
Conferences in Research and Practice in
Information Technology

Volume 74

Computer Science 2008

Australian Computer Science Communications, Volume 30, Number 1

Computer Science 2008

Proceedings of the
Thirty-First Australasian Computer Science Conference
(ACSC 2008), Wollongong, NSW, Australia,
January 2008

Gillian Dobbie and Bernard Mans, Eds.

Volume 74 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Computer Science 2008. Proceedings of the Thirty-First Australasian Computer Science Conference
(ACSC 2008), Wollongong, NSW, Australia, January 2008

Conferences in Research and Practice in Information Technology, Volume 74.

Copyright c©2007, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:
Gillian Dobbie
Department of Computer Science
The University of Auckland
Private Bag 92019
Auckland,
New Zealand
Email: gill@cs.auckland.ac.nz

Bernard Mans
Department of Computing
Division of Information and Communication Sciences
Macquarie University
Sydney, NSW 2109
Australia
Email: bmans@ics.mq.edu.au

Series Editors:
Vladimir Estivill-Castro, Griffith University, Queensland
John F. Roddick, Flinders University, South Australia
Simeon Simoff, University of Technology, Sydney, NSW
crpit@infoeng.flinders.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 74
ISSN 1445-1336
ISBN 978-1-920682-55-2

Printed December 2007 by Flinders Press, PO Box 2100, Bedford Park, SA 5042, South Australia.
Cover Design by Modern Planet Design, (08) 8340 1361.

The Conferences in Research and Practice in Information Technology series aims to disseminate the results of
peer-reviewed research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Proceedings of the Thirty-First Australasian Computer Science Conference
(ACSC 2008), Wollongong, NSW, Australia, January 2008

Preface . vii

Programme Committee . viii

Organising Committee . ix

CORE - Computing Research and Education . xi

ACSW Conferences and the Australian Computer Science
Communications . xii

ACSW and ACSC 2008 Sponsors . xv

Keynote

Constraint Logic Programming for Program Analysis . 3
Joxan Jaffar

Invited Papers

On Measuring Java Software . 7
Ewan Tempero

Informatics Olympiads: Challenges in Programming and Algorithm Design . 9
Benjamin A. Burton

Contributed Papers

Operating Systems and Programming Languages

Towards a Definition and Model for Metadata File Systems . 17
Stijn Dekeyser, Richard Watson and Lasse Motrøen

Reasoning about Data Parallelism in Modern Object-Oriented Languages . 27
Wayne Reid, Wayne Kelly and Andrew Craik

Compiling Ruby on the CLR . 37
Wayne Kelly and John Gough

Security and Communications

Privacy Preserving Set Intersection Protocol Based on Bilinear Group . 47
Yingpeng Sang and Hong Shen

A Local Broker Enabled MobiPass Architecture for Enhancing Trusted Interaction Efficiency 55
Will Tao and Robert Steele

HOVER: Hybrid On-demand Distance Vector Routing for Wireless Mesh Networks 63
Stephan Mir, Asad Pirzada and Marius Portmann

Algorithms

Product Flow Analysis in Distribution Networks with a Fixed Time Horizon . 73
M.T. Wynn, C.J. Fidge, A.H.M. ter Hofstede and M. Dumas

Experiments in the Dynamics of Phase Coupled Oscillators When Applied to Graph Colouring 83
Sofianto Lee and Raymond Lister

Integrating Recommendation Models for Improved Web page prediction accuracy 91
Faten Khalil, Jiuyong Li and Hua Wang

An efficient hash-based algorithm for minimal k-anonymity . 101
Xiaoxun Sun, Min Li, Hua Wang and Ashley Plank

Web Services

JWS: A Flexible Web Service . 109
Andrew Cho, Paresh Deva and Ewan Tempero

An Investigation on a Community’s Web Search Variability . 117
Mingfang Wu, Andrew Turpin and Justin Zobel

Artificial Intelligence

On Illegal Composition of First-Class Agent Interaction Protocols . 127
Tim Miller and Peter McBurney

An Investigation of the State Formation and Transition Limitations for Prediction Problems in Re-
current Neural Networks . 137

Angel Kennedy and Cara MacNish

Automatic Thesaurus Construction . 147
Dongqiang Yang and David M. Powers

Formal Methods

Relative Simulation and Model Checking of Real-Time Processes, . 157
Colin Fidge

Author Index . 167

vi

Preface

The Australasian Computer Science Conference (ACSC) series is an annual forum, bringing together re-
search sub-disciplines in Computer Science. The meeting allows academics and researchers to discuss re-
search topics as well as progress in the field, and policies to stimulate its growth. This volume contains
papers presented at the Thirty First ACSC in Wollongong, NSW, Australia. ACSC 2008 is part of the
Australasian Computer Science Week which ran from Jan 22nd to 25th, 2008.

