
Conferences in Research and Practice in
Information Technology

Volume 77

Theory of Computing 2008

Australian Computer Science Communications, Volume 30, Number 4

Theory of Computing 2008

Proceedings of the
Fourteenth Computing: The Australasian Theory
Symposium (CATS 2008), Wollongong, NSW, Australia,
January 2008

James Harland and Prabhu Manyem, Eds.

Volume 77 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Theory of Computing 2008. Proceedings of the Fourteenth Computing: The Australasian Theory
Symposium (CATS 2008), Wollongong, NSW, Australia, January 2008

Conferences in Research and Practice in Information Technology, Volume 77.

Copyright c©2008, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:
James Harland
School of Computer Science and Information Technology
RMIT University
124 La Trobe Street
Melbourne 3001,
Australia
Email: jah@cs.rmit.edu.au

Prabhu Manyem
School of Information Technology and Mathematical Sciences
University of Ballarat
P.O. Box 663
Ballarat Victoria 3353
Australia
Email: p.manyem@ballarat.edu.au

Series Editors:
Vladimir Estivill-Castro, Griffith University, Queensland
John F. Roddick, Flinders University, South Australia
Simeon Simoff, University of Technology, Sydney, NSW
crpit@infoeng.flinders.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 77
ISSN 1445-1336
ISBN 978-1-920682-58-3

Printed December 2007 by Flinders Press, PO Box 2100, Bedford Park, SA 5042, South Australia.
Cover Design by Modern Planet Design, (08) 8340 1361.

The Conferences in Research and Practice in Information Technology series aims to disseminate the results of
peer-reviewed research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Proceedings of the Fourteenth Computing: The Australasian Theory Symposium
(CATS 2008), Wollongong, NSW, Australia, January 2008

Preface . vii

Programme Committee . viii

Organising Committee . ix

CORE - Computing Research and Education . xi

ACSW Conferences and the Australian Computer Science
Communications . xii

ACSW and CATS 2008 Sponsors . xv

Keynote

Chipping Away at P vs NP: How Far Are We from Proving Circuit Size Lower Bounds? 3
Eric Allender

Contributed Papers

Logic and Types

The Inhabitation Problem for Intersection Types . 7
Martin Bunder

Weak Parametric Failure Equivalences and Their Congruence Formats . 15
Xiaowei Huang, Li Jiao and Weiming Lu

Modelling for Lazy Clause Generation . 27
Olga Ohrimenko and Peter Stuckey

Optimisation

The Core Concept for 0/1 Integer Programming . 39
Samuel Huston, Jakob Puchinger and Peter Stuckey

An ILP for the metro-line crossing problem . 49
Matthew Asquith, Joachim Gudmundsson and Damian Merrick

A Multidimensional Bisection Method for Unconstrained Minimization Problem 57
Elena Morozova

Optimal Joint Vendor-Buyer Inventory Strategy for Deteriorating Items with Salvage Value 63
Nita H. Shah, Ajay S. Gor and Hui Wee

Parameterised Complexity

Tractable Cases of the Extended Global Cardinality Constraint . 67
Marko Samer and Stefan Szeider

Parameterized Complexity of the Clique Partition Problem . 75
Egbert Mujuni and Frances Rosamond

The Parameterized Complexity of Regular Subgraph Problems and Generalizations 79
Luke Mathieson and Stefan Szeider

Graph Algorithms

Well-covered Graphs and Greedoids . 87
Vadim Levit and Eugen Mandrescu

On the Non-existence of Even Degree Graphs with Diameter 2 and Defect 2 . 93
Mirka Miller, Minh H. Nguyen and Guillermo Pineda-Villavicencio

Graph Classes and the Complexity of the Graph Orientation Minimizing the Maximum Weighted
Outdegree . 97

Yuichi Asahiro, Eiji Miyano and Hirotaka Ono

Algorithms

Generating Balanced Parentheses and Binary Trees by Prefix Shifts . 107
Frank Ruskey and Aaron Williams

Testing Embeddability Between Metric Spaces . 117
Ching-Lueh Chang, Yen-Wu Ti and Yuh-Dauh Lyuu

On the Efficiency of Pollard’s Rho Method for Discrete Logarithms . 125
Shi Bai and Richard P. Brent

Verifying Michael and Scott’s Lock-Free Queue Algorithm using Trace Reduction 133
Lindsay Groves

Author Index . 143

vi

Preface

The fourteenth Computing: The Australasian Theory Symposium (CATS) is being held at the University
of Wollongong, Australia during January 22-25, 2008. We received 28 submissions, out of which 17 were
accepted. Each paper was thoroughly refereed by at least three reviewers from an international programme
committee, followed by a healthy discussion among committee members.

The keynote speech will be delivered by Eric Allender from Rutgers University, New Jersey, USA.
Professor Allender is a world renowned authority on Computational Complexity. He is a Fellow of the
ACM, as well as being an ACM Distinguished Scientist.

A greater number of academics from around the world participated in the programme committee this
year than previous years. The year is also notable in that students made a major contribution to a significant
proportion (about one-third) of the accepted papers. This clearly forebodes a bright future for CATS.

We take this opportunity to thank the programme committee members and reviewers for all their hard
work, and to the University of Wollongong for hosting the event. Congratulations to all authors whose
submissions were accepted for presentation.

Welcome to all speakers, the keynote speaker, and other delegates to CATS. We wish you an enjoyable
and productive time at Wollongong, and hope that the meeting serves as a platform for exciting new
research initiatives in theoretical computer science.

James Harland
RMIT University

Prabhu Manyem
University of Ballarat

CATS 2008 Programme Chairs
January 2008

vii

Programme Committee

Chairs

James Harland, RMIT University, Melbourne
Prabhu Manyem, University of Ballarat, Australia

Members

Argimiro Arratia, University of Valladolid, Spain
Richard Brent, Australian National University, Canberra
Hajo Broersma, University of Durham, UK
Cristian Calude, University of Auckland, NZ
Jeremy Dawson, Australian National University, Canberra
Thomas Erlebach, University of Leicester, UK
Graham Farr, Monash University, Melbourne
Joachim Gudmundsson, NICTA, Sydney
Venkatesan Guruswami, University of Washington, Seattle
Seokhee Hong, NICTA and the University of Sydney, Sydney
Costas Iliopoulos, Kings College, London
Mike Johnson, Macquarie University, Sydney
Jens Palsberg, UCLA
David Pearce, Victoria University of Wellington, NZ
R. Ramanujam, Institute of Mathematical Sciences, Chennai, India
Joe Ryan, University of Ballarat, Australia
Matthias Stallmann, North Carolina State University, USA
Richard Taylor, Defence Science and Technology Organisation, Canberra
Hans van Ditmarsch, University of Otago, NZ

Additional Reviewers

Shane Culpepper
Rod Downey
Mohammad Farshi
Eldar Hajilarov
Kamal Lodaya
Daniel Marx
Somnath Sikdar
Daniel Morales Silva
Alwen Tiu
Emlyn Williams
Zhiyou Wu
David Yost

viii

Organising Committee

Welcome

I would like to welcome you to the University of Wollongong and ACSW 2008.
The Illawarra is a scenic, yet diverse, band of coastline stretching 85km south from the Royal Na-

tional Park through to Wollongong, Shellhabour and the seaside town of Kiama. Wollongong has a strong
industrial heritage and has attracted people from all around the world. The cosmopolitan nature of
Wollongong has made it a truly global city where everyone feels at home. Some of the attractions you
must see while in the city include the Nan Tien temple, Wollongong City Gallery, Science Centre and
Planetarium.

Established in 1951, the University of Wollongong has forged a distinctive identity among Australian
and international universities. An enterprising institution with a personalised style, UOW is confidently
building an international reputation for quality research and education. With campuses stretching from
Wollongong to Dubai, UOW has a total of 22,754 domestic students and 9,114 international students. The
School of Computer Science and Software Engineering is one of the four schools in the Faculty of Informatics
and has 38 academic and general staff. The school houses research hubs including Centre for Computer
and Information Security Research, Centre for Visual Information Processing and Content Management,
Centre for Intelligent Systems Research, and Decision System Laboratory.

ACSW 2008 includes the following conferences:

– Australasian Computer Science Conference (ACSC),
– Australasian Database Conference (ADC),
– Australasian Computer Education Conference (ACE),
– Computing: The Australian Theory Symposium (CATS),
– Asia-Pacific Conference of Conceptual Modelling (APCCM),
– Australasian User Interface Conference (AUIC),
– Australasian Symposium on Grid Computing and Research (AUSGRID),
– Australasian Workshop on Health Data and Knowledge Management (HDKM),
– Australasian Information Security Workshop:Privacy Enhancing Systems (AISW), and the
– Australasian Computing Doctoral Consortium (ACDC).

The nature of ACSW requires the cooperation of many people. I would like to thank all those who have
worked to ensure the success of ACSW2008 including the Organizing Committee, the Conference Chairs
and Programme Committees, the invited speakers and the delegates.

Professor Philip Ogunbona
Head, School of Computer Science and Software Engineering
University of Wollongong
January, 2008

General Chair

Professor Philip Ogunbona, School of Computer Science and Software Engineering, University of Wollongong

Organising Committee Members

Mrs Meghan Gestos
A/Prof Willy Susilo
A/Prof Yi Mu
Dr Zhiquan Zhou
Prof Aditya Ghose
Dr. Dr Yang-Wai Chow

ix

x

CORE - Computing Research and Education

CORE welcomes all delegates to ACSW2008 in Wollongong.
ACSW, the Australasian Computer Science Week continues to grow with new conferences becoming

entrenched in the week. As the premier annual Computer Science event in Australia and New Zealand,
it provides an unparalleled opportunity for the wide community of Computer Science academics and re-
searchers to meet, network, promote IT research and be exposed to the latest research in other areas of
IT. The research presented at each conference is of the highest standard and essential for the growth and
future of our region, in an ever more competitive world.

Despite desperate pleas from industry and government for IT staff, 2007 has again offered little growth
in student numbers, particularly undergraduates, in ICT courses. This has affected almost all member
departments and resulted in many CORE stalwarts retiring or taking redundancy. Many members have
been active in a number of activities designed to address the issue but we do not yet seem to be winning
the hearts or minds of potential students, their parents or careers advisors.

ACS, with whom we work closely, has released a new Core Body of Knowledge, CBOK. This provides
us with the opportunity to rethink our courses but whether these will attract any more students remains
to be seen.

A major activity for CORE this year has been a continuation of the 2006 ranking of ICT conferences
and journals in preparation for the RQF. This activity drew considerable interest and input from many
members.

Thank you all for your contributions in 2007 and we look forward to an interesting 2008.

Jenny Edwards
President, Computing Research and Education
January, 2008

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2010 (Proposed). Communications Volume Number 32. Host and Venue - Queensland University of Technology,
Brisbane, QLD.

2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.

2008. Volume 30. Host and Venue - University of Wollongong, NSW.

2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACE. Australian/Australasian Computing Education Conference.
ACSAC. Asia-Pacific Computer Systems Architecture Conference (previously Australian Computer Architecture

Conference (ACAC).
ACSC. Australian/Australasian Computer Science Conference.
ACSW. Australian/Australasian Computer Science Week.
ADC. Australian/Australasian Database Conference.
AISW. Australasian Information Security Workshop.
APBC. Asia-Pacific Bioinformatics Conference.
APCCM. Asia-Pacific Conference on Conceptual Modelling.
AUIC. Australian/Australasian User Interface Conference.
AusGrid. Australasian Workshop on Grid Computing and e-Research.
CATS. Computing - The Australian/Australasian Theory Symposium.
HDKM. Australasian Workshop on Health Data and Knowledge Management.

Note that various name changes have occurred, most notably the change of the names of conferences to reflect a

wider geographical area.

xiii

xiv

ACSW and CATS 2008 Sponsors

We wish to thank the following sponsors for their contribution towards this conference. For an up-to-date
overview of sponsors of ACSW 2008 and CATS 2008, please see http://www.cs.uow.edu.au/conf/acsw08/.

University of Wollongong, Australia

Australian Computer Society

CORE - Computing Research and Education

School of Computer Science and Information Technology

School of Information Technology and Mathematical Sciences

xv

Keynote

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

1

CRPIT Volume 77 - Theory of Computing 2008

2

Chipping Away at P vs NP: How Far Are We from Proving
Circuit Size Lower Bounds?

Eric Allender

Rutgers, the State University of New Jersey
Piscataway, New Jersey, USA

Many people are pessimistic about seeing a resolution to the P vs NP question any time soon. This
pessimism extends also to questions about other important complexity classes, including two classes that
will be the focus of this talk: TC0 and NC1.

TC0 captures the complexity of several important computational problems, such as multiplication,
division, and sorting; it consists of all problems computable by constant-depth, polynomial-size families of
circuits of MAJORITY gates. TC0

d is the subclass of TC0 solvable with circuits of depth d. Although TC0

seems to be a small subclass of P, it is still open if NP = TC0
3.

NC1 is the class of problems expressible by Boolean formulae of polynomial size. NC1 contains TC0,
and captures the complexity of evaluating a Boolean formula.

Any proof that NP is not equal to TC0 will have to overcome the obstacles identified by Razborov and
Rudich in their paper on “Natural Proofs”. That is, a “natural” proof that NP is not equal to TC0 yields
a proof that no pseudorandom function generator is computable in TC0. This is problematic, since some
popular cryptographic conjectures imply that such generators do exist. This leads to pessimism about the
even more difficult task of separating NC1 from TC0.

Some limited lower bounds are within the grasp of current techniques, however. For example, several
problems in P are known to require formulae of quadratic size — but this seems to be of little use in trying
to prove superpolynomial formula size. Along similar lines, it is known that, for every d, there is a constant
c > 1 such that the formula evaluation problem (one of the standard complete problems for NC1) requires
TC0

d circuits of size at least nc.
It might not seem too outrageous to hope to obtain a slightly stronger lower bound, showing that there

is a c > 1 such that this same set requires uniform TC0 circuits of size nc (regardless of the depth d). We
show that this would be sufficient to prove that TC0 is properly contained in NC1.

This is joint work with Michal Koucký, Czech Academy of Sciences, Prague.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

3

CRPIT Volume 77 - Theory of Computing 2008

4

Contributed Papers

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

5

CRPIT Volume 77 - Theory of Computing 2008

6

The Inhabitation Problem for Intersection Types

M W Bunder1

1 School of Mathematics and Applied Statistics
University of Wollongong

Wollongong NSW 2522 AUSTRALIA
Email: mbunder@uow.edu.au

Abstract

In the system λ∧ of intersection types, without ω, the
problem as to whether an arbitrary type has an inhab-
itant, has been shown to be undecidable by Urzyczyn
in [10]. For one subsystem of λ∧, that lacks the ∧-
introduction rule, the inhabitation problem has been
shown to be decidable in Kurata and Takahashi [9].
The natural question that arises is: What other sub-
systems of λ∧, have a decidable inhabitation prob-
lem?

The work in [2], which classifies distinct and
inhabitation-distinct subsystems of λ∧, leads to the
extension of the undecidability result to λ∧ without
the (η) rule. By new methods, this paper shows, for
the remaining six (two of them trivial) distinct sub-
systems of λ∧, that inhabitation is decidable. For
the latter subsystems inhabitant finding algorithms
are provided.

Keywords: Lambda Calculus, Type Theory, Intersec-
tion Types, Inhabitation.

1 Introduction

In simple (Curry-style) type theory (see for example
Hindley [8]), not every closed lambda term (or com-
binator) has a type. Coppo and Dezani-Ciancaglini
in [7] extended simple type theory to include intersec-
tion types and the universal type ω, in their system
all λ−terms have types.

We consider the type assignment system TAλ∧ (or
simply λ∧), which is that of [7], without ω, in which
all closed λ−terms with normal form have types. We
will be interested in the inhabitation problem which
asks if it can be decided whether, for a type α, there
is a term X such that ` X : α in a given type the-
ory. For λ∧ the inhabitation problem was shown to
be undecidable by Urzyczyn in [10]. For a subsystem
of λ∧, that lacks the ∧-introduction rule, the inhab-
itation problem has been shown to be decidable in
Kurata and Takahashi in [9]. We detemine which, of
the other natural subsystems of λ∧, as identified in
[2], have a decidable inhabitation problem, in some
cases this follows easily from the work in [9] and [10].
We also provide algorithms which allow us to find an
inhabitant X for a type α, in the decidable systems.

Before doing this we need to detail the type sys-
tems and list some results from [2].

Copyright (c)2008, Australian Computer Society, Inc. This pa-
per appeared at Computing: The Australasian Theory Sympo-
sium (CATS2008) Wollongong, NSW, Australia. Conferences
in Research and Practice in Information Technology, Vol. 77.
Editors, Eds. James Harland and Prabhu Manyem. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

1.1 Definition (Types)

The set of types T is given by:

1. a, b, c, ..., atoms (or type variables) are types.

2. If α and β are types so are (α → β) and (α∧β).

A type α → β is called an →-type. A type α ∧ β
is called an ∧-type.

The usual bracketing rules of logic will apply.

1.2 Definition (Statements)

If M is a λ-term and α a type, M : α is a statement.

1.3 Definition (Judgements)

If ∆ is a set of statements {x1 : α1, . . . , xn : αn}
where x1, . . . , xn are distinct variables and M : α is a
statement, ∆ ` M : α is a judgement.

1.4 Definition (Postulates for the Type As-
signment System TAλ∧)

(Var) ∆, x : α ` x : α

(→ E)
∆ ` M : α → β ∆ ` N : α

∆ ` MN : β

(→ I)
∆, x : α ` M : β

∆ ` λx.M : α → β

(∧I)
∆ ` M : α ∆ ` M : β

∆ ` M : α ∧ β

(∧E)
∆ ` M : α ∧ β

∆ ` M : α

∆ ` M : α ∧ β

∆ ` M : β

(η)
∆ ` λx.Nx : α x /∈ FV (N)

∆ ` N : α

∆ ` M : α (or more formally ∆ `λ∧ M : α) will
represent: ∆ ` M : α can be derived from the above
postulates.

The system TAλ∧ will usually be abbreviated to
λ∧.

An alternative formulation of λ∧ uses a preorder
≤ on T .

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

7

1.5 Definition (≤)

Axioms
(1) α ≤ α

(2) α ≤ α ∧ α
(3) α ∧ β ≤ α
(4) α ∧ β ≤ β
(5) (α → β) ∧ (α → γ) ≤ α → β ∧ γ

Rules
(6) α ≤ β ≤ γ ⇒ α ≤ γ
(7) α ≤ α′ & β ≤ β′ ⇒ α ∧ β ≤ α′ ∧ β′

(8) α ≤ α′ & β ≤ β′ ⇒ α′ → β ≤ α → β′.

In Definition 1.4 the (∧E) and (η) rules can be
replaced by:

(≤)
∆ ` M : α α ≤ β

∆ ` M : β

We will be interested in the following subsystems
of λ∧.

1.6 Definition (Notation for Type Systems)

We will denote the system involving the judgements of
Definition 1.3 for types, with postulates (Var), (→ E)
and (→ I), by λ() and provability in this system by
`. Systems with additional rules will be denoted by
λ(∧I), λ(∧I, η) etc and the corresponding provabil-
ity by `∧I ,`∧I,η etc. Clearly λ∧ is λ(∧I,∧E, η) or
λ(∧I,≤).

We will use λ and `λ for Curry’s simple type the-
ory. This is λ() and ` without the use of ∧ in Defi-
nition 1.1(iii) and (∧I) and (∧E) in Definition 1.4.

We will write A,B,C, . . . for arbitrary type sys-
tems.

1.7 Definition (Inhabitation)

If A is one of the type systems of Definition 1.6, we
say that a type α is inhabited if (∃M) `A M : α.

Note that α being inhabited does not imply that
there is any algorithm that guarantees to find an in-
habitant of α.

1.8 Definition (Inhabitation Problem)

The question as to whether, in a system A, it can
be decided if an arbitrary type is inhabited or not is
called the inhabitation problem of A.

Urzyczyn showed in [10] that the inhabitation
problem for λ∧ is undecidable. Kurata and Taka-
hashi have shown in [9] that the problem is decidable
for λ(≤). Note that their method does not include an
algorithm for finding an inhabitant for a given type.

In [2] we studied and classified the various subsys-
tems of λ∧. We found that some of the subsystems
A and B were equivalent in the sense that:

(∀α, M) [`A M : α ⇔ `B M : α] (1)

This is denoted by A ≈1 B.
Additional systems A and B had equivalent inhab-

itation problems in that

(∀α) [(∃N) `A N : α ⇔ (∃N) `B N : α] (2)

This is denoted by A ≈2 B.
Any pair of systems satisfying (2) that we found

also satisfied

(∀α, M) [`A M : α ⇒ `B M : α] ∨ (3)
(∀α, M) [`B M : α ⇒ `A M : α]

Work in [2] showed that systems equivalent in the
(2) - (3) sense come in the following groups (or inhab-
itation equivalence classes).

(1) λ ∧ [≡ λ(∧I,∧E, η) ≈1 λ(∧I,≤)], λ(∧I,∧E)
(2) λ(∧I), λ(∧I, η)
(3) λ(≤) [≈1 λ(≤,∧E, η) ≈1 λ(≤,∧E)]
(4) λ(∧E), λ(∧E, η)
(5) λ() [≈1 λ(η)].

Note that λ(≤) and λ(∧E, η) are distinct systems
that are both “λ∧ without (∧I)”. (a ∧ b → b ∧ a is
inhabited in λ(≤) but not in λ(∧E, η).)

Urcyczyn’s work in [10] for λ∧ and the inhabita-
tion equivalence of the systems in Group 1 lead to:

1.9 Theorem

The inhabitation problems for the systems
λ∧, λ(∧I,≤) and λ(∧I,∧E) are undecidable.

The work of Kurata and Takahashi in [9] shows
that λ(≤) is decidable. As the systems in Group 3
are equivalent it follows that:

1.10 Theorem

The inhabitation problems for λ(≤), λ(≤,∧E, η) and
λ(≤,∧E) are decidable.

The system considered by Kurata and Takahashi
was actually λ(≤) with (ω), but the addition or dele-
tion of (ω) does not affect the result.

We will show below, using generation lemmas
proved in [2], that inhabitation problems for the sys-
tems in Groups 2, 4 and 5 are also decidable. We
will in fact provide algorithms to find inhabitants for
arbitrary types in these systems.

Note that in systems that do not have both (∧E)
and (∧I) or the full strength of (≤), we may have

∆ ` M : α ∧ β

but not ∆ ` M : β ∧ α

and ∆ ` M : α ∧ (β ∧ α)
but not ∆ ` M : (α ∧ β) ∧ α.

Notation We write α1 ∧ . . . ∧ αn to represent one of
the possible bracketings of α1 ∧ . . . ∧ αn.

Of course, via the formulas as types isomorphism,
a type in a type system can be considered as a the-
orem of a logic and its inhabitant as a proof of that
theorem. The logics corresponding to the intersection
type systems however, are not particularly simple (see
Venneri [11] and Bunder [5] and [6]) and it is easier
to examine decidability for the type theories rather
than for the corresponding logics.

CRPIT Volume 77 - Theory of Computing 2008

8

2 Inhabitation for λ()

It is easy to show that any valid judgement Γ ` α in
λ() can be transformed into a valid judgement Γ′ ` α′

in λ by replacing all distinct ∧-types in Γ and α by
distinct atoms. Hence as λ() ≈2 λ(η):

2.1 Theorem

The inhabitation problems for the systems λ() and
λ(η) are decidable.

If α is a type, an inhabitant of α, or a guarantee
that there is none in λ() and λ(η), can be provided
by an inhabitant finding algorithm, such as that in
[3], for λ, applied to the α′ . (The methods used in
[3] are a simplified version of the Ben-Yelles algorithm
(see [4] and Hindley [8]).)

2.2 Example

τ = (a∧b → c) → a∧b → (a∧b → c → (a∧b)∧d) →
(a ∧ b) ∧ d

Let τ ′ = (e → c) → e → (e → c → f) → f .
Using the algorithm of [3] for λ:

x1 : e → c, x2 : e and x3 : e → c → f , give
x1x2 : c, x3x2(x1x2) : f .

So ` λx1x2x3.x3x2(x1x2) : τ ′ and
` λx1x2x3.x3x2(x1x2) : τ .

Our proof of the decidability of the inhabitation
problem for λ(∧E) requires some additional notation
and a number of preliminary lemmas.

3 Notation

3.1 Definition (Long Subterms)

An occurrence of a subterm N of a term M is said to
be long in M if (i) N ≡ xiX1 . . . Xn and the occur-
rence is not part of NXn+1 or (ii) if N ≡ λx1 . . . xk.Q
and the occurrence is not part of λx0.N .

3.2 Definition (Positive and Negative Sub-
types)

1. τ is a positive subtype of τ .

2. If α → β is a positive (negative) subtype of τ
then α is a negative (positive) subtype of τ and
β is a positive (negative) subtype of τ .

3. If α∧ β is a positive (negative) subtype of τ, α
and β are positive (negative) subtypes of τ .

3.3 Definition (Long Subtypes)

An occurrence of a subtype α of a type τ is said to
be a long →-subtype of τ if the occurrence is not the
α in a β → α in τ .

An occurrence of a subtype α in τ is a long ∧-
subtype of τ if the occurrence is not the α in an α∧β
or β ∧ α in τ .

3.4 Example

τ = (a ∧ b → (c → d) → e) ∧ (f → g).
τ and c are long positive → and ∧ subtypes of

τ (→ ∧-subtypes).
a∧ b, c → d and f are long negative → ∧-subtypes

of τ .
a ∧ b → (c → d) → e and f → g are long positive

→-subtypes of τ .
a and b are long negative →-subtypes of τ .
c, e and g are long positive ∧-subtypes of τ .
d is a long negative ∧-subtype of τ .

3.5 Definition (Nontrivial Intersections)

A nontrivial intersection is any one other than one of
the form α ∧ . . . ∧ α.

4 The Generation Lemma for λ(∧E)

The Generation Lemma follows directly from the
work in [2], modified using Definition 1.11 and Lemma
4.3(v) of [2].

4.1 Lemma Generation Lemma for λ(∧E)

If

∆ `∧E M : α (4)

then one of the following holds:
1. M ≡ x, (∃β) x : β ε ∆ & β ≡ β1∧. . .∧α∧. . .∧βn.

2. M ≡ PQ, (∃β, γ) ∆ `∧E P : γ → β

∆ `∧E Q : γ

where the derivations are shorter than those of
(4) and β ≡ β1 ∧ . . . ∧ α ∧ . . . ∧ βn.

3. M ≡ λx.N, (∃β, γ) ∆, x : β `∧E N : γ

where the derivation is shorter than that of (4) and
α ≡ (β → γ).

5 The Main Lemma for λ(∧E)

A derivation is said to have a cut if it has a use of
(→ E), as in Definition 1.4, where ∆ ` M : α → β is
derived by (→ I), or a use of (∧I) followed immedi-
ately by a use of (∧E) (or an equivalent use of (≤)).
A derivation is normalised if it has no cuts.

It is well known (see [1]) that all derivations in
λ∧ with ω can be normalised. All terms appearing
in such derivations are in normal form. This result
clearly applies to λ∧ and its subsystems as well.

5.1 Definition

The type of a variable xm in a derivation of

x1 : τ1, . . . , xn : τn `A N : α

will be defined to be τm, (i) if 1 ≤ m ≤ n, or, (ii) if
λxm.M is introduced into N by (→ I) from

x1 : τ1, . . . , xm : τm `A M : β.

In the derivation β is defined to be the type of the
occurrence of M in N .

For systems without (∧I) the type of a variable
and the type of a term introduced, as a subterm, into
a normalised derivation are uniquely defined. For sys-
tems with (∧I) an occurrence of a term may have a
finite set of types in a derivation.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

9

5.2 Lemma

If x1 : τ1, . . . , xn : τn `∧E N : α, there exists a term
M in β-normal form such that no two distinct vari-
ables of M have the same type and also:

1.
xj1 : τj1 , . . . , xj`

: τj`
`∧E M : α (5)

where {j1, . . . , j`} ⊆ {1, . . . , n}.

2. For every occurrence of a long subterm P of M
with

FV (P) = {xi1 , . . . , xik
}

there are types τi1 , . . . , τik
and β such that

xi1 : τi1 , . . . , xik
: τik

`∧E P : β (6)

where:

(I) τi1 , . . . , τik
are long negative →∧-subtypes of τ =

τ1 → . . . → τn → α.

(II) If P is of the form λxr...xt.R, β has a long pos-
itive → ∧-occurrence in α or a long negative → ∧-
occurrence in one of τi1 , . . . , τik

.

(III) If P is of the form xrP1 . . . Pt, (t ≥ 0), β has a
long positive ∧-occurrence in α or a long negative ∧-
occurrence in one of τi1 , . . . , τik

. Also β has a negative
occurrence in α or a positive occurrence in one of
τi1 , . . . , τik

. .

Proof (i) If N ′ is the β-normal form of N there is
a normalised derivation of

x1 : τ1, . . . , xn : τn `∧E N ′ : α. (7)

If in (7) a long subterm xsQ1 . . . Qt of N ′

has type α1 → . . . → αu → γ, where γ
is an atom or an intersection, this is replaced
by λxq . . . xq+u−1.xsQ1 . . . Qtxq . . . xq+u−1, where
xq, . . . xq+u−1 are variables not in N ′, q > n and
τq+i−1 = αi for q = 1, . . . , u. When all such changes
to N ′ are made call the result N ′′.

Next free or bound variables xp and xq, with
the same type in N ′′, are identified. For example
λxq.C1[λxp.C[xq, xp]] becomes λxp.C1[λxp.C[xp, xp]].
If 1 ≤ p, q ≤ n, xq can be omitted from the left hand
side of the ` in (7). None of these changes alter any
subtypes of τ .

When all such changes have been made we have
M and (7) becomes (5).

(ii) Let the variables in M other than x1, . . . , xn be
xn+1, . . . , xm and their types be τn+1, . . . , τm.

Case 1 M ≡ P.
In this case β ≡ α and (6) is (5) with any xj 6∈

FV (M) omitted. (This can always be done in a nor-
malised derivation). (I) and (II) clearly hold and if P
is of the form xrP1...Pt it follows from Lemma 4.1(ii)
that β has a positive occurrence in τr, so (III) holds.

We now prove the remaining cases by induction on
M .

Case 2 M ≡ xiM1 . . .Mp. (p ≥ 0) and P is, or is in,
an Mj .

By Lemma 4.1(ii) applied p times we have:
xj1 : τj1 , . . . , xj`

: τj`
`∧E xi : α1 → . . . → αp → ξ

and
xj1 : τj1 , . . . , xj`

: τj`
`∧E Mj : αj

where ξ = ξ1 ∧ . . . ∧ α ∧ . . . ∧ ξt and 1 ≤ j ≤ p.

We have (6) and (I) by the induction hypothesis,
after leaving out variables not free in P . Also by the
induction hypothesis, if P is of the form λxr...xt.R
and β does not have a long negative → ∧−occurrence
in one of τi1 , . . . , τik

, it has a long positive → ∧-
occurrence in αj and so a long negative one in τi and
a long positive one in α. Thus (II) holds.

If P is of the form xrP1...Pt, β has a long positive
∧-occurrence in αj (and so a long negative one in τi)
or a long negative ∧-occurrence in one of τi1 , ..., τik

.
Also β has a negative occurrence in αj (and so a
positive one in τi) or a positive occurrence in one of
τi1 , ..., τik

. Thus (III) holds.

Case 3 M ≡ λxn+1.Q, where P is, or is in, Q.
By Lemma 4.1 (iii)

xj1 : τj1 , . . . , xj`
: τi`

, xn+1 : τn+1 `∧E Q : ξ

where α ≡ τn+1 → ξ.
By the induction hypothesis and the omission of

variables that are duplicated or not free in Q, (6)
and (I) hold. If P is of the form λxr...xt.R, β has
a long positive ∧-occurrence in ξ, and so in α, or a
long negative ∧-occurrence in one of τ1, ..., τn+1. If
this is in τn+1 it has a long positive ∧-occurrence in
α. (Note that P can’t be Q, in this case, as then P
is not long in M .) Thus (II) holds.

If P is of the form xrP1...Pt, β has a long positive
∧-occurrence in ξ (and so in α) or a long negative ∧-
occurrence in one of τi1 , . . . , τik

. If this is in τn+1 this
is a positive ∧-occurrence in α. Also β has a negative
occurrence in ξ (and so in α) or a positive occurrence
in one of τi1 , . . . , τik

. If this is τn+1, this is negative
in α. Thus (III) holds.

Note 1. In many modern trteatments of λ−calculus,
clashes of bound variables, as introduced in part (i) of
the proof, though strictly allowed, are avoided. The
identification of variables with the same types, in this
proof, and that of Lemma 8.2, simplifies the proof
and leads to finitely bounded inhabitation search al-
gorithms for λ(∧E) and λ(∧I) in Sections 6 and 9.
2. In the lemma corresponding to 5.2 in [3] (and also
in the Ben-Yelles algorithm in Hindley [8]), we could
assume that M was in long normal form, which meant
that every long subterm of M , formed by application
had an atomic type. Here we can only assume that
M must have an atomic or an intersection type. For
example M = x1x2 in:

x1 : a → (b → c) ∧ (e → f), x2 : a,

x3 : (b → c) ∧ (e → f) → g `∧E x3(x1x2) : g

cannot be expanded to λx4.x1x2x4 where x1x2x4 has
an atomic type.

5.3 Lemma

If

∆ `∧E M : τ, (8)

N appears in M and is introduced into the derivation
of (8) by

∆′ `∧E N : α (9)

where ∆ ⊆ ∆′, then if

∆′ `∧E P : α (10)

where FV (P) ⊆ FV (N), we have

∆ `∧E [P/N]M : τ (11)

CRPIT Volume 77 - Theory of Computing 2008

10

where in [P/N]M only the given occurrence of N with
type α, introduced in (9), is replaced by P .

Proof By induction, on M .

Case 1 M ≡ N then ∆′ ≡ ∆ and (11) is (10).

Case 2 M ≡ RQ where N is (in) R or Q
By Lemma 4.1 (ii)

∆ ` R : γ → β

∆ ` Q : γ

where β ≡ β1 ∧ . . . ∧ τ ∧ . . . ∧ βn.
By the induction hypothesis we have

∆ `∧E [P/N]R : γ → β

or ∆ `∧E [P/N]Q : γ

and (→ E) and (∧E) gives (11).

Case 3 M ≡ λx.R where N is (in) R
By Lemma 4.1 (iii) we have

∆, x : β `∧E R : γ

where β → γ ≡ τ .
The result follows by the induction hypothesis and

(→ I).

6 The Type Inhabitant Search Algorithm for
λ(∧E)

Aim Given a → ∧-type τ , to find a λ-term M such
that

`∧E M : τ

Step 1 To each distinct long negative → ∧-subtype
of τ assign a distinct variable, giving a list:

x1 : τ1, . . . , xm : τm

Step 2 For each type τi ≡ α ∧ β from Step 1 write
xi : α, xi : β, repeat the procedure if α or β are
intersections. Identical types for the same xi may
be omitted, identical types may also be obtained for
distinct xis.

Step 3 For each set A ⊆ {x1, . . . , xm} and for each
β that has both a long positive ∧- and a negative
occurrence in τ find an N , by application and (∧E),
such that FV (N) ⊆ A and N : β, if there is not
already such an N .

Step 4 For each set A ⊆ {x1, . . . , xm} and each β
which has both a long positive and a long negative
→ ∧-occurrence in τ , if possible, find a term N by
abstraction with respect to some or all of the vari-
ables found in Step 1 such that FV (N) ⊆ A and
N : β, if there isn’t already such an N . (More than
one abstraction with respect to the same variable is
allowed.)

If after a Step 4 a closed M : τ is found stop. If
not continue with further applications of Steps 3 and
4 until no new terms are created. If that happens,
without forming M : τ, τ has no inhabitants. This

same algorithm, without Step 2, can be used to find
inhabitants in λ() of λ.

6.1 Example

τ ≡ (a → b ∧ (c → d)) → a ∧ c → d

Step 1 x1 : a → b ∧ (c → d), x2 : a ∧ c

Step 2 x2 : a, x2 : c

Step 3 x1x2 : b∧ (c → d), x1x2 : c → d, x1x2x2 : d

Step 4 λx1x2.x1x2x2 : τ .

6.2 Example

τ = [(a → b → c) ∧ a → b → b → c]

Step 1 x1 : (a → b → c) ∧ a, x2 : b

Step 2 x1 : a → b → c, x1 : a

Step 3 x1x1 : b → c, x1x1x2 : c

Step 4 λx1x2.x1x1 : τ and λx1x2x2.x1x1x2 : τ.

6.3 Theorem

Given a type τ , the Type Inhabitant Search Al-
gorithm for λ(∧E) will produce an inhabitant in β-
normal form for τ in λ(∧E) and λ(∧E, η), or show
that there is no such inhabitant in either system.

Proof By Lemma 5.2, if τ has an inhabitant, it has
one M in β-normal form with no two variables of the
same type.

Also by Lemma 5.2, Step 1 of the algorithm pro-
vides us with a finite set of typed variables which is
the largest set that need appear in M . Step 2 pro-
vides each of these variables with a finite (possibly
empty) set of additional types which includes all the
types these variables need take in M .

Lemma 5.2 also provides us with all the composite
types subterms of M can have and these again form
a finite set. By Lemma 5.3, once we have a subterm
for M with a certain set of free variables, there is no
need to look for another with a superset of this set
of free variables. Hence the number of terms that
can be formed is finite and these are systematically
constructed by Steps 3 and 4.

As the inhabitant Search Algorithm for λ(∧E) is
inherently finite, if it terminates without having found
an inhabitant for τ , then τ has none.

Given that λ(∧E) ≈2 λ(∧E, η) and that λ(∧E)
is a subsystem of λ(∧E, η), this algorithm also finds
inhabitants of τ in λ(∧E, η) or shows that there are
none.

7 The Generation Lemma for λ(∧I)

The Generation Lemma follows directly from the
work in [2], modified using Definition 1.11 and Lemma
4.3(iv) of [2].

7.1 Lemma Generation Lemma for λ(∧I)

If
∆ `∧I M : α (12)

where M is in normal form, then one of the following
holds:

1. M ≡ x, (∃β) x : β ∈ ∆ & α ≡ β ∧ . . . ∧ β.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

11

2. M ≡ PQ, (∃β1, α1, . . . βk, αk)∆ `∧I P : βi →
αi

∆ `∧I Q : βi.
for 1 ≤ i ≤ k, where α ≡ α1 ∧ . . . ∧ αk and the
derivations, together, are shorter than those of
(12).

3. M ≡ λx.N, (∃β1, γ1, . . . , βk, γk) ∆, x : βi `∧I
N : γi

for 1 ≤ i ≤ k, where α ≡ (β1 → γ1) ∧ . . . ∧ (βk → γk)
and each derivation is shorter than that of (12).

8 The Main Lemmas for λ(∧I)

The two lemmas below are generalisations of two lem-
mas used in [3] to prove that the inhabitation find-
ing algorithm for simple type theory, that appears
there, is valid. The situation here is little more com-
plex because one occurrence of a subterm of X in
∆ `∧I X : τ can have more than one type in the
derivation.

For example with x : β we might prove:

∆ `∧I λx.M : β → α

and with x : γ, we might prove:

∆ `∧I λx.M : γ → δ,

and so by (∧I):

∆ `∧I λx.M : (β → α) ∧ (γ → δ).

So not only λx.M , but also x, can have more than
one type in a derivation.

8.1 Lemma

If X is in normal form, U is an occurrence of a sub-
term of X which has types α1 . . . αk in the derivation
of ∆ `∧I X : τ , then if V , with FV (V) ⊆ FV (U),
can also be assigned types α1, . . . , αk, given ∆, and
if the types of FV (V) are the same as they were for
FV (U), then

∆ `∧I X[U := V] : τ.

Proof By induction on X, as in Lemma 5.3.

8.2 Lemma

If
x1 : τ1, . . . , x` : τ` `∧I Z : τ (13)

then there is an X =β Z in β-normal form such that:

1. No two distinct variables of X have the same set
of types.

2. For some {i1, . . . , ik} ⊆ {1, . . . , `},

xi1 : τi1 , . . . , xik
: τik

`∧I X : τ (14)

3. Each type of each variable xij
in λxi1 . . . xik

.X
that is used in a derivation of (14), will have a
long negative→ - occurrence in τ ′ = τi1 → . . . →
τik

→ τ .

4. Each occurrence of a composite subterm Y of X,
that is, in the derivation of (14), an abstraction,
or is long and formed by application, will have a
type which is a long positive ∧-occurrence in τ ′.

Proof (i), (ii). Theorem 4.13 of [1] proves that every
Z satisfying (13), with λ∧ for λ(∧I), has a β-normal
form. Clearly this also holds for λ(∧I). Subject re-
duction can be proved for λ(∧I), by standard means,
so (13) holds with nf(Z) for Z.

If nf(Z) contains two variables xp and xq, with the
same set of types, we can change, by Lemma 8.1, all
occurrences of xq to xp, without altering any types.
Also we can drop one of two, now identical xp : τp
and xq : τq from x1 : τ1, . . . , x` : τ`. We then have
(14), so (i) and (ii) hold.

(iii), (iv) By induction on the length of X.
If X, which is in normal form, is formed by appli-

cation, X ≡ xit
X1 . . . Xm then by Lemma 7.1(ii) and

(i) we have:

xi1 : τi1 , . . . , xik
: τik

`∧I xit : β1 → . . . → βm → β

xi1 : τi1 , . . . , xik
: τik

`∧I Xr : βr (15)

for 1 ≤ r ≤ m, where τ = β ∧ . . . ∧ β, 1 ≤ t ≤ k and
τit

= β1 → . . . → βm → β.
If xij

= xit
, τij

= τit
has a long negative → -

occurrence in τ ′, so (iii) holds.
If xij

is in Xr, for some r, then, by the induction
hypothesis (iii), τij

has a long negative→ - occurrence
in τi1 → . . . → τik

→ βr.
If this occurrence is in τi1 → . . . → τik

→, this is a
long negative → - occurrence in τ ′. If it is in βr, then
τij

has a long positive → - occurrence in τit
and so a

long negative → - occurrence in τ ′. Hence (iii) holds.
If Y is a long composite subterm of X formed by

application, it may be X itself, in which case (iv)
holds with τ as the type of Y .

Otherwise Y is (in) an Xr. By the induction hy-
pothesis (iv), applied to (15), we have that this oc-
currence of Y has a type with a long positive ∧ -
occurrence in τi1 → . . . → τik

→ βr. If the occur-
rence is in τi1 → . . . → τik

→, it is also one in τ ′. If
the occurrence is in βr, as βr has a long negative →
- occurrence in τit and so a positive one in τ ′, each
type of Y has a long positive ∧ - occurrence in τ ′, i.e.
(iv) holds.

If X is formed by abstractions, X = λxik+1 .V ,
then by Lemma 7.1 (iii)

xi1 : τi1 , . . . , xik
: τik

, xik+1 : τ s `∧I V : βs (16)

for 1 ≤ s ≤ u and τ = (τ1 → β1) ∧ . . . ∧ (τu → βu).
As the derivation of (14) can come via (16), for

1 ≤ s ≤ u, and (∧I), any types τij of the variable xij

used in the derivation of (14) , must be used in the
derivation of (16) for at least one value of s.

By the induction hypothesis (iii), applied to (16),
we have that each τij

has a long negative → - occur-
rence in τi1 → . . . → τik

→ τ s → βs and so in τ ′.
Thus (iii) holds.

If Y is formed by application and is long in X, it
is also long in V , so, by the induction hypothesis (iv),
each occurrence of Y , in the derivation of (16), for
some s, 1 ≤ s ≤ u, has a type with a long positive ∧
- occurrence in τi1 → . . . → τik

→ τ s → βs and so in
τ ′. So (iv) holds.

If Y is formed by abstraction and is (in) V , the
result (iv) holds by induction hypothesis (iv).

If Y is X, (iv) holds as the type of Y is τ .

The λ(∧I) Inhabitant Search Algorithm, given be-
low, is a generalised version of the algorithm for λ
given in [4]. The latter, in turn, is a simplified ver-
sion of the Ben-Yelles Algorithm for λ (see Hindley
[8]).

CRPIT Volume 77 - Theory of Computing 2008

12

9 The λ(∧I) Inhabitant Search Algorithm

Aim To find a λ-term X such that, for all i, 1 ≤ i ≤ k

x1 : τ i
1, . . . , xn : τ i

n `∧I X : δi (17)

where Xx1 . . . xn has (i) a minimal number of distinct
variables and (ii) a minimal total number of occur-
rences of these variables.

Notes 1. To find an inhabitant X of a type τ , we
only need to solve (17) for n = 0, k = 1, and δ1 = τ ,
but we require to solve more general versions of (17)
in the process.

2. For no value of m and ` (1 ≤ m < ` ≤ n)
is τ i

` = τ i
m for all i, 1 ≤ i ≤ k, as otherwise

X[x` := xm] will be a solution of (17) where X[x` :=
xm]x1 . . . x`−1x`+1 . . . xn has fewer distinct variables
than Xx1 . . . xn.

3. We assume that no two instances of (17), for
distinct values of i, are identical.

4. We will call a set of judgements, such as (17),
for 1 ≤ i ≤ k, with a common set of variables on the
left of the ` and a common unknown λ-term, such
as X, on the right of the `, a simultaneous set of
judgements (ssj).

5. An ssj of the form

x1 : τ i
1, . . . , xn : τ i

n `∧I Y : δi

for 1 ≤ i ≤ k is said to be equivalent to the ssj (17).
6. In the algorithm we will construct a tree where

the nodes are ssj’s, with (17) at the root.

Step 1 If in (17) τ i
j = δi for some j (1 ≤ j ≤ n)

and all i, (1 ≤ i ≤ k), then the tree consists only of
the root, the ssj (17), and the algorithm stops with
X = xj .

Otherwise, if τ i
j = βi

1 → . . . → βi
r → δi for all i,

1 ≤ i ≤ k, construct a group of ssj’s

x1 : τ i
1, . . . , xn : τ i

n `∧I Xt1 : βi
t1 (18)

each with 1 ≤ i ≤ k, provided there is no ssj equiv-
alent to (18) for any t1(1 ≤ t1 ≤ r) in the branch
from (17) to the root of the tree. If there is such an
equivalent ssj, (17) has no solution.

For each τ i
j of the appropriate form, that is not

excluded in this way, there is a group of ssj’s of the
form (18) with 1 ≤ t1 ≤ r, that appears in the tree
directly below (17).

If all of the ssj’s in a group have a solution, found
by going back to Step 1, then (17) has as solution
X = xjX1 . . . Xr.

If there is no solution of (18) for any t1, there is
no solution of (17) for that value of j, and the tree is
not extended below the ssj’s in the group with that
value of j.

If there is no solution of (17) for any value of j or
no τ i

j is of the right form and if δi = τ i
n+1 → γi for all

i (1 ≤ i ≤ k), go to Step 2. If δi = αi ∩ γi, for some
i, go to Step 3.

Step 2 If τ i
n+1 6= τ i

j for some i and all j the ssj

x1 : τ i
1, . . . , xn+1 : τ i

n+1 `∧I X ′ : γi (19)

with 1 ≤ i ≤ k, appears directly below (17) in the
tree (as a singleton group), provided no equivalent ssj
appears in the branch from (17) to the root of the tree.
(19) is then solved by returning to Step 1. If there is
a solution then the solution to (17) is λxn+1.X

′.

If τ i
n+1 = τ i

j for some j and all i, 1 ≤ i ≤ k, the ssj

x1 : τ i
1, . . . , xn : τ i

n `∧I X ′ : γi (20)

appears directly below (17) in the tree, provided no
equivalent ssj appears in the branch from (17) to the
root.

(20) is solved by returning to Step 1. If there is a
solution, then X = λxj .X

′.
Step 3 We assume that (17) is ordered so that

this i = k. In each of the four cases below we add a
new ssj directly below (17) in the tree (as a singleton
group), provided no equivalent ssj has appeared in
the branch from (17) to the root.

1. If τk
1 , . . . , τk

n , αk and τk
1 , . . . , τk

n , γk are both dis-
tinct from each τ j

1 , . . . , τ j
n, δj for 1 ≤ j < k, and

from each other the ssj is

x1 : τ i
1, . . . , xn : τ i

n `∧I X : δi (21)

for 1 ≤ i ≤ k+1, where δk = αk, δk+1 = γk, and
τk
t = τk+1

t for 1 ≤ t ≤ n.

2. If τk
1 , . . . , τk

n , αk is distinct from each
τ j
1 , . . . , τ j

n, δj but τk
1 , . . . , τk

n , δk, γk ≡
τ j
1 , . . . , τ j

n, δj for some j, (1 ≤ j ≤ k) or
≡ τk

1 , . . . , τk
n , αk the new ssj is similar to (17)

but with αk instead of δk.

3. If τk
1 , . . . , τk

n , γk is distinct from each
τ j
1 , . . . , τ j

n, δj , but τk
1 , . . . , τk

n , αk ≡ τ j
1 , . . . , τ j

n, δj

for some j, (1 ≤ j ≤ k) the new ssj is similar to
(17) but with γk for δk.

4. If τk
1 , . . . , τk

n , γk ≡ τ r
1 , . . . , τ r

n, δr and
τk
1 , . . . , τk

n , αk ≡ τ j
1 , . . . , τ j

n, δj for some j
and r, 1 ≤ j, r ≤ k, the new ssj is similar to (17),
but with 1 ≤ i ≤ k − 1.

In each case now go back to Step 1.

We now prove that the algorithm is effective.

9.1 Theorem

The λ(∧I) Inhabitation Search Algorithm provides a
solution X for (17), for all i(1 ≤ i ≤ k) or a guarantee
that there is no solution, by generating a tree with an
ssj at each node and (17) at the root. No node will
have more than rs + 1 nodes directly below it and no
branch is longer than 2s(r−n)! where r is the number
of long negative →-subtypes of

α = (τ1
1 → . . . → τ1

n → δ1)∧. . .∧(τk
1 → . . . → τk

n → δk)

and s is the number of long positive ∧-subtypes of α.

Proof In the algorithm, Step 1 considers all the pos-
sible ways in which (17) can be derived by (Var) or
using (→ E) as the final step, Step 2 considers the
ways in which (17) can be derived by (→ I) as a fi-
nal step and Step 3 the ways in which (17) is derived
using (∧I) as a final step. Any X satisfying (17), for
1 ≤ i ≤ k, must be found in an indefinitely extended
tree.

Coming down any branch of the tree from the root,
the algorithm has each unknown λ-term as a subterm
of the ones above it. If the step above it is Step 1
(other than τ i

j = δi for 1 ≤ i ≤ k) or Step 2, it will be

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

13

a proper subterm of the terms higher in the branch.
If on a branch there is an ssj

x1 : τ i
1, . . . , xp : τ i

p `∧I Xt1...ts : βi
t1...ts

(22)

for 1 ≤ i ≤ q, appearing below an equivalent ssj

x : τ i
1, . . . , xp : τ i

p `∧I Xt1...tv
: βi

t1...tv
(23)

(i.e. βi
t1...ts

= βi
t1...tv

for 1 ≤ i ≤ q), then Xt1...ts

is a proper part of Xt1...tv , as there must be at least
one nontrivial Step 1 or a Step 2 between the ssj’s.
This however means that Xt1...ts is a shorter solution
than Xt1...tv

of the ssj (23), so the branch from (23) to
(22) does not lead to an X satisfying (i) and (ii). So
the algorithm rightly does not search branches below
(22).

We now show that the tree must be finite.
By Lemma 7.1 (17) holds for 1 ≤ i ≤ k, if and

only if
`∧I λx1 . . . xn.X : α.

By Lemma 8.2 the variables in λx1 . . . xn.X, and so
in X, have types which are long negative →-subtypes
of α. Let there be r of these.

In a node (i.e. an ssj)

x1 : τ i
1, . . . , xm : τ i

m `∧I Y : βi (24)

for 1 ≤ i ≤ `, as by the algorithm the types of differ-
ent variables are distinct and n < m ≤ r, there can
be at most (r − n)! different sequences τn+1, . . . , τm.

Also by Lemma 8.2, each βi is a long positive ∧-
subtype of α. Let there be s of these. Then there
can be at most s(r − n)! distinct judgements, of the
form (24) in the tree generated by the algorithm and
as each node (i.e. each ssj) in the tree consists of a
subset of this set of judgements, there can be no more
than 2s(r−n)! distinct nodes (ssj’s) in the tree.

Given that there can be no two equivalent ssj’s on
any branch, no branch can be longer than 2s(r−n)!.

Below any ssj, such as (24), there can be at most
m groups of ssj’s resulting from Step 1, where m ≤ r.
Each group can have no more than s members. Also
below (24) there can be an ssj stemming from Step 2
or 3. Thus there can be no more than rs + 1 nodes
below any node in the tree.

9.2 Corollary

The inhabitation problem for λ(∧I)is decidable.

9.3 Example

To find X such that

`∧I X : (a → a → a ∧ a) ∧ ((a → b) → (b → a) → a → b)
|

Step 3
|

`∧I X : a → a→a ∧ a

`∧I X : (a → b)→(b → a) → a → b

|
Step 2 (X = λx1.X

′)
|

x1 : a `∧I X ′ :a → a ∧ a

x1 : a → b `∧I X ′ :(b → a) → a → b

|

Step 2 (X ′ = λx2.X
′′)

|
x1 : a, x2 : a `∧I X ′′ : a ∧ a

x1 : a → b, x2 : b → a `∧I X ′′ : a → b

|
Step 3
|

x1 : a, x2 : a `∧I X ′′ : a

x1 : a → b, x2 : b → a `∧I X ′′ : a → b

|
Step 1 X ′′ = x1

So X = λx1x2.x1.

10 Conclusion

The inhabitation problem is decidable for the
systems λ(≤), λ(≤,∧E, η), λ(≤,∧E), λ(∧I), λ(∧I, η),
λ(∧E), λ(∧E, η), λ(), and λ(η) and undecidable for
λ∧, λ(∧I,≤) and λ(∧I,∧E).

We have given inhabitant finding algorithms for
λ(), λ(η), λ(∧E), λ(∧E, η), λ(∧I) and λ(∧I, η).

References

Barendregt, H.P., Coppo, M., Dezani, M. (1983), ‘A
filter lambda model and the completeness of type
assignment’, Journal of Symbolic Logic 48, 931–
940.

Bunder, M.W. (2002), ‘A classification of intersection
type system’, Journal of Symbolic Logic 67, 353–
362.

Bunder, M.W. (2000), ‘Proof finding algorithms for
implicational logics’, Theoretical Computer Science
232, 165-186.

Bunder, M.W. (1995), ‘Ben-Yelles-type algorithms
and the generation of proofs in implicational logics’,
University of Wollongong, Department of Mathe-
matics Preprint Series 3/95.

Bunder, M.W. (2002), ‘Intersection type for lambda
terms and combinators and their logics’, Journal of
the Interest Group in Propositional Logic 10, 357–
378.

Bunder, M.W. (2003), ‘Intersection type systems and
logics related to the Meyer-Routley system B+’,
Australasian Journal of Logic 1, 43–55.

Coppo, M. & Dezani, M. (1978), ‘A new type-
assignment for lambda terms’, Archiv Math. Logik
19(2), 139–156.

Hindley, J.R. (1987), Basic Simple Type Theory,
Cambridge University Press.

Kurata, T. & Takahashi, M. (1995), Mining associa-
tion rules between sets of items in large databases,
in ‘Lecture notes in Computer Science’, Vol. 902,
TLCA ’95. M. Dezani and G. Plotkin (eds) pp. 297–
311.

Urzyczyn, P. (1999), ‘The emptiness problem for
intersection types’, Journal of Symbolic Logic
64, 1195–1215.

Venneri, B. (1994), ‘Intersection types as logical for-
mulae’, Journal of Logic and Computation 4, 109–
124.

CRPIT Volume 77 - Theory of Computing 2008

14

Weak Parametric Failure Equivalences and Their Congruence Formats

Xiaowei Huang1 Li Jiao2 Weiming Lu1

1 Academy of Mathematics and System Science,
Chinese Academy of Sciences, P.R. China.

Email: xwhuang@amss.ac.cn
2 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, P.R. China.

Abstract

Weak equivalences are important behavioral equivalences
in the course of specifying and analyzing the reactive
systems using process algebraic languages. In this pa-
per, we propose a series of weak equivalences named
weak parametric failure equivalences, which take two
previously-known behavioral equivalences, i.e., the weak
failure equivalence and the weak impossible future equiv-
alence, as their special cases. More importantly, based
on the idea of the structural operational semantics, a se-
ries of rule formats are further presented to congruence
format for their corresponding weak parametric failure
equivalences, i.e., a specific equivalence is further congru-
ent in any languages satisfying its corresponding congru-
ence format. This series of rule formats reflect the gradual
changes in the weak parametric failure equivalences. We
conclude that, when the weak parametric failure equiva-
lences become coarser, their corresponding rule formats
turn tighter.

Keywords: weak failure equivalence, rule formats, struc-
tural operational semantics

1 Introduction

When using process algebraic languages to specify the
distributed systems, a suitable semantic equivalence is
usually necessary for reasoning and analyzing. There exist
various semantic equivalences to be applied in various sit-
uations. An equivalence relation is reflexive, symmetric,
and transitive.

Behavioral equivalences are based on the observabil-
ity and thus equivalences may differ by the notions of ob-
servability (van Glabbeek, 2001, 1993). A natural classi-
fication of behavioral equivalences is that a given behav-
ioral equivalence may be strong or weak. Their differ-
ence mostly exists in the ways of dealing with the internal
transitions, which are generally denoted as τ transitions.
Strong equivalences regard τ transitions the same as the
observable actions. Weak equivalences, on the other hand,
suppose them unobserved by the outer-world. Therefore,
when the given distributed systems are further reactive
systems, the weak equivalences/preorders are more suit-
able than the strong equivalences/preorders. A reactive
systems can be seen as a black box, which computes by
reacting to the stimuli, e.g., input and output, from its en-
vironments, and thus no internal transitions can be wit-
nessed from the outside. In this paper, we will focus on
the weak equivalences.

Copyright c©2008, Australian Computer Society, Inc. This paper
appeared at the Computing: The Australasian Theory Symposium
(CATS2008), University of Wollongong, New South Wales, Australia
. Conferences in Research and Practice in Information Technology (CR-
PIT), Vol. 77, James Harland and Prabhu Manyem, Ed. Reproduction
for academic, not-for profit purposes permitted provided this text is in-
cluded.

Among various weak semantic equivalences, the weak
failure equivalence and the weak impossible future equiv-
alence are two interesting semantic equivalences. The
weak impossible future equivalence is strictly finer than
the weak failure equivalence. The weak failure semantic
is usually denoted, by its denotational characterization, as
a set of weak failure pairs. Two processes are weak failure
equivalent iff they have the same set of weak failure pairs.
Likewise, the weak impossible future semantic is usually
denoted as a set of weak impossible future pairs and two
processes are weak impossible future equivalent iff they
have the same set of weak impossible future pairs.

Looking into the two pairs, we find that their first pa-
rameters both express the abilities: some process p exe-
cutes a sequence of observable actions and evolves into
another process p′. The difference exists in their second
parameters. The second parameter of a weak failure pair
is a set of actions which are not enabled by p′, and the
second parameter of a weak impossible future pair is a set
of action sequences which are not enabled by p′.

Based on these observations, we define a series of
weak equivalences, called weak parametric failure equiv-
alences. Like the above two weak equivalences, a weak
i-failure pair with i ∈ N∪{ω} is only different in its second
parameter with the weak failure pair, where N is the set of
natural numbers and ω is the cardinality of N. Its second
parameter is a set of action sequences which are not en-
abled by p′ and the lengthes of these action sequences do
not exceed i. Therefore, the plain weak failure equivalence
is the weak 1-failure equivalence in our framework and the
weak impossible future equivalence is the weak ω-failure
equivalence. Furthermore, with the increasing of the para-
metric i, the weak i-failure equivalence becomes finer.

Structural Operational Semantics (SOSs) (Plotkin,
2004) have been widely used in defining the meanings of
the operators in various process algebraic language, such
as CCS (Milner, 1989) and ACP (Baeten, 1990). The main
idea of SOSs is: at first, each process is represented by a
closed term and has some out-going transitions to com-
municate with outer world; then, these processes are co-
ordinated by some specified rules, which are called tran-
sition rules, to get a higher-level process. As a result, the
out-going transitions of this higher-level process are deter-
mined by the out-going transitions of its sub-processes.

Transition System Specifications (TSSs) (Groote,
1992), which borrowed from logic programming, form a
theoretical basis for SOSs. By imposing some syntactic
restrictions on TSS, one can retrieve so-called rule for-
mats. From a specified rule format, one may deduce some
interesting properties. Among these properties, one of
the most important is whether or not a behavioral equiv-
alence is congruent for a TSS in this rule format. A con-
gruence is an essential equivalent property - namely that
we can ’substitute equals for equals’ (Milner, 1999). We
will use language as an alias of the TSS. Up to now, some
rule formats have been presented to meet the behavioral
equivalences, for examples, GSOS format (Bloom, 1995)
and ntyft/nxyft format (Groote, 1993) have been proved to

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

15

be congruent on strong bisimulation, de Simone (Simone,
1985) format was proved to be congruent on failure equiv-
alence, and so on.

However, more works have been done on pursuing a
suitable rule format for a given strong equivalence. On
the contrary, much less attentions were paid on the rule
formats for weak equivalences. More specifically, to our
knowledge, no congruence formats have been presented
for the weak failure equivalence or the weak impossible
future equivalence.

In the paper, we will propose a series of rule for-
mats for the newly defined weak parametric failure equiv-
alences. In fact, weak 1-failure format is presented for the
weak 1-failure equivalence, weak finite failure format is
for the weak i-failure equivalences with 1 < i < ω, and
weak ω-failure format is for the weak ω-failure equiva-
lence. Then, we prove that the weak parametric failure
equivalence can be preserved after composition if the lan-
guage is in its corresponding rule formats, i.e., these rule
formats are all congruence formats for their corresponding
equivalences.

Here, we want to sketch out two critical points in pur-
suing these rule formats:

The first critical point is on the feasibility of allow-
ing the rules with τ-conclusion. Rules with τ-conclusion
are an important class of rules in classical process alge-
braic languages, notable examples include hiding operator
of CSP and parallel composition operator of CCS. How-
ever, not all behavioral equivalences can be preserved un-
der these rules, as is pointed out in Rensink and Vogler
(Rensink, 2007) that the acceptance testing equivalence
may not be preserved under the hiding operator. In this
paper, we will take a close look into these rules. In fact,
the weak i-failure equivalences with i < ω may not be
preserved under these rules, but the weak ω-failure equiv-
alence, i.e., the impossible future equivalence, can survive
these rules.

The second critical point is whether or not the patience
rules for receiving arguments are prerequisite in the rule
formats for a given weak parametric failure equivalence.
Patience rules, which are used to smooth the evolvement
of τ transitions of subprocesses, are usually necessary in
rule formats for weak equivalences. However, since pa-
tience rules are defined in accordance with the arguments
of an operator, they can be divided into three classes: pa-
tience rules for active arguments, patience rules for re-
ceiving arguments and patience rules for other arguments.
Though patience rules for active arguments are generally
needed, patience rules for receiving arguments are not
necessary for some rule formats. We find that, for the
weak 1-failure format, patience rules for receiving argu-
ments are not prerequisite by the help of the exclusion of
rules with τ-conclusion. On the other hand, they are pre-
requisite for the weak i-failure format with i > 1.

As a result, the weak finite failure format is tighter
than the weak ω-failure format because the rules with τ-
conclusion should be excluded from the language in the
weak finite failure format, and the weak 1-failure format
is tighter than the weak finite failure format since it may
further exclude the patience rules for receiving arguments
from the language. Therefore, we can conclude that, when
the weak parametric failure equivalences become coarser,
their corresponding rule formats turn tighter.

Finally, we want to say more on the newly-proposed
weak i-failure equivalences with 1 < i < n. In fact,
we have not found their niche applications, though they
can be used in most applications of the 1-failure equiva-
lences. The reasons that we introduce these intermediate
weak equivalences are that

1) they can smooth the changes between the weak 1-
failure equivalence and the weak ω-failure equivalence,

2) their congruence format is also an intermediate for-
mat between the weak 1-failure format and the weak ω-
failure format, and

3) most importantly, we want to make clear the techni-
cal reasons why there exist differences between the weak
1-failure format and the weak ω-failure format. Take it
more concrete, from the weakω-failure format to the weak
1-failure format, the reason why the rules with τ conclu-
sion are excluded is that the parameter i degrades from
infinite to finite, and the reason why the patience rules for
receiving arguments are not necessary is that, no matter
how they are presented in the language, only the set of
next one, but not next finite or infinite, observable actions
remains unique.

The structure of this paper is: in the section 2, we
will introduce some preliminaries, mainly on the behav-
ioral equivalences and the rule formats in Structural Op-
erational Semantics. Then in Section 3, we will put for-
ward the formal definitions on the weak parametric failure
equivalences. Intuitive motivations on their rule formats
will be exhibited with examples in Section 4. Section 5 is
devoted to the formal definitions of the rule formats, and
the proofs on the congruence theorems. And then, in Sec-
tion 6, we will conclude the paper.

2 Preliminaries on Behavioral Equivalences and
Rule Formats

Let Act denote a set of names which will be used to label
on events and Act∗ be the set of all action sequences. We
usually use a, b, ... to range over the actions in Act, and use
A, B, ... to range over subsets of actions in Act. τ is gen-
erally used to denote the internal action which can not be
observed by the outer world, and we use α, β, ... to range
over the actions in Act ∪ {τ}. δ, µ, σ, ... is to range over the
sequences of actions. Φ,Ψ, ... is to range over the sets of
sequences. p, q, ... will be used to represent processes.

Any behavioral semantics of some process p can be
characterized by a function O(p) (van Glabbeek, 2001).
O(p) constitutes the observable behaviors of p. The equiv-
alence relation ∼O can be defined by p ∼O q ⇐⇒ O(p) =
O(q). The readers are referred to van Glabbeek (van
Glabbeek, 2001, 1993) for comprehensive reviews of the
behavioral equivalences.

SOS has been widely accepted as a tool to define oper-
ational semantics of processes. A TSS is a formalization
of SOS (Plotkin, 2004). The readers are referred to Aceto,
Fokkink and Verhoef (Aceto, 2001) for a comprehensive
review on SOS.

Definition 2.1 (Aceto, 2001) Let V = {x1, x2, ...} be a
set of variables. A signature Σ is a collection of function
symbols f < V equipped with a function ar : Σ→ N. The
set T(Σ) of terms over a signature Σ is defined recursively
by: 1) V ⊆ T(Σ); 2) if f ∈ Σ and t1, ..., tar(f) ∈ T(Σ), then
f (t1, ..., tar(f)) ∈ T(Σ).

A term c() is abbreviated as c. For t ∈ T(Σ), var(t)
denotes the set of variables that occur in t. T(Σ) is the
set of closed terms over Σ, i.e., the terms p ∈ T(Σ) with
var(p) = ∅. A Σ substitution ζ is a mapping from V to
T(Σ).

In the paper, we will use p, q, ... to range over the
closed terms, and call them processes.

Definition 2.2 A positive Σ-literal is an expression
t
α
−→ t′ and a negative Σ-literal is an expression t α9 with

t, t′ ∈ T(Σ) and α ∈ Act ∪ {τ}. A transition rule over Σ is
an expression of the form H

C with H a set of Σ literals (the
premises of the rule) and C a positive Σ-literal (the con-
clusion). The left- and right-hand side of C are called the
source and the target of the rule, respectively. Moreover, if
r = H

t
α
−→ t′

then define ante(r) = H, cons(r) = {t
α
−→ t′},

and the output of r as α.
A TSS, written as (Σ,Ψ), consists of a signature Σ and

a set Ψ of transition rules over Σ. A TSS is positive if the
premises of its rules are positive. In the paper, we often
use language as an alias of the TSS.

CRPIT Volume 77 - Theory of Computing 2008

16

Definition 2.3 Let Σ be a signature. A context C of n
holes over Σ is simply a term in T(Σ) in which n variables
occur, each variable only once. If t1, ..., tn are terms over Σ,
then C(t1, ..., tn) denotes the term obtained by substituting
t1 for the first variable occurring in C, t2 for the second
variable occurring, etc. Thus, if x1, ..., xn are all different
variables, then C(x1, ..., xn) denotes a context of n holes in
which xi is the ith occurring variable.

Then, we can give the definition on the congruence of
an equivalence in a language.

Definition 2.4 Let L = (Σ,Ψ) be a language. An
equivalence relation ∼ is congruent on language L iff
∀i ∈ {1, ..., n} : pi ∼ qi =⇒ C(p1, ..., pn) ∼ C(q1, ..., qn)
for any context C of n holes in language L, where pi and
qi are closed terms, i.e., processes, over Σ.

Definition 2.5 Let Σ be a signature. A transition re-
lation over Σ is a relation Tr ⊆ T(Σ) × Act ∪ {τ}× T(Σ).
Element (p, α, p′) of a transition relation is written as
p
α
−→ p′.
Thus a transition relation over Σ can be regarded as a

set of closed positive Σ-literals(transitions).
Furthermore, for an action sequence δ = α1...αn, if

there exist p1, ..., pn ∈ T(Σ) such that p
α1
−→ p1

α2
−→ ...

αn
−→

pn, then we call δ a trace of p, denoted as p
δ
−→ or p

α1
−→

...
αn
−→.
In weak semantics, the weak transition relations and

the weak traces are also needed to be defined. Let p be a

process, we write p
a
=⇒ iff p

τ∗

−→
a
−→

τ∗

−→, where τ∗ denotes
any number of internal transitions. Hence, for an observ-

able action sequence δ = a1...an, p
δ
=⇒ iff p

a1
=⇒ ...

an
=⇒.

By imposing some syntactic constraints on TSS’s, we
will obtain the so-called rule formats with some properties
on their induced operational semantics. Within these prop-
erties, it is specially important that whether a behavioral
equivalence can be preserved in the languages with this
format. Some rule formats have been proposed to meet the
numerous behavioral equivalences, such as GSOS format,
de Simone format, ntyft/nxyft format, etc. The readers are
referred to Mousavi, Reniers and Groote (Groote, 2007)
for a latest review on the rule formats.

The de Simone language will be employed as our start-
ing point in retrieving the rule formats for the weak para-
metric failure equivalences.

Definition 2.6 (Simone, 1985) Let Σ be a signature.
A transition rule r is in de Simone format if it has the

form {xi
ai
−→ yi}i∈I

f (x1, ..., xar(f))
a
−→ t

, where I ⊆ {1, ..., ar(f)} and the

variables xi and yi are all distinct and the only variables
occuring in r. Moreover, the target t ∈ T(Σ) does not
contain variable xi for i ∈ I and has no multiple occurrence
of variables.

Below, two special classes of rules are defined. They
will be discussed in the paper. The first class is the pa-
tience rules, and the second class is the rules with τ-
conclusion.

Definition 2.7 (Aceto, 2001; Groote, 2007) Let
L = (Σ,Ψ) be a de Simone language, and f
be a function symbol in Σ. A rule of the form

xi
τ
−→ x′i

f (x1, ..., xi, ..., xn)
τ
−→ f (x1, ..., x′i , ..., xn)

with 1 ≤ i ≤ n

is called a patience rule of the ith argument of f .
In the following, a rule is called a plain rule if it is not

a patience rule.
Definition 2.8 (van Glabbeek, 2005) Let L = (Σ,Ψ)

be a de Simone language, and f be a function symbol in
Σ. An argument i ∈ N of an operator f is active if f has
a rule in which xi appears as left-hand side of a premise.
A variable x occurring in a term t is receiving in t if t is
the target of a rule in which x is the right-hand side of a
premise. An argument i ∈ N of an operator f is receiving

if a variable x is receiving in a term t that has a subterm
f (t1, ..., tn) with x occurring in ti.

Then, the set of all arguments Arg of an operator can
be divided into three classes: active arguments Arga, re-
ceiving arguments Argr and others Argo, which is in-
spired by van Glabbeek (van Glabbeek, 2005). Therefore,
Arg = Arga + Argr + Argo.

Similarly, patience rules of an operator can be divided
into three classes. It should be noted that an argument
may be both an active argument and a receiving argument,
i.e., Arga ∩ Argr , φ. However for clarity, from now
on, if we say that an argument is a receiving argument,
then it should not be an active argument , i.e., receiving ar-
guments below are only those receiving arguments which
are not active arguments simultaneously. Therefore, Arga,
Argr and Argo will be disjoint.

Definition 2.9 Let L = (Σ,Ψ) be a de Simone lan-
guage, and f be a function symbol in Σ. A rule of the form

H
f (x1, ..., xn)

τ
−→ t

is called a rule with τ-conclusion, if it

is not a patience rule and there exists at least one positive
Σ literal in H.

An notable example of the rules with τ-conclusion,
which will be used in Section 4.2, is the first transition
rule of the hiding operator in CSP as follows.

p/A : p
α
−→ p′

p/A
τ
−→ p′/A

α ∈ A p
α
−→ p′

p/A
α
−→ p′/A

α < A

Like the definition of a rule with τ-conclusion, a transi-
tion rule is a rule with τ-premise iff there exists a positive
Σ literal like t

τ
→ t′ in its premises. It is trivial that patience

rules are rules with τ-premise.
Before concluding this section, we will presume a

small set of operators with default operational semantics:
nil : means the successful termination.
a · X : a · X

a
−→ X

X � Y : X
a
−→ X′

X � Y
a
−→ X′

Y
a
−→ Y ′

X � Y
a
−→ Y ′

X
τ
−→ X′

X � Y
τ
−→ X′ � Y

Y
τ
−→ Y ′

X � Y
τ
−→ X � Y ′

X ⊕ Y : X ⊕ Y
τ
−→ X X ⊕ Y

τ
−→ Y

X B Y : X
a
−→ X′

X B Y
a
−→ X′

X
τ
−→ X′

X B Y
τ
−→ X′ B Y

X B Y
τ
−→ Y

where a ∈ Act. Operators �,⊕,B are used to substi-
tute the + operator and the prefixing with τ, because many
weak equivalences may not be preserved under the + op-
erator of CCS. We call this language B (Ulidowski, 2000).

Using these operators, ap+bq, τap+τbp and ap+τbq
can be represented by ap � bq, ap ⊕ bp and ap B bq,
respectively.

3 Weak Parametric Failure Equivalences

Before presenting the formal definitions of the weak para-
metric failure equivalences, two canonical equivalences,
i.e., the weak failure equivalence and the weak impossi-
ble future equivalence, will be introduced. As we will see,
they both are the special cases of the weak parametric fail-
ure equivalences.

Definition 3.1 (σ, A) ∈ Act∗ × P(Act) is a weak failure
pair of process p iff there exists some p′ such that p

σ
=⇒

p′ ∧ A∩S(p′) = ∅, where S(p′) = {a ∈ Act | p′
a
=⇒}. The

set of all weak failure pairs of process p is called the weak
failure of p, denoted by F (p).

Weak Failure Equivalence ∼ f : for any two processes
p and q, p ∼ f q iff F (p) = F (q).

Definition 3.2 (σ,Φ) ∈ Act∗ × P(Act∗) is a weak im-
possible future pair of process p iff there exists some p′

such that p
σ
=⇒ p′ ∧ Φ ∩ T (p′) = ∅, where T (p′) = {δ ∈

Act∗ | p′
δ
=⇒}. The set of all weak impossible future pairs

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

17

of process p is called the weak impossible future of p, de-
noted by IF (p).

Weak Impossible Future Equivalence ∼i f : p and q
are two processes, p ∼i f q iff IF (p) = IF (q).

As can be seen in the above definitions, the difference
between the weak failure pair and the weak impossible
future pair exists on their second parameters. The second
parameter of the weak failure pair is a set of actions which
cannot be enabled by p′. On the other hand, the second
parameter of the weak impossible future pair is a set of
action sequences which cannot be enabled by p′.

By the above observation, we put forward the defini-
tion on the weak parametric failure equivalences:

Definition 3.3 (σ,Φ) ∈ Act∗ × P(Act∗) is a weak i-
failure pair of process p iff there exists some p′ such that
p
σ
=⇒ p′ ∧ Φ ∩ T (p′, i) = ∅, where T (p′, i) = {δ ∈ Act∗ |

p′
δ
=⇒ ∧|δ| 6 i}. The set of all weak i-failure pair of pro-

cess p is called the weak i-failure of p, denoted by F (p, i).
Weak Parametric Failure Equivalences ∼i

f : for any
two processes p and q, p ∼i

f q iff F (p, i) = F (q, i).
Also, we will often say that p and q are weak i-failure

equivalent if p ∼i
f q.

It is trivial that, in this framework, the weak fail-
ure equivalence is the weak 1-failure equivalence and the
weak impossible future equivalence is the weak ω-failure
equivalence. In fact, S(p′) = T (p′, 1) and T (p′) =
T (p′, ω).

The proposition below says that if p and q are weak j-
failure equivalent with 1 ≤ j ≤ ω, then they are also weak
i-failure equivalent for i < j.

Proposition 3.4 Let 1 ≤ i < j ≤ ω, p and q are two
processes. If p ∼ j

f q then p ∼i
f q.

Proof By the definition of weak parametric failure
equivalences, p ∼ j

f q iff F (p, j) = F (q, j). Then,
F (p, i) = F (q, i) can be obtained from Definition 3.3,
F (p, j) = F (q, j) and 1 ≤ i < j ≤ ω. Therefore, p ∼i

f q.
�

Before concluding this section, an alternative charac-
terization of the weak parametric failure equivalences are
to be presented. This alternative characterization will be
useful in obtaining the rule formats.

Proposition 3.5 Let p, q be two processes. For 1 ≤ i ≤
ω, p ∼i

f q iff

1) for any σ ∈ T (p, ω) and p′ with p
σ
=⇒ p′, there

exists q′ such that q
σ
=⇒ q′ and T (q′, i) ⊆ T (p′, i), and

2) for any σ ∈ T (q, ω) and q′ with q
σ
=⇒ q′, there

exists p′ such that p
σ
=⇒ p′ and T (p′, i) ⊆ T (q′, i).

Proof (⇐=) It is enough to prove thatF (p, i) = F (q, i).
If it is not true, then, without loss of generality, suppose
that there exists some (σ,Φ) ∈ (Act∗ × P(Act∗)) such that
(σ,Φ) ∈ F (p, i) but (σ,Φ) < F (q, i).

By (σ,Φ) ∈ F (p, i) and the definition of weak i-failure
pair in Definition 3.3, there must exists some p′ such that
p
σ
=⇒ p′ ∧ Φ ∩ T (p′, i) = ∅.
By p

σ
=⇒ p′ and the hypothesis, there exists q′ such

that q
σ
=⇒ q′ and T (q′, i) ⊆ T (p′, i). Then, from Φ ∩

T (p′, i) = ∅, we have Φ ∩ T (q′, i) = ∅.
Therefore, there exists q′ such that q

σ
=⇒ q′ and Φ ∩

T (q′, i) = ∅, which contradicts with (σ,Φ) < F (q, i).
(=⇒) By the symmetry, we need only prove the first

point. Suppose that σ is any trace in T (p, ω) and p′ is a
process such that p

σ
=⇒ p′. Let Φ = Ii

all −T (p′, i) with Ii
all

is the set of all action sequences whose lengthes are not
exceed number i. Then, we have (σ,Φ) ∈ F (p, i).

By Definition 3.3, (σ,Φ) ∈ F (q, i). Hence, there exists
some q′ such that q

σ
=⇒ q′ and Φ ∩ T (q′, i) = ∅. By

Figure 1: p and q are weak 1-failure equivalent, but p/{d}
and q/{d} are not weak 1-failure equivalent.

Figure 2: p1 and q1 are weak 2-failure equivalent, but
p1/{d} and q1/{d} are not weak 2-failure equivalent.

Φ = Ii
all − T (p′, i), we have (Ii

all − T (p′, i)) ∩ T (q′, i) = ∅.
Therefore, T (q′, i) ⊆ T (p′, i). �

4 Intuitive Motivations on Rule Formats

This section gives several representative examples to show
some intuitive motivations on the rule formats of the weak
parametric failure equivalences. However, we do not want
to discuss them from the scratch, only the two critical
points sketched in the introduction are to be mentioned:
the first subsection is to observe the feasibility of adding
rules with τ-conclusion; the second subsection is to in-
spect the necessity of the patience rules for receiving ar-
guments.

It should be noted that, in this section, we mainly con-
cern the intuitive motivations. The results retrieved in this
section will be formally defined and proved in the next
section. Also, as the starting point, we assume the basic
language B which has been introduced in section 2.

4.1 On Rules with τ-conclusion

Let’s see an example in Figure 1 and Figure 2. Firstly, the
two graphs in Figure 1, i.e., p and q, are weak 1-failure
equivalent. However, after hiding d actions, p/{d} is not
weak 1-failure equivalent to q/{d}, which can be seen from
the weak 1-failure pair (a, {c}) ∈ F (q/{d}, 1) but (a, {c}) <
F (p/{d}, 1). If we take the weak 2-failure equivalence
into consideration, we may find that p and q are not yet
weak 2-failure equivalent, because (a, {b, db}) ∈ F (q, 1)
but (a, {b, db}) < F (p, 1).

As for the weak 2-failure equivalence, p1 and q1, the
two graphs in Figure 2, are weak 2-failure equivalent.
However, this equivalence also cannot be preserved after
hiding d actions. In fact, for any weak i-failure equiva-
lence with i < ω, a similar counterexample exists. On the
contrary, the weak ω-failure equivalence can be preserved
under the hiding operator.

Generalizing to any rules with τ-conclusion, a com-
mon characterization of these rules is that they all con-
sume the observable actions of the subprocesses and pro-
duce τ transitions at the same time. Therefore, we conjec-
ture that any weak i-failure equivalence with i < ω will
probably be broken under the rules with τ-conclusion, but
the weak ω-failure equivalence will be preserved.

CRPIT Volume 77 - Theory of Computing 2008

18

Figure 3: p1 and q1, p2 and q2 are weak i-failure equiva-
lent for i ∈ N ∪ {ω}.

Figure 4: f (p1, p2) and f (q1, q2) are weak 1-failure equiv-
alent but not weak 2-failure equivalent.

4.2 Patience Rules for Receiving Arguments

Similarly, see an example in Figure 3, Figure 4
and Figure 5. Consider adding the rules r1 =

x1
c1
−→ x′1, x2

c2
−→ x′2

f (x1, x2)
a1
−→ g(x′1, x

′
2)

, r2 =
x1

b1
−→ x′1

g(x1, x2)
a2
−→ h(x2)

, r3 =

x1
b3
−→ x′1

h(x1)
b3
−→ nil

, r4 =
x1

b2
−→ x′1

h(x1)
b2
−→ nil

and their associated pa-

tience rules for active arguments into language B. Note
that g(x1, x2) has its second argument as a receiving argu-
ment.

Let p1, p2, q1, q2 be the processes shown in Figure 3.
It can be easily verified that p1 ∼

1
f q1 and p2 ∼

1
f q2.

According to the above rules, we have f (p1, p2) and
f (q1, q2) shown in the two graphs of Figure 4. Now,
f (p1, p2) and f (q1, q2) are also weak 1-failure equivalent,
i.e., f (p1, p2) ∼1

f f (q1, q2). Therefore, It seems that pa-
tience rules for receiving arguments are not prerequisite
for the weak 1-failure equivalence.

When it turns to the weak 2-failure equivalence, we
also have p1 ∼

2
f q1 and p2 ∼

2
f q2. However, f (p1, p2)

and f (q1, q2) are not weak 2-failure equivalent yet, be-
cause (a1, {a2b3}) is a weak 2-failure pair of f (p1, p2) but
not a weak 2-failure pair of f (q1, q2). Hence, the weak 2-
failure equivalence is not preserved under the above rules.
However, if we further add patience rule for the second
argument of g(x1, x2) into language B, then f (p1, p2) and
f (q1, q2) is the two graphs in Figure 5. Now, it can be eas-
ily verified that f (p1, p2) ∼2

f f (q1, q2). Therefore, adding
the patience rules for receiving arguments may preserve
the weak 2-failure equivalence.

In fact, we will assert, in the next section, that the pa-
tience rules for receiving arguments are prerequisite for
the weak i-failure equivalence with i > 1, but, they are not
necessary for the weak 1-failure equivalence.

Figure 5: f (p1, q1) and f ′(p2, q2) are weak 2-failure equiv-
alent.

5 Rule Formats for Weak Parametric failure Equiv-
alence

After the intuitive observations in the preceding section,
we will, in this section, present formally the rule formats
for the weak parametric failure equivalences. In fact, as
stated in the introduction, we will present three different
rule formats: weak 1-failure format for the weak 1-failure
equivalence, weak finite failure format for the weak i-
failure equivalence with 1 < i < ω and weak ω-failure
format for the weak ω-failure equivalence.

5.1 Formal Definitions on the Rule Formats

The de Simone language is employed as our starting point
in retrieving the rule formats for the weak parametric fail-
ure equivalences.

Definition 5.1.1 A de Simone language L is in weak
1-failure format if

1) patience rules are the only rules with τ-premises,
2) patience rules for active arguments are prerequisite,
3) rules with τ-conclusion are not permitted.
Following it, the weak finite failure format is:
Definition 5.1.2 A de Simone language L is in weak

finite failure format if
1) patience rules are the only rules with τ-premises,
2) patience rules for active arguments and receiving ar-

guments are all prerequisite,
3) rules with τ-conclusion are not permitted.
Then, the weak ω-failure format for the weak ω-failure

equivalence is to be presented.
Definition 5.1.3 A de Simone language L is in weak

ω-failure format if
1) patience rules are the only rules with τ-premises,

and
2) patience rules for active arguments and receiving ar-

guments are all prerequisite.
It should be pointed out that the exclusion of rules with

τ-conclusion and the allowance of dropping the patience
rules for receiving arguments are not two separated re-
strictions. In fact, to obtain the effect of the allowance
of dropping the patience rules for receiving arguments in
the weak 1-failure format, the exclusion of rules with τ-
conclusion is a precondition. We will prove this conclu-
sion in Lemma 5.3.5.

Below, we will study the relations between the above
three rule formats. To fulfil this purpose, we need to define
the ’tighter than’ relation between rule formats.

Definition 5.1.4 Let A and B be two rule formats. A is
tighter than B iff, for any languages L = (Σ,Ψ) in format
A, all transition rules in Ψ are also in format B. Moreover,
A is strictly tighter than B iff A is tighter than B and there
exists some languages L = (Σ,Ψ) in format B such that at
least one of the transition rules in Ψ are not in format A.

Theorem 5.1.5 The weak 1-failure format is strictly
tighter than the weak finite failure format and the weak
finite failure format is strictly tighter than the weak ω-
failure format.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

19

Proof Comparing Definition 5.1.1 and Definition
5.1.2, patience rules for receiving arguments are not yet
necessary for weak 1-failure format. Therefore, for any
languages L in weak 1-failure format, its transition rules
will also be in weak finite failure format. Likewise, Defi-
nition 5.1.2 and Definition 5.1.3 are only different on the
rules with τ-conclusion. Therefore, after refusing all rules
with τ-conclusion, any languages L in weak finite failure
format will have its transition rules in the weak ω-failure
format.

The strictness between weak 1-failure format and weak
finite failure format can be witnessed by the languages in
Section 4.2. introducing the patience rules for receiving
arguments, it is a weak finite failure language. However,
patience rules for receiving arguments are not in weak 1-
failure format. The strictness between weak finite failure
format and weak ω-failure format can be witnessed by in-
troducing the hiding operator of CSP into any weak ω-
failure language. The obtained languages are still weak
ω-failure languages. However, one of transition rules of
hiding operator is not in weak finite failure format. �

5.2 Ruloids And Ruloid Theorems On The Two For-
mats

Ruloids and the ruloid theorem originated from the works
of Bloom (Bloom, 1995, 1990) for the GSOS format. In
this section, we will introduce the ruloids and the ruloid
theorem for the weak ω-failure format. And the ruloids
and the ruloid theorem for the other two formats can be
retrieved in the same way. The ruloid theorems will be
useful for the proving the congruence theorems in the next
three subsections.

For a language L = (Σ,Ψ) in the weak ω-failure for-
mat, the ruloids R(C, α), for a context C of n holes and an
action α, are a set of expressions like the transition rules:

{xi
αi
→ x′i }i∈I

C(x1, ..., xn)
α
→ D(y1, ..., yn)

(1)

such that yi = x′i for i ∈ I and yi = xi for i < I, where
I ⊆ {1, 2, ..., n}. These expressions characterize all possi-
ble behaviors of the context C in the language.

It should be noted that context D does not need to have
exactly n holes. In fact, after leaving out the copying oper-
ation in the de Simone format (the weak ω-failure format
is a subformat of the de Simone format), the number of the
holes of D should be less than or equivalent to n. But for
convenience, in form (1), we still write it as D(y1, ..., yn).

Furthermore, two properties are needed to be imposed
on R(C, α), we call them soundness property and com-
pleteness property, by a little abusing the terminologies.

Definition 5.2.1 Let L = (Σ,Ψ) be a language in the
weak ω-failure format, and C(x1, ..., xn) be any context of
n holes in L. A set R(C, α) of ruloids of form (1) are
ruloids of context C and action α, with α ∈ Act ∪ {τ}, iff

1) Soundness. Let r ∈ R(C, α) be a ruloid of form
(1). If ζ is a closed Σ substitution such that ζ(xi)

αi
→ ζ(x′i)

for all i ∈ I, then there must exist a context D such that
ζ(C(x1, ..., xn))

α
→ ζ(D(y1, ..., yn)).

2) Completeness. Let ζ be any closed Σ substitution. If
ζ(C(x1, ..., xn))

α
→, then there must exist a ruloid r of form

(1) in ruloids R(C, α), and ζ(xi)
αi
→ for all i ∈ I.

Below, we will present a strategy to retrieve the ruloids
of context C and action α, and then prove that the obtained
ruloids satisfy the above two properties, which form the
ruloid theorem.

Strategy 5.2.2 Let L = (Σ,Ψ) be a language in the
weak ω-failure format. C(x1, ..., xn) is any context of n
holes in L and α ∈ Act ∪ {τ} is an action.

1) If C ∈ V , i.e., C is a variable, then R(C, α) =

{ x
α
→ x′

x
α
→ x′

};

2) If C = f (x1, ..., xn) with f ∈ Σ and ar(f) = n, then
R(C, α) = (f , α), where (f , α) denotes the set of all rules
in Ψ whose source is f (x1, ..., xn) and output is α.

3) If C is any context. We can rewrite C(x1, ..., xn) as
f (C1[X1], ...,Cm[Xm]), where f ∈ Σ and ar(f) = m. Note
that Xi ∩ X j = ∅ with 1 ≤ i, j ≤ m and i , j. Without
loss of generality, we may suppose that Xi = xi1xi2...ximi
for Ci is a context of mi holes. Now, let r be any ruloid
of form (1) in (f , α) and R(Ci, αi) be ruloids of context Ci
and action αi retrieved by induction on this strategy. Then,
any ruloids in R(C, α) can be obtained by the following
steps:

i) pick out randomly from R(Ci, αi) a rule ri, for all
i ∈ I;

ii) substitute the variables x j in ri with xi j, for all 1 ≤
j ≤ mi;

iii) substitute xi
αi
→ x′i in the premise of r with ante(ri),

for all i ∈ I.
4) R(C, α) is the set of all possible ruloids that can be

retrieved from step 3). �
Theorem 5.2.3 Let L = (Σ,Ψ) be a language in the

weak ω-failure format, and C(x1, ..., xn) be any context of
n holes in L. The set of ruloids R(C, α) obtained from the
Strategy 5.2.2 are ruloids of context C and action α with
α ∈ Act ∪ {τ}.

Proof First, the obtained ruloids R(C, α) of context
C and action α are all in form (1), which can be easily
retrieved from the construction procedure in the Strategy
5.2.2.

Second, the obtained ruloids R(C, α) of context C and
action α satisfy the soundness property. Let r ∈ R(C, α)
be a ruloid of form (1), where C is a context of n holes and
α ∈ Act∪ {τ} is an action. ζ is a closed Σ substitution such
that ζ(xi)

αi
→ ζ(x′i) for all i ∈ I. Make an induction on the

context C.
i) if C ∈ V , then, without loss of generality, suppose

C = x. The soundness property is trivial from R(C, α) =

{ x
α
→ x′

x
α
→ x′

};

ii) if C = f (x1, ..., xn), then R(C, α) = (f , α). There-
fore, the soundness property is guaranteed by the transi-
tion rules;

iii) if C is any context of n holes, then, from the strat-
egy, there exist contexts C1[X1], ...,Cm[Xm] such that, af-
ter substitution, ante(ri) is a part of the premise of r for
1 ≤ i ≤ m, where ri ∈ R(Ci, αi). Now, by the hy-
pothesis, ζ is a closed Σ substitution making all premises
of r enable. Hence, cons(ri) is enabled, which means
that Ci[Xi]

αi
→ Di[Yi] for all 1 ≤ i ≤ m. Further-

more, C is rewritten as f (C1[X1], ...,Cm[Xm]). Therefore,
the transition rules in (f , α) guarantee the enableness of
C(x1, ..., xn)

α
→.

