to (M, d);

21:  Query every element of Qn to (N,p);

22:  if all injections from M to N are refuted by

QM X QN QM2 XN2 then

23: Reject;
24: else

25: Accept;
26: end if
27: end if

Figure 1: Algorithm TEST-BILIP. The inputs are
L > 1,e> 0 and positive integers m < n. The met-
ric spaces (M,d) and (N,p) are given as oracles and
satisfy |M| =m and |N| = n.

TEST-BILIP accepts if (M,d) is L-bilipschitz em-
beddable into (N,p), and rejects with high probability
if (M,d) is e-far from being L-bilipschitz embeddable
into (N,p).

Proof. If 22 > 1/4, then TEST-BILIP does ex-
haustive queries and accepts exactly when (M, d) is
L-bilipschitz embeddable into (V,p ). Hence, we may
assume that

Inn <1/4 (3)

eEm

in the following.

It is clear that TEST-BILIP accepts whenever
(M, d) is L-bilipschitz embeddable into (N,p ).

Now assume that (M,d) is e-far from being L-
bilipschitz embeddable into (N,p) and let f : M — N
be an arbitrary injection. Denote by Sy the set of all

pairs (x,y) € M x M for which the inequality

1/L-d(xz,y) < p(f(x), f(y)) < L-d(z,y)

fails to hold. By assumption we have |S§| >
€|]M|* = em?. For any (z,y) € Sy, the probability,

taken over the random coin tosses of TEST-BILIP,

that both (z,y) € Qu and (f(z), f(y)) € Qn is
pu pn (although there are two possible assignments

to py and py by TEST-BILIP). Now write Sy =
{(z1,y1), ..., (xt,y:)}. Since f is injective, the pairs

(f(z1), f(y1)),---, (f(xt), f(y:)) are different. Hence,
the 2t events

(z1,91) € Qum

(xtayt). €Qum
(f(z1), f(y1)) € QN

(F(), F(30) € Q

are independent. From this it is not hard to see that
with probability

2
II =pupn) < —pupn)™,
(z,y)eSs

none of (z,y) € Sy satisfies both (z,y) € Qum and

(f(x), f(y)) € @n. Since Qn; x Qn refutes f when
there is a pair (z,y) € Sy satisfying both (z,y) € Qum
and (f(z), f(y)) € Qu, the probability taken over the
random coin tosses of TEST-BILIP that Qs X Qn
refutes f is at least

2

1—(1—pupn)™.
By the union bound and the fact that there are n™
functions from M to N, with probability at least
2
1—n"(1—pyupn)™ (4)

over the random coin tosses of TEST-BILIP, every
injection from M to N is refuted by Qu X Qn.
Now there are two cases to consider. The first is

when 2 2\ /I8 > 1 In this case, TEST-BILIP sets
pyvy =1land py =4- lf—m” where py < 1 is guaranteed

by Eq. (3). The second case is when 2+ 2, /101 <1,

In this case, TEST-BILIP sets ppy = 2- /100 < 1

and py =22 16“77; where py < 1 is guaranteed
by the facts that py = (%)QpM and m < n. In both
Inn

cases, we have pys py = 4 - =1, resulting in Eq. (4)
to be

m €m2
1—n"(1~prmpnN)
= 1—eXp(m]nn).(1_pMpN)m'PMpN6m2
> 1—exp(mlnn) exp(—puy pn em?)
= 1—exp(—3mlnn).

By the Chernoff bound ( ) and the
fact that m < n, it can be verified that in both
the aforementioned cases of setting pps and py, the
event |Qar| > 1000pp; m? happens with probabil-
ity exp(—Q(ny/m)) over the random coin tosses of
TEST-BILIP (in fact, for the case of pyy = 1,
the probability that |Qas| > 1000py m? is zero).
Similarly, the event |Qy| > 1000pyn* happens
with probability exp(—(n)). Finally, if [Qn]| <
1000 par m?,|Qn| < 1000px n? and every injection
from M to N is refuted by Qs X Qn, then TEST-
BILIP clearly rejects. The union bound therefore

127



CRPIT Volume 77 - Theory of Computing 2008

128

shows that TEST-BILIP rejects with probability at
least

Q(ny/m)) — exp(=Q(n)),

which is close to 1 for sufficiently large n € N. O

1 —exp(—3mlnn) — exp(—

We now turn to analyze the query complexity of
TEST-BILIP.

Lemma 4. On input L > 1,e> 0, positive inte-
gers m < n and given oracle access to finite metric
spaces (M, d) and (N,p) with |[M|=m and |N| = n,
the query complexity (with respect to e,m and n) of

TEST-BILIP is O(y/22 (m? + n?)).

Proof. If 2% > 1/4, then TEST-BILIP does exhaus-

tive queries. The query complexity is m? + n? =

O(\/g(m +n?)). Hence, we may assume that

Inn
— < 1/4
) 5)

in the following.

The query complexity of TEST-BILIP is at most
1000 par m*41000 py n? = O(py m*+pn n?). Again,
there are two cases to consider. The first is is when

1
9. L By (6)
mV em
In this case, TEST-BILIP sets pp; = 1 and py =
4121 The second is when Eq. (6) does not hold. In

this case, TEST-BILIP sets py = 2+ .- lf” <1
and py =2 ¢ 16“7”
In the first case,
pum® +pyn’
1
= m2+ =24
em
Eq'g((a) Inn an? + Inn 4n?
em em
Eq. (5) 1
< 4/ an (4n? + 4n?)
em
Inn
= O/ — (m? ).
(4 (m® + 02))
In the second case,
Inn Inn
pyr m*4py n? = O(mny| — ) = O(y/ — (m?*+n?)).
em em
O

Combining Lemmas 3-4, we finally arrive at the
the main result for this section.

Theorem 5. TEST-BILIP is a one-sided tester
for bilipschitz embeddability with query complexity

O(y/122 (m? + n?)) with respect to any € > 0 and
any positive integers m < n.

When the space (N,p) is not too large, or more
specifically when n = exp(o(em)), Theorem 5 im-
plies that TEST-BILIP has a query complexity of
o(m? 4+ n?) with respect to €,m and n. That is, most

distances between pairs need not be queried for one-
sided testing of bilipschitz embeddability, provided
that the host space is not excessively large.

When (N,p) is known in advance, a one-sided
tester for bilipschitz embeddability needs only query
the other space (M,d). Equivalently, we could con-
sider one-sided testers for bilipschitz embeddability
that may still make queries to both metric spaces,
while counting only its query complexity concern-
ing (M,d). That is, queries to (N,p) are regarded
as dummy queries. This gives the following easy ex-
tension of Theorem 5, whose sketch of proof is given
in Appendix II. But this time we use quasi-isometric
embeddability for illustration and to be used later in
Section 6.

Theorem 6. There is a one-sided tester for quasi-
isometric embeddability which, on input k > 1,C >
0,e> 0, positive integers m < n and given oracle
access to metric spaces (M,d) and (N,p) with |M| =

m and |N| = n, makes O("™22) queries to (M, d).

5 A lower bound on the query complexity

In this section we show a lower bound on the query
complexity of any one-sided tester for isometry. This
will imply the same lower bound for any one-sided
tester of bilipschitz equivalence. For this purpose, we
relate the testing of isometry to testing graph isomor-
phism. The following theorem is due to Fischer and
Matsliah (

Theorem 7. (( )) Let € €
(0, 145) and n be a positive integer. For every one-
sided tester T for graph isomorphism, there are undi-
rected simple n-vertex graphs G1 and Go such that
given € € (0, ﬁ)m and oracle access to G1 and Ga,

3/2 .
T makes at least %555 queries.

Usmg Theorem 7, it is not hard to give the follow-

ing 200 lower bound on the query complexity of any
one-sided tester for isometry.

Theorem 8. Let ¢ € (0, 555) and n be a positive
integer. The query complexity of any one-sided tester

for isometry is at least %/02 with respect to € and n.
The interested reader is referred to Appendix III
for the proof of Theorem 8

6 Embeddability into possibly infinite spaces

So far we have been dealing with the embeddability
of a finite metric space into another finite one. In
this section, we are interested in testing the embed-
dability of a finite metric space (M,d) into a totally
bounded ( ) metric space (N,p) that is
known in advance. Examples of totally bounded met-
ric spaces include all compact metric spaces (

), which in turn include all closed and bounded
sets 1(n the Euclidean space by the Heine-Borel theo-
rem

Definition 2. (( )) Let (X, d) be any met-
ric space. For 6 > 0, a d-net As of (X,d) is a finite
subset of X such that for every point x € X, there is
any € As with d(z,y) < d. If (X,d) has a §-net for
every 6 > 0, then (X, d) is totally bounded.

We are now ready to state our main theorem for
this section.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Theorem 9. Let (N,p) be a totally bounded metric
space. Assume there is an algorithm that outputs a J-
net As of (N,p) on input any 6 > 0. Then there is an
algorithm T that, on input k > 1,0 < C' < C,e> 0, a
positive integer m and given oracle access to a metric
space (M,d) with |M| = m, satisfies the following
conditions.

1. If (M,d) is (k,C") quasi-isometrically embed-
dable into (N,p), then T accepts.

2. If (M,d) is e-far from being (k,C) quasi-
isometrically embeddable into (N,p), then T re-
jects with high probability.

3. T makes O(w) queries to (M, d).

Proof. Denote by QUASI-ISO the algorithm im-
plied in Theorem 6. The algorithm 7T first selects a
(C—C")/2-net A(c_cry/2- Then T runs QUASI-ISO
on input «, C\e,m, |Ac_cry/2| and supplies QUASI-
ISO with oracle access to (M, d) and (Ac—cv)/2,p)-
Clearly, T could satisfy each query of QUASI-ISO by
turning the same query to the corresponding metric
space. Finally, T accepts if and only if QUASI-ISO
accepts. The intuition is that T uses QUASI-ISO to
test (M,d) for (k,C) quasi-isometric embeddability
into (A(c—cr)/2, p)-

Now we prove item 1. The premise of item 1 trans-
lates to the existence of a function f : M — N such
that

1k -d(z,y) = C" < p(f(2), f(y)) < k- d(z,y) + C" (7)

holds for all (z,y) € M x M. Below we define a
function g : M — Ac_cr)s2. For each x € M,

let g(z) be the point in A_cry/2 that is closest
to f(x), breaking ties arbitrarily. Clearly, we have
plg(x), f(x)) < (C —C")/2 for each x € M. There-

fore,

p(f(x), f(y))
< p(f(x),9(x)) + plg(x), 9(v)) + p(g(y), f(y))
< plg(x),9(y)) +C -

for all z,y € M and in  fact

lp(f (@), f(y)) — p(g(2),9(y))] < C — C' for all
z,y € M by a similar argument. This and Eq. (7)
give

1/k-d(z,y) — C < p(g(z),9(y)) < k- d(z,y) + C

for all ,y € M. Therefore, (M,d) is (k,C) quasi-
isometrically embeddable into (A(c_c¢r)/2, p) and thus
T accepts.

Item 2 is easily justified because its premise triv-
ially implies that (M,d) is e-far from being (k,C)
quasi-isometrically embeddable into (Ac—cr)/2,p),
which results in rejection of 7" with high probability.

Item 3 is established by directly invoking Theo-
rem 6 and calculating the query complexity. O

We briefly justify the applicability of Theorem 9.
It is meant to deal with the case where (M, d) is to be
embedded into an already-known (N,p ). In this case,
queries to (N,p) can be answered without actually
making a query. Since (N,p) is known beforehand
and since we usually want to embed metric spaces
into a host metric space with a simple structure, it
is not strange to assume that we can find §-nets for
(N,p). For example, if (N,p) is a closed ball of radius
R > 0 in the 3-dimensional Euclidean space, then it is
easy to find a -net of cardinality O(R3/§3) for (N,p).

7 Concluding remarks

We have defined bilipschitz embeddability and e-
farness from bilipschitz embeddability using injective
functions. Such a definition is justifiable for the fol-
lowing reasons. First, Eq. (1) could be satisfied for
all (xz,y) € M x M only it f : M — N is in-
jective. Second and more importantly, one usually
defines embeddings between metric spaces using in-
jections, and in fact in many (if not most) areas
of mathematics, embeddings are defined using injec-
tions (see, e.g., (Embedding n.d., Croom 2002, Good-
man & O’Rourke 2004, Kenyon et al. 2004)). In
contrast, quasi-isometric embeddability is defined via
functions that are not necessarily injective (Ghys &
de la Harpe 1991, Farb 1997, Farb & Mosher 1999,
2000), as we did in Section 2. We could also define
the notions of quasi-isometric embeddability and e-
farness from quasi-isometric embeddability using in-
jections by modifying the corresponding definitions in
Section 2 to concern only with injections f : M — N.
That is, we could define (M,d) to be (k,C) quasi-
isometrically embeddable into (N,p) under injections
if Eq. (2) holds for some injection f : M — N and
all (z,y) € M x M. We could also say that (M,d)
is e-far from being (x,C) quasi-isometrically embed-
dable into (N,p) under injections if Eq. (2) fails on at
least an e fraction of pairs (z,y) € M x M for every
injection f : M — N. Theorems 5—6 and 9 can be eas-
ily adapted to give the corresponding tests for quasi-
isometric embeddability under injections. The proofs
are mostly the same except for a few trivial modifi-
cations to Definition 1 and algorithm TEST-BILIP.
The query complexities remain the same. A minor
point is that we have treated pairs selected from a
metric space as ordered ones. They could also be
treated as unordered since the distance function of
any metric space is symmetric. Again, this does not
change our results.

Our definition of e-farness from L-bilipschitz em-
beddability is directly concerned with the least pos-
sible (over all injections f : M — N) fraction of pairs
(z,y) € M x M violating Eq. (1), which is naturally
interpreted as the quality of the best possible embed-
ding f : M — N. This seems as intuitively appealing
feature of our definition. However, other definitions
of e-farness from L-bilipschitz embeddability may also
be worth studying. For example, we may adopt one
of the following definitions for (M, d) to be e-far from
being L-bilipschitz embeddable into (N,p).

1. At least an e fraction of (ordered or unordered)
pairs (z,y) € M x M need to have their d-
distance changed to obtain a metric space that
is L-bilipschitz embeddable into (V,p).

2. Among all (ordered or unordered) pairs in (M x
M)U(N x N), at least an € fraction of them need
to have their d-distance or p-distance changed
so that the modified metric space (M,d) is L-
bilipschitz embeddable into the modified metric
space (N,p).

3. For a reasonable set of edit operations on met-
ric spaces, the least number of edit operations
to turn (M,d) into a metric space that is L-
bilipschitz embeddable into (N,p) is at least
€|M|? (or €|M|, depending on whichever is more
relevant).

4. For a reasonable set of edit operations on met-
ric spaces, the least number of edit operations
on (M,d) and (N,p) to turn (M,d) into being
L-bilipschitz embeddable into (N,p) is at least
e(|[M|? + |N|?) (or e(|M| + |N|), depending on
whichever is more relevant).

129



CRPIT Volume 77 - Theory of Computing 2008

130

Although in these definitions, farness from L-
bilipschitz embeddability may no longer correspond
to the quality of the best possible embedding, tests
for L-bilipschitz embeddability under these defini-
tions may still be worth studying and may provide
new insights.