The ACSC 2008 call for papers solicited contributions in all areas of computer science research. This
years conference received submissions from Australia, New Zealand, China, France, India, Iran, Jamaica,
Jordon, Malaysia, Pakistan, South Africa, Turkey, UK, and Taiwan. The topics addressed by the submitted
papers illustrate the broadness of the discipline. The authors categorised their submissions into one or more
of the following topics:

- Algorithms (9 papers)
- Artificial Intelligence (7 papers)
- Communications and Networks (4 papers)
- Computer Architecture (2 paper)
- Computer Vision (4 papers)
- Databases (5 papers)
- Distributed Systems (6 papers)
- E-Commerce (4 papers)
- Formal Methods (6 papers)
- Graphics (6 papers)
- High Performance Computing (7 papers)
- Human-Computer Interaction (8 papers)
- Mobile Computing (6 papers)
- Multimedia (1 paper)

- Object Oriented Systems (3 papers)
- Ontologies (1 paper)
- Operating Systems (5 papers)
- Programming Languages (4 papers)
- Robotics (1 paper)
- Scientific Computing (5 papers)
- Security and Trusted Systems (5 papers)
- Simulation (6 papers)
- Software Engineering (5 papers)
- Speech (1 paper)
- Theory (3 papers)
- Visualization (6 papers)
- Web Services (3 papers)

The programme committee consisted of 28 highly regarded academics from around the globe, including
Australia, Brazil, Canada, Japan, New Zealand, Singapore and USA. All papers were sent to at least three
programme committee members for review and every effort was made to obtain at least three reviews. Of
the 47 papers submitted, 16 were selected for presentation at the conference.

The programme committee invited Professor Joxan Jaffar, to give a keynote on Constraint Logic Pro-
gramming for Program Analysis. Professor Jaffar has recently completed a stint as Dean of the School
of Computing from 2001-2007 at the National University of Singapore. His interests are in programming
languages and applications, with emphasis on the logic and constraint programming paradigms. Amongst
his main contributions are the principles of constraint logic programming, and the widely-used CLP(R)
system. The committee also invited Dr Benjamin Burton and Associate Professor Ewan Tempero to give in-
vited talks. Dr Burtons talk was entitled Informatics Olympiads:Challenges in Programming and Algorithm
Design. Associate Professor Temperos talk is entitled On Measuring Java Software.

We thank all authors who submitted papers and all conference participants for helping to make the
conference a success. We also thank the members of the programme committee and the external referees
for their expertise in carefully reviewing the papers. We are grateful to Professor John Roddick for his
assistance in the production of the proceedings and Sharon Liu for her work in managing the reviewing
system and processes. We thank Professor Jenny Edwards for her support as the President of CORE
(Computing Research and Education Association of Australasia). Last, we express our gratitude to our
hosts in Wollongong.

Gillian Dobbie
University of Auckland

Bernard Mans
Macquarie University

ACSC 2008 Programme Chairs
January 2008

vii

Programme Committee

Chairs

Gillian Dobbie, University of Auckland, New Zealand
Bernard Mans, Macquarie University, Australia