Third, the obtained ruloids R(C, α) of context C and
action α satisfy the completeness property, which can also
be easily retrieved from the construction procedure of the
Strategy 5.2.2. �

As we can see that, for a ruloid of form (1), its premises
need not include all xi for 1 ≤ i ≤ n. However, we can add
xi

ε
→ x′i , for i ∈ {1, ..., n}\I, into the premises, as in the

form (2). And form (1) and form (2) are equivalent when
any closed Σ substitution ζ is applied on them. In this
case, ζ(xi)

ε
→ ζ(x′i) denotes that subprocess ζ(xi) executes

no transition.

{xi
αi
→ x′i }i∈I{xi

ε
→ x′i }i∈{1,...,n}\I

C(x1, ..., xn)
α
→ D(y1, ..., yn)

(2)

CRPIT Volume 77 - Theory of Computing 2008

20

Like the definitions on the transition rules, we can also
define the patience ruloids and ruloids with τ-conclusion.

Theorem 5.2.3 Let L = (Σ,Ψ) be a language in the
weak ω-failure format, and C(x1, ..., xn) be any context of
n holes in L. The set of ruloids R(C, α) obtained from
the Strategy 5.2.2 is the ruloids of context C and action α
satisfies α ∈ Act ∪ {τ}.

Proof Firstly, the obtained ruloids R(C, α) of context
C and action α are all in form (1), which can be easily
retrieved from the construction procedure in the Strategy
5.2.2.

Secondly, the obtained ruloids R(C, α) of context C
and action α satisfy the soundness property. Let r ∈
R(C, α) be a ruloid of form (1), where C is a context of
n holes and α ∈ Act ∪ {τ} is an action. ζ is a closed Σ
substitution such that ζ(xi)

αi
→ ζ(x′i) for all i ∈ I.

i) if C ∈ V , then, without loss of generality, suppose
C = x. The soundness property is trivial from R(C, α) =

{ x
α
→ x′

x
α
→ x′

};

ii) if C = f (x1, ..., xn), then R(C, α) = (f , α). There-
fore, the soundness property is guaranteed by the transi-
tion rules;

iii) if C is any context of n holes, then by
Strategy 5.2.2, C(x1, ..., xn) can be rewritten as
f (C1(X1), ...,Cm(Xm)) for some operator f ∈ Σ and
ar(f) = m, and ante(r) consist of anti(r1), ..., ante(rm),
where ri ∈ R(Ci, αi) for all 1 ≤ i ≤ m. By the assumption
of the soundness property that ante(r) is enabled in closed
Σ substitution ζ. Therefore, by the induction hypothesis,
cons(r1), ..., cons(rm) are all enabled in ζ. This means
that ζ(Ci(Xi))

αi
→ ζ(Di(Yi)) for all 1 ≤ i ≤ m. In fact,

cons(r1), ..., cons(rm) constitute ante(f). Still by the
induction hypothesis on operator f , the transition rules in
(f , α) guarantee the enableness of C(x1, ..., xn)

α
→.

Last, the obtained ruloids R(C, α) of context C and
action α satisfy the completeness property, which can also
be easily retrieved from the construction procedure of the
Strategy 5.2.2. �

As we can see that, for a ruloid of form (1), its premises
need not include all xi for 1 ≤ i ≤ n. However, we can add
xi

ε
→ x′i , for i ∈ {1, ..., n}\I, into the premises, as in the

form (2). In this case, ζ(xi)
ε
→ ζ(x′i) denotes that subpro-

cess ζ(xi) executes no transition.

{xi
αi
→ x′i }i∈I{xi

ε
→ x′i }i∈{1,...,n}−I

C(x1, ..., xn)
α
→ D(y1, ..., yn)

(3)

The ε transition will not be added to the TSS. In fact, a
TSS is a pair (Σ,Ψ), where Σ is a set of function symbols
and Ψ is a set of transition rules assigned to the function
symbols. Therefore, even no ruloids are in the TSS.

The introducing of ε transition is to substitute the ru-
loids of form (1) with the ruloids of form (2), since these
two forms are equivalent when any closed Σ substitution
ζ is applied. In fact, we want to express a viewpoint that,
for any ruloid r, it should have two different but equivalent
forms, i.e., form (1) and form (2).

For the equivalence between form (1) and form (2), we
want to take an example to show it. Let x j

ε
−→ x′j be any

ε-premise in some ruloid r. In fact, it denotes that, when
ruloid r is applied in some Σ substitution ζ, subprocess
ζ(x j) is not fired at all. Also, if the form (1) of r is applied,
the same results are retrieved.

The introducing of ε transitions and thus form (2) will
make Lemma 5.3.1 and its proof prone to be compre-
hended. In Lemma 5.3.1, we will see that, in the weak ω-
failure languages, when process C(p1, ..., pn) evolves into
C′(p1, ..., p′n) by applying a ruloid and produce a transition
(observable action or τ transition), each subprocess pi will

also evolve into p′i and produce a transition (observable
action, τ transition or ε transition).

Based on the ruloids and the ruloid theorem, we may
restate several classes of rules, which have been defined
previously, with the notion of ruloids. And, they will be
more intuitive and prone to be used in the following.

The first class of rules which we concern is the patience
rules. As their counterparts, the definition of patience ru-
loids is as follows.

Definition 5.2.4 A ruloid of the form
xi

τ
−→ x′i

C(x1, ..., xi, ..., xn)
τ
−→ C(x1, ..., x′i , ..., xn)

with 1 ≤ i ≤ n

is called a patience ruloid of the ith argument of the
context C.

In the following, a ruloid is called a plain ruloid if it
is not a patience ruloid. Similar to the division in the pa-
tience rules, we also need to divide the patience ruloids
into three classes, i.e., patience ruloids for active argu-
ments, patience ruloids for receiving arguments and pa-
tience ruloids for other arguments.

In fact, Strategy 5.2.2 has already provided a canoni-
cal way to retrieve this division. Let L be a de Simone
language and C be any context of n holes in it.

1) If only adding the patience rules for active argu-
ments into the language, then, after using Strategy 5.2.2,
the patience ruloids in R(C, τ) are patience ruloids for ac-
tive arguments.

2) If further adding the patience rules for receiving
arguments into the language, then, after using Strategy
5.2.2, the patience ruloids in R(C, τ) are patience ruloids
for active arguments and receiving arguments. Therefore,
getting rid of the patience ruloids for active arguments, we
can obtain the patience ruloids for receiving arguments.

This division is obtained indirectly from Strategy 5.2.2
and patience rules, and thus it is hard to be used in the
following. Here, we will propose another division which
is directly based on the arguments of a context.

Definition 5.2.5 Let L = (Σ,Ψ) be a weak ω-failure
language, and C be any context of n holes. The ith argu-
ment of the context C is active if there exists a plain ruloid
r of form (1) in R(C, τ) such that xi appears as left-hand
side of a premise. The ith argument of the context C is
receiving if it is not active and there exist another con-
text D and a plain ruloid r of form (1) in R(D) such that
C(x′1, ..., x

′
n) appears as the target of r and x′i appears as

right-hand side of a premise.
Below, we will prove that these two divisions are in-

deed equivalent, i.e., a patience ruloid of some context C
is a patience ruloid for active (resp. receiving, other) argu-
ment obtained from Strategy 5.2.2 and patience rules iff
it is a patience ruloid for active (resp. receiving, other)
argument defined by Definition 5.2.5.

Proposition 5.2.6 The division defined by Definition
5.2.5 is equivalent to the division obtained from Strategy
5.2.2 and patience rules.

Proof (⇐=) Let L = (Σ,Ψ) be a de Simone language,
and C be any context of n holes.

If only adding the patience rules for active arguments
into the language, we need to prove that each active ar-
gument of the context C defined by Definition 5.2.5 has a
patience ruloid. We will prove by making an induction on
the context C and Strategy 5.2.2.

1) If C ∈ V or C ∈ Σ, then it can be easily obtained
from Strategy 5.2.2 and Definition 2.8.

2) If C is any context, then it can be rewritten as
f (C1(X1), ...,Cm(Xm)). Assume that contexts C1, ...,Cm
satisfy that each active argument has a patience ruloid.

3) We need to prove that each active argument of C de-
fined by Definition 5.2.5 has a patience ruloid. Suppose
that the ith argument of C is an active argument. Then,
by Definition 5.2.5, there exists a plain ruloid r of form
(1) in R(C, τ) such that xi appears as left-hand side of a
premise. By Strategy 5.2.2, xi must appear as left-hand

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

21

side of a premise of some context. Without loss of gen-
erality, assume that xi is the kth argument of the C j. By
the induction hypothesis, the kth argument of C j is active
and thus has a patience ruloid. Also by Strategy 5.2.2, the
jth argument of functor f is active and thus has a patience
ruloid. Therefore, we have that the ith argument of C has
a patience ruloid by Strategy 5.2.2 and the above two pa-
tience ruloids for C j and f , respectively.

If further adding the patience rules for receiving argu-
ments into the language, we need to prove that each re-
ceiving argument of the context C defined by Definition
5.2.5 has a patience ruloid. Assume that the ith argument
of context C is receiving. Then, by Definition 5.2.5, there
exist another context D and a plain ruloid r of form (1) in
R(D) such that C(x′1, ..., x

′
n) appears as the target of r and

x′i appears as right-hand side of a premise. We will prove
by making an induction on context C and Strategy 5.2.2.

1) If C ∈ V or C ∈ Σ, then, by Definition 2.8, the ith
argument of C is receiving. Therefore, it should have a
patience rule by the hypothesis. By Strategy 5.2.2, each
patience rule is also a patience ruloid.

2) If C is any context, then it can be rewritten as
f (C1(X1), ...,Cm(Xm)). Assume that contexts C1, ...,Cm
satisfy that each receiving argument has a patience ruloid.

3) We need to prove that the ith argument of C de-
fined by Definition 5.2.5 has a patience ruloid. By Strat-
egy 5.2.2, xi must appear as right-hand side of a premise
of some context. Without loss of generality, assume that
xi is the kth argument of the C j. By the induction hypoth-
esis, the kth argument of C j is receiving or active and thus
has a patience ruloid. Also by Strategy 5.2.2, the jth ar-
gument of functor f is receiving or active and thus has a
patience ruloid. Therefore, we have that the ith argument
of C has a patience ruloid by Strategy 5.2.2 and the above
two patience ruloids for C j and f , respectively.

(=⇒) It is trivially true since, according to Strategy
5.2.2, each rule is also a ruloid. That is to say, we may first
obtain the division on patience rules from the division on
patience ruloids in Definition 5.2.5, and then using Strat-
egy 5.2.2 to obtain the division from Strategy 5.2.2 and
patience rules. �

The second class of rules is the rules with τ conclusion.
Likewise, we may define the ruloids with τ conclusion as
their counterparts.

Definition 5.2.7 A ruloid of the form
H

C(x1, ..., xn)
τ
−→ D(y1, ..., yn)

is called a ruloid with

τ-conclusion, if it is not a patience ruloid and there exists
at least one positive Σ literal in H.

Also, we want to show that the exclusion of rules with
τ-conclusion is equivalent to the exclusion of ruloids with
τ-conclusion.

Proposition 5.2.8 LetL be a weak ω-failure language,
and C(x1, ..., xn) be any context of n holes. If no rule with
τ-conclusion is allowed, then no ruloid with τ-conclusion
can be in R(C, τ), and vice versa.

Proof This can be easily obtained from a fact that, by
Strategy 5.2.2, the output of any ruloid is in fact the output
of some rule. �

5.3 Weak 1-Failure Format for Weak 1-Failure
Equivalence

In this subsection, several necessary lemmas are to be pre-
sented and the usage of them to prove the congruence the-
orems in the following three subsections has been listed
in Table 1. The symbol

√
in the table denotes that some

lemma is to be used in the proof of the congruence theo-
rem for the corresponding format. For example, the con-
gruence theorem for the weak ω-failure format needs the
first three lemmas, i.e., Lemma 5.3.1, Lemma 5.3.2 and
Lemma 5.3.3.

The following lemma states that, in the weak ω-failure
languages, any weak trace of a composite process may be

Table 1: The Usage of Lemmas in Section 5.3 in Proving
the Congruence Theorems

format\ Lemma 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5
1-failure format

√ √ √ √

finite failure format
√ √ √ √

ω-failure format
√ √ √

decomposed into weak traces of its subprocesses. Besides,
this lemma also holds in weak finite failure languages and
weak 1-failure languages.

Lemma 5.3.1 Let L = (Σ,Ψ) be a weak ω-failure lan-
guage, and C(x1, ..., xn) be any context of n holes. Sup-
pose that ζ is any closed Σ substitution mapping xi into
pi. If σ is a trace in T (C(p1, ..., pn), ω), then, for all
1 ≤ i ≤ n, there is a trace σi in T (pi, ω) such that, when
C(p1, ..., pn)

σ
=⇒ C′(p′1, ..., p

′
n), we have pi

σi
=⇒ p′i .

Proof Since C(p1, ..., pn)
σ
=⇒ C′(p′1, ..., p

′
n), we have

C(p1, ..., pn) = C0(p10, ..., pn0)
α1
−→ C1(p11, ..., pn1)

α2
−→

...
αm
−→ Cm(p1m, ..., pnm) = C′(p′1, ..., p

′
n), where ∀1 ≤ j ≤

m : α j ∈ Act ∪ {τ} and σ′ = α1...αm is equivalent to σ if
all its τ transitions are omitted.

We will prove this lemma by making an induction on
the length of σ′.

1) |σ′| = 1. Let σ′ = α. By the completeness prop-
erty of the ruloids, there should be a ruloid of form (1)
in R(C, α), and pi

αi
−→ for all i ∈ I. As is shown be-

fore that, we have a ruloid of form (2) corresponding
with form (1). Therefore, there exist pi

αi
−→ p′i for all

i ∈ I and pi
ε
−→ p′i for all i ∈ {1, ..., n} − I, i.e., when

C(p1, ..., pn)
σ
=⇒ C′(p′1, ..., p

′
n), we have pi

αi
=⇒ p′i for all

i ∈ I and pi
τ∗

−→ p′i for all i ∈ {1, ..., n} − I.
2) Assume that, when |σ′| = m − 1 with m ≥ 1, if

σ is a trace in T (C(p1, ..., pn), ω) then, for all 1 ≤ i ≤
n, there should be a trace σi in T (pi, ω) such that, when
C(p1, ..., pn)

σ
=⇒ C′(p′1, ..., p

′
n), we have pi

σi
=⇒ p′i .

3) For |σ′| = m, suppose that C(p1, ..., pn) =

C0(p10, ..., pn0)
α1
−→ C1(p11, ..., pn1)

α2
−→ ...

αm
−→

Cm(p1m, ..., pnm) = C′(p′1, ..., p
′
n). By the induction

hypothesis, when C(p1, ..., pn) = C0(p10, ..., pn0)
α1
−→

C1(p11, ..., pn1)
α2
−→ ...

αm−1
−→ Cm−1(p1(m−1), ..., pn(m−1)) =

C′′(p′′1 , ..., p
′′
n), we have pi

σ′′i
=⇒ p′′i . Now, when

Cm−1(p1(m−1), ..., pn(m−1)) = C′′(p′′1 , ..., p
′′
n)

αm
−→

Cm(p1m, ..., pnm) = C′(p′1, ..., p
′
n), we have p′′i

α′m
=⇒ p′i .

Therefore, when C(p1, ..., pn)
σ
=⇒ C′(p′1, ..., p

′
n), we have

pi
σ′′i α

′
m

=⇒ p′i . �
The following lemma states that, in the weak ω-failure

languages, the weak trace equivalence will be preserved
and the composite processes can reach the same contexts
after same weak traces. The definition of weak trace
equivalence is that: two processes p and q are weak trace
equivalent, denoted as p ∼t q, iff they have the same
set of weak traces, i.e., p ∼t q iff T (p, ω) = T (q, ω).
This lemma also holds in weak finite failure languages and
weak 1-failure languages.

Before that, we need one more definition on delay pro-
cesses. Suppose that σ ∈ T (p, ω) for some process p,
then delay processes of p

σ
=⇒ are those satisfying that 1)

if |σ| = 0, then p itself is the delay process, and 2) if

CRPIT Volume 77 - Theory of Computing 2008

22

|σ| ≥ 1, then let σ = σ′a and delay processes are those
processes p′ such that p

σ
=⇒

a
−→ p′.

Lemma 5.3.2 Let L = (Σ,Ψ) be a weak ω-failure lan-
guage, and C(x1, ..., xn) be any context of n holes. Suppose
that ζ and ξ are any two closed Σ substitution mapping xi
into pi and qi, respectively. If for all 1 ≤ i ≤ n, pi ∼t qi,
then

1) for any trace σ ∈ T (C(p1, ..., pn), ω) and some con-
text C′ such that C(p1, ..., pn)

σ
=⇒ C′(p′1, ..., p

′
n), there ex-

ist q′1, ..., q
′
n such that C(q1, ..., qn)

σ
=⇒ C′(q′1, ..., q

′
n), and

2) if there exists a patience ruloid for the ith argument
of context C′ then q′i can be any process such that qi

σi
=⇒

q′i , and if there does not exist a patience ruloid for the ith
argument of context C′ then q′i can be any delay processes

of qi
σi
=⇒, where σi is obtained by decomposing σ into the

weak traces of subprocess pi.
Proof Suppose that σ is a trace of C(p1, ..., pn), and

C(p1, ..., pn)
σ
=⇒ C′(p′1, ..., p

′
n). By Lemma 5.3.1, when

C(p1, ..., pn)
σ
=⇒ C′(p′1, ..., p

′
n), we have pi

σi
=⇒ p′i for all

1 ≤ i ≤ n. Then, by pi ∼t qi, we have qi
σi
=⇒ for all

1 ≤ i ≤ n.
For C(p1, ..., pn)

σ
=⇒ C′(p′1, ..., p

′
n), we have

C(p1, ..., pn) = C0(p10, ..., pn0)
α1
−→ C1(p11, ..., pn1)

α2
−→

...
αm
−→ Cm(p1m, ..., pnm) = C′(p′1, ..., p

′
n), where ∀1 ≤ j ≤

m : α j ∈ Act ∪ {τ} and σ′ = α1...αm is equivalent to σ if
all its τ transitions are omitted.

Suppose that the sequence of plain ruloids applied in
the above procedure is r1r2...rk. It is enough to show that
C(q1, ..., qn) can also apply ruloids r1r2...rk in the same or-
der, and C(q1, ..., qn)

σ
=⇒ C′(q′1, ..., q

′
n) for some q′1, ..., q

′
n.

Furthermore, if there exists a patience ruloid for the ith ar-
gument of context C′ then q′i can be any process such that

qi
σi
=⇒ q′i , and if there does not exist a patience ruloid for

the ith argument of context C′ then q′i can be any delay

processes of qi
σi
=⇒.

We will prove it by making an induction on k.
1) k = 0. Then, C = C′ and only patience ruloids

are applied when C(p1, ..., pn)
σ
=⇒ C′(p′1, ..., p

′
n) and thus

σ = τ∗. By Lemma 5.3.1, σi = τ
∗ for all 1 ≤ i ≤ n. There-

fore, there must exist q′i , ..., q
′
n such that C(q1, ..., qn)

τ∗

=⇒
C′(q′1, ..., q

′
n) since an extreme possibility is that qi ≡ q′i for

all 1 ≤ i ≤ n. Now, if there exists a patience ruloid for the
ith argument of context C′ then q′i can be any process such

that qi
τ∗

−→ q′i by the soundness property of ruloids and
the definition of patience ruloids. On the other hand, if
there does not exist a patience ruloid for the ith argument
of context C′ then q′i can be qi.

2) Assume that, when k = m− 1 with m ≥ 1, the above
statement holds.

3) For k = m, suppose that, C(p1, ..., pn)
σ
=⇒

C′′(p′′1 , ..., p
′′
n) and C′′(p′′1 , ..., p

′′
n)

δ
=⇒ C′(p′1, ..., p

′
n),

where the first k − 1 plain ruloids of r1r2...rk are applied
when C(p1, ..., pn)

σ
=⇒ C′′(p′′1 , ..., p

′′
n) and the kth plain

ruloid are applied when C′′(p′′1 , ..., p
′′
n)

δ
=⇒ C′(p′1, ..., p

′
n).

By Lemma 5.3.1, there exist σi, δi for all 1 ≤ i ≤ n

such that pi
σi
=⇒ p′′i and p′′i

δi
=⇒ p′i . By pi ∼t qi, we have

qi
σiδi
=⇒.
Then, by the induction hypothesis, C(q1, ..., qn) can

also apply the first k−1 ruloids and reaches C′′(q′′1 , ..., q
′′
n).

Moreover, if there exists a patience ruloid for the ith argu-
ment of context C′′ then q′′i can be any process such that

qi
σi
=⇒ q′′i , and if there does not exist a patience ruloid for

the ith argument of context C′′ then q′′i can be any delay

process of qi
σi
=⇒.

Furthermore, for all 1 ≤ i ≤ n, let q′′i be any delay

process of qi
σi
=⇒ such that qi

σi
=⇒ q′′i

δi
=⇒. There always

exists a such q′′i since qi
σiδi
=⇒.

Suppose that the kth ruloid rk is in form (1). Then,
by the definition of the weak ω-failure format, all argu-
ments in I have corresponding patience ruloids since they
are all active arguments of C′′ by Definition 5.2.5. There-
fore, by the soundness property of the ruloids, we may
apply the patience ruloids for the arguments in I and ob-

tain C′′(q′′1 , ..., q
′′
n)

τ∗

=⇒ C′′(q′′′1 , ..., q
′′′
n), such that q′′′i ≡ q′′i

if i < I and q′′′i
δi
−→ if i ∈ I. Then, also by the sound-

ness property of the ruloids, ruloid rk will be applied and

C′′(q′′′1 , ..., q
′′′
n)

δ
−→ C′(q′′′′1 , ..., q

′′′′
n), where q′′′′i ≡ q′′i if

i < I and q′′′′i is any process satisfying q′′′i
δi
−→ q′′′′i if

i ∈ I.
Now, we can see that q′′′′i is indeed a delay process of

qi
σiδi
=⇒.
Finally, if there exists a patience ruloid for the ith argu-

ment of context C′ then q′′′′i may evolve into any process

q′i such that q′′′′i
τ∗

=⇒ q′i and thus q′i may be any process

such that qi
σiδi
=⇒ q′i . On the other hand, if there does not ex-

ist a patience ruloid for the ith argument of context C′ then

let q′i be q′′′′i , and thus q′i is any delay process of qi
σiδi
=⇒. �

As a strengthened results of the above lemma, Lemma
5.3.3 below will show that, in weak finite failure languages
and weak ω-failure languages, if the ith argument is nei-
ther an active argument nor a receiving argument, i.e., is
an other argument, then q′i can be qi or any process such

that qi
σi
=⇒ q′i . Though we only prove this lemma in weak

ω-failure languages, it also holds in weak finite failure lan-
guages.

Lemma 5.3.3 Let L = (Σ,Ψ) be a weak ω-failure lan-
guage, and C(x1, ..., xn) be any context of n holes. Suppose
that ζ and ξ are any two closed Σ substitution mapping xi
into pi and qi, respectively. For all 1 ≤ i ≤ n, pi ∼t qi,
and thus for any trace σ ∈ T (C(p1, ..., pn), ω) and some
context C′ with C(p1, ..., pn)

σ
=⇒ C′(p′1, ..., p

′
n), there exist

q′1, ..., q
′
n such that C(q1, ..., qn)

σ
=⇒ C′(q′1, ..., q

′
n). Now, if

the ith argument of C′ is an other argument, then q′i can be

qi or any process such that qi
σi
=⇒ q′i .

Proof Like the proof of Lemma 5.3.2, suppose that
the sequence of plain ruloids applied in the procedure
C(p1, ..., pn)

σ
=⇒ C′(p′1, ..., p

′
n) is r1r2...rk.

We will prove it by making an induction on k.
1) k = 0. Then, C = C′ and only patience ruloids

are applied when C(p1, ..., pn)
σ
=⇒ C′(p′1, ..., p

′
n) and thus

σ = τ∗. In this case, we can let q′i be qi if the ith argument
of C′ is an other argument.

2) Assume that, when k = m−1 with m ≥ 1, the lemma
holds.

3) For k = m, suppose that, C(p1, ..., pn)
σ
=⇒

C′′(p′′1 , ..., p
′′
n) and C′′(p′′1 , ..., p

′′
n)

δ
=⇒ C′(p′1, ..., p

′
n),

where the first k − 1 plain ruloids of r1r2...rk are applied
when C(p1, ..., pn)

σ
=⇒ C′′(p′′1 , ..., p

′′
n) and the kth plain

ruloid are applied when C′′(p′′1 , ..., p
′′
n)

δ
=⇒ C′(p′1, ..., p

′
n).

However, observe that the ith argument of C′′ cannot
be in set I of ruloid rk. Or else, the ith argument of C′ will

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

23

be at least a receiving argument by Definition 5.2.5. We
separate it into two cases:

i) If the ith argument of C′′ is an active argument or a
receiving argument, then it has a patience ruloid since the
language L is a weak ω-failure language. Therefore, by

Lemma 5.3.2, q′i can be any process such that qi
σiδi
=⇒ q′i

with δi = τ∗.
ii) If the ith argument of C′′ is an other argument, then,

by the induction hypothesis, q′′i can be qi or any process

such that qi
σi
=⇒ q′′i . Now, since L is a weak ω-failure

language, no patience ruloid for the ith argument of C′′
and the ith argument of C′. Therefore, q′i is just q′′i , and

thus q′i can be qi or any process such that qi
σi
=⇒ q′′i . Then,

by δi = τ∗, q′i can be qi or any process such that qi
σiδi
=⇒ q′i .

�
Note that, the above lemma does not hold in weak 1-

failure languages since patience ruloids for receiving ar-
guments are needed when proving it. Therefore, it will
not be used when proving the congruence theorem for the
wean 1-failure format.

The following lemma shows that, in a weak finite fail-
ure language, if a process executes an action sequence
(weak trace) with length k, then, at the same time, all the
lengthes of the action sequences executed by its subpro-
cesses may not exceed k. This lemma also holds in weak
1-failure languages.

Lemma 5.3.4 Let L be a weak finite failure language.
C(x1, ..., xn) is any context of n holes in L. Suppose
that ζ is any closed Σ substitution mapping xi into pi.
If C(p1, ..., pn) is a process and σ is a weak trace of
C(p1, ..., pn), then each pi will execute a weak trace σi
at the same time, for 1 ≤ i ≤ n. We can conclude that
∀1 ≤ i ≤ n : |σi| ≤ k when |σ| = k.

Proof By Lemma 5.3.1, if C(p1, ..., pn) is a process and
σ is a weak trace of C(p1, ..., pn), then each pi will execute
a weak trace σi at the same time. We also need to prove
that |σi| ≤ k when |σ| = k.

We will prove it by making an induction on |σ| = k.

1) k = 0. Then, C(p1, ..., pn)
τ∗

=⇒ C′(p′1, ..., p
′
n). By

the definition of the weak ω-failure format, the ruloids ap-
plied in this procedure can only be patience ruloids or ru-
loids with τ conclusion. By the hypothesis, no rules with
τ conclusion are present in L, and thus, by Proposition
5.2.8, no ruloids with τ conclusion are present in R(C, τ).

Therefore, when C(p1, ..., pn)
τ∗

=⇒ C′(p′1, ..., p
′
n), only pa-

tience ruloids are applied. However, from the definition of
patience ruloids and its corresponding ruloids in form (2),
pi

τ
−→ p′i or pi

ε
−→ p′i for all 1 ≤ i ≤ n. And |τ∗| = |ε| = 0.

2) Assume that, when k = m − 1 with m ≥ 1, we have
|σi| ≤ k when |σ| = k.

3) For k = m, let σ = σ′α. Then, we have

C(p1, ..., pn)
σ′

=⇒ C′′(p′′1 , ..., p
′′
n)

α
=⇒ C′(p′1, ..., p

′
n).

Extending it, we obtain that C(p1, ..., pn)
σ′

=⇒

C′′(p′′1 , ..., p
′′
n)

τ∗

−→ C1(p1
1, ..., p

1
n)

α
−→ C2(p2

1, ..., p
2
n)

τ∗

−→

C′(p′1, ..., p
′
n).

By Lemma 5.3.1, for all 1 ≤ i ≤ n, there exist pi
σ′i
=⇒

p′′i
σ1

i
=⇒ p1

i

αi
=⇒ p2

i

σ2
i
=⇒ p′i .

It is trivial that |σ′| = m − 1. Therefore, by the in-
duction hypothesis, we have |σ′i | ≤ m − 1. Also, when

C′′(p′′1 , ..., p
′′
n)

τ∗

−→ C1(p1
1, ..., p

1
n) and C2(p2

1, ..., p
2
n)

τ∗

−→

C′(p′1, ..., p
′
n), |τ∗| = 0. Therefore, by the induction base,

we have |σ1
i | = |σ

2
i | = 0. Furthermore, |αi| ≤ 1 can be

obtained by the ruloids of form (2).
In all, |σi| ≤ k when |σ| = k. �

The following lemma shows that, in weak 1-
failure languages, process C(p1, ..., pi, ..., pn) and
C(p1, ..., p′i , ..., pn) have the same sets of next observable

actions if pi
τ∗

−→ p′i and the ith argument is not an active
argument.

Lemma 5.3.5 Let L = (Σ,Ψ) be a weak 1-
failure language, and C(x1, ..., xn) be any context of n
holes. Suppose that ζ is any closed Σ substitution
mapping xi into pi. If the ith argument is not an

active argument of C(x1, ..., xn) and pi
τ∗

−→ p′i , then
T (C(p1, ..., pi, ..., pn), 1) = T (C(p1, ..., p′i , ..., pn), 1).

Proof Without loss of generality, suppose that p =
C(p1, ...pi, ..., pn) and q = C(p1, ..., p′i , ..., pn), where C is
any context of n holes in the language L. Let A1 = {a ∈
Act|p

a
=⇒} and A2 = {a ∈ Act|p

a
=⇒}. We need to prove

A1 = A2. Consider the next ruloid which will be applied.
1) If the next ruloid is a patience ruloid, then it should

be a patience ruloid for active argument, sinceL is a weak
1-failure language. However, applying the patience ruloid
will not produce observable actions for C(p1, ...pi, ..., pn)
and C(p1, ..., p′i , ..., pn). Because the ith argument is
not an active argument, C(p1, ...pi, ..., p j, ..., pn)

τ
−→

C(p1, ...pi, ..., p′j, ..., pn) and C(p1, ...p′i , ..., p j, ..., pn)
τ
−→

C(p1, ...p′i , ..., p
′
j, ..., pn) when the jth argument of con-

text C is an active argument and p j
τ
−→ p′j. Now, it is

enough to consider the set of next observable actions of
C(p1, ...pi, ..., p′j, ..., pn) and C(p1, ...p′i , ..., p

′
j, ..., pn).

2) If the next ruloid is a plain ruloid, then it should not
be a ruloid with τ conclusion, since L is a weak 1-failure
language. Suppose that the applied ruloid r is in form (1),
then the ith argument is not in I since it is not an active
argument. Therefore, by the soundness property of the
ruloids, the pi will not be fired when applying the ruloid r.
Furthermore, since p and q are only different in pi and p′i ,
we have A1 = A2. �

5.4 Weak 1-Failure Format for Weak 1-Failure
Equivalence

Now, we will prove the congruence theorem for the weak
1-failure format.

Theorem 5.4.1 The weak 1-failure format is a congru-
ence format for the weak 1-failure equivalence.

Proof It is enough to prove that if ∀1 ≤ j ≤ n :
p j ∼

1
f q j then C(p1, ..., pn) ∼1

f C(q1, ..., qn), where C
is any context of n holes in a weak 1-failure language
L. By the symmetry of the alternative characteriza-
tion of weak 1-failure equivalence in Proposition 3.5, we
only need to prove that if ∀1 ≤ j ≤ n : p j ∼

1
f q j,

then, for any σ ∈ T (C(p1, ..., pn), ω) and C′(p′1, ..., p
′
n)

with C(p1, ..., pn)
σ
=⇒ C′(p′1, ..., p

′
n), there exists

C′(q′1, ..., q
′
n) such that C(q1, ..., qn)

σ
=⇒ C′(q′1, ..., q

′
n)

and T (C′(q′1, ..., q
′
n), 1) ⊆ T (C′(p′1, ..., p

′
n), 1). Ob-

serve that, though it needs only there exists some
C′′(q′′1 , ..., q

′′
n) such that C(q1, ..., qn)

σ
=⇒ C′′(q′′1 , ..., q

′′
n)

and T (C′′(q′′1 , ..., q
′′
n), 1) ⊆ T (C′(p′1, ..., p

′
n), 1), we will

prove in the following that we can safely let C′′ be C′,
and thus we write C′′(q′′1 , ..., q

′′
n) as C′(q′1, ..., q

′
n).

By Lemma 5.3.1, when C(p1, ..., pn)
σ
=⇒ C′(p′1, ..., p

′
n),

there exists p j
σ j
=⇒ p′j for all subprocess p j with 1 ≤

j ≤ n. Similarly, for all a ∈ T (C′(p′1, ..., p
′
n), 1), when

C′(p′1, ..., p
′
n)

a
=⇒, we have p′j

δ j
=⇒ for all subprocess p j

with 1 ≤ j ≤ n. Let A′j be the set of all δ j. Note that, for
some a ∈ A, there may exist several δ j corresponding with

CRPIT Volume 77 - Theory of Computing 2008

24

it. And we should add all of them into the set A′j.
Then, by Lemma 5.3.4, the exclusion of the rules with

τ-conclusion will make the length of δ j not exceed 1, i.e.,
∀δ j ∈ A′j : |δ j| ≤ 1. Therefore, for all 1 ≤ j ≤ n, we have
A′j ⊆ T (p′j, 1).

Now, by p j ∼
1
f q j and Proposition 3.5, there exists

some q′j such that q j
σ j
=⇒ q′j and T (q′j, 1) ⊆ T (p′j, 1).

By Lemma 5.3.2, σ is also a trace of C(q1, ..., qn) and
C(q1, ..., qn)

σ
=⇒ C′(q′′1 , ..., q

′′
n). Observe that, it is pos-

sible that q′′j is not equivalent to q′j. The reason is that,
from Lemma 5.3.2, we can only obtain that, there exist
q′′1 , ..., q

′′
n such that C(q1, ..., qn)

σ
=⇒ C′(q′′1 , ..., q

′′
n), but not

the very q′1, ..., q
′
n which are obtained from p j ∼

1
f q j and

Proposition 3.5.
By Lemma 5.3.2, if the jth argument of C′ is an active

argument, then q′′j can be any process such that q j
σ j
=⇒ q′′j

and thus we may let q′′j be q′j safely since q j
σ j
=⇒ q′j. On

the other hand, if the jth argument of C′ is not an active
argument, then no patience ruloids are present in the lan-

guage. Therefore, q′′j can be any delay process of qi
σ j
=⇒.

Note that, for q′j, there must exist some delay process q′′j

such that q j
σ j
=⇒ q′′j

τ∗

−→ q′j.

Now, by Lemma 5.3.5 and q′′j
τ∗

−→ q′j, we assert
that T (C′(q′′1 , ..., q

′′
n), 1) = T (C′(q′1, ..., q

′
n), 1). Note that,

there may exist several arguments of C′ such that they
are not active arguments. However, we can finally ob-
tain T (C′(q′′1 , ..., q

′′
n), 1) = T (C′(q′1, ..., q

′
n), 1) by applying

Lemma 5.3.5 for several times.
Moreover, by T (q′j, 1) ⊆ T (p′j, 1), we have

T (C′(q′1, ..., q
′
n), 1) ⊆ T (C′(p′1, ..., p

′
n), 1).

Finally, we obtain that T (C′(q′′1 , ..., q
′′
n), 1) ⊆

T (C′(p′1, ..., p
′
n), 1). �

5.5 Weak Finite Failure Format for Weak i-Failure
Equivalence

The following is the congruence theorem for the weak fi-
nite failure format.

Theorem 5.5.1 The weak finite failure format is a con-
gruence format for the weak i-failure equivalence with
1 < i < ω.

Proof Similar with Theorem 5.4.1, it is enough to
prove that if ∀1 ≤ j ≤ n : p j ∼

i
f q j then C(p1, ..., pn) ∼i

f
C(q1, ..., qn), where C is any context of n holes in a weak
1-failure language L. By the symmetry of the alternative
characterization of weak i-failure equivalence in Propo-
sition 3.5, we only need to prove that if ∀1 ≤ j ≤
n : p j ∼

i
f q j, then, for any σ ∈ T (C(p1, ..., pn), ω)

and C′(p′1, ..., p
′
n) with C(p1, ..., pn)

σ
=⇒ C′(p′1, ..., p

′
n),

there exists C′(q′1, ..., q
′
n) such that C(q1, ..., qn)

σ
=⇒

C′(q′1, ..., q
′
n) and T (C′(q′1, ..., q

′
n), i) ⊆ T (C′(p′1, ..., p

′
n), i).

By Lemma 5.3.1, when C(p1, ..., pn)
σ
=⇒ C′(p′1, ..., p

′
n),

there exists p j
σ j
=⇒ p′j for all subprocess p j with 1 ≤ j ≤ n.

Similarly, for all δ ∈ Φ, when C′(p′1, ..., p
′
n)

δ
=⇒, we have

p′j
δ j
=⇒ for all subprocess p j with 1 ≤ j ≤ n. Let Φ′j be the

set of all δ j. Note that, for some δ ∈ Φ, there may exist
several δ j corresponding with it. And we should add all of
them into the set Φ′j.

By Lemma 5.3.4, the exclusion of the rules with τ-
conclusion will make the length of δ j not exceed i, i.e.,

∀δ j ∈ Φ
′
j : |δ j| ≤ i. Therefore, for all 1 ≤ j ≤ n, we have

Φ′j ⊆ T (p′j, i).

Now, by p j ∼
i
f q j, there exists some q′j such that q j

σ j
=⇒

q′j and T (q′j, i) ⊆ T (p′j, i).
By Lemma 5.3.2, σ is also a trace of C(q1, ..., qn) and

C(q1, ..., qn)
σ
=⇒ C′(q′′1 , ..., q

′′
n). Moreover,

1) if the jth argument of C′ is a receiving argument
or an active argument, then it has a patience ruloid since
the language is a weak finite failure language. Therefore,
by Lemma 5.3.2, we can let q′′j be q′j since q′′j can be any

process such that q j
σi
=⇒ q′′j , and

2) if the jth argument of C′ is an other argument, then,
by Lemma 5.3.3, we can let q′′j be q j or any process such

that q j
σ j
=⇒ q′′j . We want to separate it into two cases:

i) if q′′j is any process such that q j
σ j
=⇒ q′′j , then we can

also let q′′j be q′j.
ii) if q′′j is q j, then q′j and q′′j are both delay processes

since the jth argument of C′ is an other argument and thus
no patience ruloid for it. Therefore, we can obtain that
q′′j ≡ q′j ≡ q j.

In all, we can always let q′′j be q′j, i.e., C(q1, ..., qn)
σ
=⇒

C′(q′1, ..., q
′
n).

Moreover, by T (q′j, i) ⊆ T (p′j, i), we have
T (C′(q′1, ..., q

′
n), i) ⊆ T (C′(p′1, ..., p

′
n), i),. �

5.6 Weak ω-Failure Format for Weak ω-Failure
Equivalence

The congruence theorem for the weak ω-failure format is
as follows.

Theorem 5.6.1 The weak ω-failure format is a congru-
ence format for the weak ω-failure equivalence.

Proof Similar with Theorem 5.4.1, it is enough to
prove that if ∀1 ≤ j ≤ n : p j ∼

ω
f q j then C(p1, ..., pn) ∼ωf

C(q1, ..., qn), where C is any context of n holes in a weak
1-failure language L. By the symmetry of the alternative
characterization of weak ω-failure equivalence in Proposi-
tion 3.5, we only need to prove that if ∀1 ≤ j ≤ n : p j ∼

ω
f

q j, then, for any σ ∈ T (C(p1, ..., pn), ω) and C′(p′1, ..., p
′
n)

with C(p1, ..., pn)
σ
=⇒ C′(p′1, ..., p

′
n), there exists

C′(q′1, ..., q
′
n) such that C(q1, ..., qn)

σ
=⇒ C′(q′1, ..., q

′
n) and

T (C′(q′1, ..., q
′
n), ω) ⊆ T (C′(p′1, ..., p

′
n), ω).

By Lemma 5.3.1, when C(p1, ..., pn)
σ
=⇒ C′(p′1, ..., p

′
n),

there exists p j
σ j
=⇒ p′j for all subprocess p j with 1 ≤ j ≤ n.

Similarly, for all δ ∈ Φ, when C′(p′1, ..., p
′
n)

δ
=⇒, we have

p′j
δ j
=⇒ for all subprocess p j with 1 ≤ j ≤ n. Let Φ′j be the

set of all δ j. Note that, for some δ ∈ Φ, there may exist
several δ j corresponding with it. And we should add all of
them into the set Φ′j.

Therefore, for all 1 ≤ j ≤ n, we have Φ′j ⊆ T (p′j, ω).

Now, by p j ∼
ω
f q j, there exists some q′j such that q j

σ j
=⇒

q′j and T (q′j, ω) ⊆ T (p′j, ω).
By Lemma 5.3.2, σ is also a trace of C(q1, ..., qn) and

C(q1, ..., qn)
σ
=⇒ C′(q′′1 , ..., q

′′
n). Moreover,

1) if the jth argument of C′ is a receiving argument
or an active argument, then it has a patience ruloid since
the language is a weak ω-failure language. Therefore, by
Lemma 5.3.2, we can let q′′j be q′j since q′′j can be any

process such that q j
σi
=⇒ q′′j , and

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

25

2) if the jth argument of C′ is an other argument, then,
by Lemma 5.3.3, we can let q′′j be q j or any process such

that q j
σ j
=⇒ q′′j . We want to separate it into two cases:

i) if q′′j is any process such that q j
σ j
=⇒ q′′j , then we can

also let q′′j be q′j.
ii) if q′′j is q j, then q′j and q′′j are both delay processes

since the jth argument of C′ is an other argument and thus
no patience ruloid for it. Therefore, we can obtain that
q′′j ≡ q′j ≡ q j.

In all, we can always let q′′j be q′j, i.e., C(q1, ..., qn)
σ
=⇒

C′(q′1, ..., q
′
n).

Moreover, by T (q′j, ω) ⊆ T (p′j, ω), we have
T (C′(q′1, ..., q

′
n), ω) ⊆ T (C′(p′1, ..., p

′
n), ω). �

6 Conclusions

In the paper, we first introduce a series of behavioral
equivalences, named weak parametric failure equiva-
lences, which take the weak failure equivalence and the
weak impossible future equivalence as their special cases.
Then, based on the idea of Structural Operational Seman-
tics, rule formats are proposed to meet these behavioral
equivalences. By the intuitive opinions and formal proofs,
we have shown that these rule formats are all congruence
formats of their corresponding behavioral equivalences.

An advantage of these rule formats is that we can
easily decide whether a behavioral equivalence is con-
gruent under a given operator. In fact, for any behav-
ioral equivalences, one of the most frequently-asked prob-
lems is whether or not it can be preserved under some
frequently-used operators, such as prefixing, choice, par-
allel composition, etc., in classical process algebraic lan-
guages like CCS (Milner, 1989), CSP (Hoare, 1985) and
ACP (Baeten, 1990). Generally, there exist two ways to
deal with this problem: The first one is to prove the con-
gruence properties of these operators one by one. It is a
straightforward and intuitive way, but may be somewhat
clumsy. The second one is to pursue a rule format for this
specified behavioral equivalence. And the given behav-
ioral equivalence can be preserved under any operators in
this format.

However, we have noticed that equivalences in strong
notion, such as strong bisimulation and decorated trace se-
mantics, were paid more attentions to than equivalences
in weak notion, such as weak bisimulation and testing
theory. In fact, almost all classical strong equivalences
have found their corresponding rule formats, but much
less works have been done on the rule formats of weak
equivalences, especially on the rule formats of the equiv-
alences in testing theoretical notions. And more specifi-
cally, no rule formats have been presented to be congru-
ence formats for the weak failure equivalence or the weak
impossible future equivalence. The difference may exist
in the increasing complexity after introducing τ transitions
by weak equivalences. The aim of our paper is to make a
progress along this direction.

References

R.J. van Glabbeek. The Linear Time - Branching Time
Spectrum I: The Semantics of Concrete, Sequential Pro-
cesses. In J.A. Bergstra, A. Ponse, and S.A. Smolka,
editors, Handbook of Process Algebra, chapter 1, pages
3-100. Elsevier, 2001.

R.J. van Glabbeek. The Linear Time - Branching Time
Spectrum II: The semantics of sequential systems with
silent moves. In E. Best, editor, Concur’93, LNCS 715,
pages 66-81. Springer-Verlag, 1993.

R. Milner. Communication and Concurrency. Prentice-
Hall, 1989.

M.R. Mousavi, M.A. Reniers, J.F. Groote (2007). SOS
formats and meta-theory: 20 years after. Theoretical
Computer Science 373, pages 238-272.

L. Aceto, W.J. Fokkink and C. Verhoef. Structural Oper-
ational Semantics. In J.A. Bergstra, A. Ponse and S.A.
Smolka, editors, Handbook of Process Algebra, Chap-
ter 3, pages 197-292. Elsevier, 2001.

G.D. Plotkin. A Structural Approach to Operational Se-
mantics. The Journal of Logic and Algebraic Program-
ming 60-61, 17-139, 2004.

J.C.M. Baeten and W.P. Weijland. Process Algebra. vol-
ume 18 of Cambridge Tracts in Theoretical Computer
Science, Cambridge University Press, 1990.

J.F. Groote and F.W. Waandrager. Structural Operational
Semantics and Bisimulation as a Congruence. Informa-
tion and Computation 100(2), 202-260, 1992.

R.D. Simone. Higher-level synchronising devices in
Meiji-SCCS. Theoretical Computer Science 37, 245-
267, 1985.

J.F. Groote. Transition System Specifications with Nega-
tive Premises. Theoretical Computer Science 118, 263-
299, 1993.

B. Bloom, S. Istrail and A. R. Meyer. Bisimualtion can’t
be Traced. Journal of the ACM 42(1), 232-268, 1995.

A. Rensink, W. Vogler. Fair testing. Information and Com-
putation, Volume 205, Issue 2, February 2007, Pages
125-198.

R.J. van Glabbeek, On Cool Congruence Formats for
Weak Bisimulations. In D.V. Hung and M. wirsing, edi-
tors, Proceedings International Colloquium on Theoret-
ical Aspects of Computing, LNCS 3722, page 331-346.
Springer, 2005.

I. Ulidowski, Finite Axiom Systems for Testing Preorder
and De Simone Process Languages. Theoretical com-
puter Science, 239(1):97-139, 2000.

C.A.R. Hoare, Communicating Sequential Processes,
Prentice-Hall, Englewood Cliffs, NJ, 1985.

R.J. van Glabbeek, The Meaning of Negative Premises
in Transition System Specification II. The Journal of
Logic and Algebraic Programming 60-61, pages 229-
258, 2004.

B. Bloom. Structural operational semantics for weak
bisimulations. Theoretical Computer Science 146,
pages 27-68, 1995.

B. Bloom. Ready Simulation, Bisimulation, and the Se-
mantics of CCS-Like Languages. PhD thesis, MIT,
1990.

R. Milner. Communicating and Mobile Systems: the π-
Calculus. Cambridge University Press, 1990.

CRPIT Volume 77 - Theory of Computing 2008

26

Modelling for Lazy Clause Generation

Olga Ohrimenko2 and Peter J. Stuckey1,2

1 NICTA Victoria Research Lab
2 Department of Comp. Sci. and Soft. Eng,

University of Melbourne, Victoria 3010, Australia,
Email: {olgao,pjs}@csse.unimelb.edu.au

Abstract

Lazy clause generation is a hybrid SAT and finite
domain propagation solver that tries to combine
the advantages of both: succinct modelling using
finite domains and powerful nogoods and back-
jumping search using SAT technology. It has been
shown that it can solve hard scheduling problems
significantly faster than SAT or standard finite do-
main propagation alone. This new hybrid opens
up many choices in modelling problems because
of its dual representation of problems as both fi-
nite domain and SAT variables. In this paper
we investigate some of those choices. Arising out
of the modelling choices comes a novel combina-
tion of bounds representation and domain prop-
agation which creates a form of propagation of
disjunctions. We show this novel modelling ap-
proach can outperform more standard approaches
on some problems.

1 Introduction

We consider the problem of solving Constraint Sat-
isfaction Problems (CSPs) defined in the sense of
[7], which can be stated briefly as follows:

We are given a set of variables, a do-
main of possible values for each variable,
and a set (read as a conjunction) of con-
straints. Each constraint is a relation de-
fined over a subset of the variables, lim-
iting the combination of values that the
variables in this subset can take. The
goal is to find a consistent assignment of
values to the variables so that all the con-
straints are satisfied simultaneously.

Finite domain propagation systems solve CSPs
using elaborate search strategies working in tan-
dem with propagation to reduce the search space
by removing inconsistent assignments as early as
possible. There has been a significant amount of
research on how to solve CSPs by encoding them

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Computing: The Aus-
tralasian Theory Symposium (CATS2008), Wollongong, NSW.
Conferences in Research and Practice in Information Technol-
ogy(CRPIT), Vol. 77. James Harland and Prabhu Manyem,
Ed. Reproduction for academic, not-for profit purposes per-
mitted provided this text is included.

in a Boolean clausal representation and then using
Boolean satisfiability (SAT) solver to find a solu-
tion. Although this approach is quite successful for
some problem classes, on other problems it turns
out that the brute-force translation of the problem
is too big to be handled effectively.

Finite domain propagation solvers effectively
represent the possible values of variables by a set
of choices which can be naturally modelled as
Boolean variables. Recently [11] we described how
we can mimic a finite domain propagation engine,
by mapping propagators into clauses in a SAT
solver. This immediately results in strong nogoods
for finite domain propagation. We showed how we
can convert propagators to lazy clause generators
for a SAT solver. The resulting system can solve
scheduling problems significantly faster than gen-
erating the clauses from scratch, or using Satis-
fiability Modulo Theories [10] solvers with differ-
ence logic. The resulting hybrid [11] combines the
advantages of SAT solving, in particular power-
ful and efficient nogood learning and backjumping,
with the advantages of finite domain propagation,
simple and powerful modelling and specialized and
efficient propagation of information.

In this paper we extend our previous work by
exploiting the possibilities that the new system of-
fers.

We show that this approach allows indepen-
dence between the Boolean representation of in-
teger variables and the propagators that act upon
them. This representation independence leads to
a new type of propagation: mixing bounds repre-
sentation and domain propagators. The new prop-
agator results in disjunctive propagation, where
new information is created by propagation which
is disjunctive in nature, even though the propaga-
tor was not a disjunctive at the start. Since the
underlying SAT representation of propagation can
represent disjunctive information efficiently, it al-
lows us to create new “disjunctive propagators”
from scratch.

The next section introduces notations and the
lazy clause generation solving approach. We then
explore modelling choices that arise in lazy clause
generation solving, in particular we show that the
choice of propagator can be independent of the
choice of Boolean variable representation. In Sec-
tion 4 we discuss the implementation of lazy clause
generation and how it has to be extended to sup-

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

27

port new features of the modelling. We give ex-
perimental results in Section 5, and then conclude.

2 Lazy Clause Generation

2.1 Finite Domain Propagation

We consider a set of integer variables V . A domain
D is a complete mapping from V to finite sets of
integers. We can understand a domain D as a
formula ∧v∈V(v ∈ D(v)) stating for each variable
v that its value is in its domain.

Let D1 and D2 be domains and V ⊆ V . We say
that D1 is stronger than D2, written D1 v D2, if
D1(v) ⊆ D2(v) for all v ∈ V and that D1 and D2
are equivalent modulo V , written D1 =V D2, if
D1(v) = D2(v) for all v ∈ V . The intersection of
D1 and D2, denoted D1 u D2, is defined by the
domain D1(v) ∩ D2(v) for all v ∈ V .

We use range notation: [l .. u] denotes the set
of integers {d | l 6 d 6 u, d ∈ Z}. We assume an
initial domain Dinit such that all domains D that
occur will be stronger i.e. D v Dinit.

A valuation θ is a mapping of variables to val-
ues, written {x1 7→ d1, . . . , xn 7→ dn}. We extend
the valuation θ to map expressions or constraints
involving the variables in the natural way. Let vars
be the function that returns the set of variables ap-
pearing in an expression, constraint or valuation.
In an abuse of notation, we define a valuation θ to
be an element of a domain D, written θ ∈ D, if
θ(v) ∈ D(v) for all v ∈ vars(θ).

A constraint is a restriction placed on the al-
lowable values for a set of variables. We define
the solutions of a constraint c to be the set of
valuations θ that make that constraint true, i.e.
solns(c) = {θ | (vars(θ) = vars(c)) ∧ (� θ(c))}

We associate with every constraint c a set of
propagators. A propagator f for c is a monoton-
ically decreasing function on domains such that
for all domains D v Dinit: f(D) v D and {θ ∈
D | θ ∈ solns(c)} = {θ ∈ f(D) | θ ∈ solns(c)}.
This is a weak restriction since, for example, the
identity mapping is a propagator for any con-
straint.

Example 1 A common propagator fd for the con-
straint x 6= y is

f(D)(x) = D(x) − {d}, if D(y) = {d}
f(D)(x) = D(x), otherwise
f(D)(y) = D(y) − {d}, if D(x) = {d}
f(D)(y) = D(y), otherwise
f(D)(v) = D(v), v 6∈ {x, y}

Let D1(x) = {3, 4, 5, 6} and D1(y) = {5}, then
f(D1)(x1) = {3, 4, 6} and f(D1)(y) = {5}. �

A propagation solver for a set of propagators F
and current domain D, solv(F, D), repeatedly ap-
plies all the propagators in F starting from domain
D until there is no further change in resulting do-
main. solv (F, D) is the weakest domain D′ v D
which is a fixpoint (i.e. f(D′) = D′) for all f ∈ F .
In other words, solv (F, D) returns a new domain

defined by

solv(F, D) = gfp(λd.iter (F, d))(D)
iter(F, D) = uf∈F f(D).

where gfp denotes the greatest fixpoint w.r.t v
lifted to functions.

2.2 Atomic Constraints and Propagation
Rules

In order to convert propagation to clauses we need
to extract the “pointwise” behavior of a propaga-
tor. To do so we use atomic constraints and prop-
agation rules.

An atomic constraint represents the basic
changes in domain that occur during propagation.
For integer variables, the atomic constraints rep-
resent the elimination of values from an integer
domain, i.e. x 6 d, x > d, x 6= d or x = d where
x ∈ V and d is an integer. Note these correspond
to events in a propagation engine: upper bound
change, lower bound change, domain change and
fixing the variable. We also consider the atomic
constraint false which indicates that unsatisfiabil-
ity is the direct consequence of propagation.

Define a propagation rule as C � c where C
is a conjunction of atomic constraints, and c is a
single atomic constraint such that 6|= C → c. A
propagation rule C � c defines a propagator (for
which we use the same notation) in the obvious
way

(C � c)(D)(v) =

{

{θ(v) |θ ∈ D ∩ solns(c)}
vars(c) = {v}∧ |= D → C

D(v) otherwise.

In another words, C � c defines a propagator
that removes values from D based on c only when
D implies C.

A propagator f implements a propagation rule
C � c iff |= D → C implies |= f(D) → c for all
D v Dinit .

Example 2 The propagator fd of Example 1 im-
plements the following propagation rules (among
many others) for Dinit(x) = Dinit(y) = [l .. u].

x = d � y 6= d, l 6 d 6 u
y = d � x 6= d, l 6 d 6 u �

A set of propagation rules F ⊆ rules(f) imple-
ments f iff solv (F, D) = f(D), for all D v Dinit .

In order to translate a propagator f to Boolean
clauses we want to have a concise representation
in terms of propagation rules, rep(f), such that
rep(f) implements f .

Example 3 Consider the reified difference in-
equality c ≡ b ⇔ x+c 6 y where Dinit(b) = {0, 1},
Dinit(x) = [l .. u], Dinit(y) = [l .. u]. Then a set
of propagation rules rep(f) implementing the do-
main propagator f for c is

b > 1 ∧ x > d � y > d + c
b > 1 ∧ y 6 d � x 6 d − c
b 6 0 ∧ x 6 d � y 6 d + c − 1
b 6 0 ∧ y > d � x > d − c + 1

x > d − c + 1 ∧ y 6 d � b 6 0
x 6 d ∧ y > d + c � b > 1

CRPIT Volume 77 - Theory of Computing 2008

28

where l 6 d 6 u, except for the last two where
l − c 6 d 6 u + c. �

A bound propagation rule only makes use of
atomic constraints of the form x 6 d, x > d and
false. We can classify a propagator f as a bounds
propagator if it has a representation rep(f) which
only makes use of bounds propagation rules.

Example 4 The propagator in Example 3 is
clearly a bounds propagator. A bounds propaga-
tor fb for the constraint x 6= y is defined by the
propagation rules for Dinit(x) = Dinit(y) = [l .. u]
where l 6 d 6 u:

x 6 d ∧ x > d ∧ y 6 d � y 6 d − 1
x 6 d ∧ x > d ∧ y > d � y > d + 1
y 6 d ∧ y > d ∧ x 6 d � x 6 d − 1
y 6 d ∧ y > d ∧ x > d � x > d + 1. �

2.3 SAT and Unit Propagation

A proposition p is a Boolean variable from a uni-
verse of Boolean variables, P . A literal l is either:
a proposition p, its negation ¬p, the false literal
⊥, or the true literal >. The complement of a
literal l, ¬l is ¬p if l = p or p if l = ¬p, while
¬⊥ = > and ¬> = ⊥. A clause C is a disjunction
of literals. An assignment is either a set of literals
A excluding ⊥ such that ∀p ∈ P .{p,¬p} 6⊆ A, or
the failed assignment {{⊥}}. We define A v {{⊥}},
and A t A′ = A ∪ A unless the union contains
⊥ or {p,¬p} for some literal p in which case
A t A′ = {{⊥}}.

An assignment A satisfies a clause C if one of
the literals in C appears in A. A theory T is a set
of clauses. An assignment is a solution to theory
T if it satisfies each C ∈ T .

A SAT solver takes a theory T and determines
if it has a solution. Complete SAT solvers typ-
ically involve some form of the DPLL algorithm
which combines search and propagation by recur-
sively fixing the value of a proposition to either >
(true) or ⊥ (false) and using unit propagation to
determine the logical consequences of each deci-
sion made so far. The unit propagation algorithm
finds all unit resolutions of an assignment A with
the theory T . It can be defined as follows where
C denotes a clause:

up(A, C) =











{{⊥}} ∀l ∈ C.¬l ∈ A
A t {l} ∃l ∈ C, ,¬l 6∈ A,

∀l′ ∈ (C \ {l}).¬l′ ∈ A
A otherwise

UP(A, T) = lfp.(λa.
⊔

C∈T up(a, C))(A)

Example 5 Given the theory T = { ¬p1 ∨ p2 ∨
p3∨¬p4∨¬p5, p1∨p2, p4∨¬p5} and the assignment
A1 = {¬p2, p5} unit propagation on p1 ∨ p2 adds
p1, and on p4∨¬p5 adds p4, then unit propagation
with the first clause adds p3. Hence UP(A1, T) =
{p1,¬p2, p3, p4, p5}. �

2.4 Lazy Clause Generation

The lazy clause generation hybrid solver defined
in [11] works as follows. We execute a SAT solver

using a Boolean representation of the integer vari-
ables of the problem. When the SAT solver reaches
an assignment A on these Boolean variables we
calculate a corresponding domain D to A, and ex-
ecute the propagators f ∈ F on D. Any propaga-
tion rule r in rep(f) that creates new information
(that is r(D) 6≡ D) is converted to a clause and
added to the SAT solver. Unit propagation on this
new clause will cause the assignment A to change
to agree with r(D).

We represent an integer variable x with domain
Dinit(x) = [l .. u] using the Boolean variables
[[x = l]], . . . , [[x = u]] and [[x 6 l]], . . . , [[x 6 u − 1]].
The variable [[x = d]] is true if x takes the value
d, and false if x takes a value different from d.
Similarly the variable [[x 6 d]] is true if x takes a
value less than or equal to d and false if x takes a
value greater than d.

Not every assignment of Boolean variables is
consistent with the integer variable x, for example
{[[x = 3]], [[x 6 2]]} requires that x is both 3 and
6 2. In order to ensure that assignments repre-
sent a consistent set of possibilities for the integer
variable x we add the clauses DOM (x) to the SAT
solver

¬[[x 6 d]] ∨ [[x 6 d + 1]] l 6 d < u − 1
¬[[x = d]] ∨ [[x 6 d]] l 6 d < u

¬[[x = d]] ∨ ¬[[x 6 d − 1]] l < d 6 u
[[x = l]] ∨ ¬[[x 6 l]]

[[x = d]] ∨ ¬[[x 6 d]] ∨ [[x 6 d − 1]] l < d < u
[[x = u]] ∨ [[x 6 u − 1]]

These clauses encode [[x 6 d]] → [[x 6 d + 1]] and
[[x = d]] ↔ ([[x 6 d]] ∧ ¬[[x 6 d − 1]]). We let
DOM = ∪{DOM (v) | v ∈ V}.

Any unit fixpoint A of DOM(x) can be con-
verted to a domain for variable x:

domain(A)(x) = { d ∈ Dinit(x) | ∀[[c]] ∈ A.
vars(l) = {x} ⇒ x = d |= c}

that is the domain of all values for x that are con-
sistent with all the Boolean variables related to x.

Example 6 For example the assignment A =
{[[x1 6 10]], ¬[[x1 6 5]], ¬[[x1 = 7]], ¬[[x1 = 8]],
[[x2 6 11]], ¬[[x2 6 5]], [[x3 6 10]], ¬[[x3 6 −2]]} is
consistent with x1 = 6, x1 = 9 and x1 = 10.
hence domain(A)(x1) = {6, 9, 10}. For the re-
maining variables domain(A)(x2) = [6 .. 11] and
domain(A)(x3) = [−1 .. 10]. Note that for brevity
A is not a fixpoint of DOM(x1) since we are
missing many implied literals such as ¬[[x1 = 5]],
¬[[x1 = 12]], etc. �

The propagators F are run on the created do-
main, and each propagation rule that creates new
information is converted to a Boolean clause. This
is straightforward since we can map atomic con-
straints to Boolean literals. The mapping lit is

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

29

defined as: (where Dinit(x) = [l .. u])

lit(false) = ⊥

lit(x = d) =

{

[[x = d]] l 6 d 6 u
⊥ otherwise

lit(x 6= d) =

{

¬[[x = d]] l 6 d 6 u
> otherwise

lit(x 6 d) =

{

> d > u
⊥ d < l
[[x 6 d]] otherwise

lit(x > d) =

{

> d 6 l
⊥ d > u
¬[[x 6 d − 1]] otherwise

We can transform a propagation rule r to a
clause cl(r) by:

cl(C � c) = (
∨

c′∈C

¬lit(c′)) ∨ lit(c)

Example 7 Given the domain D corresponding
to assignment A from Example 6, imagine a prop-
agator f fires the propagation rule

x1 6 10 ∧ x2 > 6 � x3 6 1

This is transformed into the clause

¬[[x1 6 10]] ∨ [[x2 6 5]] ∨ [[x3 6 1]]

This clause is added to the SAT solver. Unit prop-
agation using the assignment A and the clause
above adds the new information [[x3 6 1]] to get
assignment A′. �

Just as we can convert an assignment A to a
domain D, we can convert a domain D to an as-
signment

assign(D, x) = {lit(c) | x ∈ D(x) |= c,
x ∈ vars(x)}

assign(D) =

{

{{⊥}} ∃v ∈ V .D(v) = ∅
⋃

v∈V assign(D, v) otherwise

Using the lazy clause generation we can show
that the SAT solver maintains an assignment
which is equivalent to the domains. In particular if
we have clauses representing all the propagators F
then unit propagation is guaranteed to be at least
as strong as finite domain propagation.

Theorem 1 ([11]) Let rep(f) be a set of prop-
agation rules implementing propagator f . Let
A = UP(assign(D),DOM ∪

⋃

{cl(r) | f ∈
F, r ∈ rep(f)}). Then A = {{⊥}} or A ⊇
assign(solv (F, D)). �

3 Modelling Choices

Lazy clause generation proved to be a powerful
approach to tackling finite domain problems with
large amounts of search. In [11] we show that
it can solve hard open shop scheduling problems
more efficiently than pure SAT approaches and
other finite domain solvers using the same model

(Laborie [6] shows how to tackle hard schedul-
ing problems using finite domains solvers by us-
ing complex resource constraints and specialized
searching methods).

In this paper we explore some of the modelling
possibilities that the novel solving technology of
lazy clause generation allows.

3.1 Laziness and Eagerness

An important choice in the lazy clause generation
approach is whether to implement a propagator
lazily (which is the default) or eagerly. The eager
representation of a propagator f simply adds the
clauses cl(r) for all r ∈ rep(f) into the SAT solver
before beginning the search. This clearly can im-
prove search, since more information is known
apriori, but the size of the clausal representation
may make it inefficient.

Example 8 The representation of the domain
propagator for disequality x 6= y where Dinit(x) =
Dinit(y) = [l .. u] requires 2(u − l + 1) binary
clauses. Hence it is possible to model eagerly.

The representation of the bounds propagator
for x1 + · · · + xn 6 k where Dinit(x1) = · · · =
Dinit(xn) = [0 .. 1] has nCk = n!/((n − k)!k!)
propagation rules. Clearly it is impossible to rep-
resent this eagerly for large n and k. �

In practice eager representation is useful for
constraints that have very small representations.

3.2 Variable representation

The lazy clause generation approach represents
variables domains of possible values in dual man-
ner: a Boolean assignment and a domain D on in-
teger variables. There are a number of choices of
how we can represent integer variables in terms of
Boolean variables. The default choice (full integer
representation) is described in the previous sec-
tion and was used in [11]. We present new choices
below.

3.2.1 Non-continuous variables

We can represent an integer variable where
Dinit(x) = {d1, . . . , dn} where di < di+1, 1 6
i 6 n, and the values are noncontinuous. This
requires fewer Boolean variables, and fewer do-
main constraints then representing the domain
[d1 .. dn]. The Boolean representation uses vari-
ables [[x = di]], 1 6 i 6 n and [[x 6 di]], 1 6 i < n.

The clauses DOM(x) required to maintain con-
sistency of the Boolean assignment are:

¬[[x 6 di]] ∨ [[x 6 di+1]] 1 6 i < n − 1
¬[[x = di]] ∨ [[x 6 di]] 1 6 i < n

¬[[x = di]] ∨ ¬[[x 6 di−1]] 1 < i 6 n
[[x = d1]] ∨ ¬[[x 6 d1]]

[[x = di]] ∨ ¬[[x 6 di]] ∨ [[x 6 di−1]] 1 < i < n
[[x = dn]] ∨ [[x 6 dn−1]]

CRPIT Volume 77 - Theory of Computing 2008

30

3.2.2 Bounds variables

We can represent an integer variable only using
the bounds variables [[x 6 d]], l 6 d < u where
Dinit(x) = [l .. u]. While this means we cannot
represent all possible subsets of [l .. u], it has the
advantage of requiring fewer Boolean variables,
and the domain representation requires only the
clauses:

¬[[x 6 d]] ∨ [[x 6 d + 1]] l 6 d < u − 1

3.2.3 Non-continuous bounds variables

We can clearly restrict the representation of non-
continuous variables to bounds only analogously,
just using the Boolean variables [[x 6 di]]

3.3 Propagator and variable representa-
tion independence

In a usual finite domain solver we are restricted
so that if we use bounds variables, they must be
restricted to only occur in bounds propagators. In-
deed in [11] we use this observation to avoid using
full integer variables for variables that only occur
in bounds propagators. In the lazy clause genera-
tion solver we can separate the variable representa-
tion from the propagator type. To do so we make
use of the more flexible clausal representation of
propagators of the lazy clause generation solver.

With this separation the propagation engine
can work without knowing whether integer vari-
able x is a full integer, non-continuous, or bounds
variable, since the translation of assignments to
domains, and from propagation rules to clauses,
completely captures the relationship between the
Boolean representation and the integer variable.

Because of this separation we can indepen-
dently choose which propagator we will use to rep-
resent a problem, without considering the variable
representation. Hence for an individual constraint
we can choose any of the propagators for that con-
straint.

3.3.1 Non-continuous variables

We extend the translation of atomic con-
straints lit to map atomic constraints involv-
ing non-continuous variable x where Dinit(x) =
{d1, . . . , dn} as follows:

lit(x = d) =

{

⊥ d 6∈ {d1, . . . , dn}
[[x = di]] d = di

lit(x 6= d) =

{

> d 6∈ {d1, . . . , dn}
¬[[x = di]] d = di

lit(x 6 d) =

{

> d >= dn

⊥ d < d1

[[x 6 di]] di < d 6 di+1

lit(x > d) =

{

> d 6 d1
⊥ d > dn

¬[[x 6 di]] di < d 6 di+1

Note that each atomic constraint is translated as
a single literal.

Example 9 Consider the translation of the prop-
agation rules x = 3 � y 6= 3 and x 6= 3 � y = 3,
where Dinit(x) = {0, 3, 5} and Dinit(y) = {1, 2, 4}.
The resulting clauses are ¬[[x = 3]] ∨ > or > (the
always true clause) and [[x = 3]]∨⊥ or equivalently
[[x = 3]]. �

3.3.2 Bounds variables

We extend the translation of atomic constraints lit
to map atomic constraints involving bounds vari-
able x where Dinit(x) = [l .. u] as follows:

lit(x = d)=















[[x 6 d]] d = l
[[x 6 d]] ∧ ¬[[x 6 d − 1]], l < d < u
¬[[x 6 u − 1]] d = u
⊥ otherwise

lit(x 6= d)=















¬[[x 6 d]] d = l
¬[[x 6 d]] ∨ [[x 6 d − 1]], l < d < u
[[x 6 u − 1]] d = u
> otherwise

The translations of x 6 d and x > d are as for
full integer variables. Note that these translations
now no longer guarantee to return a single literal.

Clearly “Boolean integer” variables x where
Dinit(x) = [0 .. 1] can be represented as bounds
only variables without loss of expressiveness since
x 6 0 ↔ x = 0 ↔ ¬(x = 1).

We can translate any propagation rule to a con-
junction of clauses by simply applying lit as before.
This creates (a possibly non-clausal) Boolean for-
mulae which can be transformed to conjunctive
normal form.

Example 10 Consider the translation of the
propagation rule x = 3 � y 6= 3, where x and y
are bounds only variables. The resulting formula
is ¬[[x 6 3]] ∨ [[x 6 2]] ∨ [[y 6 2]] ∨ ¬[[y 6 3]], which
is a clause already.

Consider the translation of the propagation rule
x 6= 3 � y = 3. The resulting formula is
¬([[x 6 2]]∨¬[[x 6 3]])∨ ([[y 6 3]]∧¬[[y 6 2]]). The
conjunctive normal form is

¬[[x 6 2]] ∨ [[y 6 3]]
[[x 6 3]] ∨ [[y 6 3]]
¬[[x 6 2]] ∨ ¬[[y 6 2]]
[[x 6 3]] ∨ ¬[[y 6 2]]

It would appear that the conversion of propaga-
tion rules including bounds variables could lead to
an exponential explosion in the number of clauses
required to represent them. By restricting the con-
version of the rules to clauses which may actually
be able to cause unit propagation, in fact we can
represent them with at most 2 clauses.

Lemma 1 If domain D = domain(A) is such that
D(x) |= x 6= d where x is a bounds only variable,
then D(x) |= x > d + 1 or D(x) |= x 6 d − 1.

Proof: Now A can only include literals [[x 6 d′]]
or ¬[[x 6 d′]] for some d′. Hence domain(A)(x) is
a range domain. If D(x) |= x 6= d then either
D(x) |= x > d + 1 or D(x) |= x 6 d − 1. �

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

31

Define the bounds simplification bs(r) of a
propagation rule r ≡ C � c, for domain D =
domain(A) for some assignment A which fires the
rule, as follows. Replace each atomic constraint
x 6= d appearing in C where x is a bounds only
variable by either x 6 d−1 or x > d+1, whichever
holds in D. The resulting propagation rule can
create at most 2 clauses.

Theorem 2 The conjunctive normal form of the
clausal representation of bs(r) involves at most 2
clauses.

Proof: Each atomic constraint appearing in the
left hand side of bs(r) is translated as a single
Boolean literal. The only conjunction that can
occur in the translation is if the right hand side
is an atomic constraint x = d and x is a bounds
variable. The resulting CNF has two clauses. �

Example 11 Consider the translation of the
propagation rule r ≡ x 6= 3 � y = 3 where x
and y are bounds variables ranging over [0 .. 10].
Suppose the domain that causes it to fire is D =
domain(A) where A = {[[x 6 1]]}. Then D(x) =
[0 .. 1] and D(x) |= x 6 2 and bs(r) ≡ x 6 2 �
y = 3. The translation to Booleans is the formula
¬[[x 6 2]] ∨ ([[y 6 3]] ∧ ¬[[y 6 2]]), which in CNF is
(¬[[x 6 2]]∨ [[y 6 3]])∧ (¬[[x 6 2]]∨¬[[y 6 2]]). Note
that the two clauses from Example 10 that are
missing could not fire in A. �

There is an important new behaviour that
arises when we consider using domain propagators
on bounds variables. The result of propagation is
always a clause of a form

cl(C � c) = ∨c′∈C(¬ lit(c′)) ∨ lit(c),

where ¬ lit(c′) are all false in the current assign-
ment and lit(c) is either undefined or false in the
current assignment. Previously lit(c) was always a
single literal, hence we could guarantee unit prop-
agation would apply, and set lit(c) to true. Now
there is a possibility that lit(c) is itself a disjunc-
tion and unit propagation will not apply.

Example 12 Consider the execution of the do-
main propagation for x 6= y (Example 1) where
x and y are bounds variables on the assignment
A = {[[x 6 3]],¬[[x 6 2]]}. Then in the correspond-
ing domain(A)(x) = {3} and the propagation rule
x = 3 � y 6= 3 fires. The resulting clause
is ¬[[x 6 3]] ∨ [[x 6 2]] ∨ ¬[[y 6 3]] ∨ [[y 6 2]]. No
unit propagation is possible using A and this new
clause.

In fact the domain propagator for x 6= y applied
to bounds variables x and y generates exactly the
same clauses as the bounds propagator, but it gen-
erates them earlier! �

3.3.3 Disjunctive propagators

The discussion at the end of the last subsection
motivates examining a new possibility. Propaga-
tion rules are designed so that the result of the
propagation is a single atomic constraint, which

can then be represented immediately as a change
in domain. Given that we will convert the prop-
agation rules to clauses in any case we can ex-
tend them to allow disjunction on the right hand
side. A disjunctive propagation rule has the form
c1 ∧ · · · ∧ cn � cn+1 ∨ · · · ∨ cm. The translation to
clauses is clear cl(c1∧· · ·∧cn � cn+1∨· · ·∨cm) =
¬ lit(c1)∨· · ·∨¬ lit(cn)∨ lit(cn+1)∨· · ·∨ lit(cn+m).
Presently we restrict our implementation to only
support disjunctive propagation rules with at most
two literals on the right hand side.

Example 13 Consider the constraint |x − y| >
k for constant k > 0. The bounds propagator
for this constraint has representation given by the
propagation rules: (where l + k > u − k)

x > l ∧ x 6 u ∧ y 6 l + k − 1 � y 6 u − k
x > l ∧ x 6 u ∧ y > u − k + 1 � y > l + k
y > l ∧ y 6 u ∧ x 6 l + k − 1 � x 6 u − k
y > l ∧ y 6 u ∧ x > u − k + 1 � x > l + k

A more eager version of this propagator fires when
the range on one variable is small enough to guar-
antee some (disjunctive) constraints on the other
variable. It is defined by the disjunctive propaga-
tion rules: (where l + k > u − k)

x > l ∧ x 6 u � y > l + k ∨ y 6 u − k
y > l ∧ y 6 u � x > l + k ∨ x 6 u − k

Disjunctive propagators can be seen as a more
eager form of lazy clause generation.

4 Implementation

The creation of a practical lazy clause genera-
tion solver involves many more considerations than
were addressed in Section 2.4. To build the sys-
tem we add a cut down propagation engine into a
SAT solver and modify it as a lazy clause gener-
ator. We first describe this process as defined in
[11] and then describe the extensions required.

The SAT solver applies unit propagation, and
when it reaches a fixpoint it calls the propagation
engine. The new literals set by the SAT solver are
converted into domain changes in the propagation
solver, and these “events” queue up propagators
for execution.

The first propagator in the queue is then exe-
cuted. If it causes propagation, then the clausal
representation of the first propagation rule that
fires is added to the SAT solver and unit propa-
gation is applied. When the SAT solver finishes
we re-execute the same propagator (which is still
at the head of the queue) to search for another
firing propagation rule. When there are no more
firing rules the propagator is removed from the
queue and the next propagator considered. The
reason we add clauses as soon as possible is to
detect failure as soon as possible. Unit propaga-
tions may schedule (or re-schedule) propagators.
The process continues until the propagation queue
is empty and unit propagation is at fixpoint. At
this point the SAT solver makes a decision about
a literal to set true and search continues.

CRPIT Volume 77 - Theory of Computing 2008

32

On failure the propagation queue is cleared,
and the SAT solver backtracks up the trail of de-
cided and inferred literals. For each canceled lit-
eral we undo the domain change on the corre-
sponding integer variable in the propagation en-
gine.

A subtle point we have not addressed is why we
do not worry about a propagator creating dupli-
cates of clauses corresponding to its propagation
rules, particularly since we can execute the prop-
agator repeatedly simply to create all the propa-
gation rules that fire for one domain. The reason
is that since a propagator f is only run at domain
D = domain(A) for an assignment A which is a
unit propagation fixpoint, then if cl(r) is already
in the SAT solver then r cannot fire on domain D
(it has no new information).

Example 14 Consider the propagation of the
constraint x = y with Dinit(x) = Dinit(y) =
[0 .. 4]. After the SAT solver sets ¬[[x = 2]] and
¬[[y = 3]] the first propagation rule that fires is
x 6= 2 � y 6= 2. This is added as the clause
[[x = 2]]∨¬[[y = 2]] and propagated to set ¬[[y = 2]].
Returning to the propagation engine the, the prop-
agator for x = y is still head of the queue. The
original propagation rule no longer fires since y 6= 2
is not new information. Hence the next propaga-
tion rule y 6= 3 � x 6= 3 is considered. �

The extensions of lazy clause generation we
consider in this paper require modifications to the
implementation. The reason is that using domain
propagators on bounds variables, or more gener-
ally disjunctive propagators means that we can not
be sure that a newly added clause does not already
exist (has not previously been added) since it may
not cause unit propagation with the current as-
signment.

This requires two modifications to the ap-
proach. First disjunctive propagators at the head
of the queue must store an index of propagation
rule processed last, and clear this index every time
the propagator queue is cleared. This is to avoid
them regenerating the same propagation rule when
they are still the head of the queue. Secondly, be-
fore adding a clause corresponding to a disjunctive
propagation rule we need to check that it is not al-
ready in the SAT solver.

We could build a separate data structure to
record which clauses have been sent to the solver.
To avoid the complexity and space required to do
this we re-use existing data structures in the SAT
solver. Suppose a propagation rule C � c1 ∨ c2
already has its corresponding clause Cl in the SAT
solver. All literals in the clause except lit(c1)
and lit(c2) must be false in the current assign-
ment, otherwise the propagation rule would not
fire. The SAT solver keeps track of at least two
literals in each clause which are not false, the so-
called watched literals, in order to detect unit prop-
agations. Hence lit(c1) and lit(c2) must be the
watched literals for Cl. To check if Cl appears in
the SAT solver already, we check all clauses where
lit(c1) is a watched literal (the SAT solver provides
this data structure), and see if one is identical to
Cl.

This check is reasonably expensive, but much
cheaper than looking at all clauses involving lit(c1)
since it will be the watched literal in few of them.

5 Experimental results

All experiments are performed on a 3.4GHZ In-
tel Pentium D with 4Gb RAM running on Debian
Linux 4. The lazy clause generation system is built
using MiniSat [9] version 2.0 beta. We compare
our results against a highly optimized propagation
solver Gecode 1.3.1 [3]. Eager models are run on
MiniSat version 2.0 beta.

5.1 alldifferent propagators

The disequality alldifferent([x1, . . . , xn]) con-
straint requires that ∀1 6 i < j 6 n, xi 6= xj .

In the lazy clause generation solver we can rep-
resent the disequality constraint x 6= y in a num-
ber of ways: (a) using the domain propagator fd

from Example 1, (b) using the bounds propagator
fb from Example 4, and (c) using (bounds) prop-
agators Fr for the reified set of constraints b1 ∨ b2,
b1 ⇔ x+1 6 y, b2 ⇔ y+1 6 x. In fact the last two
representation have exactly the same propagation
behaviour

Lemma 2 Let D(b1) = D(b2) = [0 .. 1], then
solv (Fr, D) ={x,y} solv ({fb}, D).

Proof: Suppose a propagation rule for fb fires in
D. Assume it has the form x > d ∧ x 6 d ∧ y >
d � y > d + 1, reasoning for the other rules is
analogous. Then the propagation rule y > d∧x 6
d � b2 6 0 from b2 ⇔ y + 1 6 x fires. Hence
the propagation rule b2 6 0 � b1 > 1 from b1 ∨ b2
fires, and hence the rule b1 > 1∧x > d � y > d+1
from b1 ⇔ x + 1 6 y fires.

In the reverse direction suppose a propagation
rule for Fr fires in D modifying x or y. Assume
it is of the form b1 > 1 ∧ x > d � y > d + 1,
reasoning for other rules is analogous. Then since
b1 > 1 is true, and is not true in D, either a rule
x 6 d′ ∧ y > d′ + 1 � b1 > 1 fires or b2 6 0 �
b1 > 1 fires.

Suppose a rule of the first kind fired. Now d′ >
d since x > d and x 6 d′ both hold and d + 1 >
d′ + 1 otherwise y > d + 1 is not new information.
This is a contradiction

Hence the second rule must fire. Since b2 6 0
is now true, a rule of the form y > d′′ ∧ x 6 d′′ �
b2 6 0 must have fired for some d′′. Since the
first rule creates new information y > d + 1 is
stronger that y > d′′ hence d > d′′. But since
D ensures both x > d and x 6 d′′ we have that
d > d′′ > x > d, so d = d′′. Hence D ensure that
x > d, x 6 d and y > d and hence fb fires the
rule x > d ∧ x 6 d ∧ y > d � y > d + 1, causing
y > d + 1. �

There are more complex propagators for
alldifferent([x1, . . . , xn]) (see the survey [15])
that implement more complex rules based on Hall
sets [4]. A hall set H is a subset of {x1, . . . xn}

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

33

such that |H | > |S| where S = ∪v∈HD(v)|. If
|H | > |S| the propagation rule is

∧v∈H ∧d∈Dinit(v)−S v 6= d � false

If |H | = |S| the propagation rules are for each
v′ ∈ {x1, . . . , xn} − H and d′ ∈ S

∧v∈H ∧d∈Dinit(v)−S v 6= d � v′ 6= d′

The domain propagation of Regin [12] implements
all propagation rules for all possible Hall sets.
Given there are exponentially many Hall sets,
these stronger propagators do not necessarily lead
to advantage in lazy clause generation.

5.2 Quasigroup Completion Problems

A n × n latin square is a square of values xij , 1 6

i, j 6 n where each number [1 .. n] appears exactly
once in each row and column. It is represented by
constraints

alldifferent([xi1, . . . , xin], 1 6 i 6 n
alldifferent([x1j , . . . , xnj], 1 6 j 6 n

The quasigroup completion problem (QCP) is a
latin square problem where some of the xij are
given. These are challenging problems which ex-
hibit phase transition behaviour. We use examples
from the 2006 Constraint Satisfaction Solver Com-
petition [2].

Table 1 compares the user time for finding the
first solution of quasigroup completion problems of
size 15×15 for various modelling possibilities. The
choices are 3 letter codes: eager or lazy modelling,
bounds or full integer representation, and bounds
(fb), domain (fd) or reified (Fr) propagators for
representing disequality. Note that for the eager
approach with bound variable representation the
clauses for the bound and domain propagator are
exactly the same, and thus we write eb(bd) to
denote ebb and ebd. We also compare against
Gecode [3]. For eager modelling the time for con-
structing the clausal representation is included, it
is either 0.01 or 0.02 seconds. The benchmarks
0–9 are satisfiable while 10–14 are unsatisfiable.
We omit lbr from the tables, since they are not
competitive for these benchmarks.

The eager approaches are best for these exam-
ples, while the lfd combination is the best lazy
approach. This is interesting as the bounds rep-
resentation is quite poor for the lazy approach,
but better than the domain representation for the
eager approach. The larger the search required
the poorer Gecode performs in comparison to the
SAT/hybrid approaches.

Table 2 shows the results on 25×25 QCP prob-
lems in order to see the trend for modelling choices
as size increases. These problems are hard for
Gecode, taking hours to complete. In 6 out of 15
instances lfd improves upon the eager approach
efd, and overall it solves the whole suite faster.
Even though QCP problems are small (the cost of
eager clause generation is less than 0.10 seconds)

the lazy approach avoids the overhead of exam-
ining many useless clauses, and hence starts out-
performing the eager approach as the problem size
grows. Interestingly eb(bd) is still better than the
lazy approach lfd for these problems, even though
the lazy bounds representations are poor. Exam-
ining the novel combination lbd we see that for
2 instances it gives the best results, and it suf-
fers significantly greater overhead because it has
to check for duplicate clauses. With a dedicated
systems for duplicate clause checking it could be
improved further.

Table 3 shows the search space for each ap-
proach. While lfd has the overhead of propagator
execution compared to efd and eb(bd) it usually
requires less search, since only the used clauses
are counted for the search heuristic. Clearly there
is an overhead for the full integer representation.
When lbd leads to around the same search space
as lfd it is twice as fast.

5.3 Magic Squares Problems

A n×n magic square is a square of values xij , 1 6

i, j 6 n where each number in
[

1 .. n2
]

occurs ex-
actly once and each row, column and major diag-
onal adds to the same number (s = n(n2 + 1)/2).
It is represented by one alldifferent constraint,
and 2n + 2 linear equations.

In Table 4 we compare various modelling
choices for magic square problems, for finding the
first solution (F) and all solutions (A)(for small
problems). The ∗ entries arise since the eager ap-
proach eb(bd) could not search for all solutions
(A) since this required modifying the SAT solver.

For these problems, the first fail search strategy
of Gecode is clearly much better than the VSIDS
search used by our hybrid. The eager modelling
approach quickly fails since just the generation of
the clauses for

∑n

i=1 xij = s requires more than
400 seconds. The additional variables [[x = d]] in
the full integer variable representation cause too
much overhead for these example, the bounds rep-
resentations are clearly superior. Of these the
hybrid disjunctive propagator performs well. In-
terestingly lbr which has the same propagation
strength as lbb is superior on the harder prob-
lems. This may be because nogoods can make use
of the Boolean reification variables to record more
pertinent information about failures.

5.4 CELAR Radio Link Frequency Assign-
ment Problems

The CELAR Radio Link Frequency Assignment
Problems [1] consist of a set of radio frequencies
and a set of radio links to assign a frequency to
each radio link. Some pairs of radio links must be
an exact distance apart in frequency, while other
should be at least some distance apart. We use
the first 5 problems (where all constraints are mu-
tually satisfiable) while minimizing the maximum
frequency used. The set of possible frequencies F
is non-continuous:

{2 + 14i|1 6 i 6 11} ∪ {2 + 14i|18 6 i 6 28}
∪{8 + 14i|29 6 i 6 30} ∪ {8 + 14i|46 6 i 6 56},

CRPIT Volume 77 - Theory of Computing 2008

34

Table 1: QCP 15 × 15 instances: user time

Benchmark
Time(sec)

efd eb(bd) lfd lbd lbb gecode
qcp-15-120-0 ext 0.05 0.02 0.03 0.14 0.64 0.02
qcp-15-120-1 ext 0.04 0.04 0.06 0.22 0.74 0.08
qcp-15-120-2 ext 0.08 0.02 0.05 0.16 0.74 454.53
qcp-15-120-3 ext 0.05 0.04 0.14 0.26 0.84 0.19
qcp-15-120-4 ext 0.20 0.02 0.02 0.33 0.65 5.50
qcp-15-120-5 ext 0.15 0.09 0.21 0.62 2.52 117.08
qcp-15-120-6 ext 0.04 0.02 0.01 0.17 1.01 38.01
qcp-15-120-7 ext 0.11 0.13 0.29 0.24 0.97 1.28
qcp-15-120-8 ext 0.05 0.10 0.04 0.18 0.76 6.70
qcp-15-120-9 ext 0.08 0.14 0.24 0.27 0.78 1685.44
qcp-15-120-10 ext 0.06 0.04 0.04 0.20 0.55 1044.80
qcp-15-120-11 ext 0.03 0.05 0.01 0.32 0.41 47.64
qcp-15-120-12 ext 0.03 0.01 0.02 0.04 0.41 862.29
qcp-15-120-13 ext 0.16 0.30 0.17 0.21 1.57 179.18
qcp-15-120-14 ext 0.02 0.01 0.01 0.01 0.62 2034.72
Arith mean 0.08 0.07 0.09 0.22 0.88 431.83
Geom mean 0.06 0.04 0.05 0.17 0.78 24.67

Table 2: QCP 25 × 25: user time

Benchmark Time(sec)
efd eb(bd) lfd lbd lbb

qcp-25-264-0 ext 114.07 65.56 149.88 85.89 242.73
qcp-25-264-1 ext 832.31 108.37 99.84 374.77 1346.06
qcp-25-264-2 ext 15.40 44.40 12.25 47.34 144.92
qcp-25-264-3 ext 542.61 273.36 442.57 532.47 1655.22
qcp-25-264-4 ext 265.00 268.84 24.87 418.33 1136.17
qcp-25-264-5 ext 108.60 146.36 341.25 158.62 4810.77
qcp-25-264-6 ext 255.60 185.53 130.06 127.91 871.80
qcp-25-264-7 ext 35.36 1.52 34.07 78.26 269.61
qcp-25-264-8 ext 9.52 48.36 81.10 171.35 998.53
qcp-25-264-9 ext 27.80 153.52 286.20 710.96 1043.52
qcp-25-264-10 ext 30.92 125.67 165.77 346.78 631.13
qcp-25-264-11 ext 0.14 0.06 0.10 0.17 7.16
qcp-25-264-12 ext 0.23 0.21 0.24 0.32 11.90
qcp-25-264-13 ext 0.36 0.29 0.34 0.34 9.83
qcp-25-264-14 ext 107.82 131.88 175.01 176.97 901.36
Arith mean 156.38 103.60 129.57 215.37 938.71
Geom mean 26.40 23.75 30.31 53.07 326.03

using only 44 values in the range [16 .. 792] of
777 possible values. We model the problem using
bounds propagators for |x − y| > k (see Exam-
ple 13), and model |x − y| = k using the bounds
propagators for |x−y| > k∧x−y 6 k∧y−x 6 k.

We compare the full integer representation,
non-continuous representation, bounds represen-
tation, and non-continuous bounds representation.
For the full integer representation we statically
add constraints ¬[[x = d]], d ∈ [16 .. 792] − F to
the SAT solver, while for the bounds representa-
tion we statically add the constraints ¬[[x 6 di]] ∨
[[x 6 di+1]] where di and di+1 are consecutive val-
ues in F . We also compare with Gecode using
reified constraints to represent |x − y| > k as
x − y > k ∨ y − x > k.

The results for the various modelling choices
are shown for: user time in Table 6, failures in
Table 7, and unit propagation executed in Ta-
ble 8. Clearly the non-continuous representations
are significantly better than the continuous rep-

Table 6: CELAR problems: user time

Prob
User Time(sec)

lfb lnb lbb lob gecode
scen01 285.22 13.67 104.65 9.37 > 400
scen02 2.03 0.16 0.86 0.11 > 400
scen03 39.90 3.16 20.06 2.19 > 400
scen04 2.17 0.16 0.88 0.10 0.46
scen05 2.25 0.17 0.96 0.10 0.34

resentations, they involve around 20× fewer vari-
ables. The failure results show that it is not the
results of a better search because there are fewer
Boolean variables to branch on, instead it is sim-
ply the overhead of more unit propagations to deal
with the larger number of variables.