Appendix I: Proof of Theorem 1

Proof of Theorem 1. We first show the easy reduction
from the graph isomorphism problem to the prob-
lem of testing isometry between finite metric spaces.
Given two graphs G; = (V, E1) and Gy = (V, Es), the
reduction outputs two metric spaces (V,d) and (V,p)
described below. For distinct z,y € V, d(x,y) = 2
if (z,y) € Ey and d(z,y) = 3 otherwise. Also, set
d(xz,z) = 0 for each € V. The metric p is defined
similarly with Fs in place of E;. It is not hard to ver-
ify that (V,d) and (V,p) are metric spaces and they
are isometric if and only if G; is isomorphic to Ga.

Now we turn to the other direction of the re-
duction. Given two finite metric spaces (M,d) and
(M,p), the reduction computes the sets (not mul-
tisets) {d(z,y) | .y € M,z # y} and {p(z,y) |
x,y € M,x # y}. Let oy < ... <a ¢ be an enu-
meration of the first set in strictly increasing order
and 31 < ... <0 ¢ be that of the second. Assume
that t = ¢/ and o; = 3; for 1 < i < t, for otherwise
the reduction just outputs any two non-isomorphic
graphs.

The reduction outputs two undirected simple
graphs G; and G2 defined below. It begins with
(1 having vertex set M and the empty edge set,
and proceeds by adding to G; new vertices and new
edges. For each pair of distinct z,y € M, denote by
i(z,y,d) the unique value of i € {1,...,t} satisfying
d(x,y) = a;. The reduction adds 3i(z,y,d) new ver-
tices Vg,y,1,- - - Va,y,3i(z,y,4) a0d also adds new edges

(Z‘, 'Uw,y,l)y B (33, Ux,y,?)i(:r,y,d))

and
(vz,y,la y)a ceey (vz,y,Bi(I,y,d)7 y)

to Gp. After adding new vertices and edges as above
for each pair of distinct x,y € M, the graph Gj is
finally formed. The graph Gs is formed similarly with
p in place of d.

Clearly, if (M,d) is isometric to (M,p), then Gy
and G4 are isomorphic.

Now assume that G is isomorphic to G3. We are
to show that (M, d) is isometric to (M,p). The set of
vertices of G is M U S; where

St ={vey,j |z, ye M,z #y,1<j<3i(x,y,d)}

is the set of newly added vertices to G1. Similarly, the
set of vertices of Go is denoted M U Sy where Sy is
the set of newly added vertices to G. We may assume
without loss of generality that |[M| > 2. From the way
we add edges to G (respectively, G2), it is not hard
to see that every vertex in Sj (respectively, S2) has
degree exactly two in G (respectively, G3), and every
vertex in M has degree at least 3 in G (respectively,
G2). Anisomorphism f from G to Gy must therefore
map M one-to-one and onto to M, and S; one-to-one
and onto to Sy. Now fix distinct x,y € M arbitrarily.
We are to show that d(z,y) = p(f(x), f(y)), which
implies that f itself (when restricted on M) is an
isometry from (M, d) to (M,p). That f is an isomor-
phism implies

{v | (z,v), (v,y) are edges of G1 and v has
degree exactly 2 in G;}|

= Hu] (f(x),u), (u, f(y)) are edges of G2 and
u has degree exactly 2 in Go}|.

The fact that Sy (respectively, Sa) consists of exactly
those vertices in Gy (respectively, Gs) with degree
two then implies

{v e Sy | (z,v),(v,y) are edges of G1}|
= Hue S| (f(z),u),(u, f(y)) are edges of Ga}|,

which in turn implies that d(z, y) = p(f(z), f(y)). O

Appendix II: Proof of Theorem 6

Sketch of proof of Theorem 6. We modify TEST-
BILIP slightly to prove the theorem. If 22 <

1/4, the modified TEST-BILIP still does exhaustive
queries. Otherwise, TEST-BILIP sets py; = 4 - B2

€M

and py = 1 (we let TEST-BILIP do exhaustive
queries to (V,p)). These are different from the origi-
nal assignments of TEST-BILIP to py; and py. Also
modify TEST-BILIP so that after querying Qs and
Qn to (M,d) and (N,p;, it rejects if all functions
(not necessarily injective) from M to N are refuted
by Qum X @N-

Clearly, when 16117" > 1/4, the modified TEST-
BILIP does exhaustive queries and the query com-
plexity also follows. It is also clear that the modi-
fied TEST-BILIP accepts if (M,d) is (x,C) quasi-
isometrically embeddable into (N,p).

Now assume that (M, d) is e-far from being (, C)
quasi-isometrically embeddable into (N,p) and 22 <
1/4. It is clear that the modified assignment of pys =
4. T—m" does not exceed 1. Now fix an arbitrary function

f+ M — N. Similar to in Lemma 3, we define Sy to
be the set of pairs (z,y) € M x M violating

k- -d(z,y) — C < p(f(z), f(y)) < k-d(z,y) + C.

We have |S¢| > em?. Since we do exhaustive queries
to (IV,p), this time f can be refuted by Qur X Qn if
some pair in S¢ is put into Q ;. The probability that
Qur X Qn does not refute f is therefore at most

. hll)ﬁ?nz .

1—pu)¥l<(1-14
(L —pa)S < (14—

By the union bound, the probability that every func-
tion from M to N is refuted by Qs X Qn is at least

1—n™ (1—4-10yem® — 1 _o(1). The probability that
Qu > 1000pa; m? is small, and Qnx > 1000 py n?
happens with probability zero. Therefore, with high
probability Qs X Qn refutes every function from M
to N, and the whole Qs and Q n are queried to (M, d)
and (N,p), respectively, resulting in rejection of the
modified TEST-BILIP.

The number of queries to (M,d) is at most
1000 pps m?, which is easily verified to obey the de-
sired bound. O

Appendix III: Proof of Theorem 8

Proof of Theorem 8. Let T be a one-sided tester for
isometry with query complexity ¢(e,n) with respect
to € and n. Using T, we develop a one-sided tester
T’ for graph isomorphism with query complexity at
most g(e/2,n) with respect to € and n. The theorem
is then immediate from Theorem 7.

On input €,n and given oracle access to two undi-
rected simple graphs G; = (V, E1) and Go = (V, E3)
with |V] = n, the algorithm 7" simulates T' on in-
put n,e/ 2 and provides T' with oracle access to two
metric spaces (V,d) and (V,p) described below. The



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

metric space (V, d) is defined by d(x,xz) =0 for x € V,
d(z,y) = 2 for (z,y) € Fy and d(x,y) = 3 for distinct
z,y € V with (z,y) ¢ Ei. The metric space (V,p)
is defined similarly except that E; is replaced by FEs.
Whenever T' makes a query (z,y) € V x V to the
metric space (V,d) (respectively, (V,p)), T" asks G,
respectively, Go) whether (z,y) € E; (respectively
z,y) € Ey) and then computes d(z,y) (respectively,
p(z,y)) to satisfy the query of T. The query com-
plexity of T” is clearly at most g(e/2,n). Finally, T’
accepts (respectively, rejects) if and only if T accepts
(respectively, rejects).

It is clear that if G; and G5 are isomorphic, then
(V,d) and (V,p) are isometric. Hence T' and thus 7"
accepts.

Now assume that G; and Gy are e-far from being
isomorphic and let 7 : V' — V be any bijection. There
are at least G(I‘;\) unordered pairs (z,y) € V xV
such that either (z,y) € Ey and (n(z),n(y)) ¢ Eo,
or (z,y) € By and (7w(z),7(y)) ¢ E1, and it is clear
that any such pair satisfies x # y. This implies the

existence of at least 26(“;') ordered pairs (z,y) € V x

V with d(z,y) # p(m(x),7(y)). Since the bijection 7
(V]

is arbitrary, (V,d) and (V,p) must be 2‘E/|22) >e/ 2

far from being isometric, resulting in the rejection of

T and thus 77 with high probability.

References

Apostol, T. M. (1974), Mathematical Analysis, Addi-
son Wesley.

Chéavez, E. & Navarro, G. (2006), ‘A metric index
for approximate string matching’, Theoretical Com-
puter Science 352, 266-279.

Chernoff, H. (1952), ‘A measure of the asymptotic
efficiency of tests of a hypothesis based on the sum

of observations’, Annals of Mathematical Statistics
23, 493-507.

Croom, F. H. (2002), Principles of Topology, 1st edn,
Thomson Learning Asia.

David, G. & Semmes, S. (2000), ‘Regular mappings
between dimensions’, Publicacions Matematiques
44, 369-417.

Deza, M. & Laurent, M. (1997), Geometry of Cuts
and Metrics, Vol. 15 of Algorithms and Combina-
torics, Springer.

Dress, A., Huber, K. T. & Moulton, V. (2001), Met-
ric spaces in pure and applied mathematics, in
‘Quadratic Forms and Related Topics’, pp. 121-
139.

Embedding (n.d.), Wikipedia: The Free Encyclopedia.
http://en.wikipedia.org/wiki/Embedding.

Farb, B. (1997), ‘The quasi-isometry classification of
lattices in semisimple Lie groups’, Mathematical
Research Letters 4, 705-717.

Farb, B. & Mosher, L. (1999), ‘Quasi-isometric rigid-
ity for the solvable Baumslag-Solitar groups, I’
Inventiones Mathematicae 137(3), 613-649.

Farb, B. & Mosher, L. (2000), ‘On the asymptotic
geometry of abelian-by-cyclic groups’, Acta Math-
ematica 184(2), 145-202.

Fischer, E. (2001), ‘The art of uninformed decisions:
A primer to property testing’, Bulletin of the Euro-
pean Association for Theoretical Computer Science

75, 97-126.

Fischer, E. & Matsliah, A. (2006), Testing graph
isomorphism, in ‘Proceedings of the 17th annual
ACM-STAM Symposium on Discrete Algorithms’,
pp- 299-308.

Ganyushkin, A. G., Sushchanskii, V. I. & Tsvirkunov,
V. V. (1994), ‘Computations in isometry groups
of finite metric spaces’; Cybernetics and Systems
Analysis 30(3), 331-347.

Ganyushkin, A. G. & Tsvirkunov, V. V. (1994), ‘On
classification of finite metric spaces’, Mathematical
Notes 56(4), 1023-1029.

Ghys, E. & de la Harpe, P. (1991), Infinite groups as
geometric objects (after Gromou), Ergodic theory,
symbolic dynamics and hyperbolic space, Oxford
University Press.

Goodman, J. E. & O’Rourke, J., eds (2004), Hand-
book of discrete and computational geometry, 2nd
edn, CRC Press, Inc.

Gupta, A. (2000), Embeddings of Finite Metrics, PhD
thesis, University of California, Berkeley.

Indyk, P. (2001), Algorithmic applications of low-
distortion geometric embeddings, in ‘Proceedings
of the 42nd IEEE Symposium on Foundations of
Computer Science’, pp. 10-33.

Johnson, W. B. & Lindenstrauss, J., eds (2003),
Handbook of the Geometry of Banach Spaces, North
Holland.

Kenyon, C., Rabani, Y. & Sinclair, A. (2004), Low
distortion maps between point sets, in ‘Proceedings
of the 36th annual ACM Symposium on Theory of
Computing’, pp. 272-280.

Linial, N. (2002), ‘Finite metric spaces — combina-
torics, geometry and algorithms’, http://www.cs.
huji.ac.il/"nati/PAPERS/icm.ps.gz.

Mao, R., Xu, W., Singh, N. & Miranker, D. P. (2005),
‘An assessment of a metric space database index to
support sequence homology’, International Journal
on Artificial Intelligence Tools 14(5), 867-885.

Matousek, J. (2002), Lectures on Discrete Geometry,
Springer-Verlag New York, Inc.

Miranker, D. P. (2003), ‘Metric-space indexes as a
basis for scalable biological databases’, OMICS: A
Journal of Integrative Biology 7(1), 57—60.

Papadimitriou, C. H. (1994), Computational Com-
plezity, Addison Wesley.

Rudin, W. (1976), Principles of Mathematical Anal-
ysis, 3rd edn, McGraw-Hill.

West, D. B. (2001), Introduction to Graph Theory,
2nd edn, Prentice-Hall.

Weston, J. D. (2001), ‘Vectors as quaternions: A cor-
ner of linear algebra’, The Mathematical Gazette
85(502), 25-35.

131


http://www.cs.huji.ac.il/~nati/PAPERS/icm.ps.gz
http://en.wikipedia.org/wiki/Embedding
http://www.cs.huji.ac.il/~nati/PAPERS/icm.ps.gz

CRPIT Volume 77 - Theory of Computing 2008

132

On the Efficiency of Pollard’s Rho Method for Discrete Logarithms

Shi Bai'

Richard P. Brent? {

I Department of Computer Science,
Australian National University,
Canberra, ACT 0200
Email: shih.bai@gmail.com

2 Centre for Mathematics and its Applications,
Mathematical Sciences Institute,
Australian National University,

Canberra, ACT 0200
Email: cats@rpbrent.com

Abstract

Pollard’s rho method is a randomized algorithm for
computing discrete logarithms. It works by defining a
pseudo-random sequence and then detecting a match
in the sequence. Many improvements have been pro-
posed, while few evaluation results and efficiency sug-
gestions have been reported. This paper is devoted
to a detailed study of the efficiency issues in Pollard’s
rho method. We describe an empirical performance
analysis of several widely applied algorithms. This
should provide a better combination of algorithms
and a good choice of parameters for Pollard’s rho
method.

Keywords: Pollard’s rho method, discrete logarithm,
elliptic curve discrete logarithm.

1 Introduction

The discrete logarithm is an analogue of the ordinary
logarithm in a finite abelian group. Let H be a fi-
nite abelian group with the group operation ®. G is
a cyclic subgroup of H generated by g, denoted as
g) = G. Then an instance of the discrete logarithm
problem (DLP) is stated as follow.

Definition 1.1 (DLP). Given h, g € G known, DLP
is to find the smallest non-negative integer x such
that,

h=g®g®---®g
—_—
z times

As each element h € G can be expressed in the form
of h =g®g®- -+ ® g, such = exists and is unique
modulo |G|. By analogy to the ordinary logarithm,
we write z = log, h. We also simplify the equation
h=9g®g® - ®g by writing h = ¢g”.

The discrete logarithm problem is believed to be
hard, without any known efficient algorithm in the
general case. Here an efficient algorithm means an
algorithm with polynomial bit-complexity. The pre-
sumed hardness of DLP is relevant to many cryp-
tosystems and cryptographic protocols such as Diffie-
Hellman key exchange protocol (Diffie & Hellman

t The work of the second author
Australian Research Council.

was supported by the

Copyright (©2008, Australian Computer Society, Inc. This
paper appeared at Fourteenth Computing: The Australasian
Theory Symposium (CATS2008), Wollongong, Australia.
Conferences in Research and Practice in Information Tech-
nology, Vol. 77. James Harland and Prabhu Manyem, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

1976), ElGamal encryption (Gamal 1985), Digital
Signature Algorithm (DSA) and Elliptic Curve DSA.
Therefore algorithms for computing discrete loga-
rithms are of great academic and practical impor-
tance.

Not all discrete logarithm problems are difficult.
They may be trivial in some groups. The difficulty of
the discrete logarithm problem depends on the rep-
resentation of the group. Two popular finite groups
used for discrete logarithm problems are the multi-
plicative group (Z/pZ)* of integers modulo a prime
p and the group of points on an elliptic curve over
a finite field, denoted by E(F,). In these groups, no
polynomial time algorithm for the problem has been
reported in the literature.