Members

: Hussein A. Abbass, UNSW@ADFA, Australia
Michael H. Albert, University of Otago, New Zealand
Stephane Bressan, National University of Singapore, Singapore
Andrew P. Bernat Computing Research Association, USA
Fred Brown, The University of Adelaide, Australia
Kris Bubendorfer, Victoria University of Wellington, New Zealand
Sally Jo Cunningham, University of Waikato, New Zealand
Gillian Dobbie, University of Auckland, New Zealand
Jenny Edwards, University of Technology, Sydney, Australia
Colin Fidge, Queensland University of Technology, Australia
Aditya Ghose, University of Wollongong, Australia
Ken Hawick, Massey University - Albany, New Zealand
Nigel Horspool, University of Victoria, Canada
Michael Houle, National Institute for Informatics, Japan
Paddy Krishnan, Bond University, Australia
Xuemin Lin, University of New South Wales, Australia
Bernard Mans, Macquarie University, Australia
Chris McDonald, The University of Western Australia, Australia
Michael Oudshoorn, Montana State University, US
Masahiro Takatsuka, The University of Sydney, Australia
Bruce H. Thomas, University of South Australia, Australia
Andrew Turpin, RMIT University, Australia
Alexandra Uitdenbogerd, RMIT University, Australia
Geoff West, Curtin University of Technology, Australia
Hua Wang University of Southern Queensland, Australia
Burkhard Wuensche University of Auckland, New Zealand
Yanchun Zhang, Victoria University, Australia
Avelino Zorzo, Pontificia Universidade Catolica do Rio Grande do Sul, Brazil

Additional Reviewers

Andrew R. Bernat
Kyle Chard
Kathy Land
Jiangang Ma
Ben Palmer
Stephen Seidman
Xiaoxun Sun
Ian Welch
Guandong Xu

viii

Organising Committee

Welcome

I would like to welcome you to the University of Wollongong and ACSW 2008.
The Illawarra is a scenic, yet diverse, band of coastline stretching 85km south from the Royal Na-

tional Park through to Wollongong, Shellhabour and the seaside town of Kiama. Wollongong has a strong
industrial heritage and has attracted people from all around the world. The cosmopolitan nature of
Wollongong has made it a truly global city where everyone feels at home. Some of the attractions you
must see while in the city include the Nan Tien temple, Wollongong City Gallery, Science Centre and
Planetarium.

Established in 1951, the University of Wollongong has forged a distinctive identity among Australian
and international universities. An enterprising institution with a personalised style, UOW is confidently
building an international reputation for quality research and education. With campuses stretching from
Wollongong to Dubai, UOW has a total of 22,754 domestic students and 9,114 international students. The
School of Computer Science and Software Engineering is one of the four schools in the Faculty of Informatics
and has 38 academic and general staff. The school houses research hubs including Centre for Computer
and Information Security Research, Centre for Visual Information Processing and Content Management,
Centre for Intelligent Systems Research, and Decision System Laboratory.

ACSW 2008 includes the following conferences:

– Australasian Computer Science Conference (ACSC),
– Australasian Database Conference (ADC),
– Australasian Computer Education Conference (ACE),
– Computing: The Australian Theory Symposium (CATS),
– Asia-Pacific Conference of Conceptual Modelling (APCCM),
– Australasian User Interface Conference (AUIC),
– Australasian Symposium on Grid Computing and Research (AUSGRID),
– Australasian Workshop on Health Knowledge Management and Discovery (HKMD),
– Australasian Information Security Workshop:Privacy Enhancing Systems (AISW), and the
– Australasian Computing Doctoral Consortium (ACDC).

The nature of ACSW requires the cooperation of many people. I would like to thank all those who have
worked to ensure the success of ACSW2008 including the Organizing Committee, the Conference Chairs
and Programme Committees, the invited speakers and the delegates.

Professor Philip Ogunbona
Head, School of Computer Science and Software Engineering
University of Wollongong
January, 2008

General Chair

Professor Philip Ogunbona, School of Computer Science and Software Engineering, University of Wollongong

Organising Committee Members

Mrs Meghan Gestos
A/Prof Willy Susilo
A/Prof Yi Mu
Dr Zhiquan Zhou
Prof Aditya Ghose
Dr. Dr Yang-Wai Chow

ix

x

CORE - Computing Research and Education

CORE welcomes all delegates to ACSW2008 in Wollongong.
ACSW, the Australasian Computer Science Week continues to grow with new conferences becoming

entrenched in the week. As the premier annual Computer Science event in Australia and New Zealand,
it provides an unparalleled opportunity for the wide community of Computer Science academics and re-
searchers to meet, network, promote IT research and be exposed to the latest research in other areas of
IT. The research presented at each conference is of the highest standard and essential for the growth and
future of our region, in an ever more competitive world.