This clearly shows the benefit of separation of
propagator implementation from variable repre-
sentation. The propagator is highly effective on

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

35

Table 3: QCP 25 × 25: conflicts (000s)

Benchmark Conflicts/Failures
efd eb(bd) lfd lbd lbb

qcp-25-264-0 ext 212 117 159 174 588
qcp-25-264-1 ext 1037 178 119 626 2498
qcp-25-264-2 ext 44 99 29 125 463
qcp-25-264-3 ext 814 393 399 892 3284
qcp-25-264-4 ext 417 405 42 760 2424
qcp-25-264-5 ext 210 256 325 345 7890
qcp-25-264-6 ext 397 282 161 273 1701
qcp-25-264-7 ext 84 9.6 60 178 631
qcp-25-264-8 ext 30 96 102 352 2142
qcp-25-264-9 ext 70 261 291 1301 2307
qcp-25-264-10 ext 76 226 182 709 1503
qcp-25-264-11 ext 0.2 0.2 0.3 0.7 11
qcp-25-264-12 ext 1.6 3.1 2.1 2.8 48
qcp-25-264-13 ext 4.1 4.1 3.9 3.1 31
qcp-25-264-14 ext 192 208 170 352 1832
Arith mean 239 169 136 406 1824
Geom mean 64 61 53 137 736

Table 4: Magic squares: user time

nT User Time(sec)
eb(bd) lfd lbd lbb lbr gecode

3F 0.16 0.00 0.00 0.00 0.00 0.00
3A * 0.00 0.00 0.00 0.00 0.00
4F 8.92 0.04 0.04 0.01 0.16 0.01
4A * 866.38 745.87 810.84 803.09 2.26
5F > 400 307.15 1.04 1.19 0.79 0.81
6F > 400 31.87 0.39 99.92 17.50 0.00
7F > 400 > 400 > 400 > 400 > 400 5.25

Table 7: CELAR problems: Conflicts/Failures

Prob
Conflicts/Failures

lfb lnb lbb lob gecode
scen01 5036 4542 4160 4247 —
scen02 202 127 180 261 —
scen03 3039 2380 2667 2553 —
scen04 7 6 2 1 31
scen05 17 22 36 24 74

Table 8: CELAR problems: unit propagations

Prob
Unit Propagations

lfb lnb lbb lob
scen01 177561515 13081789 133403108 7133763
scen02 1969516 183084 1732660 112612
scen03 43087573 3608960 38598246 1918102
scen04 628192 36289 304949 17368
scen05 901257 65516 1375927 47145

the non-continuous Boolean representations with-
out being modified.

Interestingly for these problems the disjunctive
propagator explained in Example 13 does not im-
prove upon the bounds propagator.

6 Related Work and Conclusion

The motivating earlier work for the lazy clause
generation approach was twofold.

The paper [5] described a hybrid binary deci-
sion diagram (BDD) and SAT solver for solving
problems involving set variables, which used the
SAT solver as nogood engine for a BDD propaga-
tion solver. The hybrid leaves control of search to
the BDD solver, and does not include integer vari-
ables. Lazy clause generation imbeds the propa-
gation engine in the SAT solver and puts the SAT
solver in charge of search. Set variables have only a
single possible Boolean representation so the mod-
elling choices we explore here do not arise.

The paper [14] explained how to statically en-
code linear arithmetic constraints into CNF (hence
eager modelling) using the propositions [[x 6 d]].
The approach is manifestly impractical when the
linear constraint involves a significant number of
variables (as illustrated by e.g. magic squares 5).
The lazy clause generation approach makes the en-
coding of linear arithmetic possible for large linear
constraints, and allows encoding of arbitrary prop-
agators.

There are propagation solvers which allow dif-
ferent representation of integers, in particular Min-
ion [8] and Gecode [3]. All representations either
support all atomic constraints or are restricted in
the propagators they can be used. The views ap-

CRPIT Volume 77 - Theory of Computing 2008

36

Table 5: Magic squares: conflicts

nT
Conflicts/Failure

eb(bd) lfd lbd lbb lbr gecode
3F 15 3 9 14 12 6
3A * 31 34 43 34 36
4F 51 569 560 160 1326 892
4A * 1000776 898347 1050572 869813 235545
5F — 201531 7578 8149 3212 72227
6F — 53332 2991 137545 21644 27
7F — — — — — 481301

proach of Gecode [13] allows variables defined by
simple constraints to be seen as mappings from
atomic constraint to atomic constraints, and hence
has some similarity with the mapping idea of this
paper. For example a variable y = x+3 effectively
rewrites atomic constraint like x > 4 to y > 6 and
vice versa. It would be useful to include views in
the lazy clause generation solver, since it reduces
the number of Boolean variables required.

In this paper we examine the modelling choices
that arise when using the lazy clause generation
hybrid solving approach devised in [11]. We find
that the separation of choice of propagator from
Boolean variable representation leads to an in-
creased number of modelling choices. The di-
rect representation of non-continuous variables is
clearly advantageous, and there is some evidence
that the use of disjunctive propagators (domain
propagators for bounds variables) can improve
upon other modelling approaches.

References

[1] B. Cabon, S. de Givrey, L. Lobjois, T. Schiex,
and L.P. Warners. Radio link frequency as-
signment. Constraints, 4(1):78–89, 1999.

[2] CSP competition 2006.
http://cpai.ucc.ie/06/Competition.html.
[Jun07].

[3] GECODE. www.gecode.org. [Feb07].

[4] P. Hall. On representatives of subsets.
Journal of the London Mathematical Society,
10:26–30, 1935.

[5] P. Hawkins and P.J. Stuckey. A hybrid BDD
and SAT finite domain constraint solver. In
P. Van Hentenryck, editor, Proceedings of
the Practical Applications of Declarative Pro-
gramming, number 3819 in LNCS, pages 103–
117. Springer-Verlag, 2006.

[6] P. Laborie. Complete MCS-based search:
Application to resource constrained project
scheduling. In Proceedings IJCAI 2005, pages
181–186, 2005.

[7] Alan K. Mackworth. Consistency in networks
of relations. Artificial Intelligence, 8(1):99–
118, 1977.

[8] Minion. minion.sourceforge.net. [Feb07].

[9] MiniSat. www.cs.chalmers.se/Cs/Research/
FormalMethods/MiniSat/. [Dec06].

[10] R. Niewenhuis, A. Oliveras, and C. Tinelli.
Abstract DPLL and abstract DPLL modulo
theories. In LPAR’04, volume 3452 of LNAI,
pages 36–50, 2004.

[11] O. Ohrimenko, P.J. Stuckey, and M. Codish.
Propagation = lazy clause generation. In
C. Bessiere, editor, Proceedings of the 13th
International Conference on Principles and
Practice of Constraint Programming, LNCS,
page to appear. Springer-Verlag, 2007.

[12] J-C. Regin. A filtering algorithm for con-
straints of difference in CSPs. In Proceedings
of the Twelfth National Conference on Arti-
ficial Intelligence, volume 1, pages 362–367,
Seattle, WA, USA, 1994. AAAI Press.

[13] Guido Tack, Christian Schulte, and Gert
Smolka. Generating propagators for finite set
constraints. In Fréderic Benhamou, editor,
12th International Conference on Principles
and Practice of Constraint Programming, vol-
ume 4204 of Lecture Notes in Computer Sci-
ence, pages 575–589. Springer, 2006.

[14] N. Tamura, A. Taga, S. Kitagawa, and
M. Banbara. Compiling finite linear CSP to
SAT. In Proceedings of CP-2006, volume 4204
of LNCS, pages 590–603, 2006.

[15] W.J. van Hoeve. The alld-
ifferent constraint: a survey.
http://arxiv.org/abs/cs/0105015, 2001.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

37

CRPIT Volume 77 - Theory of Computing 2008

38

The Core Concept for 0/1 Integer Programming

Sam Huston2 Jakob Puchinger1,2 Peter Stuckey1,2

1 NICTA Victoria Laboratory
2 Department of Computer Science and Software Engineering,

University of Melbourne, Victoria 3010, Australia,
Email: {shuston,jakobp,pjs}@csse.unimelb.edu.au

Abstract

In this paper we examine an extension of the
core concept for the 0/1 Multidimensional Knap-
sack Problem (MKP) towards general 0/1 Integer
Programming (IP) by allowing negative profits,
weights and capacities. The core concept provides
opportunities for heuristically solving the MKP,
achieving higher quality solutions and shorter run-
times than general IP methods. We provide the
theoretical foundations of the extended core con-
cept and further provide computational experi-
ments showing that we can achieve similar com-
putational behavior for extended MKP instances
with negative weights, profits and capacities.

1 Introduction

The core concept for the 0/1 Multidimensional
Knapsack Problem (MKP) (Puchinger et al. 2006,
2007) has been shown to be very effective in
providing opportunities for heuristically solving
the MKP, achieving higher quality solutions and
shorter run-times than general IP methods. In this
paper we will examine the possibilities of extend-
ing the core concept towards general 0/1 Integer
Programming (IP).

The Multidimensional Knapsack Problem
(MKP) is defined as:

maximize z =

n
∑

j=1

pjxj (1)

subject to
n
∑

j=1

wijxj ≤ ci, i = 1, . . . , m (2)

xj ∈ {0, 1}, j = 1, . . . , n., (3)

where the profits pj , the weights wij , and the ca-
pacities ci are all positive. Allowing negative val-
ues for those parameters results in general 0/1 In-
teger Problems. This is because it is possible to

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at Computing: The Australian Theory Sympo-
sium (CATS 2008), Wollongong, Australia. Conferences in Re-
search and Practice in Information Technology, Vol. 77. James
Harland and Prabhu Manyem, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

transform any 0/1 IP into this format. (Bertsimas
& Tsitsiklis 1997)

The aim of the core concept is to reduce the
original problem to a core of items for which it is
hard to decide whether or not they will occur in
an optimal solution. All variables corresponding
to items outside the core are fixed to their optimal
values.

The core of a given MKP is defined with re-
spect to some ordering of the variables in the prob-
lem. The ordering results in variables that are ex-
pected to be in the knapsack (set to one) occur
before those which are not expected to be in the
knapsack (set to zero). Given the optimal solu-
tion of the MKP the exact core is defined as the
set of variables from the first variable that takes
the value zero to the last variable that takes the
value one. In order to devise an exact core for a
given MKP, the optimal solution has to be known.
However, being able to heuristically obtain good
approximations to cores and solve those smaller
problems, may lead to high quality solutions in
short computational times.

The underlying concept of such a heuristic is
to order the items of the MKP according to a spe-
cific efficiency measure. This ordering will allow to
partition the items into three sections. The first
section which contains items which are included
in the knapsack (variables set to one). The second
section, named the approximate core, containing
the items which may or may not be included in
the knapsack (variables set to either one or zero).
Finally the third section contains the items which
are not included in the knapsack (variables set to
zero). The aim is to have the approximate core
closely mimic the exact core.

The following example illustrates the core con-
cept for a small 2-dimensional knapsack problem.
The variables are ordered by an efficiency measure
described later. The first line shows the optimal
integer solution, while the second line shows the
optimal solution to the LP-relaxation of the prob-
lem. The exact core is shown in bold in the first
line, while an approximate core (adding 2 variables
around the non 0-1 LP solution values) is shown
in bold in the second line.

IP 1 1 0 0 1 0 1 0 0 0
LP 1 1 1 1 1 0.96 0.23 0 0 0

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

39

In the remainder of the paper, we first intro-
duce the core concept in the context of its previous
uses. We then extend the efficiency measure used
for MKPs to general 0/1 Integer Programs, and
prove that the efficiency measure is tightly related
to the optimal solution. In Section 4 we show the
result of experiments illustrating the effectiveness
of the approximate core computations, the loss of
precision that arises from restricting the problem
to an approximate core, and the improvement in
best solutions found if we use approximate cores.

2 Background

2.1 The Multidimensional Knapsack
Problem

A comprehensive overview of practical and the-
oretical results for the MKP can be found in
the monograph on knapsack problems by Kellerer
et al. (Kellerer et al. 2004). Solving the MKP
with heuristic methods seems to be the method of
choice for the bigger instances described in the lit-
erature, since no exact method is known for solving
these instances to optimality. Besides exact tech-
niques for solving small to moderately sized in-
stances, based on dynamic programming (Gilmore
& Gomory 1966, Weingartner & Ness 1967) and
branch-and-bound (Shih 1979, Gavish & Pirkul
1985), many kinds of meta-heuristics have been
applied to the MKP (Glover & Kochenberger 1996,
Chu & Beasley 1998). See (Raidl & Gottlieb 2005)
for a recent survey and comparison of evolution-
ary algorithms for the MKP. The hybrid tabu-
search methods presented in (Vasquez & Hao 2001,
Vasquez & Vimont 2005) are currently yielding the
best known results for the commonly used bench-
mark instances.

2.2 The core concept for KP and MKP

The core concept was first presented for the clas-
sical 0/1-Knapsack Problem (KP) (Balas & Zemel
1980) and led to very successful knapsack al-
gorithms (Martello & Toth 1988, Pisinger 1995,
1997). These ideas were also studied in the con-
text of bi-criteria knapsack problems in (Gomes da
Silva et al. 2005). The core concept was success-
fully extended to the MKP (Puchinger et al. 2006,
2007), leading to highly competitive heuristic al-
gorithms.

It should be noted here that the KP core con-
cept is not effective for producing good heuris-
tic solutions for strongly correlated problem in-
stances. Pisinger (Pisinger 1995) discusses why
these problems are difficult to solve using the
core concept. We would expect similar results for
strongly correlated general 0/1 IP problems.

The classical greedy heuristic for KP packs the
items into the knapsack in decreasing order of their
efficiencies

pj

wj
as long as the knapsack constraint

is not violated. The same ordering also defines
the solution structure of the LP-relaxation, which
consists of three parts: The first part contains all
variables set to one, the second part consists of
at most one split item (s), whose corresponding

LP-value is fractional, and finally the remaining
variables, which are always set to zero, form the
third part.

The precise definition of the core of KP intro-
duced by (Balas & Zemel 1980) requires the knowl-
edge of an optimal integer solution x∗. Assume
that the items are sorted according to decreasing
efficiencies and let

a := min{j | x∗

j = 0}, b := max{j | x∗

j = 1}.
(4)

The core is given by the items in the interval
C = {a, . . . , b}. It is obvious that the split item
is always part of the core. If the split item would
not be part of the core, the core would either start
after the split item or end before it. The first case
is impossible, since this would break the capacity
constraint. The second case would contradict the
optimality of the solution, because we would still
be able to add more items to the knapsack without
violating the capacity constraint.

These ideas have been expanded to MKP with-
out major difficulties (Puchinger et al. 2006,
2007). The main difference is that the choice of
the efficiency measure is not obvious for the MKP
any more. The efficiency measure:

ej =
pj

sj

,

where sj =
∑m

i=1
uiwij , and ui are the dual vari-

able values of the LP-relaxation of the MKP, pro-
vided the best theoretical and practical results.

Let x∗ be an optimal solution and assume that
the items are sorted according to the decreasing
efficiency measure e, then define

a := min{j | x∗

j = 0} and b := max{j | x∗

j = 1}.
(5)

The core is given by the items in the interval
C := {a, . . . , b}, and the core problem (MKPC)
is defined as

maximize z =
∑

j∈C

pjxj + p̃ (6)

subject to
∑

j∈C

wijxj ≤ ci − w̃i, i = 1, . . . , m

(7)

xj ∈ {0, 1}, j ∈ C, (8)

with p̃ =
∑a−1

j=1
pj and w̃i =

∑a−1

j=1
wij , i =

1, . . . , m.
In contrast to KP, the solution of the LP-

relaxation of MKP does not consist of a single frac-
tional split item, but its up to m fractional values
give rise to a whole split interval S := {s, . . . , t},
where s and t are the first and the last index of
variables with fractional values after sorting by ef-
ficiency e.

The split interval Se has been precisely char-
acterized. Let xLP be the optimal solution of the
LP-relaxation of MKP.

CRPIT Volume 77 - Theory of Computing 2008

40

Theorem 1 ((Puchinger et al. 2006, 2007))
For efficiency values ej we have:

xLP

j =







1 if ej > 1 ,

∈ [0, 1] if ej = 1 ,

0 if ej < 1 .

(9)

3 Extending the core concept

As mentioned above, the main goal of this paper is
to extend the core concept to general 0/1 Integer
Programs. We show how the efficiency measure for
the classical MKP problem can be adapted in such
a way that the ordering of the variables according
to this measure remains valuable for devising good
approximate cores. We further provide a charac-
terization of the structure of the LP relaxation of
the 0/1 Integer Program.

We take all 0/1 IP problems to be trans-
formable into the same structure as MKP, see
equation 1.

Such a transformation is possible for any
0/1 IP, see any linear programming text book,
(e.g. (Bertsimas & Tsitsiklis 1997)). This means
that the only difference between MKP and this for-
mulation of 0/1 IP problems is that the coefficients
are permitted to take either positive or negative
values.

We extend the previously defined efficiency
measure ej to create a tuple based measure. We
introduce ordering variables, oj which take values
representing a section of the ordering. Variables
xj are sorted in decreasing (lexicographic) order
of efficiency (oj , ej), in other words they are first
sorted by section variable, oj , and then efficiency
value ej .

These extensions are implemented as indicated
in equation 10:

(oj , ej) =



























































(7,
pj

sj
) if pj > 0 ∧ sj < 0

(6, pj) if pj > 0 ∧ sj = 0
(5, 1

sj
) if pj = 0 ∧ sj < 0

(4,
pj

sj
) if pj > 0 ∧ sj > 0

(4,
sj

pj
) if pj < 0 ∧ sj < 0

(4, 1) if pj = 0 ∧ sj = 0
(3, 1

sj
) if pj = 0 ∧ sj > 0

(2, pj) if pj < 0 ∧ sj = 0
(1,

pj

sj
) if pj < 0 ∧ sj > 0

(10)

The ordering is designed to minimize the size
of the split interval, which is completely contained
in section oj = 4. Our experiments in Section 4
show that the center of the core and the center
of the split interval are close for our benchmark
instances.

The sections oj ∈ {7, 6, 5} contain items that
are purely beneficial: they either increase profit or
“on average” remove weight from the optimal so-
lution without decreasing profit. They are ordered
to maximize profit and removal of weight. Simi-
larly the sections oj ∈ {1, 2, 3} contain items that

are purely detrimental to the problem: they ei-
ther decrease profit or add weight. Again they are
ordered to maximize profit and removal of weight.

Using this efficiency measure the nature of the
split interval can be characterized as follows. Let
xLP be the optimal solution of the LP-relaxation
of general 0/1 IP.

Theorem 2

xLP
j =

{

1 if ej > 1 or oj > 4,
∈ [0, 1] if ej = 1 and oj = 4,
0 if 0 ≤ ej < 1 or oj < 4.

(11)

Proof The dual LP (DLP) associated with the
LP-relaxation of the general 0/1 IP formulation is
given by:

minimise

m
∑

i=1

ciui +

n
∑

j=1

vj (12)

subject to

m
∑

i=1

wijui + vj ≥ pj, j = 1, ..., n (13)

ui, vj ≥ 0, i = 1, ..., m, j = 1, ..., n, (14)

where ui are the dual variables corresponding to
the problem’s constraints and each vj corresponds
to the inequality xj ≤ 1. For the optimal primal
and dual solutions the following complementary
slackness conditions hold for j = 1, ..., n. .

xj

(

m
∑

i=1

wijui + vj − pj

)

= 0 (15)

vj (xj − 1) = 0 (16)

(For more details on linear programming du-
ality and complementary slackness conditions,
refer to any textbook on linear programming,
e.g.(Bertsimas & Tsitsiklis 1997).)

We illustrate the result for each section in the
definitions of the ordered tuple (oj , ej).

Consider the top 3 sections (oj ∈ {7, 6, 5}).
Clearly in each case we have that pj > sj . Hence
satisfying equation (13) requires that vj > 0.
Therefore equation (16) implies that xj = 1.

Consider the bottom 3 sections (oj ∈ {1, 2, 3}).
Clearly in each case pj < sj . Hence the expression
∑m

i=1
wijui + vj − pj or equivalently sj + vj − pj

is greater than 0, since vj ≥ 0. In order to satisfy
equation 15 xj = 0.

For section (4,
pj

sj
) we consider two cases. If

ej =
pj

sj
> 1 then pj > sj since sj > 0 and the

same reasoning as for cases oj ∈ {7, 6, 5} applies,
while if ej < 1 then pj < sj and the same reasoning
as cases oj ∈ {1, 2, 3} applies.

For section (4,
sj

pj
) we consider two cases. If

ej =
sj

pj
> 1 then pj > sj since pj < 0 and the

same reasoning as for cases oj ∈ {7, 6, 5} applies,

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

41

while if ej < 1 then pj < sj and the same reasoning
as cases oj ∈ {1, 2, 3} applies.

For the remaining case, ej = 1 and oj = 4,
there is nothing to prove.

�

The ordering within the top and bottom groups
oj ∈ {1, 2, 3}, and oj ∈ {5, 6, 7} is not set by the
proof, these orderings are based upon maximizing
profit. Other possible orderings could be consid-
ered for these groups without changing our char-
acterization of the split interval.

An illustration of the ordering (oj , ej) is given
in Table 1. This example shows some of the sec-
tions described above. As predicted by the theo-
rem, the split interval exists entirely within section
oj = 4.

4 Computational experiments

4.1 Benchmark Problems

All of the following computational experiments
were performed on a 3GHz Intel Pentium D with 4
Gb RAM, using the programming language Mer-
cury and the commercial mixed integer program-
ming solver CPLEX 10.0.

In order to study the core concept on 0/1 IP
we generated example problems using the Chu
and Beasley (Chu & Beasley 1998) benchmark in-
stances for the MKP, as the starting point.

These benchmark problems consist of classes
of randomly created instances for each combina-
tion of n ∈ {100, 250, 500} items, m ∈ {5, 10, 30}
constraints and tightness ratios 0.25, 0.50.75. The
tightness ratio refers to the ratio between the con-
straint value and the sum of the corresponding
weights.

α =
ci

∑n

j=1
wij

∈ {0.25, 0.5, 0.75} (17)

Weights are integers between 0 and 1000. Prof-
its are generated by the equation:

pj =
m
∑

i=1

wij

m
+ [500ri] ∈ {0.25, 0.5, 0.75}

where ri is a random number generated from (0, 1].
For each permutation of n, m and α, 10 instances
are provided.

In order to generate 0/1 Integer Programs with
negative values we multiply a random percent-
age of the weights and profits of a given problem
by −1. The percentages used are 5%, 10%, 20%.
Larger percentages of negative values were tried,
however the problems quickly became optimally
solvable in short run-times.

The set of profits and the set of all weights are
operated on separately. This ensures that there is
a fixed percentage of negative profits and a fixed
percentage of negative weights. Combinations of
different percentages of negative weights and prof-
its were tried, however almost invariably this made
the problems easier and thus faster to solve.

This process will change the tightness ratio. In
order to maintain the tightness ratio the capacities
have to be adjusted:

ĉi =
ci ∗

∑n

j=1
ŵi,j

∑n

j=1
wi,j

,

wi,j represents the original weights, ŵi,j represents
the adjusted weights, and ĉi represents the new
constraint value. Since the sum of the adjusted
weights may become negative, it is possible that
the new capacity ĉi will also be negative.

It can be seen that the generated problems are
general 0/1 IP problems. There are nine classes
of generated problems for each combination of n
and m, corresponding to three different tightness
ratios, and the three percentages of negative coef-
ficients.

4.2 0/1 IP Core Analysis

We provide empirical results supporting our adap-
tation of the efficiency measure e, (see Table 2).
This table shows information about actual cores
when the above efficiency function is utilized. The
problems shown in these tables are based upon
the smaller instances in Chu and Beasley’s bench-
mark library (Chu & Beasley 1998). Specifically
these problems use n = 100, m ∈ {5, 10}, and
n = 250, m = 5. These problems were cho-
sen because they are solvable in reasonable run-
time. This means that the optimal solutions can
be found, and the size of the core can be deter-
mined.

The tables show the averaged values over 10
problem instances. Average values listed include
size of the split interval (|Se|), size of the exact core
(|Ce|), percentage that the split interval covers the
exact core (ScC), percentage that the exact core
covers the split interval (ScC), and the distance
between the center of the split interval and the
center of the exact core (|Cdist|) as a percentage
of the number of items in the problem.

The table entries for 0% negative coefficients
shows that the newly defined efficiency value pro-
vides equivalent results for standard MKP prob-
lems as those reported in (Puchinger et al. 2006,
2007). As expected from Theorem 2, negative val-
ues do not increase the size of the split interval.
The size of the split interval and the core actu-
ally decreases as the number of negative weights
increases. The center of the core remains close
to the center of the split interval. These results
show that the chosen ordering, based on the opti-
mal dual variable values of the LP-relaxation, is a
good indicator of the actual location of the core.

4.3 Approximate core algorithm

In order to evaluate the influence of negative val-
ues on solution quality and run-times an approxi-
mate core algorithm was implemented. This algo-
rithm is similar to the algorithm implemented by
(Puchinger et al. 2006, 2007). The approximate
core is generated by adding δ items to either side
of the center of the split interval. The values of

CRPIT Volume 77 - Theory of Computing 2008

42

Weight1 Weight2 Profit sj (oj , ej) LP IP
-1 -1 1 -0.89 (7,0.89) 1.00 1
-9 12 7 -5.17 (7,0.74) 1.00 1
0 0 8 0.00 (6,8.00) 1.00 1
-2 13 12 0.24 (4,50) 1.00 1
5 0 19 3.77 (4,5.04) 1.00 1
-5 -4 -3 -4.31 (4,1.44) 1.00 1
16 21 18 14.88 (4,1.21) 1.00 1
13 15 14 11.81 (4,1.19) 1.00 0
-6 -10 -5 -5.87 (4,1.17) 1.00 1
20 -8 14 14.00 (4,1.00) 0.71 1
-6 -11 -6 -6.00 (4,1.00) 0.85 0
20 16 15 17.22 (4,0.87) 0.00 0
10 8 6 8.61 (4,0.70) 0.00 0
-1 -14 -4 -2.63 (4,0.66) 0.00 0
14 9 5 11.76 (4,0.43) 0.00 0
16 -3 3 11.66 (4,0.26) 0.00 0
-7 23 -9 -2.19 (4,0.24) 0.00 0
-1 10 0 0.59 (3,1.69) 0.00 0
7 0 -5 5.28 (1,0.95) 0.00 0
24 10 -9 19.43 (1,0.46) 0.00 0

Table 1: Example 2-dimensional 0/1 IP problem. The 3 sections are separated based upon the IP
solution. This example shows an exact core using the efficiency measure defined in Theorem 2.

e - 0% negative weights e - 5% negative weights
0% negative profits 5% negative profits

n m α |Se| |Ce| ScC CcS Cdist |Se| |Ce| ScC CcS Cdist

100 5 0.25 5.00 20.20 28.12 100.00 3.30 5.00 20.00 31.58 100.00 2.90
0.5 5.00 22.10 27.49 100.00 3.45 5.00 15.90 28.33 86.00 2.65
0.75 5.00 20.00 26.32 100.00 3.40 5.00 14.80 35.91 98.00 3.50

250 5 0.25 2.00 12.68 18.16 100.00 2.46 2.00 13.36 17.35 100.00 3.12
0.5 2.00 12.20 18.45 100.00 1.38 2.00 9.60 21.47 100.00 1.20
0.75 2.00 10.40 20.18 100.00 1.56 2.00 10.96 21.04 100.00 1.92

100 10 0.25 10.00 23.20 46.57 100.00 2.90 9.90 25.80 42.74 96.67 3.45
0.5 9.80 25.80 48.17 96.00 3.10 9.70 23.70 44.06 100.00 3.00
0.75 9.70 18.30 54.36 94.00 3.00 9.20 16.90 60.09 93.19 2.45

Average 5.61 18.32 31.98 98.89 2.73 5.53 16.75 33.62 97.10 2.69

e - 10% negative weights e - 20% negative weights
10% negative profits 20% negative profits

n m α |Se| |Ce| ScC CcS Cdist |Se| |Ce| ScC CcS Cdist

100 5 0.25 5.00 23.60 22.31 100.00 4.30 5.00 18.60 29.55 100.00 2.70
0.5 5.00 19.40 27.11 100.00 3.00 4.60 9.80 57.68 95.50 1.20
0.75 4.80 12.40 47.28 98.00 1.60 2.50 16.90 30.34 86.67 7.00

250 5 0.25 2.00 10.36 20.27 100.00 1.22 2.00 10.52 20.22 98.00 2.02
0.5 2.00 11.72 18.79 100.00 2.22 2.00 8.84 24.31 100.00 1.94
0.75 2.00 7.28 30.13 98.00 1.24 1.56 6.08 40.80 100.00 1.74

100 10 0.25 9.70 24.20 42.19 97.89 4.05 9.70 28.00 37.91 100.00 4.15
0.5 9.50 20.10 49.20 97.00 3.20 8.40 20.10 47.86 98.89 3.35
0.75 8.80 14.30 65.99 92.70 2.05 4.30 13.80 35.51 92.50 4.05

Average 5.42 15.92 35.92 98.18 2.54 4.45 14.74 36.02 96.84 3.13

Table 2: Split intervals, core sizes, mutual coverage of the split interval and cores, distances of the centers
for various percentages of negative values. (Values are averaged over 10 instances of each problem.)

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

43

δ were chosen to approximately reflect the size of
the actual cores detected in the previous section:
δ ∈ 0.1n, 0.15n, 0.2n, 0.1n+ 2m, 0.2n + 2m.

The problems shown in these tables are based
upon the smaller instances in Chu and Beasley’s
benchmark library (Chu & Beasley 1998). They
are the same set of problems used to investigate
the actual core sizes in the previous section.

The results of this experiment are shown in Ta-
ble 3. It shows the average values over 10 problems
with the same tightness ratio. Values shown for
the original problem include the average optimal
IP solution for the problem (z̄), then the average
amount of CPU-time taken to produce the opti-
mal IP solution in seconds (t[s]). Values shown
for each core include the average percentage dif-
ference between the optimal IP solution(z∗) and
the IP solution produced by the core problem(z),
(%opt = 100∗(z∗−z)/z∗), the number of times the
optimal solution was reached (#), and the average
CPU-time taken to solve the core IP, as a percent-
age of the CPU-time taken to solve the original IP
problem, %t = 100 ∗ (tcore/toriginal).

The solution to the approximate cores are (on
average over 10 problem instances) always within
0.7 % of the optimal solution. The results shown in
Table 3 show that smaller approximate core sizes
produce a significant increase in speed. However
they are less likely to produce the optimal solu-
tion, and on average produce solutions of lesser
quality than the larger cores. As the percentage
of negative values increases the problems become
faster to solve. Larger negative percentages were
examined, however run-times were too small to see
any benefit from the core concept.

4.4 Larger 0/1 IP with Fixed Time Runs

We now investigate fixed-time runs over larger
problem instances. These tests are performed
over instances which are currently very hard or
not at all solvable to optimality. The instances
used are based on the hardest benchmarks pro-
vided by Chu and Beasley (Chu & Beasley 1998),
n = 500, m ∈ 5, 10, 30

Again these problems were adjusted to contain
negative values in a manner similar to the prob-
lems above. All of the results shown here are per-
formed over problems with 10% negative weights,
and 10% negative profits. The constraints are also
adjusted accordingly.

Table 4 shows the best feasible solution for the
original problem and the core problems as a per-
centage of the LP solution, (%LP = 100 ∗ (LP −
IP)/LP). These values are averaged over 10 in-
stances of similar problems. Standard deviations
are provided as subscripts. The smallest values for
each row are highlighted in bold. This table also
shows the number of times a particular core size
has lead to the best solution for a problem, (#).
The final column for each core size is the average
number of nodes explored in the branch and cut
tree used by CPLEX.

The experiments show that for the considered
time limits the results obtained on the core prob-
lems are, on average, better that the results ob-

tained from the original problem. There is also a
inverse relationship between the size of the core
and the number of nodes explored. As the size of
the core decreases the number of nodes explored
increases. The best average results for a time
limit of 500 seconds is δ = 0.2. It can be seen
that smaller time limits provide best results with
smaller approximate core sizes.

5 Related Work

The most closely related work to this paper
is the application of the core concept to the
MKP (Puchinger et al. 2006, 2007). We ex-
tend the results therein to general 0/1 Integer Pro-
grams, and show that the core concept continues
to be valuable in the more general case.

Recently, very interesting results have been
achieved with heuristics for 0/1 Mixed Integer
Programming Problems with the goal of devising
better feasible solutions earlier in the optimiza-
tion process. Local Branching (Fischetti & Lodi
2003) combines local search and general branch-
and-bound by introducing local branching con-
straints forcing the search to explore the neigh-
borhoods of current feasible solutions first.

In Relaxation Induced Neighborhood Search
(RINS) (Danna et al. 2005) subproblems for find-
ing better feasible solutions are solved at some
nodes of the branch-and-bound tree. The subprob-
lems are obtained by fixing the variables having
identical values in the current best feasible solution
and in the current solution of the LP-relaxation,
leaving the remaining variables free.

RINS and local branching are local-search
based ideas, reducing the subproblems to certain
neighborhoods around a currently feasible solu-
tion. Our approach requires an LP solution only,
and does not make use of feasible solutions at all.

6 Conclusions

We have extended the core concept, previously
successfully used for finding better solutions to
Multiple Knapsack Problems to general 0/1 In-
teger Programs. We provided an ordering of the
variables using dual information, which results in
a compact split interval just as for the standard
MKP. This ordering is used to reduce the size of
the tackled instances and obtain near-optimal so-
lutions in shorter run-times. Our computational
experiments show, that for challenging 0/1 Integer
Programs with a large number of variables com-
pared to the number of constraints, the core con-
cept provides better solutions than directly solving
the original problem using a commercial solver. In
the future we plan to test our approach on other
widely used large 0/1 IP benchmarks.

Acknowledgements

National ICT Australia is funded by the Aus-
tralian Government’s Backing Australia’s Ability
initiative, in part through the Australian Research
Council.

CRPIT Volume 77 - Theory of Computing 2008

44

5 % negative weights, 5 % negative profits
no core δ = 0.1n δ = 0.15n δ = 0.2n δ = 0.1n + 2m δ = 0.2n + 2m

n m α z̄ t[s] ¯%opt # %t ¯%opt # %t ¯%opt # %t ¯%opt # %t ¯%opt # %t
100 5 0.25 26603 1.97 0.113 3 5 0.014 8 30 0.004 9 51 0.004 9 51 0.000 10 82

0.50 44666 1.71 0.072 5 6 0.001 9 21 0.000 10 46 0.000 10 46 0.000 10 73
0.75 60387 0.51 0.025 7 14 0.013 8 43 0.011 9 60 0.011 9 60 0.000 10 66

250 5 0.25 68598 56.11 0.007 7 39 0.004 8 70 0.003 9 119 0.004 8 70 0.003 9 130
0.50 113794 93.78 0.000 10 22 0.000 10 47 0.000 10 68 0.000 10 42 0.000 10 66
0.75 152330 42.46 0.002 7 39 0.000 10 62 0.000 10 65 0.000 10 45 0.000 10 70

100 10 0.25 24211 16.94 0.614 1 0 0.133 6 3 0.026 7 16 0.000 10 57 0.000 10 74
0.50 43587 21.50 0.287 1 0 0.068 6 3 0.011 9 18 0.000 10 69 0.000 10 94
0.75 59130 4.49 0.081 6 2 0.018 7 12 0.000 10 35 0.000 10 62 0.000 10 72

Average 65923 26.61 0.133 5.2 14 0.028 8.0 32 0.006 9.2 53 0.002 9.6 56 0.000 9.9 81

10 % negative weights, 10 % negative profits
no core δ = 0.1n δ = 0.15n δ = 0.2n δ = 0.1n + 2m δ = 0.2n + 2m

n m α z̄ t[s] ¯%opt # %t ¯%opt # %t ¯%opt # %t ¯%opt # %t ¯%opt # %t
100 5 0.25 28582 2.04 0.136 2 6 0.067 6 38 0.000 10 57 0.000 10 57 0.000 10 75

0.50 45222 1.92 0.051 4 5 0.004 8 30 0.000 10 47 0.000 10 47 0.000 10 74
0.75 59180 0.16 0.003 8 23 0.000 10 47 0.000 10 66 0.000 10 66 0.000 10 81

250 5 0.25 74521 44.80 0.000 10 30 0.000 10 46 0.000 10 68 0.000 10 39 0.000 10 71
0.50 116296 36.00 0.001 9 33 0.000 10 56 0.000 10 66 0.000 10 43 0.000 10 73
0.75 150236 6.49 0.000 10 45 0.000 10 62 0.000 10 71 0.000 10 61 0.000 10 75

100 10 0.25 25581 28.60 0.673 1 0 0.201 5 3 0.038 8 20 0.000 10 62 0.000 10 95
0.50 44562 35.82 0.194 3 0 0.003 8 2 0.000 10 16 0.000 10 56 0.000 10 79
0.75 58563 0.77 0.031 8 9 0.027 9 27 0.002 9 41 0.000 10 64 0.000 10 79

Average 66971 17.40 0.121 6.1 17 0.034 8.4 35 0.004 9.7 50 0.000 10.0 55 0.000 10.0 78

20 % negative weights, 20 % negative profits
no core δ = 0.1n δ = 0.15n δ = 0.2n δ = 0.1n + 2m δ = 0.2n + 2m

n m α z̄ t[s] ¯%opt # %t ¯%opt # %t ¯%opt # %t ¯%opt # %t ¯%opt # %t
100 5 0.25 34071 0.70 0.117 4 13 0.008 9 42 0.000 10 67 0.000 10 67 0.000 10 93

0.50 46970 0.14 0.008 9 24 0.000 10 48 0.000 10 58 0.000 10 58 0.000 10 77
0.75 56538 0.03 0.029 7 40 0.006 8 63 0.006 8 60 0.006 8 60 0.006 8 77

250 5 0.25 85206 33.14 0.005 8 30 0.000 10 48 0.000 10 70 0.000 10 45 0.000 10 81
0.50 118236 8.60 0.000 10 38 0.000 10 55 0.000 10 72 0.000 10 52 0.000 10 86
0.75 142169 0.21 0.000 10 39 0.000 10 61 0.000 10 64 0.000 10 60 0.000 10 75

100 10 0.25 29090 13.36 0.604 1 0 0.190 5 5 0.048 7 18 0.001 9 64 0.000 10 77
0.50 45267 2.68 0.203 6 2 0.000 10 13 0.000 10 40 0.000 10 76 0.000 10 97
0.75 55821 0.06 0.033 7 24 0.021 8 48 0.000 10 57 0.000 10 67 0.000 10 83

Average 68152 6.55 0.111 6.9 23 0.025 8.9 43 0.006 9.4 56 0.001 9.7 61 0.001 9.8 83

Table 3: Solving different sized cores for various percentages of negative values to optimality. (All values shown are averaged over 10 problem instances)

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

45

Time Limit = 5 Seconds
original problem δ = 0.1n δ = 0.15n δ = 0.2n

n m α %LP # Nnodes %LP # Nnodes %LP # Nnodes %LP # Nnodes
500 5 0.25 0.1200.021 2 16421 0.1140.025 4 31847 0.1160.022 3 26955 0.1170.014 4 24337

0.50 0.0670.011 2 15976 0.0510.012 9 31901 0.0610.011 4 27587 0.0610.017 3 23958
0.75 0.0410.004 5 18598 0.0410.004 8 32791 0.0420.006 6 29194 0.0420.005 6 27454

500 10 0.25 0.4380.024 0 8061 0.3520.048 6 23208 0.3830.051 3 15496 0.3640.037 6 13707
0.50 0.1710.029 2 8262 0.1630.025 4 23548 0.1650.023 5 15865 0.1750.036 3 13743
0.75 0.0970.018 3 9765 0.0930.011 6 22537 0.0940.013 4 17021 0.0920.012 5 15421

500 30 0.25 1.2200.115 2 2977 1.1910.105 3 10262 1.2300.044 3 7881 1.2140.113 2 6014
0.50 0.5620.040 0 3088 0.5070.042 6 10649 0.5360.018 1 8181 0.4950.047 5 6101
0.75 0.2850.021 2 3627 0.2820.036 2 11431 0.2830.015 2 8715 0.2730.021 4 6593

Average 0.3330.031 2.0 9642 0.3100.034 5.3 22019 0.3230.023 3.4 17433 0.3150.034 4.2 15259
Time Limit = 50 Seconds

original problem δ = 0.1n δ = 0.15n δ = 0.2n
n m α %LP # Nnodes %LP # Nnodes %LP # Nnodes %LP # Nnodes

500 5 0.25 0.1030.016 3 172471 0.1000.015 5 330280 0.1000.015 6 272642 0.0990.015 7 249998
0.50 0.0490.011 6 181177 0.0460.008 9 328066 0.0480.011 8 287341 0.0470.009 8 260145
0.75 0.0380.004 6 188492 0.0380.004 7 322998 0.0380.004 8 289610 0.0380.004 9 275409

500 10 0.25 0.3310.026 2 85187 0.3010.019 4 231031 0.2960.024 6 150726 0.3120.031 4 132856
0.50 0.1440.019 3 88829 0.1330.014 4 235044 0.1350.014 5 156361 0.1310.016 4 136481
0.75 0.0820.010 4 107407 0.0770.010 8 233931 0.0780.012 5 171427 0.0790.012 5 157293

500 30 0.25 1.1080.076 1 33855 1.0450.066 6 102129 1.0980.077 2 78250 1.0940.080 2 62556
0.50 0.4770.030 2 34741 0.4580.034 5 104797 0.4670.026 2 80025 0.4700.035 3 62627
0.75 0.2700.019 0 38640 0.2540.024 3 111507 0.2540.027 6 87269 0.2550.024 1 65981

Average 0.2890.023 3.0 103422 0.2720.022 5.7 222198 0.2790.023 5.3 174850 0.2810.025 4.8 155927
Time Limit = 500 Seconds

original problem δ = 0.1n δ = 0.15n δ = 0.2n
n m α %LP # Nnodes %LP # Nnodes %LP # Nnodes %LP # Nnodes

500 5 0.25 0.0920.011 10 1468306 0.0920.011 10 2156859 0.0920.011 10 2038741 0.0920.011 9 1844037
0.50 0.0450.008 9 1474390 0.0440.007 10 2282445 0.0440.007 10 2184819 0.0450.008 9 1968420
0.75 0.0380.004 10 1051111 0.0380.004 10 1170739 0.0380.004 10 1193311 0.0380.004 10 1133267

500 10 0.25 0.2910.022 1 752103 0.2660.027 4 1973083 0.2690.024 5 1190391 0.2740.018 4 1070741
0.50 0.1250.018 3 804076 0.1200.011 5 2064695 0.1190.015 6 1247341 0.1240.014 3 1131538
0.75 0.0770.011 7 1013516 0.0760.011 8 2359838 0.0750.010 7 1530181 0.0750.010 9 1409720

500 30 0.25 0.9820.088 3 312874 0.9820.026 3 990696 0.9740.025 2 759324 0.9520.073 3 610611
0.50 0.4310.013 3 318599 0.4280.031 2 1024538 0.4270.017 3 772248 0.4290.021 3 620238
0.75 0.2380.017 2 368143 0.2280.018 5 1081771 0.2350.020 2 858274 0.2330.021 3 670913

Average 0.2580.021 5.3 840346 0.2530.016 6.3 1678296 0.2530.015 6.1 1308292 0.2510.020 5.9 1162165

Table 4: Fixed time runs of larger benchmark instances. Various core sizes are shown for 10% negative coefficients. All values shown are averaged over 10
problem instances.

CRPIT Volume 77 - Theory of Computing 2008

46

References

Balas, E. & Zemel, E. (1980), ‘An algorithm for
large zero-one knapsack problems’, Operations
Research 28(5), 1130–1154.

Bertsimas, D. & Tsitsiklis, J. N. (1997), Introduc-
tion to Linear Optimization, Athena Scientific.

Chu, P. & Beasley, J. (1998), ‘A genetic algo-
rithm for the multidimensional knapsack prob-
lem’, Journal of Heuristics 4(1), 63–86.

Danna, E., Rothberg, E. & Le Pape, C. (2005),
‘Exploring relaxation induced neighborhoods to
improve MIP solutions’, Mathematical Program-
ming, Series A 102, 71–90.

Fischetti, M. & Lodi, A. (2003), ‘Local Branching’,
Math. Programming Series B 98, 23–47.

Gavish, B. & Pirkul, H. (1985), ‘Efficient algo-
rithms for solving the multiconstraint zero-one
knapsack problem to optimality’, Mathematical
Programming 31, 78–105.

Gilmore, P. & Gomory, R. (1966), ‘The theory and
computation of knapsack functions’, Operations
Research 14, 1045–1074.

Glover, F. & Kochenberger, G. (1996), Crit-
ical event tabu search for multidimensional
knapsack problems, in I. Osman & J. Kelly,
eds, ‘Metaheuristics: Theory and Applications’,
Kluwer Academic Publishers, pp. 407–427.

Gomes da Silva, C., Cĺımaco, J. & Figueira,
J. (2005), Core problems in bi-criteria 0,1-
knapsack: new developments, Technical Report
12/2005, INESC-Coimbra.

Kellerer, H., Pferschy, U. & Pisinger, D. (2004),
Knapsack Problems, Springer.

Martello, S. & Toth, P. (1988), ‘A new algorithm
for the 0–1 knapsack problem’, Management
Science 34, 633–644.

Pisinger, D. (1995), ‘An expanding-core algorithm
for the exact 0-1 knapsack problem’, European
Journal of Operational Research 87(1), 175–187.

Pisinger, D. (1997), ‘A minimal algorithm for
the 0-1 knapsack problem’, Operations Research
45(5), 758–767.

Puchinger, J., Raidl, G. & Pferschy, U. (2006),
The core concept for the multidimensional knap-
sack problem, in ‘Evolutionary Computation in
Combinatorial Optimization - EvoCOP 2006’,
Vol. 3906 of LNCS, Springer, pp. 195–208.

Puchinger, J., Raidl, G. & Pferschy, U. (2007),
The multidimensional knapsack problem: Struc-
ture and algorithms, Technical Report 006149,
National ICT Australia, Melbourne, Australia.
submitted for publication.

Raidl, G. & Gottlieb, J. (2005), ‘Empirical anal-
ysis of locality, heritability and heuristic bias
in evolutionary algorithms: A case study for
the multidimensional knapsack problem’, Evo-
lutionary Computation 13(4), 441–475.

Shih, W. (1979), ‘A branch and bound method
for the multiconstraint zero-one knapsack prob-
lem’, Journal of the Operational Research Soci-
ety 30, 369–378.

Vasquez, M. & Hao, J. (2001), ‘A hybrid approach
for the 0–1 multidimensional knapsack prob-
lem’, Proceedings of the 17th International Joint
Conference on Artificial Intelligence pp. 328–
333.

Vasquez, M. & Vimont, Y. (2005), ‘Improved
results on the 0-1 multidimensional knapsack
problem’, European Journal of Operational Re-
search 165(1), 70–81.

Weingartner, H. M. & Ness, D. N. (1967), ‘Meth-
ods for the solution of the multidimensional 0/1
knapsack problem’, Operations Research 15, 83–
103.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

47

CRPIT Volume 77 - Theory of Computing 2008

48

An ILP for the metro-line crossing problem

Matthew Asquith1,2 Joachim Gudmundsson3 Damian Merrick2,3

1 Sophos Pty Ltd, North Sydney, Australia
2School of Information Technologies, University of Sydney, Australia.

3 NICTA∗, Sydney, Australia.
Email: {joachim.gudmundsson,damian.merrick}@nicta.com.au

Abstract

In this paper we consider a problem that occurs when
drawing public transportation networks. Given an
embedded graph G = (V,E) (e.g. the railroad net-
work) and a set H of paths in G (e.g. the train lines),
we want to draw the paths along the edges of G such
that they cross each other as few times as possible.
For aesthetic reasons we insist that the relative order
of the paths that traverse a vertex does not change
within the area occupied by the vertex. We prove
that the problem, which is known to be NP-hard, can
be rewritten as an integer linear program that finds
the optimal solution for the problem.

In the case when the order of the endpoints of
the paths is fixed we prove that the problem can be
solved in polynomial time. This improves a recent
result by Bekos et al. (2007).

1 Introduction

In 1931, graphic designer Harry Beck first proposed
that passengers would be more interested in how train
lines connect rather than the true geographical lay-
out of stations in a city (Garland 1994). His con-
cept of the metro map was so successful that it has
been adopted by virtually every subway company in
the world. Similar diagrams have been used to visu-
alise wiring layouts (Benkert et al. 2006) and more
abstract connected information, such as website net-
works (Sandvad et al. 2001). This has motivated re-
cent research on how to automate their construction
through the use of computer algorithms.

The construction of metro maps can be broken
down into a sequence of steps. First, one finds an em-
bedding of the network that balances true geographi-
cal positioning with diagrammatic simplicity. Second,
the individual lines representing the train routes are
embedded into this graph. Any routes that share sta-
tions in the same sequence need to be given a line or-
dering and the positions of any crossings are assigned.
Finally, a labelling of the stations and important fea-
tures is added to the drawing.

Previous research has primarily focused on the
first and third step. Hong et al. (2006) present force-

(*) National ICT Australia is funded through the Australian
Government’s Backing Australia’s Ability initiative, in part
through the Australian Research Council.

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Computing: The Aus-
tralasian Theory Symposium (CATS2008), Wollongong, NSW,
Australia. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 77, James Harland and Prabhu
Manyem, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

directed graph drawing approaches to metro map lay-
out, which are also used to produce metro map lay-
outs of non-geographical networks. Slower but more
geographically accurate optimisation-based methods
are detailed by Stott & Rodgers (2004), and more
recently by Nöllenburg & Wolff (2005). They ap-
proached the layout problem using a mixed-integer
program (MIP) approach, a well-established method
to solve linear equations. Merrick & Gudmundsson
(2006a,b) propose an alternative method to solve the
metro map layout problem. Their method simplifies
polygonal chains by allowing them a threshold from
which they can move from their original locations.

The final step of the above construction is la-
belling, i.e. writing the names of stations on the
diagram, preferably in such a way that both the la-
bels and the rest of the diagram are clearly readable.
Labelling maps in general is a computationally hard
problem (Formann & Wagner 1991). Many variations
of the map labelling problem have been investigated;
Wolff & Strijk (2007) maintain an extensive bibliogra-
phy on the topic. Within the context of metro maps,
only a limited amount of work has been done on la-
belling. Hong et al. (2006) proposed using a simu-
lated annealing algorithm and a greedy heuristic for
labelling, but noted that the results required manual
editing to be acceptable. Nöllenburg (2005) produced
fully-automatic labelling by incorporating additional
constraints into the MIP approach (Nöllenburg &
Wolff 2005), which was demonstrated to be feasible
on the S-Bahn RheinNeckar system, a network of 108
vertices and 111 edges. Nöllenburg presents this as an
initial attempt at automatic labelling; there are some
label overlaps in the solutions produced. Generating
metro map labelling solutions for large networks re-
mains an open problem.

However, hardly any research has been done on
the problem of embedding the individual lines in a
map. Note that even when the geometric embedding
of the network is given, finding a good ordering of the
individual lines along the network is far from simple.
In this paper we will focus on placing the lines such
that the number of crossings is minimised. This cri-
terion has been noted as one of the most important
characteristics in ensuring diagrams are easy to com-
prehend (Purchase et al. 1996). The first research
devoted to the drawing of metro lines was published
by Benkert et al. (2006). They introduced the follow-
ing problem:

Problem 1 Benkert et al. (2006) Given an embed-
ded graph G = (V, E) and a set H of paths in G,
draw the paths along the edges of G such that they
cross each other as few times as possible.

Their research was dedicated solely to looking at
a very restricted case where the crossings can only be
minimized along a single edge. They devise a dynamic
programming algorithm that can solve any instance

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

49

Figure 1: A map illustrating the tram, subway and train lines in Berlin.

in O(n2) time. Their discussion for extending their
algorithm for use in more general cases concludes that
interactions between terminating lines would hinder
the use of dynamic programming.

Recently Bekos et al. (2007) proved that the prob-
lem is NP-hard even in the case when the underlying
graph G is a path. They also considered a special case
when the position of the terminators1are fixed (termi-
nators are the start and endpoint of a path in H), and
proved that in this case the problem can be solved in
polynomial time if the underlying graph is a path or
a tree. They call this problem the Metro-line crossing
minimization problem with terminals at fixed station
ends (MLCM-FixedSE).

In this paper we prove that the MLCM-FixedSE
problem can be computed in polynomial time for any
underlying graph G (Corollary 2). In the case when
the terminators are not fixed then the problem can
be solved using integer linear programming.

1.1 Definitions and preliminaries

A metro map is a connected graph G = (V,E) rep-
resenting the layout of, for example, a transportation
system. Let H be a set of paths of G representing the
individual routes traversed through the network, such
as the subset of stations a train passes. In Fig. 2a, G
is the underlying network and H is the set of three
different train lines (one with thick solid lines, one
with thin solid lines and one with dashed lines).

A (metro) line is an individual paths’s depiction
in the network. In metro maps, each line is usually
drawn separately in a unique colour. This means each
line will have an ordering at each vertex with respect
to any other lines that share a common edge. If the
relative order of two lines changes between two in-
cident vertices then the two lines must intersect be-
tween the vertices. We define this as an edge crossing.
This is illustrated in Fig. 2a, where the order of the
two lines changes between u and v. As opposed to
an edge crossing, a vertex crossing occurs inside a
vertex. This often results in the corresponding dia-
grams becoming harder to understand and therefore
it is only used for crossings that cannot be placed
along an edge. This can only occur if two subgraphs

1Terminator is sometimes called a terminal in the literature.

g and h in H share a common path consisting of a
single vertex v and both have degree two at v, see
Fig. 2b-c. A terminator of a subgraph h ∈ H is a
vertex v where degh(v) = 1, i.e. h terminates at v if
degh(v) = 1, see Fig. 3b.

In most metro maps, all lines terminate on the out-
side of the other lines travelling in parallel, as shown
in Fig. 3a. This is to emphasise that a line terminates
at that station. We call this the periphery condition.
The problem we will study in this paper can now be
formulated as follows:

Problem 2 Given a graph G = (V,E) and a set H
of paths of G, find an order of lines at every vertex
v ∈ V that minimises the total number of edge cross-
ings between the paths in H and fulfils the periphery
condition.

Recall that this problem is denoted the MLCM
problem with terminals at station ends (MLCM-SE)
in (Bekos et al. 2007).

We say that a crossing between two subgraphs g
and h in H is forced if changing the positions of any of
the terminators of g or h cannot prevent the crossing
from occurring, as illustrated in Fig. 3b. A feature
of an optimal solution is that there cannot be any
redundant crossings between any pair of subgraphs g
and h ∈ H, thus there will be at most one crossing
between g and h along a common subpath between
them. This will be proven in the next section.

2 An ILP approach

Recall that Bekos et al. (2007) showed that the prob-
lem is NP-hard even in the case when the underlying
graph is a path. In this section we prove that the
problem can be solved using ILP. Our approach works
in four steps:

1. For each pair of lines g, h ∈ H compute all (max-
imal) common subpaths δ1(g, h), . . . , δm(g, h).

2. Each common subpath δ(g, h) is converted into
a set of crossing rules C encoding the relations
between the terminators of g and h.

CRPIT Volume 77 - Theory of Computing 2008

50

(a) (b)

(c)

g

h

g

h

v

v

u

v

Figure 2: (a) A graph representation of a metro map. (b) A valid vertex crossing at v between g and h since
their common subpath is v. (c) An invalid vertex crossing at v between g and h since v is a subset of their
common subpath.

3. The positions of these terminators and the num-
ber of crossings in G is determined using an in-
teger linear program.

4. The actual line ordering at each vertex is decided.

Note that the only step that cannot be performed
in polynomial time is step 3. If we assume that
the terminators are fixed (MLCM-FixedSE problem)
then Bekos et al. (2007) showed that the problem can
be solved in polynomial time for the very restricted
case when the underlying graph G is a tree. Below
we will prove that the problem can be solved in poly-
nomial time for any underlying graph G.

We start with some important properties of an op-
timal solution. First we show that any optimal so-
lution cannot contain any redundant crossings, i.e.
where two lines cross more than once in a single com-
mon subpath.

Theorem 1 In an optimal solution every pair of
lines in H will cross at most once along any common
subpath.

Proof. The proof is done by contradiction. Consider
an optimal solution S and assume that there exists a
pair of lines g and h in H that cross twice along a com-
mon subpath P = 〈p1, p2, . . . , pk〉 in G. To simplify
the description it is assumed that P is a horizontal
path with pi to the left of pi+1, for 1 ≤ i < k. If
there is more than one pair of subpaths along P that
cross twice then assume that g and h is the topmost
pair along P . Let cg and ch denote the number of
crossings along P between the subpaths in H and g,
and between the subpaths in H and h, respectively.
Without loss of generality it is assumed that ch ≤ cg,
and that g is positioned above h at p1 and pk as il-
lustrated in Fig. 4a.

Consider the following modification to S, de-
noted S′, where g is moved such that it lies above
h along P . That is, the part of g below h is moved
such that g lies immediately above h in this interval,
see Fig 4b. We claim that the number of crossings in
S′ is less than the number of crossings in S. We will
have two cases:

(i) If g and h is the only pair of subpaths along P
that cross twice then the number of crossing in
S′ will have decreased with two. Because of the
periphery condition no subpath f could termi-
nate in between the two crossings between g and
h. As a result a subpath f intersecting g and
h after the modification must have intersected g
and h h before the modification. Thus, no more
crossings have been introduced.

(ii) In the case when there is more than one pair of
subpaths along P that cross twice then we con-
sider a subpath f ∈ H. It is not hard to see

that the only configuration that may increase the
number of crossings is if f crosses h, but not g,
twice in S. In this case the number of crossings
in S′ would increase by two, since f would cross
both g and h twice in S′. However, this con-
tradicts the above assumption that g and h are
the topmost pair of subpaths along P that cross
twice.

In both cases we get a contradiction, thus the theorem
follows.

The next observation follows from the above the-
orem.

Observation 1 Consider two lines g and h in H,
and let t(h) be a terminator of h at a vertex v of
G. Changing the order of h at v can only affect the
number of crossings between g and h if v belongs to a
common subpath of g and h.

Proof. Consider a common subpath without any ter-
minators of g and h. The observation follows trivially
from the fact that the interval order at the endpoints
of their common subpaths is fixed and, according to
Theorem 1, g and h cannot intersect twice.

A somewhat stronger result can be obtained using
exactly the same arguments.

Corollary 1 Let t(g) be a terminator of g ∈ H at
vertex v and let h1, h2 ∈ H. Changing the order of
t(g) at v can only affect the number of crossings be-
tween h1 and h2, along a common subpath δ(h1, h2),
if v belongs to δ(h1, h2).

v
g

(a)

(b)
v1v0

g

h

h

u

Figure 3: (a) Terminators for g at v and h at u fulfill-
ing the periphery condition. (b) Illustrating a forced
edge intersection between g and h.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

51

p1 p2

g

h

pk
f

p1 p2

g

h

pk
(a)

(b)

Figure 4: (a) Relative terminator position directions.
(b) Relative terminator position directions.

Theorem 2 Once the terminator positions are fixed,
we can decide in O(|H|2 · |E|) time if there will
be 0 or 1 crossings between each pair of sub-
paths g and h∈H along any common subpath P =
〈v0, v1, . . . , vm〉.
Proof. The most time consuming step is to compute
a list of all the maximal common subpaths. These can
easily be computed in O(|H|2 · |E|) time by testing
every pair of paths in H.

Consider a common subpath P of g and h, where
g and h do not both share a terminator at v0 or vm.
Now, both end vertices of P must either have unique
subsequent vertices or contain a defined terminator
position for both g and h. In either case, g and h
have a well defined relative line ordering at each end
vertex of P (the periphery condition guarantees this
in the latter case). By Theorem 1, whether the rel-
ative order of g and h is different between v0 and
vm determines whether there will be one or no forced
crossing.

In the case where g and h both have degree 1 at a
terminator vt ∈ {v0, vm} (share a terminator), if both
g and h are positioned on the same side of vt, their
ordering (and thus the number of crossings) can no
longer be uniquely determined. Here, we can always
choose an ordering which ensures no crossing.

From the above proofs, we can conclude that once
the terminating positions are fixed, we can compare
all common subpaths between all lines to determine
the total crossing number of the graph. Note, that
the crossing number is no longer related to the edge
at which any fixed crossings occur inside the common
subpaths and the actual ordering at each vertex can
be decided at a later stage. Therefore the number
of crossings is determined entirely by the positions of
terminators.

v0 v1
g

h

vm−1 vm
(a)

(b) v0 v1g

h

vm

Figure 5: (a) A maximal common subpath δ(g, h) of
the lines g and h. (b) A possible common subpath
with interactions of terminators between g and h.

2.1 Converting common subpaths to crossing
rules

A list of all the maximal common subpaths can be
obtained in O(|H|2 · |E|) time by testing every pair
of lines. We will now examine the conditions which
can lead to an edge crossing between two lines along
a common subpath.

Once a list of all common subpaths has been re-
trieved from G, we can represent their potential cross-
ings as a set of rules dependent solely on the po-
sitions of the terminators. Clearly, a crossing be-
tween two lines g and h can only occur along a com-
mon subpath. Consider one such common subpath
δ(g, h) = 〈v0, v1, . . . , vm〉. Without loss of generality,
assume that the vertices of δ(g, h) lie on a horizontal
line and that vi lies to the left of vi+1, for 0 ≤ i < m,
as shown in Fig. 5a. To determine whether g and
h will intersect along δ(g, h) we examine the relative
ordering of g and h at the end vertices v0 and vm of
δ(g, h). If the ordering changes, there must be exactly
one edge crossing placed on an edge along δ(g, h), ac-
cording to Theorem 1 (Fig. 5b shows an example). If
at least one of the lines has a terminator at v0 or vm
then changing the terminator positions will switch the
relative ordering and thus decide whether there will
be a crossing or not. Since the ordering must change
along the common subpath, a crossing will always re-
sult from one of two possible cases:

Case 1: (g is above h at v0) AND (g is below h at
vm), or

Case 2: (h is above g at v0) AND (h is below g at
vm).

We will label each case as a crossing rule c and
let C be the set of all crossing rules. Each individ-
ual ordering restriction (e.g. “g is above h at v”) at
a vertex v ∈ P is called a condition. We can rewrite
each condition as a boolean variable, and each case as
a boolean expression joining the conditions. For ex-
ample, the first case above can be written gv0

h ∧¬gvm

h ,
where gv

h denotes a boolean variable that is true if g is
ordered above h at vertex v, or false otherwise. Since
hv

g is equivalent to ¬gv
h, we can write the second case

above as ¬gv0
h ∧ gvm

h .
If the conditions of a crossing rule c are all true,

then c will be given a value of 1. Alternatively, if
any condition is false, c will be set to 0. In this way,
the crossing rules act as counters for the number of
crossings between lines, for a given line ordering. The
condition for whether a line g is above a line h at a
vertex v ∈ P is dependent on the degree of both g
and h at v. Note that we are only interested in the
cases v = v0 and v = vm, as these are the endpoints
of the common subpath at which the ordering of two
lines may differ.

Using the above list of conditions, each common
subpath will now be represented as two distinct cross-
ing rules that can never be simultaneously true. For
example, in the common subpath 〈v0, v1, . . . , vm〉 be-
tween g and h in Fig. 5a, examination of the end
vertices shows the two crossing rules to be the follow-
ing:

gv0
h ∧ ¬gvm

h and ¬gv0
h ∧ gvm

h .

Alternatively, Fig. 5b contains a common subpath
with a fixed ordering at v0. The corresponding con-
ditions are no longer dependent on the position of
a terminator but are instead Boolean statements of
whether the ordering is present:

(true) ∧ ¬gvm

h and (false) ∧ gvm

h .

CRPIT Volume 77 - Theory of Computing 2008

52

2(a) 2(b)

tg(v0) + wc ≥ 1−tg(v0) + wc ≥ 0

1(a) 1(b)

wc ≥ 1

v0 vm

wc ≥ 0

v0 vm

g

h

v0 vm

g

h
v0 vm

Figure 6: Conversion to constraints – cases 1 and 2.

Since the second crossing rule can never have all its
conditions true, its corresponding c will always be 0,
and we do not need to add it to the set C.

The number of crossing rules in C is dependent on
the total number of common paths between each pair
of subpaths in H. If every common subpath starts
and ends with at least one terminator, i.e. there are
no fixed crossings, each subpath can at most form two
common subpaths with each other subpath. There-
fore, |C| = O(|H|2) in this case. With fixed crossings
allowed, there can be a large number of common sub-
paths between each pair of subpaths in H. Hence, in
the worst case, |C| = O(|H|2 · |E|).

With each potential crossing of H in G represented
as a crossing rule c ∈ C, the crossing number is the
minimum sum of all crossing rules c ∈ C over all
valid line orderings. In the following sections, we will
present two different methods to compute this cross-
ing number.

2.2 Transformation of the rules into an ILP

Integer Linear Programming (ILP) is an established
method of finding solutions to optimization problems
that can be expressed in terms of an objective func-
tion subject to a series of constraints. ILP solvers
(such as CPLEX) use highly optimised branch and
cut techniques in order to provide an optimal solu-
tion. This has been a highly effective method for
finding solutions to more general crossing minimisa-
tion problems (Buchheim et al. 2005).

In our ILP formulation, every terminator con-
tained in at least one crossing rule is represented as
a unique binary variable th(v), which is true if the
terminator of line h at v is ordered “above” all con-
tinuing lines, or false if it is ordered “below”. To
simplify the description of the ILP, we take the same
assumption as in Section 2.1, that the vertices lie on
a horizontal line, ordered from left to right (“above”
and “below” are then defined intuitively). For each
crossing rule c, an additional unique binary variable
wc is added to the objective function. This allows us
to represent each rule as a constraint that forces its
wc to be set to 1 if all its conditions are true, i.e. if
there is a crossing. Therefore, the objective function
is a summation of all potential crossings.

Consider a maximal common subpath δ(g, h) =
〈v0, . . . , vm〉 of g and h. Let T ⊆ {tg(v0),
tg(vm), th(v0), th(vm)} be the binary variables cor-
responding to the set of terminators (if any) of g and
h within the subpath δ(g, h). We can now incorpo-
rate each crossing rule into the ILP by adding one or
more constraints, according to the following rules (see
Fig. 6-7):

1. If |T | = 0 (i.e. there are no terminators in δ(g, h):

(a) If (gv0
h ∧¬gvm

h)∨ (¬gv0
h ∧ gvm

h) is always true
then the constraint wc ≥ 1 is added.

(b) If (gv0
h ∧¬gvm

h)∨ (¬gv0
h ∧gvm

h) is always false
then the constraint wc ≥ 0 is added.

2. If |T | = 1, then there is one terminator t ∈
T , and we look at which position of t makes
(gv0

h ∧ ¬gvm

h) ∨ (¬gv0
h ∧ gvm

h) true (i.e. generates
a crossing):

(a) If t, then the constraint −t + wc ≥ 0 is
added.

(b) If ¬t, then the constraint t + wc ≥ 1 is
added.

3. If |T | = 2, then (gv0
h ∧ ¬gvm

h) ∨ (¬gv0
h ∧ gvm

h) is
dependent on the positions of two separate ter-
minators t1, t2 ∈ T .

(a) If t1, t2 are on the same line (either g or h),
then we add the two constraints −t1 + t2 +
wc ≥ 0 and t1 − t2 + wc ≥ 0.

(b) If t1, t2 are on different lines, but both ter-
minate at the same vertex (either v0 or vm),
then we consider which conditions cause
(gv0

h ∧¬gvm

h)∨ (¬gv0
h ∧ gvm

h) to become true:
i. If t1 ∧ ¬t2, then the constraint −t1 +

t2 + wc ≥ 0 is added.
ii. If ¬t1 ∧ t2, then the constraint t1− t2 +

wc ≥ 0 is added.
(c) If t1, t2 are on different lines and terminate

at different vertices (one at v0 and one at
vm), then we add the two constraints t1 +
t2 + wc ≥ 1 and −t1 − t2 + wc ≥ −1.

4. If |T | = 3, then constraints are added according
to case 3b above, applied to the two terminators
that share a vertex – the third terminator does
not influence the number of crossings.

5. If |T | = 4, then we add the two constraints
tg(v0)− tg(vm)− th(v0) + th(vm) + wc ≥ −1 and
−tg(v0) + tg(vm) + th(v0)− th(vm) + wc ≥ −1.

We now give a small example. Consider the graph
and the lines in Fig. 8a. Using the above rules the
instance can be converted to an ILP. Consider the
four common subpaths. We get:

(i and h): case 1a =⇒ w1 ≥ 1

(i and j): case 2a =⇒ −tj(v2) + w2 ≥ 0

(g and h): case 3b-ii =⇒ tg(v0)− th(v0) + w3 ≥ 0.

(h and j): case 3c =⇒ th(v4) + tj(v2) + w4 ≥ 1 and
−th(v4)− tj(v2) + w4 ≥ −1.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

53

3(a) 3(b)

tg(v0) − th(v0) + wc ≥ 0

g

h

g

h

−tg(v0) + tg(vm) + wc ≥ 0

v0 vm
v0 vm

3(c)

−tg(v0) − th(vm) + wc ≥ −1

g

h

v0 vm

tg(v0) − tg(vm) + wc ≥ 0 tg(v0) + th(vm) + wc ≥ 1

Figure 7: Conversion to constraints – cases 3a, 3b and 3c.

As a result we have:

Minimize w1 + w2 + w3 + w4

subject to w1 ≥ 1
−tj(v2) + w2 ≥ 0

tg(v0)− th(v0) + w3 ≥ 0
th(v4) + tj(v2) + w4 ≥ 1

−th(v4)− tj(v2) + w4 ≥ −1

An optimal solution of the ILP will clearly fix the
order of the terminators while minimising the number
of intersections.

Theorem 3 An instance of the line ordering problem
with the periphery condition can be transformed into
an ILP in O(|H|2 · |E|) time, where H is the set of
metro lines and V is the set of vertices in the input
network.

3 A heuristic

Above we showed how the problem can be rewritten
as an ILP. However, even though there are fast tools
for solving ILPs in practice, they still require expo-
nential time in the worst case. In this section we con-
sider a heuristic algorithm for the problem. We show
that if a certain condition is fulfilled by the input, the
heuristic produces an optimal solution.

There are situations where nested relations be-
tween terminators impede a local approach. In such
cases, a wrong decision may lead to a solution that
differs significantly from the global optimum. How-
ever, there are cases where the optimal terminator
position can be chosen locally. For other cases, we
can estimate the likelihood of a given terminator po-
sition being the optimal position. The general idea of
the heuristic is to greedily choose a position for the
terminator whose estimated likelihood of optimality
is the highest. When the position of this terminator
is fixed, it will force a line ordering at the end of any
other common subpaths that contain it, and we can
continue iteratively. We call any terminators whose
positions have yet to be fixed unresolved terminators.

Consider a crossing rule c ∈ C induced by two
lines g and h along the maximal common subpath
δ(g, h) = 〈v0, . . . , vm〉. If c depends on an unresolved
terminator t at v0 then it can be grouped into two
categories depending on the ordering at vm:

• Fixed: If the ordering at vm has already been
fixed, then the position of t directly determines
whether a crossing is introduced or not.

• Relation: If the ordering at vm has not been fixed
then we cannot immediately decide which posi-
tion of t will cause an extra crossing. For each
pair of terminators with a relation, there will be
two of these crossing rules as there are two pos-
sible pairs of terminator positions that can cause
a crossing.

The above categories are defined symmetrically for
an unresolved terminator at vm. These categories will
help us to calculate a certainty value, denoted u(t),
for each unresolved terminator t. To calculate u(t)
we need to define the following three values:

• fT (t) and fB(t): How many crossings are un-
avoidable if one position of t is chosen, i.e. the
number of fixed crossing rules involving t. They
are calculated as the number of crossings if t were
to be positioned at the top (fT (t)) or at the bot-
tom (fB(t)).

• r(t): An upper bound on the number of crossings
that could potentially occur if one position of t
is chosen over the other. It is calculated as the
number of unresolved terminators with a relation
with t.

Once all crossing rules have been checked, our cer-
tainty value for an unresolved terminator t is calcu-
lated as u(t) = |fT (t)−fB(t)|−r(t). The algorithm is
straight forward. Let T be the set of all terminators,
and iteratively perform the following steps until T is
empty:

1. Compute the value u(t) for every terminator
t∈T .

2. Select the terminator t ∈ T with highest u(t) and
fix it in the position that locally minimises the
number of crossings.

3. Remove t from T .

Since we have O(|H|2 · |E|) crossing rules and
O(|H|) terminators, this algorithm runs in O(|H|3 ·
|E|) time in the worst case. Interestingly, it can be
shown that under certain conditions, the algorithm is
guaranteed to find an optimal solution.

v0 v1 v2 v3 v4

g
h

i

j

v1 v2v0

g

h
iti

tg

(a)

(b)

Figure 8: (a) Conversion of a graph to an ILP. (b) A
situation where terminator positions can be decided
locally.

CRPIT Volume 77 - Theory of Computing 2008

54

Theorem 4 The algorithm finds an optimal solution
if every terminator t ∈ T is sequentially resolved with
u(t) ≥ 0.

Proof. We will prove that the first terminator t can
always be locally chosen if u(t) ≥ 0. Suppose fT (t) =
fB(t). In this case, r(t) = 0 for u(t) ≥ 0, which
implies that the terminator has no relations with any
other unresolved terminators and it is easy to see that
either position of t can be chosen.

Now suppose fB(t) > fT (t). This means that at
most, the number of crossings prevented by choosing
the bottom position for t will be r(t)−|fT (t)−fB(t)|.
However, if u(t) ≥ 0, then r(t)− |fT (t)− fB(t)| ≤ 0,
meaning it is not possible to locally save any cross-
ings by choosing the bottom position. When the
terminator position is fixed, up to r(t) additional
crossings may be introduced to the other termina-
tors with relations to t. But we also saved a mini-
mum of |fT (t)−fB(t)| fixed crossings at t, and hence,
|fT (t) − fB(t)| ≥ r(t). Therefore, locally choosing t
cannot lead to a worse solution if u(t) ≥ 0. The same
can be shown symmetrically for fT (t) > fB(t). Once
t is fixed, we can treat G as a new graph with a fixed
position of t. Thus, the above process can be repeated
until all terminators are resolved.

In most metro maps and wiring diagrams, the ma-
jority of lines branch off into different paths. Con-
sequently, the relations between the terminators are
generally sparse and rarely nested. Therefore, they
will in many cases be solvable in polynomial time –
on the condition that u(t) ≥ 0 for every termina-
tor greedily selected. The heuristic can be applied
to the general case but without any approximation
bound; preliminary experiments have shown that the
obtained solution may be far from the optimum.

4 Line Ordering

With the positions of the terminators fixed and the
crossing number determined, we still need to order
the lines along each edge. This includes the placement
of any inevitable crossings and, importantly, ensuring
the chosen ordering does not introduce any redundant
crossings. In this section, we describe how to perform
this ordering process by transforming to an existing
problem in circuit layout.

In the previous sections we focussed on the case
when H is a set of paths. In this section we allow H
to be a set of binary trees.

Crossing minimisation problems have already been
extensively researched in both the graph drawing
community (Buchheim et al. 2005, Eades et al. 1986)
and in the circuit design community (Groenveld 1989,
Marek-Sadowska & Sarrafzadeh 1995). Groenveld
(1989) defined the problem of finding a configuration
of wires (or nets) on a circuit board that minimises the
number of times they cross. Note that the terminals
of the wires are fixed. This became known as the Con-
strained Crossing Minimization Problem (CCMP).
The problem was investigated by Marek-Sadowska
& Sarrafzadeh (1995) who added an additional con-
straint to more accurately reflect circuit boards. Any
unavoidable crossings must be distributed in sepa-
rate regions due to the fact that wire crossings take
up physical space. This added a level of complex-
ity to the CCMP and the new problem was named
the Crossing Distribution Problem (CDP). Here wires
travel through a planar layout of regions. The ends
of the wires are referred to as terminals and the posi-
tion of a terminal is fixed on the perimeter of a region.
The problem is to find an ordering of the wires at the
boundaries of each region that both minimises the to-
tal number of crossings and distributes any inevitable

crossings amongst the regions according to a predeter-
mined quota (Marek-Sadowska & Sarrafzadeh 1995).

A transformation of a metro map into an instance
of the CDP would allow us to use a solution to the
CDP to find a line ordering at each vertex, once the
terminator positions have been decided. Since the
periphery condition ensures all terminating lines fin-
ish on the outside, terminators are the equivalent of
terminals lying on the perimeter of a circuit board re-
gion - the chosen side of the terminator merely affects
its position along this perimeter. Marek-Sadowska &
Sarrafzadeh (1995) presented an O(m · ξ3/2) time al-
gorithm for the CDP, where ξ is the number of cross-
ings and m is the number of regions. In our setting
we have m = O(|E|) and ξ = O(|H|2 · |E|).

Suppose we have chosen the terminator positions
for a graph G (Fig. 9a). Let the degree of a vertex v
in G be denoted by deg(v). In the first step, we find
all distinct maximal paths P = 〈v0, v1, . . . , vm−1, vm〉
where deg(v0) 6= 2, deg(vm) 6= 2 and every interme-
diate vertex has degree 2. Each such path P will
become a region rP in the circuit board, as shown in
Fig. 9b.

Additionally, each vertex v ∈ V with deg(v) ≥ 3
will be represented by its own region rv. Since we wish
to minimis the number of crossings that are placed
inside vertices, we set the crossing quota to be the
number of forced vertex crossings. In the case when
H is a set of paths, this will always be 0. Also, any
path P containing v as an end vertex will define a
region boundary between rv and rP . The ordering
returned by the following algorithm for any region
boundary between rv and rP will define the ordering
at rv with respect to the edge incident to v in P .

If a path P contains any terminators between the
vertices 〈v1, . . . , vm−1〉, place them on the perimeter
of rP as terminals. The ordering of the terminals is
determined directly according to the positions of the
corresponding terminators. For any vertex shared by
two terminators, we order the terminators around the
perimeter such that no crossings between the corre-
sponding subpaths are introduced. Now the CDP al-
gorithm will return the line orderings at each vertex
at the end of each path (see Fig. 9c).

For the orderings of the vertices inside each path
P , we will represent P as a separate rectangle, with
the ordering at each end corresponding to the output
from the previous step. Any terminators are placed
along on their corresponding sides in the same way
as their circuit board equivalent in the previous step.
Now, straight lines are drawn to connect the start and
end of the corresponding subpaths on the rectangle of
the path P . The ordering of these lines at the ends of
the rectangle induces the ordering of the correspond-
ing subpaths. From the above transformation, the
main theorem of this section follows.

Theorem 5 Given positions for the terminators of
the subgraphs in H, a placement of H in G that does
not introduce any redundant crossings can be com-
puted in O(|H|3 · |E| 52) time.

By simply combining Theorem 2 and Theorem 5
we obtain:

Corollary 2 The MLCM-FixedSE problem can be
solved in O(|H|3 · |E| 52) time.

5 Concluding remarks and acknowledge-
ments

We believe that all the results in this paper can be
generalised to the case when H is a set of binary trees.
However, the description of this case is very long and

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

55

(a) (b) (c)

Figure 9: (a) A graph with terminator positions chosen. (b) Transformation into a circuit board instance.
(c) Output from the CDP algorithm.

somewhat tedious, and is therefore omitted. The
interested reader can find more details in (Asquith
2007).

The transformation described in Section 2 has
been implemented, but so far only very preliminary
experiments have been done.

We would like to thank Michael Forster and Marc
Benkert for interesting discussions during the initial
stages of this work. Finally, we would like to thank
the reviewers for their diligent work.

References

M. Asquith (2007), The Metro map line ordering
problem, Honours thesis, School of IT, University
of Sydney, 2007.

M. Bekos, M. Kaufmann, K. Potika & A. Symvo-
nis (2007), Line Crossing Minimization on Metro
Maps, in ‘Proceedings of the 15th International
Symposium on Graph Drawing’, 2007.

M. Benkert, M. Nöllenburg, T. Uno & A. Wolff
(2006), Minimizing Intra-Edge Crossings in Wiring
Diagrams and Public Transportation Maps, in
‘Proceedings of the 14th International Symposium
on Graph Drawing’, 2006.

C. Buchheim, D. Ebner, M. Jünger, G. Klau,
P. Mutzel and R. Weiskircher (2005), Exact Cross-
ing Minimization, in ‘Proceedings of the 13th In-
ternational Symposium on Graph Drawing’, 2005.

P. Eades, B. McKay & N. Wormald (1986), On an
edge crossing problem, in ‘Proceedings of the 9th
Australian Computer Science Conference’, 1986.

M. Formann & F. Wagner(1991), A Packing Problem
with Applications to Lettering of Maps, in ‘Pro-
ceedings of the 7th Annual ACM Symposium on
Computational Geometry’, 1991.

K. Garland (1993), Mr Beck’s Underground Map,
Capital Transport Publishing, 1994.

G. Groenveld (1989), On global wire ordering for
macro-cell routing, in ‘Proceedings of the 26th
ACM/IEEE Conference on Design Automation’,
1989.

S.-H. Hong, D. Merrick & H. A. D. do Nascimento
(2006), Automatic visualisation of metro maps.
Journal of Visual Languages & Computing, 17(3):
203–224, 2006.

M. Marek-Sadowska & M. Sarrafzadeh(1995), The
Crossing Distribution Problem, IEEE Transactions
on Computer-Aided Design, 14:423–433, 1995.

D. Merrick & J. Gudmundsson (2006), Increasing the
Readability of Graph Drawings with Centrality-
Based Scaling, in ‘Proceedings of the Asia-Pacific
Symposium on Information Visualisation’, 2006.

D. Merrick & J. Gudmundsson (2006), C-Directed
Path Simplification for Metro Map Layout, in ‘Pro-
ceedings of the 14th International Symposium on
Graph Drawing’, 2006.

M. Nöllenburg (2005), Automated Drawing of Metro
Maps, Master Thesis, Fakultät für Informatik, Uni-
versität Karlsruhe, Germany, 2005.

M. Nöllenburg & A. Wolff (2005), A Mixed-Integer
Program for Drawing High-Quality Metro Maps, in
‘Proceedings of the 13th International Symposium
on Graph Drawing’, 2005.

H. Purchase, R. Cohen & M. James (1996), Validating
Graph Drawing Aesthetics, in ‘Proceedings of the
3rd International Symposium on Graph Drawing’,
1996.

E. Sandvad, K. Grønbæk, L. Sloth & J. Lindskov
Knudsen(2001), A metro map metaphor for guided
tours on the Web: the Webvise guided tour sys-
tem, in ‘Proceedings of the 10th International ACM
Conference on World Wide Web’, 2001.

J. Stott & P. Rodgers (2004), Metro map layout using
multicriteria optimization, in ‘Proceedings of the
8th International Conference on Information Visu-
alisation’, 2004.

A. Wolff & T. Strijk (2007), The Map-Labeling
Bibliography, Accessed on 24 May 2007,
http://i11www.ira.uka.de/map-labeling/bibliography/.

CRPIT Volume 77 - Theory of Computing 2008

56

A Multidimensional Bisection Method
for Unconstrained Minimization Problem

E.Y. Morozova

Applied Mathematics Department
Herzen State Pedagogical University of Russia

48, Moika Emb., St.-Petersburg, 191186, Russia

melena65@mail.ru

Abstract
An extension of a new multidimensional bisection
method for minimizing function over simplex is proposed
for solving nonlinear unconstrained minimization
problem. The method does not require a differentiability
of function, and is guaranteed to converge to the
minimizer for the class of strictly unimodal functions.
The computational results demonstrating an effectiveness
of algorithm for minimizing nonsmooth functions are
presented.

Keywords: Convex set, n-dimensional simplex, strictly
unimodal function, direct search methods, nonlinear
unconstrained optimization.

1 Introduction

The problem considered here is an unconstrained
minimization problem, which has the general form:

() minf x → , nx R∈ , (P)
where : nf R R→ is a bounded below continuous strictly
unimodal function.
We use the following definition of strict unimodality.
Definition. Let D be a bounded closed convex set in nR .
Function :f D R→ is strictly unimodal over set D iff

for any segment DΔ ⊂ (){ }# min 1Arg f x x∈Δ = ,

where « # A» is the cardinality of set A.
The multidimensional bisection method (Baushev and
Morozova, 2007) allows to solve constrained
minimization problem when the feasible region is n-
dimensional simplex. This method generalizes a one-
dimensional bisection method for the case n>1 using a
recursive procedure. This paper will present an extension
of the multidimensional bisection method for solving
problem (P). This method does not require a
differentiability of function f, and is guaranteed to
converge to the minimizer for the class of strictly
unimodal functions.
It is known a class of methods that do not explicitly use
derivatives - direct search methods for unconstrained

Copyright © 2008, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Computing: The Australasian
Theory Symposium (CATS2008), Wollongong, New South
Wales, Australia. Conferences in Research and Practice in
Information Technology, (CRIPT), Vol. 77, James Harland and
Prabhu Manyem, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

optimization. Recent researches have shown the global
convergence of pattern search algorithms (a class of
direct search methods) for the case when function f is
continuously differentiable (Aude & Dennis, 2003,
Torczon, 1997). The advantage of the multidimensional
bisection method presenting in this paper is that it
convergence does not require an assumption about
differentiability of function f and method allows to find
the minimizer of nonsmooth functions.
In point 2 we describe the multidimensional bisection
method (MBM) for minimizing function over simplex. In
point 3, the details of the extension of MBM for solving
the unconstrained minimization problem are presented. In
point 4 some numerical results illustrate the robustness of
the method.

2 The Multidimensional Bisection Method

The problem considered is

() min,f x x S→ ∈ , (1)

where S - a n-dimensional simplex in nR , and f – a
continuous function.
1. Case n=1.

The one-dimensional bisection algorithm solves the
problem

() []baxxf ,min, ∈→ , (2)
where f is a strictly unimodal function over segment
[]ba, .

Let (), , ,bis f a b ε denote the recursive one-
dimensional bisection procedure. The inputs for this
procedure are: the procedure for calculation values of f,
the segment [],a b and the accuracy ε. The outputs are

the estimations mx for the minimizer x* and mf for the
value of the minimum of the function f over the
segment [],a b .

The iteration of the recursive procedure includes the
following steps.

Step 0. If ε≥− ab , go to step 1, otherwise stop.
Step 1.

2
a bc +

= '
2

a ca +
= , '

2
b cb +

= , ()f c , (')f a , (')f b .

Step 2.
If (') () (')f a f c f b≤ ≤ , set 'b b= .
If (') () (')f a f c f b≥ ≥ , set 'a a= .

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

57

If { }() min ('), (')f c f a f b≤ , set ', 'a a b b= = .

Step 3. Execute (), , ,bis f a b ε with new inputs.
2. Case n>1.

Let S be a n-dimensional simplex. Let fix the vertex
0

V and denote by 1,..., nV V the opposite vertices. Set for
each [0,1]t∈

{ }0 1 0 0 0(),..., ()n
tS conv V t V V V t V V= + − + − . (3)

The set tS is the 1n − -dimensional simplex for
0 1t< ≤ .

Set (){ }arg min |t tx f x x S≡ ∈ . Each simplex tS for

0 1t< < part the initial simplex S in two sets:

{ }0 , tconv V S and { }1, tconv S S . Fig. 1 illustrate an

example of the partition of the simplex S for the case
3=n .

Figure 1: The partition of the simplex S

Let 1 2(, , , ,)bissimpl f SS SS d ε denote the recursive

procedure in case 1n > . The inputs for this procedure
are: the procedure for calculation values of f, boundary
simplices 1SS and 2SS , the current dimension d and the
accuracy ε. The outputs are the estimations mx for the
minimizer x* and mf for the value of the minimum of the

function f over the set { }1 2,conv SS SS . Originally d is
equal n, then this parameter varies depending on the
dimension of the simplex where the point of a minimum
is searched. Actually this parameter at first decreases to
value 1, and then increases to value d=n. Three circles of
such calculations we consider as the iteration with
number k. Denote by fk the estimation of a minimum of
the function f and by xk the estimation of the point x*.
The parameter d and the outputs must be declared as
global variables and its initial values must be defined
before starting procedure 1 2(, , , ,)bissimpl f SS SS d ε .
More concretely the preliminary step includes the
following destinations:

0
1 0SS S V= = , { }1

2 1 , nSS S conv V V= = … according

to (7), d=n;

1010 ,,, ffxx we define in a such way that the
condition

{ } ε<−− −− 11 ,max kkkk xxff (4)

be failed.
Step 1.

If (4) is hold, stop. Otherwise set 11 SS=σ , 22 SS=σ
and go to step 2.

Step 2.
If d=1, execute (), , ,bis f a b ε with a= 1SS , b= 2SS
Otherwise, go to step 3.

Step 3.
Two cases are possible.

1) 1SS and 2SS are d-dimensional simplices. Let

1 1 1

0 1, ,..., d
SS SS SSV V V and

2 2 2

0 1, ,..., d
SS SS SSV V V be vertices of

simplices 1SS and 2SS accordingly. Then we define

1
2

S 1
4

S 3
4

S by

() (){
()}

1 2 1 1 2 1

1 2 1

0 0 0 1 1 1, ,

..., .

t SS SS SS SS SS SS

d d d
SS SS SS

S conv V t V V V t V V

V t V V

= + − + −

+ −
 (5)

2) One of the sets 1SS , 2SS is a vertex, another is d-
dimensional simplex. In this case 1

2

S 1
4

S 3
4

S are defined

by (3). Set 1d d= − .
Step 4.

For each of simplices 1
2

S 1
4

S 3
4

S the following actions

must be done:
1) Fix a vertex

0

V in the simplex tS and let
1,..., nV V be an opposite vertices.

2) Execute 1 2(, , , ,)bissimpl f SS SS d ε with new

values 0
1SS V= and { }1

2 ,..., nSS conv V V= .

Step 5.
Let 1

mx 2
mx , 3

mx and 1
mf

2
mf , 3

mf be results of the previous
step (for 1

2

S 1
4

S 3
4

S accordingly).

If 2 1 3
m m mf f f≤ ≤ , set 1 1SS σ= 2 3

4

SS S= .

If 2 1 3
m m mf f f≥ ≥ , set 1 1

4

SS S= 2 2SS σ= .

If { }1 2 3min ,m m mf f f≤ , set 1 1 2 3
4 4

,SS S S S S= = .

Set 1d d= + .
Step 6.

Execute 1 2(, , , ,)bissimpl f SS SS d ε with current inputs.

The following theorem presents the convergence result.
Theorem. Let ()εx be the final estimation of the

minimizer x* for the function f where f is a continuous
strictly unimodal function over n-dimensional simplex S
then () *

0
lim xx =
→

ε
ε

.

 V1

V2

S1/2

S1 V3

St

V0

CRPIT Volume 77 - Theory of Computing 2008

58

Figure 2: Construction of the simplex 1kS + in space R2

3 The main algorithm

Consider problem (P). The algorithm consecutively
solves the following constrained optimization problems:

() min, kf x x S→ ∈ , (6)
where Sk is a n-dimensional simplex in Rn, k is a number
of iteration, k=0, 1, 2,…. Each of problems (6) is solved
by the multidimensional bisection method described
above. Let (){ }arg min |k kx f x x S= ∈ . The algorithm
constructs simplexes Sk using two basic operations of
reflection and shift, so that 1 intk kx S− ∈ , and generates a
sequence of points { }kx with decreasing vales of f:

1() (),k kf x f x k N−≤ ∈ .
This iterative process stops when point intk kx S∈ . A
more formal description of the algorithm is as follows:

Step 1.
Choose { }0 0, 0,...,iS conv v i n= = - an arbitrary initial
simplex. Set k=0.

Step 2.
Call the procedure bissimpl which solves problem (1).

Step 3.
Finding barycentric coordinates

0, 0,..., ,i i nλ ≥ =
0

1
n

i
i

λ
=

=∑ (7)

of the point { }, 0,...,k k k ix S conv v i n∈ = = .
Step 4.

If Intk kx S∈ , then set * kx x= , stop; otherwise go to step
5.

Step 5.
We have k kx S∈∂ . Construction of the simplex Sk+1 by
the procedure 0

0(,..., , , ,..., ,)n k
nreflect v v x λ λ θ (we shall

describe reflect below).
Step 6.

Set k=k+1. Go to step 2.

Now consider step 5 in details and describe the

procedure 0
0(,..., , , ,..., ,)n k

nreflect v v x λ λ θ .
The inputs for this procedure are: the vertices
{ }0,...,iv i n= of the simplex Sk, the point

(){ }arg min |k kx f x x S= ∈ , barycentric coordinates (7),
small positive number θ . The outputs are the vertices
{ }1, 0,...,k iv i n+ = of new simplex 1kS + . Let

() (){ }0 0iI v i vλ= = , 0,...,i n= ,

() (){ }1 0jI v j vλ= ≠ , 0,...,j n= .

The procedure reflect includes two following operations
(at iteration with number k):

1. Reflection. This move reflects the points ,k iv for
all ()0i I v∈ through the point kx :

()1, , ,2k i k i k k iv v x v+ = + −� for all ()0i I v∈ .

2. Shift. Parallel displacement of the vertices
1, ,,k i k jv v+� for all () ()1 1,i I v j I v∈ ∈ of the

simplex 1kS +� along vector ()k cx x− , where cx -

centroid of 1kS +� :

()1, 1,k i k i k cv v x xθ+ += + −� for all ()0i I v∈ ,

()1, ,k j k j k cv v x xθ+ = + − for all ()1j I v∈ ,

where θ - some small positive number.

Then ()1 1, 0,...,k k iS conv v i n+ += = and we get
1Intk kx S +∈ (figure 2).

Remark. Note that we get an ε-approximate solution to
the original minimization problem (P), where ε is an
input for procedure bissimpl.
The following lemma is needed to prove the convergence
of our algorithm.

Lemma. Let f be continuous strictly unimodal function
on the set D and let segment 1 2,x x D⎡ ⎤ ⊂⎣ ⎦ . If

3 1 2Int ,x x x⎡ ⎤∈ ⎣ ⎦ and () ()1 3f x f x< , then

() ()3 2f x f x≤ .