Pollard’s rho method (Pollard 1978) is a random-
ized algorithm for computing the discrete logarithm.
It generates a pseudo-random sequence by an itera-
tion function Y;y; = f(Y;) in a finite abelian group.
Because the order of the group is finite, the sequence
will ultimately meet an element that has occurred
before. This is called a collision or a match, which
can be found by Floyd’s collision-detection (cycle-
finding) algorithm. Under the assumption that f :
G — G behaves like a truly random mapping, the
expected number of evaluations before a match ap-

pears is y/7|G|/2, which is fully exponential in the
problem size. The space requirement is negligible.
In some cases, such as the elliptic curve discrete loga-
rithm problem (ECDLP), Pollard’s rho method is the
fastest algorithm currently available. Although there
exist sub-exponential time algorithms for discrete log-
arithm problems in the group (Z/pZ)* such as the in-
dex calculus method (Coppersmith et al. 1986), Pol-
lard’s rho method is still of practical interest because
of its simplicity and effectiveness for smaller groups.
In addition, it does not exploit any special proper-
ties of the groups, making it potentially applicable to
DLPs in other abelian groups.

The rest of the paper is organized as follows. Sec-
tion 2 presents a comprehensive analysis of Pollard’s
rho method and its variants in two aspects: iteration
functions and collision-detection algorithms. We also
compare the performance of different iteration func-
tions and collision-detection algorithms. In Section 3,
we fill some gaps in the previous literature, suggest
a good choice of parameters and give an empirical
analysis of the performance.

2 Background

In this section we introduce Pollard’s rho method
and discuss the current status of research on itera-
tion functions and cycle-finding algorithms.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

2.1 Pollard’s Rho Method

Pollard proposed an elegant algorithm (Pollard 1978)
for the discrete logarithm problem based on a Monte
Carlo idea and called it the rho method. The rho
method works by first defining a sequence of elements
that will be periodically recurrent, then looking for a
match in the sequence. The match will lead to a so-
lution of the discrete logarithm problem with high
probability. The two key ideas involved are the it-
eration function for generating the sequence and the
cycle-finding algorithm for detecting a match.

2.1.1 Pollard’s Iteration Function

We first introduce the definition of the iteration func-
tion applied in the rho method.

Definition 2.1 (Iteration Function). An iteration
function on a set X is a mapping f : X — X.

In Pollard’s paper, DLPs in (Z/pZ)* are consid-
ered where p is a prime. Let g be a generator of the
cyclic group G = (Z/pZ)*. Another element h € G
is given. The discrete logarithm problem is to com-
pute x satisfying ¢g* = h (mod p). Pollard’s iteration
function fp : G — G is defined as follows,

g-Y (modp) YeG;
frY) = { Y?  (mod p) Y e G, (2.1)
h-Y (mod p) Y € Gs

In each iteration of Y;1; = fp(Y;), the function
uses one of three rules depending on the value of Y;.
The group G is partitioned into three sets G1, G2, G5
with similar sizes, not necessarily subgroups. Each
Y; has the form g®hbi. If it happens that Y, = Y;
(mod p), then g2 h% = g% h% (mod p). We can of-
ten solve the DLP if ag, aj, by, b; are known. The
sequence (a;) (and similarly for (b;)) can be computed
using’,

a;+1 (mod |G)) Y, e Gy
a1 =4 20 (mod |G|) Y, € Gy (2.2)
a; (mod |G|) Y; € Gs

Since G is finite, the sequence (Y;) produced by the
iteration function is periodic. Therefore there exist
two smallest integers p and A (u > 0, A > 1) such
that Y, = Yy, for every kK > p. To analyze the
performance of the rho method, we use the following
theorem,

Theorem 2.2 (Harris (1960)). Under the assump-
tion that an iteration function f : G — G behaves like
a truly random mapping, the expected values for u and

A are \/7|G|/8 =~ 0.631/|G|. The expected number

of evaluations before a match appears is E(u+ \) =

V7|G|/2 = 1.25\/|G|, provided that all elements are
saved, which requires \/7|G|/2 space.

2.1.2 Reported Performance

Theorem 2.2 makes the assumption of true random-
ness. However, it has been shown empirically that
this assumption does not hold exactly for Pollard’s
iteration function (Teske 1998). The actual perfor-
mance is worse than the expected value given in The-
orem 2.2. As it is impractical to find the exact value

Mnitially Yy = 1,a0 = 0, by = 0.

of p+ X for Pollard’s iteration function, a collision-
detection algorithm is often applied in practice, need-
ing [ iterations. To analyze the performance of the
iteration function, we adopt the idea of delay fac-
tor § = I/E(u + A) used in (Teske 1998). The val-
ues of § and I for Pollard’s iteration function have
been reported and we divide I by § to get E(u + A).
The performance is summarized as follows. In groups
(Z/pZ)*, Pollard’s iteration function has an average

value of E(u+A) =~ 1.374/|G|. The reported E(u+\)
for prime order subgroups of (Z/pZ)* is 1.554/|G| and
1.60+/|G| for prime order subgroups of of E(F),).

2.1.3 Floyd’s Cycle-finding Algorithm

In order to minimise the storage requirement, a
collision-detection algorithm can be applied with a
small penalty in the running time. Collision-detection
algorithms do not exploit the group structure and are
generic. In Pollard’s paper, Floyd’s algorithm is ap-
plied. It compares each pair of Y; and Y3; for i > 1.
Floyd’s algorithm is based on the following fact.

Theorem 2.3 (Knuth (1997)). For a periodic se-
quence Yy, Y1,Ys -+, there exists an i > 0 such that
Y, = Y5, and the smallest such i lies in the range
p<iS pt A

Floyd’s algorithm wuses only a small constant
amount of storage. The best running-time requires p
iterations and the worst takes p+ A iterations. Under
the assumption that f : G — G behaves like a truly
random mapping, the expected number of iterations
before reaching a match is \/7°|G|/288 ~ 1.03/|G].
In Floyd’s algorithm, there are three evaluations and
one comparison in each iteration. Hence on average

there are 1.034/|G| comparisons and 3.09+/|G| eval-
uations.

2.2 Advances in Iteration Functions

In this subsection, we consider some recent advances
and developments in iteration functions.

2.2.1 Pollard’s Generalized Function

We slightly change the rules defining the function.
Let M = g™ and N = h™ where m, n are two random
elements chosen from [1,|G|], denoted as m, n €g
[1,|G|]. We partition G into 3 sets G1, G2, G5 with
similar sizes. Let fpg : G — G be a mapping,

MY (mod p) YeG;
fpg(Y) = { Y? (mod p) Y € Go (23)
N-Y (mod p) Y € Gs

Teske (1998) found that the variance of the per-
formance in Pollard’s generalized walk (or iteration
function) is smaller than that for Pollard’s original
function. Therefore this function can be regarded as
a controlled version of Pollard’s original walk (Teske

1998). The reported E(p + A) is 1.624/|G| for sub-
groups of E(F,). We cannot find reported results for

groups (Z/pZ)* and hence we will fill this gap in Sec-
tion 3.

2.2.2 Teske’s Adding-walk

Teske (1998) proposed a better iteration function by
applying more arbitrary multipliers. Assume that we
are using r partitions (multipliers). We generate 2r
random numbers,

133



CRPIT Volume 77 - Theory of Computing 2008

134

mi,n; € {1,2,---|G|}, fori =1,2,---,r (2.4)

Then we precompute r multipliers My, Ms,--- M,
where,

M;=g¢g™ -n™, fori=1,2,---,r (2.5)

Define a hash function,

v:G@—{1,2,---r} (2.6)

This completes the precompute stage. Then the iter-
ation function fra : G — G is,

fTA(Y) =Y. Mv(Y)» where U(Y) S {1, 2, T}
(2.7)
The indices are updated by,

a; = a; My (y;

+1 + Mo(y;) (2.8)

bit1 = bi + nyy;)

Based on the work of Hildebrand (1994), Horwitz

& Venkatesan (2002), we have the following theorem

to show that the performance of adding-walk is prov-
ably good.

Theorem 2.4 (Teske (2001)). Let G be a finite
abelian group of prime order. Assume that we work
with an r adding-walk together with an independent
hash function where r > 16. Then the average num-
ber of iterations before a collision occurs, divided by
V|G|, is approzimately independent of |G|. In addi-
tion, if r > 16 then the average number of iterations
is bounded by 1.45./|G| when using Teske’s modified
cycle-finding algorithm.

The reported E(u + ) is 1.294/|G| for subgroups
of E(F,), which is close to the theoretically optimal
bound 1.254/|G| in Theorem 2.2.

2.2.3 Teske’s Mixed-walk

Teske proposed another method named mixed-
walk (Teske 1998) which has a similar performance
to the adding-walk. It uses a mixture of the adding-
walk and some squaring steps, similar to Pollard’s
iteration function. Assume that we are using r mul-
tipliers in the adding-walk and g squaring steps. The
pseudo-random function frps : G — G is defined as
follows,

B Y'Mu(y) ’U(Y) S {1,2,"'7‘}
fru(Y) = { Y? Otherwise
(2.9)
Experimental results show that r» > 16 plus ¢/r =~
0.25 yields a performance comparable to that of a
truly random walk. A mixed-walk of 16 multipliers
and 4 squaring steps is reported to have an expected

length of E(n+ ) = 1.3/|G]|.

2.3 Advances in Collision-detection Algo-
rithms

In Floyd’s algorithm, some Y; will be evaluated twice,
which is time-consuming. There are faster algo-
rithms. We discuss two of Brent’s algorithms (Brent
1980) and a variant (Teske 1998).

2.3.1 Brent’s Algorithms

Brent proposed two algorithms (Brent 1980) which
are generally 25% faster than Floyd’s method. A
modified version of them was used in factoring the
eighth Fermat number by Brent & Pollard (1981).

Brent’s first algorithm (Brent 1980) uses a variable
z to keep the values of Yj(;)—; where [(i) = ollogi]
is compared with Y; for each iteration and is updated
by z =Y; when i = 2% — 1 for x = 1,2,--- (4 is the
index of iteration and the base 2 is chosen for ease of
implementation). Only one sequence Y; needs to be
computed and the value of z is easily updated. The
correctness of this algorithm depends on the following
idea.

Theorem 2.5. For a periodic sequence Yo, Y1,Yo -,
there exists an i > 0 such that Y; = Yj;—1 and (i) <

i < 21(i). The smallest such i is 2M18 ™LA L\
1.

Under the assumption that the iteration function
is truly random, an expected number of 1.98./|G| it-
erations for E(u + \) is reported (Brent 1980). The
number of evaluations is equal to the number of com-
parisons, and hence the total number of operations
is bounded by 3.964/|G|. If cost of comparisons is
insignificant, the algorithm is 30% faster in average
than Floyd’s algorithm. On the other hand, if com-
parisons are expensive, the speedup may be compro-
mised.

A second algorithm is given in the same pa-
per (Brent 1980). This algorithm avoids unnecessary
comparisons as it is sufficient to compare only when
31(i) <4 < 21(i). Under the assumption that the iter-
ation function is truly random, the expected number
of evaluations is 2.24,/|G| with an expected number
of comparison as 0.884/|G|. The total number of op-

erations is 3.124/|G|.

A variation of Brent’s algorithms is discussed
by Teske (1998). It reduces the number of iterations
by using more storage and comparisons. A chain of 8
cells is applied and each cell keeps a triplet (Y3, a;, b;).
Initially all the values in cells are Y, and is updated
according to the following rules. At the i-th iteration,
we compare the current value Y; with previous values
in the cells. If they are not equal, we check whether
1 is greater than 3 times the index of the element in
the first cell. If this is true, we put current Y; into
the last cell, remove the element in first cell and then
shift the other cells to the previous cell. Under the
assumption that the function is truly random, the ex-

pected number of iterations is about 1.424/|G|. For
each iteration, there is one evaluation and eight com-
parisons.

2.4 Summary

We summarize the performance of collision-detection
algorithms, making the assumption that the iteration
function is truly random. We also compile a table in-
cluding the performance of iteration functions, which
is based on the reported experimental results. In the
first table, the columns represent algorithms, number
of expected iterations, evaluations and comparisons.
In the second table, the columns denote iteration
functions, multiplicative groups (Z/pZ)*, prime or-
der subgroups of (Z/pZ)* and prime order subgroups
of E(F,). frajo denotes Teske’s adding-walk with
20 multipliers and fras[16.4) denotes Teske’s mixed-
walk with 16 multipliers plus 4 squaring steps. All
the data in the table is normalised: E(u + \) is di-

vided by /|G|



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Remark 2.6. In case where two different experimental
results are reported by Teske (1998, 2001), we use first
one.

Table 1: Performance of Cycle-finding Algorithms

ALGs ITERs EVALs CMPs
Floyd’s 1.03 3.09 1.03
Brent’s 1st Alg 1.98 1.98 1.98

Brent’s 2nd Alg 2.24 2.24 0.88
Teske’s Modified 1.42 1.42 8 1.42

Table 2: Performance of Iteration Functions

FUNGCs (Z/pZ)* S <(Z/pZ)* S <E(F,)
fp 1.37 1.55 1.60
frc - - 1.62
Jrap0] - - 1.29

T M[16:4] - - 1.30

3 Experimental Investigation

We can find few comparable results for Pollard’s
rho method and its variants, except those reported
by Teske (1998, 2001). There are some gaps in Table
2. In this section, we fill the gaps in Table 2 by an
empirical investigation and give some suggestions on
better parameters such as starting values and parti-
tioning methods. In addition, we test Teske’s itera-
tion function with a comprehensive set of data and
verify Teske’s results.

3.1 Description of Experiments

To prepare for the experiments, random prime num-
bers from 3 digits to 15 digits were chosen to give fi-
nite fields F,,. We then considered the groups (Z/pZ)*
and subgroups of (Z/pZ)* with orders from 3 to 13
digits. We also discuss elliptic curve discrete loga-
rithms. Let E(F,) be a finite abelian group formed
by the points on an elliptic curve. G is a prime order
subgroup of E(F),) generated by a point P. Then an
instance of the elliptic curve discrete logarithm prob-
lem (ECDLP) is stated as follows. Here we write the
group operation as .

Definition 3.1 (ECDLP). Given P, Q € G known,
ECDLP is to find the smallest non-negative integer x
such that,

Q=PoP®---@P
[ ——
z times

To generate subgroups of E(F,), we produce ran-
dom elliptic curves over F, and then compute the
order for each group. Due to the Pohlig-Hellman al-
gorithm (Pohlig & Hellman 1978), we concentrate on
the subgroups with largest prime orders. A generator
for each subgroup is computed. The number of in-
stances of DLPs or ECDLPs computed is given in Ta-
ble 3. The first column gives the (sub)groups by the
number of decimal digits in their order. The second
column is the number of DLPs or ECDLPs computed
for each row. The third column gives the number of
different starting values Y for each instance of DLP
or ECDLP.

Our implementaion is based on C+-+ using the
GNU Multiple Precision Arithmetic Library (GMP).
We ran the algorithms over Gentoo Linux on a Pen-
tium 2.4GHz platform. The whole computation took
more than a month.

Table 3: Instances of DLPs or ECDLPs

DIGITs #DLPs (ECDLPs) STs
3 to 8 200 100
9 100 50

10 50 20

11 50 10

12 50 5

13 50 1

3.2 Iteration Functions

We first discuss the performance of different iteration
functions without collision-detection algorithms. The
whole sequences generated by the iteration functions
were stored. Therefore the groups were restricted to
be small. 2500 discrete logarithms over groups of 6-7
digits were computed. All the data in Table 4 denotes

the values of E(u + \) divided by 1/|G|. The results
fill the gaps in Table 2.