Despite desperate pleas from industry and government for IT staff, 2007 has again offered little growth
in student numbers, particularly undergraduates, in ICT courses. This has affected almost all member
departments and resulted in many CORE stalwarts retiring or taking redundancy. Many members have
been active in a number of activities designed to address the issue but we do not yet seem to be winning
the hearts or minds of potential students, their parents or careers advisors.

ACS, with whom we work closely, has released a new Core Body of Knowledge, CBOK. This provides
us with the opportunity to rethink our courses but whether these will attract any more students remains
to be seen.

A major activity for CORE this year has been a continuation of the 2006 ranking of ICT conferences
and journals in preparation for the RQF. This activity drew considerable interest and input from many
members.

Thank you all for your contributions in 2007 and we look forward to an interesting 2008.

Jenny Edwards
President, Computing Research and Education
January, 2008

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2010 (Proposed). Communications Volume Number 32. Host and Venue - Queensland University of Technology,
Brisbane, QLD.

2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.

2008. Volume 30. Host and Venue - University of Wollongong, NSW.

2007. Volume 29. Host and Venue - University of Ballarat, VIC.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACE. Australian/Australasian Computing Education Conference.
ACSAC. Asia-Pacific Computer Systems Architecture Conference (previously Australian Computer Architecture

Conference (ACAC).
ACSC. Australian/Australasian Computer Science Conference.
ACSW. Australian/Australasian Computer Science Week.
ADC. Australian/Australasian Database Conference.
AISW. Australasian Information Security Workshop.
APBC. Asia-Pacific Bioinformatics Conference.
APCCM. Asia-Pacific Conference on Conceptual Modelling.
AUIC. Australian/Australasian User Interface Conference.
AusGrid. Australasian Workshop on Grid Computing and e-Research.
CATS. Computing - The Australian/Australasian Theory Symposium.

Note that various name changes have occurred, most notably the change of the names of conferences to reflect a

wider geographical area.

xiii

ACSW and ACSC 2008 Sponsors

We wish to thank the following sponsors for their contribution towards this conference. For an up-to-date
overview of sponsors of ACSW 2008 and ACSC 2008, please see http://www.cs.uow.edu.au/conf/acsw08/.

University of Wollongong, Australia

Australian Computer Society

CORE - Computing Research and Education

Department of Computer Science

Department of Computing

xiv

Keynote

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

1

CRPIT Volume 74 - Computer Science 2008

2

Constraint Logic Programming for Program Analysis

Joxan Jaffar

Department of Computer Science,
National University of Singapore
Email: joxan@comp.nus.edu.sg

Abstract

Constraint Logic Programming (CLP) has been tra-
ditionally applied to the modelling of complex prob-
lems, especially combinatorial problems, and to
model knowledge bases. In this presentation, we fo-
cus on using CLP for program analysis and verifi-
cation. First we consider the representation of pro-
gram behavior: the rules and constraints of CLP pro-
vides for a natural specification of programs as a sym-
bolic guarded transition system. The CLP execution
model can then capture the symbolic traces of the un-
derlying program, and these traces, in turn, divulge
the properties that we seek. Secondly, we use the
CLP formalism for the formal specification of com-
plex properties of data structures. Here the CLP ex-
ecution model can be used as a theorem-prover to
dispense with the proof obligations arising from the
program and its specifications. The traditional CLP
execution model, however, is not automatically prac-
tical for these purposes. We shall present two refine-
ments to CLP: one for reducing the number of sym-
bolic traces that are needed to prove a property, and
one to efficiently deal with data structure properties.

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74, Gillian Dobbie and Bernard Mans, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

3

CRPIT Volume 74 - Computer Science 2008

4

Invited Papers

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

5

CRPIT Volume 74 - Computer Science 2008

6

On Measuring Java Software

Ewan Tempero

Department of Computer Science,
University of Auckland,

Private Bag 92019, Auckland, New Zealand
Email: ewan@cs.auckland.ac.nz

Extended Abstract

Software metrics have a reputation in industry of not
being very useful. I believe one reason for this is
that for most metrics one important aspect of them
is usually not provided, namely the “entity popula-
tion model”. In measurement theory, an entity pop-
ulation model defines the typical values for measure-
ments from a metric for a given set of entities. Hav-
ing these models is necessary in order to interpret the
measurements. For example, without knowing the
entity population model for the body temperature of
humans we would not know that someone with a tem-
perature of 40 degrees would be a cause for concern.
In order for software metrics to be useful we need to
have a good understanding of their entity population
models.