Proof. Assume that () ()3 2f x f x> . Then there is

(){ }* 1 2 1 2Int , arg max ,x x x f x x x x⎡ ⎤ ⎡ ⎤∈ = ∈⎣ ⎦ ⎣ ⎦ and there

are positive numbers 1 2,δ δ such that function f

increases over segment * *
1,x xδ⎡ ⎤−⎣ ⎦ and decreases over

segment * *
2,x x δ⎡ ⎤+⎣ ⎦ . Then () ()* *

1 2f x f xδ δ− = + by
virtue of continuity of the function f, i.e. the points

*
1x δ− and *

2x δ+ are minimizers of the function f over

segment * *
1 2,x xδ δ⎡ ⎤− +⎣ ⎦ that contradicts to definition of

strict unimodality. □
The following theorem presents the convergence result.
Theorem. If : nf R R→ is a bounded below continuous
strictly unimodal function, S0 is an arbitrary simplex,
{ }, 0, 1, 2,...kx k = and 1 2, , ..., ,...kS S S are found by the

2,kv

1+kS

1k kx IntS +∈

1,kv
0,1~ +kv

1,1+kv

2,1+kv
0,kv

kS

0,1+kv cx

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

59

above described algorithm then there is number k* such
that (){ } ** arg min | intn kx f x x R S= ∈ ∈ .
Sketch of proof. The algorithm of this paper generates the
sequence { }kx and (){ }arg min |k kx f x x S= ∈ . If

intk kx S∈ , then kx solves problem (1) by virtue of strict
unimodality of function f. If ,k kx S∈∂ then 1intk kx S +∈
according to the rule of construction of simplex 1kS + .
Let kΓ be the nearest to the point *x 1n − –dimensional

face of simplex kS . We shall show that kkx Γ∈ .
Assume that k kx ∈Γ� . Consider segment *,kx x⎡ ⎤⎣ ⎦ . Let

ky be the point of intersection of face kΓ with segment
*,kx x⎡ ⎤⎣ ⎦ . Then () () ()*k kf x f y f x< > , that contradicts

to lemma. So, k kx ∈Γ . Let

() (){ }* *, min ,k k
k x x y yρ ρ ρ= Γ = ∈Γ . We shall show

that liminf 0kρ = . Let kz be the point of emergence of

ray ()*k Kx t x x+ − from simplex Sk and ()*,k
kr z xρ= .

Sequence kr is monotonically decreasing to zero,
lim 0kr = . So, liminf 0kρ = . Thus, there is number *k

such that (){ } ** arg min | intn kx f x x R S= ∈ ∈ . □

4 The numerical results

We implemented the multidimensional bisection method
discussed above in MATLAB. The program was tested
for different examples of minimization of nonsmooth
functions. Some of numerical results we present in this
section, some other examples can be found in (Morozova,
2006).

Example 1. Minimization of Dennis-Wood function.
Consider the following variant of Dennis-Wood function
(Dennis & Wood, 1987):

{ }2 2
1 2

1() max ,
2

f x x c x c= − − , (8)

where ()1 1, 1c = − 2 1c c= − . This function is continuous
and strictly convex, but its gradient is discontinuous
everywhere on the line 1 2x x= .
As shown in some works (Kolda and others, 2003,
Torczon, 1991) such of direct search methods as
compass search, multidirectional search algorithm can
fail to converge to the minimizer of function (8).
We will illustrate the convergence of our algorithm to the
minimizer of function (8).
The level sets of function (8) and the sequences of the
simplexes Sk are shown in figure 3.
The sequence of the points kx generated by our algorithm
 converges to the minimizer ()5 0,0x as shown in figure

3. The regular simplex with centre ()1.5; 1− and the

length of edge 1l = was chosen as an initial simplex.
The accuracy ε was chosen equal 610− . Figure 4

illustrates decreasing function values at the each of six
iteration.

 Figure 3: The level sets of the function (3),
 the sequences of the simplexes Sk and { }kx

Figure 4: Decreasing function values
at the each iteration

Table 1 shows the computational results for each of 6
iterations.

Iteration, k Minimizer
k kx S⊂ ()kf x

0 ()0 1.4910; 0.4382x − 4.1368

1 ()1 0.9821; 0.4123x 2.1370

2 ()2 0.7575; 0.7575x 1.5738

3 ()3 0.4884; 0.4884x 1.2385

4 ()4 0.1717; 0.1717x 1.0295

5 ()5 0.0000; 0.0000x 1.0000
Table 1: Iterative results

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y

So

S1

S2

S3

S4

S5 xo

x1

x2

x3
x4

x5

v

0 20 40 60 80 100 120 140 160 180
1

1.5

2

2.5

3

3.5

4

4.5

Итерации

Зн
ач
ен
ия

 ф
ун

кц
ии

Xmin = 0; Ymin = 0; fmin = 1

Iterations

F
u
n
c
t
i
o
n

v
a
l
u
e
s

 x*(0; 0), fmin = 1

CRPIT Volume 77 - Theory of Computing 2008

60

Example 2. Minimization of McKinnon function.
This example was chosen for comparing with the most
popular direct search method – the Nelder-Mead
algorithm (Nelder and Mead, 1965) which convergence is
proved only for dimension 1 and some limited results for
dimension 2 (Lagarias and others, 1998). At the same
time there are examples of family of functions in R2

(McKinnon, 1998) which demonstrate that the Nelder-
Mead simplex algorithm can fail to converge to a
stationary point of f. Consider the following function of
this family:

2 2

2 2

360 , 0
(,)

6 , 0
x y y x

f x y
x y y x

⎧ + + ≤
= ⎨

+ + ≥⎩
. (9)

Function (9) is strictly convex and has up to three
continuous derivatives. As shown in (McKinnon, 1998) if
the initial simplex is { }0 0 1 2, ,S conv v v v= ,

()0 0,0v = , 1
1 2(,)v λ λ= , ()2 1,1v = ,

1 2
1 33 1 33,

8 8
λ λ+ −
= = , (10)

then all vertices in the Nelder-Mead method converge to
a nonminimizing point.
We illustrate that our algorithm applied to the function
(9) converges to the minimizer. The initial simplex was
equal { }0 0 1 2, ,S conv v v v= , where vertices 0 1 2, ,v v v , and

values 1 2,λ λ where chosen according to (10). The
accuracy ε was chosen equal 610− . As shown in figure 5,
point ()0 00.0542, 0.0381x S− ∈∂ , ()0 0.0190f x = − .
After constructing new simplex S1 and performing the
first iteration of our algorithm we have
point ()1 0, 0.5x − with function value ()1 0.25f x = − .

Point 1 1intx S∈ is the minimizer of function (9).

Figure 5: The level sets of the function (9),
the sequences of the simplexes Sk and { }kx

The level sets of function (9), the sequences of the
simplexes Sk and the minimizers kx are shown in figure
5. Figure 6 illustrates decreasing function values at the
each of two iteration.

Figure 6: Decreasing function values
at the each iteration

Example 3.Minimization of nonsmooth function.

The basic advantage of our algorithm is that it guarantees
the convergence for a nonsmooth functions. Consider the
following family of nonsmooth functions:

()
1 1

,
n n

p p
k k

k k
f x y x a y b

= =

= − + −∑ ∑ , (11)

where ka and kb are some pairwise different real
numbers, n is an odd number, 0 1p< ≤ . If we sort the
numbers ka and kb in increasing order then the medium
point minimizes function (11).
Figure 7 illustrates the convergence of our algorithm for

this family of functions when 1 , 11
2

p n= = and the

numbers ka and kb were chosen from the uniform
distribution on the segment []0,1 . Point 2 2intx S∈ is the
minimizer of function (11). Figure 8 illustrates decreasing
function values at the each of three iterations.
Table 2 shows the computational results for each of 3
iterations.

Iteration, k Minimizer
k kx S⊂ ()kf x

0 ()0 17; 2x 17.4847

1 ()1 4.6858; 0.5711x 8.2839

2 ()2 0.6649; 0.5711x 3.1503
Table 2: Iterative results

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

-0.2
0

0

1

1 1

2

2
2

2

2

4

4

4
4

4
6

6

6
6

6

6

8

8
8

8

8

x

y xo

x1

So

S1

0 5 10 15 20 25 30 35 40 45

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Итерации

Зн
ач
ен
ия

 ф
ун

кц
ии

xmin = 0; ymin = - 0,5; fmin = - 0,25

F
u
n
c
t
i
o
n

v
a
l
u
e
s

 Iterations

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

61

Figure 7: The level sets of the function (11),
the sequences of the simplexes Sk and { }kx

Figure 8: Decreasing function values
at the each iteration

5. Conclusion

We have exposed our algorithm for the class of strictly

unimodal functions only. However one can show that the
algorithm can be applied for a wider class of functions,
namely, we consider the class of functions SΦ , where S -
the n-dimensional simplex, defined as follows: Sf Φ∈
iff for any segment S⊆Δ each local minimum of f over
this segment is also a global minimum of the function f
over this segment. The class SΦ contains a subclass of
strictly unimodal functions over set S. Function (11)
considered in last example 3 is belong to the class SΦ .

References

Baushev A.N., Morozova E.Y (2007): A

multidimensional bisection method for minimizing
function over simplex. Lectures notes in engineering
and computer science, 2:801-803.

Aude C. Dennis J.E. (2003): Analysis of Generalized
Pattern Searches. SIAM J. Optim, 13(3):889-903.

Torczon V. (1997): On the convergence of Pattern Search
Algorithms. SIAM J. Optim, 7(1):1-25.

Dennis, J. E., Woods, Jr. and Daniel, J. (1987):
Optimization on microcomputers: The Nelder-Mead
simplex algorithm, in New Computing Environments:
Microcomputers in Large-Scale Computing, A. Wouk,
ed., SIAM, Philadelphia, 116-122.

Morozova, E.Y. (2006): The direct search recursive
algorithm for minimizing function of several
variables. The Review of applied and industrial
mathematics, 13(5):783-796. (In Russian).

Kolda, T. J., Lewis, R. M., Torczon, V. (2003):
Optimization by Direct Search: New Perspectives on
Some Classical and Modern Methods. SIAM Review,
45(3):385-482.

Torczon, V. (1991): On the convergence of the
multidirectional search algorithm. SIAM J. Optim.,
1:123-145.

Nelder J.A. and Mead R. (1965): A simplex method for
function minimization. Computer Journal, 7: 308-313.

Lagarias J.C., Reeds J.A., Wright M.H. and Wright P.E.
(1998): Convergence properties of the Nelder Mead
simplex algorithm in low dimensions. SIAM J. Optim,
9: 112-147.

McKinnon, K.I.M. (1998): Convergence of the Nelder-
Mead simplex method to a non-stationary point. SIAM
J. Optim, 9: 148-158.

 0 20 40 60 80 100 120

5

10

15

20

25

Итерации

Зн
ач
ен
ия

 ф
ун

кц
ии

xmin = 0,6649; ymin = 0,5711; fmin = 3,1503

F
u
n
c
t
i
o
n

v
a
l
u
e
s

-20 -15 -10 -5 0 5 10 15 20 25 30 35
-20

-15

-10

-5

0

5

10

15

20

25

30

x

y

So

S1

S2

x1

xo

x2

CRPIT Volume 77 - Theory of Computing 2008

62

Optimal Joint Vendor-Buyer Inventory Strategy for Deteriorating
Items with Salvage Value

Nita H. Shah1, Ajay S. Gor2 and H. M. Wee3*

1Department of Mathematics, Gujarat University, Ahmedabad – 380 009
2Pramukh Swami Science & H. D. Patel Arts College, Kadi – 382 715

Gujarat, India
3Industrial Engineering Department, Chung Yuan Christian University,

Chungli 32023, Taiwan, ROC
Email: nita_sha_h@rediffmail.com, weehm@cycu.edu.tw

Abstract

This study develops a joint optimal inventory strategy
for both the buyer and the vendor when the expired
stocks have salvage value, and are subject to constant
rate of deterioration. It is shown numerically that the
joint approach results in a significant cost reduction
when compared with an individual decision by the
buyer. We also observed that although the joint total
cost decreases, the buyer’s cost increases due to larger
order. To motivate the buyer to continue to replenish
larger order quantity, a permissible delay in payments is
offered by the vendor to the buyer. A negotiation factor
is introduced to share the benefits of both the parties; the
vendor and the buyer.

Keywords : Joint total cost, Deterioration, salvage value,
permissible delay in payments.

1 Introduction

In the existing literature, most of the inventory models are
derived from the buyer’s point of view. This optimal
decision policy may not be advantageous in economic
terms for the vendor. Thus, there is need to derive a joint
policy which turns out to be win-win strategy for both;
the vendor and the buyer. Clark and Scarf (1970) studied
the vendor-buyer integration for the first time. Banerjee
(1986) extended Clark and Scarf’s model by introducing
finite replenishment rate. Goyal (1988) extended
Banerjee’s model by relaxing the assumptions of the
lot-for-lot production.

The above stated models assumed that the units in
inventory remain in utility for the period under review.
However, blood components, fruits and vegetables,
alcohol, medicines, fashion goods etc looses its utility

 *Corresponding author: Professor H. M. Wee is a faculty
in the Industrial Engineering Department from Chung
Yuan Christian University, Taiwan.

Copyright © 2008, Australian Computer Society, Inc.
This paper appeared at the Computing: The Australasian
Theory Symposium (CATS 2008), Wollongong,
Australia. Conferences in Research and Practice in
Information Technology, Vol. 77, James Harland and
Prabhu Manyem, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

with the passage of the time. The loss of utility, spoilage,
decay or evaporation is categorized as deterioration.
Raafat (1991), Shah and Shah (2000), Goyal and Giri
(2001) gave up-to-date review of the research articles on
deteriorating inventory.

In the preceding review articles, the models assumed that
deteriorated units have no sale value. They are considered
lost. However, in practice, vendor can offer to his buyer
reduced unit cost for the deteriorated stocks. In this
article, the joint vendor-buyer inventory system for
deteriorating items with salvage value is developed. A
negotiation factor is used to facilitate benefit sharing
through offering permissible trade credit to the buyer;
thus making cooperation relationship more realistic and
mutually beneficial.

2 Mathematical Model
The mathematical model is developed on the basis of the
following assumptions:

1. A system consists of single vendor and single
buyer.

2. The demand rate is deterministic and known.
3. The replenishment rate is infinite.
4. Lead – time is zero or negligible.
5. Shortages are not allowed.
6. The deterioration rate is constant and

proportional to on hand inventory.
7. There is no repair or replacement of the

deteriorated units during the cycle time.
8. The permissible credit period is used to motivate

the buyer to cooperate in the joint inventory
system.

The following notations are used

θ : Deterioration rate (0 < θ ≤ 1)

d : Demand rate

Cv : Vendor’s unit cost

Cb : Buyer’s unit cost (Cb > Cv)

αCv : Salvage value associated with deteriorate units
for the vendor (0 ≤ α ≤ 1)

αCb : Salvage value associated with deteriorate units
for the buyer

Av : Vendor’s ordering cost

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

63

Ab : Buyer’s ordering cost

hv : Vendor’s annual holding cost per time unit

hb : Buyer’s annual holding cost per time unit

T : Vendor’s replenishment cycle time

Tb : Buyer’s replenishment cycle time

n : Buyer’s order times during [0, T]

Iv(t) : Vendor-buyer combined inventory level

Ib(t) : Buyer’s inventory level

TCv : Vendor’s annual total cost per time unit

TCb : Buyer’s annual total cost per time unit

TC : Annual total cost for both the vendor and the
buyer

The stocks on hand are depleted due to demand and
deterioration. The instantaneous states of inventory for
both the vendor and the buyer at any instant of time ‘t’
can be represented by the following differential
equations:

dI (t) Tb I (t) d, 0 t b ndt
+ ! = " # # (2.1)

and

v
v

dI (t)
I (t) d, 0 t T

dt
+ ! = " # # (2.2)

With the boundary conditions

Ib
T

n

! "
$
% &

 = 0, Iv (T) = 0, Ib (0) = Imb (maximum

inventory carried by the buyer) and Iv (0) = Imv
(maximum inventory carried by the vendor), the
solutions of the differential equations are

Ib(t) =
T
t

nd
e 1

! "# $% &
' (

) *
+ ,$
+ ,#
- .

, 0 ≤ t ≤ T
n

 (2.3)

and

Iv(t) = ()T td
e 1
! "# $"% &' (!

, 0 ≤ t ≤ T (2.4)

Hence, the maximum lot-sizes for the buyer and the
vendor are

Imb(t) =
T

n
d
e 1

!" #
$ %&

! $ %
' (

 (2.5)

and

Imv(t) = Td
e 1
!" #$

% &!
 (2.6)

respectively.

During [0, T], the total inventory holding cost for
the buyer is given by

IHCb = nhb
T / n

0

! Ib(t)dt

 = nhb
T

n

2

d T
e 1

n

!" #!
$ %& &
$ %! ' (

 (2.7)

The actual vendor inventory level in the integrated
two-echelon inventory model is the difference between
the vendor-buyer combined average inventory level and
the buyer average inventory level. Hence, the actual
vendor’s holding cost in the interval [0, T] is

IHCv = hv
v b

T T / n

I (t)dt n I (t)dt

0 0

!" "
$
% &
% &' (

 = hv
T

T n

2

d
e 1 n e 1

!
!

" #$ %
& '()* * *

()& '! + ,- .
 (2.8)

In the time period, [0, T], the deterioration cost for the
buyer is

CDb = nCb mb

dT
I

n

! "
#$ %

& '

 = nCb
T

n
d T
e 1

n

!" #!
$ %& &

! $ %
' (

 (2.9)

and for the vendor is

CDv = Cv mv mb

dT
I dT n I

n

! "# $% % %& '()
* +, -

 = Cv
T

T n
d
e 1 n e 1

!
!

" #$ %
& '()* * *

()& '! + ,- .
 (2.10)

The salvage value of the deteriorated units for the buyer
during [0, T] is

SVb = náCb
T

n
d T
e 1

n

!" #!
$ %& &

! $ %
' (

 (2.11)

and the salvage value of the deteriorated units for the
vendor during [0, T] is

SVv = áCv
T

T n
d
e 1 n e 1

!
!

" #$ %
& '()* * *

()& '! + ,- .
 (2.12)

The ordering cost for the buyer is

OCb = nAb (2.13)

CRPIT Volume 77 - Theory of Computing 2008

64

and for the vendor is

OCv = Av (2.14)

The buyer’s total cost per time unit is given by

TCb = 1
T

 [IHCb + CDb + OCb – SVb]

= nhb
T

n

2

d T
e 1

nT

!" #!
$ %& &
$ %! ' (

 + nCb(1 – á)
T

n
d T
e 1

T n

!" #!
$ %& &

! $ %
' (

 + b
nA

T

 (2.15)
Similarly, the vendor’s total cost per time unit is

TCv = 1
T

 [IHCv + CDv + OCv – SVv]

 = hv
T

T n

2

d
e 1 n e 1

T

!
!

" #$ %
& '()* * *

()& '! + ,- .

+Cv(1–á)
T

T n
d
e 1 n e 1

T

!
!

" #$ %
& '()* * *

()& '! + ,- .
 + v
A

T

 (2.16)

The annual joint total cost; TC is the sum of TCb and

TCv. Since, Tb =
T

n
, TC is a function of continuous

variable; Tb and discrete variable; n.

3 Computational Algorithm
There are two cases to be discussed.

Case 3.1 When the buyer and the vendor make strategic
decision independently.

For the buyer to minimize TCb, obtain Tb by setting
b

b

TC

T

!

!
 = 0.

For the vendor, minimum TCv can be obtain by putting T
= nTb and also satisfying

TCv(n – 1) ≥ TCv(n) ≤ TCv(n + 1) (3.1)

Then the total annual cost (say) TCNJ without considering
integration is

TCNJ = { }b v
n n

min (min TC) + TC (3.2)

Case 3.2 When the buyer and the vendor make decision
jointly.

The optimum value of cycle time Tb and n can be
obtained by following necessary conditions.

b

TC

T

!

!
 = 0 (3.3)

and

TC(n – 1) ≥ TC(n) ≤ TC(n + 1) (3.4)

The total cost considering joint decision (say) TCJ, is

TCJ =
bT ,n
min (TCb + TCv) (3.5)

Since TCJ is less than TCNJ, there is total cost saving
(say) SJ = TCNJ – TCJ. Let the buyer’s cost savings, Sb, be
defined by Sb = âSJ where â is the negotiation factor for
benefit sharing. When â = 1, all total cost savings benefit
the buyer only, for â = 0, total cost savings benefit the
vendor only and when â = 0.5 the total cost savings are
equally distributed between the buyer and the vendor. If r
is the interest rate, the present value of the unit cost after
time M is e-rM. The length of the buyer’s credit period M
can be computed by solving the equation

dCb (1 – e-rM) = Sb

which gives

M = b

b J

dC1
ln
r dC S

! "
$% &' (

 (3.6)

The percentage of the joint total cost reduction (PJCR) is
defined as

PJCR = NJ J

NJ

TC TC
100

TC

!
" (3.7)

4 Numerical Example and Sensitivity Analysis
Consider the following parametric values in proper units.

[d, Cv, Cb, Av, Ab, hv, hb, α, θ, r, β] =

[40000, 10, 12, 3000, 600, 1, 1.32, 0.2, 0.1, 0.03,
0.5]

Cases Without joint
decision

With joint decision

n 3 1
Tb 0.1145 0.2795
T 0.3435 0.2795
TCb 10472.91 14959.58
TCv 17047.68 10734.51
TC 27520.59 25694.09
PJCR - 6.64 %
M (yr) - 0.0635

Table 4.1: The optimal solution without and with
joint decision

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

65

α 0.0 0.2 0.3 0.4

TCNJ 28966 27520 26768 25995
TCJ 27002 25694 25014 24316
PJCR
(in %)

6.78 6.63 6.55 6.46

M 0.0683 0.0634 0.0609 0.0584

Table 4.2: Sensitivity analysis of the proportion
salvaged (α)

θ 0.05 0.10 0.15 0.20

TCNJ 24323 27520 30378 32986
TCJ 23448 25694 28279 30644
PJCR
(in %)

6.21 6.63 6.91 7.10

M 0.525 0.0634 0.0729 0.0814

Table 4.3: Sensitivity analysis of the deterioration
rate (θ)

d 24000 32000 40000 48000

TCNJ 21335 24623 27520 30139
TCJ 19918 22988 25694 29008
PJCR (in %) 6.645 6.640 6.63 6.634
M 0.0822 0.0710 0.0634 0.0579

Table 4.4: Sensitivity analysis of the demand rate
(d)

hb 0.792 1.056 1.32 1.584

TCNJ 26330 26906 27520 28156
TCJ 22516 24158 25694 17142
PJCR (in %) 14.48 10.21 6.63 3.601
M 0.1327 0.0955 0.0634 0.0352

Table 4.5: Sensitivity analysis of the buyer’s holding
cost (hb)

In Table 4.1, the comparative study of two cases without
and with joint decision. For the joint decision with
deterioration, it is observed that the buyer’s total annual
cost and cycle time increases. The vendor benefits $ 6313
while the buyer looses $ 4487 (when α = 0, it is less than
Yang and Wee (2005). Therefore, the buyer will be
reluctant to go for joint strategy. To motivate the buyer to
cooperate, the vendor offers the buyer a credit period of
23 days. The joint total cost is reduced by 6.64 %.

The sensitivity analysis of the proportion salvaged (α) is
carried out in Table 4.2. It is found that the total annual
cost and credit period for both the strategies decreases.
Thus, increase in salvage value decreases permissible
delay period. This is because instead of throwing away
deteriorated units, the vendor is disposing them at a lower
price and the buyer can reduce his total cost and so
decreasing the permissible delay period is justified. For
Table (4.3) and Table (4.4), i.e. increase in deterioration

rate forces the buyer to buy more to fulfill his demand
and hence to optimize his total cost, so delay period
should be increased. The same applies for the case when
there is a decrease in demand. Thus, for these two
scenarios, the buyer-vendor should go for joint strategy. It
is also shown that increasing the buyer’s holding cost
decreases the trade credit significantly (Table 4.5).

5 Conclusions
In this article, we develop a joint optimal vendor-buyer
inventory strategy for deteriorating items with salvage
value. It is observed that incorporating the salvage value
results in a reduced joint total annual cost of the vendor
and the buyer. However, the buyer’s cost increases more
when the joint decision is taken. To motivate the buyer’s
co-operation, trade credit offered to the buyer is
incorporated in the model. With increasing holding cost,
deterioration rate and decreasing salvage value, joint
decision is especially beneficial to both parties.

References:
Banerjee, A. (1986), ‘A joint economic lot-size model for
purchaser and vendor’, Decision Sciences, 17, 292 – 311.

Clark, A. J. and Scarf, H. (1960), ‘Optimal policies for a
multi-echelon inventory problem’, Management Science,
6, 475 – 490.

Goyal, S. K. (1988), ‘A joint economic lot-size model for
purchaser and vendor: A comment’, Decision Sciences,
19, 236 – 241.

Goyal, S. K. and Giri, B. C. (2001), ‘Recent trends in
modeling of deteriorated inventory’, European Journal of
Operational Research, 134, 1 – 16.

Raafat, F. (1991), ‘Survey of literature on continuously
deteriorating inventory model’, Journal of the
Operational Research Society, 42, 27 – 37.

Shah, Nita H. and Shah, Y. K. (2000), ‘Literature survey
on inventory models for deteriorating items’, Economic
Annals, XLIV, 221 – 237.

Yang, P. C. and Wee, H. M. (2005), ‘A win-win strategy for an
integrated vendor-buyer deteriorating inventory system’,
Mathematical Modeling and Analysis, Proceeding of the 10-th
International Conference MMA2005 & CMAM2, Trakai, 541 –
546.

CRPIT Volume 77 - Theory of Computing 2008

66

Tractable Cases of the Extended Global Cardinality Constraint∗

Marko Samer Stefan Szeider

Department of Computer Science

Durham University, UK

Email: {marko.samer,stefan.szeider}@durham.ac.uk

Abstract

We study the consistency problem for extended global

cardinality (EGC) constraints. An EGC constraint

consists of a set X of variables, a set D of values, a

domain D(x) ⊆ D for each variable x, and a “car-

dinality set” K(d) of non-negative integers for each

value d. The problem is to instantiate each variable x
with a value in D(x) such that for each value d, the

number of variables instantiated with d belongs to the

cardinality set K(d). It is known that this problem

is NP-complete in general, but solvable in polynomial

time if all cardinality sets are intervals.

First we pinpoint connections between EGC con-

straints and general factors in graphs. This allows us

to extend the known polynomial-time case to certain

non-interval cardinality sets.

Second we consider EGC constraints under restric-

tions in terms of the treewidth of the value graph

(the bipartite graph representing variable-value pairs)

and the cardinality-width (the largest integer occur-

ring in the cardinality sets). We show that EGC

constraints can be solved in polynomial time for in-

stances of bounded treewidth, where the order of

the polynomial depends on the treewidth. We show

that (subject to the complexity theoretic assump-

tion FPT 6= W[1]) this dependency cannot be avoided

without imposing additional restrictions. If, how-

ever, also the cardinality-width is bounded, this de-

pendency gets removed and EGC constraints can be

solved in linear time.

Keywords: Global constraints, general factor prob-

lem, bounded treewidth, parameterized complexity,

dynamic programming, domain consistency

1 Introduction

Constraint satisfaction is a powerful formalism for en-

coding a wide range of combinatorial problems and is

therefore attractive for both practitioners as well as

theorists (Rossi et al. 2006). Special purpose con-

straints with non-constant arity, often referred to as

global constraints, occur frequently in constraint mod-

eling. Efficient propagation algorithms for such con-

straints are important for the performance of con-

straint solvers (van Hoeve & Katriel 2006). Cur-

rently the Global Constraint Catalog (Beldiceanu

et al. 2005) lists 276 global constraints.

∗
Research supported by the EPSRC, project EP/E001394/1.

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Computing: The Aus-
tralasian Theory Symposium (CATS2008), Wollongong, New
South Wales, Australia. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 77, James Harland
and Prabhu Manyem, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

In the sequel we focus on extended global cardi-
nality constraints (EGC constraints, for short), con-

straints that occur frequently in constraint modeling

and are known as global cardinality (Beldiceanu et al.

2005), egcc (Bessiére et al. 2004), distribution (Bour-

dais et al. 2003), and card var gcc (Régin & Gomes

2004). An EGC constraint is specified by a set D of

values, a set X of variables where each variable x ∈ X
ranges over a set D(x) ⊆ D of values, and sets K(d)

of non-negative integers associated with values d ∈ D;

we refer to the sets K(d) as cardinality sets. The EGC

constraint requires that the number of variables in X
instantiating to a value d must belong to the cardi-

nality set K(d). More specifically, an EGC constraint

with variables X and domain D is consistent if there

is a mapping α : X → D such that

1. α(x) ∈ D(x) holds for all variables x ∈ X , and

2. |{ x ∈ X : α(x) = d }| ∈ K(d) holds for all val-

ues d ∈ D.

The value graph provides a convenient visualization of

the relationship between variables and values present

in an EGC constraint; it is the bipartite graph with

vertex sets X and D where an edge joins a variable x
with a value d if and only if d ∈ D(x). Figure 1 shows

an EGC constraint and its value graph.

a b c d e

u v w x y z

K(a) K(b) K(c) K(d) K(e)

{0, 3} {1, 2} {1} {0, 2} {1, 3}

D(u) D(v) D(w) D(x) D(y) D(z)

{a, b} {a, c} {a, c, d} {d, e} {a, e} {a, b, e}

Figure 1: An EGC constraint and its value graph.

The constraint is satisfied by α(u) = b, α(v) = c,
α(w) = d, α(x) = d, α(y) = e, and α(z) = b.

We refer to the largest integer occurring in the car-

dinality sets of an EGC constraint as the cardinality-
width of the constraint. For example, the constraint

in Figure 1 has cardinality-width 3.

We consider the following decision problem:

EGCC-Consistency

Instance: An EGC constraint C.

Question: Is the constraint C consistent?

Quimper et al. (2004) have shown that EGCC-
Consistency is NP-complete. However, as observed

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

67

by Régin (1996), EGCC-Consistency can be de-

cided in polynomial time by network flow algorithms

if all cardinality sets are intervals (such constraints

are called global cardinality constraints). As we will

see in Section 3, both results are special cases of an

earlier result of Cornuéjols.

Contributions of this paper

We explore properties of EGC constraints that ad-

mit polynomial-time consistency checking even in the

presence of non-interval cardinality sets.

We discuss connections between EGCC-
Consistency and the general factor problem
for graphs as introduced by Lovász (1970, 1972).

This connection seems not to be known in the

constraint satisfaction literature. In view of this

connection, a general result of Cornuéjols (1988) for

the general factor problem allows us to generalize

Régin’s polynomial-time result from intervals to

“2-gap free” cardinality sets.

The main technical contributions of this pa-

per are concerned with the complexity of EGCC-
Consistency under structural restrictions. In par-

ticular, we consider instances whose value graphs

have bounded treewidth. We present a dynamic pro-

gramming algorithm that allows to decide EGCC-
Consistency in polynomial time for instances of

bounded treewidth. This algorithm can be easily

extended to perform also domain-filtering efficiently,

that is, to remove from the domains of the variables

those values that do not participate in a solution of

the constraint. Domain filtering is an important task

in the context of constraint solving (van Hoeve & Ka-

triel 2006).

The polynomial that bounds the running time of

our dynamic programming algorithm depends on the

treewidth of the instance. However, if we addition-

ally bound the cardinality-width, this dependency

is removed and the algorithm runs in linear time.

The question arises whether this dependency can be

avoided without bounding the cardinality-width. We

answer this question negatively, subject to the com-

plexity theoretic assumption FPT 6= W[1] (see Sec-

tion 6).

As a corollary, we obtain that Lovász’s general fac-

tor problem, parameterized by the treewidth of the

input graph, is W[1]-hard. This result may be of in-

dependent interest.

The remainder of the paper is organized as follows.

In Section 2 we give basic definitions and background

on constraints and treewidth. In Section 3 we discuss

the connection between EGC constraints and general

factors in graphs, and we give a tractability result

applying general results of Cornuéjols and Courcelle.

In Section 4 we present the dynamic programming

algorithm for instances of bounded treewidth; in Sec-

tion 5 we extend this algorithm to domain filtering.

In Section 6 we prove the W[1]-hardness result.

2 Preliminaries

2.1 Constraint Satisfaction

A constraint network consists of a finite set X of vari-
ables, a finite set D of values, and a finite set of

constraints. Each variable x ∈ X ranges over a set

D(x) ⊆ D of values, the domain of x. Each con-

straint C specifies the allowed combinations of values

for a set var(C) ⊆ X of variables, the scope of C; the

arity of a constraint is the cardinality of its scope. An

assignment is a mapping α that assigns to each vari-

able x ∈ X a value α(x) ∈ D(x). An assignment α
satisfies a constraint C if α instantiates the variables

in the scope of C such that an allowed combination

of values is formed. An assignment that satisfies si-

multaneously all constraints is a solution of the con-

straint network. A constraint C is consistent if it

is satisfied by at least one assignment, and it is do-
main consistent if for every variable x ∈ var(C) and

every value d ∈ D(x) there exists an assignment α
that satisfies C and instantiates x with d. Given a

constraint C, domain filtering is the task of removing

values d from domains of variables x ∈ var(C) if there

is no assignment that satisfies C and instantiates x
with d. What we call domain filtering is sometimes

called “complete” domain filtering in order to em-

phasize that all superfluous values are removed from

domains, in contrast to weaker forms of domain filter-

ing that only achieve “range consistency” or “bounds

consistency” (van Hoeve & Katriel 2006).

For an EGC constraint C with set X of variables

and set D of values we say that C is over (X, D). The

input size of an EGC constraint C over (X, D) is of

order ‖C‖ =
∑

x∈X
(|D(x)|+ 1) +

∑

d∈D
(|K(d)|+ 1).

Thus, for the value graph G = (V, E) of C, we have

|V | + |E| ≤ ‖C‖.

Note that we consider the EGC constraint as an

intensional constraint. Typically, global constraints

are considered as intensional constraints since for

many global constraints an extensional representation

(where all combinations of values that satisfy the con-

straint are explicitely listed) would require exponen-

tial space. Domain filtering and consequently test-

ing for domain consistency or consistency is trivial

for extensional constraints as these properties can be

read off from the constraint relation. For intensional

constraints, however, testing for domain consistency

or consistency is nontrivial and known to be NP-

complete for several classes of constraints (Bessiére

et al. 2004, Quimper et al. 2004), in particular for

the EGC constraint. Note that whenever domain fil-

tering can be accomplished in polynomial time for

a constraint, then its consistency can be checked in

polynomial time as well (Bessiére et al. 2004), but the

converse does not hold in general (Sellmann 2003).

2.2 Tree Decompositions

Treewidth is an important graph invariant which

is a measure of “tree-likeness.” For graphs of

treewidth bounded by a constant many other-

wise intractable problems become tractable, e.g., 3-

colorability, Hamiltonicity, etc. It is generally be-

lieved that many practically relevant problems actu-

ally do have low treewidth (Bodlaender 1993).

The treewidth of a graph G = (V, E) is defined via

the following notion of decomposition: a tree decom-
position of G is a pair (T, χ), where T is a tree and

χ is a labeling function with χ(t) ⊆ V for every tree

node t such that the following conditions hold:

1. Every vertex of G occurs in χ(t) for some tree

node t.

2. For every edge uv of G there is a tree node t such

that u, v ∈ χ(t).

3. For every vertex v of G, the tree nodes t with

v ∈ χ(t) induce a connected subtree of T (“Con-

nectedness Condition”).

The width of a tree decomposition (T, χ) is the cardi-

nality of a largest set χ(t) minus 1 among all nodes t
of T . A tree decomposition of smallest width is opti-
mal. The treewidth of a graph G is the width of an

optimal tree decomposition of G.

CRPIT Volume 77 - Theory of Computing 2008

68

Note that a graph G = (V, E) of treewidth k has at

most k|V | edges (Kloks 1994). Thus if k is bounded

by a constant, then |E| = O(|V |).

In principle, one can compute in linear time an

optimal tree decomposition of graphs with treewidth

bounded by some constant k (Bodlaender 1996); how-

ever the running time of the known linear-time algo-

rithm imposes a huge hidden constant. In practice

one often prefers to obtain tree decompositions via

heuristics. An important class of tree decomposition

heuristics are based on finding an appropriate lin-

ear ordering of the vertices (Bodlaender 2005, Koster

et al. 2001).

Once a tree decomposition of small width is found,

one tries to solve the problem under consideration by

dynamic programming via bottom-up traversal of the

tree decomposition. For such an approach it is often

convenient to consider tree decompositions in the fol-

lowing normal form (Kloks 1994): A triple (T, χ, r)
is a nice tree decomposition of a graph G if (T, χ) is

a tree decomposition of G, the tree T is rooted at

node r, and each node of T is of one of the following

four types:

1. a leaf node: a node having no children;

2. a join node: a node t having exactly two chil-

dren t1, t2, and χ(t) = χ(t1) = χ(t2);

3. an introduce node: a node t having exactly one

child t′, and χ(t) = χ(t′) ∪ {v} for a vertex v
of G;

4. a forget node: a node t having exactly one

child t′, and χ(t) = χ(t′) \ {v} for a vertex v
of G.

Note that for every vertex v of G that does not occur

in χ(r) there is exactly one node tv with parent t′
v

such that v ∈ χ(tv) and v /∈ χ(t′
v
) (t′

v
is a forget

node). If v occurs in χ(r) we set tv = r. In both

cases we say that tv is the final node of v.

For every constant k, given a tree decomposition

of a graph G of width k, one can effectively obtain in

linear time a nice tree decomposition of G with O(n)

nodes and of width at most k (Kloks 1994).

3 EGC Constraints and General Factors in
Graphs

3.1 Applying Cornuéjols’s Theorem

Lovász (1970, 1972) introduced the following prob-

lem, known as the general factor problem:

GenFactor

Instance: A graph G = (V, E) and a map-

ping K that assigns to each vertex v ∈ V a

set K(v) ⊆ {0, . . . , d(v)} of integers, where

d(v) denotes the degree of v in G.

Question: Is there a subset F ⊂ E such that

for each vertex v ∈ V the number of edges

in F incident with v is an element of K(v)?

Clearly, EGCC-Consistency is the special case

of GenFactor where G is bipartite with biparti-

tion (X, D) and K(v) = {1} for all v ∈ X . Thus,

similar to EGC constraints, we call the sets K(v) car-

dinality sets and we call the largest integer occurring

in the cardinality sets of a GenFactor instance its

cardinality-width.

Let K be a class of finite sets of non-negative in-

tegers. We denote by GenFactor(K) and EGCC-
Consistency(K) the respective problems restricted

to instances where all cardinality sets belong to the

class K. A set K of integers has an s-gap if there ex-

ists an integer i such that min(K) < i < max(K) and

{i, . . . , i+s−1}∩K = ∅. We denote by Is the class of

s-gap free sets of non-negative integers. Note that I1

is nothing but the class of non-negative intervals. We

can state Régin’s above mentioned result as follows.

Proposition 1 (Régin (1996)). EGCC-Consis-
tency(I1) can be decided in polynomial time.

The following dichotomy result fully classifies the

problem GenFactor(K).

Theorem 2 (Cornuéjols (1988)). If K ⊆ I2, then
GenFactor(K) can be decided in polynomial time.
Otherwise, GenFactor(K) is NP-complete.

Actually, the reduction given by Cornuéjols (1988)

shows that the NP-hardness case of Theorem 2 even

holds if the graph is bipartite and the vertices on one

side have cardinality sets {1}, the vertices on the

other side have cardinality sets drawn from the

class K. Hence, it follows that the dichotomy stated in

Theorem 2 also holds for EGCC-Consistency(K).

Corollary 3. If K ⊆ I2, then EGCC-Consistency
can be decided in polynomial time. Otherwise,
EGCC-Consistency(K) is NP-complete.

Thus EGCC-Consistency(I2) can be decided in

polynomial time, a proper generalization of Propo-

sition 1. A further consequence of Corollary 3 is the

NP-completeness of EGCC-Consistency({{0, 3}}),
which gives the following.

Corollary 4. EGCC-Consistency is NP-complete
for instances of cardinality-width at least 3.

3.2 Applying Courcelle’s Theorem

Courcelle’s Theorem (Courcelle 1987) provides a pow-

erful tool for showing that certain graph properties

can be checked in linear time for graphs of bounded

treewidth. One only needs to define the considered

property in terms of a certain formalism (Monadic

Second Order Logic, MSO) where one is allowed

to quantify over sets of vertices and sets of edges

(see, e.g., Downey and Fellows’ book (Downey &

Fellows 1999) for further details and examples). In

fact, with Courcelle’s Theorem it is easy to establish

the following.

Proposition 5. The problems GenFactor and
EGCC-Consistency can be decided in linear time
for instances having both bounded treewidth and
bounded cardinality-width.

Let us sketch the proof. Note that we only need

to consider GenFactor since it contains EGCC-
Consistency as a special case. Let G = (V, E) with

cardinality sets K(v), v ∈ V , be an instance of Gen-
Factor with cardinality-width m. We may assume,

w.l.o.g., that all vertices have degree at least two,

as vertices of degree 0 or 1 can be easily eliminated.

Let K1, . . . , K2m+1 be an enumeration of all subsets

of {0, . . . , m}. We assign to every vertex v of G an in-

teger i(v) such that K(v) = Ki(v). Now we construct

a graph G′
from G by attaching to every vertex v

of G new neighbors v1, . . . , vi(v) of degree 1. Since

the added vertices are of degree 1, we can distinguish

them from the old vertices. The new vertices allow

us to reconstruct the cardinality sets K(v). Since m
is a constant, we can define predicates P1, . . . , P2m+1

such that Pi(v) is true for a vertex of G′
if and only

if v is of degree at least 2 and has exactly i neigh-

bors of degree 1 (equivalently, v belongs to G and

K(v) = Ki(v)). It is now easy to state an MSO sen-

tence that is true for G′
if and only if G has a general

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

69

factor that meets the cardinality conditions imposed

by the sets K(v). Hence Proposition 5 follows from

Courcelle’s Theorem.

In the above construction it was essential that the

cardinality-width is bounded, since otherwise we

could not confine us to a finite number of predi-

cates Pi. The question arises whether this limita-

tion can be overcome by a different, more sophisti-

cated approach. We will return to this question in

Section 6, where we will provide a negative answer.

Namely we will show that EGCC-Consistency, pa-

rameterized by the treewidth alone, is complete for

the parameterized complexity class W[1]. Hence one

cannot expect the existence of an algorithm that

solves EGCC-Consistency (or GenFactor) for in-

stances of bounded treewidth within a running time

that is bounded by a polynomial of order independent

of the treewidth.

Algorithms obtained via Courcelle’s Theorem are im-

practical as the linear running time involves a huge

hidden factor. Therefore we propose in the next sec-

tion an efficient combinatorial algorithm based on dy-

namic programming.

4 Efficient Consistency Checking

In the following we consider an EGC constraint C
over (X, D) together with a nice tree decomposi-

tion (T, χ, r) of the value graph of C. Let m denote

the cardinality-width of C. For every node t of T let

var(t) denote the set of variables in χ(t) and let val(t)
denote the set of values in χ(t). We define var

∗
(t)

as the union of var(t′) for tree nodes t′ that belong

to the subtree rooted at t; val
∗
(t) is defined simi-

larly. Thus, var
∗
(t)\var(t) and val

∗
(t)\val(t) are the

sets of variables and values, respectively, that are al-

ready “forgotten” at tree node t; similarly X \var
∗
(t)

and D \ val
∗
(t) are the sets of variables and values,

respectively, that are “not yet introduced” at tree

node t.
With every tree node t we associate the set A(t) of

partial assignments α : Xα → val
∗
(t) defined on sets

of variables Xα ⊆ var
∗
(t) such that

1. α(x) ∈ D(x) for all x ∈ Xα (α respects domains),

2. var
∗
(t)\var(t) ⊆ Xα (α is defined for all forgotten

variables), and

3. |{ x ∈ var
∗
(t) : α(x) = d }| ∈ K(d) for all d ∈

val
∗
(t)\val(t) (α respects cardinality sets for for-

gotten values).

A record of a tree node t is a mapping

R : χ(t) → val(t) ∪ {⊔, ⋆} ∪ {0, 1, 2, . . . , m}

such that the following two conditions are satisfied:

1. R(x) ∈ (val(t) ∩ D(x)) ∪ {⊔, ⋆} for x ∈ var(t);

2. R(d) ∈ {0, 1, 2, . . . ,max(K(d))} for d ∈ val(t).

We use records to represent the partial assignments α
in the set A(t): R(x) = ⊔ means that α is not defined

for x, and R(x) = ⋆ means that α maps x to a value

that is already forgotten. More specifically, we say

that a record R of a tree node t represents an assign-

ment α ∈ A(t) if the following two conditions hold:

1. For all x ∈ var(t)

R(x) =







α(x) if α(x) ∈ val(t),

⋆ if α(x) ∈ val(t)∗ \ val(t),

⊔ otherwise (i.e., if x ∈ var(t) \ Xα);

2. for all d ∈ val(t)

R(d) = |{ x ∈ var
∗
(t) : α(x) = d }|.

Note that in general a record can represent an un-

bounded number of assignments, and every assign-

ment in A(t) is represented by exactly one record R
of t. We say that a record R of t is valid if it represents

some assignment α ∈ A(t).
The following lemma follows directly from the def-

initions.

Lemma 6. C is consistent if and only if there is a
valid record R of the root r such that R(x) 6= ⊔ for
all x ∈ var(r) and R(d) ∈ K(d) for all d ∈ val(r).

The next five lemmas will allow us to compute the

valid records of a tree node from the valid records of

its children.

Lemma 7 (Join nodes). Let t1, t2 be the children of
t. A record R of t is valid if and only if there are valid
records R1 and R2 of t1 and t2, respectively, such that

1. for all x ∈ var(t) one of the following holds

(a) R(x) = R1(x) = R2(x) ∈ D ∪ {⊔};

(b) R(x) = R1(x) = ⋆ and R2(x) = ⊔;

(c) R(x) = R2(x) = ⋆ and R1(x) = ⊔;

2. R(d) = R1(d)+R2(d)−|{ x ∈ var(t) : R(x) = d }|
for all d ∈ val(t).

Proof. Let R be a valid record of t. By definition,

R represents an assignment α ∈ A(t). For i = 1, 2
let αi = α|var∗(ti)

be the restriction of α to var
∗
(ti).

Since α ∈ A(t) it can be easily verified that also αi ∈

A(ti), i = 1, 2. Let Ri be the (valid) record of ti
that represents αi, i = 1, 2. It remains to check that

for R, R1, and R2 the two properties stated in the

lemma hold. Let x ∈ var(t). If R1(x), R2(x) ∈ D(x)∪

{⊔}, then R(x) = R1(x) = R2(x), since var(t) =

var(t1) = var(t2) and Xα ∩ var(t) = Xα1
∩ var(t1) =

Xα2
∩ var(t2). If R1(x) = ⋆ and R2(x) = ⊔, then

α1(x) ∈ val
∗
(t1) \ val(t1) and x /∈ Xα2

; hence α(x) ∈

val
∗
(t) \ val(t), and so R(x) = ⋆. Symmetrically, if

R1(x) = ⊔ and R2(x) = ⋆, then R(x) = ⋆. Thus the

first property of the lemma holds for R, R1, and R2.

It is easy to see that R(d) = R1(d) + R2(d) − |{ x ∈

var(t) : R(x) = d }| for all d ∈ val(t), hence the second

property holds as well.

Conversely, let R be a record of t, and assume that

there are valid records R1 and R2 of t1 and t2, re-

spectively, such that the two properties stated in the

lemma hold. Let α1 ∈ A(t1) and α2 ∈ A(t2) be as-

signments that are represented by R1 and R2, respec-

tively. By the connectedness condition of a tree de-

composition, it follows that the sets var
∗
(t1) \ var(t1)

and var
∗
(t2)\var(t2) are disjoint. Hence, we can com-

bine α1 and α2 to an assignment α : Xα → D, defined

for the set Xα = Xα1
∪Xα2

, with α(x) ∈ D(x) for all

x ∈ Xα. It is easy to check that α corresponds to R,

hence R is a valid record of t.

The proofs of the following four lemmas are

straightforward.

Lemma 8 (Introduce variable). Let t be an introduce
node with child t′ such that var(t) = var(t′)∪{x0} and
val(t) = val(t′). A record R of t is valid if and only if
there is a valid record R′ of t′ such that R′

(x) = R(x)

for all x ∈ var(t′), and one of the following prevails:

1. R(x0) = ⊔ and R(d) = R′
(d) for all d ∈ val(t),

CRPIT Volume 77 - Theory of Computing 2008

70

a, e

a, e
t1

t3t2a, e 0
1
0

a e

01
1 1

a

a

a 2 0
a 2 1
a 2 2

3 1a

e 0 1
e 0

11e

e 1

2

2
e 1 3

2e 2

0
1
0

0
0
1
1 1
1 2

12⊔

⊔
⊔

⊔
⊔

⊔

ay e

a e

0
1
0

0
0
1
1 1
1 2

12

t0 y, a, e

0
1
0

0
0
1

ea

w, a, e
t5z, a, e

t4

w, a, e w, a, e

t8t7

z, a
t6

⊔ 0
⋆

⋆
0
1

az

1a

z, a, b
t9 w, e w, a

t10 t11

⊔
⋆ 0

1

w e
10

1 0
⊔
⊔

a bz

0 2b

1b 1

a

a

1
2 0
1

a, b
t12 w, x, e v, w, a

t13 t14

0
1 0

1

a b
x e

⊔ 0⊔

w

1⊔ e

0⋆⋆

10⊔

w ea

⋆ 0 0
11a

⊔
w, x v, w

t16 t17

u, a, b
t15 ⊔

⋆ ⊔
⋆⊔ ⊔

⋆ ⋆

xw wv
u a b

00
01

0 1
a

b

w, x, d

t18 t19

v, w, c

⊔ 0⊔
1⊔

⊔ 1
d

d

2d

⊔ 0⊔
1⊔

⊔ 1
c

c

w cv

d

dxw

eaz

⊔ 0 0
00

1 0

⋆

⋆

01a

0 1e

aw

0 1

e

⊔
0

1 1

⋆ 0

1 1

⋆

a

00
1 0

⊔
⋆

w a e

a 1 0

⊔
⋆ 1

0

aw

1a

awv

⊔ ⋆

0⊔

1a ⋆
a 1

0

⋆

⋆

1

Figure 2: A nice tree decomposition of the value graph of the EGC constraint in Figure 1 with tables repre-

senting valid records. Rows with gray background indicate the result after domain filtering.

2. R(x0) = d0 for some d0 ∈ val(t) ∩ D(x0) such
that R(d0) = R′

(d0)+1 and R(d) = R′
(d) for all

d ∈ val(t) \ {d0},

Lemma 9 (Introduce value). Let t be an introduce
node with child t′ such that val(t) = val(t′)∪{d0} and
var(t) = var(t′). A record R of t is valid if and only if
there is a valid record R′ of t′ such that the following
conditions hold:

1. for all x ∈ var(t)

R(x) =

{

d ∈ {⊔} ∪ ({d0} ∩ D(x)) if R′
(x) = ⊔;

R′
(x) otherwise;

2. for all d ∈ val(t)

R(d) =

{

|{ x ∈ var(t) : R(x) = d0 }| if d = d0;

R′
(d) otherwise;

Lemma 10 (Forget variable). Let t be a forget node
with child t′ such that var(t) = var(t′) \ {x0} and
val(t) = val(t′). A record R of t is valid if and only if
there is a valid record R′ of t′ such that R′

(x0) 6= ⊔

and R(z) = R′
(z) for all z ∈ var(t) ∪ val(t).

Lemma 11 (Forget value). Let t be a forget node with
child t′ such that val(t) = val(t′) \ {d0} and var(t) =

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

71

var(t′). A record R of t is valid if and only if there is a
valid record R′ of t′ such that the following conditions
hold:

1. R′
(d0) ∈ K(d0);

2. for all x ∈ var(t) we have

R(x) =

{

⋆ if R′
(x) = d0;

R′
(x) otherwise;

3. R(d) = R′
(d) for all d ∈ val(t) = val(t′) \ {d0}.

Theorem 12. EGCC-Consistency can be decided
in linear time for instances having both bounded
treewidth and bounded cardinality-width.

Proof. Let k, m ≥ 0 be arbitrary constants. We

are given an EGC constraint C over (X, D) with

treewidth and cardinality-width bounded by k and m,

respectively. Let n denote the number of vertices of

the value graph of C. We compute a nice tree de-

composition (T, χ, r) of the value graph of C such

that the width of the tree decomposition is at most k
and T has O(n) nodes. This can be accomplished in

time O(n) (see the discussion in Section 2.2).

With every tree node t of T we associate the

set M(t) of valid records of t. We can compute the

sets M(t) via a bottom-up traversal of T as follows.

For a leaf node t we can compute M(t) just by con-

sidering all possible rows R with R(x) ∈ val(t) ∪ {⊔}

for x ∈ var(t) and R(d) = |{ x ∈ var(t) : R(x) = d }|
for d ∈ val(t). The number of records of a node t is

at most

|val(t) ∪ {⊔, ⋆}||var(t)| · m|val(t)|
≤ max(k + 1, m)

k+1,

i.e., bounded purely in terms of the constants k
and m. Lemmas 7–11 ensure that for computing M(t)
of a non-leaf node t we only need to know the

sets M(t′) of the children t′ of t: For a join node t
with children t1 and t2 we compute M(t) by com-

bining all pairs of records R1 ∈ M(t1), R2 ∈ M(t2),
and by checking the conditions of Lemma 7. The

time required for each pair is bounded in terms of the

constants k and m. Hence, given M(t1) and M(t2),
we can compute M(t) in constant time. Computing

the sets M(t) for introduce and forget nodes t ac-

cording to Lemmas 8–11 is even simpler. Hence we

can compute the sets M(t) for all O(n) tree nodes t
in time O(n). According to Lemma 6 we can decide

consistency of C by examining the records in M(r) at

the root r.

Figure 2 shows a nice tree decomposition of the value

graph of the constraint of Figure 1, together with the

sets M(t) as computed according to the proof of The-

orem 12. Records are specified as table rows (the

meaning of table rows with gray backgrounds will be

discussed in the next section).

5 Efficient Domain Filtering

Consider an EGC constraint C over (X, D). For each

pair x ∈ X and d ∈ D(x) let C[x = d] denote the

EGC constraint obtained from C by instantiating x
with d (that is, x gets removed and K(d) gets replaced

with K ′
(d) = { j− 1 : j ∈ K(d) \ {0} }). Evidently, C

is domain consistent (recall the definition in Section

2.1) if and only if all constraints C[x = d] for x ∈ X
and d ∈ D(x) are consistent. Hence, domain fil-

tering for EGC constraints of bounded treewidth

and bounded cardinality-width can be carried out in

quadratic time, using the algorithm of Theorem 12 for

each pair x ∈ X and d ∈ D(x). However, the follow-

ing approach allows domain filtering in linear time.

As in the previous section, let C be an EGC con-

straint over (X, D). We assume that treewidth and

cardinality-width of C are bounded by constants k
and m, respectively. Let (T, χ, r) be a nice tree de-

composition of the value graph of C such that the

width of the tree decomposition is at most k and T
has O(n) nodes, n = |X | + |D|.

We call a record R of a tree node t solution-valid
if R represents the restriction α|var∗(t) of a solution

α : X → D of C to var
∗
(t). Note that every solution-

valid record is valid. The following lemma is a direct

consequence of the definitions (recall from the end of

Section 2.2 the notion of “final node”).

Lemma 13. C is domain consistent if and only if

1. for every pair x, d with x ∈ X and d ∈ D(x)

there exists a solution-valid record R of some tree
node t with R(x) = d, and

2. for every pair d, j with d ∈ D and j ∈ K(d) there
exists a solution-valid record R at the final node
of d such that R(d) = j.

Hence, if we have computed all solution-valid

records of all tree nodes, then we have solved the

domain filtering task. With every tree node t of T
we associate the set M(t) of valid records and the

set M ′
(t) ⊆ M(t) of solution-valid records of t. The

sets M(t) are computed in linear time by the algo-

rithm described in the proof of Theorem 12. Next

we describe how we can compute the subsets M ′
(t)

by means of a top-down traversal of T . This process

is illustrated in Figure 2 where solution-valid records

are indicated as table rows with gray background.

For the root r we can easily compute M ′
(r)

from M(r) since, according to Lemma 6, a valid

record R at r is solution-valid if and only if R(x) 6= ⊔

for all x ∈ var(r) and R(d) ∈ K(d) for all d ∈ val(r).
Consider a join node t with children t1, t2, and as-

sume that we have already computed the set M ′
(t).

It follows from Lemma 7 that a valid record R1 of t1
is solution-valid if and only if there is a solution-

valid record R of t and a valid record R2 of t2
such that for the records R, R1, R2 the properties

stated in Lemma 7 hold. Hence, we can compute the

sets M ′
(t1) and M ′

(t2) from M ′
(t) in time that only

depends on the constants k and m. Similarly, for an

introduce or forget node t with child t′, a record R′

of t′ is solution-valid if and only if there is a solution-

valid record R of t such that the properties stated in

one of the Lemmas 8–11 hold. Thus if we know M ′
(t)

we can compute M ′
(t′) in time that only depends on

the constants k and m.

Since T has O(n) many nodes, we have shown the

following result.

Theorem 14. Domain filtering for extended
global cardinality constraints can be carried out in
linear time if both treewidth and cardinality-width
are bounded.

6 W[1]-Hardness for Parameter Treewidth

We return to the question raised at the end of Sec-

tion 3 of whether bounding the cardinality-width is

dispensable in Proposition 5. The framework of pa-

rameterized complexity (Downey & Fellows 1999) of-

fers concepts and tools for answering this question.

Let us briefly review the main concepts of this frame-

work; for an in-depth treatment we refer to other

sources (Downey & Fellows 1999, Flum & Grohe 2006,

Niedermeier 2006).

CRPIT Volume 77 - Theory of Computing 2008

72

In parameterized complexity one considers prob-

lems in two dimensions: one dimension is the usual

size n of the instance and the second dimension is the

parameter (usually a positive integer k). A parame-

terized problem is called fixed-parameter tractable if it

can be solved in time O(f(k)·nc
) for some computable

function f and constant c that is independent of the

parameter. FPT denotes the class of fixed-parameter

tractable decision problems. The parameterized com-

plexity classes W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] contain

problems that are believed to be not fixed-parameter

tractable (Downey & Fellows 1999); all inclusions are

believed to be proper. There are different kinds of

evidence for assuming that W[1] 6= FPT. For exam-

ple, W[1] 6= FPT would imply that the Exponential

Time Hypothesis fails (cf. Flum & Grohe (2006)). A

parameterized problem P reduces to a parameterized

problem Q if we can transform an instance (x, k) of P
into an instance (x′, g(k)) of Q in time O(f(k) · |x|c)
(f, g are arbitrary computable functions, c is a con-

stant) such that (x, k) is a yes-instance of P if and

only if (x′, g(k)) is a yes-instance of Q.

The Clique problem asks whether, given a graph G
and an integer k, G contains a complete subgraph on k
vertices. Clique (with parameter k) is a W[1]-com-

plete problem (Downey & Fellows 1999). Below we

shall use the special case of the problem where the

vertex set of the given graph is partitioned into k in-

dependent sets. As observed by Fellows et al. (2007),

Clique remains W[1]-complete under this restric-

tion. This follows by the following reduction. Given

G = (V, E) and k, take disjoint copies V1, . . . , Vk

of V ; let vi denote the the copy of v in Vi. We con-

struct the graph G′
= (V ′, E′

) with V ′
=

⋃

k

i=1
Vi

and E′
= { uivj : uv ∈ E, 1 ≤ i < j ≤ k }. Now it is

easy to verify that G has a clique on k vertices if and

only if G′
has a clique on k vertices.

Theorem 15. EGCC-Consistency parameterized
by the treewidth of the value graph is W[1]-hard.

Proof. We give a reduction from Clique. Consider

an instance consisting of a graph G = (V, E) and an

integer k. As discussed above, we may assume that V
is partitioned into independent sets V1, . . . , Vk. Let

Vi = {v1

i
, . . . , vni

i
} and let N = max

k

i=1
ni + 1.

We will construct an EGC constraint C such that

C is consistent if and only if G has a clique on ver-

tices v
j[1]

1
, . . . , v

j[k]

k
with j[i] ∈ {1, . . . , ni}. The gen-

eral idea is that C consists of k parts P1, . . . , Pk

where the i-th part encodes the selection of v
j[i]

i

from Vi. Any two parts Pi and Pi′ are connected

via a value d{i,i′}. Assume w.l.o.g. i < i′. If Pi se-

lects vertex v
j[i]

i
, it instantiates j[i] many variables

with value d{i,i′}; if Pi′ selects vertex v
j[i

′
]

i′
, it in-

stantiates N · j[i′] many variables with value d{i,i′}.

Now K(d{i,i′}) is defined to contain exactly the inte-

gers j[i]+N ·j[i′] such that v
j[i]

i
and v

j[i
′
]

i′
are adjacent

in G. Since j[i], j[i′] < N , each integer in K(d{i,i′})

corresponds uniquely to a certain pair (j[i], j[i′]).
More specifically, the constraint C is defined as

follows. For every 1 ≤ i ≤ k we introduce a value di.

For every 1 ≤ i ≤ k and 1 ≤ j ≤ ni we introduce a

variable x
j

i
and a value d

j

i
. For every i, i′ ∈ {1, . . . , k},

i 6= i′, and 1 ≤ j ≤ ni we introduce a set X
j

i,i′
of

variables such that

|X
j

i,i′
| =

{

j if i < i′;

N · j otherwise.

Finally, for every 1 ≤ i < i′ ≤ k we introduce a

value d{i,i′}. Domains and cardinality sets are defined

as follows:

D(x
j

i
) = {di, d

j

i
}

D(x) = {d
j

i
, d{i,i′}} for x ∈ X

j

i,i′

K(di) = {1}

K(d
j

i
) = {0, 1 +

∑

i′∈{1,...,k}\{i} |X
j

i,i′
|}

K(d{i,i′}) = { |X
j

i,i′
| + |X

j
′

i′,i
| : v

j

i
v

j
′

i′
∈ E,

1 ≤ j ≤ ni, 1 ≤ j′ ≤ ni′ }.

This completes the construction of C; see Figure 3 for

an illustration.

di

x1

i x
j
i x

ni

i

d1

i
· · · · · ·

d
j
i d

ni

i

X1

i,1, . . . , X1

i,k X
j
i,1, . . . , X

j

i,k
X

ni

i,1, . . . , X
ni

i,k

d{i,1}

· · ·
d{i,k}

Figure 3: The i-th part of the value graph of the

constraint constructed in the proof of Theorem 15.

Claim 1: C is consistent if and only if G has a clique
of size k.

Assume that S = {v
j[1]

1
, . . . , v

j[k]

k
} induces a clique

in G. We define an assignment α for C as follows.

We put

α(x
j

i
) =

{

di if j[i] = j;

d
j

i
otherwise

and for x ∈ X
j

i,i′
we put

α(x) =

{

d{i,i′} if j[i] = j;

d
j

i
otherwise.

It can be easily checked that α satisfies C.

Conversely, let α be an assignment that satisfies C.

For every i ∈ {1, . . . , k} there is exactly one j ∈

{1, . . . , ni} with α(x
j

i
) = di, since K(di) = {1}. Let

S = {v
j[1]

1
, . . . , v

j[k]

k
}. We show that S induces a

clique in G. To this aim, choose 1 ≤ i < i′ ≤ k ar-

bitrarily. It follows from the definition of C that the

variables mapped to d{i,i′} are exactly the variables

in the sets X
j[i]

i,i′
and X

j[i
′
]

i′,i
. We have |X

j[i]

i,i′
| = j[i],

|X
j[i

′
]

i′,i
| = N · j[i′], and j[i] + N · j[i′] ∈ K(d{i,i′}).

Since j[i], j[i′] < N , j[i] + N · j[i′] ∈ K(d{i,i′}) im-

plies that v
j[i]

i
and v

j[i
′
]

i′
are adjacent in G. Since i

and i′ were chosen arbitrarily, it follows that all ver-

tices in S are adjacent to each other, i.e., S induces a

clique in G. Hence Claim 1 is shown.

Claim 2: The treewidth of the value graph of C is at
most

(

k

2

)

+ 1.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

73

Let W = { d{i,i′} : 1 ≤ i < i′ ≤ k }. If we delete

all vertices in W from the value graph of C, then we

are left with a collection of k disjoint trees. Hence

without the vertices in W , the value graph admits

a tree decomposition of width 1. Now adding W to

all the bags of this tree decomposition yields a tree

decomposition of the full value graph of G. The width

of this tree decomposition is |W |+1 =
(

k

2

)

+1. Hence

Claim 2 is shown.

Since the construction of C from G can certainly

be carried out in polynomial time (polynomial in G
and k), we have a reduction from the W[1]-com-

plete Clique problem to EGCC-Consistency with

parameter treewidth. Hence the latter problem

is W[1]-hard.

Corollary 16. GenFactor parameterized by
treewidth is W[1]-hard.

7 Conclusion

We have studied extended global cardinality con-

straints under structural restrictions. We have

shown that (complete) domain filtering and consis-

tency checking for these constraints can be carried

out in linear time if the parameters treewidth and

cardinality-width are both bounded by arbitrary con-

stants. Furthermore we have shown that consis-

tency checking is NP-hard if the cardinality-width

is bounded alone and W[1]-hard if the treewidth is

bounded alone. Furthermore we have pointed out the

connection between extended global cardinality con-

straints and global factors of graphs. By means of this

connection we could identify the largest class of car-

dinality sets that admits polynomial-time consistency

checking. An empirical evaluation of our theoretical

results is left for future research. We hope that our

work stimulates further research on global constraints

under structural restrictions as well as the develop-

ment of fixed-parameter algorithms for other global

constraints.

References

Beldiceanu, N., Carlsson, M. & Rampon, J.-X.

(2005), ‘Global constraint catalog’, Technical Re-

port T2005:08. Swedish Institute of Computer Sci-

ence, Stockholm, Sweden.

Bessiére, C., Hebrard, E., Hnich, B. & Walsh, T.

(2004), The tractability of global constraints, in
‘Proceedings of the 10th International Conference

on Principles and Practice of Constraint Program-

ming (CP’04)’, Vol. 3258 of LNCS, Springer-Verlag,

pp. 716–720.

Bodlaender, H. L. (1993), ‘A tourist guide through

treewidth’, Acta Cybernetica 11(1-2), 1–22.

Bodlaender, H. L. (1996), ‘A linear time algorithm

for finding tree-decompositions of small treewidth’,

SIAM Journal on Computing 25(6), 1305–1317.

Bodlaender, H. L. (2005), Discovering treewidth, in
‘Proceedings of the 31st Conference on Current

Trends in Theory and Practice of Computer Sci-

ence (SOFSEM’05)’, Vol. 3381 of LNCS, Springer-

Verlag, pp. 1–16.

Bourdais, S., Galinier, P. & Pesant, G. (2003), HI-

BISCUS: A constraint programming application to

staff scheduling in health care, in ‘Proceedings of

the 9th International Conference on Principles and

Practice of Constraint Programming (CP’03)’, Vol.

2833 of LNCS, Springer-Verlag, pp. 153–167.

Cornuéjols, G. (1988), ‘General factors of graphs’,

Journal of Combinatorial Theory, Series B
45(2), 185–198.

Courcelle, B. (1987), ‘Recognizability and second-

order definability for sets of finite graphs’, Tech-

nical Report I-8634. Université de Bordeaux, Bor-

deaux, France.

Downey, R. G. & Fellows, M. R. (1999), Parameter-
ized Complexity, Springer-Verlag.

Fellows, M. R., Hermelin, D. & Rosamond, F.

(2007), ‘On the fixed-parameter intractability and

tractability of multiple-interval graph problems’,

Manuscript.

Flum, J. & Grohe, M. (2006), Parameterized Com-
plexity Theory, Springer-Verlag.

van Hoeve, W.-J. & Katriel, I. (2006), Global con-

straints, in F. Rossi, P. van Beek & T. Walsh, eds,

‘Handbook of Constraint Programming’, Elsevier,

chapter 6, pp. 169–208.

Kloks, T. (1994), Treewidth: Computations and ap-
proximations, Springer-Verlag.

Koster, A. M. C. A., Bodlaender, H. L. & van Hoesel,

S. P. M. (2001), ‘Treewidth: Computational exper-

iments’, Electronic Notes in Discrete Mathematics
8.

Lovász, L. (1970), The factorization of graphs, in
‘Combinatorial Structures and their Applications’,

Gordon and Breach, pp. 243–246.

Lovász, L. (1972), ‘The factorization of graphs II’,

Acta Mathematica Academiae Scientiarum Hun-
garicae 23, 223–246.

Niedermeier, R. (2006), Invitation to Fixed-
Parameter Algorithms, Oxford University Press.

Quimper, C.-G., López-Ortiz, A., van Beek, P. &

Golynski, A. (2004), Improved algorithms for the

global cardinality constraint, in ‘Proceedings of the

10th International Conference on Principles and

Practice of Constraint Programming (CP’04)’, Vol.

3258 of LNCS, Springer-Verlag, pp. 542–556.

Régin, J.-C. (1996), Generalized arc consistency for

global cardinality constraint, in ‘Proceedings of the

13th National Conference of the American Associ-

ation for Artificial Intelligence (AAAI’96)’, AAAI

Press, pp. 209–215.

Régin, J.-C. & Gomes, C. P. (2004), The cardinality

matrix constraint, in ‘Proceedings of the 10th In-

ternational Conference on Principles and Practice

of Constraint Programming (CP’04)’, Vol. 3258 of

LNCS, Springer-Verlag, pp. 572–587.

Rossi, F., van Beek, P. & Walsh, T., eds (2006), Hand-
book of Constraint Programming, Elsevier.

Sellmann, M. (2003), Cost-based filtering for shorter

path constraints, in ‘Proceedings of the 9th In-

ternational Conference on Principles and Practice

of Constraint Programming (CP’03)’, Vol. 2833 of

LNCS, Springer-Verlag, pp. 694–708.

CRPIT Volume 77 - Theory of Computing 2008

74

Parameterized Complexity of the Clique Partition Problem

Egbert Mujuni∗1 Frances Rosamond2

1 Department of Mathematics
University of Dar-es-Salaam
Box 35062, Dar es Salaam

Tanzania
Email: emujuni@maths.udsm.ac.tz

2 Parameterized Complexity Research Unit
University of Newcastle
Callaghan, Australia

Email: frances.rosamond@newcastle.edu.au

Abstract

The problem of deciding whether the edge-set of a
given graph can be partitioned into at most k cliques
is well known to be NP-complete. In this paper we
investigate this problem from the point of view of pa-
rameterized complexity. We show that this problem
is fixed parameter tractable if we choose the number
of cliques as parameter. In particular, we show that
in polynomial time, a kernel bounded by k2 can be
obtained, where k is the number of cliques. We also
give an O(2((k+3) log k)/2n) algorithm for this problem
in K4-free graphs.

1 Introduction

The problem of finding a minimum set that covers
or partitions the edge-set of a given graph arises in
many applications (e.g., see (15)). The problem is
defined as follows: Let G be a graph. A set S =
{G1, G2, . . . , Gk}, k ≥ 1 of subgraphs of G is called a
covering of G if E(G) = ∪k

i=1E(Gi). If each element
of S is a clique, then S is called a clique cover of G. A
clique partition is a clique cover S in which each edge
belongs to exactly one member of S; that is, for two
distinct C,C ′ ∈ S it follows that E(C) ∩ E(C ′) = ∅.
The clique partition problem asks whether a given
graph G has a clique partition of size at most k.

The clique partition problem is known to be NP-
complete in general graphs (14). The problem re-
mains NP-complete even for K4-free graphs (16).

In this paper we investigate the parameterized
complexity of this problem using the framework de-
veloped by Downey and Fellows (5). Here we give a
quick review of parameterized complexity theory. For
a detailed discussion we refer the reader to (5) or (13).
In parameterized complexity theory, we consider the
input of an instance of a parameterized problem as
consisting of two parts; that is, a pair (I, k), where
I is the main input and k (usually an integer) is a
parameter. We say a problem of size n and parame-
ter k is fixed parameter tractable if the problem can

∗ The reseach has been supported by International Sci-
ence Programme (ISP) of Sweden, under the project titled
“The Eastern African Universities Mathematics Programme
(EAUMP)”.
Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Computing: The Aus-
tralasian Theory Symposium (CATS2008), Wollongong, NSW,
Australia. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 77, James Harland and Prabhu
Manyem, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

be solved in time O(f(k)nc), where f denotes a com-
putable function and c denotes a constant which is
independent of the parameter k. Therefore, a param-
eterized algorithm may provide an efficient solution
to a problem whose parameter is reasonably small.

Clustering problems have wide applicability (See
for example, (2; 7; 8; 11)). The problem (EDGE)
CLIQUE COVER in general graphs is an impor-
tant NP-complete problem that has received consid-
erable attention. Clique Cover in general graphs is
hard to approximate in polynomial time and noth-
ing better than a polynomial approximation factor is
known (1). However Gramm et al. (See (9) and also
(10)) show that CLIQUE COVER is fixed-parameter
tractable with respect to the parameter k, the number
of cliques, and has a kernel of size 2k.

CLIQUE COVER
Instance : A graph G = (V,E)
Parameter : An integer k
Question : Is there a set of at most k cliques

in G such that each edge in E
has both its endpoints in at least
one of the selected cliques?

Gramm et al. (9; 10) describe an exact algorithm
based on search tree techniques. Combining their ker-
nelization rules with a sophisticated search tree algo-
rithm, they were able to obtain an FPT algorithm for
CLIQUE COVER that can solve problem instances
on graphs of several hundred vertices efficiently.

The key difference between CLIQUE COVER
and our problem, CLIQUE PARTITION, is whether
the cliques share edges or not. Although we have
not implemented our kernelization rules, they are
polynomial-time data reduction techniques similar to
those of Gramm et al. that significantly shrink the
input, and then for the reduced instances one can use
search tree, exhaustive search or other algorithms to
efficiently find optimal solutions in reasonable time.

More formally, in this paper we study following
parameterized problem:

CLIQUE PARTITION
Instance : A graph G = (V,E)
Parameter : An integer k
Question : Is there a set of at most k cliques

in G such that each edge in E
has both its endpoints in exactly
one of the selected cliques?

We develop a set of reduction rules that in poly-
nomial time replace a given CLIQUE PARTITION
instance (G, k) consisting of a graph G and a nonneg-
ative integer k by a “simpler” instance (G′, k′) such

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

75

that (G, k) has a solution iff (G′, k′) has a solution.
An instance to which none of the reduction rules ap-
plies is called “reduced” with respect to these rules.
A parameterized problem such as CLIQUE PARTI-
TION (the parameter is k) is said to have a problem
kernel if, after the application of the reduction rules,
the reduced instance has size f(k) for a function f
depending only on k. It is a well-known result from
parameterized complexity theory that the existence of
a problem kernel implies fixed-parameter tractability
for a parameterized problem (5; 13) and (10).

Main Results: In this paper we show that
CLIQUE PARTITION has a kernel bounded by k2,
hence it is fixed parameter tractable. We also give an
O(2((k+3) log k)/2n) algorithm for K4-free graphs.

Notations: All graphs considered in this paper
are undirected finite graphs without loops and mul-
tiple edges. Let G = (V,E) be a graph. A clique is
complete subgraph of G that is not necessarily max-
imal. The set of neighbours of a vertex v is denoted
by N(v), and we set N [v] = N(v) ∪ {v}. For T ⊂ V ,
we set N(T) :=

⋃
v∈T N(v) . If V ′ ⊆ V , we denote

by G[V ′] the subgraph of G induced by V ′. We refer
the reader to (3) for graph theoretic terminology not
defined in this paper.

2 Kernelization

In this section we present a set of reduction rules
which leads to a problem kernel consisting of at most
k2 vertices. We show that if these rules are not appli-
cable to an instance (G, k) of CLIQUE PARTITION
and G has more than k2 vertices then we conclude
that G does not have a clique partition of size at most
k.

Definition 1 A kernelization for a parameterized
problem L is a transformation which maps an in-
stance (I, k) onto (I ′, k′) (which is called a problem
kernel) such that:

1. k′ ≤ k and |I ′| ≤ g(k) for some computable func-
tion g

2. The transformation from (I, k) onto (I ′, k′) is
computable in polynomial time.

3. (I, k) is a yes-instance of L if and only if (I ′, k′)
a yes-instance of L.

The function g(k) is called the size of a kernel for
L. The following result is well known.

Lemma 2 (6) A parameterized problem is fixed-
parameter tractable if and only if it has a kerneliza-
tion.

We first present simple reduction rules that can be
easily applied to simplify an instance of the CLIQUE
PARTITION problem; trivially we may assume that
k > 1.

• Rule 1: Given an instance (G, k) of CLIQUE
PARTITION and a vertex v ∈ V (G) of degree
0, then the answer to (G, k) is yes if and only if
(G− v, k) is yes.

• Rule 2: Given an instance (G, k) of CLIQUE
PARTITION and a vertex v ∈ V (G) of degree
1, then the answer to (G, k) is yes if and only if
(G− v, k − 1) is yes.

• Rule 3: Given an instance (G, k) of CLIQUE
PARTITION and an edge e = uv ∈ E(G) such
that N(u)∩N(v) = ∅, then the answer to (G, k)
is yes if and only if (G− {e}, k − 1) is yes.

Clearly, the following is true.

Lemma 3 Rules 1-3 are correct and they can be exe-
cuted in O(n2) time, where n is the number of vertices
of the input graph.

Definition 4 • A clique partition S of a complete
graph G is said to be trivial S if it consists of a
single clique.

• Let G be a complete graph. Denote by ρ(G) the
cardinality of a minimum non-trivial clique par-
tition of G.

Lemma 5 Suppose G is a complete graph on n ver-
tices. Then ρ(G) = n.

Lemma 5 is just a corollary of the following result
of de Bruijn and Erdos (1948), which was stated in
terms of set theory.

Theorem 6 (4) Suppose A1, . . . , Am are subsets of
the set A = {a1, . . . , an}, and that Ai 6= A, 1 ≤
i ≤ m. If each pair {ar, as} occurs in one and
only one Ai, then m ≥ n, and equality holds if
and only if either (1) A1 = {a1, . . . , an−1}, A2 =
{a1, an}, . . . , An = {an−1, an} or (2) n is of the form
n = k(k + 1) + 1 and all the Ai’s have precisely k + 1
elements, and each aj occurs in exactly k + 1 of the
Ai’s, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

In the terminology of graph theory, Theorem 6
says that if S is a non-trivial clique partition of the
edges of Kn, then |S| ≥ n and equality holds if and
only if S consists of one clique on n− 1 vertices and
n−1 copies of K2 incident with a single vertex of Kn,
or n is of the form n = k2 + k + 1 and S consists of n
copies of Kk+1, where each vertex of Kn belongs to
exactly k + 1 cliques of S.

Lemma 7 Let G be a graph. Let S be a clique parti-
tion of G of size k. If G′ ⊆ G is a complete subgraph
of G on more than k vertices, then there is an element
C ∈ S such that G′ ⊆ C.

Proof: If the edges of G′ are covered by more than one
clique of S, then by Lemma 5, they must be covered
by more than k cliques. This implies in turn that
|S| > k, which is a contradition to the hypothesis.

�
With this lemma at hand, we can state the follow-

ing reduction rule.

• Rule 4: Let (G, k) be an instance of CLIQUE
PARTITION. Suppose that v is a vertex such
that |N [v]| > k and the graph G∗ induced by
N [v] is a clique, then the answer to (G, k) is yes
if and only if (G′, k′) is yes, where G′ = G− v −
E(G∗) and k′ = k − 1.

Lemma 8 Rule 4 is correct.

Proof: First suppose that (G, k) is true. Let S =
{C1, . . . , Cm}, m ≤ k, be a clique partition of G, and
let G∗ be as defined in Rule 4. It follows that G∗ is
a maximal clique. Since G∗ is a clique on more than
k vertices, Lemma 7 implies that there is an index i
such that G∗ ⊆ Ci. However, since G∗ is a maximal
clique, it follows that G∗ = Ci. Therefore, S−{Ci} is
a clique partition of G′ with m− 1 ≤ k− 1 elements;
i.e., (G′, k′) is true.

Now suppose that (G′, k − 1) is true. Then (G, k)
is true because G is the edge-disjoint union of G′ and
G∗, and G∗ is a complete graph.

�
We say that an instance (G, k) of CLIQUE PAR-

TITION is reduced (with respect to Rules 1-4) if none
of the reduction rules can be applied.

CRPIT Volume 77 - Theory of Computing 2008

76

Theorem 9 Suppose an instance (G, k) of CLIQUE
PARTITION is reduced and that it does have a solu-
tion of size at most k. Then G has at most k2 vertices.

Proof: Suppose a reduced instance (G, k) of CLIQUE
PARTITION has the answer yes. Let S be a clique
partition of G of size at most k. We claim that each
element of S has at most k vertices.

Suppose to the contrary that there is a clique
C ∈ S with more than k vertices. Since Rule 4 is
not applicable, each vertex of C has a neighbour in
G which does not belong to C. This implies that
each vertex of C belongs to another unique clique
in S. However, by the definition of the CLIQUE
PARTITION problem, if Cx and Cy are cliques in
S − {C} containing x, y ∈ C, respectively, x 6= y,
then Cx 6= Cy. Thus |S| > k, which is a contradition.
We may now conclude that each element of S has at
most k vertices.

Note that S covers the vertices of G, since Rule 1
is not applicable. Therefore

|V (G)| ≤
∑
C∈S

|V (C)| ≤ k ×max{|C| : C ∈ S} ≤ k2

This completes the proof the theorem.
�

Remark 10 As can be seen from the proof of The-
orem 9, Rule 2 and Rule 3 have no impact there
(i.e., Theorem 9 remains true if we restrict the re-
ductions to applying Rules 1 and 4 only). However,
we included Rule 2 and Rule 3 because they may be
used to reduce the size of the input graph, and hence
speedup the computations. For example, Gramm et
al.(9) experimented with disabling one of their more
complicated and expensive rules. They found that for
larger cover sizes over 80, the rule nearly doubles the
range of instances that can be solved smoothly and is
clearly worthwhile.

As a consequence of Theorem 9, we have

Corollary 11 CLIQUE PARTITION is fixed pa-
rameter tractable.

3 Algorithm

In the previous section it was shown that CLIQUE
PARTITION has a kernel of size k2. We now de-
scribe an algorithm that decides CLIQUE PARTI-
TION. The algorithm is based on bounded search
tree. We proceed as follows. Let instance (G, k)
be a reduced instance of CLIQUE PARTITION. We
choose an edge uv such that |N(u) ∩ N(v)| is min-
imum, and then enumerate a set S of all cliques in
the graph induced by N(u)∩N(v). Branch according
to the elements of K ∈ S by adding the clique K ′

induced by {u, v}∪V (K) to the clique partition, and
we set G := G− E(K ′). The recursion stops as soon
as a solution is found or k cliques are generated with-
out finding a solution. This algorithm is presented
Figure 1.

We analyze the algorithm in Figure 1 as follows.
Let n and ∆ be the number of vertices and maximum
degree of G, respectively. |N(u)∩N(v)| < ∆. So |S| ∈
O(2∆). Thus, each non-leaf node in the searching
tree has at most O(2∆) children. Since the depth of
tree is bounded by k and we can test each leaf in
linear time, the algorithm computes the solution in
O(2∆kn). Note that, since G is reduced, ∆ ≤ k2.

C Partition(Graph G, Set C, Integer k)
begin

Reduce(G,k).
if E(G) = ∅ Return TRUE.
else if k = 0 Return FALSE.
else
choose uv ∈ E(G) such that

|N(u) ∩N(v)| is minimum.
find a set S of all clique in

G[N(u) ∩N(v)].
for each K ∈ S

K ′ := V (K ′) ∪ {u, v}.
C′ := C ∪ {G[K ′]}.
k′ := k − 1.
H := G− E(K ′).
if C Partition (H, C′, k′)

Return TRUE.
end for

Return FALSE.
end.

Figure 1: Algorithm for CLIQUE PARTITION in
general graphs.

4 K4-Free Graphs

As mentioned in the introduction, the classical de-
cision version of the CLIQUE PARTITION problem
remains NP-hard even for K4-free graphs (16). We
now present a fixed-parameter algorithm for CLIQUE
PARTITION in this class of graphs. First note that
any non-trivial clique in this class of graphs must be
K2 or K3.

Observation 12 Let (G, k) be an instance of
CLIQUE PARTITION, where G is K4-free. If G con-
tains an edge uv such that |N(u)∩N(v)| > k+1

2 , then
G does not have a clique partition of G of size at most
k.

Theorem 13 Let G be a K4-free graph. Then
the CLIQUE PARTITION problem can be solved in
O(2((k+3) log k)/2n) time, where n is the number of
vertices of G.

Proof: We construct a bounded search tree T of height
k and each node of T has at most k+1 children. Each
node is associated with a set C of edge-disjoint cliques,
a subgraph H = G −

⋃
C∈C E(C) and k′ = k − |C|,

where C is a partial clique cover constructed at each
step of the algorithm. For the root, we have H := G,
C := ∅ and k′ := k.

We recursively proceed as follows: At a node i, we
choose an edge uv ∈ E(H). If |NH(u) ∩ NH(v)| >
k′+1

2 , we stop searching in this branch as we know H
does not have a clique partition of size at most k′,
by Observation 12. Otherwise, we create a child for
uv and one child for each vertex w ∈ NH(u)∩NH(v).
Thus, this node has at most k′+1

2 +1 = k′+3
2 children.

Repeat this expansion for each child node, using
the depth-searching strategy. Note that since we add
one clique to the partial solution C at each expansion,
the size of C at level l is also l. The recursion stops as
soon as a solution is found or k cliques are generated
without finding a solution. T has at most k(k+3)/2 =
2(k+3) log k/2 nodes. At each node we need O(n) time
to compute the set N(u) ∩ N(v). Hence, the total

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

77

running time is O(2((k+3) log k)/2n).
�

Proof of the above theorem yields a fixed parame-
ter algorithm for the CLIQUE PARTITION problem
in the class of K4-free graphs. The algorithm is given
in Figure 2.

C Partition(K4-free G, Set C, Integer k)
begin

if E(G)− E(C) = ∅ Return TRUE.
else if k = 0 Return FALSE.
else
choose an edge uv ∈ E(G)
if |N(u) ∩N(v)| > k+1

2
Return FALSE.

else
C′ := C ∪ {{u, v}}.
k′ := k − 1.
H := G− {uv}.
if Clique Partition (H, C′, k′)

Return TRUE.
else
for each w ∈ N(u) ∩N(v)

C′ := C ∪ {{u, v, w}}.
k′ := k − 1.
H := G− {uv, uw, vw}.
if C Partition (H, C′, k′)

Return TRUE.
end for

Return FALSE.
end.

Figure 2: Algorithm for CLIQUE PARTITION in K4-
free graphs.

5 Concluding Remarks

We have obtained the first fixed-parameter tractabil-
ity result for the clique partition problem, when
the number of cliques is the parameter. It would
be interesting to improve our algorithm for clique
partition. The parameterized complexity hierarchy:

P ⊆ Lin(k) ⊆ Poly(k) ⊆ FPT ⊆ W [1] . . .

leads to the natural question of whether CLIQUE
PARTITION is in Lin(k), or to show that a kernel
of linear size in k is not possible. It is interesting that
k-CLIQUE COVER is probably not in Poly(k) even
though it is in FPT.

Acknowledgments

We are gratefully acknowledge the assistance of Mike
Fellows, who originally suggested the problem and
provided valuable discussions. We thank Hebert
Fleischner for stimulating discussions and providing
various references. This paper was done while the
first author was enjoying the hospitality of the Vienna
Technical University, Austria, which is gratefully ac-
knowledged.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann,
A. Marchetti-Spaccamela, and M. Protasi. Com-
plexity and Approximation: Combinatorial Op-

timization Problems and Their Approximability
Properties. Springer, 1999.

[2] M. Benson, L. Carlsson, G. Guillot, M. Jernis,
M. A. Langston, M. Rudemo, and B. Andersson.
A network-based analysis of allergen-challenged
CD4+ T cells from patients with allergic rhinitis.
Genes and Immunity 7 (2006) 514–521.

[3] G. Chartrand and L. Lesniak. Graphs & Digraphs.
Chapman&Hall, third edition, 1991.

[4] N.G. de Bruijn and P. Erdos. On a combinatorial
problem. Indag. Math. 10, pages 421–423, 1948.

[5] R. Downey and M. Fellows. Parameterized Com-
plexity. Springer-Verlag, 1999.

[6] R. Downey, M. Fellows, and U. Stege. Param-
eterized complexity: A framework for system-
atically confronting computational intractability.
AMS-DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, 49, pages 49–
99, 1999.

[7] J.D. Eblen, I.C. Gerling, A.M. Saxton, J. Wu,
J.R. Snoddy, and M.A. Langston. Graph Algo-
rithms for Integrated Biological Analysis, with
Applications to Type 1 Diabetes Data. Clustering
Challenges in Biological Networks, W. A. Chao-
valitwongse, ed., World Scientific (2007).

[8] M.R. Fellows, M.A. Langston, F.A. Rosamond
and P. Shaw. Efficient parameterized preprocess-
ing for cluster editing. Proc. FCT 2007, Springer
Verlag, Lecture Notes in Computer Science 4598
(2007) 312–321.

[9] J. Gramm, J. Guo, F. Hüffner, and R. Nieder-
meier. Data reduction, exact, and heuristic algo-
rithms for Clique Cover. Proc. 8th ACM-SIAM
ALENEX, ACM-SIAM (2006) 86–94. Long ver-
sion to appear in The ACM Journal of Experi-
mental Algorithmics.

[10] J. Guo and R. Niedermeier. Guest column: Invi-
tation to data reduction and kernelization. ACM
SIGACT NEWS 38 (March 2007) 31–45.

[11] M.A. Langston, A.D. Perkins, D.J. Beare,
R.W. Gauldie, P.J. Kershaw, J.B. Reid, K. Win-
penny, and A.J. Kenny. Combinatorial Algo-
rithms and High Performance Implementations
for Elucidating Complex Ecosystem Relationships
from North Sea Historical Data. Proceedings of the
International Council for the Exploration of the
Sea Annual Science Conference (2006).

[12] W. Moon and L. Moser. On cliques in graphs.
Israel. J. Math. 3, pages 23–28, 1965.

[13] R. Niedermeier. Invitation to Fixed-Parameter
Algorithms. Oxford Lecture Series in Mathemat-
ics and Its Applications. Oxford University Press,
2006.

[14] J. Orlin. Contentment in graph theory : Cover-
ing graphs with cliques. Indagationes Math. 39,
pages 406–424, 1977.

[15] F.S. Roberts. Applications of edge coverings by
cliques. Discrete Appl. Math. 10, pages 93–109,
1985.

[16] Ma Shaohan, W.D. Wallis, and Wu Ju Lin.
The complexity of the clique partition number
problem. Nineteenth Southeastern Conference on
Combinatorics, Graph Theory, and Computing
(Baton Rouge, LA, 1988). Congr. Numer. 67,
pages 59–66, 1988.

CRPIT Volume 77 - Theory of Computing 2008

78

The Parameterized Complexity of Regular Subgraph Problems and
Generalizations

Luke Mathieson1 Stefan Szeider1

1Department of Computer Science
University of Durham

South Road
Durham

DH1 3LE, UK
Email: {luke.mathieson,stefan.szeider}@durham.ac.uk

Abstract

We study variants and generalizations of the problem
of finding an r-regular subgraph (where r ≥ 3) in a
given graph by deleting at most k vertices. Moser
and Thilikos (2006) have shown that the problem
is fixed-parameter tractable (FPT) if parameterized
by (k, r). They asked whether the problem remains
fixed-parameter tractable if parameterized by k alone.
We answer this question negatively: we show that if
parameterized by k alone the problem is W [1]-hard
and therefore very unlikely fixed-parameter tractable.
We also give W [1]-hardness results for variants of the
problem where the parameter is the number of vertex
and edge deletions allowed, and for a new generalized
form of the problem where the obtained subgraph is
not necessarily regular but its vertices have certain
prescribed degrees. Following this we demonstrate
fixed-parameter tractability for the considered prob-
lems if the parameter includes the regularity r or an
upper bound on the prescribed degrees in the gener-
alized form of the problem. These FPT results are
obtained via kernelization, so also provide a practical
approach to the problems presented.

Keywords: Parameterized Complexity, Regular Sub-
graphs

1 Introduction

The problem of deciding whether a graph contains
a non-trivial (i.e., degree at least three) regular sub-
graph has a long history in the field of complexity the-
ory. Chvátal et al. (1979) give an NP-completeness
result for the Cubic Subgraph problem (i.e., the
problem of deciding whether a given graph has a 3-
regular subgraph). Plesńık (1984) shows that the Cu-
bic Subgraph problem remains NP-complete even
when restricted to a planar bipartite graph with max-
imum degree 4, and that the r-Regular Subgraph
problem with r ≥ 3 is NP-complete even for bipartite
graphs of degree at most r + 1. Cheah and Corneil
(1990) extend this and show that the same result
holds for general graphs. Stewart (1994, 1996, 1997)
gives a series of results for further constraints.