Table 4: Performance of Iteration Functions

FUNCs (Z/pZ)* S <(Z/pZ)* S < E(Fp)
fr 1.37 1.55 1.60
fra 1.41 1.55 1.62
frapo 1.28 1.27 1.29
Jra6:4) 1.30 1.30 1.30

We found that Pollard’s original iteration function
performed worse than the truly random case (Theo-
rem 2.2). In addition, Pollard’s generalized iteration
funtion is slightly worse than the original function
on average. On the other hand, Teske’s adding-walk
and mixed-walk iteration functions behave better and
mimic random walks. We discuss the choice of param-
eters in the rho method below.

3.3 Starting Values

The value assigned to Y; for the iteration function
Yir1 = f(Y;) is called the starting value of the se-
quence. We can use a fixed value for all DLPs (such
as Yo = 1) or generate a random starting values us-
ing powers of g and h. We investigate the potential
impacts of different types of starting values, which
does not seem to have been done before. The pseudo-
random functions are either Pollard’s original func-
tion or Teske’s adding-walk using 20 multipliers. The
collision-detection algorithm is Brent’s second algo-
rithm. In addition, we adopt the partitioning method
used in Pollard’s original function®. For fixed start-
ing values, we compute 4500 instances for DLPs and
ECDLPs. The mean values of results are normalized

by /|G| in Table 5.

Table 5: Impact of Initial Values

Groups Functions Fixed Random

T N
(Z/p)* subgroups ?;A[QO] gg? ggé
E(F,) subgroups ;;A[ZO] ggg ggg

Although it seems to lose the advantage of ran-
domness, choosing Yy = 1 is not significantly worse

2Partitioning methods will be discussed in the next part.



CRPIT Volume 77 - Theory of Computing 2008

136

than choosing Y, at random. However, the variance
is smaller in the latter case.

It seems there is no direct way to apply random
initial values with Pollard’s iteration function (or sim-
ilarly in Teske’s mixed-walk). We may need to store
some auxiliary variables and update them. For ex-
ample in (Z/pZ)*, we have a collision if ¢g'RIYJ =
g"hI'YY (mod p). If Yy is not 1, we have to update
the powers of Yy during the procedure. A random ini-
tial value is applicable for Teske’s adding-walk func-
tion. We assume random starting values in the fol-
lowing sections.

3.4 Partitioning Methods

An important assumption in Theorem 2.4 is that the
partitioning method is independent. Here the in-
dependence means the performance of the iteration
function is not affected by the the properties of the
partitioning method. We will consider the potential
impact of partitioning methods in this part. As we
will see later, the choice may have a strong influence
on the performance.

A partitioning method maps values of Y; into dif-
ferent rules in the iteration function, which behaves
like a hash function. In Pollard’s iteration function, a
partition of size three is used. This is extended to N
partitions in Teske’s functions. Pollard’s partitioning
rule is R = [N x Y;/|G|| where R is the index of the
rule chosen and |G| is the order of the group. This
method depends mainly on the high-order bits of Y;.
An alternative, the division method, uses the lower-
order bits of 5, that is R = (Y; mod N)+1. Another
more complicated method suggested by Teske (2001)
is Knuth’s multiplicative hash function (Knuth 1981).
The principle is as follows. Assume that the partition
we want to produce is v : G — {1,--+ , N} where N
denotes the number of partitions. Let A be a ratio-

nal approximation of the golden ratio ‘/52’1. Define

u(g) = A-g—|A-g| where g denotes an element in
the group. Then the partitioning method is defined
by v(g) = [u(g) - N1.

We empirically investigated the impacts of
different partitioning algorithms. The pseudo-
random functions were either Pollard’s original func-
tion or Teske’s adding-walk with 20 multipliers.
The collision-detection algorithms involved include
Floyd’s algorithm, Brent’s algorithms and Teske’s al-
gorithm. As there are two iteration functions and
four cycle-finding algorithms, we discuss eight com-
binations of them. For each combination, we index
Pollard’s partitioning method, the division method
and Knuth’s method as methods 1,2, 3 respectively.
The Y-axis denotes the number of iterations divided
by /|G|. The results in groups (Z/pZ)* and elliptic
curve subgroups are shown in Figure 1 and Figure 2.
Note that the different cycle-finding algorithms have
different costs per iteration (see Section 2).

For Pollard’s iteration functions in groups
(Z/pZ)*, it is much better to apply the original parti-
tioning proposed by Pollard (1978), which uses high-
order bits. The other two methods perform worse in
this case. In other cases, such as Pollard’s iteration
functions in subgroups of E(F,), it is slightly better
to use the division method.

3.5 Choice of Parameters in Teske’s Func-
tions

We have discussed impacts of initial values and per-
formance of different partitioning methods. In this
part, we consider how the performance is affected by
the parameters in Teske’s adding-walk and mixed-
walk functions. DLPs in prime order subgroups of

3.25

275
25
225

1.75
15 F

1.25

0.75

%

Method 1 7771
3 Method 2
Method 3 w3

0.5 L
FUNCs: Pollard Pollard Pollard Pollard Teske  Teske  Teske  Teske
ALGs: Floyd

Figure 1: Partitioning Methods in Groups (Z/pZ)*

Brentl Brent2 Teske M Floyd Brentl Brent2 Teske M

Method 1 7771

275 mgiﬂggg T
25
2.25 | o

2 b
1.75 7
15
1.25

1k
0.75 %

FUNCs: Pollard Pollard Pollard Pollard Teske Teske Teske  Teske
Brentl Brent2 TeskeM Floyd Brentl Brent2 TeskeM

ALGs: Floyd

Figure 2: Partitioning Methods in Subgroups of

E(Fp)

(Z/pZ)* can be considered as analogues of ECDLPs
in prime order subgroups of E(F,). The discrete
logarithm problems considered are defined in groups
(Z/pZ)* and the largest prime order subgroups of
E(F,).

3.5.1 Groups (Z/pZ)*

We discuss the choice of parameters in Teske’s
function in the groups (Z/pZ)*. Teske’s modified
collision-detection algorithm is applied. Theorem 2.4
claims that the number of iterations is bounded by

1.45,/|G| for Teske’s adding-walk with » > 16 mul-
tipliers. The performance of different values of r is
plotted in Figure 3. The X-axis denotes the num-
ber of multipliers used in adding-walk and the Y-axis

denotes the number of iterations divided by /|G]|.
The empirical results verify Theorem 2.4. We were
also able to verify that the performance is generally
better using a larger number of partitions. Consider-
ing the initialization cost as well, a partition number
of 20-60 is a reasonable value. In addition, it has
been suggested that mixed-walk with ratios ¢/r be-
tween 1/4 and 1/2 with » > 16 may yield a good
performance (Teske 1998). Our experimental results
do not support this suggestion. We found that mixed-



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong,

Australia

Ad(‘iing—walk \n(Z/Zp)* oK

28 B

26 B

22 4

18 B

16 F % B

1ol e e

Addu‘wg—walk in ellipt‘ic curve subgréups ke

2.8
26|
24

22

18 | %

16

14l DKoo B e

Figure 3: Performance of Adding-walk in Groups
(Z/pZ)

walks with ratios smaller than or equal to 1/4 behave
slightly better than those with ratios between 1/4 and
1/2. To illustrate this, the performance for various al-
gorithms is tabulated in Table 6. The columns give
the ratios applied, number of multipliers, squaring
steps and iterations. As usual, the data in last col-

umn is normalized by 1/|G|.

Table 6: Performance of Mixed-walk in Groups
(Z/pz)*
RATIOs MULTs SQRs ITERs

0.25 16 4 1.46
0.25 20 5 1.45
0.25 40 10 1.44
0.25 60 15 1.44
0.10 20 2 1.45
0.20 20 4 1.47
0.40 20 8 1.50
0.50 20 10 1.51
0.60 20 12 1.53
0.80 20 16 1.57

3.5.2 Prime Order Subgroups of E(F,)

We discuss the choice of parameters in Teske’s func-
tion in the subgroups of E(F,). Teske’s modified
collision-detection algorithm is applied. The number

of iterations in Figure 4 are bounded by 1.45./|G| for
Teske’s adding-walk function with » > 16 multipli-
ers. This verifies the effectiveness of Teske’s function
in the ECDLP case. Similarly a partition number of
20-60 is preferred. The performance of mixed-walk
is obtained in the Table 7. For mixed-walk in sub-
groups of E(F,), we arrive a similar result as before.
Mixed-walks with ratios ¢/r smaller or equal to 1/4
with more than 16 multipliers are preferable.

4 Conclusion and Future Work

We discussed efficiency issues regarding Pollard’s rho
method and its variants for discrete logarithm prob-
lems and elliptic curve discrete logarithm problems.
We have performed an empirical investigation to fill
the current gaps in the literature, suggested better pa-
rameters for iteration functions and revisited Teske’s
adding-walk and mixed-walk functions.

L L L L
0 20 40 60 80 100 120 140

Figure 4: Performance of Adding-walk in Subgroups
of E(F,)

Table 7: Performance of Mixed-walk in Subgroups of
E(F,)

RATIOs MULTs SQRs ITERs
0.25 16 4 1.48
0.25 20 ) 1.47
0.25 40 10 1.44
0.25 60 15 1.44
0.10 20 2 1.45
0.20 20 4 1.46
0.40 20 8 1.49
0.50 20 10 1.52
0.60 20 12 1.54
0.80 20 16 1.58

In the previous sections, we have used the assump-
tion that the partitioning method is independent of
the iteration function. Finding a way to prove this
would be an advance. In addition, the experimen-
tal results suggest that Teske’s mixed-walk behaves
as well as the adding-walk. While the performance
of the adding-walk is supported by some theoretical
results, we find no easy way to analyze the behav-
ior of the mixed-walk. A potential way to achieve
this might be based on the recent work of Miller &
Venkatesan (2006) and Kim et al. (2007).

Acknowledgements

We would like to thank the anonymous referees for
their helpful comments.

References

Brent, R. P. (1980), ‘An improved Monte Carlo fac-
torization algorithm’, BIT 20(2), 176-184.

Brent, R. P. & Pollard, J. M. (1981), ‘Factorization of
the eighth Fermat number’, Mathematics of Com-
putation 36, 627-630.

Coppersmith, D., Odlyzko, A. M. & Schroeppel, R.
(1986), ‘Discrete logarithms in GF(p)’, Algorith-
mica 1(1), 1-16.

Diffie, W. & Hellman, M. E. (1976), ‘New directions
in cryptography’, IEEE Trans. Inform. Theory I'T-
22, 644-654.

140

137



CRPIT Volume 77 - Theory of Computing 2008

138

Gamal, T. E. (1985), ‘A public key cryptosystem and
a signature scheme based on discrete logarithms’,
IEEE Trans. Inform. Theory 31, 469-472.

Harris, B. (1960), ‘Probability Distribution Re-
lated to Random Mappings’, Ann. Math. Statist.
31, 1045-1062.

Hildebrand, M. (1994), ‘Random walks supported on
random points of Z/nZ’, Probability Theory and
Related Fields 100(2), 191-203.

Horwitz, J. & Venkatesan, R. (2002), Random Cay-
ley digraphs and the discrete logarithm, in ‘Algo-
rithmic Number Theory Symposium V, ANTS-V
(LNCS 2369)’, pp. 100-114.

Kim, J. H., Montenegro, R. & Tetali, P. (2007), ‘A
near optimal bound for Pollard’s rho to solve dis-
crete log’, IEEE Proc. of the Foundations of Com-
puter Science (FOCS), 2007, Providence, RI, to ap-
pear.

Knuth, D. E. (1981), The Art of Computer Program-
ming, Vol. 3, 2nd edn, Addison-Wesley, Reading,
Mass.

Knuth, D. E. (1997), The Art of Computer Program-
ming, Vol. 2, 3nd edn, Addison-Wesley, Reading,
Mass.

Miller, S. D. & Venkatesan, R. (2006), Spectral anal-
ysis of Pollard rho collisions, in ‘Algorithmic Num-
ber Theory Symposium (ANTS VII), LNCS 4076,
Springer-Verlag, 573-581".

Pohlig, S. C. & Hellman, M. E. (1978), ‘An improved
algorithm for computing logarithms over GF(p)
and its cryptographic significance’, IEEE Trans.
Inform. Theory IT-24(1), 106-110.

Pollard, J. M. (1978), ‘Monte Carlo methods for index
computation mod p’, Mathematics of Computation
32, 918-924.

Teske (1998), Speeding up Pollard’s rho method
for computing discrete logarithms, in ‘Algorithmic
Number Theory Symposium (ANTS IV), LNCS
1423, Springer-Verlag, 541-553’.

Teske, E. (2001), ‘On random walks for Pol-
lard’s rho method’, Mathematics of Computation
70(234), 809-825.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

139



CRPIT Volume 77 - Theory of Computing 2008

140

Verifying Michael and Scott’s Lock-Free Queue Algorithm usng Trace
Reduction

Lindsay Groves

School of Mathematics, Statistics and Computer Science,
Victoria University of Wellington,
Wellington, New Zealand
Email:l i ndsay@rs. vuw. ac. nz