From a parameterized complexity perspective (see
Section 4 for a basic introduction) there are a few
natural parameterizations, by either the size of the
subgraph, by the number of vertices or edges to re-
move to obtain a regular subgraph, or by the regu-

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at the Computing: The Australasian The-
ory Symposium (CATS 2008), University of Wollongong, New
South Wales, Australia. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 77, James Harland
and Prabhu Manyem, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

larity desired. Moser and Thilikos (2006) show that
the problem of finding an r-regular induced subgraph
on k vertices, parameterized by k is W [1]-hard. They
also show that the Vertex Deletion to Regu-
lar Subgraph problem (which they call k-Almost
r-Regular Graph) where the goal is to delete at
most k vertices leaving an r-regular graph, is fixed-
parameter tractable when parameterized by (k, r),
with a problem kernel with O(kr(r + k)2) vertices.
Stewart (2007) points out how the fixed-parameter
tractability of Vertex Deletion to Regular
Subgraph parameterized by (k, r) can be established
by means of general logical methods. They also state
that the complexity of Vertex Deletion to Reg-
ular Subgraph parameterized by k alone is an open
problem.

In this paper we answer Moser and Thilikos’s ques-
tion, showing that Vertex Deletion to Regular
Subgraph is W [1]-hard. We also explore several
other variations of the problem, resulting in further
hardness and tractability results.

The problems that we cover in this paper come
in a few basic forms, centred around two general
themes, whether the problem is parameterized by the
number of deletion operations (deletion operations
are explained in Section 2.2), k, or the number of
deletion operations and the regularity of the graph,
(k, r). This results in the following basic definition:

Deletion to Regular Subgraph
Instance: A graph G = (V,E), two nonnegative
integers k and r.
Question: Is there an r-regular subgraph of G
obtainable by at most k deletions?

It is interesting to alter what deletion operations
are available. If we restrict the operations to vertex
deletion only, then we have Vertex Deletion to
Regular Subgraph.

We can also further impose that we require exactly
k operations be performed, giving Exact Deletion
to Regular Subgraph.

It is also of interest to generalize both the desired
degree and the cost of a deletion. To this end instead
of aiming to have each remaining vertex be of degree
r we introduce a degree function δ. The contribution
of each edge to this total, and the cost of deleting an
edge or vertex is described by a weight function ρ.
This results in the following generalization:

Weighted Deletion to Chosen Degree Sub-
graph
Instance: A graph G = (V,E), nonnegative integers
k and r, a weight function ρ : V ∪ E → N+ and a
degree function δ : V → {0, . . . , r}.
Question: Is there a subgraph H of G obtainable
by deletions of total cost at most k where for each

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

79

vertex v in V (H),
∑

e∈E(v) ρ(e) = δ(v)?

Of course we may also demand here that the cost
be exact as well.

In this paper we show that in all examined cases
parameterization by k alone gives W [1]-hardness,
but parameterization by (k, r) gives fixed-parameter
tractability. In fact if r = 0 the problem is equiva-
lent to Vertex Cover, and is thus fixed-parameter
tractable. We also give several hardness results for
other problems that prove useful in completion of
the result. Hardness is shown by reduction from
Multi-Coloured Clique, a very useful problem,
introduced by Fellows et al. (2007). Fixed param-
eter tractability is shown via kernelization. This is
a particularly useful technique as it provides a poly-
nomial time preprocessing algorithm (in the form of
polynomial time reduction rules). This leaves a prob-
lem kernel which may then be solved by any chosen
means, whether that be an exact method, approxi-
mation algorithm, or heuristic such as a genetic algo-
rithm or simulated annealing. For a fuller treatment
of kernelization in the context of parameterized com-
plexity and preprocessing see the survey of Guo and
Niedermeier (2007).

2 Preliminaries

2.1 Graph Theory and Notation

Throughout this paper we will refer only to simple,
undirected graphs. Given a graph G the vertex (edge)
set of G will be denoted V (G) (E(G)) except specific
labels are given. The edge between two vertices u and
v will be denoted uv (or equivalently vu). The degree
of a vertex u will be denoted d(u).

As this paper focuses on graph modification prob-
lems, we also define the following operation for a
graph G and a set S of vertices: G−S = G[V (G)\S],
where G[X] is the subgraph of G induced by vertex
set X.

2.2 Graph Modification

There are two basic operations to modify a graph to
obtain a subgraph, vertex deletion and edge deletion.
These operations alter a graph G = (V,E) into a new
graph G′ = (V ′, E′). Deleting an edge uv simply
removes that edge from the graph (i.e., E′ = E \
{uv}). Deleting a vertex u removes that vertex, and
any incident edges (i.e., V ′ = V \ {u}, E′ = E \
{uv | v ∈ V }).

In this paper we also use weighted versions of these
operations, which are defined in the natural fashion.
Given a weighted edge or vertex, the cost of deletion
is simply that weight. Note particularly that when
a vertex is deleted the cost is simply the weight of
the vertex alone, not the weight of the vertex plus
the weights of the incident edges, even though they
are also removed (this is completely equivalent to the
normal definition for unweighted graphs, where the
cost of deleting a vertex is one operation, regardless
of any incident edges).

2.3 Some Parameterized Complexity Theory

Here we will briefly introduce some relevant, key
concepts of parameterized complexity. For a more
in-depth introduction and study see the books of
Downey & Fellows (1997), Flum & Grohe (2006) and
Niedermeier (2006). For the sake of clarity any prob-
lem is understood to be a decision problem unless ex-
plicitly stated otherwise (and the parameterized com-

plexity classes that are referenced are defined for de-
cision problems).

Traditionally problems have been analyzed in one
dimension, that of the size n of the input. The dif-
ficulty of solution of a problem with respect to this
measure forms the fundamental basis of traditional
complexity theory, and in particular the classes P and
NP. Parameterized complexity adds a second mea-
sure, that of a parameter k, which is given as a spe-
cial part of the input. Then, analogously to the def-
initions of P and NP, a series of complexity classes
are defined with respect to their apparent difficulty
of solution with respect to this two-dimensional mea-
sure. If a problem has an algorithm that runs in time
O(f(k)p(n)), where p is a polynomial and f is any
computable function of k, then the problem is fixed-
parameter tractable, or in the class FPT. Naturally
there are problems that are suspected not to be in
FPT. These problems are members of various param-
eterized complexity classes, most commonly W [t] for
some fixed t ≥ 1. Hardness (or completeness) in re-
gards to such a class gives an analogous intuition to
a problem being NP-hard in the classical structure.
That is, it is not likely to be in FPT (i.e., not likely
to have an algorithm that runs in time O(f(k)p(n))
as above).

Supporting this theory are many techniques for
proof either of membership of FPT or of W [t]-
hardness. Here we give a brief introduction to those
techniques salient to this paper.

FPT Reductions

An FPT reduction is the parameterized complexity
equivalent of a P-time many-one reduction in classi-
cal complexity theory. It is the primary method of
demonstrating that two problems are of equivalent
complexity, and that a particular problem is W [t]-
hard. Given two parameterized problems Π1 and Π2,
an FPT reduction Π1 ≤FPT Π2 is a mapping from
Π1 to Π2 that maps an instance (I, k) of Π1 to an
instance (I ′, k′) of Π2 such that

1. k′ = h(k) for some computable function h,

2. (I, k) is a Yes-instance of Π1 if and only if (I ′, k′)
is a Yes-instance of Π2 and

3. the mapping can be computed in time
O(f(k)p(|I|)), where f is some computable
function of the parameter k alone and p is a
polynomial.

Then if Π2 is in FPT, Π1 is also in FPT and if Π1 is
W [t]-hard, Π2 is also W [t]-hard. If two such mappings
exist, one from Π1 to Π2 and another from Π2 to Π1,
then the two problems are equivalent (with respect to
FPT reductions) .

The classes W [t], t = 1, 2, . . ., are defined as equiv-
alence classes of certain parameterized problems un-
der FPT reductions. The classes form the chain FPT
⊆ W [1] ⊆ W [2] ⊆ . . ., where all inclusions are be-
lieved to be strict.

Reduction Rules and Kernelization

One of the key techniques of parameterized complex-
ity is that of reduction to problem kernel (kerneliza-
tion). A problem is kernelizable if and only if given
an instance (I, k) of the problem, where I is the (clas-
sical) input and k is the parameter, it is possible to
produce in polynomial time an instance (I ′, k′) where
|I ′| ≤ g(k′) and k′ = h(k) for computable functions
g and h, and (I, k) is a Yes-instance if and only if
(I ′, k′) is a Yes-instance. It can be shown that if a

CRPIT Volume 77 - Theory of Computing 2008

80

problem is kernelizable in this sense, then it is fixed-
parameter tractable (and vice versa). Kernelization
is normally accomplished by the application of reduc-
tion rules to the instance. Estivill-Castro et al. (2005)
give a recent example of the application of kerneliza-
tion, along with more explanation of the theory.

2.4 A Useful Construction: The Fixing Gad-
get

Throughout the paper it will be useful to have a gad-
get that allows us to regularize any given graph. The
following construction produces an almost r-regular
graph, where all vertices have degree r except two
with degree r − 1. The first part of the construction
consists of a vertex c, a set L = {l1, . . . , lr} of vertices,
r edges cli, r further vertices M = {m1, . . . ,mr}, and
edges such that each vertex mi ∈ M has an edge to
each vertex lj ∈ L except when i = j. Then c has
degree r, as does each vertex in L. Each vertex in
M has degree r − 1. Let C be the graph constructed
so far, we then make a copy C ′, and add an edge be-
tween each vertex in M ⊆ V (C) to its corresponding
vertex in M ′ ⊆ V (C ′), except between for mr and
m′

r. Thus each vertex now has degree r, except mr
and m′

r, which have degree r − 1, and will be used
as attachment points. We will refer to an instance of
this construction as a fixing gadget. See Figure 1 for
an example.

Note that it is also possible to use the following as
an alternative in some cases: Take the complete graph
Kr+1 on r + 1 vertices (so all vertices have degree r),
then compute a matching (of size at most (r + 1)/2).
Each edge of the matching can then be broken as
needed to provide two edges to join the clique to the
rest of the graph. This second construction cannot be
used in the hardness proofs however, as it introduces
(non-trivial) cliques into the graph.

Figure 1: Fixing gadget for r = 3.

3 Hardness Results

The reduction for our hardness results will be
from the Strongly Regular Multi-Coloured
Clique problem, a variant of the Multi-Coloured
Clique problem which was shown to be W [1]-hard
by Fellows et al. (2007). The problem is defined as
follows:

Multi-Coloured Clique
Instance: A graph G = (V,E), vertex-coloured with
k colours.
Parameter: k.
Question: Does G contain a properly coloured
k-clique?

This problem may be alternately defined with the
original graph being properly vertex-coloured, with-
out changing its complexity. The Strongly Reg-
ular Multi-Coloured Clique problem is defined
similarly, but with each vertex in the input graph hav-
ing degree d to each colour class (so each vertex has
degree kd), where d is an arbitrary integer.

Recall that the Clique problem asks if a given
graph has a k-clique. Clique is W [1]-complete when
parameterized by k. We then define the following
special case of Clique:

Regular Clique
Instance: A regular graph G = (V,E), an integer k.
Parameter: k.
Question: Does G contain a k-clique?

Before we proceed to the main result, we need first
to prove some preliminary lemmas.

Lemma 3.1. Regular Clique is W [1]-complete.

Proof. Membership in W [1] follows immediately as
the problem is a special case of Clique. To prove
hardness we reduce from Clique. Let (G, k) be an
instance of Clique. We construct an instance (G′, k)
of Regular Clique by first taking G and modify-
ing it. Let ∆ be the maximum degree of G, then
choose r to be ∆ if ∆ is even, or ∆+1 otherwise (i.e.,
r = ∆ + (∆ mod 2)). We will now demonstrate how
to make the graph r-regular. We can now use the
fixing gadget construction presented in Section 2.4
to increase the degree of each vertex as necessary by
attaching as many fixing gadgets as necessary by the
two attachment vertices. This attachment is made be-
tween a vertex v and an instance of the fixing gadget
by adding the edges between each attachment vertex
and v (or perhaps only one of these edges, as below).
If the degree of the vertex is initially even, then this
is an integral number of fixing gadgets. In the case
where the degree of the vertex is initially odd, the
vertex will reach degree r− 1 by this method, and we
will have to take another degree r − 1 vertex and at-
tach one fixing gadget attachment vertex to the first,
and the other attachment vertex to the second. Note
that there is an even number of vertices of odd de-
gree in G (and G′ initially, an immediate corollary
of the basic theorem

∑
v∈V d(v) = 2|E|), and thus

there is an even number of vertices requiring an odd
increase of degree (i.e., where r − d(v) is odd), as we
have chosen r to be even. Thus there is always some
pairing of such vertices as necessary. Let G′ denote
the constructed graph.

Now if there were a k-clique in G, there will cer-
tainly be a clique in G′ on k vertices, since G is an
induced subgraph of G′. Further note that the fix-
ing gadgets added to create G′ contain no cliques,
and can introduce no non-trivial cliques (as the two
attachment vertices in a fixing gadget are not adja-
cent), thus if there is a clique on k′ vertices in G′,
it must be contained within the vertices that corre-
spond to the vertices of G, thus G has a k-clique.
Clearly the construction of the new instance can be
done in polynomial time (and thus is a polynomial-
time reduction, and subsequently an FPT reduction).
�

Lemma 3.2. Strongly Regular Multi-
Coloured Clique is W [1]-complete.

Proof. Again W [1] membership follows as the prob-
lem is a special case of Clique.

It is useful to sketch the reduction from Clique
to Multi-Coloured Cliqueas given by Fellows et
al. (2007). Given an instance (G, k) of Clique,
construct an instance of Multi-Coloured Clique
(G′, k′) by taking k vertex disjoint copies G1, . . . , Gk
of G, assigning each Gi a different colour. Then for
every pair of vertices u, v in G, if uv is an edge, add
the edges uivj , for all i, j, where ai is the vertex in
Gi corresponding to vertex a in G. Let k′ = k. Then
if there were a k-clique in the original instance, there

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

81

will be a properly coloured clique in the new instance,
and vice versa.

We may use the same construction to reduce
Regular Clique to Strongly Regular Multi-
Coloured Clique. The result follows immediately.
�

Theorem 3.3. Vertex Deletion to Regular
Subgraph and Deletion to Regular Subgraph
are W [1]-hard for parameter k.

Proof. Consider an instance (G, k), with G = (V,E),
of Strongly Regular Multi-Coloured Clique.
Note that G is kd-regular and each vertex has exactly
d neighbours in each colour class. We denote the set
of vertices of colour i by Vi (1 ≤ i ≤ k). Then V =⋃k

i=1 Vi forms a partition of V . Observe also that
each colour class is of the same size, denote this size
as s (i.e., |Vi| = s for all 1 ≤ i ≤ k).

We construct an instance (G′, k′), with G′ =
(V ′, E′), of Deletion to Regular Subgraph by
first defining k sets V ′

i (1 ≤ i ≤ k) such that for each
vertex v ∈ Vi we add a vertex v′ to V ′

i . We add all
possible edges between pairs of vertices in the same
set V ′

i . We will call each of these subgraphs a colour
class gadget or class gadget for short.

For each edge uv in G where u ∈ Vi and v ∈ Vj

with i 6= j, we add to G′ two vertices u′
v′ and v′u′ ,

with the edges u′u′
v′ , u′

v′v′u′ and v′u′v′. For each pair
V ′

i and V ′
j (where i 6= j) of class gadgets, denote

the set of these new vertices and edges as Pij . We
denote by P i

ij the set of all vertices u′
v′ ∈ Pij where

u′ ∈ V ′
i . Furthermore, for each pair of vertices uv and

u′
v′ in the same P i

ij we add the edge uvu′
v′ to P i

ij if u
and u′ belong to the same class gadget and u 6= u′.
We call each such Pij a connection gadget, and each
P i

ij a side of the connection gadget. There are
(
k
2

)
connection gadgets in total. Figure 2 gives a sketch
of the structure of a connection gadget.

Vi P i
i,j P j

i,j Vj

u vuv vu

Figure 2: A sketch of illustrating the arrangement of
the connection gadgets.

At this point we have k gadgets corresponding to
the k colour classes in the original graph, each with s
vertices of degree (s− 1) + d(k − 1), and

(
k
2

)
gadgets

corresponding to the “inter-colour-class” edges, each
with 2sd vertices of degree 2 + (s − 1)d (sd vertices
in each half). Now we choose r for the instance such
that r ≥ max((s − 1) + d(k − 1), 2 + (s − 1)d), and
r ≡ s + 1 modulo 2 (i.e., r is of opposite parity to s).
In particular we may choose the smallest r such that
this is true.

Now we add for each class gadget V ′
i a gadget V ′′

i
that contains r +1− ((s− 1)+d(k− 1)) vertices with
s edges per vertex, such that each vertex in V ′′

i is
adjacent to every vertex in the class gadget V ′

i . We
refer to V ′′

i as a degree gadget. We then add a further
set of fixing gadgets as before to complete the degree
of each vertex in the degree gadget to r + 1. Note

that by choosing r to have opposite parity to s, we
guarantee that this is possible (if s is odd, r will be
even and each vertex will require r + 1− s additional
edges, which is even, and thus achievable; if s is even,
r will be odd, then r+1−s is again even, and we can
complete the construction). Thus each vertex in each
class gadget and degree gadget has degree one too
many, but the fixing gadgets attached to each degree
gadget have the correct degree.

We similarly adjust the connection gadgets by
adding two degree gadgets, each with r+1−2+(s−1)d
vertices, one for each side of the connection gadget.
Every vertex in the degree gadget is connected to ev-
ery vertex in its associated side of the connection gad-
get. Again we complete the degree of vertices in the
degree gadgets to r + 1 by adding fixing gadgets, and
as before, by the choice of r we can guarantee that
this can be done (if s is even, r is odd and r + 1− sd
is even, if s is odd, r is even and r + 1− sd is even).
Thus each vertex in the connection gadgets has de-
gree r + 1, as does each vertex in the degree gadgets.
Each vertex in each fixing gadget has degree r.

Now we set k′ = k + 2
(
k
2

)
.

Claim 3.1. The following statements are equivalent:

1. (G, k) is a Yes-instance of Strongly Regular
Multi-Coloured Clique.

2. (G′, k′) is a Yes-instance of Vertex Deletion
to Regular Subgraph.

3. (G′, k′) is a Yes-instance of Deletion to Reg-
ular Subgraph.

(1 ⇒ 2) Assume that (G, k) is a Yes-instance
of Strongly Regular Multi-Coloured Clique.
Then there exist k vertices v1, . . . , vk, one from each
colour class, that form a properly coloured clique. As-
sume without loss of generality that vi ∈ Vi. Then we
can delete from G′ the corresponding vertices v′i from
V ′

i , and the pairs of vertices (v′i)v′
j

and (v′j)v′
i

from
Pij that correspond to the edges in the clique. Then
each remaining vertex in each class gadget has had
precisely one incident edge removed from it, as have
the vertices in each degree gadget associated with the
class gadget. So the components corresponding to
the colour classes and their immediate extension are
now r-regular. Similarly each vertex in every connec-
tion gadget and their associated connetion gadgets
has had exactly one incident edge removed, either by
the vertex removed from the connection gadget, or
from the parent vertex in the class gadget (but never
both). Now each vertex in these gadgets has degree
precisely r. We have chosen one vertex from each
V ′

i , and two vertices from each Pij , giving a total of
k′ = k + 2

(
k
2

)
vertices, thus (G′, k′) is also a Yes-

instance of Vertex Deletion to Regular Sub-
graph.

(2 ⇒ 3) Assume that (G′, k′) is a Yes-instance of
Vertex Deletion to Regular Subgraph. Then
clearly it is also a Yes-instance of Deletion to
Regular Subgraph.

(3 ⇒ 1) Assume that (G′, k′) is a Yes-instance
of Deletion to Regular Subgraph. Then there
are k+2

(
k
2

)
deletions that can be made to make G′ r-

regular. Obviously we cannot delete any vertices from
the fixing gadgets in the graph. Further we cannot
delete any vertices from the degree gadgets, as this
would reduce the degree of their attached fixing gad-
gets. Thus the deleted vertices must come from class
and connection gadgets. Again there must be pre-
cisely one vertex from each such component, if there
is less than one in such a component, the degree of
at least some of the vertices in that component will

CRPIT Volume 77 - Theory of Computing 2008

82

remain r + 1, if there are more than one, the degree
of some vertices in the component will drop below r.
Also note that for each vertex uv deleted from one side
of a connection gadget, the vertex deleted in the other
side must be the vertex vu. If it were not, then at least
one vertex in each side would have degree r−1. Also,
the vertex deleted from each side of each connection
gadget must be attached to the vertex deleted from
the adjacent class gadget, otherwise the vertices at-
tached to vertices deleted from the class gadget will
have degree at most r − 1. Thus we can see that
if (G′, k′) is a Yes-instance, the set of vertices to be
deleted is very precise and restricted. In fact, if we are
to use only the allotted budget of k + 2

(
k
2

)
, we must

choose precisely one vertex from each class gadget,
and two vertices from each connection gadget, where
the vertices from the connection gadget component
are connected to the vertices deleted from the two
class gadgets it is associated with. Similarly, assume
that some edge deletion is used, but then each edge
deletion can only reduce the degree of two vertices,
leaving us with too many edges to delete, or vertices
of degree less than r. So clearly the only operation
that can be used in this case is vertex deletion. Thus
we may more precisely claim that if (G′, k′) is a Yes-
instance for Deletion to Regular Subgraph, it
must be via vertex deletion alone. Thus it is clear
that if (G′, k′) is a Yes-instance for Deletion to
Regular Subgraph, then (G, k) must be a Yes-
instance of Strongly Regular Multi-Coloured
Clique. The solution for (G, k) is the set of vertices
{v1, . . . , vk}, one from each colour class, correspond-
ing to the k vertices chosen from the class gadgets.
The edges of the clique correspond to the 2

(
k
2

)
ver-

tices chosen from the connection gadgets.

We can construct G′ from G in polynomial time, as
we are adding only (4r +3)(2r +2s− s− sd− dk +1)
vertices, where r, s, d ≤ n, thus it is also an FPT
reduction, and we have the desired result. �

We also note that the above proof suffices if we
also include the operation of edge addition, giving
the following:

Corollary 3.4. Edit to Regular Subgraph pa-
rameterized by the number of edit operations k is
W [1]-hard.

We may also consider the similar problem of find-
ing a regular subgraph of an unknown regularity (i.e.,
when r is not given):

Corollary 3.5. Deletion to Some Regular
Subgraph parameterized by the number of edit op-
erations k is W [1]-hard.

Proof. Given an instance (G, k) of Deletion to
Regular Subgraph, we construct an instance
(G′, k) of Deletion to Some Regular Subgraph
as follows:

We simply add one r-regular connected compo-
nent with more than k vertices. This can be done
by taking, for example, k fixing gadgets and con-
necting them in a ring. We clearly cannot alter this
component within the budget, thus the only possi-
ble solution is the same as that for (G, k). Thus
if (G′, k) is a Yes-instance of Deletion to Some
Regular Subgraph, (G, k) must be a yes instance
of Deletion to Regular Subgraph. Naturally if
(G, k) is a Yes-instance of Deletion to Regular
Subgraph, the same solution will result in a regu-
lar graph in (G′, k), so (G′, k) is a Yes-instance of
Deletion to Some Regular Subgraph. �

Of course the same proof again suffices for the edit
version of the problem.

We also obtain the following result.

Corollary 3.6. Weighted Deletion to Chosen
Degree Subgraph parameterized by the number k
of edit operations is W [1]-hard.

Proof. Clearly Deletion to Regular Subgraph,
is a restriction of Weighted Deletion to Chosen
Degree Subgraph, with ρ(e) = 1, ρ(v) = 1 and
δ(v) = r for each edge e and vertex v. �

Once again we may make a similar claim for the
edit version of the problem, Weighted Edit to
Chosen Degree Subgraph.

4 Fixed Parameter Tractability

Moser and Thilikos (2006) give several tractability
results for regular induced subgraph problems, and
in doing so contribute several significant and natural
ideas that are of use in the more general setting of this
paper. Several of the reduction rules that we develop
have direct analogs in their paper, and in particular
we use their notion of a “clean region”. We however
exploit the structure available more fully, using an-
notation. In this case annotation proves a powerful
tool for generalizing, and thus simplifying the prob-
lem. We are thus able to get more general results that
include their results as special cases. In particular we
avoid the complex clean region replacement that they
undertake as the annotation allows a simpler repre-
sentative replacement. Abu-Khzam & Fernau (2006)
give a further examination of annotation with respect
to kernelization.

4.1 Definitions

First we will define various terms that allow a more
elegant treatment of the result.

Given a graph G, a function δ : V → {0, . . . , r}
and a function ρ : V ∪E → N+. We say a vertex v ∈ V
is clean if

∑
e∈E(v) ρ(e) = δ(v). Then a clean region is

a set of clean vertices that form a connected subgraph.
Note that not all edges incident on the vertices of the
clean region need have both endpoints in the clean
region. We can greedily calculate the collection of
maximal clean regions in a graph in polynomial time.
Note that these maximal clean regions are disjoint. In
general when we refer to a clean region, we will mean
a maximal clean region, though strictly the results
are unaffected.

A clean region is independent if there are no edges
from the clean region to any vertex outside the clean
region.

Given a clean region C we call the set of vertices
not in C adjacent to a vertex in C as the boundary of
C.

It is also notationally convenient to define the de-
gree of a vertex v restricted to a set X of vertices as
dX(v). So dX(v) is the number of neighbours of v that
are in the set X, and we extend this notation to sets of
vertices, for example the degree of a boundary B re-
stricted to its clean region C is dC(B) =

∑
b∈B dC(b).

It is also useful to define a weighted degree func-
tion dρ : V → N+ such that for each vertex v,
dρ(v) =

∑
e∈E(v) ρ(e). As above we denote the

weighted degree of a vertex v restricted to a set of
vertices X as dρ

X(v) and extend it as before to sets.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

83

4.2 Weighted Deletion to Chosen Degree
Subgraph

In this section we consider the Weighted Dele-
tion to Chosen Degree Subgraph problem as
defined earlier, but parameterized by both the num-
ber of deletions k and the maximum desired degree r.

4.2.1 Reduction Rules

Let (G, (k, r)), with G = (V,E), be an instance of
Weighted Deletion to Chosen Degree Sub-
graph. The following reduction rules produce
from (G, (k, r)) an equivalent instance (G′, (k′, r′)) of
Deletion to Chosen Degree Subgraph. For all
reduction rules r′ = r.

Reduction Rule 1: If there exists a vertex v ∈ V with
dρ(v) < δ(v), then G′ = G− {v}, k′ = k − ρ(v).

Reduction Rule 2: If there exists a vertex v ∈ V with
d(v) > k + r, then G′ = G− {v}, k′ = k − ρ(v).

Reduction Rule 3: If there exists an independent
clean region C ⊆ V , then G′ = G− C, k′ = k.

Reduction Rule 4: If there exists a clean region C
with a vertex b in its boundary where dρ

C(b) > δ(b),
then G′ = G− C, k′ = k −

∑
v∈C ρ(v).

This also gives an algorithmically useful corollary.

Corollary 4.1. If there exists a clean region C with
a vertex b in its boundary such that dρ

C(b) > δ(b) and∑
v∈C ρ(v) > k, then (G, (k, r)) is a No-instance.

Reduction Rule 5: If there exists a clean region C
with boundary B such that

∑
v∈C ρ(v) > k and

for each boundary vertex b we have dρ
C(b) ≤ δ(b),

then for each b ∈ B, set ρ(b) = k + 1 and set
δ(b) = δ(b)− dρ

C(b), and G′ = G− C, k′ = k.

Reduction Rule 6: If there exists a clean region C,
with boundary B such that Reduction Rules 4 and
5 do not apply, (i.e., there are no boundary vertices
with excessive weighted degree into the clean region,
and the weight of the clean region is not larger than
k), then modify the instance as follows:

1. Add a new vertex v such that ρ(v) =
∑

c∈C ρ(c),
and δ(v) = dρ

B(C).

2. For each boundary vertex b ∈ B, add an edge bv
such that ρ(bv) = dρ

C(b).

3. Delete C.

4. Set k′ = k.

Note that the vertex v added in Reduction Rule 6
is a special vertex in that we allow it to have ρ(v) > r.
This does not affect the existence of a solution, and if
desired, a less elegant, alternate reduction rule can be
substituted where the region is replaced by a series of
vertices each with ρ at most r. In the kernelization
this increases the size of X (only) by a factor of at
most k.

Lemma 4.2. Reduction Rules 1–6 are sound. That
is, each reduction rule takes an instance (G, (k, r)) of
Weighted Deletion to Chosen Degree Sub-
graph and produces an instance (G′, (k′, r′)) of
Weighted Deletion to Chosen Degree Sub-
graph such that (G, (k, r)) is a Yes instance if and
only if (G′, (k′, r′)) is a Yes instance.

Proof. Rule 1: Clearly v cannot remain in the final
graph unmodified, but as we cannot add edges, there
is no way of increasing the degree of v. Thus v must
be deleted as part of any solution.

Rule 2: If v were to remain in the final graph, we
must either delete more than k edges or neighbouring
vertices, each with weight at least 1, which we cannot
do. Thus the only possibility is to delete v.

Rule 3: Clearly an independent clean region needs
no changing, thus we can safely ignore it, as it will
play no role in the solution.

Rule 4: If there were such a b, then at least one
of the edges from b into the clean region must be
deleted, but then a vertex v of the clean region would
now have weighted degree less than δ(v), and would
have to be deleted (as per Reduction Rule 1). This
would obviously cascade, resulting in the entire clean
region being deleted. Thus the only possible option
is to delete the clean region.

Rule 5: As with Reduction Rule 4, deletion of
any vertex or edge in the clean region or between the
clean region and the boundary would require the clean
region to be deleted entirely. As the clean region is
of total weight greater than k, it obviously cannot be
deleted within a cost k solution. Thus it suffices to
increase the weight of each vertex in the boundary,
as these cannot be deleted either, and reduce their
degree funtion appropriately.

Rule 6: As C is a clean region, deletion of any
vertex or edge in the clean region or boundary will
result in the entire clean region being deleted, thus
it is sufficient to represent the clean region as one
appropriately weighted clean vertex. �

4.2.2 Kernel Lemma

Lemma 4.3 (Kernel Lemma). If (G = (V,E), (k, r))
is reduced under Reduction Rules 1–6 and |V | >
k + k(k + r) + kr(k + r), then (G, (k, r)) is a No-
instance for Weighted Deletion to Chosen De-
gree Subgraph.

Proof. Assume that (G = (V,E), (k, r)) is a Yes-
instance for k-Deletion r-Regular Subgraph.
Further assume that the instance is reduced under
Reduction Rules 1–6. Let S be the set of edges and
vertices deleted as part of the solution, |S| ≤ k (more
particularly ρ(S) ≤ k). As any edge in the solution
is adjacent to only two vertices, our worst case oc-
curs when the solution is all vertices, so it suffices to
only consider S. Further let H be the set of vertices
consisting of the endpoints of any edges in S and the
neighbours of any vertices in S, and X = V \{H∪S}.
Note that H is a cut-set seperating S and X. Figure
3 gives an example of this partitioning for an example
graph with r = 3.

We make the following claims:

Claim 4.1. |H| ≤ k(k + r).

No vertex has degree greater than (k + r), other-
wise the graph is not reduced under Reduction Rule 2.
Thus if S were all vertices, they could have at most
(k + r) neighbours each. As H is the entire neigh-
bourhood of S, |H| ≤ |S|(k + r) = k(k + r).

Claim 4.2. |X| ≤ kr(k + r).

X must consist only of clean regions, otherwise S
is not a solution. Each vertex h in H can have at
most r neighours in X, otherwise S is not a solution.
If h were adjacent to a clean region with total weight
greater than k, this region would have been removed
under Reduction Rule 5, thus it can only be adjacent
to small clean regions. As the graph is reduced, each
of these clean regions contains precisely one vertex,

CRPIT Volume 77 - Theory of Computing 2008

84

S

H

X

Figure 3: Example of the partitioning described in
the Kernel Lemma. r = 3.

by Reduction Rule 6. Thus each h can have at most
r neighbours. As there are k(k + r) such vertices,
|X| ≤ kr(k + r).

Claim 4.3. There are at most k+k(k+r)+kr(k+r)
vertices in G.

|V | = |S| + |H| + |X|. By Claims 4.2 and 4.1,
|H| ≤ k(k + r), and |X| ≤ kr(k + r). There are no
other vertices in the graph, otherwise the graph is
not reduced under Reduction Rules 3 and 4. Thus as
|S| ≤ k, |V | ≤ k + k(k + r) + kr(k + r).

Then by Claim 4.3, if (G = (V,E), (k, r)) is a Yes-
instance for Weighted Deletion to Chosen De-
gree Subgraph, then |V | ≤ k+k(k+r)+kr(k+r).
Thus the Kernel Lemma holds. �

To complete the proof of FPT membership, we
need to demonstrate that the Reduction Rules can
be executed in polynomial time. Clearly Reduction
Rules 1 and 2 can be carried out in linear time, and
each can be applied at most k times. Thus Reduction
Rules 1 and 2 contribute O(kn) to the running time.

We can calculate the clean regions of the graph
greedily in linear time, with the boundary calculated
at that time. Thus an independent clean region can
be identified in linear time, and deleted in linear
time. Similarly any clean region with a vertex b in
its boundary such that dρ

C(b) > δ(b), can be iden-
tified quickly. Similarly regions to which Reduction
Rules 5 and 6 apply can be identified at this point,
and replaced or removed as required. This can be
done at most k times, thus Reduction Rules 3, 4, 5
and 6 contribute O(kn) to the running time.

This leads immediately to the following theorem:

Theorem 4.4. Weighted Deletion to Chosen
Degree Subgraph is fixed-parameter tractable for
parameter (k,r).

In particular an instance (G, (k, r)) of Weighted
Deletion to Chosen Degree Subgraph with n
vertices and m edges can be solved in time O(kn +
f(k, r)), where f(k, r) is the running time of whatever
algorithm or heuristic is applied to the kernel (whose
size is bounded, so the running time is guaranteed
to be a function of (k, r). A simple approach would
be the application of a bounded search tree which
branches on which problem vertex or edge to delete,
which gives a running time of O((k3 + 2k2r + kr2)k).

Note that if we have a graph where initially ρ(v) =
1, ρ(e) = 1 and δ(v) = r for each vertex v and edge
e, then this is precisely the Deletion to Regular
Subgraph problem, thus we also gain the following
result:

Corollary 4.5. Deletion to Regular Subgraph
is fixed-parameter tractable for parameter (k,r).

4.2.3 The Exact Case

The previous proof can be modified easily to demon-
strate fixed-parameter tractability for the Exact
Weighted Deletion to Chosen Degree Sub-
graph problem. In this case we are interested in
deleting elements with a total weight of k. Thus we
may be interested in deleting elements where the dele-
tion does not fix the degree of some vertex, it simply
adds to the total cost. However, the only areas where
we may delete these from that are not already in-
cluded in the kernel are independent clean regions of
‘low’ weight (≤ k).

Of course we need not retain all such indepen-
dent clean regions on the chance that they may be
needed. Obviously any independent clean region of
weight greater than k can still be removed without
consequence, it could never be part of any solution of
cost k. So we need only concern ourselves with in-
dependent clean regions of weight less than or equal
to k. Recall that a clean region is defined as a set
of vertices, thus in particular, the weight of a clean
region is the sum of weights of the vertices, not the
edges.

Notice also that given a sufficient quantity of in-
dependent clean regions of a given weight (say i), we
could never use all of them, and thus need only retain
a small number. Thus if we replace Reduction Rule
3, we can adjust our kernel size appropriately:

Reduction Rule 3a: If there exist more than bk/ic in-
dependent clean regions of weight i ≤ k, delete all
but bk/ic of them, k′ = k.

Then we may modify the Kernel Lemma as follows:

Lemma 4.6 (Exact Kernel Lemma). If (G =
(V,E), (k, r)) is reduced under Reduction Rules 1–6
(with Rule 3a replacing Rule 3) and |V | > k + k(k +
r)+kr(k+r)+k2, then (G, (k, r)) is a No-instance for
Exact Weighted Deletion to Chosen Degree
Subgraph.

Proof. We begin with the following claims:

Claim 4.4. There are no independent clean regions
of size greater than k.

As each vertex has weight at least 1, a clean region
of size greater than k must have weight greater than k,
thus if one remained, the graph would not be reduced
under Reduction Rule 3a.

Claim 4.5. There are at most k2 vertices in indepen-
dent clean regions.

By Reduction Rule 3a, there are at most bk/ic
independent clean regions of weight i. The largest size
of any such region is k (by claim 4.4). Thus the total
size is

∑k
i=1 bk/ic i ≤

∑k
i=1(k/i)i =

∑k
i=1 k = k2.

The proof of the Kernel Lemma now follows as be-
fore, simply with the new claims taken into account.
�

The new reduction rule can clearly be enacted in
polynomial time, we need only greedily keep the first
few independent clean regions we find of each weight,
which can be accomplished at the start of the algo-
rithm in linear time.

Theorem 4.7. Exact Weighted Deletion to
Chosen Degree Subgraph is fixed-parameter
tractable for parameter (k, r).

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

85

As before, we also gain the following result as a
special case:
Corollary 4.8. Exact Deletion to Regular
Subgraph is fixed-parameter tractable for parameter
(k, r).

5 Conclusion

We have answered Moser and Thilikos’s open ques-
tion, and shown that Vertex Deletion to Reg-
ular Subgraph is W [1]-hard when parameterized
by the number k of vertex deletions. The problem
remains hard when we extend the operations avail-
able to include edge deletion and/or edge addition.
The generalized version of the problem Weighted
Deletion (Edit) to Chosen Degree Subgraph
is also W [1]-hard when parameterized by the number
k of deletions.

If we include r as an additional parameter how-
ever, all the problems examined are fixed-parameter
tractable, most notable being that Weighted Dele-
tion to Chosen Degree Subgraph is fixed-
parameter tractable under such a parameterization
with a problem kernel of at most k+k(k+r)+kr(k+r)
vertices. Deletion to Regular Subgraph is also
fixed-parameter tractable with the same kernel, but
we also demonstrate a method that allows avoidance
of clean region contraction, which may be useful in
practice. Similarly the exact versions of the problems
remain tractable with the same parameterization.

As our FPT results derive from kernelization, this
paper also provides several useful polynomial-time
preprocessing algorithms producing bounded problem
kernels which can then be solved by any method of
choice, such as heuristics or approximations.

References

Abu-Khzam, F. & Fernau, H. (2006), Kernels: Anno-
tated, Proper and Induced, in ‘International Work-
shop on Parameterized and Exact Computation
2006 (IWPEC’06)’, Lecture Notes in Computer Sci-
ence, Springer, pp. 264–275.

Cheah, F. & Corneil, D. G. (1990), The Complexity of
Regular Subgraph Recognition, ‘Discrete Applied
Mathematics’, 27, pp. 59–68.

Chvátal, V., Fleischner, H., Sheehan, J. &
Thomassen, C. (1979), Three-regular Subgraphs of

Four Regular Graphs, ‘Journal of Graph Theory’,
3, pp. 371–386.

Downey, R. & Fellows, M. (1997), Parameterized
Complexity, Springer.

Estivill-Castro, V., Fellows, M., Langston, M. &
Rosamond, F. (2005), FPT is P-Time Extremal
Structure I, in ‘Algorithms and Complexity in
Durham 2005 (ACiD’05)’, Texts in Algorithmics,
College Publications, pp. 1–41.

Flum, J. & Grohe, M. (2006), Parameterized Com-
plexity Theory, Springer.

Guo, J. & Niedermeier, R. (2007), Invitation to Data
Reduction and Problem Kernelization, ‘SIGACT
News’, 38(1), pp. 31–45.

Fellows, M., Hermelin, D. & Rosamond, F. (2007), On
the Fixed-Parameter Intractability and Tractabil-
ity of Multiple-Interval Graph Problems, Unpub-
lished Result.

Moser, H. & Thilikos, D. (2006), Parameterized Com-
plexity of Finding Regular Induced Subgraphs,
in ‘Algorithms and Complexity in Durham 2006
(ACiD’06)’, Texts in Algorithmics, College Publi-
cations, pp. 107–118.

Niedermeier, R. (2006), Invitation to Fixed-
Parameter Algorithms, Oxford University Press.

Plesńık, J. (1984), A Note on the Complexity of
Finding Regular Subgraphs, ‘Discrete Mathemat-
ics’, 49, pp. 161–167.

Stewart, I. A. (1994), Deciding Whether a Planar
Graph has a Cubic Subgraph is NP-Complete, ‘Dis-
crete Mathematics’, 126(1-3), pp. 349-357.

Stewart, I. A. (1996), Finding Regular Subgraphs in
Both Arbitrary and Planar Graph, ‘Discrete Ap-
plied Mathematics’, 68(3), pp. 223-235.

Stewart, I. A. (1997), On Locating Cubic Subgraphs
in Bounded-degree Connected Bipartite Graphs,
‘Discrete Mathematics’, 163(1-3), pp. 319-324.

Stewart, I. A. (2007), On the Fixed-Parameter
Tractability of Parameterized Model-Checking
Problems, ‘Information Processing Letters’, to ap-
pear.

CRPIT Volume 77 - Theory of Computing 2008

86

Well-Covered Graphs and Greedoids

Vadim E. Levit1,2 Eugen Mandrescu2

1 Department of Computer Science and Mathematics
Ariel University Center of Samaria,

Ariel 40700, ISRAEL,
Email: levitv@ariel.ac.il

2 Department of Computer Science
Holon Institute of Technology,

Holon 58102, ISRAEL,
Email: eugen m@hit.ac.il

Abstract

G is a well-covered graph provided all its maximal
stable sets are of the same size (Plummer, 1970). S
is a local maximum stable set of G, and we denote
by S ∈ Ψ(G), if S is a maximum stable set of the
subgraph induced by S ∪ N(S), where N(S) is the
neighborhood of S.

In 2002 we have proved that Ψ(G) is a greedoid for
every forest G. The bipartite graphs and the triangle-
free graphs, whose families of local maximum stable
sets form greedoids were characterized by Levit and
Mandrescu (2003, 2007a).

In this paper we demonstrate that if a graph G has
a perfect matching consisting of only pendant edges,
then Ψ(G) forms a greedoid on its vertex set. In
particular, we infer that Ψ(G) forms a greedoid for
every well-covered graph G of girth at least 6, non-
isomorphic to C7.

Keywords: local maximum stable set, greedoid, very
well-covered graph, unique perfect matching.

1 Introduction

Throughout this paper G = (V, E) is a simple (i.e., a
finite, undirected, and without multiple edges) graph
with vertex set V = V (G) and edge set E = E(G).
The vertices x, y ∈ V (G) are called adjacent if they
are the endpoints of some edge in G, and we write
xy ∈ E(G). We assume also that xx /∈ E(G), for
every x ∈ V (G), i.e., G is loopless. If X ⊂ V , then
G[X] is the subgraph of G induced by X. By G −
W we mean the subgraph G[V −W], if W ⊂ V (G).
We also denote by G − F the partial subgraph of G
obtained by deleting the edges of F , for F ⊂ E(G),
i.e., G−F = (V, E −F), and we write shortly G− e,
whenever F = {e}.

The neighborhood of a vertex v ∈ V is the set
N(v) = {w : w ∈ V and vw ∈ E}, and N [v] =
{v}∪N(v). If |N(v)| = |{u}| = 1, then v is a pendant
vertex and vu a pendant edge of G. By pend(G) we
mean the set of all pendant vertices of G.

Kn, Cn denote, respectively, the complete graph on
n ≥ 1 vertices, and the chordless cycle on n ≥ 3
vertices, i.e., K1 = ({v1}, ∅) and

Kn = ({vi : 1 ≤ i ≤ n}, {vivj : 1 ≤ i < j ≤ n}), n ≥ 2,

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at the Computing: The Australasian Theory
Symposium (CATS’08), Wollongong, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 77, James Harland and Prabhu Manyem, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

while Cn has

V (Cn) = {vi : 1 ≤ i ≤ n},
E(Cn) = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {v1vn}).

A vertex v ∈ V (G) is called simplicial if G[N [v]]
is a complete subgraph of G.

We denote the neighborhood of some A ⊂ V by
NG(A) = {v ∈ V − A : N(v) ∩ A 6= ∅} and its closed
neighborhood by NG[A] = A∪N(A), or shortly, N(A)
and N [A], respectively, if no ambiguity.

A tree is a cycle-free connected graph, while a for-
est is cycle-free graph.

A stable set in G is a set of pairwise non-adjacent
vertices. A stable set of maximum size will be referred
to as a maximum stable set of G, and the stability
number of G, denoted by α(G), is the cardinality of
a maximum stable set in G. In the sequel, by Ω(G)
we denote the set of all maximum stable sets of the
graph G.

A set A ⊆ V (G) is a local maximum stable set
of G if A is a maximum stable set in the subgraph
induced by N [A], i.e., A ∈ Ω(G[N [A]]), (Levit and
Mandrescu 2002). Let Ψ(G) stand for the set of all
local maximum stable sets of G. Notice that Ω(G) ⊆
Ψ(G) is true for every graph G.

Clearly, every set S ⊆ pend(G) belongs to Ψ(G).
Nevertheless, there exist local maximum stable sets
that do not contain pendant vertices. For instance,
{e, g} ∈ Ψ(G), where G is the graph from Figure 1.

w w w w w

w w
@

@
@

a b c d

g f

e

Figure 1: A graph having various local maximum sta-
ble sets.

A matching in a graph G = (V, E) is a set of
edges M ⊆ E such that no two edges of M share
a common vertex. A maximum matching is a match-
ing of maximum size µ(G). A matching is perfect
if it saturates all the vertices of the graph. Let us
recall that G is a König-Egerváry graph provided
α(G) + µ(G) = |V (G)|. It is known that every bi-
partite graph is a König-Egerváry graph as well.

A graph G is well-covered if every maximal stable
set of G is also a maximum stable set, i.e., it belongs
to Ω(G). If, in addition, G has no isolated vertices and
|V (G)| = 2α(G), then G is very well-covered (Favaron
1982). For instance, the graph depicted in Figure 1
is well-covered, but not very well-covered, while the
graph from Figure 2 is very well-covered.

In other words, each stable set of a well-covered
graph is contained in a maximum stable set, e.g., the

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

87

w w

w w

w w

w w

w w

w w@
@

@¢
¢
¢
¢
¢
¢

¡
¡

¡
¡

¡
¡

XXXXXX

A
A
A
A
A
A¡

¡
¡

G

Figure 2: A very well-covered graph whose unique
perfect matching has non-pendant edges.

graph H from Figure 3. Since there is no maximum
stable set S of G such that {b, d} ⊂ S, the graph G
in Figure 3 is not well-covered.

w w w w w

w ww

¡
¡

¡ @
@

@y

x

z s

v t

u wH

w w w w

w w
@

@
@

a b c d

gf

G

Figure 3: H is well-covered; G is not well-covered.

Well-covered graphs were defined by Plummer
(1970). A number of classes of well-covered graphs
were completely described; e.g., well-covered bi-
partite graphs (Ravindra 1977), very well-covered
graphs (Favaron 1982), well-covered block graphs and
unicyclic graphs (Topp and Volkmann 1990), well-
covered graphs of girth ≥ 6 (Finbow, Hartnell and
Nowakowski 1993), well-covered cubic graphs (Camp-
bell, Ellingham and Royle 1993), well-covered graphs
that contain neither 4- nor 5-cycles (Finbow, Hartnell
and Nowakowski 1994), 4-connected claw-free well-
covered graphs (Hartnell and Plummer 1996), well-
covered simplicial, chordal, and circular arc graphs
(Prisner, Topp and Vestergaard 1996), well-covered
König-Egerváry graphs (Levit and Mandrescu 1998).
A survey on this subject is due to Plummer (1993).

In fact, well-covered graphs are exactly those
graphs for which the greedy algorithm constructing
maximum stable sets vertex by vertex always yields
a maximum stable set, no matter how its greediness
makes it to chose vertices of a graph. For general
graphs, the problem of finding a maximum stable set,
is NP-hard.

While, in general, it is co-NP-complete to deter-
mine if a given graph is well-covered (Chvátal and
Slater 1993, Sankaranarayana and Stewart 1992), rec-
ognizing weighted well-covered graphs with bounded
4(G) can be done in polynomial time (Caro et al.
1998, Zverovich 2004), where 4(G) equals the max-
imum vertex degree of the graph G. Tankus and
Tarsi (1996, 1997) showed that claw-free well-covered
graphs can be recognized in polynomial time.

It is easy to prove the following.

Proposition 1.1 Every graph having a perfect
matching consisting of pendant edges is very well-
covered.

The converse of Proposition 1.1 is not gener-
ally true (e.g., the graph G depicted in Figure 2).
Moreover, there are well-covered graphs without per-
fect matchings, (e.g., K3). Nevertheless, follow-
ing Favaron’s characterization for very well-covered

graphs (i.e., Theorem 1.2), one can assert that “hav-
ing a perfect matching” is a necessary condition for
very well-coveredness.

A matching M in a graph G satisfies Property P
if for every edge xy ∈ M,

N(x) ∩N(y) = ∅ and

N(x)− {y} is adjacent to all of N(y)− {x} .

Theorem 1.2 For a graph G without isolated ver-
tices the following are equivalent:

(i) G is very well-covered;
(ii) there is a perfect matching in G that satisfies

Property P ;
(iii) there exists at least one perfect matching in G

and every perfect matching in G satisfies Property P .

By H ◦ K1 we mean the graph obtained from H
by appending a single pendant edge to each vertex of
H. Let us notice that H ◦K1 is very well-covered and
α(H◦K1) = |V (H)|. Moreover, Finbow, Hartnell and
Nowakowski (1993) showed (Theorem 1.3) that, un-
der certain conditions, every well-covered graph must
be of this form.

Theorem 1.3 Let G be a connected graph of girth
greater than five, which is isomorphic to neither C7
nor K1. Then G is well-covered if and only if its
pendant edges form a perfect matching, i.e., G = H ◦
K1 for some graph H.

In other words, Theorem 1.3 shows that, apart
from K1 and C7, connected well-covered graphs of
girth ≥ 6 are very well-covered. Consequently, a tree
T 6= K1 could be only very well-covered, and this is
the case if and only if T = H ◦K1 for some tree H (for
additional details, see Ravindra 1977, Favaron 1982,
Levit and Mandrescu 1999).

The following theorem concerning maximum sta-
ble sets in general graphs, due to Nemhauser and
Trotter Jr. (1975), shows that some stable sets can
be enlarged to maximum stable sets.

Theorem 1.4 Every local maximum stable set of a
graph is a subset of a maximum stable set.

The graph W from Figure 1 has the property
that every S ∈ Ω(W) contains some local maxi-
mum stable set, but these local maximum stable sets
are of different cardinalities: {a, d, f} ∈ Ω(W) and
{a}, {d, f} ∈ Ψ(W), while for {b, e, g} ∈ Ω(W) only
{e, g} ∈ Ψ(W).

However, there exists a graph G satisfying the
equality Ψ(G) = Ω(G), e.g., G = Cn, for n ≥ 4.

A greedoid (Björner and Ziegler 1992, and Korte
et al. 1991) is a set system generalizing the notion of
matroid.

Definition 1.5 A greedoid is a pair (V,F), where
F ⊆ 2V is a non-empty set system satisfying the fol-
lowing conditions:
(Accessibility) for every non-empty X ∈ F there is an
x ∈ X such that X − {x} ∈ F ;
(Exchange) for any X,Y ∈ F , |X| = |Y |+ 1, there is
an x ∈ X − Y such that Y ∪ {x} ∈ F .

Recall that a matroid is a set system (V,F)
that satisfies both the ”exchange property” and the
”hereditary property”, saying that : if X ∈ F and
Y ⊆ X , then Y ∈ F . Evidently, any matroid is
also a greedoid. It is clear that the family of all sta-
ble sets of a graph is a matroid if and only if G is a
disjoint union of complete graphs, which means that,
necessarily, G must be well-covered of a specific form.

CRPIT Volume 77 - Theory of Computing 2008

88

If G is well-covered, Ψ(G) is a matroid if and only
if each S ∈ Ω(G) consists of only simplicial vertices,
because Ω(G) ⊆ Ψ(G) and every v ∈ S, by hereditary
property, satisfies {v} ∈ Ψ(G) , i.e., G[N [v]] must be
a complete graph.

The notion of matroid was defined by Whitney
(1935). Later Edmonds (1971)characterized a ma-
troid as a hereditary set system for which a class of
linear optimization problems can be solved by greedy
algorithms. Korte and Lovász (1991) introduced the
greedoid in an attempt to generalize this characteri-
zation to accessibility systems.

It is worth mentioning that if (V,F) is a greedoid
and X ∈ F , |X| = k ≥ 2, then according to accessi-
bility property, one can build a chain

{x1} ⊂ {x1, x2} ⊂ {x1, ..., x3} ⊂ ...

... ⊂ {x1, ..., xk−1} ⊂ {x1, ..., xk−1, xk} = X

such that {x1, ..., xj} ∈ F , for each j ∈ {1, ..., k − 1}.
Such a chain we call an accessibility chain of X.

For example, Ψ(G1) is a greedoid and

{a} ⊂ {a, b} ⊂ {a, b, c}
is an accessibility chain of {a, b, c} ∈ Ψ(G1), where
G1 is presented in Figure 4.

w w w

w w wa

bc

G1

w w

w w
G2

Figure 4: G1, G2 are very well-covered graphs, but
only for G1 it is true that every S ∈ Ω(G1) has an
accessibility chain.

Levit and Mandrescu (2002) proved the following.

Theorem 1.6 For every forest T, Ψ(T) is a greedoid
on its vertex set.

The case of bipartite graphs having a unique cy-
cle, whose family of local maximum stable sets forms
a greedoid, is studied in Levit and Mandrescu (2001,
2005). The general case of bipartite graphs was
treated in Levit and Mandrescu (2003), while for
triangle-free graphs we refer the reader to Levit and
Mandrescu (2007) for details. Nevertheless, there ex-
ist non-bipartite and non-triangle-free graphs whose
families of local maximum stable sets form gree-
doids. The families Ψ(G1), Ψ(G2), Ψ(G3), Ψ(G4) of
the graphs in Figure 5 are greedoids. Let us no-
tice that G1 is very well-covered and G3 is well-
covered, while G2, G4 are not well-covered and also
non-triangle-free.

w w w w

w w

G1

w w w

w w

¡
¡

¡

G2

w w w

w w
@

@
@

G3

w w w

w w
@

@
@¡

¡
¡

G4

Figure 5: Graphs whose family of local maximum sta-
ble sets form greedoids.

In this paper we prove that in a well-covered graph
G of girth at least 6, but different from C7, the family
Ψ(G) of local maximum stable sets forms a greedoid
on its vertex set.

2 Results

It is easy to see that no maximum stable set of C7
admits an accessibility chain. The graph G in Fig-
ure 6 shows that even if some S ∈ Ω(G) admits an
accessibility chain, this is not necessarily true for all
maximum stable sets. The case of the graph H from
Figure 6 is different: each maximum stable set of H
has an accessibility chain, and the reason is given in
Proposition 2.1.

w w w w w

w w
@

@
@

@
@

@
a b c d

g f

eG

w w w w

w w w w

¡
¡

¡
H

Figure 6: {a, c, f}, {a, g, e} ∈ Ω(G), but only {a, c, f}
admits an accessibility chain.

Proposition 2.1 Every maximum stable set of the
graph G = H ◦K1 has an accessibility chain.

Proof. Clearly, α(G) = n, where |V (H)| = n, and
each S ∈ Ω(G) satisfies S ∩ pend(G) 6= ∅.

We prove by induction on n that every S ∈ Ω(G)
has an accessibility chain.

For n = 1, the assertion is clearly true.
For n = 2, let S = {x1, x2} ∈ Ω(G). Then at least

one of x1, x2 is pendant, say x1. Hence, the chain is
{x1} ⊂ {x1, x2} = S.

Suppose that the assertion is true for k < n.
Let G = (V,E) = H ◦K1 be with |V (H)| = n, and

let S ∈ Ω(G).
Since S ∩ pend(G) 6= ∅, let a1 ∈ S ∩ pend(G). If

N(a1) = {b1}, then G − {a1, b1} = (H − {b1}) ◦K1.
Hence, we have that

Sn−1 = S − {a1} ∈ Ω(G− {a1, b1}),
and by induction hypothesis, there is a chain

{x1} ⊂ {x1, x2} ⊂ ... ⊂ {x1, x2, ..., xn−1} = Sn−1

such that {x1, x2, ..., xk} ∈ Ψ(G − {a1, b1}) for each
k ∈ {1, ..., n − 1}. Since NG(a1) = {b1}, it follows
that

NG({x1, x2, ..., xk} ∪ {a1}) =
= NG−{a1,b1}({x1, x2, ..., xk}) ∪ {b1},

and therefore {x1, x2, ..., xk} ∪ {a1} ∈ Ψ(G), for ev-
ery k ∈ {1, ..., n − 1}. Clearly, {a1} ∈ Ψ(G), and
consequently, we obtain the chain:

{a1} ⊂ {a1, x1} ⊂ {a1, x1, x2} ⊂ ...

... ⊂ {a1, x1, x2, ..., xn−1} = {a1} ∪ Sn−1 = S,

such that {a1, x1, x2, ..., xk} ∈ Ψ(G) for every k from
{1, ..., n− 1}, i.e., S has an accessibility chain.

Let us notice that Proposition 2.1 is not valid for
each very well-covered graph; e.g., C4 is very well-
covered, but no S ∈ Ω(C4) has an accessibility chain.

Remark 2.2 If S consists of only isolated vertices
of H, then S ∈ Ψ(H ◦ K1), because, in this case,
S ⊆ pend(G).

Remark 2.3 If S is stable in H and NH(S) 6= ∅,
then S /∈ Ψ(H ◦ K1), because for each a ∈ NH(S),
the set {a} ∪ {u : u ∈ pend(H ◦K1) ∩NH◦K1(S)} is
stable in H ◦K1 and larger than S.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

89

Remark 2.4 If v is an isolated vertex of the graph
H and S ∈ Ψ(H ◦K1), such that S ∩NH◦K1 [v] = ∅,
then S ∪ {v} ∈ Ψ(H ◦K1).

Lemma 2.5 If H has no isolated vertices and S is a
stable set in G = H◦K1, then the following assertions
are equivalent:

(i) S ∈ Ψ(G);
(ii) S = S1 ∪ S2, where ∅ 6= S1 ⊆ pend(G) and

S2 ⊆ V (H), NH(S2) ⊆ NG(S1);
(iii) G[NG[S]] = H ′ ◦K1, for some subgraph H ′ of

H, and S ∈ Ω(H ′ ◦K1).

Proof. Let us denote:

V (H) = {vi : 1 ≤ i ≤ n},
V (G) = V (H) ∪ {ui : 1 ≤ i ≤ n},
E(G) = E(H) ∪ {uivi : 1 ≤ i ≤ n}.

Notice that

α(G) = n, S0 = {ui : 1 ≤ i ≤ n} ∈ Ω(G)

and S0 =pend(G), since H has no isolated vertices.
(i) =⇒ (ii) Assume that S ∈ Ψ(G).
Let S1 = S∩pend(G) and S2 = S∩V (H). Clearly,

S1 6= ∅, because S has an accessibility chain.
If S2 = ∅, then the assertion is clearly true.
Suppose that S2 6= ∅. If NH(S2) 6⊆ NG(S1), then

there must be some vk ∈ NH(S2) such that uk /∈ S,
i.e., uk /∈ S1. Hence, we get that

{uk} ∪ (NG[S]− V (H))

is a stable set in G[NG[S]] larger than S, in contra-
diction with S ∈ Ψ(G).

(ii) =⇒ (iii) Let S3 = {uk : vk ∈ S2}. Then we
infer that

G[NG[S]] = G[S1 ∪ S3] = H ′ ◦K1,

for some subgraph H ′ of H. In addition, we have also
that

|S| = |S1|+ |S2| = |S1|+ |S3| and S1 ∪S3 ∈ Ω(G[S]).

Consequently, we deduce that S ∈ Ω(H ′◦K1) as well.
(iii) =⇒ (i) As S ∈ Ω(G[NG[S]]), it follows, by

definition, that S ∈ Ψ(G).
Now we are able to prove the main result of the

paper.

Theorem 2.6 The family Ψ(H ◦K1) is a greedoid.

Proof. Let G = H ◦K1 and S0 ∈ Ψ(G), i.e., S0 is a
maximum stable set, of size say q, in H0 = G[N [S0]].

According to Lemma 2.5, G[N [S0]] = HS0 ◦K1 for
some subgraph HS0 of H, and by Proposition 2.1, we
infer that there exists a chain

{x1} ⊂ {x1, x2} ⊂ x1, x2, x3} ⊂ ...

... ⊂ {x1, x2, ..., xq−1} ⊂ {x1, x2, ..., xq−1, xq} = S0,

such that all Sk = {x1, x2, ..., xk}, 1 ≤ k ≤ q, are local
maximum stable sets in H0. Since NH0 [Sk] = NG[Sk],
it results that Sk ∈ Ψ(G), for any k ∈ {1, ..., q}. In
other words, Ψ(G) satisfies the accessibility property.

We have to show now that Ψ(G) satisfies also the
exchange property.

Let us consider X, Y ∈ Ψ(G) be such that

|Y | = |X|+ 1 = m + 1.

According to Lemma 2.5(ii), the sets X and Y can
be decomposed as follows:

X = X1 ∪X2 and Y = Y1 ∪ Y2,

where X1, X2, Y1, Y2 satisfy the corresponding con-
ditions, i.e., X1 and Y1 are non-empty subsets of
pend(G), while X2, Y2 are subsets of V (H), such that
NH(X2) ⊆ NG(X1) and NH(Y2) ⊆ NG(Y1).

Since Y is stable, X ∈ Ψ(G), and |X| < |Y |, it
follows that there exists some y ∈ Y −X, such that
y /∈ NG[X]. In particular, it means that X ∪ {y} is
stable. To check whether X ∪ {y} ∈ Ψ(G), we have
to analyze the two following cases (see Figure 7).

w w w w ww w w

w w w

w w1 2
3 4

5

6 7 8

9

(a)

w ww w w w

w w w w

w w1

2 3 4 5

6

(b)

Figure 7: X and Y are local maximum stable
sets that illustrate the cases 1 and 2, respectively.
(a) Y = {1, 2, 3, 4, 6}, X = {6, 7, 8, 9}, having their
upper parts Y1 = {6} ⊂ X1 = {6, 7, 8}; and
(b) Y = {1, 2, 3, 4}, X = {4, 5, 6}, with their upper
parts Y1 = {2, 3, 4} 6⊆ X1 = {4, 5}.

Case 1. Y1 ⊆ X1.
Firstly, we deduce that y ∈ Y2. Lemma 2.5(ii)

implies that NH(y) ⊆ NG(Y1). Since Y1 ⊆ X1,
it follows that NG(Y1) ⊆ NG(X1). Hence, we get
NH(y) ⊆ NG(X1). Therefore, we have that

X1 ⊆ pend(G), X2 ∪ {y} ⊆ V (H),

and

NH(X2 ∪ {y}) = NH(X2) ∪NH({y}) ⊆ NG(X1).

Consequently, according to Lemma 2.5(ii), we may
infer that the stable set X ∪ {y} is, actually, a maxi-
mum local stable set in G.

Case 2. Y1 6⊆ X1.
In this situation, one can choose as y every vertex

z ∈ Y1 −X1, because clearly, both conditions

z ∈ Y −X and X ∪ {z} ∈ Ψ(G)

are satisfied.
Therefore, Ψ(G) satisfies the exchange property as

well.
In conclusion, Ψ(G) is a greedoid on the vertex set

of G.
Let us notice that Ψ(C7) is not a greedoid, because

every S ∈ Ψ(C7) has |S| 6= 1.

Corollary 2.7 Let G be a well-covered graph of girth
greater than five, which has no connected components
isomorphic to C7. Then Ψ(G) is a greedoid on the
vertex set of G.

Proof. Firstly, if G = K1 = ({a}, ∅), then Ψ(K1) =
{{a}} and it is clearly a greedoid.

Secondly, if G is a connected well-covered graph
of girth ≥ 6, isomorphic to neither C7 nor K1, then
Theorem 1.3 implies that G = H ◦K1 for some graph
H. Further, according to Theorem 2.6, Ψ(G) is a
greedoid.

CRPIT Volume 77 - Theory of Computing 2008

90

If G is disconnected, and Gi, i ∈ {1, ..., q}, are its
connected components, then clearly,

Ψ(G) = Ψ(G1) ∪Ψ(G2) ∪ ... ∪Ψ(Gq).

and, to complete the proof, one has to take care of
every connected component Gi, independently.

3 Conclusions

We showed that Ψ(G) is a greedoid on the vertex set
of a well-covered graph G, which is well-covered of
girth ≥ 6 and non isomorphic to C7. Since C5 is well-
covered, while Ψ(C5) is not a greedoid, one can ask to
characterize well-covered graphs of girth ≤ 5, whose
families of local maximum stable sets form greedoids.

Recently, as proved by Levit and Mandrescu
(2007b), each very well-covered graph G of girth ≥ 5
must be of the form G = H ◦K1 for some graph H.
Therefore, Corollary 2.7 is true for very well-covered
graphs of girth ≥ 5.

References

[1] Björner, A. and Ziegler, G. M. (1992), Introduc-
tion to greedoids, in N. White (ed.), Matroid Ap-
plications, 284-357, Cambridge University Press.

[2] Campbell, S. R., Ellingham, M. N. and Royle, G.
F. (1993), A characterization of well-covered cu-
bic graphs, J. Combin. Math. Combin. Comput.
13 pp. 193-212.

[3] Y. Caro, Y., M. N. Ellingham, M. N. and Ramey,
J. E. (1998), Local structure when all maximal
independent sets have equal weight, SIAM Jour-
nal of Discrete Mathematics 11 pp. 644-654.

[4] Chvátal, V. and Slater, P. J. (1993), A note
on well-covered graphs, in ‘Quo Vadis, Graph
Theory?’, Annals of Discrete Math. 55, North-
Holland, Amsterdam, pp. 179-182.

[5] Edmonds, J. (1971), Matroid and the greedy al-
gorithm, Math. Programming 1, pp. 127–113.

[6] Favaron, O. (1982), Very well-covered graphs,
Discrete Mathematics 42 pp. 177-187.

[7] Finbow, A., Hartnell, B. and Nowakowski, R. J.
(1993), A characterization of well-covered graphs
of girth 5 or greater, Journal of Combinatorial
Theory, Ser B 57 pp. 44-68.

[8] Finbow, A., Hartnell, B. and Nowakowski, R. J.
(1994), A characterization of well-covered graphs
that contain neither 4- nor 5-cycles, Journal of
Graph Theory 18 pp. 713-721.

[9] Hartnell, B., Plummer, M. D. (1996), On 4-
connected claw-free well-covered graphs, Dis-
crete Applied Mathematics 64 pp. 57-65.

[10] Hedetniemi, S. T. and Laskar, R. (1984), Con-
nected domination in graphs, in Graph Theory
and Combinatorics, Eds. B. Bollobas, Academic
Press, London, pp. 209-218.

[11] Korte, B., Lovász, L. and Schrader, R. (1991),
Greedoids, Springer-Verlag, Berlin.

[12] Levit, V. E. and Mandrescu, E. (1998), Well-
covered and König-Egerváry graphs, Congressus
Numerantium 130 pp. 209-218.

[13] Levit, V. E. and Mandrescu, E. (1999), Well-
covered trees, Congressus Numerantium 139 pp.
101-112.

[14] Levit, V. E. and Mandrescu, E. (2001), Uni-
cycle bipartite graphs with only uniquely re-
stricted maximum matchings, in C.S. Calude, M.
J. Dinneen and S. Sburlan eds. ‘Proceedings of
the Third International Conference on Combina-
torics, Computability and Logic, (DMTCS’1)’,
Springer, pp. 151-158.

[15] Levit, V. E. and Mandrescu, E. (2002), A new
greedoid: the family of local maximum stable
sets of a forest, Discrete Applied Mathematics
124 pp. 91-101.

[16] Levit, V. E. and Mandrescu, E. (2003), Local
maximum stable sets in bipartite graphs with
uniquely restricted maximum matchings, Dis-
crete Applied Mathematics 132 pp. 163-174.

[17] Levit, V. E. and Mandrescu, E. (2005), Unicycle
graphs and uniquely restricted maximum match-
ings, Electronic Notes in Discrete Mathematics,
22 pp. 261265.

[18] Levit, V. E. and Mandrescu, E. (2007a),
Triangle-free graphs with uniquely restricted
maximum matchings and their corresponding
greedoids, Discrete Applied Mathematics,
doi: 10.1016/j.dam.2007.05.039 (in press).

[19] Levit, V. E. and Mandrescu, E. (2007b), Some
Structural Properties of Very Well-Covered
Graphs, Congressus Numerantium (accepted).

[20] Nemhauser, G. L. and Trotter, E., Jr. (1975),
Vertex packings: structural properties and algo-
rithms, Mathematical Programming 8 pp. 232-
248.

[21] Plummer, M. D. (1970), Some covering concepts
in graphs, Journal of Combinatorial Theory 8
pp. 91-98.

[22] Plummer, M. D. (1993), Well-covered graphs : a
survey, Quaestiones Mathematicae 16 pp. 253-
287.

[23] E. Prisner, E., Topp, J. and P. D. Vestergaard, P.
D. (1996), Well-covered simplicial, chordal, and
circular arc graphs, Journal of Graph Theory 21
pp. 113-119.

[24] Ravindra, G. (1977), Well-covered graphs, J.
Combin. Inform. System Sci. 2 pp. 20-21.

[25] Sankaranarayana, R., Stewart, L. K. (1992),
Complexity results for well-covered graphs, Net-
works 22 (3) pp. 247-262.

[26] D. Tankus, D. and Tarsi, M. (1996), Well-
covered claw-free graphs, Journal of Combina-
torial Theory Ser. B 66 pp. 293-302.

[27] D. Tankus, D. and Tarsi, M. (1997), The struc-
ture of well-covered graphs and the complexity
of their recognition problems, Journal of Combi-
natorial Theory Ser. B 69 pp. 230-233.

[28] Topp, J. and Volkmann, L. (1990), Well-covered
and well-dominated block graphs and unicyclic
graphs, Mathematica Panonica 1/2 pp. 55-66.

[29] Whitney, H. (1935), On the abstract properties
of linear independence, Amer. J. Math. 57 pp.
509-533.

[30] Zverovich, I. E. (2004), Weighted well-covered
graphs and complexity questions, Moscow Math-
ematical Journal 4 pp. 523-528.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

91

CRPIT Volume 77 - Theory of Computing 2008

92

On the non-existence of even degree graphs with diameter 2 and
defect 2

Mirka Miller1,2 Minh H. Nguyen3,1 Guillermo Pineda-Villavicencio1,4

1 School of Information Technology and Mathematical Sciences
University of Ballarat

P.O.Box 663, Vic 3353, Australia
Emails: m.miller@ballarat.edu.au, gpinedavillavicencio@students.ballarat.edu.au

2 Department of Mathematics
University of West Bohemia

Pilsen, Czech Republic
3 Hutchison Managed Service

Ericsson Australia
112-118 Talavera Road, North Ryde, NSW 2113, Australia

Email: minh.n.nguyen@ericsson.com
4 Department of Computer Science

University of Oriente
Santiago de Cuba, Cuba

Abstract

Using eigenvalue analysis, it was shown by Erdös et al.
that, with the exception of C4, there are no graphs
of diameter 2, maximum degree d and d2 vertices.
In this paper, we show that graphs of diameter 2,
maximum degree d and d2-1 vertices do not exist for
most values of d, when d is even, and we conjecture
that they do not exist for any even d greater than 4.

Keywords: Moore graphs; diameter 2; de-
gree/diameter problem

1 Introduction

There are many famous and difficult graph-
theoretical problems that arose over the past four
decades from the design of interconnection networks
(such as local area networks, parallel computers,
switching system architecture in VLSI technology,
and many others). Perhaps one of the most promi-
nent problems is the degree/diameter problem which
is to determine, for each d and k, the largest order
nd,k of a graph of maximum degree d and diameter
at most k. It is easy to show that nd,k ≤Md,k where
Md,k is the Moore bound, given by

nd,k ≤Md,k = 1 + d + d(d− 1) + . . . + d(d− 1)k−1

For a survey of the degree/diameter problem, see
Miller et al. (2005).

In this paper we concentrate on the case when the
diameter is equal to 2. Since a graph of diameter 2
and maximum degree d may have at most d2 + 1 ver-
tices, it was asked in (Erdös et al. 1980): Given non-
negative integer numbers d and ∆ (defect), is there
a graph of diameter 2 and maximum degree d with
d2 + 1−∆ vertices? It was proved in (Hoffman et al.

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Fourteenth Computing: The Australasian
Theory Symposium (CATS2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 77, James Harland and Prabhu Manyem, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

1960) that if ∆ = 0 then there are unique graphs cor-
responding to d = 2, 3, 7 and possibly d = 57. The
case ∆ = 1 was solved by Erdös et al. (Erdös et al.
1980). In this paper we consider the case ∆ = 2 and
prove that graphs of defect 2 do not exist for most
values of degree d in the case when d is even.

We refer to a graph of maximum degree d, diame-
ter k ≥ 2 and order Md,k −∆ (∆ ≥ 1) as a (d, k, ∆)-
graph. Let G be a (d, k, ∆)-graph.

Definition 1 Let u be a vertex in G. A vertex v in
G is called a repeat of u with multiplicity mv(u) (1 ≤
mv(u) ≤ ∆) if there are exactly mv(u) + 1 different
paths of lengths at most k from u to v.

It is immediate that

Observation 1 Vertex u is a repeat of v with multi-
plicity mu(v) if and only if v is a repeat of u with the
same multiplicity.

A repeat with multiplicity 1 will be called a single
repeat, a repeat with multiplicity 2 will be called a
double repeat, a repeat with multiplicity ∆ will be
called a maximal repeat.

We denote by Rs(u) the set of all repeats of a
vertex u in G. Taking into account the multiplicities
of repeats, we denote by Rm(u) the multiset of all the
repeats of a vertex u in G, containing each repeat v
of u exactly mv(u) times.

Let u be a vertex in G. We denote by N(u) the set
of all neighbours of u. If A is a multiset of vertices of
G, then N(A) denotes the multiset of all the neigh-
bours of the vertices of A. We use Rm(A) to denote
the multiset of all the repeats of all vertices in A.

Proposition 1 If G is regular then, for all u ∈
V (G),

|Rm(u)| =
∑

v∈Rs(u)

mv(u) = ∆.

�

Definition 2 A subset S of V (G) is called a closed
repeat set if Rm(S) = S. A closed repeat set is min-
imal if none of its proper subsets is a closed repeat
set.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

93

Definition 3 A repeat subgraph HS of a closed re-
peat set S of G is a multigraph whose vertex set
V (HS) = S and the number of parallel edges between
a vertex u and any of its repeats, say v ∈ Rm(u),
equals the multiplicity mv(u).

We observe that

Observation 2 If ∆ < 1 + (d− 1) + . . . + (d− 1)k−1

then G is regular.

It is also true that

Observation 3 If G is regular then the repeat graph
HG of G is ∆-regular.

Note that instead of writing “a vertex x is adjacent
to a vertex y” we write x ∼ y, and if x is not adjacent
to y then we write x � y. Unless explicitly shown
where necessary, by ui and uj (i 6= j) we shall mean
two distinct vertices.

2 Structural properties of (d, 2, 2)-graphs

In this section we consider graphs of diameter 2 with
defect 2. Such graphs do not exist for d ≤ 2. Let G
be a (d, 2, 2)-graph for d ≥ 3. From Observation 2,
we have that

Observation 4 Every (d, 2, 2)-graph for d ≥ 3 is
regular.

Let us consider repeat configurations in (d, 2, 2)-
graphs. Let u be a vertex of a (d, 2, 2)-graph. Then
there are two possibilities:

• u has two single repeats, ri(u), i = 1, 2.

• u has one double (maximal) repeat, r(u) =
r1(u) = r2(u), with multiplicity 2.

With respect to repeats in G, there are five possi-
ble repeat configurations, as depicted in Fig. 1.

v. Type 2b

r(u) r1(u) r2(u)

u

u u

r2(u)r1(u)

r1(u) r2(u)

u

r2(u)r1(u)

u

i. Type 0 ii. Type 1 iii. Type 2c

iv. Type 2a

Figure 1: Possible repeat configurations for vertex u
in a (d, 2, 2)-graph.

We will denote the set of vertices of each type by
Type 0, Type 1, Type 2a, Type 2b and Type 2c, as
shown in Fig. 1. We denote by n0, n1, n2a, n2b, n2c
the number of vertices of the corresponding repeat
types.

Fig. 2 shows the only known (d, 2, 2)-graph (for
even d) whose uniqueness is shown in (Broersma et al.
1988).

We observe the following

Observation 5 n0 + n1 + n2a + n2b + n2c = d2 − 1.

Figure 2: The only known (d, 2, 2)-graph for even d.

For the purpose of this paper, we shall consider
each pair of parallel edges in HG as a cycle of length
2.

Observation 6 HG is the union of cycles of lengths
≥ 2, each cycle a minimal closed repeat set of G.

From now on, each cycle in HG will be called a
repeat cycle.

The following structural properties of G were
proved in (Nguyen et al. 2007).

Theorem 1 (Nguyen et al. 2007) In a (d, 2, 2)-graph
G, if d is even then n0 = 3 and n2b = d2 − 4.

Corollary 1 (Nguyen et al. 2007) n2b ≡ 0 (mod 2).

Let the vertices u0, u1, u2 form a triangle in G,
denoted by T , and let Υ2b be the subset of all vertices
of type 2b in N(u0)

⋃
N(u1)

⋃
N(u2). Then Υ2b is a

minimal closed repeat set. We shall call Υ2b the outer
repeat cycle of T in HG. Note that Υ2b is the set of
vertices at distance 1 from T , and Υ2b

⋂
T = ∅. The

number of vertices of Υ2b is 3(d− 2).
Fig. 3 illustrates a labeled partial structure of G,

in the case when d is even, which shows the cycle
u0u1u2 and its outer repeat cycle. Since Υ2b contains
all vertices of type 2b and Υ2b is a minimal closed
repeat set, by Corollary 1, there exists in HG another
cycle Υ′2b, also of the same size as Υ2b, that is, 3(d−2).
Note that, in Fig. 3, u3 ∼ u3d−4 and u3d−3 ∼ u9d−16.
This is because u3 and u9d−16 belong to Υ2b whereas
u3d−3 and u3d−4 belong to Υ′2b.

u3d−3

u1 u2

u3

u9d−16

u3d−4

u4

u3d−2

d− 4d− 4

u0

d− 4

u3d−5

u9d−17

Figure 3: An illustration of the neighbourhood of T
in G for even d.

Lemma 1 (Nguyen et al. 2007) Let T be a triangle
in G and let Υ2b be the outer repeat cycle of T in
HG. Let Ct be any repeat cycle in HG of length t ≥ 4
such that there exists in G an edge between a vertex
on Υ2b and a vertex on Ct. Then either t = 1

3 |Υ2b|
or t ≡ 0 (mod |Υ2b|).

CRPIT Volume 77 - Theory of Computing 2008

94

3 On the non-existence of (d, 2, 2)-graphs for
even d

In this section, we shall prove that for most values of
even d, (d, 2, 2)-graphs do not exist.

From Theorem 1, it immediately follows that

Corollary 2 G is not vertex-transitive for even de-
gree d.

Lemma 2 For even d ≥ 6, every cycle, other than
the triangle in HG, has length 3k(d − 2), for some
k ≥ 1.

Proof. As demonstrated in Section 2, HG contains
one cycle of length 3 and at least two cycles of length
3(d − 2). Let u1u2u3 be the triangle T of G and let
v1 . . . v3(d−2) be the outer repeat cycle Υ2b of T in
HG such that the repeats of vj (1 ≤ j ≤ 3(d− 2)) are
v(j−1)(mod (3(d−2))) and v(j+1)(mod (3(d−2))). Without
loss of generality, let us suppose that u1 ∼ v1 and
u2 ∼ v2 in G.

Let the ai, i = 1, . . . , b, be the lengths of the cycles
in HG and let a1 = 3, a2 = a2 = 3(d− 2) correspond
to T , Υ2b and Υ′2b, respectively. Thus, f =

∑b
i=4 ai =

(d− 2)(d− 4).
Let Caj be an arbitrary cycle in HG (j 6= 1, 2, 3).

Then, by Lemma 1, either aj = d − 2, or aj ≡
0 (mod 3(d − 2)). Suppose that aj = d − 2. Denote
by w1, . . . , wd−2 the vertices of Caj

such that the re-
peats of wk (1 ≤ k ≤ d − 2) are w(k−1) (mod (d−2))

and w(k+1) (mod (d−2)).
We know that the vertices of Caj must reach the

vertices of T through the vertices of Υ2b. Without
loss of generality, suppose that w1 ∼ v1 and w2 ∼ v2.
However, since (d − 2) is not divisible by 3 when d
is even, by the Neighbourhood Theorem, u1 and w1
would then have at least three common neighbours,
namely v1, vd−1 and v2d−3. This is clearly impossible.

Therefore, each ai (4 ≤ i ≤ b) must be a multiple
of 3(d− 2). �

Theorem 2 For even d ≥ 4, if d 6≡ 1 (mod 3) then
there is no (d, 2, 2)-graph.

Proof. Let b be the number of cycles in HG. Let
ai, for i = 1 . . . b, be the lengths of these cycles, de-
noting by a1 the triangle. Then as

∑b
i=1 ai = d2 − 1,

by Lemma 2, we have that
∑b

i=2 ai = 3(d − 2)k =
d2−4 = (d−2)(d+2). Therefore, d+2 ≡ 0 (mod 3).
�

By counting the total number N5 of 5-cycles in G,
we derive some further necessary conditions for the
existence of G.

Theorem 3 For even d ≥ 4, if N5 =
(d−2)(d4+2d2−2d−25)

10 is not an integer then there
is no (d, 2, 2)-graph.

The results of Theorems 2 and 3 improve the upper
bound for the order of (d, 2, 2)-graphs so that nd,2 ≤
d2− 3 for infinitely many even degrees d. For d ≥ 10,
the first 50 values of d for which G might still exist
are shown in Table 1.

We conclude this paper by posing the following

Conjecture 1 For even d ≥ 6, (d, 2, 2)-graphs do
not exist.

10 22 34 40 52 64 70 82 94 100
112 124 130 142 154 160 172 184 190 202
214 220 232 244 250 262 274 280 292 304
310 322 334 340 352 364 370 382 394 400
412 424 430 442 454 460 472 484 490 502

Table 1: The first 50 values of d for which a (d, 2, 2)-
graph might still exist for even d.

4 Acknowledgement

We greatfully acknowledge support from the ARC
grant DP0450294.

References

Broersma, H.J. & Jagers, A.A. (1988), The unique 4-
regular graphs on 14 and 15 vertices with diameter
2, Ars Combinatoria 25C, 55–62.

Erdös, P., Fajtlowicz, S. & Hoffman, A. J. (1980),
Maximum degree in graphs of diameter 2, Networks
10, 87–90.

Hoffman, A.J. & Singleton, R.R. (1960), On Moore
Graphs with diameters 2 and 3, IBM J. Res. Dev.
64, 15–21.

Miller, M. & Širáň, J. (2005), Moore graphs and be-
yond: A survey of the degree/diameter problem,
Electronic Journal of Combinatoric DS14, 1–6.

Nguyen, M.H. & Miller, M. (2007), Structural proper-
ties of graphs of diameter 2 with defect 2, preprint.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

95

CRPIT Volume 77 - Theory of Computing 2008

96

Graph Classes and the Complexity of the Graph Orientation

Minimizing the Maximum Weighted Outdegree∗

Yuichi Asahiro1 Eiji Miyano2, † Hirotaka Ono3

1 Department of Social Information Systems, Kyushu Sangyo University,
2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.

Email: asahiro@is.kyusan-u.ac.jp
2 Department of Systems Innovation and Informatics, Kyushu Institute of Technology,

680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
Email: miyano@ces.kyutech.ac.jp

3 Department of Computer Science and Communication Engineering, Kyushu University,
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Email: ono@csce.kyushu-u.ac.jp

Abstract

Given an undirected graph with edge weights, we are
asked to find an orientation, i.e., an assignment of a
direction to each edge, so as to minimize the weighted
maximum outdegree in the resulted directed graph.
The problem is called MMO, and is a restricted vari-
ant of the well-known minimum makespan problem.
As previous studies, it is shown that MMO is in P
for trees, weak NP-hard for planar bipartite graphs,
and strong NP-hard for general graphs. There are
still gaps between those graph classes. The objective
of this paper is to show tight thresholds of complex-
ity: We show that MMO is (i) in P for cactuses, (ii)
weakly NP-hard for outerplanar graphs, and also (iii)
strongly NP-hard for P4-bipartite graphs. The latter
two are minimal superclasses of the former. Also, we
show the NP-hardness for the other related graph
classes, diamond-free, house-free, series-parallel, bi-
partite and planar.

Keywords: graph orientation, min-max optimization,
NP-hardness, cactus, (outer)planar, (P4-)bipartite,
series-parallel, house-free, diamond-free.

1 Introduction

1.1 Problem and Summary of Results

Let G = (V, E, w) be an undirected and edge weighted
graph, where V , E and w denote the set of nodes,
the set of edges and a positive integral weight func-
tion w : E → Z

+, respectively. An orientation Λ of
the graph G is a set of an assignment of a direction
to each edge {u, v} ∈ E, i.e., either (u, v) or (v, u)
is contained in Λ. The weighted outdegree of u is
∑

{u,v}∈E:

(u,v)∈Λ

w({u, v}). In this paper, we consider the

problem of finding an orientation such that the max-
imum weighted outdegree is minimum in the resulted

∗
This work is partially supported by Grant-in-Aid for Scientific

Research on Priority Areas 16092222 and 16092223, and by Grant-

in-Aid for Young Scientists (B) 17700022, 18700014 and 18700015.
†
Currently visiting Dept of Computer Sci and Eng, University

of Washington, Seattle, WA 98195-2350, USA.

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Fourteenth Computing: The Australasian
Theory Symposium (CATS2008), Wollongong, NSW, Aus-
tralia. Conferences in Research and Practice in Information
Technology, Vol. 77. James Harland and Prabhu Manyem, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

(a)

1

1 2

2

3 1

2

3

1

(b)

1

1 2

2

3 1

2

3

1

Figure 1: Example of MMO: (a) An edge weighted
graph, and (b) an orientation.

directed graph. We call this problem Minimum Maxi-
mum Outdegree (MMO). See Fig. 1 for an example of
an edge weighted graph and its orientation in which
the maximum weighted outdegree is 3 (optimal).

MMO has several applications. For example, such
orientations can be used in efficient dynamic data
structures for graphs that support fast vertex adja-
cency queries under a series of edge operations (Bro-
dal & Fagerberg 1999). Also, MMO can be consid-
ered a variation of art gallery problems (e.g., (Chv’atal
1975, O’Rourke 1987)) and the minimum makespan
problem (e.g., (Lenstra, Shmoys & Tardos 1990)). In
particular, we will discuss the minimum makespan
problem in the next subsection.

MMO can be solved in polynomial time if all the
edge weights are identical (Asahiro, Miyano, Ono, &
Zenmyo 2007, Kowalik 2006, Venkateswaran 2004),
but it is NP-hard in general (Asahiro, Miyano, Ono,
& Zenmyo 2007, Asahiro, Jansson, Miyano, Ono, &
Zenmyo 2007). Even with non-identical weights, the
problem can be also solved in polynomial time if the
input graph is limited to a tree (Asahiro, Miyano,
Ono, & Zenmyo 2007), while for planar bipartite
graphs it is still (weakly) NP-hard.

As many other studies on the computational com-
plexity, it is valuable to consider the frontier between
subproblems we know to be solvable in polynomial
time and those we know to be NP-hard. In this pa-
per, we focus on the structure of the input graphs
related to the NP-hardness. Fig. 2 shows the current
state of knowledge on the complexity of MMO, includ-
ing the results in this paper. The figure represents
that for example, cactus is a superclass of tree at the
bottom. As another example, P4-bipartite is a super-
class of bipartite and cactus, but bipartite and cactus
are not comparable, and so on. All the reductions
to show the NP-hardness are done by simple graphs
except outerplanar graphs, which we will explain in
a later section. Namely, the weak NP-hardness of
series-parallel graphs is proved with simple graphs,

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

97

general graphs: S(1)

planar: S(*)
 [previously W(2)]

series-parallel: W(*)

(multi) outerplanar: W(*)

(simple) outerplanar: OPEN

tree: P(2)

cactus: P(*)

diamond-free: S(*)house-free: S(*)

bipartite: S(*)
 [previously W(2)]

-bipartite: S(*)P4

Figure 2: State of knowledge on the complexity of MMO. (W: Weakly NP-hard, S: Strongly NP-hard, (1):
The results in (Asahiro, Jansson, Miyano, Ono, & Zenmyo 2007), (2): The results in (Asahiro, Miyano, Ono,
& Zenmyo 2007), (*): The results in this paper).

but that of outerplanar graphs is proved with multi
graphs, and so the complexity for simple outerpla-
nar graphs is still open. Additionally, we propose a
pseudo-polynomial time algorithm for series-parallel
graphs, which shows the tightness of our weak NP-
hardness result in a sense; MMO for simple outerpla-
nar graphs is either in P or weakly NP-hard.

1.2 Related Work

As mentioned before, another aspect of the problem
MMO is scheduling; MMO is regarded as a special
case of minimum makespan or scheduling on unrelated
parallel machines (R||Cmax in the now-standard nota-
tion): Given a set J of jobs, a set M of machines, and
the time pij taken to process job j ∈ J on machine
i ∈ M , its goal is to find a job assignment so as to
minimize the makespan, i.e., the maximum process-
ing time of any machine. For an undirected graph,
let us regard the nodes as the machines and the edges
as the jobs. From the viewpoint of scheduling, MMO
has the following two restrictions: (i) Each job must
be assigned to exactly one of pre-determined two ma-
chines, and (ii) the processing time of each job does
not depend on the machines.

In (Lenstra, Shmoys & Tardos 1990), a polyno-
mial time 2-approximation algorithm for the general
R||Cmax and its 3/2 inapproximability are shown.
Still there has been gap between these upper and
lower bounds; it is one of the well-known open prob-
lems(Schuurman & Woeginger 1999). To tackle this
kind of situation, it is a natural way to restrict the
input as a reasonable subclass: In (Gairing, Lücking,
Mavronicolas, & Monien 2004), a polynomial time
2 − 1/k-approximation algorithm is proposed, un-
der the assumption that the processing times of jobs
are integers and k is the maximum among them.
Also, (Asahiro, Jansson, Miyano, Ono, & Zenmyo
2007) considers a further restricted problem in which
the processing time of each job is either 1 or k,
and then proposes a polynomial time 2 − 2/(k + 1)-
approximation algorithm for k ≥ 3, and shows that
3/2 inapproximability still holds for this restricted
case even with k = 2. In brief summary, the approxi-
mation ratios of those algorithms are slightly smaller
than two, and the same (3/2) lower bound is shown
for the restricted case. However, any tight bound be-
tween 3/2 and 2 has not been found for about two
decades. The contribution of this paper, from the
viewpoint of scheduling, is to make clear what kind
of structure of the instances is really difficult to solve.

2 Preliminaries

2.1 Definitions

Let G = (V, E, w) be an edge weighted undirected
graph, where V and E are node and edge sets, re-
spectively, and w is a positive integral weight func-
tion w : E → Z

+. V (G) and E(G) also denote the
node set and edge set of the graph G, respectively.
We denote the undirected edge whose endpoints are
u and v where u < v in lexicographic order by {u, v},
and denote the directed edge (or arc) from u toward v
by (u, v). An orientation Λ of the graph G is a set of
an assignment of a direction to each edge {u, v} ∈ E,
i.e., Λ contains exactly either one of (u, v) and (v, u).
Also Λ({u, v}) denotes the direction (u, v) or (v, u) of
an edge {u, v} in Λ.

For a node v, dG(v) denotes the degree of v in G,
i.e., dG(v) = |{{v, u} | {v, u} ∈ E}|. The weighted
outdegree (or, simply outdegree) d+

G(Λ, v) of a node v
under an orientation Λ of the graph G is defined as
the total weight of outgoing arcs of v, i.e.,

d+

G(Λ, v) =
∑

{u,v}∈E: (v,u)∈Λ

w({u, v}).

For simplicity we also use d(v) and d+(Λ, v) instead of
dG(v) and d+

G(Λ, v) if the graph G we are discussing
is clear. Then the cost of an orientation Λ of a graph
G is defined to be ΔΛ(G) = maxv∈V {d+

G(Λ, v)}.
A path P of length l is denoted by a sequence of

nodes such as P = 〈v0, v1, v2, . . . , vl〉. Also a cycle
C of length l is denoted by C = 〈v1, v2, . . . , vl, v1〉.
In this paper, a cycle always refers a simple cycle,
namely, for the cycle C, vi �= vj for any i and j. A
node in a cycle is a gate if it is adjacent to any node
that does not belong to the cycle, so that the degree
of the gate is at least three.

A graph is a cactus if every edge is part of at most
one cycle. The definition of the series-parallel graphs
is little bit complicated (p.100 of (Gross & Yellen
2004)):

Definition 1 A series-parallel graph with distin-
guished terminals l and r is denoted (G, l, r) and is
defined recursively as follows:

• The graph consisting of a single edge {v1, v2} is
a series-parallel graph (G, l, r) with l = v1 and
r = v2.

• A series operation (G1, l1, r1)	s(G2, l2, r2) forms
a series-parallel graph by identifying r1 with l2.
The terminals of the new graph are l1 and r2.

CRPIT Volume 77 - Theory of Computing 2008

98

• A parallel operation (G1, l1, r1) 	p (G2, l2, r2)
forms a series-parallel graph by identifying l1
with l2 and r1 with r2. The terminals of the new
graph are l1 and r1.

• A jackknife operation (G1, l1, r1) 	j (G2, l2, r2)
forms a series-parallel graph by identifying r1

with l2; the new terminals are l1 and r1.

The definitions of graph classes except cactus and
series-parallel in this paper, s.t., house-free, diamond-
free and so on, can be found in (Brandstädt, BangLe,
& Spinrad 1987, Gross & Yellen 2004). We would
like to note here that tree, bipartite, cactus, house-
free, and diamond-free are obviously recognized in
polynomial time (See also, e.g., (Kloks, Kratsch, &
Müller 2000)). Also, there are efficient recognition
algorithms for outerplanar, series-parallel, and pla-
nar that run in linear time (Mitchell 1979, Valdes,
Tarjan, & Lawler 1982, Hopcroft, & Tarjan 1974).
However, it is NP-hard to recognize P4-bipartite
graphs (Hoàng, & Le 2001).

2.2 Problem S-MMO and Basic Properties

The problem that we consider in this paper is the
minimization of the maximum outdegree of a given
undirected graph with edge weights. We formally de-
fine our problem as follows.

Problem: S-Minimum Maximum Outdegree
(S-MMO)

Input: An undirected graph G = (V, E, w), where
w is an edge weight function w : E → S.

Output: An orientation Λ that minimizes ΔΛ(G).

If we have no restriction on the weight function
w (just it should be a positive integral function), our
problem is Z

+-MMO. In this paper, we mainly con-
sider the problem for the case of S = {1, 2, . . . , k}.

Let Δ∗(G) denote the cost of an optimal ori-
entation OPTG of the graph G, i.e., Δ∗(G) =
ΔOPTG (G). We say a graph orientation algorithm is
a σ-approximation algorithm if ΔALG(G)/Δ∗(G) ≤ σ
holds for any graph G, where ALG is an orientation
obtained by the algorithm for G. Every orientation
has the following trivial lower bound caused by the
maximum weight wmax of edges (Asahiro, Miyano,
Ono, & Zenmyo 2007): For a graph G and any orien-
tation Λ, ΔΛ(G) ≥ wmax, so that Δ∗(G) ≥ wmax.

The following property of a cactus is very simple
but plays a key role to construct the polynomial time
algorithm in the next section.

Proposition 2 In a cactus G in which dG(v) ≥ 2
for all v ∈ V , there always exists a cycle with at most
one gate.

Proof: We prove this proposition by contradiction.
Suppose that all cycles have at least two gates. Let
C be a cycle of length l, C = 〈v1, v2, . . . , vl, v1〉.

Without loss of generality, assume that v1 is a
gate, i.e., there exists a node x2 �∈ V (C) adjacent
to v1. Since d(x2) ≥ 2 by the assumption, there
also exists a node x3 adjacent to x2. Similarly, for
a node xi reachable from v1, there exists a node xi+1

adjacent to xi. Consider a path P starting from
v1, P = 〈v1, x2, . . . , xp〉 for p ≥ 2. If xj = vh for
some 2 ≤ j ≤ p and 2 ≤ h ≤ l, there exists a cy-
cle C′ = 〈v1, x2, · · · , xj(= vh), vh−1, . . . , v2, v1〉. The

C

C’
v1

v2v3

x2 x3 xj-1

xh

xi-1
C’’

(a)

(b)

g

Figure 3: Proof of Proposition 2.

cycles C and C′ share the edge {v1, v2}, which con-
tradicts that G is a cactus. (See Fig. 3 (a) in which
h = 3)

Hence, we assume that such a node xj does not ex-
ist. It turns out to happen xi = v1 or xi = xh for some
i and 2 ≤ h ≤ i − 1, i.e., C′′

1
= 〈v1, x2, . . . , xi−1, xi(=

v1)〉 or C′′
2

= 〈xh, xh+1, . . . , xi−1, xi(= xh)〉, respec-
tively, is a cycle with the gate xi. Since we assumed
that every cycle has at least two gates, there must ex-
ist another gate g �= v1 in C′′

1
, or g ∈ {xh+1, . . . , xi−1}

in C′′
2
, respectively. We can replace C by C′′

1
or C′′

2

and v1 by g in the above discussion and then con-
tinue. However, since the number of the nodes in G is
bounded, eventually a contradiction occurs, namely,
the cycle C′′

1
or C′′

2
has only one gate or G is not a

cactus. (See Fig. 3 (b)) �

3 Polynomial Time Algorithm for Cactuses

In this section, we present a polynomial time al-
gorithm for cactuses. First we introduce a re-
laxed version (S, T)-Minimum Maximum Outde-
gree ((S, T)-MMO) of the original problem S-MMO
and show its several propositions in Sec. 3.1. In
Sec. 3.2, we describe an algorithm to solve the de-
cision version (S, T)-MMO(K) of (S, T)-MMO. Fi-
nally, the proposed polynomial time algorithm to
solve (S, T)-MMO will be given in Sec. 3.3.

3.1 Relaxed Problem (S, T)-MMO

We relax S-MMO to a problem whose input graph
has node weights as well as edge weights. Before de-
scribing the problem formally, we define some nota-
tions analogously to those for edge weighted graphs
in Sec. 2.1.

Let G = (V, E, f, w) be a node and edge weighted
undirected graph, where V and E are node and edge
sets, respectively, and f and w are positive integral
weight functions f : V → Z

+ and w : E → Z
+. The

weighted outdegree (or, simply outdegree) d+

G(Λ, v) of
a node v under an orientation Λ of the graph G is
modified to the weight of v itself plus the total weight
of outgoing arcs of v, i.e.,

d+

G(Λ, v) = f(v) +
∑

{u,v}∈E: (v,u)∈Λ

w({u, v}).

Definitions of the others, e.g.,, degree, orientation,
cost of an orientation, etc., are the same as before.
Then the new problem is defined as follows.

Problem: (S, T)-Minimum Maximum Outde-
gree ((S, T)-MMO)

Input: An undirected graph G = (V, E, f, w),
where f is a node weight function f : V → T ,
and w is an edge weight function w : E → S.

Output: An orientation Λ that minimizes ΔΛ(G).

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

99

Theorem 3 Consider a node and edge weighted
graph G = (V, E, f, w), an edge weighted graph G0 =
(V, E, w), and a constant c. If f(v) = c for all v ∈ V ,
then ΔΛ(G) = ΔΛ(G0) + c for any orientation Λ. �

From the above theorem, we obtain the follow-
ing corollary in a straightforward way, and so NP-
hardness results for S-MMO (by the previous stud-
ies and in this paper as well) are directly applied to
(S, T)-MMO.

Corollary 4 For a node and edge weighted graph
G = (V, E, f, w), (S, T)-MMO is equivalent to S-
MMO, if f(v) = 0 for all v ∈ V . �

For simplicity, we denote (S, c)-MMO to repre-
sent (S, {c})-MMO, that is f(v) = c for all nodes.
For a pair of graphs G = (V, E, f, w) and G′ =
(V ′, E′, f ′, w′), G′ is a subgraph of G if V ′ ⊆ V ,
E′ ⊆ E, and w′(e) = w(e) for all e ∈ E′. A sub-
graph G′ of G is called a proper subgraph of G if an
additional condition f ′(v) = f(v) for all v ∈ V ′ is
satisfied. Note that in this paper we will only see
subgraphs satisfying that f ′(v) ≥ f(v) for all nodes.
Here we extend the definition of the orientation: An
orientation Λ of a graph G may contain (u, v) or (v, u)
for {u, v} �∈ E(G). This extension does not affect the
value of (out)degrees by definition. When we have to
deal with w({u, v}) for {u, v} �∈ E(G), we just con-
sider w({u, v}) = 0.

In the following, we state four propositions 5, 6,
7, and 8. These propositions are utilized in order to
develop the polynomial time algorithms for cactuses.
Proposition 5 shows a relationship between optimal
costs for two graphs only node weight functions of
which are different. Propositions 6 and 7 are on the
optimal costs for proper subgraphs of a graph. Then
in Proposition 8, we take a look at the optimal costs
for non-proper subgraphs. Since they are not difficult
to show, we omit the proofs for these propositions.

Proposition 5 Consider two graphs G =
(V, E, f, w) and G′ = (V, E, f ′, w) such that
f(v) ≤ f ′(v) for all v ∈ V . Then Δ∗(G) ≤ Δ∗(G′)
holds. �

Proposition 6 For a graph G, its proper subgraph
G′ = G−e for e ∈ E(G), and a pair of orientations Λ
of G and Λ′ of G′, s.t., Λ′ = Λ\{Λ(e)}, the following
three conditions are satisfied:
(i) ΔΛ(G′) = ΔΛ′(G′),

(ii) ΔΛ(G) ≥ ΔΛ′(G′), and

(iii) Δ∗(G) ≥ Δ∗(G′). �

Proposition 7 For a graph G, its proper subgraph
G′ = G−v for v ∈ V (G), and a pair of orientations Λ
of G and Λ′ of G′, s.t., Λ′ = Λ \ {Λ({v, u}) | {v, u} ∈
E(G)}, the following three conditions are satisfied:

(i) ΔΛ(G′) = ΔΛ′(G′),

(ii) ΔΛ(G) ≥ ΔΛ′(G′), and

(iii) Δ∗(G) ≥ Δ∗(G′). �

Proposition 8 Consider a graph G = (V, E, f, w)
and its edge e = {u, v}, s.t., f(u) + w(e) > K
for a constant K. If Δ∗(G) ≤ K, then (v, u) ∈
OPTG and also Δ∗(G) = Δ∗(G′) for the subgraph
G′ = (V, E′, f ′, w′), where E′ = E \ {e}, f ′(v) =
f(v) + w(e), f ′(x) = f(x) for all x ∈ V ′ \ {v}, and
w′(e) = w(e) for all e ∈ E′. �

3.2 Decision Problem (S, T)-MMO(K)

In this section, we consider a decision version (S, T)-
MMO(K) of (S, T)-MMO and present a polynomial
time algorithm to solve it, which is the main part of
the algorithm to solve {1, . . . , k}-MMO for cactuses.

Problem: (S, T)-MMO(K)

Input: An undirected graph G = (V, E, f, w),
where f is a node weight function f : V → T ,
and w is an edge weight function w : E → S.

Question: Is there an orientation Λ such that
ΔΛ(G) ≤ K?

Remind that any orientation has cost at least the
maximum edge weight wmax, so it is assumed to be
K ≥ wmax. Again, (S, 0)-MMO(K) is considered as
a decision version of S-MMO.

We first introduce three procedures OutAll,
FixEdge, and OrientCycle, which are used in the
proposed algorithm AlgCactus. The first procedure
OutAll(G, Λ, v) (Fig. 4) determines orientations for
all edges connecting to a node v, and then remove
v and the edges from the (current) graph G. The
second procedure FixEdge(G, K, Λ, e) (Fig. 5) deter-
mines an orientation for an edge e and then remove e
from the (current) graph G, which is based on Propo-
sition 8. The last procedure OrientCycle(G, Λ, C)
(Fig. 6) determines an orientation for a cycle C having
at most one gate. Fig. 7 shows a detailed description
of the whole algorithm AlgCactus. The correctness
and time complexity of the algorithm AlgCactus are
shown in the two lemmas below in this section.

Fig. 8 depicts an example execution of AlgCactus
for a graph (Fig. 8(a)) with K = 3, where nodes
and edges drawn by dotted lines are removed and the
numbers in boxes represent node weights greater than
0. First, OutAll is applied to the node s (Fig. 8(b)),
so that there is no node and edge satisfying the con-
dition (1) or (2) in AlgCactus. Next, OrientCycle is
applied to the cycle C (Fig. 8(c)) in which the node
t is the gate, and then the edge {t, u} is processed by
FixEdge (Fig. 8(d)). Eventually, we obtain an final
(optimal) orientation by applying, say, OutAll to the
node t of the graph in Fig. 8(d), and then FixEdge to
the remaining edge.

Lemma 9 The algorithm AlgCactus outputs correct
answers for (S, T)-MMO(K).

Proof: Let the final orientation constructed by
AlgCactus be Λf that is constructed regardless of
the outputs of AlgCactus, ’Yes’ or ’No,’ for the in-
put graph. Note that orientations for some edges may
not be determined in Λf when the algorithm outputs
’No.’ The algorithm AlgCactus determines a part of
the orientation Λf and constructs a subgraph by re-
moving nodes and edges step by step. We prove that
such a constructed subgraph is sufficient to be con-
sidered in order to obtain correct answers, i.e., all the
nodes removed from the input graph have outdegree
at most K under Λf , and the optimal cost of such a
subgraph is at most that of the input graph.

(Step 1: OutAll) Let two graphs before and after
an application of OutAll be G1 and H1, respectively.
Also Λ1 denotes the current orientation at the end
of Step 1. By definition, OutAll does not change
the value of f(u) for any node u, and so H1 is a
proper subgraph of G1. Therefore, Δ∗(G1) ≥ Δ∗(H1)
holds from Proposition 7. Since Λf ⊇ Λ1 and orien-
tations for all the edges connecting to the node v that

CRPIT Volume 77 - Theory of Computing 2008

100

Procedure OutAll(G, Λ, v)

Input: A graph G = (V, E, f, w), a (partial) ori-
entation Λ, and a node v ∈ V .

Step 1: Add (v, u) to Λ for all {u, v} ∈ E.

Step 2: Remove the node v and its connecting
edges from G.

Figure 4: Procedure OutAll

Procedure FixEdge(G, K, Λ, e)

Input: A graph G = (V, E, f, w), a constant K,
a (partial) orientation Λ and an edge e =
{u, v} ∈ E.

Step 1: If f(u) + w(e) > K, then add (v, u) to Λ,
and set f(v) = f(v) + w(e). Otherwise, add
(u, v) to Λ, and set f(u) = f(u) + w(e).

Step 2: Remove the edge e from G.

Figure 5: Procedure FixEdge

Procedure OrientCycle(G, Λ, C)

Input: A graph G = (V, E, f, w), a (partial) ori-
entation Λ, and a cycle C = 〈v1, v2, . . . , vl, v1〉
having at most one gate.

Step 1: If C has no gate, then

(a): Orient the edges of C in one direction
along C, i.e., add (v1, v2), (v2, v3), . . . ,
(vl, v1) to Λ.

Otherwise, i.e., C has exactly one gate, say,
v1, execute the following:

(b): If w({v1, v2}) < w({v1, vl}), then add
(v1, v2), (v2, v3), . . . , (vl, v1) to Λ and set
f(v1) = f(v1) + w({v1, v2}).

(c): Otherwise, add (v1, vl), (vl, vl−1), . . . ,
(v2, v1) to Λ and set f(v1) = f(v1) +
w({v1, vl}).

Step 2: Remove all the nodes and edges of C ex-
cept the gate from G.

Figure 6: Procedure OrientCycle

is removed by OutAll are already determined in Λ1,
d+

G(Λf , v) = d+

G(Λ1, v) ≤ K.
We can consider other orientations than Λ1 in re-

lation to the edges connecting to v, for example, one
edge {v, x} is oriented inward as (x, v). By such an
orientation, we obtain a graph H ′

1
in which f(x) is

equal to f(x) in G1 plus w({x, v}), although f(x)
in H1 equals to that in G1. The difference be-
tween H1 and H ′

1
is only the weight f(x), and from

Proposition 5, Δ∗(H ′
1
) ≥ Δ∗(H1) holds. Hence, if

Δ∗(G1) ≤ K, then Δ∗(H1) ≤ K also holds. (It may
hold that Δ∗(H ′

1
) > Δ∗(G1)) Therefore, it is suffi-

Algorithm AlgCactus(G, K)

Input: A cactus G = (V, E, f, w) and a constant
K.

Output: Yes (and an orientation Λ), or No .

Step 0: Set Λ := ∅, and G′ := G.

Step 1: If there exists a node u ∈ V (G′), s.t.,

f(u) +
∑

{u,v}∈E(G′)

w({u, v}) ≤ K, (1)

then execute OutAll(G′, Λ, u).

Step 2: If there exists an edge e = {u, v} ∈ E(G′),
s.t.,

f(u) + w(e) > K, (2)

then execute FixEdge(G′, K, Λ, e).

Step 3: Repeat Steps 1 and 2, until there is nei-
ther a node nor an edge satisfying the condi-
tions (1) or (2).

Step 4: If f(v) > K for some node v ∈ V (G′),
then output ’No’ and halt.

Step 5: Remove isolated nodes (if exist) from G′.
If G′ is empty, output ’Yes’ (and Λ) and halt.

Step 6: Find a cycle C having at most one gate.
Execute OrientCycle(G′, Λ, C), and then re-
turn to Step 1.

Figure 7: Algorithm AlgCactus

(a)

1

1 2

2

3 1

2

3

s

(b)

1 1

1 2

2

3 1

2

3

s1

(c)

1 1

1 2

2

3 1

2

3

C

1

t

C

C

t t

(d)

1 1

1 2

2

3 1

2

3

1

t C

3

u u

u u

Figure 8: Example execution of AlgCactus: (a) Input
graph, (b) application of OutAll to the node s, (c)
application of OrientCycle to the cycle C, and (d)
application of FixEdge to the edge {t, u}.

cient to consider only H1, to solve (S, T)-MMO(K).
(Step 2: FixEdge) Let the two graphs at the be-

ginning and the end of Step 2 be G2(= H1 above) and
H2, respectively. From Proposition 8, we can see that
if Δ∗(G2) ≤ K, then Δ∗(G2) = Δ∗(H2). Note that
no node is removed at Step 2 of AlgCactus. There-
fore, again it is sufficient to consider only H2, to solve
(S, T)-MMO(K).

(Step 3: Repeating Steps 1 and 2) By repeat-
ing Steps 1 and 2, we finally obtain a graph H ,
which is a subgraph of the input graph G. From the
above discussions on Steps 1 and 2, we observe that
Δ∗(G) ≥ Δ∗(H). Therefore, since all the nodes al-

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

101

ready removed have outdegree at most K under the
current orientation and also under the final orienta-
tion Λf , what we need to do is to consider the optimal
cost for H to solve (S, T)-MMO(K).

(Steps 4 and 5: Halting criteria) If there exists a
node v in H having f(v) > K, then it is apparent that
Δ∗(H) > K and so Δ∗(G) > K. Therefore we answer
’No.’ The rest of the case is that every node v in H has
f(v) ≤ K. Even if an isolated node is removed, the
(current) orientation Λ is not modified at all, and the
outdegree of the removed node does not change under
Λf . If the graph is turned to be empty after removing
all the isolated nodes, its optimal cost is trivially zero.
Namely, Δ∗(H) = maxv∈V (H){f(v)} ≤ K. Also since
all orientations for all edges have already determined
in Λ, Λ is the final orientation Λf . In addition to that
the removed nodes at Steps 1 have outdegree at most
K under Λf(= Λ) as mentioned above. Therefore we
can conclude that the answer is ’Yes.’

(Step 6: OrientCycle) G6 and H6 denote the
two graphs at the beginning and the end of Step 6,
respectively. All the nodes have degree at least 2 in
G6, because, otherwise a contradiction occurs: All
isolated nodes, that is, the nodes having degree 0
are removed in Step. 5. Suppose that there exists
a node u in G6 such that dG6

(u) = 1, and let the
edge connecting to u be e. Since the degree of u
is one, f(u) +

∑

{u,v}∈E(G6)
w({u, v}) = f(u) + w(e)

holds, which means that either of the conditions (1)
and (2) is always satisfied. However, this contra-
dicts that the fact that G6 is obtained after repeat-
edly applying Steps 1 and 2 until there does not ex-
ist such a node (Step 3). From this observation and
Proposition 2, there always exists a cycle C having at
most one gate. Let a cycle with at most one gate be
C = 〈v1, . . . , vl, v1〉 (l ≥ 2).

Case (a): C has no gate. In this case, Step. 1(a)
of OrientCycle is applied to the cycle C. Since there
is no node in C satisfying the condition (2), every
node in C has outdegree at most K under the ori-
entation determined in Step. 1(a) of OrientCycle
and also under the final orientation Λf . Since C has
no gate, C is a maximal connected component, so
that C and H6 does not share any nodes and hence
Δ∗(G6) ≥ Δ∗(H6). [End of Case(a)]

Case (b): C has exactly one gate. Let the
gate be v1 without loss of generality, and suppose
w({v1, v2}) ≤ w({v1, vl}) (The discussion for the case
w({v1, v2}) > w({v1, vl}) is similar). In this case,
Step. 1(b) of OrientCycle is applied to C.

Consider a node v ∈ {v2, . . . , vl}. Since v is not a
gate, d(v) = 2 holds. Let the two edges connecting
to v be e1 = {u, v} and e2 = {t, v}. For v and e1, e2,
neither conditions (1) nor (2) does not hold. Hence,
if the optimal cost is at most K, we cannot orient
e1 and e2 as (v, u) and (v, t) at the same time by
the condition (1) in order to obtain an orientation
whose cost is at most K. Also both of f(v) + w(e1)
and f(v)+ w(e2) are at most K by the condition (2).
This situation is true for all the nodes in C except
the gate v1. Therefore, under the orientation Λf , the
outdegree of every node in C except v1 is at most K.

There are two other possibilities for the
orientation of C in order to construct a fi-
nal orientation whose cost is at most K:
(I) ΛI ⊇ {(v1, vl), (vl, vl−1), . . . , (v2, v1)},
which is in the reverse direction of
that by OrientCycle, and (II) ΛII ⊇
{(v1, v2), (v2, v3), . . . , (vi−1, vi), (vi+1, vi), (vi+2, vi+1),
. . . , (vl, vl−1), (v1, vl)} for some i �= 1, in which both
of the two edges connecting to the gate v1 in C
are oriented outward. By the conditions (1) and
(2), another orientation has the cost greater than

K. Let H
(I)

6
and H

(II)

6
denote the subgraphs that

can be obtained by those orientations ΛI and ΛII ,
respectively, i.e., by removing the nodes in C except
the gate v1, and increasing f(v1) by w({v1, vl}) and
w({v1, v2})+w({v1, vl}), respectively. From Proposi-
tion 5, Δ∗(H(I)

6
) ≥ Δ∗(H6) and Δ∗(H(II)

6
) ≥ Δ∗(H6)

hold, since f(v1) in H6 is smaller than those in H
(I)

6

and H
(II)

6
. Therefore, it is sufficient to consider the

graph H6 to solve (S, T)-MMO(K).
[End of Case (b)]

From the above discussions, by Step 6, the re-
moved nodes have outdegree at most K under Λf

and for the resulted graph H6, Δ∗(G6) ≥ Δ∗(H6)
holds. In conjunction with the discussions above, the
nodes removed so far at Steps 1, 2, 5 and 6 have
outdegree at most K under the orientation Λf , and
also Δ∗(G) ≥ Δ∗(H6) holds. Then, in order to solve
(S, T)-MMO(K) for the input graph G, what we need
to do in the rest is to solve (S, T)-MMO(K) for the
graph H6 by returning to Step 1. �

The following proposition gives the time complex-
ity of the algorithm AlgCactus.

Proposition 10 AlgCactus runs in O(|E|2) time.

Proof: At Steps 1, 2, and 6, orientation of at least
one edge is determined. Therefore the total number
of processing those steps, and thus Steps 3, 4, and 5
also, are bounded above by O(|E|). Since each step
can be done by scanning nodes and edges in O(|E|)
time, the total running time is O(|E|2). �

Although we omit the proof, the running time of
AlgCactus can be reduced with a careful preprocess-
ing:

Lemma 11 The algorithm AlgCactus runs in
O(|E|) time with preprocessing done in O(|V | log |V |)
time. �

3.3 Polynomial Time Algorithm

In this section, we show that {1, . . . , k}-MMO is solv-
able in polynomial time by proving an upper bound
of optimal costs of orientations for cactuses:

Lemma 12 For any cactus G, Δ∗(G) ≤ fmax +
2wmax for (S, T)-MMO, where fmax and wmax are the
maximum weights of nodes and edges, respectively.

Proof: The proof is constructive. First we apply
Steps 0 through 5 of AlgCactus except for Step 4
to G with K = fmax + 2wmax, by which the removed
nodes have outdegree at most fmax+2wmax under the
final orientation, and remaining nodes have outdegree
0 under the current orientation at the end of Step 5.
Then we modify Step 6 of AlgCactus as follows and
apply it.

Step 6’: Find a cycle C = 〈v1, v2, . . . , vl, v1〉 hav-
ing at most one gate.

• If C does not have a gate, add
(v1, v2), (v2, v3), . . . , (vl, v1) to Λ.

• Otherwise, i.e., C has exactly one gate,
say, vl. Add (v1, vl) and (v1, v2), (v2, v3),
. . ., (vl−1, vl) to Λ.

Then remove C except the gate and return to
Step 1.

CRPIT Volume 77 - Theory of Computing 2008

102

By this modified Step 6’, we observe that

• Every remaining node v has outdegree f(v) un-
der the current orientation at the end of Step 6’.

• If C has the gate vl, v1 has outdegree at most
f(v1) + 2wmax under the final orientation.

• The nodes removed at Step 6’ except v1 and the
gate vl have outdegree at most fmax+wmax under
the final orientation.

Repeating the procedures, all the nodes are re-
moved from the graph at last, and all the removed
nodes have outdegree at most fmax+2wmax under the
final orientation. Therefore, Δ∗(G) ≤ fmax + 2wmax

holds. �
Remind that we assume that node and edge weight

functions f and w are integral functions in this pa-
per. Therefore, we can obtain optimal orientations for
(S, T)-MMO by solving O(log(fmax + wmax)) times
the (S, T)-MMO(K) in a binary search manner on
K for wmax ≤ K ≤ fmax + 2wmax from the above
lemma. Based on the Lemma 11, (S, T)-MMO is solv-
able in polynomial time O(|V | log |V |+ |E| log(fmax +
wmax)) for cactuses (Note that the preprocessing for
AlgCactus has to be done only once). In a straight-
forward way, we obtain the following theorem for
{1, . . . , k}-MMO (≡ ({1, . . . , k}, 0)-MMO):

Theorem 13 {1, . . . , k}-MMO is solvable in polyno-
mial time O(|V | log |V | + |E| log k) for cactuses. �

4 Pseudo-polynomial Time Algorithm for
Series-Parallel Graphs

In this section, we describe the main idea of a pseudo-
polynomial time algorithm solving {1, . . . , k}-MMO
for series-parallel graphs. The algorithm is a dy-
namic programming-based one, which utilizes a de-
composition tree(Valdes, Tarjan, & Lawler 1982) de-
fined by the series, parallel and jackknife operations.
It is known that determining whether a given graph
G = (V, E) is a series-parallel graph can be done in
linear time (Wimer & Hedetniemi 1988, Borie, Parker
& Tovey 2002). Moreover, we can also obtain a de-
composition tree T of G in linear time if G is a series-
parallel graph.

For an arbitrary series-parallel graph (G, l, r),
where l and r are left and right terminals, respec-
tively, and two values wl ∈ {0, 1, . . . , wG(l) def=
∑

{l,u}∈E(G)
w({l, u})} and wr ∈ {0, 1, . . . , wG(r) def=

∑

{r,u}∈E(G)
w({r, u})}, we define

WSP (G, l, r, wl, wr)

= min
Λ

max
v∈V (G)

{

d+

G(Λ, v) d+

G(Λ, l) = wl,
d+

G(Λ, r) = wr

}

,

where Λ is an orientation for G.
In a decomposition tree, let us assume that a

(sub)tree Ta is composed from its subtrees Tb and Tc
by an operation series, parallel, or jackknife, where
Ta, Tb and Tc correspond to (Ga, la, ra), (Gb, lb, rb)
and (Gc, lc, rc), respectively. Roughly speaking, for
series, parallel, and jackknife operations, the follow-
ing equations (3), (4), and (5) hold, respectively:

WSP (Ga, la, ra, wl, wr)

= min
wb,wc

max

{

WSP (Gb, lb, rb, wl, wb),
WSP (Gc, lc, rc, wc, wr),
wb + wc

}

(3)

Algorithm AlgSP(G)

Input: A series-parallel graph G = (V, E, w).

Output: Δ∗(G).

Step 0: Construct a decomposition tree T for G,
and let l and r be two terminals of G.

Step 1: For all wl = 0, 1, . . . , wG(l) and wr =
0, 1, . . . , wG(r), compute WSP (G, l, r, wl, wr)
in a recursive manner by equations (3), (4)
and (5).

Step 2: Output minwl,wr WSP (G, l, r, wl, wr).

Figure 9: Algorithm AlgSP

WSP (Ga, la, ra, wl, wr)

= min
wbl+wcl=wl,
wbr+wcr=wr

max

{

WSP (Gb, lb, rb, wbl, wbr),
WSP (Gc, lc, rc, wcl, wcr),
wl, wr

}

(4)

WSP (Ga, la, ra, wl, wr)

= min
wbr+wcl=wr,

wcr

max

{

WSP (Gb, lb, rb, wl, wbr),
WSP (Gc, lc, rc, wcl, wcr),
wr(= wbr + wcl)

}

(5)

The above equations (3), (4) and (5) show a prin-
ciple of optimality, which yields an algorithm based
on the dynamic programming. Fig. 9 shows the algo-
rithm. Now we discuss the time complexity of AlgSP.
As mentioned above, Step 0 is done in O(|E|) time. In
Step 1, we keep wG(l) × wG(r) WSP values for each
(G, l, r), and if we have all WSP values for its two
children, the evaluation of equations (3), (4) and (5)
can be done in wGb

(rb)×wGc(lc), wGa(la)×wGa(ra)
and wGa(ra)×wGc(rc) time, respectively. All of these
are bounded by k2|V |2. The number of recursions is
at most |E|, so this step is done in O(|E|k2|V |2). Step
2 can be done also in O(k2|V |2) time. Therefore the
total running time of AlgSP is O(k2|E||V |2), which
is pseudo-polynomial for the input size. More details
will appear in journal version.

Theorem 14 {1, . . . , k}-MMO is solvable in pseudo-
polynomial time O(k2|E||V |2) for series-parallel
graphs. �

5 NP-hardness

In this section, we show the NP-hardness of
{1, . . . , k}-MMO for restricted graph classes: outer-
planar, series-parallel, planar, bipartite, P4-bipartite,
diamond-free, and house-free. We again note that
outerplanar, P4-bipartite, diamond-free, and house-
free are minimal superclasses of cactus (Brandstädt,
BangLe, & Spinrad 1987). The following theorem
shows the weak NP-hardness of {1, . . . , k}-MMO for
(multi) outerplanar graphs, but its proof is quite easy.

Theorem 15 {1, . . . , k}-MMO is weakly NP-hard
for (multi) outerplanar graphs.

Proof: The proof is by a polynomial time reduc-
tion from the weakly NP-hard problem PARTITION

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

103

1 2 4 5 6

s

s’

Figure 10: Proof of Theorem 15.

([SP12] on p.223 of (Garey & Johnson 1979)): Given
a set S = {s1, s2, . . . , sn} of n positive integers, de-
termine if there exists a subset S′ ⊆ S such that
∑

si∈S′ si =
∑

si∈S\S′ si.
We construct an edge weighted graph G =

(V, E, w) from an instance of PARTITION. Let the
instance of PARTITION be S = {s1, s2, . . . , sn}. The
node set V consists of two nodes, V = {s, s′}. The
edge set E contains n multiple edges e1, e2, . . . , en
connecting between the nodes s and s′, where the
weight of each edge ei is equal to si, i.e., w(ei) = si.
The graph G is clearly outerplanar. Let us define
W =

∑

si∈S si/2. This reduction is obviously done in
polynomial time. See Fig. 10 for an example of the
case S = {1, 2, 4, 5, 6}.

We consider that the situation si ∈ S′ (or si �∈ S′)
corresponds to orient the edge ei from s to s′ (or
s′ to s) in G. If there is a set S′ ⊆ S such that
∑

si∈S′ si =
∑

si∈S\S′ si = W , then both of the out-
degrees of s and s′ in G is equal to W under the corre-
sponding orientation, which is an optimal orientation.
Otherwise, either of them has outdegree greater than
W . �

The NP-hardness of {1, . . . , k}-MMO for series-
parallel graphs is again proved by a reduction from
PARTITION. Since the constructed graph in the
above proof is also a series-parallel graph, the NP-
hardness for series-parallel graphs also holds straight-
forward. However, the constructed graph in the above
proof is a multigraph, and thus, the NP-hardness has
been proved only for multigraphs. The objective of
the following theorem is to show the NP-hardness for
simple graphs; however it is not applicable to outer-
planar graphs.

Theorem 16 {1, . . . , k}-MMO is weakly NP-hard
for series-parallel graphs.

Proof: From an instance S = {s1, s2, . . . , sn} of
PARTITION, we construct an edge weighted graph
G = (V, E, w). The node set V is divided into two
types: (i) Subset nodes s and s′, and (ii) Item nodes
vi and v′i for each si. The total number of nodes is
2n + 2. Let us define W =

∑

si∈S si/2. The edge set
E contains 3n edges, {s, vi}’s, {vi, v

′
i}’s and {v′i, s′}’s

for 1 ≤ i ≤ n. As for the weights of the edges,
w({s, vi}) = w({v′i, s′}) = si, and w({vi, v

′
i}) = W

for 1 ≤ i ≤ n. This reduction is done in polyno-
mial time. See Fig. 11 for an example of the case
S = {1, 2, 4, 5, 6} again.

We prove that there is an orientation Λ of G such
that ΔΛ(G) ≤ W if and only if there exists a set
S′ ⊆ S such that

∑

si∈S′ si = W in the following.
(If part) Suppose that there exists a subset S′

such that
∑

si∈S′ si = W . Consider the follow-
ing orientation Λ according to S′: If si ∈ S′, then
(s, vi), (vi, v

′
i), and (v′i, s

′) are in Λ; otherwise (s′, v′i),
(v′i, vi), and (vi, s) are in Λ. Under this orientation
Λ, d+(Λ, s) = d+(Λ, s′) = W . Also, if si ∈ S′, then
d+(Λ, vi) = W and d+(Λ, v′i) = si hold; otherwise

1 2 4 5 6

s

s’

1 2 4 5 6

v1 v2 v3 v4 v5

v’1 v’2 v’3 v’4 v’5

9 9 9 9 9

Figure 11: Proof of Theorem 16.

d+(Λ, vi) = si and d+(Λ, v′i) = W hold. Therefore,
since all the nodes have outdegree at most W under
Λ, ΔΛ(G) ≤ W holds.

(Only If part) This part is shown by proving that if
there exists an orientation Λ of G such that ΔΛ(G) ≤
W , there exists a subset S′ ⊆ S such that

∑

si∈S′ si =
W . Suppose that such an orientation Λ exists.

Since w({vi, v
′
i}) = W for all i’s, we observe that

either of vi and v′i has outdegree at least W under
any orientation. If (vi, v

′
i) ∈ Λ, (s, vi) is also in Λ,

because, otherwise d+(Λ, vi) > W that contradicts
the assumption ΔΛ(G) ≤ W . Similarly, if (v′i, vi) ∈
Λ, then (s′, v′i) ∈ Λ, too. Let J denote the set of
indices i’s such that (s, vi) ∈ Λ. The outdegree of
s under Λ is d+(Λ, s) =

∑

i∈J w({s, vi}) =
∑

i∈J si.
For an index j �∈ J , the edge {s, vj} is oriented as
(vj , s) ∈ Λ, and thus the edge {vj , v

′
j} is oriented

as (v′j , vj), because, otherwise the outdegree of vj is
greater than W . Since (v′j , vj) ∈ Λ, (s′, v′j) is also in
Λ. Then, it holds that d+(Λ, s′) ≥ ∑

i�∈J w({s′, v′i}) =
∑

i�∈J si = 2W − d+(Λ, s). Since ΔΛ(G) ≤ W , both
of d+(Λ, s) ≤ W and d+(Λ, s′) ≤ W must hold, by
which we have d+(Λ, s) = d+(Λ, s′) = W and then
∑

i∈J si = W . �
Now we go to the strong NP-hardness proofs. We

show that {1, k}-MMO for bipartite or planar graphs
is NP-hard. Both proofs are based on polynomial
time reductions from variants of SAT problem: Given
a set U = {x1, . . . , xn} of Boolean variables and a
CNF formula φ =

∧

ci∈C ci, where C is a set of
clauses over U , determine if there exists a truth as-
signment for φ.

Before explaining the reduction, we introduce sev-
eral variants of SAT. At-Most-3SAT(2L) is a restric-
tion of SAT where each clause includes at most three
literals and each literal (not variable) appears at most
twice in a formula. It can be easily proved that At-
Most-3SAT(2L) is NP-complete by using problem
[LO1] on p. 259 of (Garey & Johnson 1979).

We call a CNF formula planar if graph G(φ) =
(V, E), where V = U ∪ C and E contains exactly
edges {x, c} such that either x or x belongs to the
clause c for x ∈ U and c ∈ C. It is known that Planar
SAT (or 3SAT), where an input CNF is restricted to
be planar, remains NP-complete (Lichtenstein 1982).

We call a CNF formula monotone if each clause
contains either only negative literals or only positive
literals, and it is known that Monotone SAT, where
an input CNF is restricted to be monotone, remains
NP-complete (Gold 1978) (Also see [LO2] on p.259
of (Garey & Johnson 1979)). Monotone At-Most-
3SAT(2L) is a restriction of Monotone SAT where
each clause includes at most three literals and each
literal (not variable) appears at most twice in a for-

CRPIT Volume 77 - Theory of Computing 2008

104

mula. We can see that Monotone At-Most-3SAT(2L)
is also NP-complete by the following reduction: Let
ci =

∨

xa∈Pi
xa∨

∨

xb∈Ni
xb be a clause of an arbitrary

At-Most-3SAT(2L) instance φ, where Pi (resp., Ni) is
the set of positive (resp., negative) literals in ci. We
define a new variable xci for each ci. Then a new
monotone formula φ′ =

∧

ci∈C

(

xci ∨
∨

xa∈Pi
xa

) ∧
(

xci ∨
∨

xb∈Ni
xb

)

has a truth assignment if and only
if φ has a truth assignment. Furthermore, φ′ is still
an instance of At-Most-3SAT(2L) because the num-
bers of appearances of original literals are same as
φ and new literals xci ’s and xci ’s appear exactly
once for each. Hence Monotone At-Most-3SAT(2L)
is (strongly) NP-complete.

We first show the strong NP-hardness of {1, k}-
MMO for bipartite graphs.

Theorem 17 For any integer k ≥ 2, {1, k}-MMO is
strongly NP-hard for bipartite graphs.

Sketch of Proof: We only give a polynomial time re-
duction from Monotone At-Most-3SAT(2L), and omit
the proof of its correctness. Suppose that a formula
φ of Monotone At-Most-3SAT(2L) with n variables
{x1, . . . , xn} and m clauses {c1, . . . , cm} is given. We
call a clause positive (resp., negative) if it contains
only positive (resp., negative) literals. For φ, we con-
struct a graph Gφ including two gadgets that mimic
(a) literals and (b) clauses, and also (c) a special gad-
get. (a) Each literal gadget consists of two nodes
labeled by xi and xi and one edge {xi, xi} between
them, corresponding to variable xi of φ. The weight
of {xi, xi} is k. (b) Each clause gadget is one node
labeled by cj , corresponding to clause cj of φ. The
clause gadget cj is connected to at most three nodes
in the literal gadgets that have the same labels as the
literals in the clause cj , by edges of weight 1. For
example, if c1 = x∨ y ∨ z is appeared in φ, then node
c1 is connected to nodes x, y and z. (See Fig. 12.)
(c) The special gadget is a cycle of 2k nodes, say
s1, s2, . . . , s2k, and 2k edges where each edge of the cy-
cle has weight k. If a positive (resp., negative) clause
consists of i variable(s), then it is connected to nodes
s1, s3, . . . , s2(k−i)−1 (resp., s2, s4, . . . , s2(k−i+1)) in the
special gadget by edges of weight 1. Hence, the degree
of every clause node is exactly k +1. Note that Gφ is
bipartite, since nodes associated with positive (resp.,
negative) clauses are connected only to positive (neg-
ative) literal nodes or si nodes with odd (resp., even)
i in the special gadget, and vice versa. Also, this
construction can be done in polynomial time.

For this bipartite Gφ, we can show that the fol-
lowing holds: (i) If φ is satisfiable, Δ∗(Gφ) ≤ k. (ii)
If φ is not satisfiable, Δ∗(Gφ) ≥ k + 1 (The detailed
proof is omitted). �

By the proof of Theorem 17, we obtain the follow-
ing corollary.

Corollary 18 Even for bipartite graphs, {1, k}-
MMO has no pseudo-polynomial time algorithm
whose approximation ratio is smaller than 1 + 1/k
unless P = NP. �

Since neither the graph house nor diamond is bi-
partite, a bipartite graph is also a house-free and
diamond-free graph. Also a bipartite graph is a P4-
bipartite graph by definition, we obtain the following
corollary, too.

Corollary 19 {1, k}-MMO is strongly NP-hard for
P4-bipartite, house-free, and diamond-free. Moreover,

x x y y z z

zyxc ∨∨=
1

2
c

1
c

Positive clause

Negative clause

Weight 1

Weight k

yxc ∨=
2

Literal gadget

Clause gadget

Special gadget

1
s

2
s

3
s

4
s

5
s

6
s

k
s
2

Figure 12: Proof of Theorem 17.

for these graph classes, {1, k}-MMO has no pseudo-
polynomial time algorithm whose approximation ratio
is smaller than 1 + 1/k unless P = NP. �

Next we show the strong NP-hardness of {1, k}-
MMO for planar graphs.

Theorem 20 For any integer k ≥ 2, {1, k}-MMO is
strongly NP-hard for planar graphs.

Sketch of Proof: We use a reduction similar to that
in Theorem 17. Instead of Monotone At-Most-3SAT,
we use the reduction from Planar 3SAT. Again, we
only show the reduction and proof is omitted.

Suppose Planar 3SAT instance φ and its planar
drawing are given. For such an instance, we con-
struct a graph G′

φ including gadgets associated with
(a) variables and (b) clauses, and (c) special gadgets.
(a) A variable gadget of x consists of 3l nodes and 3l
edges, where l is the number of appearances of x in φ.
For convenience, we assume that variable x appears
in clauses c1, c2, . . . , cl, and in the given planar draw-
ing ci’s are drawn in this order (Fig. 13, top). Then
we prepare 2l nodes labeled by x(i) and x(i), and l
nodes labeled by d(l). This labeling corresponds to
the ordering of ci’s. For these nodes, we put edges
{x(i), x(i)} with weight k, {x(i), d(i)} with weight 1
and {d(i), x(i+1)} with weight 1, for i = 1, 2, . . . , l
(l + 1 ≡ 1). Note that a variable gadget itself is
planar. (b) Each clause gadget is one node labeled by
cj, corresponding to clause cj of φ (same as the proof
of Theorem 17). We connect clause gadgets to nodes
of variable gadgets as follows: Again, assume that
a variable x appears in clauses c1, c2, . . . , cl. In the
variable gadget of x, we prepared 2l nodes, x(i), x(i)

for i = 1, . . . , l, whose numbering corresponds to the
index of cj ’s. Then, we connect edges according this
numbering; if x (resp., x̄) appears in cj , then put edge
{cj, x

(j)} (resp., {cj, x(j)}) with weight 1 (Fig. 13,
bottom). Since φ is 3CNF, cj is connected to at most
three nodes in variable gadgets. (c) A special gadget
is a cycle of k + 1 nodes and k + 1 edges where each
edge of the cycle has weight k. We prepare a special
gadget for each clause gadget and for each node d(i)

in a variable gadget. If a clause consists of one (two
or three, resp.,) variable(s), then it is connected to k
(arbitrary k − 1 or k − 2, resp.,) nodes in its special
gadget by edges of weight 1. For each node d(i), it is
connected to k− 1 nodes in its own special gadget by

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

105

)1(
x)1(

x
)2(

x

)2(
x

)(l
x

)(l
x

)3(
x

)3(
x

Special gadget

Special gadgetSpecial gadget

)(φG

)1(
d

)2(
d

)(l
d

x

)(
1

L∨= xc

3
c

2
c1

c

l
c

A variable gadget

)(
2

L∨= xc

)(
3

L∨= xc)(L∨= xc
l

Figure 13: Proof of Theorem 20.

edges of weight 1. Hence, the degree of every clause
node or every node d(i) is exactly k + 1.

Note that G′
φ is planar because we can consider G′

φ

is obtained by replacing each variable node of planar
G(φ) with the corresponding variable gadget, which
does not violate its planarity.

We can say that (i) If φ is satisfiable, Δ∗(G′
φ) ≤ k.

(ii) If φ is not satisfiable, Δ∗(G′
φ) ≥ k + 1. (The

detailed proof is omitted.) �
By the proof of Theorem 20, again we obtain the

following corollary.

Corollary 21 Even for planar graphs, {1, k}-MMO
has no pseudo-polynomial time algorithm whose ap-
proximation ratio is smaller than 1 + 1/k unless P =
NP. �

6 Conclusion

We have discussed about the complexity of MMO for
several graph classes. The results are shown in Fig-
ure 2. Except others, we would like to note here about
outerplanar graphs. In this paper, we show the weak
NP-hardness for “multi” outerplanar graphs, how-
ever the complexity for “simple” outerplanar graphs
is still unknown. Since we have developed a pseudo-
polynomial time algorithm for series-parallel graphs,
the complexity of MMO for “simple” outerplanar
graphs is either P or weakly NP-hard, which is one
of the further research topics.

References

Asahiro, Y., Jansson, J., Miyano, E., Ono, H., &
Zenmyo, K. (2007), Approximation algorithms for
the graph orientation minimizing the maximum
Weighted outdegree in ‘Proc. 3rd International
Conference on Algorithmic Aspects in Information
and Management, Lecture Notes in Computer Sci-
ence’, Vol. 4508, pp. 167–177.

Asahiro, Y., Miyano, E., Ono, H., & Zenmyo, K.
(2007), ‘Graph orientation algorithms to minimize
the maximum outdegree’, International Journal of
Foundations of Computer Science, 18(2), pp. 197–
215.

Borie, R., Parker, R., & Tovey, C. (2002), ‘Solving
problems on recursively constructed graphs’, Tech-
nical Report TR-2002-04, Dept. Comp. Sci., Uni-
versity of Alabama.

Brandstädt, A., BangLe, V., & Spinrad, J. P. (1987),
Graph Classes: A Survey, SIAM.

Brodal, G. S., & Fagerberg, R. (1999), Dynamic rep-
resentations of sparse graphs, in ‘Proc. 6th Work-
shop on Algorithms and Data Structures, Lecture
Notes in Computer Science’, Vol. 1663, pp. 342–
351.

Chvátal, V. (1975), ‘A combinatorial theorem in
plane geometry’, J. Combinatorial Theory, series
B, 18, pp. 39–41.

Gairing, M., Lücking, T., Mavronicolas, M., &
Monien, B. (2004), Computing Nash equilibria for
scheduling on restricted parallel links, in Proc.
36th ACM Symposium on Theory of Computing,
pp. 613–622.

Garey, M., & Johnson, D. (1979), Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Co., 1979.

Gold, E. M. (1978), Complexity of automaton identi-
fication from given data, Information and Control,
37(3), pp. 302–320.

Gross, J. L., & Yellen, J.(eds) (2004), Handbook of
Graph Theory, CRC Press.

Hoàng, C.T., & Le, V.B. ‘P4-free colorings and P4-
bipartite graphs’, Discrete Mathematics and Theo-
retical Computer Science, 4, pp. 109–122.

Hopcroft, J.E., & Tarjan, R.E. (1974), ‘Efficient pla-
narity testing’, J. ACM, 21, pp. 549–568.

Kowalik, L. (2006), Approximation scheme for lowest
outdegree orientation and graph density measures,
in ‘Proc. 17th International Symposium on Algo-
rithms and Computation, Lecture Notes in Com-
puter Science’, Vol.4288, pp. 557–566.

Kloks, T., Kratsch, D., & Müller, H. (2000), ‘Finding
and counting small induced subgraphs efficiently,’
Information Processing Letters, 74(3-4), pp.115-
121

Lenstra, J. K., Shmoys, D. B., & Tardos., É. (1990),
‘Approximation algorithms for scheduling unre-
lated parallel machines’, Mathematical Program-
ming, 46(3), 259–271, 1990.

Lichtenstein, D. (1982), ‘Planar formulae and their
uses’, SIAM Journal on Computing, 11(2), pp.
329–343.

Mitchell, S.L. (1979), ‘Linear algorithms to recognize
outerplanar and maximal outerplanar graphs’, In-
formation Processing Letters, 9, pp. 229–232.

O’Rourke, J. (1987), Art Gallery Theorems and Al-
gorithms, Oxford University Press.

Schuurman, P., & Woeginger, G. J. (1999), ‘Poly-
nomial time approximation algorithms for machine
scheduling: Ten open problems,’ J. Scheduling, 2,
pp. 203–213.

Venkateswaran, V. (2004), Minimizing maximum in-
degree, Discrete Applied Mathematics, 143(1-3),
pp. 374–378.

Valdes, J., Tarjan, R.E., & Lawler, E.L. (1982),
‘The recognition of series-parallel digraphs’ SIAM
J. Computing, 11, pp. 298–313.

Wimer, T.V. & Hedetniemi, S.T. (1988), ‘K-terminal
recursive families of graphs’ Congressue Numeran-
tium, 63, pp. 161–176.

CRPIT Volume 77 - Theory of Computing 2008

106

Generating Balanced Parentheses and Binary Trees by Prefix Shifts

Frank Ruskey1 Aaron Williams2

Department of Computer Science

University of Victoria,

Victoria BC, V8W 3P6, Canada,
1

URL: http://www.cs.uvic.ca/~ruskey
2

Email: haron@uvic.ca

Abstract

We show that the set Bn of balanced parenthesis

strings with n left and n right parentheses can be

generated by prefix shifts. If b1, b2, . . . , b2n is a mem-

ber of Bn, then the k-th prefix shift is the string

b1, bk, b2, . . . , bk−1, bk+1, . . . , b2n. Prefix shift algo-

rithms are also known for combinations, and per-

mutations of a multiset; the combination algorithm

appears in fascicles of Knuth vol 4. We show that

the algorithm is closely related to the combination

algorithm, and like it, has a loopless implementation,

and a ranking algorithm that uses O(n) arithmetic

operations. Additionally, the algorithm can be di-

rectly translated to generate all binary trees by a

loopless implementation that makes a constant num-

ber of pointer changes for each successively generated

tree.

Keywords: Gray codes, Catalan numbers, balanced

parentheses, binary trees, combinatorial generation,

loopfree algorithm.

1 Introduction

Balanced parenthesis strings are one of the most

important of the many discrete structures that are

counted by the Catalan numbers, Cn =
(

2n

n

)

/(n + 1).

The Catalan numbers and the objects counted by

them are extensively discussed in Stanley (1999).

The online supplement lists 149 distinct discrete

structures counted by the Catalan numbers (Stanley

(2007)).

Binary trees and ordered trees are also counted

by the Catalan numbers; these tree structures are of

paramount importance to computer scientists. There

is a large number of papers dealing with the funda-

mental problem of exhaustively listing and ranking

binary trees. In this paper we develop an algorithm

that has a number of attractive and unique features

as compared with existing algorithms.

Let Bt,s be the set of all bitstrings contain-

ing t 1s and s 0s and satisfying the constraint

that the number of 1s in any prefix is at least as

large as the number of 0s. For example, B3,2 =

{11100, 11010, 11001, 10110, 10101}. In particular,

Bt,s is empty if t < s. Furthermore, if t = s then Bt,s

can be thought of as the set of all balanced parenthe-

sis strings by mapping 1 to a left parenthesis and 0 to

a right parenthesis. In this case, we sometimes drop

the s from the notation; Bn = Bn,n.

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Fourteenth Computing: The Australasian
Theory Symposium (CATS2008), University of Wollongong,
New South Wales, Australia. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 77, James
Harland and Prabhu Manyem, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

If b1, b2, . . . , bt+s is a member of Bt,s,

then the k-th prefix shift is the string

b1, bk, b2, . . . , bk−1, bk+1, . . . , bt+s. Note that the

first bit, b1 is not part of this definition; this is

natural since b1 is always 1. Furthermore, it is

impossible to generate Bt,s if b1 is included in the

shifts (e.g., 1
t
0

s
is the only valid shift of both 1

t−1
0

s
1

and 1
t−1

0
s−1

10). In order to entice the reader into

reading further, below we show the simple iterative

rule, whose successive application will generate Bt,s

using prefix shifts.

Iterative successor rule: Locate the leftmost 01

and suppose that its 1 is in position k. If the (k+1)-

st prefix shift is valid (a member of Bt,s), then it is

the successor; if it is not valid then the k-th prefix

shift is the successor.

The only string without a 01 is 1
t
0

s
, which is the

final string. The initial string is 101
t−1

0
s−1

. Apply-

ing the rule to B3,2 gives the sequence 10110, 11010,

10101, 11001, 11100.

This is the first paper that considers whether bal-

anced parentheses can be generated by prefix shifts.

It is known that Bt,s can be generated by transposing

a pair of bits (Ruskey & Proskurowski (1990)), a pair

of bits with only 0s in between (Bultena & Ruskey

(1998)), or by transposing one or two pairs of ad-

jacent bits (Vajnovszki & Walsh (2006)). In general

it is impossible to generate Bt,s by transposing only

one pair of adjacent bits (Ruskey & Proskurowski

(1990)). Our algorithm will be shown to generate Bt,s

by transposing one or two pairs of bits, but those bits

are not adjacent in general.

An algorithm for generating combinatorial objects

is said to be loopless if only a constant amount of com-

putation is used in transforming the current structure

into its successor. Loopless algorithms are known for

various classes of discrete structures that are counted

by the Catalan numbers. See, for example, the pa-

pers Roelants (1991), Korsh, LaFolette, & Lipschutz

(2003), Vajnovszki (1998), Vajnovszki & Walsh

(2006) and Takaoka & Violich (2006).

Binary trees in their conventional representation of

a node with two pointers can efficiently be generated

by only making a constant number of pointer changes

between successive trees (Lucas, Roelants, & Ruskey

(1993)). This algorithm can be implemented loop-

lessly and is presented in Knuth (2006). The current

paper gives the basis for another such algorithm.

The approach taken in this paper was initiated

in the papers of Ruskey & Williams (2005, 2008) for

generating combinations that are represented by bit-

strings in the usual way. There the bitstrings are also

generated by prefix shifts. It is remarkable how many

of the results of those papers have close analogues

with the results of the current paper. The ordering of

combinations in (Ruskey & Williams 2005, 2008) was

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

107

http://www.cs.uvic.ca/~ruskey

called cool-lex order because of its close connection

with the well-known colex order of combinations. In

a similar spirit, we have dubbed our order “CoolCat”

order because of its close connections with cool-lex

order and with the Catalan numbers.

Relative to a list of objects, the rank of a partic-

ular object is the position that it occupies in the list,

counting from zero.

To summarize, our method has the following prop-

erties:

1. Each successive string differs from its predecessor

by the rotation of a prefix of the string. Further-

more, the list of strings is circular in the sense

that the first and last also differ by a prefix ro-

tation.

2. Each successive string differs from its predecessor

by the interchange of one or two pairs of bits.

3. It has a simple recursive description. This de-

scription does not involve the reversal of sublist,

as is usually the case for Gray codes. The un-

derlying graph is a directed graph; that is, if b1

differs from b2 by a prefix rotation, then in gen-

eral it is not the case that b2 differs from b1 by

a prefix rotation.

4. It has a remarkably simple iterative successor

rule. This rule was stated above.

5. The iterative successor rule can be implemented

as a loopless algorithm. Also, the successor rule

can be translated to a loopless algorithm for

generating binary trees. No previous listing of

balanced parenthesis strings is simultaneously a

Gray code for the strings and for the correspond-

ing binary trees.

6. It has a ranking algorithm that uses O(n) arith-

metic operations. No previous Gray code for bal-

anced parenthesis strings has this property.

2 Generating Binary Trees

To give the reader a flavor of how useful the itera-

tive successor rule is, in this section we translate the

rule so that it applies to binary trees, as traditionally

implemented on a computer. The result is a loop-

less algorithm that makes at most 16 pointer updates

between successive trees. An implementation of this

algorithm is available from the authors.

The standard bijection between Bn,n and ex-

tended binary trees with n internal nodes is to as-

sociate each internal node with a 1 and each leaf with

a 0 and then do a preorder traversal of the tree, ignor-

ing the final leaf. If z is a node in a binary tree, then

we use l(z) and r(z) to denote the pointers to the left

and right children of z. Unfortunately, we also need

to maintain the parent of each internal node; this is

denoted p(z).

To update the tree we maintain three pointers: x,

the first node that is not on the leftmost path of inter-

nal nodes; y, the parent of x; and R, the root of the

tree. The assignments below represent parallel exe-

cutions, so that, for example, [a, b]← [b, a] swaps the

two values a and b. The algorithm terminates when

x becomes nil.

According to the iterative successor rule there are

three cases to consider: (a) the string is of the form

1
p
0

q
11α, (b) the string is of the form 1

p
0

q
10α, with

p > q, and (c) the string is of the form 1
p
0

p
10α.

Below we show the updates that are necessary in each

of the three cases. Important note: The updates to

the parent field are not shown explicitly below, but

every time that an update is done to r(.) or l(.), then

y

x

y

x

b

d

e

f

g

h

a

b

c

f

e

h

d

g

p q

p qr

r

R

R

a

c

Figure 1: The trees corresponding to

111111000011... → 111111100001.... This is an

example of Case (a).

an update must be done to p(.). E.g., if the update is

r(v)← w, then it should be followed with if w 6= nil

then p(w)← v.

Case (a): The new string is 1
p+1

0
q
1α. This case

occurs when l(x) 6= nil. The corresponding update to

the binary tree is

[r(y), r(x), l(x), l(y)] ← [r(x), l(x), l(y), x]

y ← x; x← r(y);

Case (b): The new string is 101
p−1

0
q
1α. This case

occurs when l(x) = nil and R 6= y. The corresponding

update to the binary tree is

[l(p(y)), r(p(y)), l(x), r(x), l(y), r(y)] ←

[l(y), x, r(x), r(p(y)), nil, R];

[R, x]← [y, r(y)];

Case (c): the new string is 1
p+1

0
p+1α. This case

occurs when l(x) = nil and R = y. The corresponding

update to the binary tree is

[l(x), r(y)]← [y, nil]; [R, y, x]← [x, x, r(x)];

After this update the algorithm terminates if x = nil

(i.e., if α is the empty string).

These three cases are illustrated in Figures 1, 2,

and 3. Circles are used for internal nodes, squares are

used for leaves, and the triangles represent subtrees

whose structure is not specified (but whose preorder

order must be preserved).

3 Recursive Structure

In this section we examine the recursive structure of

the CoolCat ordering on balanced parenthesis. In

particular, we provide two recursive formulae and

prove that they produce lists that are identical to

those produced by the iterative rule. A corollary to

this result is that the iterative rule generates every

string in Bt,s. For comparison purposes we also pro-

vide the recursive structure for co-lexicographic, or

colex ordering. We begin this section by giving a for-

mal definition of the iterative rule.

The CoolCat iterative rule maps a binary string

b ∈ Bt,s to another binary string σ(b) ∈ Bt,s. When

b does not contain any 010 or 011 as a substring then

CRPIT Volume 77 - Theory of Computing 2008

108

x

x

y

y

a

e

g g

RR

f d

f

ed

c

b

p

r

q

p q

r

a

c

b

Figure 2: The trees corresponding to

111111000010... → 101111100001.... This is an

example of Case (b).

y

x

x

y

d

e

R

R

a

b

c

d

e

f

g

g

h

hf

a

b

c

Figure 3: The trees corresponding to

111111000000101... → 111111100000001.... This

is an example of Case (c).

it is easiest to define σ(b) using the following two spe-

cial cases, which simply move the rightmost symbol

into the second leftmost position.

σ(b) =

{

101
i
0

j
if b = 11

i
0

j
0 (1a)

111
i
0

j
0 if b = 11

i
0

j
01 (1b)

Otherwise, we can assume that b = 11
i
00

j
1zb′

for

some symbol z and some (possibly empty) string b′
.

σ(b) =

{

111
i
00

jzb′
if i = j (2a)

1z1
i
00

j
1b′

if i > j (2b)

We inductively let σ0
(b) = b and σk

(b) =

σ(σk−1
(b)) for k > 0, so that we can define an it-

erative list Rt,s that uses σ.

Rt,s = b, σ(b), σ2
(b), . . . , σk−1

(b) (3)

where b = 1
t
0

s
and k = |Bt,s|. We’ll also find it

useful to start the iterative process at the successor

of b, and in fact our first recursive structure will equal

this secondary listing. Instead of starting the iterative

process at the successor of b, this secondary listing

can also be seen as the result of applying σ to each

string in Rt,s.

St,s = σ(b), σ2
(b), . . . , σk

(b) (4)

= σ(Rt,s) (5)

To better illustrate our first recursive formula, let

us begin by examining the recursive structure of the

colex list L4,4 and then comparing it to the CoolCat

list S4,4. The term colex refers to the fact that the

strings in Bt,s are in increasing lexicographic order

when each string is read from right to left. The colex

list L4,4 can be built recursively from the smaller lists

L3,i for 0 ≤ i ≤ 3. Each of these lists appears as a

column within Figure 4. Notice that in each column

the suffixes beginning with 1 are underlined, and all

of the strings with a given underlined suffix appear

consecutively. In the case of L4,4 (where t = s) the

suffixes beginning with 1 are 10000, 1000, 100, and

10. Notice that there is no suffix 1 since there is no

string in B4,4 with that suffix. However, the suffix

1 does appear in L3,2 (where t > s) since there is a

string with that suffix in B3,2. Finally, in each case

the suffixes are ordered by decreasing number of zeros.

In general each of these observations holds true, and

it leads to the following recursive formula for Lt,s

=

{

Lt−1,010
s,Lt−1,110

s−1, . . . ,Lt−1,s−110 if t = s

Lt−1,010
s,Lt−1,110

s−1, . . . ,Lt−1,s1 if t > s.

To compact expressions of this kind we introduce
∏

to combine short lists of strings into larger lists, and

we restate the recursive formula for Lt,s as follows

Lt,s =























s−1
∏

i=0

Lt−1,i10
s−i

if t = s (6a)

s
∏

i=0

Lt−1,i10
s−i

if t > s. (6b)

Now we turn our attention to the recursive struc-

ture of W4,4 that is illustrated in Figure 5. As in

colex the suffixes beginning with 1 are underlined and

the strings with a given underlined suffix appear con-

secutively within each list. However, in this case the

suffixes beginning with 1 are ordered by decreasing

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

109

L3,0 L3,1 L3,2 L3,3 L4,4

111 1110 11100 111000 11110000

1101 11010 110100 11101000

1011 10110 101100 11011000

11001 110010 10111000

10101 101010 11100100

11010100

10110100

11001100

10101100

11100010

11010010

10110010

11001010

10101010

Figure 4: The recursive structure of colex.

W3,0 W3,1 W3,2 W3,3 W4,4

111 1011 10110 101100 10111000

1101 11010 110100 11011000

1110 10101 101010 11101000

11001 110010 10110100

11100 111000 11010100

10101100

11001100

11100100

10110010

11010010

10101010

11001010

11100010

11110000

Figure 5: The first recursive structure of CoolCat.

number of zeros, except for the suffix 10
s

that ap-

pears last instead of first. Of course, there is only a

single string in Bt,s that has the suffix 10
s
, namely

1
t
0

s
. Amazingly, the alternate placement of this sin-

gle string fully captures the difference between the

recursive structure of CoolCat and colex. We define

the list Wt,s as follows, and we prove that it is equal

to St,s in Theorem 1

Wt,s =























s−1
∏

i=1

Wt−1,i10
s−i, 1

t
0

s
if t = s (7a)

s
∏

i=1

Wt−1,i10
s−i, 1

t
0

s
if t > s.(7b)

Since the recursive structure of Wt,s is a reorder-

ing of the strings in Lt,s we have the following remark.

Remark 1. Wt,s contains each string in Bt,s exactly
once.

An important step towards proving Theorem 1 is

the following lemma, that explicitly identifies the first

and last strings that appear in Wt,s when s > 0.

Lemma 1. For s > 0

first(Wt,s) = 101
t−1

0
s−1

(8)

last(Wt,s) = 1
t
0

s. (9)

Proof. The value of last(Wt,s) follows immediately

from (7). To determine the value of first(Wt,s) we

have the following

first(Wt,s) = first(Wt−1,1)10
s−1

= first(Wt−2,1)110
s−1

= first(Wt−3,1)1110
s−1

= . . .

= first(W1,1)1
t−1

0
s−1

= 101
t−1

0
s−1.

Now we are in a position to prove the main result

of this section.

Theorem 1. St,s = Wt,s.

Proof. To prove the result we need to show that

within Wt,s the first string in each sublist is obtained

by applying σ to the last string of the previous sublist.

The sublists in Wt,s are slightly different depending

on whether t = s (7a) or t > s (7b), so we proceed in

two cases. First we prove the result when t > s. For

the last transition we have

σ(last(Wt−1,s1)) = σ(1
t−1

0
s
1)

= 1
t
0

s

which follows from Lemma 1 and the definition of

σ (1b). For the remaining transitions we have, for

1 ≤ i ≤ s− 1,

σ(last(Wt−1,s−i10
i
)) = σ(1

t−1
0

s−i
10

i
)

= 101
t−2

0
s−i

10
i−1

= first(Wt−1,s−i+110
i−1

)

which follows from Lemma 1 and the definition of σ
(2b). In particular, (2b) applies here since t > s and

i ≥ 1 imply that t− 1 > s− i.
Next we prove the result when t = s. For the last

transition we have

σ(last(Wt−1,s−110)) = σ(1
t−1

0
s−1

10)

= 1
t
0

s

which follows from Lemma 1 and the definition of σ
(2a). In particular, (2a) applies here since t = s. For

the remaining cases we have, for 1 ≤ i ≤ s− 2,

σ(last(Wt−1,s−i10
i
)) = σ(1

t−1
0

s−i
10

i
)

= 101
t−2

0
s−i

10
i−1

= first(Wt−1,s−i+110
i−1

which follows from Lemma 1 and the definition of σ
(2b). In particular, (2b) applies here since t = s and

i ≥ 2 imply that t− 1 > s− i.

Theorem 1 allows us to show that the iterative

definition of CoolCat produces lists that are circular.
That is, in both Rt,s and St,s, the first string can

be obtained by applying σ to the last string. More

generally we have the following corollary.

Corollary 1. For any b ∈ Bt,s and k = |Bt,s|

σk
(b) = b.

Proof. We can prove this result by showing that the

list St,s is circular. This proves the statement of the

corollary and also proves that Rt,s is circular by (4)

CRPIT Volume 77 - Theory of Computing 2008

110

and (3). We accomplish our goal through the fol-

lowing chain of equalities that reference Theorem 1,

Lemma 1, and (1a)

σ(last(St,s)) = σ(last(Wt,s))

= σ(1
t
0

s
)

= 101
t−1

0
s−1

= first(Wt,s)

= first(St,s).

Theorem 1 also allows us to prove that the iterative

definition of CoolCat generates every string in Bt,s.

Corollary 2. Rt,s and St,s contain each string in
Bt,s exactly once.

Proof. The result for St,s follows from Remark 1 and

Theorem 1. The result for Rt,s follows from the fact

that

σk
(1

t
0

s
) = 1

t
0

s

for k = |Bt,s| by Corollary 1, and thus Rt,s is a re-

ordering of St,s by (3) and (4).

Although the recursive definition of Wt,s has its

benefits, sometimes it is more convenient to work with

a recursive definition that contains fewer terms. For

example, in Section 5 we rank the order of the strings

within CoolCat utilizing the following definition

Kt,s =







Kt,s−10 if t = s

Kt−1,s1, 1
t−1

01 if s = 1

Kt,s−10, Kt−1,s1, 1
t−1

0
s
1 if 1 < s < t.

(10)

In Theorem 2 we prove that Kt,s is identical to Wt,s

except that it is missing the string 1
t
0

s
. The proof

is involved, so we provide an illustration for each of

the three cases of (10) in Figure 6. In each column

the overlined and underlined strings denote whether

the number of zeros or ones are being recursively de-

creased, respectively. Strings without an overline or

underline are of the form 1
t−1

0
s
1 and are not involved

in the next lower level of recursion, while the strings

below the horizontal line are of the form 1
t
0

s
and rep-

resent the unique string that is in Wt,s but is not in

Kt,s. For the sake of saving space we only produce

the columns with a smaller number of zeros, until the

number of zeros equals one.

K3,1 K4,1 K4,2 K4,3 K4,4

1011 10111 101110 1011100 10111000

1101 11011 110110 1101100 11011000

11101 111010 1110100 11101000

101101 1011010 10110100

110101 1101010 11010100

101011 1010110 10101100

110011 1100110 11001100

111001 1110010 11100100

1011001 10110010

1101001 11010010

1010101 10101010

1100101 11001010

1110001 11100010

1110 11110 111100 1111000 11110000

Figure 6: The second recursive structure for CoolCat.

Theorem 2. Wt,s = Kt,s, 1
t
0

s.

Proof. We prove the result by a double induction.

The first induction will be on the number of zeros,

and the second induction will be on the number of

ones. For the base case of the first induction we have

s = 1 and it is easy to verify that

Wt,1 =

t
∏

i=1

1
i
01

t−i

=

t−1
∏

i=1

1
i
01

t−i, 1
t
0

= Kt,1, 1
t
0.

Now suppose that s = k > 1 and that the theorem

holds for all s < k. At this point we start our second

induction. For the base case of the second induction

we have t = k. In other words the number of ones

is equal to the number of zeros, which is the mini-

mum possible number of ones. We have the following

expression for Wk,k

=

k−1
∏

i=1

Wk−1,i10
k−i, 1

k
0

k

=

k−1
∏

i=1

Wk−1,i10
k−1−i

0, 1
k
0

k−1
0

=

(k−1
∏

i=1

Wk−1,i10
k−1−i, 1

k
0

k−1

)

0

= (Wk,k−1)0

= (Kk,k−1, 1
k
0

k−1
)0

= Kk,k−10, 1
k
0

k

= Kk,k, 1
k
0

k.

Now to continue with the second induction we sup-

pose that t = k + j, for some j > 0, and that the

theorem holds for all t < k + j. In other words, we

are supposing that there are j more ones than ze-

ros, and that the theorem holds when there are fewer

than j additional ones. Then we have the following

expression for Wk+j,k

=

k
∏

i=1

Wk+j−1,i10
k−i, 1

k+j
0

k

=

k−1
∏

i=1

Wk+j−1,i10
k−i, Wk+j−1,k1, 1

k+j
0

k

=

(k−1
∏

i=1

Wk+j−1,i10
k−1−i

)

0, Wk+j−1,k1, 1
k+j

0
k.

The bracketed product has fewer than k zeros and

equals Wk+j,k−1 except that it is missing 1
k+j

0
k−1

as its last string. Therefore, by the first induction

= Kk+j,k−10, Wk+j−1,k1, 1
k+j

0
k.

The second term has fewer than k+j ones. Therefore,

by the second induction we continue as follows

= Kk+j,k−10, (Kk+j−1,k, 1
k+j−1

0
k
)1, 1

k+j
0

k

= Kk+j,k−10, Kk+j−1,k1, 1
k+j−1

0
k
1, 1

k+j
0

k

= Kk+j,k, 1
k+j

0
k.

This completes the inductive case of the second in-

duction, and so the theorem is true for s = k and all

t ≥ k. This completes the inductive case of the first

induction, and so the theorem is true for all s ≥ 1.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

111

Before closing this section we explicitly state the

first and last strings of Rt,s since it will be useful in

the next section.

Lemma 2. For s > 0

first(Rt,s) = 1
t
0

s

last(Rt,s) =

{

1
t−1

0
s−1

10 if t = s

1
t−1

0
s
1 if t > s.

4 Algorithm

In this section we present an algorithm to generate

Rt,s. That is, we present an algorithm that iteratively

visits each successive string in the CoolCat ordering

starting with 1
t
0

s
. The algorithm is remarkably ef-

ficient in terms of time and storage. In particular it

is loopless in the sense that each successive string is

generated in O(1) time, and it is constant extra-space

in the sense that it uses O(1) storage when excluding

the array b that holds the binary string. The array b
uses 1-based indexing, so b[1] is the first value in the

array. For proposition P , the notation [[P]] means 1

if P is true and 0 if P is false.

As in Section 2, the variable x is used to represent

the position of 1 in the leftmost 01. However, the

variable y is now used to represent the position of

the leftmost 0. The initial values of x and y do not

obey this rule, and they are chosen simply for the

sake of the first iteration. The initial value b = 1
t
0

s

is visited by the visit(b) command on line 5, while all

other values of b contain a leftmost 01 and are visited

on line 21. We say that each iteration starts at the

while statement on line 6. During each iteration there

are three possible routes through the if statements

and these three routes correspond exactly to the cases

from Section 2. If b = 1
p
0

q
11α (case (a)) at the start

of an iteration then the outer if statement on line 11 is

not entered. If b = 1
p
0

p
10α (case (c)) then the inner

if statement on line 12 is entered. If b = 1
p
0

q
10α

for p > q (case (b)) then the inner else statement

is entered. The general idea of the algorithm is to

maintain x and y and to use their values, and the

values of b[x] and b[y], to determine how b needs to

change from one iteration to the next.

CoolCat(t, s)

Require: t ≥ s > 0

1: n← t + s
2: b← array(1

t
0

s
)

3: x← t
4: y ← t
5: visit(b)
6: while x < n− [[t = s]] do
7: b[x]← 0

8: b[y]← 1

9: x← x + 1

10: y ← y + 1

11: if b[x] = 0

12: if x = 2y − 2 { Case (c) }

13: x← x + 1

14: else
15: b[x]← 1 { Case (b) }

16: b[2]← 0

17: x← 3

18: y ← 2

19: end
20: end { else Case (a) }

21: visit(b)
22: end

To prove the correctness of the algorithm we track

the values of the three variables from one visit call to

the next visit. We let b1, b2, . . . represent the values

taken by variable b at each subsequent visit, and we

use the same convention for x and y. For example,

b1 will be the first and only value of b visited at line

5, while b2 will be the first value of b visited at line

21. When yi is the smallest value where bi[yi] = 0

then we will say that yi is correct. Likewise when

xi is the smallest value where bi[xi] = 1 and xi > yi

then we will say that xi is correct. For convenience we

also let Vt,s = b1, b2, . . . , bk where bk is the last value

of b that is visited before the program terminates.

Ultimately we will show that the program does in fact

terminate, and that Vt,s = Rt,s (Theorem 3). We

refer to the current values of b, x, and y as the current

configuration. From lines 2-4 we see that b1 = 1
t
0

s
,

x1 = t and y1 = t, so the initial configuration before

entering the while loop is

b = 1
t
0

s y = t x = t.

By Lemma 2, first(Rt,s) = 1
t
0

s
so b is initialized to

the correct value. The program terminates once x =

n− (t = s) (line 6), where (t = s) equals one if t = s,
and zero otherwise. In other words, if t = s then

CoolCat terminates once x = n − 1, and otherwise

it terminates once x = n. Recall that this condition

echoes the two cases of (7). Finally, we point out

CoolCat’s explicit requirement that t ≥ s > 0. The

next two lemmas will address the first two iterations

of the algorithm.

Lemma 3. Vt,s = Rt,s when t ≤ 2.

Proof. It is easy to verify that V1,1 = 10, V2,1 =

110, 101, and V2,2 = 1100, 1010. In the first case

the program does not enter the while loop and in the

last two cases the program terminates after the while

loop’s first iteration.

Lemma 4. If t > 2 then b2 = σ(b1), x2 = 3, and
y2 = 2.

Proof. When t > 2 the program enters the while loop

and after lines 7-10 we have the following configura-

tion

b = 1
t
0

s y = t + 1 x = t + 1.

Since b[x] = b[t + 1] = 0 the program enters the outer

if statement on line 11. Since t > 2 it does not enter

the inner if statement on line 12 and so lines 15 and

16 are executed to give the following configuration

b = 101
t
0

s y = t + 1 x = t + 1.

After line 17 and line 18 we have the following con-

figuration

b = 101
t−1

0
s−1 y = 2 x = 3.

Since the next line to execute is a visit statement we

have b2 = 101
t−1

0
s−1

. Therefore, we have proven the

result since b1 = 1
t
0

s
and σ(1

t
0

s
) = 101

t−1
0

s−1
by

(1a).

The next lemma explains how the algorithm ter-

minates (the values for last(Rt,s) are recalled from

Lemma 2).

Lemma 5. If t > 1, every bi ∈ Bt,s, and xi is correct
then

last(Vt,s) = last(Rt,s) =

{

1
t−1

0
s−1

10 if t = s

1
t−1

0
s
1 if t > s

CRPIT Volume 77 - Theory of Computing 2008

112

Proof. When t = s, the condition on the while loop

is x < n − 1. If bk = 1
t−1

0
s−1

10 and xk is updated

correctly then xk = n−1, so once bk is visited the pro-

gram will terminate. Furthermore, by (6a) we have

that xi < n− 1 for all i 6= k since by the assumption

all bi ∈ Bt,s.

When t > s, the condition on the while loop is

x < n. If bk = 1
t−1

0
s
1 and xk is updated correctly

then xk = n, so once bk is visited the program will

terminate. Furthermore, by (6b) we have that xi < n
for all i 6= k since by the assumption all bi ∈ Bt,s.

Now that the extreme cases of CoolCat have been

accounted for, we can focus on the general behavior of

the algorithm. In particular, 1
t
0

s
and 1

t−1
0

s
1 have

been dealt with in Lemma 4 and Lemma 5 respec-

tively, so we need only consider the behavior of the

algorithm on binary strings that contain a leftmost

01 and at least one additional symbol following it. In

other words, we assume that b = 11
p
00

q
1z . . . where

z ∈ {0, 1}. From Section 3 we recall our iterative

definition for σ(b)

=

{

111
p
00

qz . . . if p = q and z = 0 (11a)

1z1
p
00

q
1 . . . if p > q or z = 1. (11b)

Notice that when z = 1 then the left side of (11a) and

(11b) are identical. Therefore, we can interchange

their roles when the condition of z = 1 is satisfied.

Thus, the conditions in (11a) and (11b) can be equiv-

alently stated as p = q and p > q, respectively. In

fact, the conditions were originally stated this way in

(2a) and (2b); we make the change here since it opti-

mizes the logic of the resulting program. Another way

of stating the equivalence is that if b = 11
p
00

p
11 . . .

then it does not matter if we move the (2p + 3)rd

symbol or the (2p + 4)th symbol since both are equal

to 1. We now are able to complete this section with

three lemmas. The first two lemmas correspond to

(11b) (cases (a) and (b) respectively), while the third

lemma corresponds to (11a) (case (c)).

Lemma 6. Suppose z = 1, so that bi = 11
p
00

q
11

If xi and yi are correct, then bi+1 = σ(bi) and xi+1

and yi+1 are correct.

Proof. From the statement of the lemma, we can as-

sume that the current configuration appears below

and the program just satisfied the condition of the

while loop

b = 11
p
00

q
11 . . . y = p + 2 x = p + q + 3.

After executing lines 7-10 the current configuration

becomes

b = 11
p
10

q
01 . . . y = p + 3 x = p + q + 4.

Since b[x] = 1 the program does not enter the if

statement on line 11 and so bi+1, xi+1, and yi+1 are

equal to their respective values above. From (11b),

σ(bi) = bi+1. Furthermore, the values of yi+1 and

xi+1 are correct.

Lemma 7. Suppose p > q and z = 0, so that bi =

11
p
00

q
10 . . . with p > q ≥ 0. If xi and yi are correct,

then bi+1 = σ(bi) and xi+1 and yi+1 are correct.

Proof. From the statement of the lemma, we can as-

sume that the current configuration appears below

and the program just satisfied the condition of the

while loop

b = 11
p
00

q
10 . . . y = p + 2 x = p + q + 3.

After executing lines 7-10 the current configuration

becomes

b = 11
p
10

q
00 . . . y = p + 3 x = p + q + 4

= 111
p
0

q
00 . . .

Since b[x] = 0 the program enters the if statement on

line 11. Since x = 2y−2 would imply that p+q+4 =

2p + 4 and thus p = q, then the if statement on line

12 is not entered. After executing lines 15 through 18

the configuration becomes

b = 101
p
0

q
01 . . . y = 2 x = 3.

At this point the program makes the next visit in

line 21, so bi+1, xi+1, and yi+1 are equal to their

respective values above. From (11b), σ(bi) = bi+1.

Furthermore, the value of yi+1 is correct. Finally, the

value of xi+1 is also correct since p > 0.

Lemma 8. Suppose p = q and z = 0, so that bi =

11
p
00

p
10 If xi and yi are correct, then bi+1 =

σ(bi) and xi+1 and yi+1 are correct.

Proof. From the statement of the lemma, we can as-

sume that the current configuration appears below

and the program just satisfied the condition of the

while loop

b = 11
p
00

p
10 . . . y = p + 2 x = 2p + 3.

After executing lines 7-10 the current configuration

becomes

b = 11
p
10

p
00 . . . y = p + 3 x = 2p + 4.

Since b[x] = 0 the program enters the if statement

on line 11. Since x = 2y − 2 the program enters the

if statement on line 12. After executing line 13 the

current configuration becomes

b = 11
p
10

p
00 . . . y = p + 3 x = 2p + 5.

At this point the program makes the next visit in

line 21, so bi+1, xi+1, and yi+1 are equal to their

respective values above. From (11a), σ(bi) = bi+1.

Furthermore, the value of yi+1 is correct. However,

can we be certain that the value of xi+1 is correct?

Notice that the explicitly displayed portion of b in the

above configuration contains an equal number of 1s

and 0s. Hence, the next symbol must be 1, and so

the value of xi+1 is also correct.

The result of Lemmas 3-8 is that CoolCat(t, s)
correctly visits and updates first(Rt,s), and then cor-

rectly visits and updates every other string in Rt,s up

to and including last(Rt,s) after which it terminates.

Therefore, we have proven the following theorem.

Theorem 3. For all t ≥ s > 0, we have Vt,s = Rt,s.

5 Ranking

In this section we develop a ranking algorithm that

uses O(n) arithmetic operations. We will need to

know the number of elements in Kt,s, which we de-

note by Kt,s = |Bt,s| − 1. Table 1 shows Kt,s for

0 ≤ s ≤ t ≤ 8.

Theorem 4. For all 0 ≤ s ≤ t,

Kt,s + 1 =
t− s + 1

t + 1

(

t + s

t

)

=

(

t + s

t

)

−

(

t + s

t + 1

)

.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

113

0 1 2 3 4 5 6 7 8

0 1

1 1 1

2 1 2 2

3 1 3 5 5

4 1 4 9 14 14

5 1 5 14 28 42 42

6 1 6 20 48 90 132 132

7 1 7 27 75 165 297 429 429

8 1 8 35 110 275 572 1001 1430 1430

Table 1: The Catalan triangle. The row t, column s

entry is Kt,s =
t−s+1

t+1

(

t+s

t

)

.

Proof. These are well-known properties of the “Cata-

lan triangle” (Knuth (2006), Stanley (1999)).

Let b = b0b2 · · · bt+s−1 ∈ Bt,s. We use ρ(b) to de-

note the rank of b in the list Kt,s. Here is a recursive

description of the ranking process; it follows directly

from (10). Let b′
= b0b2 · · · bt+s−2.

ρ(b) =







ρ(b′
) if bt+s−1 = 0

Kt,s − 1 if b = 1
t−1

0
s
1

Kt−1,s + ρ(b′
) otherwise.

(12)

For example,

ρ(1010101) = K4,2 + ρ(101010)

= 8 + ρ(10101)

= 8 + K3,1 + ρ(1010)

= 8 + 2 + ρ(101)

= 10 + K2,1 − 1

= 10

Note that (12) ignores trailing 0s; the rank there-

fore depends only on the positions of the 1s. If

c1, c2, . . . , ct are the positions occupied by the 1s and

q is the minimum value for which cq > q, then (12)

can be iterated to obtain

ρ(c1c2 . . . ct) = Kq,cq−q−1 +

t
∑

j=q+1

Kj,cj−j−1. (13)

We now show that there is a nice way to view

the ranking process as a walk on a certain integer

lattice. Refer to Figure 7. The walk starts at the

upper left; each 1 is a vertical step down and each 0

is a horizontal step to the right. The vertical edges are

labeled, where the t-th row of vertical edges (counting

from 1) gets labeled as follows from left-to-right: (no

label), Kt,0, Kt,1, . . . , Kt,t−1. The label furthest to

the right in each row is not on an edge. Figure 7

illustrates the path for the bitstring 11100110101100.

The square marks the endpoint of the part of the path

that ends at the leftmost 01; i.e, the string 111001 in

the example bitstring. The rank of the bitstring is

obtained by summing the edge labels on the path after

the square, adding the edge label on the edge to the

right of the one that precedes the square (the circled

label in the figure), and then subtracting 1. Thus

ρ(11100110101100) = 4+19+74+109+8−1 = 213.

To unrank we reverse the process. We use ρ−1

t,s
(m)

to denote the string b ∈ Bt,s whose rank in Kt,s is m.

Suppose, for example, that we want the rank 212 bit-

string with t = 8 and s = 6; i.e., ρ−1

(8,6)
(212). We start

where the example path ends. We move to the left

so long as the edge labels exceed the remaining rank,

13

8

27

0

34

164

274

89

571

296

1000

266 74

1

0

13

41

131

428

4

1429

19 475

7

3

0

2

0

0

0

0 109

40

Figure 7: Ranking 11100110101100.

then move up and repeat. Arriving at the old square,

we are at an impasse; the remaining rank is 7, so we

have yet to encounter the square. So we so up and

the rank becomes 4, which is what remains if we make

the current location (one move above the old square)

the new square. Thus ρ−1

(8,6)
(212) = 11001110101100.

We leave it to the reader to turn this description into

an algorithm.

What is the running time of the ranking algo-

rithm? Let n = t+s. Note that (12) and (13) involve

O(n) additions and other operations. We can avoid

computing the entire table by only computing the val-

ues needed along the path. First compute Kt,s, which

takes O(n) arithmetic operations. Then make use of

the following relations which can be checked using

Theorem 4:

1 + Kt−1,s =
(t + 1)(t− s)

(t− s + 1)(t + s)
(1 + Kt,s) and

1 + Kt,s−1 =
s(t− s + 2)

(t− s + 1)(t + s)
(1 + Kt,s).

Of course, if many ranking/unranking operations are

being performed then it will be better to pre-compute

the Kt,s table.

6 Final Remarks

For future research, it would be interesting to deter-

mine whether the results of this paper can be ex-

tended to the natural 0/1 representation of k-ary

trees, or to ordered trees with prescribed degree se-

quence (Zaks & Richards (1979)).

We thank the referees for carefully reading this

paper and pointing out a number of typos and places

where the exposition could be improved.

References

B. Bultena & F. Ruskey (1998), An Eades-McKay
Algorithm for Well-Formed Parenthesis Strings, In-

formation Processing Letters, 68, pp. 255–259.

Donald E. Knuth (2005), The Art of Computer Pro-
gramming, Volume 4: Generating all Combinations
and Partitions, Fascicle 3, Addison-Wesley, 150

pages.

CRPIT Volume 77 - Theory of Computing 2008

114

Donald E. Knuth (2005), The Art of Computer Pro-
gramming, Volume 4: Generating all Trees; His-
tory of Combinationatorial Generation, Fascicle 4,

Addison-Wesley, 120 pages.

J. Korsh, P. LaFolette, & S. Lipschutz (2003), Loop-
less Algorithms and Schröder Trees, International

Journal of Computer Mathematics, 80, pp. 709–

725.

J. Lucas, D. Roelants, and F. Ruskey (1993), On Ro-
tations and the Generation of Binary Trees, Jour-

nal of Algorithms, 15, pp. 343–366.

D. Roelants (1991), A Loopless Algorithm for Gener-
ating Binary Tree Sequences, Information Process-

ing Letters, 39, pp. 184–194.

F. Ruskey (1979), Simple combinatorial Gray codes
constructed by reversing sublists, 4th ISAAC (Inter-

national Symposium on Algorithms and Computa-

tion), Lecture Notes in Computer Science, #762,

pp. 201–208.

F. Ruskey and A. Proskurowski (1990), Generating
Binary Trees by Transpositions, Journal of Algo-

rithms, 11, pp. 68–84.

F. Ruskey & A. Williams (2005), Generating Com-
binations By Prefix Shifts, Computing and Com-

binatorics, 11th Annual International Conference,

COCOON 2005, Kunming, China, August 16-29,

2005, Proceedings. Lecture Notes in Computer Sci-

ence 3595, Springer-Verlag.

F. Ruskey and A. Williams (2008), The Coolest way
to Generate Combinations, Discrete Mathematics,

to appear, 2008.

R.P. Stanley (1999)Enumerative Combinatorics,
vol. 2, Cambridge University Press, New

York/Cambridge, 1999, xii + 581 pages.

R.P. Stanley (2007), Catalan Addendum,

version of 20 June 2007; 61 pages,

http://www-math.mit.edu/~rstan/ec/.

T. Takaoka (1999), O(1) Time Algorithms for Com-
binatorial Generation by Tree Traversal, The Com-

puter Journal, vol. 42, no. 5, pp. 400–408.

T. Takaoka & S. Violich (2006), Combinatorial Gen-
eration by Fusing Loopless Algorithms, In Proc.

Twelfth Computing: The Australasian Theory

Symposium (CATS2006), Hobart, Australia. CR-

PIT, 51. Gudmundsson, J. and Jay, B., Eds., ACS.

69–77.

V. Vajnovszki (1998), On the Loopless Generation
of Binary Tree Sequences, Information Processing

Letters, 68, pp. 113–117.

V. Vajnovszki & T. Walsh (2006), A loopless two-
close Gray-code algorithm for listing k-ary Dyck
Words, Journal of Discrete Algorithms, Vol. 4, No.

4, pp. 633–648.

R. Walsh, A Simple Sequencing And Ranking Method
That Works On Almost All Gray Codes, Unpub-

lished Research Report, Department of Mathemat-

ics and Computer Science, UQAM P.O. Box 8888,

Station A, Montreal, Quebec, Canada H3C 3P8, 68

pages.

T. R. Walsh (2003), Generating Gray codes in O(1)
worst-case time per word, Lecture Notes in Com-

puter Science 2731, Proceedings of the 4h Interna-

tional Conference, Discrete Mathematics and Theo-

retical Computer Science 2003, Dijon, France, July

7-12, 2003, Springer-Verlag, New York, (2003), 73–

88.

S. Zaks & D. Richards (1979), Generating Trees
and Other Combinatorial Objects Lexicographically,
SIAM J. Computing, 8, pp. 73–81.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

115

http://www-math.mit.edu/~rstan/ec/

CRPIT Volume 77 - Theory of Computing 2008

116

also have applications to isometry groups and mathe-
matical biology (Ganyushkin et al. 1994, Ganyushkin
& Tsvirkunov 1994), quadratic forms and phyloge-
netic analysis (Dress et al. 2001), theory of quater-
nions (Weston 2001), scalable biological databases
(Miranker 2003), sequences homology (Mao et al.
2005) and approximate string matching (Chávez &
Navarro 2006), to name a few.

Unfortunately, as we will see in Section 3, it is
computationally hard to determine whether one met-
ric spaces is similar to another one under various no-
tions of metric similarity. First, deciding whether two
input metric spaces are isometric (Croom 2002) is as
hard as the graph isomorphism problem (Papadim-
itriou 1994), for which no polynomial-time algorithms
are known despite extensive research. Second, con-
sider the problem of deciding, on input L ≥ 1 and
finite metric spaces (M,d) and (M,ρ), whether or
not these spaces are L-bilipschitz equivalent (Farb &
Mosher 1999, David & Semmes 2000). That is, we
want to decide whether the metric spaces (M,d) and
(M,ρ) exhibit a bijective map between them that pre-
serves distances up to multiplicative factors ranging
from 1/L to L. We observe that the results of Kenyon,
Rabani and Sinclair (Kenyon et al. 2004) imply that it
is hard even to approximate the least value of L such
that (M,d) and (M,ρ) are L-bilipschitz equivalent.
This may be interpreted as saying that it is hard to
approximately compute the level of bilipschitz simi-
larity even between finite metric spaces with the same
ground set. Given the above hardness results, a ran-
domized approximation algorithm with a reasonable
complexity can be an attractive alternative to attack
the problem of determining metric similarity or even
metric embeddability.

An algorithm in the flavor of property testing (Fis-
cher 2001) is one such alternative. It determines
whether a problem instance has a certain property or
is ε-far (under a certain distance measure) from hav-
ing such a property, while allowing a small probability
of error. In this paper, we seek an algorithm T that,
when given as input ε > 0, L ≥ 1 and given oracle
access to finite metric spaces (M,d) and (N, ρ) with
|M | ≤ |N |, has the following two properties. First, T
accepts if

1/L · d(x, y) ≤ ρ(f(x), f(y)) ≤ L · d(x, y)

holds for some injection f : M → N and all (x, y) ∈
M ×M, that is, T accepts if (M,d) is L-bilipschitz
embeddable into (N, ρ) (Farb & Mosher 1999, David
& Semmes 2000, Croom 2002). Second, T rejects with
high probability if the above inequality fails on at
least an ε fraction of pairs (x, y) ∈ M ×M for every
injection f : M → N. Such an algorithm T is called a
one-sided tester for bilipschitz embeddability in this
paper. Its query complexity is measured in terms of
the number of times that it queries the metric spaces,
where each query asks for the distance between a pair
of points chosen for that query.