Abstract the object. This approach allows us to present a proof
in sufficient detail to be convincing, highlighting the rea-
Lock-free algorithms have been developed to avoid varsons why the algorithm is correct, without getting lost in
ious problems associated with using locks to control aca morass of minute detail, and indicating clearly what else
cess to shared data structures. These algorithms are typeeds to be proved to provide a more detailed proof.
ically more intricate than lock-based algorithms, as they ~We begin in Section 2 by giving an intuitive descrip-
allow more complex interactions between processes, antion of the algorithm and taking a brief look at the code.
many published algorithms have turned out to contain erThen, in Section 3, we discuss our correctness criterion,
rors. There is thus a pressing need for practical techniqudiearisability, and outline how we prove linearisability-
for verifying lock-free algorithms and programs that useing reduction. In Section 4, we present the verification,
them. explaining in more detail how the reduction method is ap-
In this paper we show how Michael and Scott's well plied and how it is extended in order to verify Michael and
known lock-free queue algorithm can be verified usingScott’s algorithm, and end in Section 5 with some conclu-
a trace reduction method, based on Lipton’s reductiorsions and comments on related and future work.
method. Michael and Scott’s queue is an interesting case
study because, although the basic idea is easy to undes-
stand, the actual algorithm is quite subtle, and it demon*

strates several way in which the basic reduction methO(R/Iichael and Scott (Michael & Scott 1998) describe an

needs to be extended. X SN -
algorithm which implements a shared queue supporting
Keywords: Concurrency, verification, lock-free, linearis- ENQUEUE and DEQUEUE operations that can be per-
ability, reduction formed concurrently by a finite set of processes. Their
algorithm islock-free, which means that no process is ever
. forced to wait for another process to complete a queue op-
1 Introduction eration. This property precludes the use of traditionat syn
_ ) chronisation mechanisms such as locks and semaphores
Increasing use of concurrent software designs hagy avoid interference between processes; instead the algo-
prompted the development trick-free algorithms to im-ithm is designed to work correctly in the presence of in-
plement concurrent data structures to avoid many of therference, which is detected by using Compare and Swap
problems associated with the use of locks. Rather thaficas) instructions to conditionally update shared loca-
avoid interference using mutual exclusion, lock-free al-tigns,
gorithms must behave correctly in the presence of inter- - The implementation uses a linked list, with a dummy
ference, and usually rely on strong synchronisation primingde at the head, artdead and Tail pointers. Each node
tives such as Compare and Swap (CAS). These algorithmsas avalue field, holding the values stored in the queue in
tend to be very subtle, and hard to get right; howeverihe order they were added to the queue, amexafield,
proofs of correctness for such algorithms tend to be elfinking nodes in the list. Using a dummy node ensures
ther so high level as to be unconvincing, or so detailed aghatHead andTail are always non-null, which reduces the
to be unenlightening. ) ) N number of special cases that would otherwise be required;
_In this paper, we consider a slightly simplified ver- jtsvalue is not part of the queuldead always points to the
sion of Michael and Scott's lock-free queue algorithm qummy node, and in a quiescent state (i.e. when no opera-
(Michael & Scott 1998), which is similar to that included tion is in progressJail points to the last node in the list, as
in the Java concurrency library. We present a proof thafjjystrated in Figure 1, which shows an empty queue and a
this algorithm is linearisable (Herlihy & Wing 1990), us- gueue containing values b andc.
ing an extension of the reduction approach proposed by The ENQUEUE and DEQUEUE operations follow a
Lipton (Lipton 1975), and further developed by Lamport, common pattern in which each operation repeatedly at-
Cohen and others (Lamport & Schneider 1989, Cohen &empts to perform its update, succeeding only if the oper-
Lamport 1998, Lamport 1990). In this approach, we showation is performed without interference. At each attempt,
that any concurrent execution involving a shared data obgp operation takes a “snapshot” of the part of the global
ject, such as a queue, can be transformed into an equivatate that it wishes to update, uses this in local computa-
lent execution in which the operations on that object argjgns to prepare a new value, and then uses a CAS to at-
executed without interruption, and that such Uninterrdpte tempt the updat@AS“oc old naN) atomica”y compares
executions correctly implement the abstract semantics fofhe contents of the shared locatioa with the “expected”
Copyright ©2008, Australian Computer Society, Inc. This paper ap- value,old, and 'f_ they are the_sams*lcceeds' _stormg the
peared at the Fourteenth Computing: The Australasian yiggmpo- ~ NE€W valuenew, into the location and returningue, and
sium (CATS2008), Wollongong, Australia. Conferences iséch and ~ Otherwisefails, returningfalse and leaving the memory
Practice in Information Technology (CRPIT), Vol. 77, Jantéarland ~ unchanged.
and Prabhu Manyem, Ed. Reproduction for academic, notstafitpur- The central problem in designing algorithms based on
poses permitted provided this text is included. CAS is to arrange that the shared data structure can be
updated atomically using a single CAS operation, with its

Michael and Scott’s Lock-Free Queue Algorithm




Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Head Tail Head Tail

o 0 @ BTG

Figure 1: Basic queue representation

?

test determining when the update is safe. This is easy to Lines D2—-D8 of DEQUEUE check to see whether the
do, say, in the case of a shared stack (e.g. (Treiber 198@ueue is empty, and if so returfese. If not, line D13
Michael & Scott 1998)), where we only need to updateattempts to remove the first node from the queue by ad-
a single shared location (the top of stack pointer). But itvancingHead, after reading the value to be returned in
is not so simple for a queue represented as a linked listine D12. Line D10 attempts to advan€ail in the special
After creating a new node, anN®UEUE operation must case described above, whétead andTail are the same
update two shared locations — to make tiest pointer  but the queue is not empty.

of the last node point to the new node, and makeTdik While this much can be appreciated quite easily, it is
pointer point to the new node — but we can’t perform bothnot so clear exactly why the various tests are required or
updates using a single CAS. why they are ordered as they are: for example, one might

In performing an RQUEUE, Michael and Scott ap- consider the effect of deleting the tests at E7 and D7, and
pend the new node using a CAS, and allow other prothe CASes at E17 and D10, or whetheEQUEUE can
cesses to observe the data structure at a point where thige modified so as to avoid accessifail. So, although
update has been performed but ff@l pointer has not one can easily understand the basic ideas underlying the
been advanced. This means tfiatl may “lag” behind  algorithm, it is not entirely obvious that the algorithm is
the actual end of the list — this situation is illustrated correct, nor what changes could be made to the algorithm
in Figure 2, which shows a queue containmd andc,  without affecting its correctness.
and one containing just To avoid other processes being
blocked waiting for a process to complete an@EUE,
as required for lock-freedom, any process which observe
that Tail is not pointing to the end of the list attempts to
advanceTail, effectively completing the operation of the
process that performed the append. This ensuregaflat
never lags behind the end of the list by more than onég
node.

DEQUEUE is implemented by advancing thdead
pointer, provided that the queue is not empty, so the nod

3 Proving Linearisability by Trace Reduction

When multiple processes perform concurrent operations
on a shared object, we cannot simply define the correct-
ess of these operations in terms of the state of the object
efore and after a process performs an operation. For ex-
ample, when a process performs an@EUE operation,
there is no guarantee that the values that were in the queue

that used to hold the first element of the queue becomes tti%he” the enqueue operation began will still be there when
dummy node. The BQUEUEOperation now has to handle 1€ Process gets to add its value to the queue, or that the
the situation shown in Figure 2(b), wheread and Tail enqueued value will still be in the queue when the enqueue
point to the same node, but the queue is not empty, and iRP€ration is completed.

i o - ; The standard safety property for concurrent data struc-
Eggé:raf\(s)?rgﬂgcuk;dv;?gthﬁn Is lagging before attempting tures islinearisability (Herlihy & Wing 1990), which re-

The declarations and initialisation are shown in Fig-duires that each operation on the shared data structure ap-
ure 3, and pseudocode for theuGUEUE and DEQUEUE  PE&rs to occur instantaneously at some point (calléthits
operations is given in Figure 4. This code is essentiallye&'1Sation point) between its invocation and its response,
the same as that given in (Michael & Scott 1998), apar nd that the effect of the operation be correct with respect
from a few changes in notation and simplifications to!C the state immediately before and after this point. The
make our reasoning easier and more concise. In partid€guirement that an operation's linearisation point be be-
ular, we assume that a single queue is being implementedV€en its invocation and its response ensures that the order
and thus treaHead and Tail as global variables, encap- Of Non-concurrentoperations is preserved, i.e. if an opera
sulated within a module implementing the queue, rathefiOn OP1 is completed before another operatam begins,

than as components of a record accessed via a point pen the linearisation point fap; must precede that for

We also use Algol/Pascal/Ada-like notation for assign-OP2: L . .
ment and equality (i.e.— and=, instead of= and==), This condition is sometimes callegtomicity (e.g.

Ada-like parameter mode#n( andout), and assume au- (Lynch 1996, Hesselink 2002)), however, we use that term

tomatic pointer dereferencing, whereas Michael and Scot_"efer to the weaker requirement, that an operation ap-
use C-like notation. pear to occur instantaneously, with no reference to the se-

The most significant difference is that, like the versionMantics of an abstract operation being implemented, as in
included in the Java concurrency library (JSR 166), we d Lampﬁrt & S(I:hznoe(;%er 1989, Flanagan & Qadeer 2003,
not explicitly free popped nodes. This means that heap lo>asturkar et al. ).
cations are not reused unless the algorithm is executed on

a system with automatic garbage collection (as is the casevery. h . A A 4
in Java), and that modification counts are not required. 'S an "équivalent” legal sequential history, in which the or

Looking at the code, some aspects are readily unded€r ©f non-concurrent op?(ations is presedrveohiﬂory
stood as they are similar to a sequential queue implemerOr {race) is a seunnce od|r_1vocatt|pr|1$% and responses oc-
tation. The declarations should be self explanatory, givery4""n9 'Q.at” lexecu '0(;1'3% ssquenti & It' everfyt[]esponse
the previous description of the data structure used, noting immeaiately preceded by an invocation or the same op-
just thatnew_node() is assumed to allocate a new node Eration by the same process, dagal if each invocation-
and return a pointer to it. response pair is correct with respect to the abstract seman-

Lines E1—E3 of BQUEUEallocate a new node and ini- 1¢S for the object. Two histories aguivalent if they

contain the same sequence of invocations and responses.

tialise its fields. Line E9 attempts to append the new nOdel'hus we can prove that an implementation of a shared

provided thatTail is not lagging. Line E13 attempts to ", > V&, | ;
advanceTail if it is found to be lagging before appending ©PIECt iS linearisable by showing, for any concurrent exe-
cution, how to construct an equivalent legal sequential his

the new node, and line E17 attempts to advaraieafter . A !
appending the new node. The opepration retries if either of°"y Which respects the abstract semantics for that object

the tests at lines E7 and E8. or the CAS at E9. fails. and preserves the order of non-concurrent operations.

141



CRPIT Volume 77 - Theory of Computing 2008

142

Head Tail Head Tail

\ / \ /
o [2[oh el e e L o (7o)

Figure 2: Queue representation wiiil lagging

a

type pointer =pointer to node initialisation:

type node = (value: datéype, next: pointer) Head :=new_node()
var Head: pointer Head.next :=null
var Tail: pointer Tail := Head

Figure 3: Declarations and initialisation

In previous work (Doherty et al. 2004, Colvin et al. e Each abstract operation always consists of three steps
2005, Colvin & Groves 2005, Colvin et al. 2006), we have (an invocation, an internal action corresponding to
proved linearisability of several lock-free algorithméngs the linearisation point, and a response), so most steps
simulation between two labelled transition systems, one  of the implementation are internal steps, and most of
modelling the abstract specification and one modelling the proof effort is in proving various invariants about
the implementatiof.In the simulation approach, we step the shared and local variables.
through an arbitrary execution of the concrete (implemen- . _ .
tation) model, considering all possible actions that could ~ The net effect is that the proof requires so much detail
be taken at each step, and show how to construct a corrédat itis hard to identify the essential arguments on which
sponding execution of the abstract (specification) modelthe correctness of the algorithms relies, and it is hard to
using a simulation relation to show that the concrete and@resent such a proof in a way that conveys the important
abstract states are related appropriately at each step. THEIghts into why the algorithm is correct without getting
simulation relation typically requires that each procass i Pogged down in the details. _
performing the same operation (if any) in both models, The approach we take in this paper is an attempt to
that the data structure in the implementation represeats thpresent a proof which is both more concise and more il-
same abstract value as in the abstract model, and that lociminating than our earlier simulation proofs, while also
variables in each process have “appropriate” values. being sufficiently formal to be compelling. Instead of con-

A well known complication with simulation proofs is Structing an equivalentlegal sequential history by tratas|
that while we are often able to construct the required abing one action of the implementation at a time, as in the
stract execution by stepping forwards through the concretéimulation approach, we first construct an equivalent se-
execution (which is callefbrward or downward simula- quential execution, in which each operation o the abstract
tion), it is sometimes necessary to instead step backward¥ject is executed without interruption, by translating an
(which is callecbackward or upward simulation) or to use ~ €ntire operation of the abstract object at a time, and then
a combination of both (Jifeng et al. 1986, Lynch & Vaan- show that this sequential execution correctly implements
drager 1995). Although it is widely believed that back- the abstract operation. This approach is based on the
ward simulation is rarely required in practice (for exam- reduction approach described initially by Lipton (Lipton
ple, backward simulation rules for data refinement werel975), and further developed by Lamport, Cohen, and oth-
not defined for Z until 1997 (Stepney et al. 1998), or for €rs (Doeppner, Jr. 1977, Lamport & Schneider 1989, Lam-
B until 2003 (Dunne 2003)), backward simulation turns POrt 1990, Cohen & Lamport 1998, Cohen 2000) for syn-
out to be required frequentiy in Verifying lock-free aigo- Chronlsatlon based on mutual exclusion. We have shown
rithms, and several of our verifications, including our ver-how this approach can be extended to handle lock-free al-
ification of a version of Michael and Scott's queue (Do- 9orithms (Groves 20@3 and used it in a constructive way
herty et al. 2004), have used backward simulation, usualljo derive an implementation of a scalable concurrent stack
in conjunction with forward simulation. iImplementation (Groves & Colvin 20@§. The rest of this

While the simulation approach has proved to be effecSection outlines the basic ideas of reduction, and its use in
tive in these verifications, and to be amenable to mechaniroving linearisability. We will explain the approach in
sation (using PVS), this approach has several drawbacksi:iz)%r%r detail as we work through the verification in Sec-

e Translating the algorithm and specification into a __Given a system in which a finite set of processes,
transition system formalism obscures the algorithmicPROC, operate on a shared queue, our aim, as indicated
structure of the algorithm being verified, so it is of- above is to show that any concurrent executioof the
ten hard to see how verification conditions relate tosystem is equivalent to an executiaf in which every
the algorithm. operation on the queue is performed without interruption,

o N and that the effect of such an uninterrupted execution cor-

e Many of the verification conditions are a conse- rectly implements the abstract queue semantics. The key
quence of the formalism, rather than the algorithmto the reduction approach is therefore to show that the ac-
(e.g. ones to do with program counters). tions in a concurrent execution can be rearranged so that

e . . the steps of each operation are executed contiguously. By
e The verification has to deal with both the basic 0p- eheating this transformation for each operatiomjnwe
eration of the data structure being implemented an

: an then produce an execution in which every operation is
the effects of concurrency, whereas it may be more,, acited without interruption
convenient to separate these (this can be avoided by Suppose thata is an ‘execution of the form

using an extra simulation step, but it is debatableﬁ0 a5 ... anfn, Wherea,....a, are the atomic ac-

‘(’j"LTceég?r this is worthwhile given the overhead intro- tions comprising an execution of a queue operation

op by processp, [ ...0, are sequences of actions,
The transition systems we used were a simplified form of iigutput Au- and ﬁl s ﬁn—l co_ntaln DO p-_&lCtIOI’]%. We _W|Sh to
tomata (IOAs) (Lynch & Vaandrager 1995), which were coneenbecause sim- Show that there is an “equivalent” executiod =
ulation between IOAs is defined in terms of trace inclusigheathan interms of 3 ... By_q1a; ...a8, Ok ... By in which the atomic steps
states, but most other labelled transition system formmalisould be used instead. of op are executed contig_uously. ThUS, We must be able to
show that it makes no difference if actions, ..., ak_1




Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

ENQUEUE(in value: datatype) DEQUEUHout pvalue: dataype): boolean
E1l: node :=new_node() D1: loop
E2: node.value :=value D2: head:=Head
E3: node.next :zull D3: tail := Tail
E4: loop D4: next:=head.next
E5: tail ;= Tall D5: if head = Headthen
E6: next:=tail.next D6: if head = tailthen
E7: if tail = Tail then D7: if next =null then
ES8: if next =null then D8: return false
EQ: if CAS(tail.next, next, nodehen D9: endif
E10: break D10: CAS(Tall, tail, next)
E11: endif D11: else
E12: else D12: pvalue := next.value
E13: CAS(Tall, tail, next) D13: if CAS(Head, head, nexthen
E14: endif D14 break
E15: endif D15: endif
El16:endloop D16: endif
E17:CAS(Tall, tail, node) D17: endif
D18: endloop

D19:return true
Figure 4: Queue operations

are executed after the relevafit (i.e. for1 < i < k  that this is not sufficient to verify some lock-free algo-

andi < j < k, & can be executed aftéx), and actions rithms. However, the technique can be extended to ex-

a+1,-..,an are executed before the relevamt(i.e. for  tend its applicability (Groves 20@y. Firstly, we can use

k <i<nandk < j < i, g can be executed befolg).  the outcome of CAS and other tests to infer properties of

Since all of the actions afip are grouped at the position the interleaved actions of other processes. Secondly, we

of ax, any operation that begins befaae (ends after,) observe that while the steps in the sequential execution

in « also begins befora; (ends aftem,) in o’. Thus,ax need to be steps that could be taken by the implementa-

can be taken as the linearisation point épr and the or-  tion when executed without interruption, they do not have

der of non-current operations is preserved, as required fao be the same steps as in the concurrent execution. In

linearisability, so we don't need to explicitly model invo- many lock-free algorithms we need to be able to delete ac-

cations and responses. tions. We will see in Section 4 that to verify Michael and
To define the idea of rearranging the steps in an execuScott’s queue algorithm, we also need to be able to modify

tion more precisely, we write >  to mean that execu- 2actions so as to assign an action to a different process.

tion of actiona may take the system from stateo stater.