We give a one-sided tester for bilipschitz
embeddability with query complexity at most

O(
√

ln |N |
ε|M | (|M |2 + |N |2)). We also show an Ω(|N |3/2)

lower bound on the query complexity of any one-sided
tester for bilipschitz embeddability even for the spe-
cial case of finite |M | = |N | and L = 1. If (N, ρ)
is known in advance, queries need only go to (M,d)
and the query complexity is shown to be O(|M | ln |N |

ε).
Our results utilize techniques developed by Fischer
and Matsliah (Fischer & Matsliah 2006) in an earlier
work on testing graph isomorphism.

We also give an extension to the case where the
metric space (N, ρ) is known in advance but is not
necessarily finite. When (N, ρ) is a totally bounded

(Croom 2002) metric space known a priori, we devise
an algorithm that in a technical sense tests whether a
finite metric space (M,d) is (κ, C) quasi-isometrically
embeddable (Ghys & de la Harpe 1991, Farb 1997,
Farb & Mosher 1999, 2000) into (N, ρ), for input pa-
rameters κ ≥ 1 and C ≥ 0. The exact statement of
this result is given in Section 6.

This paper is organized as follows. Section 2 gives
the definitions. Section 3 gives the hardness results,
which motivate switching to a property-testing fla-
vored model. Sections 4–5 present upper bound and
lower bounds on the query complexity of one-sided
testers for bilipschitz embeddability. Section 6 ex-
tends the results to testing embeddability of a finite
metric space into a totally bounded metric space. Sec-
tion 7 discusses definitional issues and concludes the
paper.

2 Definitions

Let S be an arbitrary set and t be a positive integer.
We write St for the t-dimensional Cartesian product
of S, and any pair (x, y) ∈ S × S is understood as an
ordered pair unless otherwise specified. A function
dS : S × S → R is a metric on S if for all x, y, z ∈ S,
we have dS(x, y) ≥ 0, dS(x, y) = 0 if and only if x = y,
dS(x, y) = dS(y, x) and dS(x, y) ≤ dS(x, z)+dS(z, y).
A metric space is a set (called its ground set) endowed
with a metric on it (Rudin 1976).

Let L ≥ 1, (M,d) be a finite metric space and
(N, ρ) be a metric space. We say that (M,d) is L-
bilipschitz embeddable into (N, ρ) if there is an injec-
tive function f : M → N satisfying

1/L · d(x, y) ≤ ρ(f(x), f(y)) ≤ L · d(x, y) (1)

for all (x, y) ∈M ×M (Apostol 1974, Farb & Mosher
1999, David & Semmes 2000). Clearly, Eq. (1) could
also be written equivalently as

1/L · ρ(f(x), f(y)) ≤ d(x, y) ≤ L · ρ(f(x), f(y)).

In this paper, we also say that (M,d) is ε-far from
being L-bilipschitz embeddable into (N, ρ) if, for ev-
ery injection f : M → N, there are at least ε|M |2
pairs (x, y) ∈ M × M violating Eq. (1). Similarly,
for κ ≥ 1 and C ≥ 0, we say that (M,d) is (κ, C)
quasi-isometrically embeddable into (N, ρ) if there is
a function f : M → N satisfying

1/κ · d(x, y)− C ≤ ρ(f(x), f(y)) ≤ κ · d(x, y) + C (2)

for all (x, y) ∈ M ×M (Ghys & de la Harpe 1991,
Farb 1997, Farb & Mosher 1999, 2000). If for every
function f : M → N, Eq. (2) fails on at least ε|M |2
pairs (x, y) ∈ M × M, then (M,d) is said to be ε-
far from being (κ, C) quasi-isometrically embeddable
into (N, ρ).

For finite |M | = |N |, we say that (M,d) is
L-bilipschitz equivalent to (N, ρ) if (M,d) is L-
bilipschitz embeddable into (N, ρ) (Farb & Mosher
1999, David & Semmes 2000). Since for finite |M | =
|N |, every injection from M to N is a bijection, it
is easy to see that (M,d) is L-bilipschitz equivalent
to (N, ρ) if and only if Eq. (1) holds for some bijec-
tion f : M → N and all (x, y) ∈ M ×M. Clearly,
L-bilipschitz equivalence is a reflexive and symmetric
relation between metric spaces. For finite |M | = |N |,
the minimum value of L ≥ 1 for which (M,d) and
(N, ρ) are L-bilipschitz equivalent can be thought
of as a measure on the similarity between (M,d)
and (N, ρ). The smaller this value, the more simi-
lar the metric spaces are. In the extreme case, (M,d)
and (N, ρ) are 1-bilipschitz equivalent if and only if

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

117

they are isometric, that is, there exists a distance-
preserving bijective map (called an isometry) between
them (Croom 2002). For ε > 0 and finite |M | = |N |,
we say that (M,d) and (N, ρ) are ε-far from being
L-bilipschitz equivalent if (M,d) is ε-far from being
L-bilipschitz embeddable into (N, ρ). This is the same
as saying that Eq. (1) fails on at least an ε fraction of
pairs (x, y) ∈ M ×M for every bijection f. If (M,d)
and (N, ρ) are ε-far from being 1-bilipschitz equiva-
lent, they are said to be ε-far from being isometric.

When a metric space is given as an oracle, it means
that we can query the oracle for the distance between
any pair of points. Given as input L ≥ 1, ε > 0,
positive integers m ≤ n and given oracle access to
finite metric spaces (M,d), (N, ρ) with |M | = m and
|N | = n, we are interested in the number of queries
(to (M,d) and (N, ρ)) needed to determine whether
(M,d) is L-bilipschitz embeddable into (N, ρ) or ε-
far from being L-bilipschitz embeddable into (N, ρ).
In particular, we seek an algorithm T that accepts
when (M,d) is L-bilipschitz embeddable into (N, ρ),
and rejects with high probability when (M,d) is ε-
far from being L-bilipschitz embeddable into (N, ρ).
Such an algorithm T is said to be a one-sided tester
for bilipschitz embeddability in this paper. Similarly,
an algorithm is a one-sided tester for bilipschitz equiv-
alence (respectively, isometry) if, when we restrict to
finite |M | = |N |, it accepts when (M,d) and (N, ρ)
are L-bilipschitz equivalent (respectively, isometric)
and rejects with high probability when (M,d) and
(N, ρ) are ε-far from being L-bilipschitz equivalent
(respectively, isometric). Finally, a one-sided tester
for quasi-isometric embeddability is given as input
κ ≥ 1, C ≥ 0, positive integers m ≤ n and given
oracle access to metric spaces (M,d) and (N, ρ) with
|M | = m and |N | = n. It is required to accept if
(M,d) is (κ, C) quasi-isometrically embeddable into
(N, ρ) and reject with high probability if (M,d) is ε-
far from being (κ, C) quasi-isometrically embeddable
into (N, ρ).

For ε > 0, positive integers m ≤ n and a one-
sided tester T for bilipschitz embeddability, the query
complexity of T with respect to ε,m and n is its worst-
case number of queries when it is given ε,m, n, any
L ≥ 1 and oracle access to any metric spaces (M,d)
and (N, ρ) with |M | = m and |N | = n. Here the worst
case is taken over all L ≥ 1 and all metric spaces
(M,d) and (N, ρ) (of sizes m and n) given as oracles.
The query complexity (with respect to ε,m and n)
of a one-sided tester for isometry is defined similarly
except that L is fixed to 1 and m is fixed to equal n.

Let G1 = (V,E1) and G = (V,E2) be undirected
simple graphs (West 2001). An isomorphism between
G1 and G2 is a bijection π : V → V such that
for all x, y ∈ V, we have (x, y) ∈ E1 if and only if
(π(x), π(y)) ∈ E2 (Papadimitriou 1994). The graph
isomorphism problem asks whether two undirected
simple graphs exhibit an isomorphism between them
(Papadimitriou 1994). For ε > 0, we say that G1
and G2 are ε-far from being isomorphic if for every
bijection π : V → V, there are at least ε

(|V |
2

)
un-

ordered pairs (x, y) ∈ V ×V such that (x, y) ∈ E1 but
(π(x), π(y)) /∈ E2, or (x, y) ∈ E2 but (π(x), π(y)) /∈
E1 (Fischer & Matsliah 2006).

When an algorithm is given oracle access to an
undirected simple graph G = (V,E), it means that
the algorithm may query the oracle on any (x, y) ∈
V ×V and be informed of whether (x, y) ∈ E. A one-
sided tester for graph isomorphism receives as input
ε > 0, a positive integer n and is given oracle access
to two undirected simple graphs G1 = (V,E1) and
G2 = (V,E2) with |V | = n. It must accept if G1 is
isomorphic to G2 and reject with high probability if
G1 is ε-far from being isomorphic to G2.

3 Hardness

In this section, we show that the problem of decid-
ing whether two input metric spaces are isometric is
polynomial-time reducible to and from the graph iso-
morphism problem, for which no polynomial-time al-
gorithm has been known despite extensive research.
Furthermore, we show that it is hard even to approx-
imate the least L ≥ 1 for which two input finite met-
ric spaces are L-bilipschitz equivalent. In contrast to
these hardness results, we will show in the Section 4
that there is an efficient one-sided tester for bilips-
chitz embeddability.

We state the following theorem. For its proof
please refer to Appendix I.

Theorem 1. The problem of testing whether two in-
put metric spaces with the same finite ground set are
isometric is polynomial-time reducible to and from the
graph isomorphism problem.

The problem of approximating the least L ≥ 1 for
which two input finite metric spaces with the same
ground set are L-bilipschitz equivalent is even harder,
provided that NP 6= P. This is stated in the follow-
ing theorem, which is implicit in the work of Kenyon,
Rabani and Sinclair (Kenyon et al. 2004) (see Propo-
sition 2.2 and Proposition 2.4 in their paper).

Theorem 2. ((Kenyon et al. 2004)) If there is an
algorithm that, on input any two finite metric spaces
(M,d) and (M,ρ), outputs a number L∗ ≥ 1 such that
(M,d) is L∗-bilipschitz equivalent to (M,ρ) and

L∗ <

√
4
3
·min{L ≥ 1 | (M,d) is L-bilipschitz

equivalent to (M,ρ)},

then NP = P.

That is, it is hard to approximate to within a mul-
tiplicative

√
4/3 the minimum value of L ≥ 1 for

which two input finite metric spaces are L-bilipschitz
equivalent.

4 An upper bound on the query complexity

In this section, we give a one-sided tester for bilips-
chitz embeddability. Clearly, this also gives one-sided
testers for bilipschitz equivalence and isometry. For
convenience, we make the following definition.

Definition 1. Let L ≥ 1, (M,d) be a finite metric
space, (N, ρ) be a metric space and f : M → N be
a function. A quadruple (x, y, u, v) ∈ M2 × N2 re-
futes f for the L-bilipschitz embeddability of (M,d)
into (N, ρ) if u = f(x), v = f(y) but

1/L · d(x, y) ≤ ρ(f(x), f(y)) ≤ L · d(x, y)

fails to hold. A set S ⊆ M2 × N2 of quadruples re-
futes f for the L-bilipschitz embeddability of (M,d)
into (N, ρ) if at least one element of S does. When
L, (M,d) and (N, ρ) are clear from the context, we
may simply say that a quadruple (x, y, u, v) ∈ M2 ×
N2 or a set of quadruples refutes f without explicitly
referring to L, (M,d) and (N, ρ).

The following lemma states that the algorithm
TEST-BILIP in Figure 1 is a one-sided tester for
bilipschitz embeddability.

Lemma 3. On input L ≥ 1, ε > 0, positive inte-
gers m ≤ n and given oracle access to finite metric
spaces (M,d) and (N, ρ) with |M | = m and |N | = n,

CRPIT Volume 77 - Theory of Computing 2008

118

1: if ln n
εm ≥ 1/4 then

2: Query (M,d) and (N, ρ) for the distances be-
tween all pairs of points;

3: if (M,d) is L-bilipschitz embeddable into
(N, ρ) then

4: Accept;
5: else
6: Reject;
7: end if
8: else if 2 · n

m

√
ln n
εm ≥ 1 then

9: pM ← 1;
10: pN ← 4 · ln n

εm ;
11: else
12: pM ← 2 · n

m

√
ln n
εm ;

13: pN ← 2 · m
n

√
ln n
εm

14: end if
15: Construct QM ⊆M×M by choosing each pair in

M ×M into QM independently with probability
pM ;

16: Construct QN ⊆ N ×N by choosing each pair in
N × N into QN independently with probability
pN , using random coin tosses independent from
those used to construct QM ;

17: if |QM | > 1000 pM m2 or |QN | > 1000 pN n2

then
18: Accept without making any queries;
19: else
20: Query every element of QM to (M,d);
21: Query every element of QN to (N, ρ);
22: if all injections from M to N are refuted by

QM ×QN ⊆M2 ×N2 then
23: Reject;
24: else
25: Accept;
26: end if
27: end if

Figure 1: Algorithm TEST-BILIP. The inputs are
L ≥ 1, ε > 0 and positive integers m ≤ n. The met-
ric spaces (M,d) and (N, ρ) are given as oracles and
satisfy |M | = m and |N | = n.

TEST-BILIP accepts if (M,d) is L-bilipschitz em-
beddable into (N, ρ), and rejects with high probability
if (M,d) is ε-far from being L-bilipschitz embeddable
into (N, ρ).

Proof. If ln n
εm ≥ 1/4, then TEST-BILIP does ex-

haustive queries and accepts exactly when (M,d) is
L-bilipschitz embeddable into (N, ρ). Hence, we may
assume that

lnn

εm
< 1/4 (3)

in the following.
It is clear that TEST-BILIP accepts whenever

(M,d) is L-bilipschitz embeddable into (N, ρ).
Now assume that (M,d) is ε-far from being L-

bilipschitz embeddable into (N, ρ) and let f : M → N
be an arbitrary injection. Denote by Sf the set of all
pairs (x, y) ∈M ×M for which the inequality

1/L · d(x, y) ≤ ρ(f(x), f(y)) ≤ L · d(x, y)

fails to hold. By assumption we have |Sf | ≥
ε|M |2 = εm2. For any (x, y) ∈ Sf , the probability,

taken over the random coin tosses of TEST-BILIP,
that both (x, y) ∈ QM and (f(x), f(y)) ∈ QN is
pM pN (although there are two possible assignments
to pM and pN by TEST-BILIP). Now write Sf =
{(x1, y1), . . . , (xt, yt)}. Since f is injective, the pairs
(f(x1), f(y1)), . . . , (f(xt), f(yt)) are different. Hence,
the 2t events

(x1, y1) ∈ QM

...
(xt, yt) ∈ QM

(f(x1), f(y1)) ∈ QN

...
(f(xt), f(yt)) ∈ QN

are independent. From this it is not hard to see that
with probability∏

(x,y)∈Sf

(1− pM pN) ≤ (1− pM pN)εm2

,

none of (x, y) ∈ Sf satisfies both (x, y) ∈ QM and
(f(x), f(y)) ∈ QN . Since QM × QN refutes f when
there is a pair (x, y) ∈ Sf satisfying both (x, y) ∈ QM

and (f(x), f(y)) ∈ QN , the probability taken over the
random coin tosses of TEST-BILIP that QM ×QN
refutes f is at least

1− (1− pM pN)εm2
.

By the union bound and the fact that there are nm

functions from M to N, with probability at least

1− nm (1− pM pN)εm2
(4)

over the random coin tosses of TEST-BILIP, every
injection from M to N is refuted by QM ×QN .

Now there are two cases to consider. The first is
when 2 · n

m

√
ln n
εm ≥ 1. In this case, TEST-BILIP sets

pM = 1 and pN = 4 · ln n
εm where pN < 1 is guaranteed

by Eq. (3). The second case is when 2 · n
m

√
ln n
εm < 1.

In this case, TEST-BILIP sets pM = 2 · n
m

√
ln n
εm < 1

and pN = 2 · m
n

√
ln n
εm where pN < 1 is guaranteed

by the facts that pN = (m
n)2pM and m ≤ n. In both

cases, we have pM pN = 4 · ln n
εm , resulting in Eq. (4)

to be

1− nm (1− pM pN)εm2

= 1− exp(m lnn) · (1− pM pN)
1

pM pN
·pM pN εm2

≥ 1− exp(m lnn) exp(−pM pN εm2)
= 1− exp(−3m lnn).

By the Chernoff bound (Chernoff 1952) and the
fact that m ≤ n, it can be verified that in both
the aforementioned cases of setting pM and pN , the
event |QM | > 1000 pM m2 happens with probabil-
ity exp(−Ω(n

√
m)) over the random coin tosses of

TEST-BILIP (in fact, for the case of pM = 1,
the probability that |QM | > 1000 pM m2 is zero).
Similarly, the event |QN | > 1000 pN n2 happens
with probability exp(−Ω(n)). Finally, if |QM | ≤
1000 pM m2, |QN | ≤ 1000 pN n2 and every injection
from M to N is refuted by QM × QN , then TEST-
BILIP clearly rejects. The union bound therefore

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

119

shows that TEST-BILIP rejects with probability at
least

1− exp(−3m lnn)− exp(−Ω(n
√

m))− exp(−Ω(n)),

which is close to 1 for sufficiently large n ∈ N.

We now turn to analyze the query complexity of
TEST-BILIP.

Lemma 4. On input L ≥ 1, ε > 0, positive inte-
gers m ≤ n and given oracle access to finite metric
spaces (M,d) and (N, ρ) with |M | = m and |N | = n,
the query complexity (with respect to ε,m and n) of

TEST-BILIP is O(
√

ln n
εm (m2 + n2)).

Proof. If ln n
εm ≥ 1/4, then TEST-BILIP does exhaus-

tive queries. The query complexity is m2 + n2 =

O(
√

ln n
εm (m2 + n2)). Hence, we may assume that

lnn

εm
< 1/4 (5)

in the following.
The query complexity of TEST-BILIP is at most

1000 pM m2+1000 pN n2 = O(pM m2+pN n2). Again,
there are two cases to consider. The first is is when

2 · n

m

√
lnn

εm
≥ 1. (6)

In this case, TEST-BILIP sets pM = 1 and pN =
4 · ln n

εm . The second is when Eq. (6) does not hold. In

this case, TEST-BILIP sets pM = 2 · n
m

√
ln n
εm < 1

and pN = 2 · m
n

√
ln n
εm .

In the first case,

pM m2 + pN n2

= m2 +
lnn

εm
· 4n2

Eq. (6)

≤ lnn

εm
· 4n2 +

lnn

εm
· 4n2

Eq. (5)

≤
√

lnn

εm
(4n2 + 4n2)

= O(

√
lnn

εm
(m2 + n2)).

In the second case,

pM m2+pN n2 = O(mn

√
lnn

εm
) = O(

√
lnn

εm
(m2+n2)).

Combining Lemmas 3–4, we finally arrive at the
the main result for this section.

Theorem 5. TEST-BILIP is a one-sided tester
for bilipschitz embeddability with query complexity

O(
√

ln n
εm (m2 + n2)) with respect to any ε > 0 and

any positive integers m ≤ n.

When the space (N, ρ) is not too large, or more
specifically when n = exp(o(εm)), Theorem 5 im-
plies that TEST-BILIP has a query complexity of
o(m2 + n2) with respect to ε,m and n. That is, most

distances between pairs need not be queried for one-
sided testing of bilipschitz embeddability, provided
that the host space is not excessively large.

When (N, ρ) is known in advance, a one-sided
tester for bilipschitz embeddability needs only query
the other space (M,d). Equivalently, we could con-
sider one-sided testers for bilipschitz embeddability
that may still make queries to both metric spaces,
while counting only its query complexity concern-
ing (M,d). That is, queries to (N, ρ) are regarded
as dummy queries. This gives the following easy ex-
tension of Theorem 5, whose sketch of proof is given
in Appendix II. But this time we use quasi-isometric
embeddability for illustration and to be used later in
Section 6.

Theorem 6. There is a one-sided tester for quasi-
isometric embeddability which, on input κ ≥ 1, C ≥
0, ε > 0, positive integers m ≤ n and given oracle
access to metric spaces (M,d) and (N, ρ) with |M | =
m and |N | = n, makes O(m ln n

ε) queries to (M,d).

5 A lower bound on the query complexity

In this section we show a lower bound on the query
complexity of any one-sided tester for isometry. This
will imply the same lower bound for any one-sided
tester of bilipschitz equivalence. For this purpose, we
relate the testing of isometry to testing graph isomor-
phism. The following theorem is due to Fischer and
Matsliah (Fischer & Matsliah 2006).

Theorem 7. ((Fischer & Matsliah 2006)) Let ε ∈
(0, 1

100) and n be a positive integer. For every one-
sided tester T for graph isomorphism, there are undi-
rected simple n-vertex graphs G1 and G2 such that
given ε ∈ (0, 1

100), n and oracle access to G1 and G2,

T makes at least n3/2

200 queries.

Using Theorem 7, it is not hard to give the follow-
ing n3/2

200 lower bound on the query complexity of any
one-sided tester for isometry.

Theorem 8. Let ε ∈ (0, 1
200) and n be a positive

integer. The query complexity of any one-sided tester
for isometry is at least n3/2

200 with respect to ε and n.

The interested reader is referred to Appendix III
for the proof of Theorem 8

6 Embeddability into possibly infinite spaces

So far we have been dealing with the embeddability
of a finite metric space into another finite one. In
this section, we are interested in testing the embed-
dability of a finite metric space (M,d) into a totally
bounded (Croom 2002) metric space (N, ρ) that is
known in advance. Examples of totally bounded met-
ric spaces include all compact metric spaces (Croom
2002), which in turn include all closed and bounded
sets in the Euclidean space by the Heine-Borel theo-
rem (Rudin 1976).

Definition 2. ((Croom 2002)) Let (X, d) be any met-
ric space. For δ > 0, a δ-net Aδ of (X, d) is a finite
subset of X such that for every point x ∈ X, there is
an y ∈ Aδ with d(x, y) < δ. If (X, d) has a δ-net for
every δ > 0, then (X, d) is totally bounded.

We are now ready to state our main theorem for
this section.

CRPIT Volume 77 - Theory of Computing 2008

120

Theorem 9. Let (N, ρ) be a totally bounded metric
space. Assume there is an algorithm that outputs a δ-
net Aδ of (N, ρ) on input any δ > 0. Then there is an
algorithm T that, on input κ ≥ 1, 0 ≤ C ′ < C, ε > 0, a
positive integer m and given oracle access to a metric
space (M,d) with |M | = m, satisfies the following
conditions.

1. If (M,d) is (κ, C ′) quasi-isometrically embed-
dable into (N, ρ), then T accepts.

2. If (M,d) is ε-far from being (κ, C) quasi-
isometrically embeddable into (N, ρ), then T re-
jects with high probability.

3. T makes O(
m ln |A(C−C′)/2|

ε) queries to (M,d).

Proof. Denote by QUASI-ISO the algorithm im-
plied in Theorem 6. The algorithm T first selects a
(C−C ′)/2-net A(C−C′)/2. Then T runs QUASI-ISO
on input κ, C, ε,m, |A(C−C′)/2| and supplies QUASI-
ISO with oracle access to (M,d) and (A(C−C′)/2, ρ).
Clearly, T could satisfy each query of QUASI-ISO by
turning the same query to the corresponding metric
space. Finally, T accepts if and only if QUASI-ISO
accepts. The intuition is that T uses QUASI-ISO to
test (M,d) for (κ, C) quasi-isometric embeddability
into (A(C−C′)/2, ρ).

Now we prove item 1. The premise of item 1 trans-
lates to the existence of a function f : M → N such
that

1/κ · d(x, y)− C ′ ≤ ρ(f(x), f(y)) ≤ κ · d(x, y) + C ′ (7)

holds for all (x, y) ∈ M × M. Below we define a
function g : M → A(C−C′)/2. For each x ∈ M,
let g(x) be the point in A(C−C′)/2 that is closest
to f(x), breaking ties arbitrarily. Clearly, we have
ρ(g(x), f(x)) < (C − C ′)/2 for each x ∈ M. There-
fore,

ρ(f(x), f(y))
≤ ρ(f(x), g(x)) + ρ(g(x), g(y)) + ρ(g(y), f(y))
< ρ(g(x), g(y)) + C − C ′

for all x, y ∈ M, and in fact
|ρ(f(x), f(y))− ρ(g(x), g(y))| < C − C ′ for all
x, y ∈ M by a similar argument. This and Eq. (7)
give

1/κ · d(x, y)− C ≤ ρ(g(x), g(y)) ≤ κ · d(x, y) + C

for all x, y ∈ M. Therefore, (M,d) is (κ, C) quasi-
isometrically embeddable into (A(C−C′)/2, ρ) and thus
T accepts.

Item 2 is easily justified because its premise triv-
ially implies that (M,d) is ε-far from being (κ, C)
quasi-isometrically embeddable into (A(C−C′)/2, ρ),
which results in rejection of T with high probability.

Item 3 is established by directly invoking Theo-
rem 6 and calculating the query complexity.

We briefly justify the applicability of Theorem 9.
It is meant to deal with the case where (M,d) is to be
embedded into an already-known (N, ρ). In this case,
queries to (N, ρ) can be answered without actually
making a query. Since (N, ρ) is known beforehand
and since we usually want to embed metric spaces
into a host metric space with a simple structure, it
is not strange to assume that we can find δ-nets for
(N, ρ). For example, if (N, ρ) is a closed ball of radius
R > 0 in the 3-dimensional Euclidean space, then it is
easy to find a δ-net of cardinality O(R3/δ3) for (N, ρ).

7 Concluding remarks

We have defined bilipschitz embeddability and ε-
farness from bilipschitz embeddability using injective
functions. Such a definition is justifiable for the fol-
lowing reasons. First, Eq. (1) could be satisfied for
all (x, y) ∈ M × M only if f : M → N is in-
jective. Second and more importantly, one usually
defines embeddings between metric spaces using in-
jections, and in fact in many (if not most) areas
of mathematics, embeddings are defined using injec-
tions (see, e.g., (Embedding n.d., Croom 2002, Good-
man & O’Rourke 2004, Kenyon et al. 2004)). In
contrast, quasi-isometric embeddability is defined via
functions that are not necessarily injective (Ghys &
de la Harpe 1991, Farb 1997, Farb & Mosher 1999,
2000), as we did in Section 2. We could also define
the notions of quasi-isometric embeddability and ε-
farness from quasi-isometric embeddability using in-
jections by modifying the corresponding definitions in
Section 2 to concern only with injections f : M → N.
That is, we could define (M,d) to be (κ, C) quasi-
isometrically embeddable into (N, ρ) under injections
if Eq. (2) holds for some injection f : M → N and
all (x, y) ∈ M ×M. We could also say that (M,d)
is ε-far from being (κ, C) quasi-isometrically embed-
dable into (N, ρ) under injections if Eq. (2) fails on at
least an ε fraction of pairs (x, y) ∈ M ×M for every
injection f : M → N. Theorems 5–6 and 9 can be eas-
ily adapted to give the corresponding tests for quasi-
isometric embeddability under injections. The proofs
are mostly the same except for a few trivial modifi-
cations to Definition 1 and algorithm TEST-BILIP.
The query complexities remain the same. A minor
point is that we have treated pairs selected from a
metric space as ordered ones. They could also be
treated as unordered since the distance function of
any metric space is symmetric. Again, this does not
change our results.

Our definition of ε-farness from L-bilipschitz em-
beddability is directly concerned with the least pos-
sible (over all injections f : M → N) fraction of pairs
(x, y) ∈ M ×M violating Eq. (1), which is naturally
interpreted as the quality of the best possible embed-
ding f : M → N. This seems as intuitively appealing
feature of our definition. However, other definitions
of ε-farness from L-bilipschitz embeddability may also
be worth studying. For example, we may adopt one
of the following definitions for (M,d) to be ε-far from
being L-bilipschitz embeddable into (N, ρ).

1. At least an ε fraction of (ordered or unordered)
pairs (x, y) ∈ M × M need to have their d-
distance changed to obtain a metric space that
is L-bilipschitz embeddable into (N, ρ).

2. Among all (ordered or unordered) pairs in (M ×
M)∪(N×N), at least an ε fraction of them need
to have their d-distance or ρ-distance changed
so that the modified metric space (M,d) is L-
bilipschitz embeddable into the modified metric
space (N, ρ).

3. For a reasonable set of edit operations on met-
ric spaces, the least number of edit operations
to turn (M,d) into a metric space that is L-
bilipschitz embeddable into (N, ρ) is at least
ε|M |2 (or ε|M |, depending on whichever is more
relevant).

4. For a reasonable set of edit operations on met-
ric spaces, the least number of edit operations
on (M,d) and (N, ρ) to turn (M,d) into being
L-bilipschitz embeddable into (N, ρ) is at least
ε(|M |2 + |N |2) (or ε(|M | + |N |), depending on
whichever is more relevant).

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

121

Although in these definitions, farness from L-
bilipschitz embeddability may no longer correspond
to the quality of the best possible embedding, tests
for L-bilipschitz embeddability under these defini-
tions may still be worth studying and may provide
new insights.

Appendix I: Proof of Theorem 1

Proof of Theorem 1. We first show the easy reduction
from the graph isomorphism problem to the prob-
lem of testing isometry between finite metric spaces.
Given two graphs G1 = (V,E1) and G2 = (V,E2), the
reduction outputs two metric spaces (V, d) and (V, ρ)
described below. For distinct x, y ∈ V, d(x, y) = 2
if (x, y) ∈ E1 and d(x, y) = 3 otherwise. Also, set
d(x, x) = 0 for each x ∈ V. The metric ρ is defined
similarly with E2 in place of E1. It is not hard to ver-
ify that (V, d) and (V, ρ) are metric spaces and they
are isometric if and only if G1 is isomorphic to G2.

Now we turn to the other direction of the re-
duction. Given two finite metric spaces (M,d) and
(M,ρ), the reduction computes the sets (not mul-
tisets) {d(x, y) | x, y ∈ M,x 6= y} and {ρ(x, y) |
x, y ∈ M,x 6= y}. Let α1 < . . . < αt be an enu-
meration of the first set in strictly increasing order
and β1 < . . . < βt′ be that of the second. Assume
that t = t′ and αi = βi for 1 ≤ i ≤ t, for otherwise
the reduction just outputs any two non-isomorphic
graphs.

The reduction outputs two undirected simple
graphs G1 and G2 defined below. It begins with
G1 having vertex set M and the empty edge set,
and proceeds by adding to G1 new vertices and new
edges. For each pair of distinct x, y ∈ M, denote by
i(x, y, d) the unique value of i ∈ {1, . . . , t} satisfying
d(x, y) = αi. The reduction adds 3 i(x, y, d) new ver-
tices vx,y,1, . . . , vx,y,3 i(x,y,d) and also adds new edges

(x, vx,y,1), . . . , (x, vx,y,3 i(x,y,d))

and
(vx,y,1, y), . . . , (vx,y,3 i(x,y,d), y)

to G1. After adding new vertices and edges as above
for each pair of distinct x, y ∈ M, the graph G1 is
finally formed. The graph G2 is formed similarly with
ρ in place of d.

Clearly, if (M,d) is isometric to (M,ρ), then G1
and G2 are isomorphic.

Now assume that G1 is isomorphic to G2. We are
to show that (M,d) is isometric to (M,ρ). The set of
vertices of G1 is M ∪ S1 where

S1 = {vx,y,j | x, y ∈M,x 6= y, 1 ≤ j ≤ 3 i(x, y, d)}
is the set of newly added vertices to G1. Similarly, the
set of vertices of G2 is denoted M ∪ S2 where S2 is
the set of newly added vertices to G2. We may assume
without loss of generality that |M | ≥ 2. From the way
we add edges to G1 (respectively, G2), it is not hard
to see that every vertex in S1 (respectively, S2) has
degree exactly two in G1 (respectively, G2), and every
vertex in M has degree at least 3 in G1 (respectively,
G2). An isomorphism f from G1 to G2 must therefore
map M one-to-one and onto to M, and S1 one-to-one
and onto to S2. Now fix distinct x, y ∈M arbitrarily.
We are to show that d(x, y) = ρ(f(x), f(y)), which
implies that f itself (when restricted on M) is an
isometry from (M,d) to (M,ρ). That f is an isomor-
phism implies

|{v | (x, v), (v, y) are edges of G1 and v has
degree exactly 2 in G1}|

= |{u | (f(x), u), (u, f(y)) are edges of G2 and
u has degree exactly 2 in G2}| .

The fact that S1 (respectively, S2) consists of exactly
those vertices in G1 (respectively, G2) with degree
two then implies

|{v ∈ S1 | (x, v), (v, y) are edges of G1}|
= |{u ∈ S2 | (f(x), u), (u, f(y)) are edges of G2}| ,

which in turn implies that d(x, y) = ρ(f(x), f(y)).

Appendix II: Proof of Theorem 6

Sketch of proof of Theorem 6. We modify TEST-
BILIP slightly to prove the theorem. If ln n

εm ≤
1/4, the modified TEST-BILIP still does exhaustive
queries. Otherwise, TEST-BILIP sets pM = 4 · ln n

εm
and pN = 1 (we let TEST-BILIP do exhaustive
queries to (N, ρ)). These are different from the origi-
nal assignments of TEST-BILIP to pM and pN . Also
modify TEST-BILIP so that after querying QM and
QN to (M,d) and (N, ρ), it rejects if all functions
(not necessarily injective) from M to N are refuted
by QM ×QN .

Clearly, when ln n
εm ≥ 1/4, the modified TEST-

BILIP does exhaustive queries and the query com-
plexity also follows. It is also clear that the modi-
fied TEST-BILIP accepts if (M,d) is (κ, C) quasi-
isometrically embeddable into (N, ρ).

Now assume that (M,d) is ε-far from being (κ, C)
quasi-isometrically embeddable into (N, ρ) and ln n

εm <
1/4. It is clear that the modified assignment of pM =
4· ln n

εm does not exceed 1. Now fix an arbitrary function
f : M → N. Similar to in Lemma 3, we define Sf to
be the set of pairs (x, y) ∈M ×M violating

1/κ · d(x, y)− C ≤ ρ(f(x), f(y)) ≤ κ · d(x, y) + C.

We have |Sf | ≥ εm2. Since we do exhaustive queries
to (N, ρ), this time f can be refuted by QM ×QN if
some pair in Sf is put into QM . The probability that
QM ×QN does not refute f is therefore at most

(1− pM)|Sf | ≤ (1− 4 · lnn

εm
)εm2

.

By the union bound, the probability that every func-
tion from M to N is refuted by QM ×QN is at least
1−nm (1−4· ln n

εm)εm2
= 1−o(1). The probability that

QM > 1000 pM m2 is small, and QN > 1000 pN n2

happens with probability zero. Therefore, with high
probability QM ×QN refutes every function from M
to N, and the whole QM and QN are queried to (M,d)
and (N, ρ), respectively, resulting in rejection of the
modified TEST-BILIP.

The number of queries to (M,d) is at most
1000 pM m2, which is easily verified to obey the de-
sired bound.

Appendix III: Proof of Theorem 8

Proof of Theorem 8. Let T be a one-sided tester for
isometry with query complexity q(ε, n) with respect
to ε and n. Using T, we develop a one-sided tester
T ′ for graph isomorphism with query complexity at
most q(ε/2, n) with respect to ε and n. The theorem
is then immediate from Theorem 7.

On input ε, n and given oracle access to two undi-
rected simple graphs G1 = (V,E1) and G2 = (V,E2)
with |V | = n, the algorithm T ′ simulates T on in-
put n, ε/2 and provides T with oracle access to two
metric spaces (V, d) and (V, ρ) described below. The

CRPIT Volume 77 - Theory of Computing 2008

122

metric space (V, d) is defined by d(x, x) = 0 for x ∈ V,
d(x, y) = 2 for (x, y) ∈ E1 and d(x, y) = 3 for distinct
x, y ∈ V with (x, y) /∈ E1. The metric space (V, ρ)
is defined similarly except that E1 is replaced by E2.
Whenever T makes a query (x, y) ∈ V × V to the
metric space (V, d) (respectively, (V, ρ)), T ′ asks G1
(respectively, G2) whether (x, y) ∈ E1 (respectively
(x, y) ∈ E2) and then computes d(x, y) (respectively,
ρ(x, y)) to satisfy the query of T. The query com-
plexity of T ′ is clearly at most q(ε/2, n). Finally, T ′

accepts (respectively, rejects) if and only if T accepts
(respectively, rejects).

It is clear that if G1 and G2 are isomorphic, then
(V, d) and (V, ρ) are isometric. Hence T and thus T ′

accepts.
Now assume that G1 and G2 are ε-far from being

isomorphic and let π : V → V be any bijection. There
are at least ε

(|V |
2

)
unordered pairs (x, y) ∈ V × V

such that either (x, y) ∈ E1 and (π(x), π(y)) /∈ E2,
or (x, y) ∈ E2 and (π(x), π(y)) /∈ E1, and it is clear
that any such pair satisfies x 6= y. This implies the
existence of at least 2ε

(|V |
2

)
ordered pairs (x, y) ∈ V ×

V with d(x, y) 6= ρ(π(x), π(y)). Since the bijection π

is arbitrary, (V, d) and (V, ρ) must be
2ε(|V |

2)
|V |2 > ε/2

far from being isometric, resulting in the rejection of
T and thus T ′ with high probability.

References

Apostol, T. M. (1974), Mathematical Analysis, Addi-
son Wesley.

Chávez, E. & Navarro, G. (2006), ‘A metric index
for approximate string matching’, Theoretical Com-
puter Science 352, 266–279.

Chernoff, H. (1952), ‘A measure of the asymptotic
efficiency of tests of a hypothesis based on the sum
of observations’, Annals of Mathematical Statistics
23, 493–507.

Croom, F. H. (2002), Principles of Topology, 1st edn,
Thomson Learning Asia.

David, G. & Semmes, S. (2000), ‘Regular mappings
between dimensions’, Publicacions Matemàtiques
44, 369–417.

Deza, M. & Laurent, M. (1997), Geometry of Cuts
and Metrics, Vol. 15 of Algorithms and Combina-
torics, Springer.

Dress, A., Huber, K. T. & Moulton, V. (2001), Met-
ric spaces in pure and applied mathematics, in
‘Quadratic Forms and Related Topics’, pp. 121–
139.

Embedding (n.d.), Wikipedia: The Free Encyclopedia.
http://en.wikipedia.org/wiki/Embedding.

Farb, B. (1997), ‘The quasi-isometry classification of
lattices in semisimple Lie groups’, Mathematical
Research Letters 4, 705–717.

Farb, B. & Mosher, L. (1999), ‘Quasi-isometric rigid-
ity for the solvable Baumslag-Solitar groups, II’,
Inventiones Mathematicae 137(3), 613–649.

Farb, B. & Mosher, L. (2000), ‘On the asymptotic
geometry of abelian-by-cyclic groups’, Acta Math-
ematica 184(2), 145–202.

Fischer, E. (2001), ‘The art of uninformed decisions:
A primer to property testing’, Bulletin of the Euro-
pean Association for Theoretical Computer Science
75, 97–126.

Fischer, E. & Matsliah, A. (2006), Testing graph
isomorphism, in ‘Proceedings of the 17th annual
ACM-SIAM Symposium on Discrete Algorithms’,
pp. 299–308.

Ganyushkin, A. G., Sushchanskii, V. I. & Tsvirkunov,
V. V. (1994), ‘Computations in isometry groups
of finite metric spaces’, Cybernetics and Systems
Analysis 30(3), 331–347.

Ganyushkin, A. G. & Tsvirkunov, V. V. (1994), ‘On
classification of finite metric spaces’, Mathematical
Notes 56(4), 1023–1029.

Ghys, E. & de la Harpe, P. (1991), Infinite groups as
geometric objects (after Gromov), Ergodic theory,
symbolic dynamics and hyperbolic space, Oxford
University Press.

Goodman, J. E. & O’Rourke, J., eds (2004), Hand-
book of discrete and computational geometry, 2nd
edn, CRC Press, Inc.

Gupta, A. (2000), Embeddings of Finite Metrics, PhD
thesis, University of California, Berkeley.

Indyk, P. (2001), Algorithmic applications of low-
distortion geometric embeddings, in ‘Proceedings
of the 42nd IEEE Symposium on Foundations of
Computer Science’, pp. 10–33.

Johnson, W. B. & Lindenstrauss, J., eds (2003),
Handbook of the Geometry of Banach Spaces, North
Holland.

Kenyon, C., Rabani, Y. & Sinclair, A. (2004), Low
distortion maps between point sets, in ‘Proceedings
of the 36th annual ACM Symposium on Theory of
Computing’, pp. 272–280.

Linial, N. (2002), ‘Finite metric spaces — combina-
torics, geometry and algorithms’, http://www.cs.
huji.ac.il/~nati/PAPERS/icm.ps.gz.

Mao, R., Xu, W., Singh, N. & Miranker, D. P. (2005),
‘An assessment of a metric space database index to
support sequence homology’, International Journal
on Artificial Intelligence Tools 14(5), 867–885.

Matoušek, J. (2002), Lectures on Discrete Geometry,
Springer-Verlag New York, Inc.

Miranker, D. P. (2003), ‘Metric-space indexes as a
basis for scalable biological databases’, OMICS: A
Journal of Integrative Biology 7(1), 57–60.

Papadimitriou, C. H. (1994), Computational Com-
plexity, Addison Wesley.

Rudin, W. (1976), Principles of Mathematical Anal-
ysis, 3rd edn, McGraw-Hill.

West, D. B. (2001), Introduction to Graph Theory,
2nd edn, Prentice-Hall.

Weston, J. D. (2001), ‘Vectors as quaternions: A cor-
ner of linear algebra’, The Mathematical Gazette
85(502), 25–35.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

123

http://en.wikipedia.org/wiki/Embedding
http://www.cs.huji.ac.il/~nati/PAPERS/icm.ps.gz
http://www.cs.huji.ac.il/~nati/PAPERS/icm.ps.gz

Testing Embeddability between Metric Spaces

Ching-Lueh Chang1 Yuh-Dauh Lyuu2 Yen-Wu Ti3

1 Department of Computer Science and Information Engineering
National Taiwan University,

Taipei, Taiwan,
Email: d95007@csie.ntu.edu.tw

2 Department of Computer Science and Information Engineering
National Taiwan University,

Taipei, Taiwan,
Email: lyuu@csie.ntu.edu.tw

3 Department of Computer Science and Information Engineering
National Taiwan University,

Taipei, Taiwan,
Email: d91010@csie.ntu.edu.tw

Abstract

Let L ≥ 1, ε> 0 be real numbers, (M,d) be a finite
metric space and (N,ρ) be a metric space (Rudin
1976). The metric space (M,d) is said to be L-
bilipschitz embeddable into (N,ρ) if there is an in-
jective function f : M → N with

1/L · d(x, y) ≤ ρ(f(x), f(y)) ≤ L · d(x, y)

for all x, y ∈ N (Farb & Mosher 1999, David &
Semmes 2000, Croom 2002). In this paper, we also
say that (M,d) is ε-far from being L-bilipschitz em-
beddable into (N,ρ) if the above inequality fails on at
least an ε fraction of pairs (x, y) ∈ M ×M for every
injective function f : M → N.

Below, a query to a metric space consists of asking
for the distance between a pair of points chosen for
that query. We study the number of queries to metric
spaces (M,d) and (N,ρ) needed to answer whether
(M,d) is L-bilipschitz embeddable into (N,ρ) or ε-
far from being L-bilipschitz embeddable into (N,ρ).
When (M,d) is ε-far from being L-bilipschitz embed-
dable into (N,ρ), we allow an o(1) probability of er-
ror (i.e., returning the wrong answer “L-bilipschitz
embeddable”). However, we allow no error when
(M,d) is L-bilipschitz embeddable into (N,ρ). That
is, algorithms with only one-sided errors are con-
sidered in this paper. When |M | ≤| N | are finite,
we give an upper bound of O(

√
ln |N |
ε|M | (|M |2 + |N |2))

on the number of queries for determining with one-
sided error whether (M,d) is L-bilipschitz embed-
dable into (N,ρ) or ε-far from being L-bilipschitz
embeddable into (N,ρ). For the special case of fi-
nite |M | = |N |, the above upper bound evaluates to

O(|N |3/2
√

ln |N |
ε). We also prove a lower bound of

Ω(|N |3/2) even for the special case when |M | = |N |

Research supported in part by NSC grant 95-2213-E-002-044.

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Computing: The Aus-
tralasian Theory Symposium (CATS2008), Wollongong, NSW,
Australia. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 77, James Harland and Prabhu
Manyem, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

are finite and L = 1, which coincides with testing
isometry between finite metric spaces (Croom 2002).
For finite |M | = |N |, the upper and lower bounds thus

match up to a multiplicative factor of at most
√

ln |N |
ε ,

which depends only sublogarithmically in |N |. We
also investigate the case when (N,ρ) is not necessarily
finite. Our results are based on techniques developed
in an earlier work on testing graph isomorphism (Fis-
cher & Matsliah 2006).

1 Introduction

The ability to analyze metric spaces is of growing im-
portance across diverse disciplines as huge bodies of
data await analysis. In bioinformatics, for example,
enormous amounts of data such as DNA sequences
and protein sequences are constantly being produced.
Efficient algorithms and standard computer programs
have been developed over the years for calculating the
distances between DNA or protein sequences, and this
turns the collection of all known DNA and protein se-
quences into a huge metric space. As pointed out by
Linial (Linial 2002), proper analysis of this space is
of great significance to the biological sciences.

The analysis of metric spaces often requires vari-
ous notions of similarity and embeddability between
metric spaces. The philosophy is that, when a met-
ric space is embedded into another metric space such
that the original space is similar to the embedded one,
understandings of the original space may be achieved
through analysis of the embedded one. For exam-
ple, when a metric space is embedded into the Eu-
clidean plane while roughly preserving the distances
between pairs of points, many efficient geometric al-
gorithms that are not available for general metric
spaces become applicable and of great help (Good-
man & O’Rourke 2004). Another advantage is that
embeddings into the Euclidean plane make possible
more succinct representations of the original space
(Goodman & O’Rourke 2004). In respect of these
benefits of metric embedding that preserves similar-
ity between the original and the embedded spaces, it
comes without surprise that such embeddings have
found tremendous applications in graph theory, com-
binatorial optimization, learning theory and com-
putational geometry (Deza & Laurent 1997, Gupta
2000, Linial 2002, Matoušek 2002, Johnson & Lin-
denstrauss 2003, Indyk 2001, Kenyon et al. 2004).
Besides, studies on the structures of metric spaces

CRPIT Volume 77 - Theory of Computing 2008

124

also have applications to isometry groups and mathe-
matical biology (Ganyushkin et al. 1994, Ganyushkin
& Tsvirkunov 1994), quadratic forms and phyloge-
netic analysis (Dress et al. 2001), theory of quater-
nions (Weston 2001), scalable biological databases
(Miranker 2003), sequences homology (Mao et al.
2005) and approximate string matching (Chávez &
Navarro 2006), to name a few.

Unfortunately, as we will see in Section 3, it is
computationally hard to determine whether one met-
ric spaces is similar to another one under various no-
tions of metric similarity. First, deciding whether two
input metric spaces are isometric (Croom 2002) is as
hard as the graph isomorphism problem (Papadim-
itriou 1994), for which no polynomial-time algorithms
are known despite extensive research. Second, con-
sider the problem of deciding, on input L ≥ 1 and
finite metric spaces (M,d) and (M,ρ), whether or
not these spaces are L-bilipschitz equivalent (Farb &
Mosher 1999, David & Semmes 2000). That is, we
want to decide whether the metric spaces (M,d) and
(M,ρ) exhibit a bijective map between them that pre-
serves distances up to multiplicative factors ranging
from 1/L to L. We observe that the results of Kenyon,
Rabani and Sinclair (Kenyon et al. 2004) imply that it
is hard even to approximate the least value of L such
that (M,d) and (M,ρ) are L-bilipschitz equivalent.
This may be interpreted as saying that it is hard to
approximately compute the level of bilipschitz simi-
larity even between finite metric spaces with the same
ground set. Given the above hardness results, a ran-
domized approximation algorithm with a reasonable
complexity can be an attractive alternative to attack
the problem of determining metric similarity or even
metric embeddability.

An algorithm in the flavor of property testing (Fis-
cher 2001) is one such alternative. It determines
whether a problem instance has a certain property or
is ε-far (under a certain distance measure) from hav-
ing such a property, while allowing a small probability
of error. In this paper, we seek an algorithm T that,
when given as input ε > 0, L ≥ 1 and given oracle
access to finite metric spaces (M,d) and (N,ρ) with
|M | ≤| N |, has the following two properties. First, T
accepts if

1/L · d(x, y) ≤ ρ(f(x), f(y)) ≤ L · d(x, y)

holds for some injection f : M → N and all (x, y) ∈
M ×M, that is, T accepts if (M,d) is L-bilipschitz
embeddable into (N,ρ) (Farb & Mosher 1999, David
& Semmes 2000, Croom 2002). Second, T rejects with
high probability if the above inequality fails on at
least an ε fraction of pairs (x, y) ∈ M ×M for every
injection f : M → N. Such an algorithm T is called a
one-sided tester for bilipschitz embeddability in this
paper. Its query complexity is measured in terms of
the number of times that it queries the metric spaces,
where each query asks for the distance between a pair
of points chosen for that query.

We give a one-sided tester for bilipschitz
embeddability with query complexity at most
O(

√
ln |N |
ε|M | (|M |2 + |N |2)). We also show anΩ(|N |3/2)

lower bound on the query complexity of any one-sided
tester for bilipschitz embeddability even for the spe-
cial case of finite |M | = |N | and L = 1. If (N,ρ)
is known in advance, queries need only go to (M,d)
and the query complexity is shown to be O(|M | ln |N |

ε).
Our results utilize techniques developed by Fischer
and Matsliah (Fischer & Matsliah 2006) in an earlier
work on testing graph isomorphism.

We also give an extension to the case where the
metric space (N,ρ) is known in advance but is not
necessarily finite. When (N,ρ) is a totally bounded

(Croom 2002) metric space known a priori, we devise
an algorithm that in a technical sense tests whether a
finite metric space (M,d) is (κ, C) quasi-isometrically
embeddable (Ghys & de la Harpe 1991, Farb 1997,
Farb & Mosher 1999, 2000) into (N,ρ), for input pa-
rameters κ ≥ 1 and C ≥ 0. The exact statement of
this result is given in Section 6.

This paper is organized as follows. Section 2 gives
the definitions. Section 3 gives the hardness results,
which motivate switching to a property-testing fla-
vored model. Sections 4–5 present upper bound and
lower bounds on the query complexity of one-sided
testers for bilipschitz embeddability. Section 6 ex-
tends the results to testing embeddability of a finite
metric space into a totally bounded metric space. Sec-
tion 7 discusses definitional issues and concludes the
paper.

2 Definitions

Let S be an arbitrary set and t be a positive integer.
We write St for the t-dimensional Cartesian product
of S, and any pair (x, y) ∈ S × S is understood as an
ordered pair unless otherwise specified. A function
dS : S × S → R is a metric on S if for all x, y, z ∈ S,
we have dS(x, y) ≥ 0, dS(x, y) = 0 if and only if x = y,
dS(x, y) = dS(y, x) and dS(x, y) ≤ dS(x, z)+dS(z, y).
A metric space is a set (called its ground set) endowed
with a metric on it (Rudin 1976).

Let L ≥ 1, (M,d) be a finite metric space and
(N,ρ) be a metric space. We say that (M,d) is L-
bilipschitz embeddable into (N,ρ) if there is an injec-
tive function f : M → N satisfying

1/L · d(x, y) ≤ ρ(f(x), f(y)) ≤ L · d(x, y) (1)

for all (x, y) ∈M ×M (Apostol 1974, Farb & Mosher
1999, David & Semmes 2000). Clearly, Eq. (1) could
also be written equivalently as

1/L · ρ(f(x), f(y)) ≤ d(x, y) ≤ L · ρ(f(x), f(y)).

In this paper, we also say that (M,d) is ε-far from
being L-bilipschitz embeddable into (N,ρ) if, for ev-
ery injection f : M → N, there are at least ε|M |2
pairs (x, y) ∈ M × M violating Eq. (1). Similarly,
for κ ≥ 1 and C ≥ 0, we say that (M,d) is (κ, C)
quasi-isometrically embeddable into (N,ρ) if there is
a function f : M → N satisfying

1/κ · d(x, y)− C ≤ ρ(f(x), f(y)) ≤ κ · d(x, y) + C (2)

for all (x, y) ∈ M ×M (Ghys & de la Harpe 1991,
Farb 1997, Farb & Mosher 1999, 2000). If for every
function f : M → N, Eq. (2) fails on at least ε|M |2
pairs (x, y) ∈ M × M, then (M,d) is said to be ε-
far from being (κ, C) quasi-isometrically embeddable
into (N,ρ).

For finite |M | = |N |, we say that (M,d) is
L-bilipschitz equivalent to (N,ρ) if (M,d) is L-
bilipschitz embeddable into (N,ρ) (Farb & Mosher
1999, David & Semmes 2000). Since for finite |M | =
|N |, every injection from M to N is a bijection, it
is easy to see that (M,d) is L-bilipschitz equivalent
to (N,ρ) if and only if Eq. (1) holds for some bijec-
tion f : M → N and all (x, y) ∈ M × M. Clearly,
L-bilipschitz equivalence is a reflexive and symmetric
relation between metric spaces. For finite |M | = |N |,
the minimum value of L ≥ 1 for which (M,d) and
(N,ρ) are L-bilipschitz equivalent can be thought
of as a measure on the similarity between (M,d)
and (N,ρ). The smaller this value, the more simi-
lar the metric spaces are. In the extreme case, (M,d)
and (N,ρ) are 1-bilipschitz equivalent if and only if

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

125

they are isometric, that is, there exists a distance-
preserving bijective map (called an isometry) between
them (Croom 2002). For ε > 0 and finite |M | = |N |,
we say that (M,d) and (N,ρ) are ε-far from being
L-bilipschitz equivalent if (M,d) is ε-far from being
L-bilipschitz embeddable into (N,ρ). This is the same
as saying that Eq. (1) fails on at least an ε fraction of
pairs (x, y) ∈ M ×M for every bijection f. If (M,d)
and (N,ρ) are ε-far from being 1-bilipschitz equiva-
lent, they are said to be ε-far from being isometric.

When a metric space is given as an oracle, it means
that we can query the oracle for the distance between
any pair of points. Given as input L ≥ 1, ε> 0,
positive integers m ≤ n and given oracle access to
finite metric spaces (M,d), (N,ρ) with |M | = m and
|N | = n, we are interested in the number of queries
(to (M,d) and (N,ρ)) needed to determine whether
(M,d) is L-bilipschitz embeddable into (N,ρ) or ε-
far from being L-bilipschitz embeddable into (N,ρ).
In particular, we seek an algorithm T that accepts
when (M,d) is L-bilipschitz embeddable into (N,ρ),
and rejects with high probability when (M,d) is ε-
far from being L-bilipschitz embeddable into (N,ρ).
Such an algorithm T is said to be a one-sided tester
for bilipschitz embeddability in this paper. Similarly,
an algorithm is a one-sided tester for bilipschitz equiv-
alence (respectively, isometry) if, when we restrict to
finite |M | = |N |, it accepts when (M,d) and (N,ρ)
are L-bilipschitz equivalent (respectively, isometric)
and rejects with high probability when (M,d) and
(N,ρ) are ε-far from being L-bilipschitz equivalent
(respectively, isometric). Finally, a one-sided tester
for quasi-isometric embeddability is given as input
κ ≥ 1, C ≥ 0, positive integers m ≤ n and given
oracle access to metric spaces (M,d) and (N,ρ) with
|M | = m and |N | = n. It is required to accept if
(M,d) is (κ, C) quasi-isometrically embeddable into
(N,ρ) and reject with high probability if (M,d) is ε-
far from being (κ, C) quasi-isometrically embeddable
into (N,ρ).

For ε > 0, positive integers m ≤ n and a one-
sided tester T for bilipschitz embeddability, the query
complexity of T with respect to ε,m and n is its worst-
case number of queries when it is given ε,m, n, any
L ≥ 1 and oracle access to any metric spaces (M,d)
and (N,ρ) with |M | = m and |N | = n. Here the worst
case is taken over all L ≥ 1 and all metric spaces
(M,d) and (N,ρ) (of sizes m and n) given as oracles.
The query complexity (with respect to ε,m and n)
of a one-sided tester for isometry is defined similarly
except that L is fixed to 1 and m is fixed to equal n.

Let G1 = (V,E1) and G = (V,E2) be undirected
simple graphs (West 2001). An isomorphism between
G1 and G2 is a bijection π : V → V such that
for all x, y ∈ V, we have (x, y) ∈ E1 if and only if
(π(x), π(y)) ∈ E2 (Papadimitriou 1994). The graph
isomorphism problem asks whether two undirected
simple graphs exhibit an isomorphism between them
(Papadimitriou 1994). For ε > 0, we say that G1
and G2 are ε-far from being isomorphic if for every
bijection π : V → V, there are at least ε

(|V |
2

)
un-

ordered pairs (x, y) ∈ V ×V such that (x, y) ∈ E1 but
(π(x), π(y)) /∈ E2, or (x, y) ∈ E2 but (π(x), π(y)) /∈
E1 (Fischer & Matsliah 2006).

When an algorithm is given oracle access to an
undirected simple graph G = (V,E), it means that
the algorithm may query the oracle on any (x, y) ∈
V ×V and be informed of whether (x, y) ∈ E. A one-
sided tester for graph isomorphism receives as input
ε > 0, a positive integer n and is given oracle access
to two undirected simple graphs G1 = (V,E1) and
G2 = (V,E2) with |V | = n. It must accept if G1 is
isomorphic to G2 and reject with high probability if
G1 is ε-far from being isomorphic to G2.

3 Hardness

In this section, we show that the problem of decid-
ing whether two input metric spaces are isometric is
polynomial-time reducible to and from the graph iso-
morphism problem, for which no polynomial-time al-
gorithm has been known despite extensive research.
Furthermore, we show that it is hard even to approx-
imate the least L ≥ 1 for which two input finite met-
ric spaces are L-bilipschitz equivalent. In contrast to
these hardness results, we will show in the Section 4
that there is an efficient one-sided tester for bilips-
chitz embeddability.

We state the following theorem. For its proof
please refer to Appendix I.

Theorem 1. The problem of testing whether two in-
put metric spaces with the same finite ground set are
isometric is polynomial-time reducible to and from the
graph isomorphism problem.

The problem of approximating the least L ≥ 1 for
which two input finite metric spaces with the same
ground set are L-bilipschitz equivalent is even harder,
provided that NP' = P. This is stated in the follow-
ing theorem, which is implicit in the work of Kenyon,
Rabani and Sinclair (Kenyon et al. 2004) (see Propo-
sition 2.2 and Proposition 2.4 in their paper).

Theorem 2. ((Kenyon et al. 2004)) If there is an
algorithm that, on input any two finite metric spaces
(M,d) and (M,ρ), outputs a number L∗ ≥ 1 such that
(M,d) is L∗-bilipschitz equivalent to (M,ρ) and

L∗ <

√
4
3
· min{L ≥ 1 | (M,d) is L-bilipschitz

equivalent to (M,ρ)},

then NP = P.

That is, it is hard to approximate to within a mul-
tiplicative

√
4/3 the minimum value of L ≥ 1 for

which two input finite metric spaces are L-bilipschitz
equivalent.

4 An upper bound on the query complexity

In this section, we give a one-sided tester for bilips-
chitz embeddability. Clearly, this also gives one-sided
testers for bilipschitz equivalence and isometry. For
convenience, we make the following definition.

Definition 1. Let L ≥ 1, (M,d) be a finite metric
space, (N,ρ) be a metric space and f : M → N be
a function. A quadruple (x, y, u, v) ∈ M2 × N2 re-
futes f for the L-bilipschitz embeddability of (M,d)
into (N,ρ) if u = f(x), v = f(y) but

1/L · d(x, y) ≤ ρ(f(x), f(y)) ≤ L · d(x, y)

fails to hold. A set S ⊆ M2 × N2 of quadruples re-
futes f for the L-bilipschitz embeddability of (M,d)
into (N,ρ) if at least one element of S does. When
L, (M,d) and (N,ρ) are clear from the context, we
may simply say that a quadruple (x, y, u, v) ∈ M2 ×
N2 or a set of quadruples refutes f without explicitly
referring to L, (M,d) and (N,ρ).

The following lemma states that the algorithm
TEST-BILIP in Figure 1 is a one-sided tester for
bilipschitz embeddability.

Lemma 3. On input L ≥ 1, ε> 0, positive inte-
gers m ≤ n and given oracle access to finite metric
spaces (M,d) and (N,ρ) with |M | = m and |N | = n,

CRPIT Volume 77 - Theory of Computing 2008

126

1: if ln n
εm ≥ 1/4 then

2: Query (M,d) and (N,ρ) for the distances be-
tween all pairs of points;

3: if (M,d) is L-bilipschitz embeddable into
(N,ρ) then

4: Accept;
5: else
6: Reject;
7: end if
8: else if 2 · n

m

√
ln n
εm ≥ 1 then

9: pM ← 1;
10: pN ← 4 · ln n

εm ;
11: else
12: pM ← 2 · n

m

√
ln n
εm ;

13: pN ← 2 · m
n

√
ln n
εm

14: end if
15: Construct QM ⊆M×M by choosing each pair in

M ×M into QM independently with probability
pM ;

16: Construct QN ⊆ N ×N by choosing each pair in
N × N into QN independently with probability
pN , using random coin tosses independent from
those used to construct QM ;

17: if |QM | > 1000 pM m2 or |QN | > 1000 pN n2

then
18: Accept without making any queries;
19: else
20: Query every element of QM to (M,d);
21: Query every element of QN to (N,ρ);
22: if all injections from M to N are refuted by

QM ×QN ⊆M2 ×N2 then
23: Reject;
24: else
25: Accept;
26: end if
27: end if

Figure 1: Algorithm TEST-BILIP. The inputs are
L ≥ 1, ε> 0 and positive integers m ≤ n. The met-
ric spaces (M,d) and (N,ρ) are given as oracles and
satisfy |M | = m and |N | = n.

TEST-BILIP accepts if (M,d) is L-bilipschitz em-
beddable into (N,ρ), and rejects with high probability
if (M,d) is ε-far from being L-bilipschitz embeddable
into (N,ρ).

Proof. If ln n
εm ≥ 1/4, then TEST-BILIP does ex-

haustive queries and accepts exactly when (M,d) is
L-bilipschitz embeddable into (N,ρ). Hence, we may
assume that

lnn

εm
< 1/4 (3)

in the following.
It is clear that TEST-BILIP accepts whenever

(M,d) is L-bilipschitz embeddable into (N,ρ).
Now assume that (M,d) is ε-far from being L-

bilipschitz embeddable into (N,ρ) and let f : M → N
be an arbitrary injection. Denote by Sf the set of all
pairs (x, y) ∈M ×M for which the inequality

1/L · d(x, y) ≤ ρ(f(x), f(y)) ≤ L · d(x, y)

fails to hold. By assumption we have |Sf | ≥
ε|M |2 = εm2. For any (x, y) ∈ Sf , the probability,

taken over the random coin tosses of TEST-BILIP,
that both (x, y) ∈ QM and (f(x), f(y)) ∈ QN is
pM pN (although there are two possible assignments
to pM and pN by TEST-BILIP). Now write Sf =
{(x1, y1), . . . , (xt, yt)}. Since f is injective, the pairs
(f(x1), f(y1)), . . . , (f(xt), f(yt)) are different. Hence,
the 2t events

(x1, y1) ∈ QM

...
(xt, yt) ∈ QM

(f(x1), f(y1)) ∈ QN

...
(f(xt), f(yt)) ∈ QN

are independent. From this it is not hard to see that
with probability

∏

(x,y)∈Sf

(1− pM pN) ≤ (1− pM pN)εm2

,

none of (x, y) ∈ Sf satisfies both (x, y) ∈ QM and
(f(x), f(y)) ∈ QN . Since QM × QN refutes f when
there is a pair (x, y) ∈ Sf satisfying both (x, y) ∈ QM

and (f(x), f(y)) ∈ QN , the probability taken over the
random coin tosses of TEST-BILIP that QM ×QN
refutes f is at least

1− (1− pM pN)εm2
.

By the union bound and the fact that there are nm

functions from M to N, with probability at least

1− nm (1− pM pN)εm2
(4)

over the random coin tosses of TEST-BILIP, every
injection from M to N is refuted by QM ×QN .

Now there are two cases to consider. The first is
when 2 · n

m

√
ln n
εm ≥ 1. In this case, TEST-BILIP sets

pM = 1 and pN = 4 · ln n
εm where pN < 1 is guaranteed

by Eq. (3). The second case is when 2 · n
m

√
ln n
εm < 1.

In this case, TEST-BILIP sets pM = 2 · n
m

√
ln n
εm < 1

and pN = 2 · m
n

√
ln n
εm where pN < 1 is guaranteed

by the facts that pN = (m
n)2pM and m ≤ n. In both

cases, we have pM pN = 4 · ln n
εm , resulting in Eq. (4)

to be

1− nm (1− pM pN)εm2

= 1− exp(m lnn) · (1− pM pN)
1

pM pN
·pM pN εm2

≥ 1− exp(m lnn) exp(−pM pN εm2)
= 1− exp(−3m lnn).

By the Chernoff bound (Chernoff 1952) and the
fact that m ≤ n, it can be verified that in both
the aforementioned cases of setting pM and pN , the
event |QM | > 1000 pM m2 happens with probabil-
ity exp(−Ω(n

√
m)) over the random coin tosses of

TEST-BILIP (in fact, for the case of pM = 1,
the probability that |QM | > 1000 pM m2 is zero).
Similarly, the event |QN | > 1000 pN n2 happens
with probability exp(−Ω(n)). Finally, if |QM | ≤
1000 pM m2, |QN | ≤ 1000 pN n2 and every injection
from M to N is refuted by QM × QN , then TEST-
BILIP clearly rejects. The union bound therefore

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

127

shows that TEST-BILIP rejects with probability at
least

1− exp(−3m lnn)− exp(−Ω(n
√

m))− exp(−Ω(n)),

which is close to 1 for sufficiently large n ∈ N.

We now turn to analyze the query complexity of
TEST-BILIP.

Lemma 4. On input L ≥ 1, ε> 0, positive inte-
gers m ≤ n and given oracle access to finite metric
spaces (M,d) and (N,ρ) with |M | = m and |N | = n,
the query complexity (with respect to ε,m and n) of

TEST-BILIP is O(
√

ln n
εm (m2 + n2)).

Proof. If ln n
εm ≥ 1/4, then TEST-BILIP does exhaus-

tive queries. The query complexity is m2 + n2 =
O(

√
ln n
εm (m2 + n2)). Hence, we may assume that

lnn

εm
< 1/4 (5)

in the following.
The query complexity of TEST-BILIP is at most

1000 pM m2+1000 pN n2 = O(pM m2+pN n2). Again,
there are two cases to consider. The first is is when

2 · n

m

√
lnn

εm
≥ 1. (6)

In this case, TEST-BILIP sets pM = 1 and pN =
4 · ln n

εm . The second is when Eq. (6) does not hold. In

this case, TEST-BILIP sets pM = 2 · n
m

√
ln n
εm < 1

and pN = 2 · m
n

√
ln n
εm .

In the first case,

pM m2 + pN n2

= m2 +
lnn

εm
· 4n2

Eq. (6)
≤ lnn

εm
· 4n2 +

lnn

εm
· 4n2

Eq. (5)
≤

√
lnn

εm
(4n2 + 4n2)

= O(
√

lnn

εm
(m2 + n2)).

In the second case,

pM m2+pN n2 = O(mn

√
lnn

εm
) = O(

√
lnn

εm
(m2+n2)).

Combining Lemmas 3–4, we finally arrive at the
the main result for this section.

Theorem 5. TEST-BILIP is a one-sided tester
for bilipschitz embeddability with query complexity
O(

√
ln n
εm (m2 + n2)) with respect to any ε > 0 and

any positive integers m ≤ n.

When the space (N,ρ) is not too large, or more
specifically when n = exp(o(εm)), Theorem 5 im-
plies that TEST-BILIP has a query complexity of
o(m2 + n2) with respect to ε,m and n. That is, most

distances between pairs need not be queried for one-
sided testing of bilipschitz embeddability, provided
that the host space is not excessively large.

When (N,ρ) is known in advance, a one-sided
tester for bilipschitz embeddability needs only query
the other space (M,d). Equivalently, we could con-
sider one-sided testers for bilipschitz embeddability
that may still make queries to both metric spaces,
while counting only its query complexity concern-
ing (M,d). That is, queries to (N,ρ) are regarded
as dummy queries. This gives the following easy ex-
tension of Theorem 5, whose sketch of proof is given
in Appendix II. But this time we use quasi-isometric
embeddability for illustration and to be used later in
Section 6.

Theorem 6. There is a one-sided tester for quasi-
isometric embeddability which, on input κ ≥ 1, C ≥
0, ε> 0, positive integers m ≤ n and given oracle
access to metric spaces (M,d) and (N,ρ) with |M | =
m and |N | = n, makes O(m ln n

ε) queries to (M,d).

5 A lower bound on the query complexity

In this section we show a lower bound on the query
complexity of any one-sided tester for isometry. This
will imply the same lower bound for any one-sided
tester of bilipschitz equivalence. For this purpose, we
relate the testing of isometry to testing graph isomor-
phism. The following theorem is due to Fischer and
Matsliah (Fischer & Matsliah 2006).

Theorem 7. ((Fischer & Matsliah 2006)) Let ε ∈
(0, 1

100) and n be a positive integer. For every one-
sided tester T for graph isomorphism, there are undi-
rected simple n-vertex graphs G1 and G2 such that
given ε ∈ (0, 1

100), n and oracle access to G1 and G2,

T makes at least n3/2

200 queries.

Using Theorem 7, it is not hard to give the follow-
ing n3/2

200 lower bound on the query complexity of any
one-sided tester for isometry.

Theorem 8. Let ε ∈ (0, 1
200) and n be a positive

integer. The query complexity of any one-sided tester
for isometry is at least n3/2

200 with respect to ε and n.

The interested reader is referred to Appendix III
for the proof of Theorem 8

6 Embeddability into possibly infinite spaces

So far we have been dealing with the embeddability
of a finite metric space into another finite one. In
this section, we are interested in testing the embed-
dability of a finite metric space (M,d) into a totally
bounded (Croom 2002) metric space (N,ρ) that is
known in advance. Examples of totally bounded met-
ric spaces include all compact metric spaces (Croom
2002), which in turn include all closed and bounded
sets in the Euclidean space by the Heine-Borel theo-
rem (Rudin 1976).

Definition 2. ((Croom 2002)) Let (X, d) be any met-
ric space. For δ > 0, a δ-net Aδ of (X, d) is a finite
subset of X such that for every point x ∈ X, there is
an y ∈ Aδ with d(x, y) < δ. If (X, d) has a δ-net for
every δ > 0, then (X, d) is totally bounded.

We are now ready to state our main theorem for
this section.

CRPIT Volume 77 - Theory of Computing 2008

128

Theorem 9. Let (N,ρ) be a totally bounded metric
space. Assume there is an algorithm that outputs a δ-
net Aδ of (N,ρ) on input any δ > 0. Then there is an
algorithm T that, on input κ ≥ 1, 0 ≤ C ′ < C, ε> 0, a
positive integer m and given oracle access to a metric
space (M,d) with |M | = m, satisfies the following
conditions.

1. If (M,d) is (κ, C ′) quasi-isometrically embed-
dable into (N,ρ), then T accepts.

2. If (M,d) is ε-far from being (κ, C) quasi-
isometrically embeddable into (N,ρ), then T re-
jects with high probability.

3. T makes O(m ln |A(C−C′)/2|
ε) queries to (M,d).

Proof. Denote by QUASI-ISO the algorithm im-
plied in Theorem 6. The algorithm T first selects a
(C−C ′)/2-net A(C−C′)/2. Then T runs QUASI-ISO
on input κ, C,ε ,m, |A(C−C′)/2| and supplies QUASI-
ISO with oracle access to (M,d) and (A(C−C′)/2, ρ).
Clearly, T could satisfy each query of QUASI-ISO by
turning the same query to the corresponding metric
space. Finally, T accepts if and only if QUASI-ISO
accepts. The intuition is that T uses QUASI-ISO to
test (M,d) for (κ, C) quasi-isometric embeddability
into (A(C−C′)/2, ρ).

Now we prove item 1. The premise of item 1 trans-
lates to the existence of a function f : M → N such
that

1/κ · d(x, y)− C ′ ≤ ρ(f(x), f(y)) ≤ κ · d(x, y) + C ′ (7)

holds for all (x, y) ∈ M × M. Below we define a
function g : M → A(C−C′)/2. For each x ∈ M,
let g(x) be the point in A(C−C′)/2 that is closest
to f(x), breaking ties arbitrarily. Clearly, we have
ρ(g(x), f(x)) < (C − C ′)/2 for each x ∈ M. There-
fore,

ρ(f(x), f(y))
≤ ρ(f(x), g(x)) + ρ(g(x), g(y)) + ρ(g(y), f(y))
< ρ(g(x), g(y)) + C − C ′

for all x, y ∈ M, and in fact
|ρ(f(x), f(y))− ρ(g(x), g(y))| < C − C ′ for all
x, y ∈ M by a similar argument. This and Eq. (7)
give

1/κ · d(x, y)− C ≤ ρ(g(x), g(y)) ≤ κ · d(x, y) + C

for all x, y ∈ M. Therefore, (M,d) is (κ, C) quasi-
isometrically embeddable into (A(C−C′)/2, ρ) and thus
T accepts.

Item 2 is easily justified because its premise triv-
ially implies that (M,d) is ε-far from being (κ, C)
quasi-isometrically embeddable into (A(C−C′)/2, ρ),
which results in rejection of T with high probability.

Item 3 is established by directly invoking Theo-
rem 6 and calculating the query complexity.

We briefly justify the applicability of Theorem 9.
It is meant to deal with the case where (M,d) is to be
embedded into an already-known (N,ρ). In this case,
queries to (N,ρ) can be answered without actually
making a query. Since (N,ρ) is known beforehand
and since we usually want to embed metric spaces
into a host metric space with a simple structure, it
is not strange to assume that we can find δ-nets for
(N,ρ). For example, if (N,ρ) is a closed ball of radius
R > 0 in the 3-dimensional Euclidean space, then it is
easy to find a δ-net of cardinality O(R3/δ3) for (N,ρ).

7 Concluding remarks

We have defined bilipschitz embeddability and ε-
farness from bilipschitz embeddability using injective
functions. Such a definition is justifiable for the fol-
lowing reasons. First, Eq. (1) could be satisfied for
all (x, y) ∈ M × M only if f : M → N is in-
jective. Second and more importantly, one usually
defines embeddings between metric spaces using in-
jections, and in fact in many (if not most) areas
of mathematics, embeddings are defined using injec-
tions (see, e.g., (Embedding n.d., Croom 2002, Good-
man & O’Rourke 2004, Kenyon et al. 2004)). In
contrast, quasi-isometric embeddability is defined via
functions that are not necessarily injective (Ghys &
de la Harpe 1991, Farb 1997, Farb & Mosher 1999,
2000), as we did in Section 2. We could also define
the notions of quasi-isometric embeddability and ε-
farness from quasi-isometric embeddability using in-
jections by modifying the corresponding definitions in
Section 2 to concern only with injections f : M → N.
That is, we could define (M,d) to be (κ, C) quasi-
isometrically embeddable into (N,ρ) under injections
if Eq. (2) holds for some injection f : M → N and
all (x, y) ∈ M × M. We could also say that (M,d)
is ε-far from being (κ, C) quasi-isometrically embed-
dable into (N,ρ) under injections if Eq. (2) fails on at
least an ε fraction of pairs (x, y) ∈ M ×M for every
injection f : M → N. Theorems 5–6 and 9 can be eas-
ily adapted to give the corresponding tests for quasi-
isometric embeddability under injections. The proofs
are mostly the same except for a few trivial modifi-
cations to Definition 1 and algorithm TEST-BILIP.
The query complexities remain the same. A minor
point is that we have treated pairs selected from a
metric space as ordered ones. They could also be
treated as unordered since the distance function of
any metric space is symmetric. Again, this does not
change our results.

Our definition of ε-farness from L-bilipschitz em-
beddability is directly concerned with the least pos-
sible (over all injections f : M → N) fraction of pairs
(x, y) ∈ M ×M violating Eq. (1), which is naturally
interpreted as the quality of the best possible embed-
ding f : M → N. This seems as intuitively appealing
feature of our definition. However, other definitions
of ε-farness from L-bilipschitz embeddability may also
be worth studying. For example, we may adopt one
of the following definitions for (M,d) to be ε-far from
being L-bilipschitz embeddable into (N,ρ).

1. At least an ε fraction of (ordered or unordered)
pairs (x, y) ∈ M × M need to have their d-
distance changed to obtain a metric space that
is L-bilipschitz embeddable into (N,ρ).

2. Among all (ordered or unordered) pairs in (M ×
M)∪(N×N), at least an ε fraction of them need
to have their d-distance or ρ-distance changed
so that the modified metric space (M,d) is L-
bilipschitz embeddable into the modified metric
space (N,ρ).

3. For a reasonable set of edit operations on met-
ric spaces, the least number of edit operations
to turn (M,d) into a metric space that is L-
bilipschitz embeddable into (N,ρ) is at least
ε|M |2 (or ε|M |, depending on whichever is more
relevant).

4. For a reasonable set of edit operations on met-
ric spaces, the least number of edit operations
on (M,d) and (N,ρ) to turn (M,d) into being
L-bilipschitz embeddable into (N,ρ) is at least
ε(|M |2 + |N |2) (or ε(|M | + |N |), depending on
whichever is more relevant).

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

129

Although in these definitions, farness from L-
bilipschitz embeddability may no longer correspond
to the quality of the best possible embedding, tests
for L-bilipschitz embeddability under these defini-
tions may still be worth studying and may provide
new insights.

Appendix I: Proof of Theorem 1

Proof of Theorem 1. We first show the easy reduction
from the graph isomorphism problem to the prob-
lem of testing isometry between finite metric spaces.
Given two graphs G1 = (V,E1) and G2 = (V,E2), the
reduction outputs two metric spaces (V, d) and (V,ρ)
described below. For distinct x, y ∈ V, d(x, y) = 2
if (x, y) ∈ E1 and d(x, y) = 3 otherwise. Also, set
d(x, x) = 0 for each x ∈ V. The metric ρ is defined
similarly with E2 in place of E1. It is not hard to ver-
ify that (V, d) and (V,ρ) are metric spaces and they
are isometric if and only if G1 is isomorphic to G2.

Now we turn to the other direction of the re-
duction. Given two finite metric spaces (M,d) and
(M,ρ), the reduction computes the sets (not mul-
tisets) {d(x, y) | x, y ∈ M,x '= y} and {ρ(x, y) |
x, y ∈ M,x '= y}. Let α1 < . . . <α t be an enu-
meration of the first set in strictly increasing order
and β1 < . . . <β t′ be that of the second. Assume
that t = t′ and αi = βi for 1 ≤ i ≤ t, for otherwise
the reduction just outputs any two non-isomorphic
graphs.

The reduction outputs two undirected simple
graphs G1 and G2 defined below. It begins with
G1 having vertex set M and the empty edge set,
and proceeds by adding to G1 new vertices and new
edges. For each pair of distinct x, y ∈ M, denote by
i(x, y, d) the unique value of i ∈ {1, . . . , t} satisfying
d(x, y) = αi. The reduction adds 3 i(x, y, d) new ver-
tices vx,y,1, . . . , vx,y,3 i(x,y,d) and also adds new edges

(x, vx,y,1), . . . , (x, vx,y,3 i(x,y,d))

and
(vx,y,1, y), . . . , (vx,y,3 i(x,y,d), y)

to G1. After adding new vertices and edges as above
for each pair of distinct x, y ∈ M, the graph G1 is
finally formed. The graph G2 is formed similarly with
ρ in place of d.

Clearly, if (M,d) is isometric to (M,ρ), then G1
and G2 are isomorphic.

Now assume that G1 is isomorphic to G2. We are
to show that (M,d) is isometric to (M,ρ). The set of
vertices of G1 is M ∪ S1 where

S1 = {vx,y,j | x, y ∈M,x '= y, 1 ≤ j ≤ 3 i(x, y, d)}
is the set of newly added vertices to G1. Similarly, the
set of vertices of G2 is denoted M ∪ S2 where S2 is
the set of newly added vertices to G2. We may assume
without loss of generality that |M | ≥ 2. From the way
we add edges to G1 (respectively, G2), it is not hard
to see that every vertex in S1 (respectively, S2) has
degree exactly two in G1 (respectively, G2), and every
vertex in M has degree at least 3 in G1 (respectively,
G2). An isomorphism f from G1 to G2 must therefore
map M one-to-one and onto to M, and S1 one-to-one
and onto to S2. Now fix distinct x, y ∈M arbitrarily.
We are to show that d(x, y) = ρ(f(x), f(y)), which
implies that f itself (when restricted on M) is an
isometry from (M,d) to (M,ρ). That f is an isomor-
phism implies

|{v | (x, v), (v, y) are edges of G1 and v has
degree exactly 2 in G1}|

= |{u | (f(x), u), (u, f(y)) are edges of G2 and
u has degree exactly 2 in G2}| .

The fact that S1 (respectively, S2) consists of exactly
those vertices in G1 (respectively, G2) with degree
two then implies

|{v ∈ S1 | (x, v), (v, y) are edges of G1}|
= |{u ∈ S2 | (f(x), u), (u, f(y)) are edges of G2}| ,

which in turn implies that d(x, y) = ρ(f(x), f(y)).

Appendix II: Proof of Theorem 6

Sketch of proof of Theorem 6. We modify TEST-
BILIP slightly to prove the theorem. If ln n

εm ≤
1/4, the modified TEST-BILIP still does exhaustive
queries. Otherwise, TEST-BILIP sets pM = 4 · ln n

εm
and pN = 1 (we let TEST-BILIP do exhaustive
queries to (N,ρ)). These are different from the origi-
nal assignments of TEST-BILIP to pM and pN . Also
modify TEST-BILIP so that after querying QM and
QN to (M,d) and (N,ρ), it rejects if all functions
(not necessarily injective) from M to N are refuted
by QM ×QN .

Clearly, when ln n
εm ≥ 1/4, the modified TEST-

BILIP does exhaustive queries and the query com-
plexity also follows. It is also clear that the modi-
fied TEST-BILIP accepts if (M,d) is (κ, C) quasi-
isometrically embeddable into (N,ρ).

Now assume that (M,d) is ε-far from being (κ, C)
quasi-isometrically embeddable into (N,ρ) and ln n

εm <
1/4. It is clear that the modified assignment of pM =
4· ln n

εm does not exceed 1. Now fix an arbitrary function
f : M → N. Similar to in Lemma 3, we define Sf to
be the set of pairs (x, y) ∈M ×M violating

1/κ · d(x, y)− C ≤ ρ(f(x), f(y)) ≤ κ · d(x, y) + C.

We have |Sf | ≥ εm2. Since we do exhaustive queries
to (N,ρ), this time f can be refuted by QM ×QN if
some pair in Sf is put into QM . The probability that
QM ×QN does not refute f is therefore at most

(1− pM)|Sf | ≤ (1− 4 · lnn

εm
)εm2

.

By the union bound, the probability that every func-
tion from M to N is refuted by QM ×QN is at least
1−nm (1−4· ln n

εm)εm2
= 1−o(1). The probability that

QM > 1000 pM m2 is small, and QN > 1000 pN n2

happens with probability zero. Therefore, with high
probability QM ×QN refutes every function from M
to N, and the whole QM and QN are queried to (M,d)
and (N,ρ), respectively, resulting in rejection of the
modified TEST-BILIP.

The number of queries to (M,d) is at most
1000 pM m2, which is easily verified to obey the de-
sired bound.

Appendix III: Proof of Theorem 8

Proof of Theorem 8. Let T be a one-sided tester for
isometry with query complexity q(ε, n) with respect
to ε and n. Using T, we develop a one-sided tester
T ′ for graph isomorphism with query complexity at
most q(ε/2, n) with respect to ε and n. The theorem
is then immediate from Theorem 7.

On input ε, n and given oracle access to two undi-
rected simple graphs G1 = (V,E1) and G2 = (V,E2)
with |V | = n, the algorithm T ′ simulates T on in-
put n,ε/ 2 and provides T with oracle access to two
metric spaces (V, d) and (V,ρ) described below. The

CRPIT Volume 77 - Theory of Computing 2008

130

metric space (V, d) is defined by d(x, x) = 0 for x ∈ V,
d(x, y) = 2 for (x, y) ∈ E1 and d(x, y) = 3 for distinct
x, y ∈ V with (x, y) /∈ E1. The metric space (V,ρ)
is defined similarly except that E1 is replaced by E2.
Whenever T makes a query (x, y) ∈ V × V to the
metric space (V, d) (respectively, (V,ρ)), T ′ asks G1
(respectively, G2) whether (x, y) ∈ E1 (respectively
(x, y) ∈ E2) and then computes d(x, y) (respectively,
ρ(x, y)) to satisfy the query of T. The query com-
plexity of T ′ is clearly at most q(ε/2, n). Finally, T ′

accepts (respectively, rejects) if and only if T accepts
(respectively, rejects).

It is clear that if G1 and G2 are isomorphic, then
(V, d) and (V,ρ) are isometric. Hence T and thus T ′

accepts.
Now assume that G1 and G2 are ε-far from being

isomorphic and let π : V → V be any bijection. There
are at least ε

(|V |
2

)
unordered pairs (x, y) ∈ V × V

such that either (x, y) ∈ E1 and (π(x), π(y)) /∈ E2,
or (x, y) ∈ E2 and (π(x), π(y)) /∈ E1, and it is clear
that any such pair satisfies x '= y. This implies the
existence of at least 2ε

(|V |
2

)
ordered pairs (x, y) ∈ V ×

V with d(x, y) '= ρ(π(x), π(y)). Since the bijection π

is arbitrary, (V, d) and (V,ρ) must be 2ε(|V |
2)

|V |2 >ε/ 2
far from being isometric, resulting in the rejection of
T and thus T ′ with high probability.

References

Apostol, T. M. (1974), Mathematical Analysis, Addi-
son Wesley.

Chávez, E. & Navarro, G. (2006), ‘A metric index
for approximate string matching’, Theoretical Com-
puter Science 352, 266–279.

Chernoff, H. (1952), ‘A measure of the asymptotic
efficiency of tests of a hypothesis based on the sum
of observations’, Annals of Mathematical Statistics
23, 493–507.

Croom, F. H. (2002), Principles of Topology, 1st edn,
Thomson Learning Asia.

David, G. & Semmes, S. (2000), ‘Regular mappings
between dimensions’, Publicacions Matemàtiques
44, 369–417.

Deza, M. & Laurent, M. (1997), Geometry of Cuts
and Metrics, Vol. 15 of Algorithms and Combina-
torics, Springer.

Dress, A., Huber, K. T. & Moulton, V. (2001), Met-
ric spaces in pure and applied mathematics, in
‘Quadratic Forms and Related Topics’, pp. 121–
139.

Embedding (n.d.), Wikipedia: The Free Encyclopedia.
http://en.wikipedia.org/wiki/Embedding.

Farb, B. (1997), ‘The quasi-isometry classification of
lattices in semisimple Lie groups’, Mathematical
Research Letters 4, 705–717.

Farb, B. & Mosher, L. (1999), ‘Quasi-isometric rigid-
ity for the solvable Baumslag-Solitar groups, II’,
Inventiones Mathematicae 137(3), 613–649.

Farb, B. & Mosher, L. (2000), ‘On the asymptotic
geometry of abelian-by-cyclic groups’, Acta Math-
ematica 184(2), 145–202.

Fischer, E. (2001), ‘The art of uninformed decisions:
A primer to property testing’, Bulletin of the Euro-
pean Association for Theoretical Computer Science
75, 97–126.

Fischer, E. & Matsliah, A. (2006), Testing graph
isomorphism, in ‘Proceedings of the 17th annual
ACM-SIAM Symposium on Discrete Algorithms’,
pp. 299–308.

Ganyushkin, A. G., Sushchanskii, V. I. & Tsvirkunov,
V. V. (1994), ‘Computations in isometry groups
of finite metric spaces’, Cybernetics and Systems
Analysis 30(3), 331–347.

Ganyushkin, A. G. & Tsvirkunov, V. V. (1994), ‘On
classification of finite metric spaces’, Mathematical
Notes 56(4), 1023–1029.

Ghys, E. & de la Harpe, P. (1991), Infinite groups as
geometric objects (after Gromov), Ergodic theory,
symbolic dynamics and hyperbolic space, Oxford
University Press.

Goodman, J. E. & O’Rourke, J., eds (2004), Hand-
book of discrete and computational geometry, 2nd
edn, CRC Press, Inc.

Gupta, A. (2000), Embeddings of Finite Metrics, PhD
thesis, University of California, Berkeley.

Indyk, P. (2001), Algorithmic applications of low-
distortion geometric embeddings, in ‘Proceedings
of the 42nd IEEE Symposium on Foundations of
Computer Science’, pp. 10–33.

Johnson, W. B. & Lindenstrauss, J., eds (2003),
Handbook of the Geometry of Banach Spaces, North
Holland.

Kenyon, C., Rabani, Y. & Sinclair, A. (2004), Low
distortion maps between point sets, in ‘Proceedings
of the 36th annual ACM Symposium on Theory of
Computing’, pp. 272–280.

Linial, N. (2002), ‘Finite metric spaces — combina-
torics, geometry and algorithms’, http://www.cs.
huji.ac.il/~nati/PAPERS/icm.ps.gz.

Mao, R., Xu, W., Singh, N. & Miranker, D. P. (2005),
‘An assessment of a metric space database index to
support sequence homology’, International Journal
on Artificial Intelligence Tools 14(5), 867–885.

Matoušek, J. (2002), Lectures on Discrete Geometry,
Springer-Verlag New York, Inc.

Miranker, D. P. (2003), ‘Metric-space indexes as a
basis for scalable biological databases’, OMICS: A
Journal of Integrative Biology 7(1), 57–60.

Papadimitriou, C. H. (1994), Computational Com-
plexity, Addison Wesley.

Rudin, W. (1976), Principles of Mathematical Anal-
ysis, 3rd edn, McGraw-Hill.

West, D. B. (2001), Introduction to Graph Theory,
2nd edn, Prentice-Hall.

Weston, J. D. (2001), ‘Vectors as quaternions: A cor-
ner of linear algebra’, The Mathematical Gazette
85(502), 25–35.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

131

http://www.cs.huji.ac.il/~nati/PAPERS/icm.ps.gz
http://en.wikipedia.org/wiki/Embedding
http://www.cs.huji.ac.il/~nati/PAPERS/icm.ps.gz

On the Efficiency of Pollard’s Rho Method for Discrete Logarithms

Shi Bai1 Richard P. Brent2 †
1 Department of Computer Science,

Australian National University,
Canberra, ACT 0200

Email: shih.bai@gmail.com
2 Centre for Mathematics and its Applications,

Mathematical Sciences Institute,
Australian National University,

Canberra, ACT 0200
Email: cats@rpbrent.com

Abstract

Pollard’s rho method is a randomized algorithm for
computing discrete logarithms. It works by defining a
pseudo-random sequence and then detecting a match
in the sequence. Many improvements have been pro-
posed, while few evaluation results and efficiency sug-
gestions have been reported. This paper is devoted
to a detailed study of the efficiency issues in Pollard’s
rho method. We describe an empirical performance
analysis of several widely applied algorithms. This
should provide a better combination of algorithms
and a good choice of parameters for Pollard’s rho
method.

Keywords: Pollard’s rho method, discrete logarithm,
elliptic curve discrete logarithm.

1 Introduction

The discrete logarithm is an analogue of the ordinary
logarithm in a finite abelian group. Let H be a fi-
nite abelian group with the group operation ⊗. G is
a cyclic subgroup of H generated by g, denoted as
〈g〉 = G. Then an instance of the discrete logarithm
problem (DLP) is stated as follow.

Definition 1.1 (DLP). Given h, g ∈ G known, DLP
is to find the smallest non-negative integer x such
that,

h = g ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸
x times

As each element h ∈ G can be expressed in the form
of h = g ⊗ g ⊗ · · · ⊗ g, such x exists and is unique
modulo |G|. By analogy to the ordinary logarithm,
we write x = logg h. We also simplify the equation
h = g ⊗ g ⊗ · · · ⊗ g by writing h = gx.

The discrete logarithm problem is believed to be
hard, without any known efficient algorithm in the
general case. Here an efficient algorithm means an
algorithm with polynomial bit-complexity. The pre-
sumed hardness of DLP is relevant to many cryp-
tosystems and cryptographic protocols such as Diffie-
Hellman key exchange protocol (Diffie & Hellman

† The work of the second author was supported by the
Australian Research Council.

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at Fourteenth Computing: The Australasian
Theory Symposium (CATS2008), Wollongong, Australia.
Conferences in Research and Practice in Information Tech-
nology, Vol. 77. James Harland and Prabhu Manyem, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

1976), ElGamal encryption (Gamal 1985), Digital
Signature Algorithm (DSA) and Elliptic Curve DSA.
Therefore algorithms for computing discrete loga-
rithms are of great academic and practical impor-
tance.

Not all discrete logarithm problems are difficult.
They may be trivial in some groups. The difficulty of
the discrete logarithm problem depends on the rep-
resentation of the group. Two popular finite groups
used for discrete logarithm problems are the multi-
plicative group (Z/pZ)∗ of integers modulo a prime
p and the group of points on an elliptic curve over
a finite field, denoted by E(Fp). In these groups, no
polynomial time algorithm for the problem has been
reported in the literature.

Pollard’s rho method (Pollard 1978) is a random-
ized algorithm for computing the discrete logarithm.
It generates a pseudo-random sequence by an itera-
tion function Yi+1 = f(Yi) in a finite abelian group.
Because the order of the group is finite, the sequence
will ultimately meet an element that has occurred
before. This is called a collision or a match, which
can be found by Floyd’s collision-detection (cycle-
finding) algorithm. Under the assumption that f :
G → G behaves like a truly random mapping, the
expected number of evaluations before a match ap-
pears is

√
π|G|/2, which is fully exponential in the

problem size. The space requirement is negligible.
In some cases, such as the elliptic curve discrete loga-
rithm problem (ECDLP), Pollard’s rho method is the
fastest algorithm currently available. Although there
exist sub-exponential time algorithms for discrete log-
arithm problems in the group (Z/pZ)∗ such as the in-
dex calculus method (Coppersmith et al. 1986), Pol-
lard’s rho method is still of practical interest because
of its simplicity and effectiveness for smaller groups.
In addition, it does not exploit any special proper-
ties of the groups, making it potentially applicable to
DLPs in other abelian groups.

The rest of the paper is organized as follows. Sec-
tion 2 presents a comprehensive analysis of Pollard’s
rho method and its variants in two aspects: iteration
functions and collision-detection algorithms. We also
compare the performance of different iteration func-
tions and collision-detection algorithms. In Section 3,
we fill some gaps in the previous literature, suggest
a good choice of parameters and give an empirical
analysis of the performance.

2 Background

In this section we introduce Pollard’s rho method
and discuss the current status of research on itera-
tion functions and cycle-finding algorithms.

CRPIT Volume 77 - Theory of Computing 2008

132

2.1 Pollard’s Rho Method

Pollard proposed an elegant algorithm (Pollard 1978)
for the discrete logarithm problem based on a Monte
Carlo idea and called it the rho method. The rho
method works by first defining a sequence of elements
that will be periodically recurrent, then looking for a
match in the sequence. The match will lead to a so-
lution of the discrete logarithm problem with high
probability. The two key ideas involved are the it-
eration function for generating the sequence and the
cycle-finding algorithm for detecting a match.

2.1.1 Pollard’s Iteration Function

We first introduce the definition of the iteration func-
tion applied in the rho method.

Definition 2.1 (Iteration Function). An iteration
function on a set X is a mapping f : X → X.

In Pollard’s paper, DLPs in (Z/pZ)∗ are consid-
ered where p is a prime. Let g be a generator of the
cyclic group G = (Z/pZ)∗. Another element h ∈ G
is given. The discrete logarithm problem is to com-
pute x satisfying gx ≡ h (mod p). Pollard’s iteration
function fP : G → G is defined as follows,

fP (Y) ≡
{

g · Y (mod p) Y ∈ G1

Y 2 (mod p) Y ∈ G2

h · Y (mod p) Y ∈ G3

(2.1)

In each iteration of Yi+1 = fP (Yi), the function
uses one of three rules depending on the value of Yi.
The group G is partitioned into three sets G1, G2, G3
with similar sizes, not necessarily subgroups. Each
Yi has the form gaihbi . If it happens that Yk ≡ Yj

(mod p), then gakhbk ≡ gaj hbj (mod p). We can of-
ten solve the DLP if ak, aj , bk, bj are known. The
sequence (ai) (and similarly for (bi)) can be computed
using1,

ai+1 ≡
{

ai + 1 (mod |G|) Yi ∈ G1

2ai (mod |G|) Yi ∈ G2

ai (mod |G|) Yi ∈ G3

(2.2)

Since G is finite, the sequence (Yi) produced by the
iteration function is periodic. Therefore there exist
two smallest integers µ and λ (µ ≥ 0, λ ≥ 1) such
that Yk = Yk+λ for every k > µ. To analyze the
performance of the rho method, we use the following
theorem,

Theorem 2.2 (Harris (1960)). Under the assump-
tion that an iteration function f : G → G behaves like
a truly random mapping, the expected values for µ and
λ are

√
π|G|/8 ≈ 0.63

√
|G|. The expected number

of evaluations before a match appears is E(µ + λ) =√
π|G|/2 ≈ 1.25

√
|G|, provided that all elements are

saved, which requires
√

π|G|/2 space.

2.1.2 Reported Performance

Theorem 2.2 makes the assumption of true random-
ness. However, it has been shown empirically that
this assumption does not hold exactly for Pollard’s
iteration function (Teske 1998). The actual perfor-
mance is worse than the expected value given in The-
orem 2.2. As it is impractical to find the exact value

1Initially Y0 = 1, a0 = 0, b0 = 0.

of µ + λ for Pollard’s iteration function, a collision-
detection algorithm is often applied in practice, need-
ing I iterations. To analyze the performance of the
iteration function, we adopt the idea of delay fac-
tor δ = I/E(µ + λ) used in (Teske 1998). The val-
ues of δ and I for Pollard’s iteration function have
been reported and we divide I by δ to get E(µ + λ).
The performance is summarized as follows. In groups
(Z/pZ)∗, Pollard’s iteration function has an average
value of E(µ+λ) ≈ 1.37

√
|G|. The reported E(µ+λ)

for prime order subgroups of (Z/pZ)∗ is 1.55
√
|G| and

1.60
√
|G| for prime order subgroups of of E(Fp).

2.1.3 Floyd’s Cycle-finding Algorithm

In order to minimise the storage requirement, a
collision-detection algorithm can be applied with a
small penalty in the running time. Collision-detection
algorithms do not exploit the group structure and are
generic. In Pollard’s paper, Floyd’s algorithm is ap-
plied. It compares each pair of Yi and Y2i for i > 1.
Floyd’s algorithm is based on the following fact.

Theorem 2.3 (Knuth (1997)). For a periodic se-
quence Y0, Y1, Y2 · · ·, there exists an i > 0 such that
Yi = Y2i and the smallest such i lies in the range
µ 6 i 6 µ + λ.

Floyd’s algorithm uses only a small constant
amount of storage. The best running-time requires µ
iterations and the worst takes µ+λ iterations. Under
the assumption that f : G → G behaves like a truly
random mapping, the expected number of iterations
before reaching a match is

√
π5|G|/288 ≈ 1.03

√
|G|.

In Floyd’s algorithm, there are three evaluations and
one comparison in each iteration. Hence on average
there are 1.03

√
|G| comparisons and 3.09

√
|G| eval-

uations.

2.2 Advances in Iteration Functions

In this subsection, we consider some recent advances
and developments in iteration functions.

2.2.1 Pollard’s Generalized Function

We slightly change the rules defining the function.
Let M = gm and N = hn where m, n are two random
elements chosen from [1, |G|], denoted as m, n ∈R
[1, |G|]. We partition G into 3 sets G1, G2, G3 with
similar sizes. Let fPG : G → G be a mapping,

fPG(Y) ≡
{

M · Y (mod p) Y ∈ G1

Y 2 (mod p) Y ∈ G2

N · Y (mod p) Y ∈ G3

(2.3)

Teske (1998) found that the variance of the per-
formance in Pollard’s generalized walk (or iteration
function) is smaller than that for Pollard’s original
function. Therefore this function can be regarded as
a controlled version of Pollard’s original walk (Teske
1998). The reported E(µ + λ) is 1.62

√
|G| for sub-

groups of E(Fp). We cannot find reported results for
groups (Z/pZ)∗ and hence we will fill this gap in Sec-
tion 3.

2.2.2 Teske’s Adding-walk

Teske (1998) proposed a better iteration function by
applying more arbitrary multipliers. Assume that we
are using r partitions (multipliers). We generate 2r
random numbers,

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

133

mi, ni ∈R {1, 2, · · · |G|}, for i = 1, 2, · · · , r (2.4)

Then we precompute r multipliers M1,M2, · · ·Mr
where,

Mi = gmi · hni , for i = 1, 2, · · · , r (2.5)

Define a hash function,

v : G → {1, 2, · · · r} (2.6)

This completes the precompute stage. Then the iter-
ation function fTA : G → G is,

fTA(Y) = Y ·Mv(Y), where v(Y) ∈ {1, 2, · · · r}
(2.7)

The indices are updated by,

ai+1 = ai + mv(Yi)

bi+1 = bi + nv(Yi)
(2.8)

Based on the work of Hildebrand (1994), Horwitz
& Venkatesan (2002), we have the following theorem
to show that the performance of adding-walk is prov-
ably good.

Theorem 2.4 (Teske (2001)). Let G be a finite
abelian group of prime order. Assume that we work
with an r adding-walk together with an independent
hash function where r ≥ 16. Then the average num-
ber of iterations before a collision occurs, divided by√
|G|, is approximately independent of |G|. In addi-

tion, if r > 16 then the average number of iterations
is bounded by 1.45

√
|G| when using Teske’s modified

cycle-finding algorithm.

The reported E(µ + λ) is 1.29
√
|G| for subgroups

of E(Fp), which is close to the theoretically optimal
bound 1.25

√
|G| in Theorem 2.2.

2.2.3 Teske’s Mixed-walk

Teske proposed another method named mixed-
walk (Teske 1998) which has a similar performance
to the adding-walk. It uses a mixture of the adding-
walk and some squaring steps, similar to Pollard’s
iteration function. Assume that we are using r mul-
tipliers in the adding-walk and q squaring steps. The
pseudo-random function fTM : G → G is defined as
follows,

fTM (Y) =
{

Y ·Mv(Y) v(Y) ∈ {1, 2, · · · r}
Y 2 Otherwise

(2.9)
Experimental results show that r ≥ 16 plus q/r ≈

0.25 yields a performance comparable to that of a
truly random walk. A mixed-walk of 16 multipliers
and 4 squaring steps is reported to have an expected
length of E(µ + λ) ≈ 1.3

√
|G|.

2.3 Advances in Collision-detection Algo-
rithms

In Floyd’s algorithm, some Yi will be evaluated twice,
which is time-consuming. There are faster algo-
rithms. We discuss two of Brent’s algorithms (Brent
1980) and a variant (Teske 1998).

2.3.1 Brent’s Algorithms

Brent proposed two algorithms (Brent 1980) which
are generally 25% faster than Floyd’s method. A
modified version of them was used in factoring the
eighth Fermat number by Brent & Pollard (1981).

Brent’s first algorithm (Brent 1980) uses a variable
z to keep the values of Yl(i)−1 where l(i) = 2blog ic. z
is compared with Yi for each iteration and is updated
by z = Yi when i = 2x − 1 for x = 1, 2, · · · (i is the
index of iteration and the base 2 is chosen for ease of
implementation). Only one sequence Yi needs to be
computed and the value of z is easily updated. The
correctness of this algorithm depends on the following
idea.
Theorem 2.5. For a periodic sequence Y0, Y1, Y2 · · ·,
there exists an i > 0 such that Yi = Yl(i)−1 and l(i) ≤
i < 2l(i). The smallest such i is 2dlg max(µ+1,λ)e+λ−
1.

Under the assumption that the iteration function
is truly random, an expected number of 1.98

√
|G| it-

erations for E(µ + λ) is reported (Brent 1980). The
number of evaluations is equal to the number of com-
parisons, and hence the total number of operations
is bounded by 3.96

√
|G|. If cost of comparisons is

insignificant, the algorithm is 30% faster in average
than Floyd’s algorithm. On the other hand, if com-
parisons are expensive, the speedup may be compro-
mised.

A second algorithm is given in the same pa-
per (Brent 1980). This algorithm avoids unnecessary
comparisons as it is sufficient to compare only when
3
2 l(i) ≤ i < 2l(i). Under the assumption that the iter-
ation function is truly random, the expected number
of evaluations is 2.24

√
|G| with an expected number

of comparison as 0.88
√
|G|. The total number of op-

erations is 3.12
√
|G|.

A variation of Brent’s algorithms is discussed
by Teske (1998). It reduces the number of iterations
by using more storage and comparisons. A chain of 8
cells is applied and each cell keeps a triplet (Yi, ai, bi).
Initially all the values in cells are Y0 and is updated
according to the following rules. At the i-th iteration,
we compare the current value Yi with previous values
in the cells. If they are not equal, we check whether
i is greater than 3 times the index of the element in
the first cell. If this is true, we put current Yi into
the last cell, remove the element in first cell and then
shift the other cells to the previous cell. Under the
assumption that the function is truly random, the ex-
pected number of iterations is about 1.42

√
|G|. For

each iteration, there is one evaluation and eight com-
parisons.

2.4 Summary

We summarize the performance of collision-detection
algorithms, making the assumption that the iteration
function is truly random. We also compile a table in-
cluding the performance of iteration functions, which
is based on the reported experimental results. In the
first table, the columns represent algorithms, number
of expected iterations, evaluations and comparisons.
In the second table, the columns denote iteration
functions, multiplicative groups (Z/pZ)∗, prime or-
der subgroups of (Z/pZ)∗ and prime order subgroups
of E(Fp). fTA[20] denotes Teske’s adding-walk with
20 multipliers and fTM [16:4] denotes Teske’s mixed-
walk with 16 multipliers plus 4 squaring steps. All
the data in the table is normalised: E(µ + λ) is di-
vided by

√
|G|.

CRPIT Volume 77 - Theory of Computing 2008

134

Remark 2.6. In case where two different experimental
results are reported by Teske (1998, 2001), we use first
one.

Table 1: Performance of Cycle-finding Algorithms

ALGs ITERs EVALs CMPs

Floyd’s 1.03 3.09 1.03
Brent’s 1st Alg 1.98 1.98 1.98
Brent’s 2nd Alg 2.24 2.24 0.88
Teske’s Modified 1.42 1.42 8 ∗ 1.42

Table 2: Performance of Iteration Functions

FUNCs (Z/pZ)∗ S ≤ (Z/pZ)∗ S ≤ E(Fp)
fP 1.37 1.55 1.60
fPG - - 1.62
fTA[20] - - 1.29
fTM [16:4] - - 1.30

3 Experimental Investigation

We can find few comparable results for Pollard’s
rho method and its variants, except those reported
by Teske (1998, 2001). There are some gaps in Table
2. In this section, we fill the gaps in Table 2 by an
empirical investigation and give some suggestions on
better parameters such as starting values and parti-
tioning methods. In addition, we test Teske’s itera-
tion function with a comprehensive set of data and
verify Teske’s results.

3.1 Description of Experiments

To prepare for the experiments, random prime num-
bers from 3 digits to 15 digits were chosen to give fi-
nite fields Fp. We then considered the groups (Z/pZ)∗
and subgroups of (Z/pZ)∗ with orders from 3 to 13
digits. We also discuss elliptic curve discrete loga-
rithms. Let E(Fp) be a finite abelian group formed
by the points on an elliptic curve. G is a prime order
subgroup of E(Fp) generated by a point P . Then an
instance of the elliptic curve discrete logarithm prob-
lem (ECDLP) is stated as follows. Here we write the
group operation as ⊕.

Definition 3.1 (ECDLP). Given P , Q ∈ G known,
ECDLP is to find the smallest non-negative integer x
such that,

Q = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
x times

To generate subgroups of E(Fp), we produce ran-
dom elliptic curves over Fp and then compute the
order for each group. Due to the Pohlig-Hellman al-
gorithm (Pohlig & Hellman 1978), we concentrate on
the subgroups with largest prime orders. A generator
for each subgroup is computed. The number of in-
stances of DLPs or ECDLPs computed is given in Ta-
ble 3. The first column gives the (sub)groups by the
number of decimal digits in their order. The second
column is the number of DLPs or ECDLPs computed
for each row. The third column gives the number of
different starting values Y0 for each instance of DLP
or ECDLP.

Our implementaion is based on C++ using the
GNU Multiple Precision Arithmetic Library (GMP).
We ran the algorithms over Gentoo Linux on a Pen-
tium 2.4GHz platform. The whole computation took
more than a month.

Table 3: Instances of DLPs or ECDLPs

DIGITs #DLPs (ECDLPs) STs

3 to 8 200 100
9 100 50
10 50 20
11 50 10
12 50 5
13 50 1

3.2 Iteration Functions

We first discuss the performance of different iteration
functions without collision-detection algorithms. The
whole sequences generated by the iteration functions
were stored. Therefore the groups were restricted to
be small. 2500 discrete logarithms over groups of 6-7
digits were computed. All the data in Table 4 denotes
the values of E(µ + λ) divided by

√
|G|. The results

fill the gaps in Table 2.

Table 4: Performance of Iteration Functions

FUNCs (Z/pZ)∗ S ≤ (Z/pZ)∗ S ≤ E(Fp)
fP 1.37 1.55 1.60
fPG 1.41 1.55 1.62
fTA[20] 1.28 1.27 1.29
fTM [16:4] 1.30 1.30 1.30

We found that Pollard’s original iteration function
performed worse than the truly random case (Theo-
rem 2.2). In addition, Pollard’s generalized iteration
funtion is slightly worse than the original function
on average. On the other hand, Teske’s adding-walk
and mixed-walk iteration functions behave better and
mimic random walks. We discuss the choice of param-
eters in the rho method below.

3.3 Starting Values

The value assigned to Y0 for the iteration function
Yi+1 = f(Yi) is called the starting value of the se-
quence. We can use a fixed value for all DLPs (such
as Y0 = 1) or generate a random starting values us-
ing powers of g and h. We investigate the potential
impacts of different types of starting values, which
does not seem to have been done before. The pseudo-
random functions are either Pollard’s original func-
tion or Teske’s adding-walk using 20 multipliers. The
collision-detection algorithm is Brent’s second algo-
rithm. In addition, we adopt the partitioning method
used in Pollard’s original function2. For fixed start-
ing values, we compute 4500 instances for DLPs and
ECDLPs. The mean values of results are normalized
by

√
|G| in Table 5.

Table 5: Impact of Initial Values

Groups Functions Fixed Random

(Z/pZ)∗ fP 2.55 2.50
fTA[20] 2.28 2.28

(Z/pZ)∗ subgroups fP 2.95 2.84
fTA[20] 2.27 2.26

E(Fp) subgroups fP 2.88 2.92
fTA[20] 2.28 2.25

Although it seems to lose the advantage of ran-
domness, choosing Y0 = 1 is not significantly worse

2Partitioning methods will be discussed in the next part.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

135

than choosing Y0 at random. However, the variance
is smaller in the latter case.

It seems there is no direct way to apply random
initial values with Pollard’s iteration function (or sim-
ilarly in Teske’s mixed-walk). We may need to store
some auxiliary variables and update them. For ex-
ample in (Z/pZ)∗, we have a collision if gihjY x

0 ≡
gi‘hj‘Y y

0 (mod p). If Y0 is not 1, we have to update
the powers of Y0 during the procedure. A random ini-
tial value is applicable for Teske’s adding-walk func-
tion. We assume random starting values in the fol-
lowing sections.

3.4 Partitioning Methods

An important assumption in Theorem 2.4 is that the
partitioning method is independent. Here the in-
dependence means the performance of the iteration
function is not affected by the the properties of the
partitioning method. We will consider the potential
impact of partitioning methods in this part. As we
will see later, the choice may have a strong influence
on the performance.

A partitioning method maps values of Yi into dif-
ferent rules in the iteration function, which behaves
like a hash function. In Pollard’s iteration function, a
partition of size three is used. This is extended to N
partitions in Teske’s functions. Pollard’s partitioning
rule is R = dN × Yi/|G|e where R is the index of the
rule chosen and |G| is the order of the group. This
method depends mainly on the high-order bits of Yi.
An alternative, the division method, uses the lower-
order bits of Yi, that is R = (Yi mod N)+1. Another
more complicated method suggested by Teske (2001)
is Knuth’s multiplicative hash function (Knuth 1981).
The principle is as follows. Assume that the partition
we want to produce is v : G → {1, · · · , N} where N
denotes the number of partitions. Let A be a ratio-
nal approximation of the golden ratio

√
5−1
2 . Define

u(g) = A · g − bA · gc where g denotes an element in
the group. Then the partitioning method is defined
by v(g) = du(g) ·Ne.

We empirically investigated the impacts of
different partitioning algorithms. The pseudo-
random functions were either Pollard’s original func-
tion or Teske’s adding-walk with 20 multipliers.
The collision-detection algorithms involved include
Floyd’s algorithm, Brent’s algorithms and Teske’s al-
gorithm. As there are two iteration functions and
four cycle-finding algorithms, we discuss eight com-
binations of them. For each combination, we index
Pollard’s partitioning method, the division method
and Knuth’s method as methods 1, 2, 3 respectively.
The Y -axis denotes the number of iterations divided
by

√
|G|. The results in groups (Z/pZ)∗ and elliptic

curve subgroups are shown in Figure 1 and Figure 2.
Note that the different cycle-finding algorithms have
different costs per iteration (see Section 2).

For Pollard’s iteration functions in groups
(Z/pZ)∗, it is much better to apply the original parti-
tioning proposed by Pollard (1978), which uses high-
order bits. The other two methods perform worse in
this case. In other cases, such as Pollard’s iteration
functions in subgroups of E(Fp), it is slightly better
to use the division method.

3.5 Choice of Parameters in Teske’s Func-
tions

We have discussed impacts of initial values and per-
formance of different partitioning methods. In this
part, we consider how the performance is affected by
the parameters in Teske’s adding-walk and mixed-
walk functions. DLPs in prime order subgroups of

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 3

 3.25

FUNCs:
ALGs:

1

2
3

Pollard
Floyd

Pollard
Brent 1

Pollard
Brent 2

Pollard
Teske M

Teske
Floyd

Teske
Brent 1

Teske
Brent 2

Teske
Teske M

Method 1
Method 2
Method 3

Figure 1: Partitioning Methods in Groups (Z/pZ)∗

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 3

FUNCs:
ALGs:

Pollard
Floyd

Pollard
Brent 1

Pollard
Brent 2

Pollard
Teske M

Teske
Floyd

Teske
Brent 1

Teske
Brent 2

Teske
Teske M

Method 1
Method 2
Method 3

Figure 2: Partitioning Methods in Subgroups of
E(Fp)

(Z/pZ)∗ can be considered as analogues of ECDLPs
in prime order subgroups of E(Fp). The discrete
logarithm problems considered are defined in groups
(Z/pZ)∗ and the largest prime order subgroups of
E(Fp).

3.5.1 Groups (Z/pZ)∗

We discuss the choice of parameters in Teske’s
function in the groups (Z/pZ)∗. Teske’s modified
collision-detection algorithm is applied. Theorem 2.4
claims that the number of iterations is bounded by
1.45

√
|G| for Teske’s adding-walk with r ≥ 16 mul-

tipliers. The performance of different values of r is
plotted in Figure 3. The X-axis denotes the num-
ber of multipliers used in adding-walk and the Y-axis
denotes the number of iterations divided by

√
|G|.

The empirical results verify Theorem 2.4. We were
also able to verify that the performance is generally
better using a larger number of partitions. Consider-
ing the initialization cost as well, a partition number
of 20-60 is a reasonable value. In addition, it has
been suggested that mixed-walk with ratios q/r be-
tween 1/4 and 1/2 with r ≥ 16 may yield a good
performance (Teske 1998). Our experimental results
do not support this suggestion. We found that mixed-

CRPIT Volume 77 - Theory of Computing 2008

136

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 20 40 60 80 100 120 140

Adding-walk in (Z/Zp)*

Figure 3: Performance of Adding-walk in Groups
(Z/pZ)∗

walks with ratios smaller than or equal to 1/4 behave
slightly better than those with ratios between 1/4 and
1/2. To illustrate this, the performance for various al-
gorithms is tabulated in Table 6. The columns give
the ratios applied, number of multipliers, squaring
steps and iterations. As usual, the data in last col-
umn is normalized by

√
|G|.

Table 6: Performance of Mixed-walk in Groups
(Z/pZ)∗

RATIOs MULTs SQRs ITERs

0.25 16 4 1.46
0.25 20 5 1.45
0.25 40 10 1.44
0.25 60 15 1.44
0.10 20 2 1.45
0.20 20 4 1.47
0.40 20 8 1.50
0.50 20 10 1.51
0.60 20 12 1.53
0.80 20 16 1.57

3.5.2 Prime Order Subgroups of E(Fp)

We discuss the choice of parameters in Teske’s func-
tion in the subgroups of E(Fp). Teske’s modified
collision-detection algorithm is applied. The number
of iterations in Figure 4 are bounded by 1.45

√
|G| for

Teske’s adding-walk function with r ≥ 16 multipli-
ers. This verifies the effectiveness of Teske’s function
in the ECDLP case. Similarly a partition number of
20-60 is preferred. The performance of mixed-walk
is obtained in the Table 7. For mixed-walk in sub-
groups of E(Fp), we arrive a similar result as before.
Mixed-walks with ratios q/r smaller or equal to 1/4
with more than 16 multipliers are preferable.

4 Conclusion and Future Work

We discussed efficiency issues regarding Pollard’s rho
method and its variants for discrete logarithm prob-
lems and elliptic curve discrete logarithm problems.
We have performed an empirical investigation to fill
the current gaps in the literature, suggested better pa-
rameters for iteration functions and revisited Teske’s
adding-walk and mixed-walk functions.

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 20 40 60 80 100 120 140

Adding-walk in elliptic curve subgroups

Figure 4: Performance of Adding-walk in Subgroups
of E(Fp)

Table 7: Performance of Mixed-walk in Subgroups of
E(Fp)

RATIOs MULTs SQRs ITERs

0.25 16 4 1.48
0.25 20 5 1.47
0.25 40 10 1.44
0.25 60 15 1.44
0.10 20 2 1.45
0.20 20 4 1.46
0.40 20 8 1.49
0.50 20 10 1.52
0.60 20 12 1.54
0.80 20 16 1.58

In the previous sections, we have used the assump-
tion that the partitioning method is independent of
the iteration function. Finding a way to prove this
would be an advance. In addition, the experimen-
tal results suggest that Teske’s mixed-walk behaves
as well as the adding-walk. While the performance
of the adding-walk is supported by some theoretical
results, we find no easy way to analyze the behav-
ior of the mixed-walk. A potential way to achieve
this might be based on the recent work of Miller &
Venkatesan (2006) and Kim et al. (2007).

Acknowledgements

We would like to thank the anonymous referees for
their helpful comments.

References

Brent, R. P. (1980), ‘An improved Monte Carlo fac-
torization algorithm’, BIT 20(2), 176–184.

Brent, R. P. & Pollard, J. M. (1981), ‘Factorization of
the eighth Fermat number’, Mathematics of Com-
putation 36, 627–630.

Coppersmith, D., Odlyzko, A. M. & Schroeppel, R.
(1986), ‘Discrete logarithms in GF (p)’, Algorith-
mica 1(1), 1–16.

Diffie, W. & Hellman, M. E. (1976), ‘New directions
in cryptography’, IEEE Trans. Inform. Theory IT-
22, 644–654.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

137

Gamal, T. E. (1985), ‘A public key cryptosystem and
a signature scheme based on discrete logarithms’,
IEEE Trans. Inform. Theory 31, 469–472.

Harris, B. (1960), ‘Probability Distribution Re-
lated to Random Mappings’, Ann. Math. Statist.
31, 1045–1062.

Hildebrand, M. (1994), ‘Random walks supported on
random points of Z/nZ’, Probability Theory and
Related Fields 100(2), 191–203.

Horwitz, J. & Venkatesan, R. (2002), Random Cay-
ley digraphs and the discrete logarithm, in ‘Algo-
rithmic Number Theory Symposium V, ANTS-V
(LNCS 2369)’, pp. 100–114.

Kim, J. H., Montenegro, R. & Tetali, P. (2007), ‘A
near optimal bound for Pollard’s rho to solve dis-
crete log’, IEEE Proc. of the Foundations of Com-
puter Science (FOCS), 2007, Providence, RI, to ap-
pear.

Knuth, D. E. (1981), The Art of Computer Program-
ming, Vol. 3, 2nd edn, Addison-Wesley, Reading,
Mass.

Knuth, D. E. (1997), The Art of Computer Program-
ming, Vol. 2, 3nd edn, Addison-Wesley, Reading,
Mass.

Miller, S. D. & Venkatesan, R. (2006), Spectral anal-
ysis of Pollard rho collisions, in ‘Algorithmic Num-
ber Theory Symposium (ANTS VII), LNCS 4076,
Springer-Verlag, 573-581’.

Pohlig, S. C. & Hellman, M. E. (1978), ‘An improved
algorithm for computing logarithms over GF (p)
and its cryptographic significance’, IEEE Trans.
Inform. Theory IT-24(1), 106–110.

Pollard, J. M. (1978), ‘Monte Carlo methods for index
computation mod p’, Mathematics of Computation
32, 918–924.

Teske (1998), Speeding up Pollard’s rho method
for computing discrete logarithms, in ‘Algorithmic
Number Theory Symposium (ANTS IV), LNCS
1423, Springer-Verlag, 541-553’.

Teske, E. (2001), ‘On random walks for Pol-
lard’s rho method’, Mathematics of Computation
70(234), 809–825.

CRPIT Volume 77 - Theory of Computing 2008

138

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

139

Verifying Michael and Scott’s Lock-Free Queue Algorithm using Trace
Reduction

Lindsay Groves

School of Mathematics, Statistics and Computer Science,
Victoria University of Wellington,

Wellington, New Zealand
Email:lindsay@mcs.vuw.ac.nz

Abstract

Lock-free algorithms have been developed to avoid var-
ious problems associated with using locks to control ac-
cess to shared data structures. These algorithms are typ-
ically more intricate than lock-based algorithms, as they
allow more complex interactions between processes, and
many published algorithms have turned out to contain er-
rors. There is thus a pressing need for practical techniques
for verifying lock-free algorithms and programs that use
them.

In this paper we show how Michael and Scott’s well
known lock-free queue algorithm can be verified using
a trace reduction method, based on Lipton’s reduction
method. Michael and Scott’s queue is an interesting case
study because, although the basic idea is easy to under-
stand, the actual algorithm is quite subtle, and it demon-
strates several way in which the basic reduction method
needs to be extended.

Keywords: Concurrency, verification, lock-free, linearis-
ability, reduction

1 Introduction

Increasing use of concurrent software designs has
prompted the development oflock-free algorithms to im-
plement concurrent data structures to avoid many of the
problems associated with the use of locks. Rather than
avoid interference using mutual exclusion, lock-free al-
gorithms must behave correctly in the presence of inter-
ference, and usually rely on strong synchronisation primi-
tives such as Compare and Swap (CAS). These algorithms
tend to be very subtle, and hard to get right; however,
proofs of correctness for such algorithms tend to be ei-
ther so high level as to be unconvincing, or so detailed as
to be unenlightening.

In this paper, we consider a slightly simplified ver-
sion of Michael and Scott’s lock-free queue algorithm
(Michael & Scott 1998), which is similar to that included
in the Java concurrency library. We present a proof that
this algorithm is linearisable (Herlihy & Wing 1990), us-
ing an extension of the reduction approach proposed by
Lipton (Lipton 1975), and further developed by Lamport,
Cohen and others (Lamport & Schneider 1989, Cohen &
Lamport 1998, Lamport 1990). In this approach, we show
that any concurrent execution involving a shared data ob-
ject, such as a queue, can be transformed into an equiva-
lent execution in which the operations on that object are
executed without interruption, and that such uninterrupted
executions correctly implement the abstract semantics for

Copyright c©2008, Australian Computer Society, Inc. This paper ap-
peared at the Fourteenth Computing: The Australasian Theory Sympo-
sium (CATS2008), Wollongong, Australia. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 77, JamesHarland
and Prabhu Manyem, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

the object. This approach allows us to present a proof
in sufficient detail to be convincing, highlighting the rea-
sons why the algorithm is correct, without getting lost in
a morass of minute detail, and indicating clearly what else
needs to be proved to provide a more detailed proof.

We begin in Section 2 by giving an intuitive descrip-
tion of the algorithm and taking a brief look at the code.
Then, in Section 3, we discuss our correctness criterion,
linearisability, and outline how we prove linearisabilityus-
ing reduction. In Section 4, we present the verification,
explaining in more detail how the reduction method is ap-
plied and how it is extended in order to verify Michael and
Scott’s algorithm, and end in Section 5 with some conclu-
sions and comments on related and future work.

2 Michael and Scott’s Lock-Free Queue Algorithm

Michael and Scott (Michael & Scott 1998) describe an
algorithm which implements a shared queue supporting
ENQUEUE and DEQUEUE operations that can be per-
formed concurrently by a finite set of processes. Their
algorithm islock-free, which means that no process is ever
forced to wait for another process to complete a queue op-
eration. This property precludes the use of traditional syn-
chronisation mechanisms such as locks and semaphores
to avoid interference between processes; instead the algo-
rithm is designed to work correctly in the presence of in-
terference, which is detected by using Compare and Swap
(CAS) instructions to conditionally update shared loca-
tions.

The implementation uses a linked list, with a dummy
node at the head, andHead andTail pointers. Each node
has avalue field, holding the values stored in the queue in
the order they were added to the queue, and anext field,
linking nodes in the list. Using a dummy node ensures
thatHead andTail are always non-null, which reduces the
number of special cases that would otherwise be required;
its value is not part of the queue.Head always points to the
dummy node, and in a quiescent state (i.e. when no opera-
tion is in progress)Tail points to the last node in the list, as
illustrated in Figure 1, which shows an empty queue and a
queue containing valuesa, b andc.

The ENQUEUE and DEQUEUE operations follow a
common pattern in which each operation repeatedly at-
tempts to perform its update, succeeding only if the oper-
ation is performed without interference. At each attempt,
an operation takes a “snapshot” of the part of the global
state that it wishes to update, uses this in local computa-
tions to prepare a new value, and then uses a CAS to at-
tempt the update.CAS(loc, old, new) atomically compares
the contents of the shared locationloc with the “expected”
value,old, and if they are the same,succeeds, storing the
new value,new, into the location and returningtrue, and
otherwisefails, returningfalse and leaving the memory
unchanged.

The central problem in designing algorithms based on
CAS is to arrange that the shared data structure can be
updated atomically using a single CAS operation, with its

CRPIT Volume 77 - Theory of Computing 2008

140

(b)?(a) ?

TailHead Tail Head

a b c

Figure 1: Basic queue representation

test determining when the update is safe. This is easy to
do, say, in the case of a shared stack (e.g. (Treiber 1986,
Michael & Scott 1998)), where we only need to update
a single shared location (the top of stack pointer). But it
is not so simple for a queue represented as a linked list.
After creating a new node, an ENQUEUE operation must
update two shared locations — to make thenext pointer
of the last node point to the new node, and make theTail
pointer point to the new node — but we can’t perform both
updates using a single CAS.

In performing an ENQUEUE, Michael and Scott ap-
pend the new node using a CAS, and allow other pro-
cesses to observe the data structure at a point where this
update has been performed but theTail pointer has not
been advanced. This means thatTail may “lag” behind
the actual end of the list — this situation is illustrated
in Figure 2, which shows a queue containinga, b andc,
and one containing justc. To avoid other processes being
blocked waiting for a process to complete an ENQUEUE,
as required for lock-freedom, any process which observes
that Tail is not pointing to the end of the list attempts to
advanceTail, effectively completing the operation of the
process that performed the append. This ensures thatTail
never lags behind the end of the list by more than one
node.

DEQUEUE is implemented by advancing theHead
pointer, provided that the queue is not empty, so the node
that used to hold the first element of the queue becomes the
dummy node. The DEQUEUEoperation now has to handle
the situation shown in Figure 2(b), whereHead andTail
point to the same node, but the queue is not empty, and in
this case checks whetherTail is lagging before attempting
to perform its update.

The declarations and initialisation are shown in Fig-
ure 3, and pseudocode for the ENQUEUE and DEQUEUE
operations is given in Figure 4. This code is essentially
the same as that given in (Michael & Scott 1998), apart
from a few changes in notation and simplifications to
make our reasoning easier and more concise. In partic-
ular, we assume that a single queue is being implemented,
and thus treatHead andTail as global variables, encap-
sulated within a module implementing the queue, rather
than as components of a record accessed via a pointer.
We also use Algol/Pascal/Ada-like notation for assign-
ment and equality (i.e.: = and=, instead of= and==),
Ada-like parameter modes (in andout), and assume au-
tomatic pointer dereferencing, whereas Michael and Scott
use C-like notation.

The most significant difference is that, like the version
included in the Java concurrency library (JSR 166), we do
not explicitly free popped nodes. This means that heap lo-
cations are not reused unless the algorithm is executed on
a system with automatic garbage collection (as is the case
in Java), and that modification counts are not required.

Looking at the code, some aspects are readily under-
stood as they are similar to a sequential queue implemen-
tation. The declarations should be self explanatory, given
the previous description of the data structure used, noting
just thatnew node() is assumed to allocate a new node
and return a pointer to it.

Lines E1–E3 of ENQUEUEallocate a new node and ini-
tialise its fields. Line E9 attempts to append the new node,
provided thatTail is not lagging. Line E13 attempts to
advanceTail if it is found to be lagging before appending
the new node, and line E17 attempts to advanceTail after
appending the new node. The operation retries if either of
the tests at lines E7 and E8, or the CAS at E9, fails.

Lines D2–D8 of DEQUEUE check to see whether the
queue is empty, and if so returnsfalse. If not, line D13
attempts to remove the first node from the queue by ad-
vancingHead, after reading the value to be returned in
line D12. Line D10 attempts to advanceTail in the special
case described above, whereHead andTail are the same
but the queue is not empty.

While this much can be appreciated quite easily, it is
not so clear exactly why the various tests are required or
why they are ordered as they are: for example, one might
consider the effect of deleting the tests at E7 and D7, and
the CASes at E17 and D10, or whether DEQUEUE can
be modified so as to avoid accessingTail. So, although
one can easily understand the basic ideas underlying the
algorithm, it is not entirely obvious that the algorithm is
correct, nor what changes could be made to the algorithm
without affecting its correctness.

3 Proving Linearisability by Trace Reduction

When multiple processes perform concurrent operations
on a shared object, we cannot simply define the correct-
ness of these operations in terms of the state of the object
before and after a process performs an operation. For ex-
ample, when a process performs an ENQUEUE operation,
there is no guarantee that the values that were in the queue
when the enqueue operation began will still be there when
the process gets to add its value to the queue, or that the
enqueued value will still be in the queue when the enqueue
operation is completed.

The standard safety property for concurrent data struc-
tures islinearisability (Herlihy & Wing 1990), which re-
quires that each operation on the shared data structure ap-
pears to occur instantaneously at some point (called itslin-
earisation point) between its invocation and its response,
and that the effect of the operation be correct with respect
to the state immediately before and after this point. The
requirement that an operation’s linearisation point be be-
tween its invocation and its response ensures that the order
of non-concurrent operations is preserved; i.e. if an opera-
tion op1 is completed before another operationop2 begins,
then the linearisation point forop1 must precede that for
op2.

This condition is sometimes calledatomicity (e.g.
(Lynch 1996, Hesselink 2002)), however, we use that term
to refer to the weaker requirement, that an operation ap-
pear to occur instantaneously, with no reference to the se-
mantics of an abstract operation being implemented, as in
(Lamport & Schneider 1989, Flanagan & Qadeer 2003,
Sasturkar et al. 2005).

More precisely, a shared objectO is linearisable if, for
every execution of a concurrent system involvingO, there
is an “equivalent” legal sequential history, in which the or-
der of non-concurrent operations is preserved. Ahistory
(or trace) is a sequence of invocations and responses oc-
curring in an execution, and issequential if every response
is immediately preceded by an invocation of the same op-
eration by the same process, andlegal if each invocation-
response pair is correct with respect to the abstract seman-
tics for the object. Two histories areequivalent if they
contain the same sequence of invocations and responses.
Thus, we can prove that an implementation of a shared
object is linearisable by showing, for any concurrent exe-
cution, how to construct an equivalent legal sequential his-
tory which respects the abstract semantics for that object
and preserves the order of non-concurrent operations.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

141

c(a) (b)? ?a b c

Head Tail TailHead

Figure 2: Queue representation withTail lagging
type pointer =pointer to node
type node = (value: datatype, next: pointer)
var Head: pointer
var Tail: pointer

initialisation:
Head :=new node()
Head.next :=null
Tail := Head

Figure 3: Declarations and initialisation

In previous work (Doherty et al. 2004, Colvin et al.
2005, Colvin & Groves 2005, Colvin et al. 2006), we have
proved linearisability of several lock-free algorithms using
simulation between two labelled transition systems, one
modelling the abstract specification and one modelling
the implementation.1 In the simulation approach, we step
through an arbitrary execution of the concrete (implemen-
tation) model, considering all possible actions that could
be taken at each step, and show how to construct a corre-
sponding execution of the abstract (specification) model,
using a simulation relation to show that the concrete and
abstract states are related appropriately at each step. The
simulation relation typically requires that each process is
performing the same operation (if any) in both models,
that the data structure in the implementation represents the
same abstract value as in the abstract model, and that local
variables in each process have “appropriate” values.

A well known complication with simulation proofs is
that while we are often able to construct the required ab-
stract execution by stepping forwards through the concrete
execution (which is calledforward or downward simula-
tion), it is sometimes necessary to instead step backwards
(which is calledbackward or upward simulation) or to use
a combination of both (Jifeng et al. 1986, Lynch & Vaan-
drager 1995). Although it is widely believed that back-
ward simulation is rarely required in practice (for exam-
ple, backward simulation rules for data refinement were
not defined for Z until 1997 (Stepney et al. 1998), or for
B until 2003 (Dunne 2003)), backward simulation turns
out to be required frequently in verifying lock-free algo-
rithms, and several of our verifications, including our ver-
ification of a version of Michael and Scott’s queue (Do-
herty et al. 2004), have used backward simulation, usually
in conjunction with forward simulation.

While the simulation approach has proved to be effec-
tive in these verifications, and to be amenable to mechani-
sation (using PVS), this approach has several drawbacks:

• Translating the algorithm and specification into a
transition system formalism obscures the algorithmic
structure of the algorithm being verified, so it is of-
ten hard to see how verification conditions relate to
the algorithm.

• Many of the verification conditions are a conse-
quence of the formalism, rather than the algorithm
(e.g. ones to do with program counters).

• The verification has to deal with both the basic op-
eration of the data structure being implemented and
the effects of concurrency, whereas it may be more
convenient to separate these (this can be avoided by
using an extra simulation step, but it is debatable
whether this is worthwhile given the overhead intro-
duced).

1The transition systems we used were a simplified form of Input/Output Au-
tomata (IOAs) (Lynch & Vaandrager 1995), which were convenient because sim-
ulation between IOAs is defined in terms of trace inclusion rather than in terms of
states, but most other labelled transition system formalisms could be used instead.

• Each abstract operation always consists of three steps
(an invocation, an internal action corresponding to
the linearisation point, and a response), so most steps
of the implementation are internal steps, and most of
the proof effort is in proving various invariants about
the shared and local variables.

The net effect is that the proof requires so much detail
that it is hard to identify the essential arguments on which
the correctness of the algorithms relies, and it is hard to
present such a proof in a way that conveys the important
insights into why the algorithm is correct without getting
bogged down in the details.

The approach we take in this paper is an attempt to
present a proof which is both more concise and more il-
luminating than our earlier simulation proofs, while also
being sufficiently formal to be compelling. Instead of con-
structing an equivalent legal sequential history by translat-
ing one action of the implementation at a time, as in the
simulation approach, we first construct an equivalent se-
quential execution, in which each operation o the abstract
object is executed without interruption, by translating an
entire operation of the abstract object at a time, and then
show that this sequential execution correctly implements
the abstract operation. This approach is based on the
reduction approach described initially by Lipton (Lipton
1975), and further developed by Lamport, Cohen, and oth-
ers (Doeppner, Jr. 1977, Lamport & Schneider 1989, Lam-
port 1990, Cohen & Lamport 1998, Cohen 2000) for syn-
chronisation based on mutual exclusion. We have shown
how this approach can be extended to handle lock-free al-
gorithms (Groves 2007a) and used it in a constructive way
to derive an implementation of a scalable concurrent stack
implementation (Groves & Colvin 2006a). The rest of this
section outlines the basic ideas of reduction, and its use in
proving linearisability. We will explain the approach in
more detail as we work through the verification in Sec-
tion 4.

Given a system in which a finite set of processes,
PROC, operate on a shared queue, our aim, as indicated
above is to show that any concurrent executionα of the
system is equivalent to an executionα′ in which every
operation on the queue is performed without interruption,
and that the effect of such an uninterrupted execution cor-
rectly implements the abstract queue semantics. The key
to the reduction approach is therefore to show that the ac-
tions in a concurrent execution can be rearranged so that
the steps of each operation are executed contiguously. By
repeating this transformation for each operation inα, we
can then produce an execution in which every operation is
executed without interruption.

Suppose thatα is an execution of the form
β0 a1 β1 . . . an βn, where a1, . . . , an are the atomic ac-
tions comprising an execution of a queue operation
op by processp, β0 . . . βn are sequences of actions,
and β1 . . . βn−1 contain no p-actions. We wish to
show that there is an “equivalent” executionα′

=

β0 . . . βk−1 a1 . . . an βk . . . βn in which the atomic steps
of op are executed contiguously. Thus, we must be able to
show that it makes no difference if actionsa1, . . . , ak−1

CRPIT Volume 77 - Theory of Computing 2008

142

ENQUEUE(in value: datatype)
E1: node :=new node()
E2: node.value := value
E3: node.next :=null
E4: loop
E5: tail := Tail
E6: next := tail.next
E7: if tail = Tail then
E8: if next =null then
E9: if CAS(tail.next, next, node)then
E10: break
E11: endif
E12: else
E13: CAS(Tail, tail, next)
E14: endif
E15: endif
E16:endloop
E17:CAS(Tail, tail, node)

DEQUEUE(out pvalue: datatype):boolean
D1: loop
D2: head := Head
D3: tail := Tail
D4: next := head.next
D5: if head = Headthen
D6: if head = tail then
D7: if next =null then
D8: return false
D9: endif
D10: CAS(Tail, tail, next)
D11: else
D12: pvalue := next.value
D13: if CAS(Head, head, next)then
D14 break
D15: endif
D16: endif
D17: endif
D18: endloop
D19: return true

Figure 4: Queue operations

are executed after the relevantβi (i.e. for 1 ≤ i < k
and i ≤ j < k, ai can be executed afterbj), and actions
ak+1, . . . , an are executed before the relevantβi (i.e. for
k ≤ i ≤ n andk < j < i, ai can be executed beforebj).
Since all of the actions ofop are grouped at the position
of ak, any operation that begins beforea1 (ends afteran)
in α also begins beforea1 (ends afteran) in α′. Thus,ak
can be taken as the linearisation point forop, and the or-
der of non-current operations is preserved, as required for
linearisability, so we don’t need to explicitly model invo-
cations and responses.

To define the idea of rearranging the steps in an execu-
tion more precisely, we writeσ

a
→ τ to mean that execu-

tion of actiona may take the system from stateσ to stateτ .
For a sequence of actions,α = a1 · · · an, we writeσ

α

→ τ
to mean that there is a sequence of statesρ0, · · · , ρn such
thatρ0 = σ, ρn = τ , andρi−1

ai
→ ρi, for all i ∈ 1 . . n. For

sequences of actions,α andβ, we writeα ≤ β to mean

that for any statesσ andτ , σ
α

→ τ implies σ
β

→ τ . An
actiona is enabled in a stateσ if there exists a stateτ such
thatσ

a
→ τ .

If ab ≤ ba, we say thata right commutes with b, and
b left commutes with a. If a right commutes and left com-
mutes withb, we just saya commutes with b, and write
ab = ba. We can show that for sequences of actions,
α = a1 . . . am andβ = b1 . . . bn, αβ ≤ βα if aibj ≤ bjai

for all i ∈ 1 . . m andj ∈ 1 . . n.
Given a system with actionsACT, an actiona is called

a right mover if it right commutes with every action of
every other process (i.e.apbq ≤ bqap for all b ∈ ACT and
p 6= q), a left mover if it left commutes with every action
of every other process (i.e.bqap ≤ apbq for all b ∈ ACT
andp 6= q), and aboth mover if it is both a right mover
and a left mover (i.e.apbq = bqap for all b ∈ ACT and
p 6= q).

In showing that actions move in particular ways, we
appeal to some standard properties of independent opera-
tions. For example:

• An action that only accesses local variables or heap
locations accessed via a unique pointer in a local vari-
able is a both mover.

• An action that reads a shared variable commutes with
any action that does not assign to that variable.

• An action that assigns to a shared variable commutes
with any action that does not refer to that variable.

As presented above, the equivalent sequential execu-
tion is obtained by rearranging the actions of the concur-
rent execution. It has been shown (Wang & Stoller 2005)

that this is not sufficient to verify some lock-free algo-
rithms. However, the technique can be extended to ex-
tend its applicability (Groves 2007a). Firstly, we can use
the outcome of CAS and other tests to infer properties of
the interleaved actions of other processes. Secondly, we
observe that while the steps in the sequential execution
need to be steps that could be taken by the implementa-
tion when executed without interruption, they do not have
to be the same steps as in the concurrent execution. In
many lock-free algorithms we need to be able to delete ac-
tions. We will see in Section 4 that to verify Michael and
Scott’s queue algorithm, we also need to be able to modify
actions so as to assign an action to a different process.

4 Verification

We now consider how the version of Michael and Scott’s
algorithm presented in Section 2 can be verified using the
trace reduction approach described in Section 3. As out-
lined earlier, our aim is to show that any concurrent execu-
tion can be transformed into one in which the atomic steps
of each queue operation are executed contiguously, and
that when executed without interruption these operations
correctly implement the abstract queue semantics. Here,
we focus on the former; the latter involves a straightfor-
ward data refinement proof, which we present elsewhere
(Groves 2007b).

We will regard each assignment, test and CAS as an
atomic action, which is reasonable since they all access at
most one shared variable. We also assume, as in (Michael
& Scott 1998) that allocating a new node can be treated as
an atomic action. For convenience, the atomic actions and
their labels are shown in Figure 5.

4.1 Commutativity properties

The first step in applying the reduction method is to ex-
amine the commutativity properties of the atomic actions.
From the general properties given at the end of Section 3,
and some other general properties, we can see that:

• Actions E8 (next = null), D6 (head = tail) and D7
(next = null) are both movers, as they only involve
local variables. Thus, for any actionX and distinct
processes,p andq, we have:
E8p Xq = Xq E8p, D6p Xq = Xq D6p and
D7p Xq = Xq D7p

• Actions E2 (node.value := value) and E3
(node.next := null) are both movers, since at the
point where they are executed,node is a unique

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

143

E1 node :=new node()
E2 node.value := value
E3 node.next :=null
E5 tail := Tail
E6 next := tail.next
E7 tail = Tail
E8 next =null
E9 CAS(tail.next, next, node)
E13 CAS(Tail, tail, next)
E17 CAS(Tail, tail, node)

D2 head := Head
D3 tail := Tail
D4 next := head.next
D5 head = Head
D6 head = tail
D7 next =null
D10 CAS(Tail, tail, next)
D12 pvalue:= next.value
D13 CAS(Head, head, next)

Figure 5: Atomic actions

pointer (node is a new node when it is allocated in
E1, and cannot be seen by any other process until it
is appended to the end of the list by the CAS at E9),
andvalue andnull are local. Thus, for any actionX
and distinct processes,p andq, we have:
E2p Xq = Xq E2p and E3p Xq = Xq E3p

• Actions E5 (tail := Tail), E7 (tail = Tail) and D3
(tail := Tail) commute with any actions that do not
alter Tail. Thus, for any actionX other than E13 or
E17 and distinct processes,p andq, we have:
E5p Xq = Xq E5p, E7p Xq = Xq E7p and
D3p Xq = Xq D3p

• Actions D2 (head := Head) and D5 (head = Head)
commute with any action that does not alterHead.
Thus, for any actionX other than D13 and distinct
processes,p andq, we have:
D2p Xq = Xq D2p and D5p Xq = Xq D5p

• Actions E6 (next := tail.next) and D4 (next :=

head.next) commute with any action that does not
alter thenext field of a node. Thus, for any action
X other than E9 and distinct processes,p andq, we
have:
E6p Xq = Xq E6p and D4p Xq = Xq D4p

• Action D12 (pvalue := next.value) commutes with
any action that does not alter thevalue field of a node.
Since the only action that alters thevalue field of a
node is E2, and we have already shown that E2 is
a both mover because it updatesvalue via a unique
pointer, it follows that D12 commutes with all ac-
tions. Thus, for any actionX and distinct processes,
p andq, we have:
D12p Xq = Xq D12p

Note that we assume that the value of anout param-
eter is not observable to the caller (or any other pro-
cess) until the queue operation is completed, so in the
case of D12, we can treatpvalue as being local.

• Action E9 (CAS(tail.next, next, node)) commutes
with any action that does not access thenext field of
a node. Thus, for any actionX other than E6, E9 or
D4 and distinct processes,p andq, we have:
E9p Xq = Xq E9p

Note that E3 is not included in the list of exceptions
since we have already shown that E3 is a both mover.

• Actions E13, E17 and D10 (CAS(Tail, tail, node))
commute with any action that does not accessTail.
Thus, for any actionX other than E5, E7, E13, E17,
D3 or D10 and distinct processes,p andq, we have:
E13p Xq = Xq E13p, E17p Xq = Xq E17p and
D10p Xq = Xq D10p.

• Action D13 (CAS(Head, head, next)) commutes with
any action that does not accessHead. Thus, for any

actionX other than D2, D5 or D13 and distinct pro-
cesses,p andq, we have:
D13p Xq = Xq D13p

• Action E1 (node := new node()) is a both mover,
since it makes no difference what address is allocated
provided that it is previously unused. Thus, for any
actionX and distinct processes,p andq, we have:
E1p Xq = Xq E1p

4.2 Applying reduction to Michael and Scott’s algo-
rithm

Next, we consider how to use these properties to rearrange
the steps in a concurrent execution to obtain an equivalent
sequential execution. Here we find that these properties
are not sufficient to show that Michael and Scott’s algo-
rithm is atomic — a completed execution of ENQUEUE
or DEQUEUE may contain any number of CAS actions,
which may be interleaved with CAS actions of other pro-
cesses, and the above commutativity properties do not al-
low us to permute the order of CAS actions. We therefore
need to perform a more complex transformation than just
reordering the steps of a concurrent execution.

In considering how to transform a concurrent execu-
tion into a sequential one, we first observe that any com-
pleted execution of a queue operation consists of zero or
more “failed” iterations of the loop (i.e. ones where the
loop does not exit), preceded in the case of ENQUEUE by
three initial actions (E1-E3), and followed by one “suc-
cessful” iteration (i.e. one where the loop does exit). We
also observe that in a sequential execution, every opera-
tion succeeds the first time it is attempted, so there are no
failed iterations, andTail is always updated by the process
that appends a node onto the list (at E17), so E13 and D10
are never executed.

We will show how to transform an arbitrary concurrent
execution into this form using three transformations, each
of which requires an extension to Lipton’s basic method.
Firstly, we show that “failed” iterations in whichTail is
not updated can be deleted; secondly, we show that the
remaining actions can be rearranged so that the steps of
each operation execution are contiguous, except for “suc-
cessful” iterations in whichTail is not updated; and lastly,
we show that actions that advanceTail can be performed
by any process, and in particular by the process that last
appended a node, which allows this exception to be ad-
dressed. Finally, we consider how to assemble the remain-
ing fragments into complete operations.

4.3 Primitive paths

In describing these transformations, we need to consider
different paths that an operation may take through the
code. So we break the code into primitive (loop-free)
paths and describe how each path is transformed.

We need to identify a set of primitive paths, each com-
prising a sequence of atomic actions performed by the

CRPIT Volume 77 - Theory of Computing 2008

144

same process, such that every execution of a queue op-
eration can be described as a concatenation of primitive
paths. We will segment the code so that each primitive
path consists of either a sequence of actions performed
before the loop (which only occurs in ENQUEUE) or one
iteration of the loop (including actions taken after exiting
the loop in the case where the loop in DEQUEUE termi-
nates). We further divide loop iterations into four classes
which will be handled differently:

• failed iterations in whichTail is not updated (i.e.
Enq2, Enq3, Enq5, Deq1, Deq3 and Deq5);

• failed iterations in whichTail is updated (i.e. Enq4
and Deq2);

• normal successful iterations, which behave as they
would in a sequential execution (i.e. Enq7, Deq4 and
Deq6); and

• abnormal successful iterations, which do not behave
as they would in a sequential execution (i.e. Enq6).

The resulting paths are shown in Figure 6, and are la-
belled for later reference. In describing execution paths,
we use the line numbers shown in Figure 4 to stand for
the action on that line, and indicate whether test and CAS
actions succeed or fail by appending+ or −, respectively.
Where necessary, we indicate the process that performs
an operation by adding a process identifier (usuallyp or q)
as a subscript (these should not be confused with the nu-
merical subscripts used in describing arbitrary actions and
action sequences).

It follows from the semantics of our programming con-
structs that any execution of ENQUEUE consists of the
initial segment (Enq1) followed by zero or more failed
iterations (Enq2 to Enq5), followed by a single success-
ful iteration (Enq6 or Enq7). Similarly, any execution
of DEQUEUE consists of zero or more failed iterations
(Deq1, Deq2, Deq3 or Deq5), followed by a single suc-
cessful iteration (Deq4 or Deq6). Treating the path names
as symbols, we can describe the structure of possible ex-
ecutions of ENQUEUE and DEQUEUE with the following
regular expressions:

Enq1(Enq2 | Enq3 | Enq4 | Enq5)
∗
(Enq6 | Enq7)

(Deq1 | Deq2 | Deq3 | Deq5)
∗
(Deq4 | Deq6)

4.4 Deleting failed iterations that do not advanceTail

We first show that any failed iteration that does not ad-
vanceTail can be deleted. This is easy to see intuitively
— an execution in which an operation is attempted unsuc-
cessfully is indistinguishable from one in which the un-
successful operation was never attempted.

More precisely, letα be an execution which contains
a failed iteration that does not advanceTail in ENQUEUE
(i.e. Enq2, Enq3, Enq5) or in DEQUEUE (i.e. Deq1, Deq3
or Deq5), and letα′ be the result of deleting the steps of
this failed iteration fromα. Then we wish to show that
α ≤ α′.

We will only consider path Enq2 in detail — the argu-
ments for the other failed iterations are similar.

Path Enq2 is: E5, E6, E7−. Let α be an exe-
cution containing an execution of Enq2 as part of a
completed execution of ENQUEUE by processp, say
α1 E5p α2 E6p α3 E7

−
p α4, whereα2 andα3 contain nop-

actions. RemovingE7
−
p from this execution does not alter

its effect. These occurrences ofE5p andE6p can then also
be removed — since this occurrence of Enq2 is part of
a completed ENQUEUE operation, the next twop-actions
must be E5 and E6, so the values loaded by these occur-
rences of E5 and E6 will not be referenced again. Thus,
we have:

α1 E5 α2 E6 α3 E7
− α4 ≤ α1 α2 α3 α4

This result means that we can ignore all of the failed
iterations that do not advanceTail, i.e. Enq2, Enq3, Enq5,
Deq1, Deq3 and Deq5. Following this transformation, ev-
ery execution of ENQUEUEor DEQUEUEhas the form de-
scribed by the following regular expressions:

Enq1(Enq4)
∗
(Enq6 | Enq7)

(Deq3)
∗
(Deq4 | Deq6)

Notice that the result of this transformation (like the
subsequent ones) is a valid execution of the algorithm.

This transformation can be generalised to show that
any failed iteration which has no observable effect can be
deleted. Such iterations are called “pure” in (Freund &
Qadeer 2005), where a similar approach is used in a static
analysis technique for determining atomicity.

4.5 Reducing primitive paths

We now consider the remaining basic paths and attempt
to show how a concurrent execution, in which the atomic
actions of that path may be interleaved with actions of
other processes, can be transformed into one in which the
atomic steps of that path are executed without interrup-
tion. This uses the basic reduction method, augmented
with a more detailed analysis of paths containing CASes,
and succeeds for all of the remaining paths except failed
iterations that updateTail (i.e. Enq4 and Deq2), which are
considered further in Section 4.6.

The linearisation point for a completed ENQUEUE is
the successful CAS at E9, so we want to move everything
before that to the right (or delete it), and everything after
(i.e. the CAS at E17) to the left. Similarly, the lineari-
sation point for a completed DEQUEUE returningtrue is
the successful CAS at D13, and for a DEQUEUEreturning
false is D3, so we want to move everything before that to
the right (or delete it).

The important points can be illustrated by considering
five cases; the other cases are detailed in (Groves 2007b).

4.5.1 Pre-loop path in ENQUEUE

Path Enq1 is E1, E2, E3, where we have:

E1 node :=new node()
E2 node.value := value
E3 node.next :=null

Let α be an execution containing an execution of Enq1
by processp, sayα = α1 E1p α2 E2p α3 E3p α4, where
α2 andα3 contain nop-actions. We have shown that E1,
E2 and E3 are both-movers, so these actions can be moved
right overα2 andα3 as required. Thus, we have:

α1 E1p α2 E2p α3 E3p α4 ≤ α1 α2 α3 E1p E2p E3p α4

4.5.2 Normal successful iteration in ENQUEUE

Path Enq7 is E5, E6, E7+, E8+, E9+, E17+, where we
have:

E5 tail := Tail
E6 next := tail.next
E7+ tail = Tail
E8+ next =null
E9+ CAS(tail.next, next, node)+

E17+ CAS(Tail, tail, node)+

Let α be an execution containing an execution of Enq7
by processp, sayα = α1 E5p α2 E6p α3 E7

+

p α4 E8
+

p α5

E9
+

p α6 E17
+

p α7, whereα2 to α6 contain nop-actions.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

145

Enq1 E1, E2, E3 Pre-loop
Enq2 E5, E6, E7− Failed iteration, not updatingTail
Enq3 E5, E6, E7+, E8−, E13− Failed iteration, not updatingTail
Enq4 E5, E6, E7+, E8−, E13+ Failed iteration, updatingTail
Enq5 E5, E6, E7+, E8+, E9− Failed iteration, not updatingTail
Enq6 E5, E6, E7+, E8+, E9+, E17− Normal successful iteration
Enq7 E5, E6, E7+, E8+, E9+, E17+ Abnormal successful iteration

Deq1 D2-D4, D5− Failed iteration, not updatingTail
Deq2 D2-D4, D5+, D6+, D7−, D10+ Failed iteration, updatingTail
Deq3 D2-D4, D5+, D6+, D7−, D10− Failed iteration, not updatingTail
Deq4 D2-D4, D5+, D6+, D7+ Normal successful iteration
Deq5 D2-D4, D5+, D6−, D12, D13− Failed iteration, not updatingTail
Deq6 D2-D4, D5+, D6−, D12, D13+ Normal successful iteration

Figure 6: Basic paths for ENQUEUE and DEQUEUE

We can move E8 because it only involves local variables,
but the other actions require move careful consideration.

Since E17 succeeds, we know thatTail has the same
value at E17 as it had at E5; however, we can go further
and infer thatTail is not modified byα2 to α6. To see why,
we observe thatTail can only be modified by a successful
CAS at E13, E17 or D10, and that the last such CAS must
set Tail to tail. We can show that this is impossible, by
showing that the program maintains the invariant property
that the list contains no cycles andnew node() always re-
turns a new node, so advancingTail cannot cause it to re-
turn to a previous value. This is called the “ABA freedom
property”, and holds because we assume that memory is
not recycled. It follow that E5 and E7 can move right over
α2 to α5 as required, and E17 can move left overα6.

Similarly, since E9 succeed, we can infer thattail.next
is not modified byα3 to α5, since this can only be done
by a successful CAS at E9, which always setstail.next
to a new node previously allocated at E1 which no other
process can see. It follows that E6 can move right overα3

to α5.
Thus, we move E5 to E8 right and E17 left to the po-

sition of E9, so the steps of Enq7 are contiguous; so we
have:

α1 E5p α2 E6p α3 E7
+

p α4 E8
+

p α5 E9
+

p α6 E17
+

p α7 ≤

α1 α2 α3 α4 α5 E5p E6p E7
+

p E8
+

p E9
+

p E17
+

p α6 α7

Path Deq6 is handled in essentially the same way.

4.5.3 Failed iteration in ENQUEUE advancingTail

We consider path Enq4, i.e. E5, E6, E7+, E8−, E13+,
where we have:

E5 tail := Tail
E6 next := tail.next
E7+ tail = Tail
E8− next 6= null
E13+ CAS(Tail, tail, next)+

Let α be an execution containing an execution of
Enq4 by processp, sayα = α1 E5p α2 E6p α3 E7

+

p α4

E8
−
p α5 E13

+ α6, whereα2 to α5 contain nop-actions.
We will show that actions E5–E8 can be moved right to
the position of E13. We know that E8 is a both mover,
since if only involve local variables.

We can also treat E6 as a right mover, since we can
show that for any noden, n.next is only ever assigned
twice: once at E3 when it is set tonull, and once at E9
when it is set to a non-null value (note that E9 can only be
executed whennext = null). Thus, since we know from
E8+ that tail.next was notnull when it was read at E6, it
cannot be assigned again.

Finally, since the CAS at E13 succeeds, we can infer
from the ABA freedom property thatTail is not assigned
by α2 to α5. Thus, we have:

α1 E5p α2 E6p α3 E7
+

p α4 E8
−
p α5 E13

+

p α6 ≤

α1 α2 α3 α4 α5 E5p E6p E7
+

p E8
−
p E13

+

p α6

Path Deq2 is handled in essentially the same way.

4.5.4 Normal successful iteration in DEQUEUE

Path Deq4 is D2-D4, D5+, D6+, D7+, where we have:

D2 head := Head
D3 tail := Tail
D4 next := head.next
D5+ head = Head
D6+ head = tail
D7+ next =null

Let α be an execution containing an execution of
Deq4 by processp, sayα = α1 D2p α2 D3p α3 D4p α4

D5
+

p α5 D6
+

p α6 D7
+

p α7, whereα2 to α6 contain nop-
actions. We can infer from the tests, and the ABA free-
dom property, thatHead is not modified byα2 to α4 and
head.next is not modified byα3, but we don’t know any-
thing about whetherTail is changed. We therefore move
D2 right overα2, and D4 to D7 left overα3 to α7 as re-
quired. Thus, we have:

α1 D2p α2 D3p α3 D4p α4 D5
+

p α5 D6
+

p α6 D7
+

p α7 ≤

α1 α2 D2p D3p D4p D5
+

p D6
+

p D7
+

p α3 α4 α5 α6 α7

4.5.5 Abnormal successful iteration

Path Enq6 is E5, E6, E7+, E8+, E9+, E17−, where we
have:

E5 tail := Tail
E6 next := tail.next
E7+ tail = Tail
E8+ next =null
E9+ CAS(tail.next, next, node)+

E17− CAS(Tail, tail, node)−

Let α be an execution containing an execution of Enq6
by processp, sayα = α1 E5p α2 E6p α3 E7

+

p α4 E8
+

p α5

E9
+

p α6 E17
−
p α7, whereα2 to α6 contain nop-actions.

E8 which is a both mover, since it only involves local vari-
ables. Since E7 succeeds, we know thatTail is not mod-
ified by α2 or α3, and since E9 succeeds, we know that
α3 to α5 do not modifytail.next. Thus, there are vari-
ous ways in which we can move E5 to E9 so that they are
contiguous.

CRPIT Volume 77 - Theory of Computing 2008

146

However, the fact that E17 fails means thatTail is
changed some where inα4 to α6. Therefore, we can’t
move E5 to E9 right overα6, not can we move E17 left
overα6. So at this stage, we cannot rearrange an execu-
tion of Enq6 to make its steps contiguous.

4.6 ReassigningTail advance steps

We have now reduced all of the primitive paths so that
their steps are contiguous, with the exception of Enq6,
where the CAS at E17 fails becauseTail has been updated
by another process. We will address this case by showing
that there is an equivalent execution in which the process
that appends a node also updatesTail (i.e. all E17 actions
succeed), which means that paths Enq4, Enq6 and Deq2
never occur.

Let α be an execution which contains a failed E17 ac-
tion performed by processp. The fact that this action fails
means that some another process, sayq, has updatedTail,
with a successful CAS at E13 or D10, as part of an Enq4 or
Deq2 path, sincep performed its successful CAS at E9. If
more than one process has updatedTail sincep performed
its successful CAS at E9, we choseq to be the first such
process. Ifq performs an E13 action,α is of the form
α1 E9

+

p α2 E13
+

q α3 E17
−
p α4, whereα2 does not contain

any E10 or D10 action (note thatα2 also cannot contain
a successful E17 action). We can now construct an equiv-
alent executionα′ in which p performs a successful E17
action at the point whereq performed its successful E13 in
α, andq performs an unsuccessful E13 action at the point
wherep performed its unsuccessful E17 action inα. Thus,
we have:

α1 E9
+

p α2 E13
+

q α3 E17
−
p α4 ≤

α1 E9
+

p α2 E17
+

p α3 E13
−
q α4

The case whereq performs a D10 action is symmetri-
cal, giving:

α1 E9
+

p α2 D10
+

q α3 E17
−
p α4 ≤

α1 E9
+

p α2 E17
+

p α3 D10
−
q α4

The key observation here is that it doesn’t matter what
process performs a step that advancesTail. By assigning
this step to the process which performed the closest pre-
ceding E9, we ensure that the resulting execution can be
generated by the queue algorithm.

The effect of this transformation is to either swap an
occurrence of Enq6 and an occurrence of Enq4 for an oc-
currence of Enq7 and an occurrence of Enq3, or swap an
occurrence of Enq6 and an occurrence of Deq2 for an oc-
currence of Enq7 and an occurrence of Deq2. The result is
that all Enq6 paths become Enq7 paths, which can now be
reduced as shown in Section 4.5.2, and all Enq4 and Deq2
paths become Enq3 and Deq3 paths, respectively, which
can now be deleted as shown in Section 4.4.

4.7 Assembling the remaining fragments

Following the above transformation, every execution of
ENQUEUE or DEQUEUE has the form shown by the fol-
lowing regular expressions:

Enq1 Enq6

Deq4 | Deq6

Finally, we observe that since all of the steps in Enq1
are both-movers, these steps can be moved right over any
steps that occur between the executions of Enq1 and Enq6
by the same process. Thus, providedα2 contains nop
actions, we have:

α1 Enqp α2 Enq6p α3 ≤ α1 α2 Enqp Enq6p α3

With a little simplification, it follows that ENQUEUE is
equivalent to:

node :=new node()
node.value := value
node.next :=null
tail.next := node
Tail := node

and DEQUEUE is equivalent to:

if Head = Tail then
Head.next =null
return false

else
pvalue:= Head.next.value
Head := Head.next
return true

It is easy to see that these correctly implement the
queue operations with the chosen data representation.

5 Conclusions

We have shown how a version of Michael and Scott’s lock-
free queue can be proved to be linearisable, using a reduc-
tion method based on that of Lipton, Lamport, Cohen, and
others. This approach separates reasoning about the con-
current and non-concurrent aspects of the algorithm, and
addresses the concurrent part by focusing on the interac-
tions between actions performed by different processes.
This allows us to explain why the algorithm is correct in
a way that is more compelling that a higher level proof,
and provides more insight than a simulation proof, since
it highlights properties (such as ABA freedom, unique
pointers and fields not changing) on which the correctness
of the algorithm relies. Some of these properties can be
easily checked by inspection, or verified more rigorously
using static analysis techniques; others require more so-
phisticated verification using model checking or theorem
proving. Moreover, similar supporting properties are re-
quired in the verification of other lock-free algorithms.

Our trace reduction method extends Lipton’s reduction
method in several ways: we used a form of conditional re-
duction, where reductions depend on the outcomes of tests
and CASes; we allow loop iterations that have no effect
to be deleted (this is calledpurity in (Freund & Qadeer
2005)); we also allow certain actions to be assigned to
other processes. This can be done because these actions
could in fact be performed by any process, and would
be required in verifying other algorithms using similar
“helper” mechanisms, such as Shann et al’s array-based
queue (Shann et al. 2000) and Ladan-Mozes and Shavit’s
optimistic queue (Ladan-Mozes & Shavit 2004). In other
work (Groves & Colvin 2006b) we have shown that al-
gorithms such as the scalable stack described in (Hendler
et al. 2004), where the linearisation point for one opera-
tion may be a step of another process, can be handled by
by reducing two operations simultaneously.

We have simplified the original algorithm by assuming
that storage is never recycled (or that the implementation
language provides automatic garbage collection), which
allows us to justify the ABA Freedom assumption. To jus-
tify this assumption while recycling storage, Michael and
Scott add version numbers to pointer variables, which are
incremented every time a pointer is modified. This can be
introduced in our context as a further data refinement, but
is only strictly correct if version numbers are unbounded.
An alternative approach which avoids this problem is de-
scribed in (Herlihy et al. 2002).

Michael and Scott (Michael & Scott 1998) gave a brief
proof of some safety properties, but they were not suffi-
cient to ensure linearisability. Yahav and Sagiv (Yahav
& Sagiv 2003) describe an approach to verifying Michael
and Scott’s safety properties using model checking, but

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

147

their analysis appears to be very limited as they don’t ap-
pear to have run the system with both ENQUEUEs and
DEQUEUEs being performed.

Wang and Stoller (Wang & Stoller 2005) describe a
static analysis technique for checking atomicity, and ap-
ply it to a variant of Michael and Scott’s algorithm which
avoids the ABA problem by using the less widely avail-
able Linked Load/Store Conditional instructions instead
of CAS. However, their variant also avoids the main prob-
lem addressed in the paper by using a separate process to
updateTail, which destroys the lock-freedom of the al-
gorithm (since if that process dies the entire system will
deadlock).

Doherty et al (Doherty et al. 2004) describe a fully me-
chanical proof of a variant of Michael and Scott’s which is
intended to reduce contention in the DEQUEUE operation
by testingnext = null at D6, to determine whether the
queue is empty, rather thanhead = tail, and only read-
ing Tail if this test succeeds. This optimisation was dis-
covered while attempting to prove the original algorithm.
In our context, this modification would simplify the rea-
soning about path Deq2. This verification uses simula-
tion between Input/Output Automata (Lynch 1996, Lynch
& Vaandrager 1995), and requires a combination of for-
ward and backward simulation to handle DEQUEUEon an
empty queue since at the timeTail is read it is not known
whether the algorithm will returnfalse. Our proof requires
no special treatment for this case.

Abrial and Cansell (Abrial & Cansell 2005) describe
a constructive verification of a variant of Michael and
Scott’s algorithm using Event-B. They prove a variant of
linearisability in which they require the linearisation point
to be the last step taken by an operation, and delete line
E17 from the algorithm so thatTail is always advanced by
the next operation that noticesTail lagging, at E9 or D10.
They also introduce an additional test in DEQUEUE, which
requiresTail to be read again, before returningfalse. This
is precisely the case that required a backward simulation
in the verification in (Doherty et al. 2004), and this mod-
ification appears to have been required to avoid the need
for backward simulation.

It would require a straightforward modification of our
proof to show that the variants of Michael and Scott’s al-
gorithm described by (Wang & Stoller 2005), (Doherty
et al. 2004) and (Abrial & Cansell 2005) are correct, and
that the handling of DEQUEUEon an empty queue can be
further simplified so that it never needs to accessTail.

Our future work will include mechanising our reduc-
tion proofs using PVS, and applying the approach to more
sophisticated algorithms, such as the optimistic queue de-
scribed in (Ladan-Mozes & Shavit 2004) and the scalable
queue described in (Moir et al. 2005), to see whether other
extensions are required and what other properties are re-
quired to justify its application.

Acknowledgements We are grateful to Sun Microsys-
tems Laboratories for financial support, and to Rob Colvin
and Mark Moir for helpful discussions relating to this
work.

References

Abrial, J.-R. & Cansell, D. (2005), ‘Formal construction
of a non-blocking concurrent queue algorithm’,Journal
of Universal Computer Science 11(5), 744–770.

Cohen, E. (2000), Separation and reduction,in ‘Proc. 5th
International Conference on Mathematics of Program
Construction (MPC)’, Springer-Verlag, London, UK,
pp. 45–59.

Cohen, E. & Lamport, L. (1998), Reduction in TLA,
in ‘International Conference on Concurrency Theory
(CONCUR)’, pp. 317–331.

Colvin, R., Doherty, S. & Groves, L. (2005), Verifying
concurrent data structures by simulation,in E. Boiten &
J. Derrick, eds, ‘Proc. Refinement Workshop (REFINE
2005)’, Vol. 137(2) ofElectronic Notes in Theoretical
Computer Science, Elsevier, Guildford, UK, pp. 93–
110.

Colvin, R. & Groves, L. (2005), Formal verification of an
array-based nonblocking queue,in ‘Proc. International
Conference on Engineering of Complex Computer Sys-
tems (ICECCS)’, ACM Press, New York, NY, USA,
pp. 92–101.

Colvin, R., Groves, L., Luchangco, V. & Moir, M. (2006),
Formal verification of a lazy concurrent list-based set
algorithm, in T. Ball & R. B. Jones, eds, ‘Proc. 18th
International Conference on Computer Aided Verifica-
tion (CAV)’, Vol. 4144 of Lecture Notes in Computer
Science, Springer, pp. 475–488.

Doeppner, Jr., T. W. (1977), Parallel program correct-
ness through refinement,in ‘Proc. 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming
Languages (POPL)’, ACM Press, pp. 155–169.

Doherty, S., Groves, L., Luchangco, V. & Moir, M. (2004),
Formal verification of a practical lock-free queue algo-
rithm., in D. de Frutos-Escrig & M. Núñez, eds, ‘For-
mal Techniques for Networked and Distributed Systems
(FORTE)’, Vol. 3235 ofLecture Notes in Computer Sci-
ence, Springer, pp. 97–114.

Dunne, S. (2003), Introducing backward refinement into
B, in D. Bert, J. P. Bowen, S. King & M. A. Waldén, eds,
‘ZB’, Vol. 2651 of Lecture Notes in Computer Science,
Springer, pp. 178–196.

Flanagan, C. & Qadeer, S. (2003), A type and effect sys-
tem for atomicity,in ‘Proc. ACM SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation’, pp. 338–349.

Freund, S. N. & Qadeer, S. (2005), ‘Exploiting purity for
atomicity’, IEEE Trans. Softw. Eng. 31(4), 275–291.

Groves, L. (2007a), Reasoning about nonblocking concur-
rency using reduction,in ‘Proc. 12th Twelfth IEEE Int.
Conf. on Engineering of Complex Computer Systems
(ICECCS 2007)’, Auckland, New Zealand, pp. 107–
116.

Groves, L. (2007b), Verifying Michael and Scott’s lock-
free queue algorithm using trace reduction — the de-
tails, Technical report, Victoria University of Welling-
ton. (To appear).

Groves, L. & Colvin, R. (2006a), Derivation of a scalable
lock-free stack algorithm,in ‘International Refinement
Workshop (Refine 2006)’, Electronic Notes in Theoret-
ical Computer Science, Elsevier.

Groves, L. & Colvin, R. (2006b), Derivation of a scalable
lock-free stack algorithm,in ‘International Refinement
Workshop (Refine 2006)’, Electronic Notes in Theoret-
ical Computer Science, Elsevier.

Hendler, D., Shavit, N. & Yerushalmi, L. (2004), A scal-
able lock-free stack algorithm,in ‘SPAA 2004: Pro-
ceedings of the Sixteenth Annual ACM Symposium
on Parallel Algorithms, June 27-30, 2004, Barcelona,
Spain’, pp. 206–215.

Herlihy, M., Luchangco, V. & Moir, M. (2002), The re-
peat offender problem: A mechanism for supporting
dynamic-sized, lock-free data structures,in ‘16th Inter-
national Conference on Distributed Computing (DISC
2002)’, Vol. 2508 ofLecture Notes in Computer Sci-
ence, Toulouse, France, pp. 339–353.

CRPIT Volume 77 - Theory of Computing 2008

148

Herlihy, M. P. & Wing, J. M. (1990), ‘Linearizability: a
correctness condition for concurrent objects’,TOPLAS
12(3), 463–492.

Hesselink, W. H. (2002), ‘An assertional criterion for
atomicity’, Acta Informatica 28(5), 343–366.

Jifeng, H., Hoare, C. & Sanders, J. (1986), Data refine-
ment refined,in ‘ESOP 86’, Vol. 213 ofLecture Notes
in Computer Science, Springer-Verlag, pp. 187–196.

Ladan-Mozes, E. & Shavit, N. (2004), An optimistic ap-
proach to lock-free fifo queues,in ‘Proc. of the 18th
International Conference on Distributed Computing’,
pp. 117–131.

Lamport, L. (1990), ‘A theorem on atomicity in distributed
algorithms’,Distributed Computing 4(2), 59–68.

Lamport, L. & Schneider, F. B. (1989), Pretending atom-
icity, Technical Report TR89-1005, DEC, SRC.

Lipton, R. J. (1975), ‘Reduction: a method of proving
properties of parallel programs’,Communications of
the ACM 18(12), 717–721.

Lynch, N. A. (1996),Distributed Algorithms, Morgan
Kaufmann.

Lynch, N. A. & Vaandrager, F. W. (1995), ‘Forward and
backward simulations – Part I: Untimed systems.’,In-
formation and Computation 121(2), 214–233.

Michael, M. & Scott, M. (1998), ‘Nonblocking al-
gorithms and preemption safe locking on multipro-
grammed shared memory multiprocessors’,Journal of
Parallel and Distributed Computing 51(1), 1–26.

Moir, M., Nussbaum, D., Shalev, O. & Shavit, N. (2005),
Using elimination to implement scalable and lock-free
fifo queues,in ‘Proc. 17th Annual ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA
2005)’, ACM Press, Las Vegas, Nevada, USA, pp. 253–
262.

Sasturkar, A., Agarwal, R., Wang, L. & Stoller, S. D.
(2005), Automated type-based analysis of data races
and atomicity,in ‘PPoPP ’05: Proceedings of the tenth
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming’, ACM Press, New York, NY,
USA, pp. 83–94.

Shann, C.-H., Huang, T.-L. & Chen, C. (2000), A prac-
tical nonblocking queue algorithm using compare-and-
swap,in ‘Seventh International Conference on Parallel
and Distributed Systems (ICPADS’00)’, pp. 470–475.

Stepney, S., Cooper, D. & Woodcock, J. (1998), More
powerful Z data refinement: pushing the state of the art
in industrial refinement,in J. P. Bowen, A. Fett & M. G.
Hinchey, eds, ‘The Z Formal Specification Notation,
11th International Conference of Z Users, Berlin, Ger-
many, September 1998’, Vol. 1493 ofLNCS, Springer,
pp. 284–307.

Treiber, R. K. (1986), Systems Programming: Coping
with Parallelism. RJ5118, Technical report, IBM Al-
maden Research Center.

Wang, L. & Stoller, S. D. (2005), Static analysis of atomic-
ity for programs with non-blocking synchronization,in
‘PPoPP ’05: Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel pro-
gramming’, ACM Press, New York, NY, USA, pp. 61–
71.

Yahav, E. & Sagiv, M. (2003), Automatically verifying
concurrent queue algorithms,in B. Cook, S. Stoller &
W. Visser, eds, ‘Electronic Notes in Theoretical Com-
puter Science’, Vol. 89, Elsevier.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

149

Author Index

Allender, Eric, 3
Asahiro, Yuichi, 97
Asquith, Matthew, 49

Bai, Shi, 125
Brent, Richard P., 125
Bunder, Martin, 7

Chang, Ching-Lueh, 117

Gor, Ajay S., 63
Groves, Lindsay, 133
Gudmundsson, Joachim, 49

Harland, James, iii
Huang, Xiaowei, 15
Huston, Samuel, 39

Jiao, Li, 15

Levit, Vadim, 87
Lu, Weiming, 15
Lyuu, Yuh-Dauh, 117

Mandrescu, Eugen, 87
Manyem, Prabhu, iii
Mathieson, Luke, 79

Merrick, Damian, 49
Miller, Mirka, 93
Miyano, Eiji, 97
Morozova, Elena, 57
Mujuni, Egbert, 75

Nguyen, Minh H., 93

Ohrimenko, Olga, 27
Ono, Hirotaka, 97

Pineda-Villavicencio, Guillermo, 93
Puchinger, Jakob, 39

Rosamond, Frances, 75
Ruskey, Frank, 107

Samer, Marko, 67
Shah, Nita H., 63
Stuckey, Peter, 27, 39
Szeider, Stefan, 67, 79

Ti, Yen-Wu, 117

Wee, Hui, 63
Williams, Aaron, 107

CRPIT Volume 77 - Theory of Computing 2008

150

Recent Volumes in the CRPIT Series

ISSN 1445-1336
Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 67 - Conceptual Modelling 2007
Edited by John F. Roddick, Flinders University and
Annika Hinze, University of Waikato, New Zealand.
January, 2007. 978-1-920682-48-4.

Contains the proceedings of the Fourth Asia-Pacific Conference on Conceptual Modelling
(APCCM2007), Ballarat, Victoria, Australia, January 2007.

Volume 68 - ACSW Frontiers 2007
Edited by Ljiljana Brankovic, University of Newcas-
tle, Paul Coddington, University of Adelaide, John
F. Roddick, Flinders University, Chris Steketee,
University of South Australia, Jim Warren, the Univer-
sity of Auckland, and Andrew Wendelborn, Univer-
sity of Adelaide. January, 2007. 978-1-920682-49-1.

Contains the proceedings of the ACSW Workshops - The Australasian Information Security
Workshop: Privacy Enhancing Systems (AISW), the Australasian Symposium on Grid Com-
puting and Research (AUSGRID), and the Australasian Workshop on Health Knowledge Man-
agement and Discovery (HKMD), Ballarat, Victoria, Australia, January 2007.

Volume 69 - Safety Critical Systems and Software 2006
Edited by Tony Cant, Defence Science and Technol-
ogy Organisation, Australia. February, 2007. 978-1-
920682-50-7.

Contains the proceedings of the 11th Australian Conference on Safety Critical Systems and
Software, August 2006, Melbourne, Australia.

Volume 70 - Data Mining and Analytics 2007
Edited by Peter Christen, Paul Kennedy, Jiuy-
ong Li, Inna Kolyshkina and Graham Williams.
December, 2007. 978-1-920682-51-4.

Contains the proceedings of the 6th Australasian Data Mining Conference (AusDM 2007), Gold
Coast, Australia. December 2007.

Volume 72 - Advances in Ontologies 2006
Edited by Mehmet Orgun Macquarie University and
Thomas Meyer, National ICT Australia, Sydney. De-
cember, 2006. 978-1-920682-53-8.

Contains the proceedings of the Australasian Ontology Workshop (AOW 2006), Hobart, Aus-
tralia, December 2006.

Volume 73 - Intelligent Systems for Bioinformatics 2006
Edited by Mikael Boden and Timothy Bailey
University of Queensland. December, 2006. 978-1-
920682-54-5.

Contains the proceedings of the AI 2006 Workshop on Intelligent Systems for Bioinformatics
(WISB-2006), Hobart, Australia, December 2006.

Volume 74 - Computer Science 2008
Edited by Gillian Dobbie, University of Auckland,
New Zealand and Bernard Mans Macquarie Univer-
sity. January, 2008. 978-1-920682-55-2.

Contains the proceedings of the Thirty-First Australasian Computer Science Conference
(ACSC2008), Wollongong, NSW, Australia, January 2008.

Volume 75 - Database Technologies 2008
Edited by Alan Fekete, University of Sydney
and Xuemin Lin, University of New South Wales.
January, 2008. 978-1-920682-56-9.

Contains the proceedings of the Nineteenth Australasian Database Conference (ADC2008),
Wollongong, NSW, Australia, January 2008.

Volume 76 - User Interfaces 2008
Edited by Beryl Plimmer and Gerald Weber Uni-
versity of Auckland. January, 2008. 978-1-920682-
57-6.

Contains the proceedings of the Ninth Australasian User Interface Conference (AUIC2008),
Wollongong, NSW, Australia, January 2008.

Volume 77 - Theory of Computing 2008
Edited by James Harland, RMIT University and
Prabhu Manyem, University of Ballarat. January,
2008. 978-1-920682-58-3.

Contains the proceedings of the Fourteenth Computing: The Australasian Theory Symposium
(CATS2008), Wollongong, NSW, Australia, January 2008.

Volume 78 - Computing Education 2008
Edited by Simon, University of Newcastle and Mar-
garet Hamilton, RMIT University. January, 2008.
978-1-920682-59-0.

Contains the proceedings of the Tenth Australasian Computing Education Conference
(ACE2008), Wollongong, NSW, Australia, January 2008.

Volume 79 - Conceptual Modelling 2008
Edited by Annika Hinze, University of Waikato, New
Zealand and Markus Kirchberg, Massey University,
New Zealand. January, 2008. 978-1-920682-60-6.

Contains the proceedings of the Fifth Asia-Pacific Conference on Conceptual Modelling
(APCCM2008), Wollongong, NSW, Australia, January 2008.

Volume 80 - Health Data and Knowledge Management 2008
Edited by James R. Warren, Ping Yu, John Year-
wood and Jon D. Patrick. January, 2008. 978-1-
920682-61-3.

Contains the proceedings of the Australasian Workshop on Health Data and Knowledge Man-
agement (HDKM 2008), Wollongong, NSW, Australia, January 2008.

Volume 81 - Information Security 2008
Edited by Ljiljana Brankovic, University of New-
castle and Mirka Miller, University of Ballarat.
January, 2008. 978-1-920682-62-0.

Contains the proceedings of the Australasian Information Security Conference (AISC 2008),
Wollongong, NSW, Australia, January 2008.

Volume 82 - Grid Computing and e-Research
Edited by Wayne Kelly and Paul Roe QUT.
January, 2008. 978-1-920682-63-7.

Contains the proceedings of the Australasian Workshop on Grid Computing and e-Research
(AusGrid 2008), Wollongong, NSW, Australia, January 2008.

Volume 83 - Challenges in Conceptual Modelling
Edited by John Grundy, University of Auckland,
New Zealand, Sven Hartmann, Massey University,
New Zealand, Alberto H.F. Laender, UFMG, Brazil,
Leszek Maciaszek, Macquarie University, Australia
and John F. Roddick, Flinders University, Australia.
December, 2007. 978-1-920682-64-4.

Contains the tutorials, posters, panels and industrial contributions to the 26th International
Conference on Conceptual Modeling - ER 2007.

Volume 84 - Artificial Intelligence and Data Mining 2007
Edited by Kok-Leong Ong, Deakin University, Aus-
tralia, Wenyuan Li, University of Texas at Dallas,
USA and Junbin Gao, Charles Sturt University, Aus-
tralia. December, 2007. 978-1-920682-65-1.

Contains the proceedings of the 2nd International Workshop on Integrating AI and Data Mining
(AIDM 2007), Gold Coast, Australia. December 2007.

Volume 86 - Safety Critical Systems and Software 2007
Edited by Tony Cant, Defence Science and Technol-
ogy Organisation, Australia. December, 2007. 978-1-
920682-67-5.

Contains the proceedings of the 12th Australian Conference on Safety Critical Systems and
Software, August 2006, Adelaide, Australia.

Proc. 14th Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, Australia

151

	AAHeaders.pdf
	P05CRPITV77Bunder.pdf
	P06CRPITV77Huang.pdf
	P07CRPITV77Ohrimenko.pdf
	P07CRPITV77Ohrimenkozzz.pdf
	P08CRPITV77Huston.pdf
	P08CRPITV77Hustonzzz copy.pdf
	P09CRPITV77Asquith.pdf
	P10CRPITV77Morozova.pdf
	P11CRPITV77Shah.pdf
	P12CRPITV77Samer.pdf
	P13CRPITV77Mujuni.pdf
	P14CRPITV77Mathieson.pdf
	P15CRPITV77Levit.pdf
	P15CRPITV77Levitzzz copy 2.pdf
	P16CRPITV77Miller.pdf
	P16CRPITV77Millerzzz copy 4.pdf
	P17CRPITV77Asahiro.pdf
	P18CRPITV77Ruskey.pdf
	Introduction
	Generating Binary Trees
	Recursive Structure
	Algorithm
	Ranking
	Final Remarks

	P18CRPITV77Ruskeyzzz copy 5.pdf
	P19CRPITV77Chang.pdf
	P19CRPITV77Chang2.pdf
	Introduction
	Definitions
	Hardness
	An upper bound on the query complexity
	A lower bound on the query complexity
	Embeddability into possibly infinite spaces
	Concluding remarks

	P20CRPITV77Bai.pdf
	Introduction
	Background
	Pollard's Rho Method
	Pollard's Iteration Function
	Reported Performance
	Floyd's Cycle-finding Algorithm

	Advances in Iteration Functions
	Pollard's Generalized Function
	Teske's Adding-walk
	Teske's Mixed-walk

	Advances in Collision-detection Algorithms
	Brent's Algorithms

	Summary

	Experimental Investigation
	Description of Experiments
	Iteration Functions
	Starting Values
	Partitioning Methods
	Choice of Parameters in Teske's Functions
	Groups (Z/pZ)*
	Prime Order Subgroups of E(Fp)

	Conclusion and Future Work

	P20CRPITV77Baizzz copy 6.pdf
	P21CRPITV21Groves.pdf
	Trailers.pdf