For a sequence of actions,= a - - - a,, we writeo > 7 4 Verification

to mean that there is a sequence of statgs- - , pn such

thatpo = o, pn = 7, andpi_1 % pi, foralli € 1..n. For  We now consider how the version of Michael and Scott's

sequences of actions,and 3, we writea < 3 to mean  algorithm presented in Section 2 can be verified using the
- trace reduction approach described in Section 3. As out-

: ; B ; h S
that for any states andr, o = 7 impliess = 7. An Jined earlier, our aim is to show that any concurrent execu-
actionais enabled in a stater if there exists a statesuch  tjon can be transformed into one in which the atomic steps
thato — 7. of each queue operation are executed contiguously, and

If ab < ba, we say that right commuteswith b, and  that when executed without interruption these operations
b left commutes with a. If aright commutes and left com-  correctly implement the abstract queue semantics. Here,
mutes withb, we just saya commutes with b, and write e focus on the former; the latter involves a straightfor-
ab = ba. We can show that for sequences of actions,yard data refinement proof, which we present elsewhere
o =aj...am andﬁ = b1 A bn, Oéﬁ < ﬁa if ab, < bja (Groves 2005)
foralliel..mandjel..n. We will regard each assignment, test and CAS as an
Given a system with actior®CT, an actiorais called  atomic action, which is reasonable since they all access at
a right mover if it right commutes with every action of most one shared variable. We also assume, as in (Michael
every other process (i.aphy < bga, forallb € ACT and & Scott 1998) that allocating a new node can be treated as
p # ), aleft mover if it left commutes with every action an atomic action. For convenience, the atomic actions and
of every other process (i.8qa, < apbg forallb € ACT  their labels are shown in Figure 5.
andp # @), and aboth mover if it is both a right mover

Sr;gqa).left mover (i.eapby = bea, forallb € ACT and 4 Commutativity properties

In showing that actions move in particular ways, we The first step in applying the reduction method is to ex-
appeal to some standard properties of independent opergmine the commutativity properties of the atomic actions.
tions. For example: From the general properties given at the end of Section 3,

« An action that only accesses local variables or hea_ﬁ‘nd some other general properties, we can see that:
locations accessed via a unique pointerin a local vari- e Actions E8 pext = null), D6 (head  tail) and D7

able is a both mover. -
(next = null) are both movers, as they only involve
e An action that reads a shared variable commutes with ~ local variables. Thus, for any actiot and distinct

any action that does not assign to that variable. processeq andg, we have:
e An action that assigns to a shared variable commutes ~ E8pXq = XqE8p, D6 Xq = XqD6p and
with any action that does not refer to that variable. D7pXq = X4 D7p
As presented above, the equivalent sequential execu- e Actions E2 fodevalue := value) and E3
tion is obtained by rearranging the actions of the concur-  (node.next := null) are both movers, since at the

rent execution. It has been shown (Wang & Stoller 2005) point where they are executedpde is a unique

143



CRPIT Volume 77 - Theory of Computing 2008

144

E1l node :=new_node() D2 head :=Head

E2 node.value :=value D3 tall :=Tall

E3 node.next :xull D4  next:=head.next

E5 tail := Tail D5 head =Head

E6 next:=tail.next D6 head = tail

E7 tail = Talil D7  next=null

E8 next=null D10 CAS(Tail, tail, next)

E9 CAS(tail.next, next, node) D12 pvalue:= next.value
E13 CAS(Tall, tail, next) D13 CAS(Head, head, next)

E17 CAS(Tall, tail, node)
Figure 5: Atomic actions

pointer fiode is a new node when it is allocated in actionX other than D2, D5 or D13 and distinct pro-
E1, and cannot be seen by any other process until it  cessesp andg, we have:

is appended to the end of the list by the CAS at E9), _

andvalue andnull are local. Thus, for any actiox D13p%q = Xq D13p

and distinct processes andg, we have: e Action E1 (node := new_node()) is a both mover,

E2pXq = XqE2, and E3,Xq = XqE3p since it makes no difference what address is allocated
. . ) ] ] provided that it is previously unused. Thus, for any

Actions ES5 (ail := Tail), E7 ¢ail = Tail) and D3 actionX and distinct processesandg, we have:

(tail := Tail) commute with any actions that do not El — X.E1l
alter Tail. Thus, for any actiorX other than E13 or pXg=XqElLp

E17 and distinct processgsandg, we have:

E5pXq = XqEBp,  ETpXq = XqE7p and 4.2 Applying reduction to Michael and Scott’s algo-
D3p Xq _ Xq D3p rithm

Actions D2 fead :— Head) and D5 fhead — Head) mext,twe consider how t(?[ use thtesefro%?rt_les to rea_rralng::-
commute with any action that does not alkéead. e steps in a concurrent execution to obtain an equivalen

Thus, for any actioX other than D13 and distinct sequential execution. Here we find that these properties
procéssesp andg, we have: are not sufficient to show that Michael and Scott's algo-
’ ) rithm is atomic — a completed execution oNBUEUE
D2, Xq = XqD2p and D5pXq = Xq D5p or DEQUEUE may contain any number of CAS actions,
Actions E6 pext :— tail.next) and D4 pext :— which may be interleaved with CAS actions of other pro-

; : d the above commutativity properties do not al-
head.next) commute with any action that does not cesses, an g
alter thenext field of a node. Thus, for any action low us to permute the order of CAS actions. We therefore

Cg need to perform a more complex transformation than just

%(ac\)/terl_er than E9 and distinct processpaindg, we reordering the steps of a concurrent execution.
' In considering how to transform a concurrent execu-
E6p Xq = XqE6p and D4p Xy = XqD4p tion into a sequential one, we first observe that any com-

. o . pleted execution of a queue operation consists of zero or
Action D12 (pvalue := next.value) commutes with 0 0 “tajled” iterations of the loop (i.e. ones where the
any action that does not alter thauefield of a node.

. : . loop does not exit), preceded in the case alIEEUE by
Since the only action that alters thelue field of @ yree initial actions (E1-E3), and followed by one “suc-

node is E2, and we have already shown that E2 igegsfyl iteration (i.e. one where the loop does exit). We
a both mover because it updatesue via a unique 5,5 ghserve that in a sequential execution, every opera-
pointer, it follows that D12 commutes with all ac- 5y gycceeds the first time it is attempted, so there are no
tions. Thus, for any actioX and distinct processes, e jterations, andail is always updated by the process

pandq, we have: that appends a node onto the list (at E17), so E13 and D10
D12, Xq = X4 D12, are never executed.
Note that we assume that the value ofcar param- We will show how to transform an arbitrary concurrent

eter is not observable to the caller (or any other pro-€xecution into this form using three transformations, each

cess) until the queue operation is completed, so in thg which requires an extension to Lipton's basic method.

case of D12, we can trepvalue as being local. irstly, we show that “failed” iterations in whicfail is

not updated can be deleted; secondly, we show that the

Action E9 (CAS(tail.next, next,node)) commutes remaining actions can be rearranged so that the steps of

with any action that does not access iiegt field of ~ each operation execution are contiguous, except for “suc-

a node. Thus, for any actioX other than E6, E9 or cessful” iterations in whicfail is not updated; and lastly,

D4 and distinct processgsanddg, we have: we show that actions that advantal can be performed

E9p Xq = Xq E9 by any process, and in particular by the process that last
P P appended a node, which allows this exception to be ad-

Note that E3 is not included in the list of exceptions dressed. Finally, we consider how to assemble the remain-
since we have already shown that E3 is a both moveling fragments into complete operations.

Actions E13, E17 and D10CAS(Tail, tail, node))
commute with any action that does not acc&s$. 4.3 Primitive paths

Thus, for any actioX other than E5, E7, E13, E17, . . .
D3 or D10 and distinct processgsandg, we have: In describing these transformations, we need to consider
different paths that an operation may take through the
E13p Xq = XqE13p, E17p Xq = XqE17, and code. So we break the code into primitive (loop-free)
D10p Xq = Xq D10p. paths and describe how each path is transformed.

. . We need to identify a set of primitive paths, each com-
Action D13 (CAS(Head, head, next)) commutes with o - :
any action that does not accesead. Thus, for any prising a sequence of atomic actions performed by the



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

same process, such that every execution of a queue op- a1 E5asE6a3E7T™ ay < ag as az ay

eration can be described as a concatenation of primitive

paths. We will segment the code so that each primitive This result means that we can ignore all of the failed
path consists of either a sequence of actions performeitierations that do not advangail, i.e. Eng2, Eng3, Eng>5,
before the loop (which only occurs inNQUEUE) or one  Deql, Deg3 and Deqg5. Following this transformation, ev-
iteration of the loop (including actions taken after exgtin ery execution of EQUEUE or DEQUEUEhas the form de-

the loop in the case where the loop iIEEQUEUE termi-  scribed by the following regular expressions:
nates). We further divide loop iterations into four classes
which will be handled differently: Enqgl(Engd)*(Eng6 | Eng7)

e failed iterations in whichTail is not updated (i.e. (Deg3)* (Deg4 | Deqgb6)

Eng2, Eng3, Eng5, Deql, Deqg3 and Deq5);

failed i . in whichrail i dated (i Notice that the result of this transformation (like the
. a'g iterations in whichfail is updated (i.e. Eng4 g,psequent ones) is a valid execution of the algorithm.

and Deq2); This transformation can be generalised to show that

e normal successful iterations, which behave as they@y failed iteration which has no observable effect can be

would in a sequential execution (i.e. Enq7, Deq4 anddeleted. Such iterations are called “pure” in (Freund &
Deq6); and 9 ( q a Qadeer 2005), where a similar approach is used in a static

analysis technique for determining atomicity.
e abnormal successful iterations, which do not behave
as they would in a sequential execution (i.e. Eng6). 4 g Reducing primitive paths

The resulting paths are shown in Figure 6, and are laye now consider the remaining basic paths and attempt
belled for later reference. In describing execution pathsto show how a concurrent execution, in which the atomic
we use the line numbers shown in Figure 4 to stand folctions of that path may be interleaved with actions of
the action on that line, and indicate whether test and CASther processes, can be transformed into one in which the
actions succeed or fail by appendih@r —, respectively.  atomic steps of that path are executed without interrup-
Where necessary, we indicate the process that performgn. This uses the basic reduction method, augmented
an operation by adding a process identifier (usuyalyd)  with a more detailed analysis of paths containing CASes,
as a subscript (these should not be confused with the nignd succeeds for all of the remaining paths except failed
merical subscripts used in describing arbitrary actiorts anjterations that updaf@il (i.e. Eng4 and Deq2), which are
action sequences). _ ) considered further in Section 4.6.

It follows from the semantics of our programming con-  The linearisation point for a completedNBUEUE is
structs that any execution ofNQUEUE consists of the the successful CAS at E9, so we want to move everything
initial segment (Enq1l) followed by zero or more failed pefore that to the right (or delete it), and everything after
iterations (Eng2 to Eng5), followed by a single successqj.e. the CAS at E17) to the left. Similarly, the lineari-
ful iteration (Eng6 or Eng7). Similarly, any execution sation point for a completed ERUEUE returningtrue is
of DEQUEUE consists of zero or more failed iterations the successful CAS at D13, and for @ UEUEreturning
(Deql, Deq2, Deq3 or Degb), followed by a single suc-falseis D3, so we want to move everything before that to
cessful iteration (Deq4 or Deq6). Treating the path nameshe right (or delete it).
as symbols, we can describe the structure of possible ex- The important points can be illustrated by considering

ecutions of NQUEUE and DEQUEUE with the following  five cases; the other cases are detailed in (Grovest}007
regular expressions:

Engl(Enq2 | Eng3 | Eng4 | Engs)* (Eng6 | Engy) 4.5.1 Pre-loop path in ENQUEUE

; Path Englis E1, E2, E3, where we have:
(Deql | Deq2 | Deg3 | Degp)*(Deqg4 | Deq6)

E1 node :=new_node()
4.4 Deleting failed iterations that do not advancéfail E2 node.value := value

E3 node.next :#ull
We first show that any failed iteration that does not ad-
vanceTail can be deleted. This is easy to see intuitively  Let« be an execution containing an execution of Eng1l
— an execution in which an operation is attempted unsucby process, saya = a1 Elp as E2, ag E3p ag, Where
cessfully is indistinguishable from one in which the un- a, andas contain nop-actions. We have stwn that E1,
successful operation was never attempted. E2 and E3 are both-movers, so these actions can be moved

More precisely, letx be an execution which contains right overa, andas as required. Thus, we have:

a failed iteration that does not advaniz! in ENQUEUE
(i.e. Eng2, Eng3, Engb5) or in EQUEUE (i.e. Deql, Deqg3 a1 Elpas E2p a3 E3p oy < o cp s E1 E2p E3p vy
or Deg5), and let’ be the result of deleting the steps of

this failed iteration fromx. Then we wish to show that 4.5.2 Normal successful iteration in BIQUEUE

a<do.
We will only consider path Eng2 in detail — the argu- path Enq7 is E5, E6, E7 E8", E9, E17+, where we
ments for the other failed iterations are similar. have:
Path Eng2 is: E5, E6, E7 Let o be an exe-
cution containing an execution of Eng2 as part of a ES tail := Talil
completed execution of MQUEUE by processp, say EG6 next := tail.next
a1 Edp az E6p a3 E7y a, Whereas andag contain nop- E7t  tail = Tall
actions. Removing7, from this execution does not alter 581 next =n_u||
its effect. These occurrencests, andE6, can then also E9 CAS(tail.next, next, node)
be removed — since this occurrence of Eng2 is part of E17" CAS(Tall, tail, node)y

a completed EQUEUE operation, the next twp-actions , . ,
must be E5 and E6, so the values loaded by these occur- Leta be an execution containing an execution of Enq7
rences of E5 and E6 will not be referenced again. Thusby proces®, saya = ay E5p ag E6p a3 E7] oy E8] as

we have: B9 as E17] a7, whereas 1o ag contain nop-actions.

145



CRPIT Volume 77 - Theory of Computing 2008

146

Enql E1,E2, E3
Eng2 ES5, E6, E7

Eng3 ES5, E6, E7, E8, E13"

Eng4 E5, E6, E7, E8, E13F

Engs ES5, E6, E7, ESF, E9-

Enqé ES5, E6, E7, ESF, E9F, E17

Enq7 ES5, E6, E7, ESF, E9F, E17

Deql D2-D4,D5

Deq2 D2-D4, D5+, D6, D7, D10*
Deq3 D2-D4, D5+, D6, D7-, D10~
Deg4 D2-D4, D5, D6*, D7+

Degs5 D2-D4,DS, D6, D12, D13
Deqé D2-D4, DS, D6, D12, D13

Pre-loop

Failed iteration, not updatingail
Failed iteration, not updatingail
Failed iteration, updatingail
Failed iteration, not updatin@ail
Normal successful iteration
Abnormal successful iteration

Failed iteration, not updatin@ail
Failed iteration, updatinggil
Failed iteration, not updatin@ail
Normal successful iteration
Failed iteration, not updatin@ail
Normal successful iteration

Figure 6: Basic paths fordQUEUE and DEQUEUE

We can move E8 because it only involves local variables,

but the other actions require move careful consideration.
Since E17 succeeds, we know thatl has the same

Finally, since the CAS at E13 succeeds, we can infer
from the ABA freedom property thail is not assigned
by as to a5. Thus, we have:

value at E17 as it had at E5; however, we can go further

and infer thaffail is not modified byxs to ag. To see why,
we observe thatail can only be modified by a successful

o1 E5p () E6p (%} E7g_ QY E8p_ (671 E133_ ag <
] (vg (X3 Oy Ol E5p E6p E7§ ESE E135r (673

CAS at E13, E17 or D10, and that the last such CAS must

setTail to tail. We can show that this is impossible, by

Path Deqz2 is handled in essentially the same way.

showing that the program maintains the invariant property

that the list contains no cycles andn_node() always re-
turns a new node, so advancifgjl cannot cause it to re-
turn to a previous value. This is called the “ABA freedom
property”, and holds because we assume that memory
not recycled. It follow that E5 and E7 can move right over
as to a5 as required, and E17 can move left ougr
Similarly, since E9 succeed, we can infer that.next
is not modified byas to as, since this can only be done
by a successful CAS at E9, which always stii$.next

to a new node previously allocated at E1 which no other

process can see. It follows that E6 can move right aver
to as.
Thus, we move E5 to E8 right and E17 left to the po-

4.5.4 Normal successful iteration in EFQUEUE
Path Deg4 is D2-D4, D5, D61, D7+, where we have:
is

D2 head ;= Head

D3 tail := Tail

D4 next := head.next
D5 head = Head
D6 head = tall

D7t next=null

Let « be an execution containing an execution of
Deg4 by procesp, saya = a1 D2p as D3p a3 D4p g

sition of E9, so the steps of Enq7 are contiguous; so W5 a5 D6 ag D7} oz, Whereas to ag contain nop-

have:

(&3] E5p (%) E6p as E7Er Qg ES:{ (075 EQ‘J)r (675 E17;r (074 S
1 Qi Qi3 iy Qs E5p E6p E7g_ E8S_ E9g_ E173_ Qg Q7

Path Deq6 is handled in essentially the same way.

4.5.3 Failed iteration in ENQUEUE advancing Tail

We consider path Eng4, i.e. E5, E6, E7ES™, E13F,
where we have:

E5 tail := Tail

E6 next := tail.next
E7t  tail = Tail

E8~  next# null

E13" CAS(Tail, tail, nexty

Let o« be an execution containing an execution of
Eng4 by procesp, saya = oy E5p ag E6p a3 ETf oy
E8, as E13™ ag, Whereas to a5 contain nop-actions.

We will show that actions E5—E8 can be moved right to
the position of E13. We know that E8 is a both mover,
since if only involve local variables.

actions. We can infer from the tests, and the ABA free-
dom property, thaHead is not modified byxs to oy and
head.next is not modified byws, but we don’t know any-
thing about whethefail is changed. We therefore move
D2 right overas, and D4 to D7 left overvs to a7 as re-
quired. Thus, we have:

(651 D2p (65) D3p Qa3 D4p Qg D53_ (673 DGB_ (675 D7a_ (0744 S
1 Qi D2p D3p D4p D53_ DGS_ D7S_ Q3 Oy Q5 Qg Q7

4.5.5 Abnormal successful iteration

Path Enq6 is E5, E6, E7 E8", E9", E17, where we
have:

E5 tail := Tail

E6 next := tail.next

E7t tail = Tall

E8T  next=null

E9"  CAS(tail.next, next, node)

E17- CAS(Tall, tail, node)

Let o be an execution containing an execution of Engq6
by proces, saya = oy Ebp as E6p a3 E7; oy ES; as

We can also treat E6 as a right mover, since we carfe9; a6 E17; a7, wherea, to as contain nop-actions.

show that for any nod@, n.next is only ever assigned
twice: once at E3 when it is set tall, and once at E9
when it is set to a nomull value (note that E9 can only be
executed whemext = null). Thus, since we know from
E8" thattail.next was notnull when it was read at E6, it
cannot be assigned again.

E8 which is a both mover, since it only involves local vari-
ables. Since E7 succeeds, we know ffat is not mod-
ified by a5 or a3, and since E9 succeeds, we know that
as to as do not modifytail.next. Thus, there are vari-
ous ways in which we can move E5 to E9 so that they are
contiguous.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

However, the fact that E17 fails means thiail is With a little simplification, it follows that KQUEUE s
changed some where i, to ag. Therefore, we can't equivalent to:
move E5 to E9 right ovetyg, not can we move E17 left
overag. So at this stage, we cannot rearrange an execu-  hode :=new_node()

tion of Eng6 to make its steps contiguous. node.value := value
node.next :=null

tail.next := node

4.6 Reassigningrail advance steps Tail ‘= node

We have now reduced all of the primitive paths so that d D . valent to:

their steps are contiguous, with the exception of Enge2Nd “EQUEUEIS equivalent to:

where the CAS at E17 fails becaull has been updated if Head = Tail then

by another process. We will address this case by showing Head.next =null

that there is an equivalent execution in which the process return false

that appends a node also updakais (i.e. all E17 actions else

ﬁggg?%(é%uvrvhmh means that paths Eng4, Eng6 and Deq2 pvalue:= Head.next.value
Let o be an execution which contains a failed E17 ac- g?ﬁr(?]'t_ﬂt'eead'ne)(t

tion performed by process The fact that this action fails

means that some another process,gédas updatedail, It is easy to see that these correctly implement the

with a successful CAS at E13 or D10, as part of an Eng4 ofyeue operations with the chosen data representation.
Deq?2 path, since performed its successful CAS at E9. If

more than one process has updafaitisincep performed )

its successful CAS at E9, we chogéo be the first such 5 Conclusions

process. Ifq performs an E13 actiony is of the form _ )

a1 E97 as E13§ a3 E17, au, wherea, does not contain We have shown how a version of Michael and Scott’s lock-
any E10 or D10 action (note that, also cannot contain free queue can be proved to be linearisable, using a reduc-

a successful E17 action). We can now construct an equivion method based on that of Lipton, Lamport, Cohen, and
alent execution’ in which p performs a successful E17 others. This approach separates reasoning about the con-

action at the point whergperformed its successful E13 in current and non-concurrent aspects of the algorithm, and
a, andq performs an unsuccessful E13 action at the poin ddresses the concurrent part by focusing on the interac-

wherep performed its unsuccessful E17 actiominThus, ~ UoNS between actions performed by different processes.
we have: This allows us to explain why the algorithm is correct in

a way that is more compelling that a higher level proof,

+ + — o, < and provides more insight than a simulation proof, since

o Egﬁ a2 g;’ﬂr s Eg’i = it highlights properties (such as ABA freedom, unique
a1 BJp dp ELf a3 BEldg i pointers and fields not changing) on which the correctness
o . of the algorithm relies. Some of these properties can be

The case wherg performs a D10 action is symmetri- gasily checked by inspection, or verified more rigorously

cal, giving: using static analysis techniques; others require more so-
_ phisticated verification using model checking or theorem
a1 E9; a2 DlOcT as BTy a4 < proving. Moreover, similar supporting properties are re-
a1 B9 o E175 a3 D104 quired in the verification of other lock-free algorithms.

Our trace reduction method extends Lipton’s reduction

The key observation here is that it doesn’t matter whatmethod in several ways: we used a form of conditional re-
process performs a step that advaritaks By assigning  duction, where reductions depend on the outcomes of tests
this step to the process which performed the closest preand CASes; we allow loop iterations that have no effect
ceding E9, we ensure that the resulting execution can b be deleted (this is callepurity in (Freund & Qadeer
generated by the queue algorithm. 2005)); we also allow certain actions to be assigned to

The effect of this transformation is to either swap another processes. This can be done because these actions
occurrence of Eng6 and an occurrence of Eng4 for an oceould in fact be performed by any process, and would
currence of Enq7 and an occurrence of Eng3, or swap abe required in verifying other algorithms using similar
occurrence of Eng6 and an occurrence of Deq?2 for an octhelper” mechanisms, such as Shann et al's array-based
currence of Enq7 and an occurrence of Deg2. The resultigueue (Shann et al. 2000) and Ladan-Mozes and Shavit's
that all Eng6 paths become Enq7 paths, which can now beptimistic queue (Ladan-Mozes & Shavit 2004). In other
reduced as shown in Section 4.5.2, and all Eng4 and Deg®ork (Groves & Colvin 200B6) we have shown that al-
paths become Eng3 and Deq3 paths, respectively, whicgorithms such as the scalable stack described in (Hendler
can now be deleted as shown in Section 4.4. et al. 2004), where the linearisation point for one opera-
tion may be a step of another process, can be handled by
by reducing two operations simultaneously.

We have simplified the original algorithm by assuming
Following the above transformation, every execution ofthat storage is never recycled (or that the implementation
ENQUEUE or DEQUEUE has the form shown by the fol- language provides automatic garbage collection), which

4.7 Assembling the remaining fragments

lowing regular expressions: allows us to justify the ABA Freedom assumption. To jus-
tify this assumption while recycling storage, Michael and
Engl Eng6 Scott add version numbers to pointer variables, which are
incremented every time a pointer is modified. This can be
Deg4 | Deg6 introduced in our context as a further data refinement, but

is only strictly correct if version numbers are unbounded.

Finally, we observe that since all of the steps in Eng1An alternative approach which avoids this problem is de-
are both-movers, these steps can be moved right over arsgribed in (Herlihy et al. 2002).

steps that occur between the executions of Engl and Eng6 Michael and Scott (Michael & Scott 1998) gave a brief

by the same process. Thus, provideg contains nop  proof of some safety properties, but they were not suffi-

actions, we have: cient to ensure linearisability. Yahav and Sagiv (Yahav
& Sagiv 2003) describe an approach to verifying Michael
a1 Engp a2 ENg6p a3 < a1 vy ENQp ENQGBp v3 and Scott’'s safety properties using model checking, but

147



CRPIT Volume 77 - Theory of Computing 2008

148

their analysis appears to be very limited as they don’t apColvin, R., Doherty, S. & Groves, L. (2005), Verifying

pear to have run the system with botn@&EUES and
DEQUEUEs being performed.

Wang and Stoller (Wang & Stoller 2005) describe a
static analysis technique for checking atomicity, and ap-
ply it to a variant of Michael and Scott’s algorithm which
avoids the ABA problem by using the less widely avail-

concurrent data structures by simulationk. Boiten &

J. Derrick, eds, ‘Proc. Refinement Workshop (REFINE
2005)’, Vol. 137(2) ofElectronic Notes in Theoretical
Computer Science, Elsevier, Guildford, UK, pp. 93—
110.

able Linked Load/Store Conditional instructions insteadColvin, R. & Groves, L. (2005), Formal verification of an

of CAS. However, their variant also avoids the main prob-

array-based nonblocking queur,'Proc. International

lem addressed in the paper by using a separate process toConference on Engineering of Complex Computer Sys-

updateTail, which destroys the lock-freedom of the al-
gorithm (since if that process dies the entire system will
deadlock).

Doherty et al (Doherty et al. 2004) describe a fully me-
chanical proof of a variant of Michael and Scott’s which is
intended to reduce contention in the&aQUEUE operation
by testingnext = null at D6, to determine whether the
gueue is empty, rather thdmead = tail, and only read-
ing Tail if this test succeeds. This optimisation was dis-

tems (ICECCS)’, ACM Press, New York, NY, USA,
pp. 92-101.

Colvin, R., Groves, L., Luchangco, V. & Moir, M. (2006),

Formal verification of a lazy concurrent list-based set
algorithm,in T. Ball & R. B. Jones, eds, ‘Proc. 18th
International Conference on Computer Aided Verifica-
tion (CAV)’, Vol. 4144 of Lecture Notes in Computer
Science, Springer, pp. 475-488.

covered while attempting to prove the original algorithm. Doeppner, Jr., T. W. (1977), Parallel program correct-

In our context, this modification would simplify the rea-
soning about path Deqg2. This verification uses simula-
tion between Input/Output Automata (Lynch 1996, Lynch
& Vaandrager 1995), and requires a combination of for-
ward and backward simulation to handle QUEUEoON an
empty queue since at the tinfail is read it is not known
whether the algorithm will returfalse. Our proof requires
no special treatment for this case.

Abrial and Cansell (Abrial & Cansell 2005) describe
a constructive verification of a variant of Michael and
Scott’s algorithm using Event-B. They prove a variant of
linearisability in which they require the linearisationipio

to be the last step taken by an operation, and delete line

E17 from the algorithm so thaail is always advanced by
the next operation that notic&ail lagging, at E9 or D10.
They also introduce an additional test iEQUEUE, which
requiresTail to be read again, before returnifajse. This

is precisely the case that required a backward simulation

in the verification in (Doherty et al. 2004), and this mod-

ification appears to have been required to avoid the need
Freund, S. N. & Qadeer, S. (2005), ‘Exploiting purity for

for backward simulation.
It would require a straightforward modification of our
proof to show that the variants of Michael and Scott’s al-

ness through refinement ‘Proc. 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming
Languages (POPL)’, ACM Press, pp. 155-169.

Doherty, S., Groves, L., Luchangco, V. & Moir, M. (2004),

Formal verification of a practical lock-free queue algo-
rithm., in D. de Frutos-Escrig & M. Nifez, eds, ‘For-
mal Techniques for Networked and Distributed Systems
(FORTE)’, Vol. 3235 ofLecture Notesin Computer Sci-
ence, Springer, pp. 97-114.

Dunne, S. (2003), Introducing backward refinement into

B,inD. Bert, J. P. Bowen, S. King & M. A. Waldén, eds,
‘ZB’, Vol. 2651 of Lecture Notes in Computer Science,
Springer, pp. 178-196.

Flanagan, C. & Qadeer, S. (2003), A type and effect sys-

tem for atomicity,in ‘Proc. ACM SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation’, pp. 338—-349.

atomicity’, |EEE Trans. Softw. Eng. 31(4), 275-291.

gorithm described by (Wang & Stoller 2005), (Doherty Groves, L. (200d), Reasoning about nonblocking concur-

et al. 2004) and (Abrial & Cansell 2005) are correct, and
that the handling of BQUEUEON an empty queue can be
further simplified so that it never needs to accisk

Our future work will include mechanising our reduc-

tion proofs using PVS, and applying the approach to mores
sophisticated algorithms, such as the optimistic queue de-
scribed in (Ladan-Mozes & Shavit 2004) and the scalable

gueue described in (Moir et al. 2005), to see whether other
extensions are required and what other properties are re-

Groves, L. & Colvin, R. (2008), Derivation of a scalable

quired to justify its application.

Acknowledgements We are grateful to Sun Microsys-
tems Laboratories for financial support, and to Rob Colvin
and Mark Moir for helpful discussions relating to this
work.

References

rency using reductionin ‘Proc. 12th Twelfth IEEE Int.
Conf. on Engineering of Complex Computer Systems
(ICECCS 2007)’, Auckland, New Zealand, pp. 107—-
116.

roves, L. (2008), Verifying Michael and Scott’s lock-

free queue algorithm using trace reduction — the de-
tails, Technical report, Victoria University of Welling-
ton. (To appear).

lock-free stack algorithmin ‘International Refinement
Workshop (Refine 2006)’, Electronic Notes in Theoret-
ical Computer Science, Elsevier.

Groves, L. & Colvin, R. (2006), Derivation of a scalable

lock-free stack algorithmin ‘International Refinement
Workshop (Refine 2006)’, Electronic Notes in Theoret-
ical Computer Science, Elsevier.

Abrial, J.-R. & Cansell, D. (2005), ‘Formal construction Hendler, D., Shavit, N. & Yerushalmi, L. (2004), A scal-

of a non-blocking concurrent queue algorithdgurnal
of Universal Computer Science 11(5), 744—770.

Cohen, E. (2000), Separation and reductioriProc. 5th
International Conference on Mathematics of Progra
Construction (MPC)’, Springer-Verlag, London, UK,
pp. 45-59.

Cohen, E. & Lamport, L. (1998), Reduction in TLA,
in ‘International Conference on Concurrency Theory
(CONCURY)’, pp. 317-331.

able lock-free stack algorithmn ‘SPAA 2004: Pro-
ceedings of the Sixteenth Annual ACM Symposium
on Parallel Algorithms, June 27-30, 2004, Barcelona,
Spain’, pp. 206-215.

n\—|er|ihy, M., Luchangco, V. & Moir, M. (2002), The re-

peat offender problem: A mechanism for supporting
dynamic-sized, lock-free data structuras,16th Inter-
national Conference on Distributed Computing (DISC
2002)’, Vol. 2508 ofLecture Notes in Computer <ci-
ence, Toulouse, France, pp. 339-353.



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Herlihy, M. P. & Wing, J. M. (1990), ‘Linearizability: a
correctness condition for concurrent object®PLAS
12(3), 463-492.

Hesselink, W. H. (2002), ‘An assertional criterion for
atomicity’, Acta Informatica 28(5), 343—-366.

Jifeng, H., Hoare, C. & Sanders, J. (1986), Data refine-
ment refinedjn ‘ESOP 86’, Vol. 213 oflecture Notes
in Computer Science, Springer-Verlag, pp. 187-196.

Ladan-Mozes, E. & Shavit, N. (2004), An optimistic ap-
proach to lock-free fifo queuesn ‘Proc. of the 18th
International Conference on Distributed Computing’,
pp. 117-131.

Lamport, L. (1990), ‘A theorem on atomicity in distributed
algorithms’,Distributed Computing 4(2), 59-68.

Lamport, L. & Schneider, F. B. (1989), Pretending atom-
icity, Technical Report TR89-1005, DEC, SRC.

Lipton, R. J. (1975), ‘Reduction: a method of proving
properties of parallel programsCommunications of
the ACM 18(12), 717-721.

Lynch, N. A. (1996), Distributed Algorithms, Morgan
Kaufmann.

Lynch, N. A. & Vaandrager, F. W. (1995), ‘Forward and
backward simulations — Part I: Untimed systemisy,
formation and Computation 121(2), 214-233.

Michael, M. & Scott, M. (1998), ‘Nonblocking al-
gorithms and preemption safe locking on multipro-
grammed shared memory multiprocessodsyrnal of
Parallel and Distributed Computing 51(1), 1-26.

Moir, M., Nussbaum, D., Shalev, O. & Shavit, N. (2005),
Using elimination to implement scalable and lock-free
fifo queues,in ‘Proc. 17th Annual ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA
2005)’, ACM Press, Las Vegas, Nevada, USA, pp. 253-
262.

Sasturkar, A., Agarwal, R., Wang, L. & Stoller, S. D.
(2005), Automated type-based analysis of data races
and atomicityjn ‘PPoPP '05: Proceedings of the tenth
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming’, ACM Press, New York, NY,
USA, pp. 83-94.

Shann, C.-H., Huang, T.-L. & Chen, C. (2000), A prac-
tical nonblocking queue algorithm using compare-and-
swap,in ‘Seventh International Conference on Parallel
and Distributed Systems (ICPADS’00)’, pp. 470-475.

Stepney, S., Cooper, D. & Woodcock, J. (1998), More
powerful Z data refinement: pushing the state of the art
in industrial refinementn J. P. Bowen, A. Fett & M. G.
Hinchey, eds, ‘The Z Formal Specification Notation,
11th International Conference of Z Users, Berlin, Ger-
many, September 1998’, Vol. 1493 bNCS, Springer,
pp. 284-307.

Treiber, R. K. (1986), Systems Programming: Coping
with Parallelism. RJ5118, Technical report, IBM Al-
maden Research Center.

Wang, L. & Stoller, S. D. (2005), Static analysis of atomic-
ity for programs with non-blocking synchronizatian,
‘PPoPP '05: Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel pro-
gramming’, ACM Press, New York, NY, USA, pp. 61—
71.

Yahav, E. & Sagiv, M. (2003), Automatically verifying
concurrent queue algorithmisy B. Cook, S. Stoller &
W. Visser, eds, ‘Electronic Notes in Theoretical Com-
puter Science’, Vol. 89, Elsevier.

149



CRPIT Volume 77 - Theory of Computing 2008

Author Index

Allender, Eric, 3 Merrick, Damian, 49
Asahiro, Yuichi, 97 Miller, Mirka, 93
Asquith, Matthew, 49 Miyano, Eiji, 97
Morozova, Elena, 57
Bai, Shi, 125 Mujuni, Egbert, 75
Brent, Richard P., 125
Bunder, Martin, 7 Nguyen, Minh H., 93
Chang, Ching-Lueh, 117 Ohrimenko, Olga, 27

(0) Hirotaka, 97
Gor, Ajay S., 63 no, Hirotaka,

Groves, Lindsay, 133

Gudmundsson, Joachim, 49 Pineda-Villavicencio, Guillermo, 93

Puchinger, Jakob, 39

Harland, James, iii
Huang, Xiaowei, 15
Huston, Samuel, 39

Rosamond, Frances, 75
Ruskey, Frank, 107

Jiao, Li, 15 Samer, Marko, 67
Shah, Nita H., 63

Levit, Vadim, 87 Stuckey, Peter, 27, 39

Lu, Weiming, 15 Szeider, Stefan, 67, 79

Lyuu, Yuh-Dauh, 117

Ti, Yen-Wu, 117
Mandrescu, Eugen, 87
Manyem, Prabhu, iii Wee, Hui, 63
Mathieson, Luke, 79 Williams, Aaron, 107

150



Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 67 - Conceptual Modelling 2007
Edited by John F. Roddick, Flinders University and
Annika Hinze, University of Waikato, New Zealand.
January, 2007. 978-1-920682-48-4.

Volume 68 - ACSW Frontiers 2007
Edited by Ljiljana Brankovic, University of Newcas-
tle, Paul Coddington, University of Adelaide, John
F. Roddick, Flinders University, Chris Steketee,
University of South Australia, Jim Warren, the Univer-
sity of Auckland, and Andrew Wendelborn, Univer-
sity of Adelaide. January, 2007. 978-1-920682-49-1.

Contains the proceedings of the Fourth Asia-Pacific Conference on Conceptual Modelling
(APCCM2007), Ballarat, Victoria, Australia, January 2007.

Contains the proceedings of the ACSW Workshops - The Australasian Information Security
Workshop: Privacy Enhancing Systems (AISW), the Australasian Symposium on Grid Com-
puting and Research (AUSGRID), and the Australasian Workshop on Health Knowledge Man-
agement and Discovery (HKMD), Ballarat, Victoria, Australia, January 2007.

Volume 69 - Safety Critical Systems and Software 2006

Edited by Tony Cant, Defence Science and Technol-
ogy Organisation, Australia. February, 2007. 978-1-
920682-50-7.

Volume 70 - Data Mining and Analytics 2007
Edited by Peter Christen, Paul Kennedy, Jiuy-
ong Li, Inna Kolyshkina and Graham Williams.
December, 2007. 978-1-920682-51-4.

Volume 72 - Advances in Ontologies 2006
Edited by Mehmet Orgun Macquarie University and
Thomas Meyer, National ICT Australia, Sydney. De-
cember, 2006. 978-1-920682-53-8.

Contains the proceedings of the 11th Australian Conference on Safety Critical Systems and
Software, August 2006, Melbourne, Australia.

Contains the proceedings of the 6th Australasian Data Mining Conference (AusDM 2007), Gold
Coast, Australia. December 2007.

Contains the proceedings of the Australasian Ontology Workshop (AOW 2006), Hobart, Aus-
tralia, December 2006.

Volume 73 - Intelligent Systems for Bioinformatics 2006

Edited by Mikael Boden and Timothy Bailey
University of Queensland. December, 2006. 978-1-
920682-54-5.

Volume 74 - Computer Science 2008
Edited by Gillian Dobbie, University of Auckland,
New Zealand and Bernard Mans Macquarie Univer-
sity. January, 2008. 978-1-920682-55-2.

Volume 75 - Database Technologies 2008
Edited by Alan Fekete, University of Sydney
and Xuemin Lin, University of New South Wales.
January, 2008. 978-1-920682-56-9.

Volume 76 - User Interfaces 2008
Edited by Beryl Plimmer and Gerald Weber Uni-
versity of Auckland. January, 2008. 978-1-920682-
57-6.

Volume 77 - Theory of Computing 2008
Edited by James Harland, RMIT University and
Prabhu Manyem, University of Ballarat. January,
2008. 978-1-920682-58-3.

Volume 78 - Computing Education 2008
Edited by Simon, University of Newcastle and Mar-
garet Hamilton, RMIT University. January, 2008.
978-1-920682-59-0.

Volume 79 - Conceptual Modelling 2008
Edited by Annika Hinze, University of Waikato, New
Zealand and Markus Kirchberg, Massey University,
New Zealand. January, 2008. 978-1-920682-60-6.

Contains the proceedings of the AI 2006 Workshop on Intelligent Systems for Bioinformatics
(WISB-2006), Hobart, Australia, December 2006.

Contains the proceedings of the Thirty-First Australasian Computer Science Conference
(ACSC2008), Wollongong, NSW, Australia, January 2008.

Contains the proceedings of the Nineteenth Australasian Database Conference (ADC2008),
Wollongong, NSW, Australia, January 2008.

Contains the proceedings of the Ninth Australasian User Interface Conference (AUIC2008),
Wollongong, NSW, Australia, January 2008.

Contains the proceedings of the Fourteenth Computing: The Australasian Theory Symposium
(CATS2008), Wollongong, NSW, Australia, January 2008.

Contains the proceedings of the Tenth Australasian Computing Education Conference
(ACE2008), Wollongong, NSW, Australia, January 2008.

Contains the proceedings of the Fifth Asia-Pacific Conference on Conceptual Modelling
(APCCM2008), Wollongong, NSW, Australia, January 2008.

Volume 80 - Health Data and Knowledge Management 2008

Edited by James R. Warren, Ping Yu, John Year-
wood and Jon D. Patrick. January, 2008. 978-1-
920682-61-3.

Volume 81 - Information Security 2008
Edited by Ljiljana Brankovic, University of New-
castle and Mirka Miller, University of Ballarat.
January, 2008. 978-1-920682-62-0.

Volume 82 - Grid Computing and e-Research
Edited by Wayne Kelly and Paul Roe QUT.
January, 2008. 978-1-920682-63-7.

Volume 83 - Challenges in Conceptual Modelling
Edited by John Grundy, University of Auckland,
New Zealand, Sven Hartmann, Massey University,
New Zealand, Alberto H.F. Laender, UFMG, Brazil,
Leszek Maciaszek, Macquarie University, Australia
and John F. Roddick, Flinders Univer Australia.
December, 2007. 978-1-920682-64-4.

Contains the proceedings of the Australasian Workshop on Health Data and Knowledge Man-
agement (HDKM 2008), Wollongong, NSW, Australia, January 2008.

Contains the proceedings of the Australasian Information Security Conference (AISC 2008),
Wollongong, NSW, Australia, January 2008.

Contains the proceedings of the Australasian Workshop on Grid Computing and e-Research
(AusGrid 2008), Wollongong, NSW, Australia, January 2008.

Contains the tutorials, posters, panels and industrial contributions to the 26th International
Conference on Conceptual Modeling - ER 2007.

Volume 84 - Artificial Intelligence and Data Mining 2007

Edited by Kok-Leong Ong, Deakin University, Aus-
tralia, Wenyuan Li, University of Tewas at Dallas,
USA and Junbin Gao, Charles Sturt University, Aus-
tralia. December, 2007. 978-1-920682-65-1.

Contains the proceedings of the 2nd International Workshop on Integrating Al and Data Mining
(AIDM 2007), Gold Coast, Australia. December 2007.

Volume 86 - Safety Critical Systems and Software 2007

Edited by Tony Cant, Defence Science and Technol-
ogy Organisation, Australia. December, 2007. 978-1-
920682-67-5.

Contains the proceedings of the 12th Australian Conference on Safety Critical Systems and
Software, August 2006, Adelaide, Australia.

151



	AAHeaders.pdf
	P05CRPITV77Bunder.pdf
	P06CRPITV77Huang.pdf
	P07CRPITV77Ohrimenko.pdf
	P07CRPITV77Ohrimenkozzz.pdf
	P08CRPITV77Huston.pdf
	P08CRPITV77Hustonzzz copy.pdf
	P09CRPITV77Asquith.pdf
	P10CRPITV77Morozova.pdf
	P11CRPITV77Shah.pdf
	P12CRPITV77Samer.pdf
	P13CRPITV77Mujuni.pdf
	P14CRPITV77Mathieson.pdf
	P15CRPITV77Levit.pdf
	P15CRPITV77Levitzzz copy 2.pdf
	P16CRPITV77Miller.pdf
	P16CRPITV77Millerzzz copy 4.pdf
	P17CRPITV77Asahiro.pdf
	P18CRPITV77Ruskey.pdf
	Introduction
	Generating Binary Trees
	Recursive Structure
	Algorithm
	Ranking
	Final Remarks

	P18CRPITV77Ruskeyzzz copy 5.pdf
	P19CRPITV77Chang.pdf
	P19CRPITV77Chang2.pdf
	Introduction
	Definitions
	Hardness
	An upper bound on the query complexity
	A lower bound on the query complexity
	Embeddability into possibly infinite spaces
	Concluding remarks

	P20CRPITV77Bai.pdf
	Introduction
	Background
	Pollard's Rho Method
	Pollard's Iteration Function
	Reported Performance
	Floyd's Cycle-finding Algorithm

	Advances in Iteration Functions
	Pollard's Generalized Function
	Teske's Adding-walk
	Teske's Mixed-walk

	Advances in Collision-detection Algorithms
	Brent's Algorithms

	Summary

	Experimental Investigation
	Description of Experiments
	Iteration Functions
	Starting Values
	Partitioning Methods
	Choice of Parameters in Teske's Functions
	Groups (Z/pZ)*
	Prime Order Subgroups of E(Fp)


	Conclusion and Future Work

	P20CRPITV77Baizzz copy 6.pdf
	P21CRPITV21Groves.pdf
	Trailers.pdf