In fact, we know very little about the entity popu-
lation models for software metrics for anything but
the simplest forms of measurements. We do have
speculations, expectations, and even some theories as
to what they should be, but there has been very lit-
tle data published that can help us know which are
correct and which are not. There are various reasons
why we do not have this data. Often it is because
we do not know how to measure something, reuse for
example. Sometimes there is disagreement as to what
to measure - there are more than 20 metrics for co-
hesion of object-oriented software for example. But
it is also the case that we simply have not made a
consistent and sustained attempt to make and report
such measurements. The few empirical studies that
do exist suffer from lacking sufficient detail to allow
them to be reproduced, or are from such a small sam-
ple that little can be determined from them. This is
the situation I and others are trying to change.

In this talk I will discuss my experience in measur-
ing Java software. I have found that just measuring
a large collection of software provides interesting in-
sights as to the state of current software development.
It seems that no matter what is measured, the results
are usually interesting and sometimes surprising. I
will present some of these results. I will also dis-
cuss the issues involved in doing this kind of research.
One such issue is making measurements that are re-
producible. To address this issue, I advocate basing
software metrics research on the use of standard soft-
ware corpora, that is, creating collections of software
whose contents are well-defined. However creating
such a corpus is not just a matter of downloading
stuff off the ’net. I discuss some of the difficulties
Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74, Gillian Dobbie and Bernard Mans, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

that arise in developing a corpus of open source Java
software.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

7

CRPIT Volume 74 - Computer Science 2008

8

Informatics Olympiads:

Challenges in Programming and Algorithm Design

Benjamin A. Burton

Department of Mathematics, SMGS
RMIT University,

GPO Box 2476V, Melbourne, VIC 3001,
Email: bab@debian.org

Abstract

The International Olympiad in Informatics is a world-
wide contest for high school students, with a strong
focus on creativity and ingenuity in algorithm design.
Here we describe the activities in Australia that sup-
port and complement this contest, including a range
of programming competitions, more accessible pen-
and-paper competitions, and other enrichment and
training activities. Sample problems are included,
along with suggestions for becoming involved.

1 Introduction

The International Olympiad in Informatics (IOI) is a
prestigious international competition for high school
students in programming and algorithm design. Cre-
ated in 1989 in Bulgaria under the leadership of Petar
Kenderov, it now boasts delegations and guests from
around 90 different countries.

Students sit the IOI on an individual basis, and are
given ten hours to solve six problems. The contest is a
programming competition, in the sense that students
submit programs which are then run through a variety
of test scenarios and judged accordingly. However,
the difficulty lies not so much in the programming
but rather the design of the underlying algorithms.

Australia first entered the IOI in 1992, and became
a regular participant in 1999. With a growing sup-
port base from academics, teachers and ex-students,
a rich national programme is developing to support
and complement the IOI.

The primary focus of this paper is to introduce
the various activities that form the Australian pro-
gramme. Section 2 presents an overview of these
activities. In Section 3 we focus in detail on writ-
ten competitions, a more accessible alternative that
involves multiple choice and short answer problems,
and in Section 4 we return to a detailed discussion of
programming competitions. Broader activities within
the Asia-Pacific region are discussed in Section 5, and
Section 6 closes with suggestions for how teachers and
students can become involved.

2 The Australian Programme

Like its sister programme in mathematics, the Aus-
tralian informatics olympiad programme currently
runs under the auspices of the Australian Mathemat-
ics Trust. Although the initial motivation for this

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74, Gillian Dobbie and Bernard Mans, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

programme was the annual selection and training of
the Australian IOI team, it has since grown to provide
enrichment for a wider range of high school students
nationwide. Activities include:

• The Australian Informatics Competition (AIC):
This is the most widely accessible activity, since
it involves no programming at all. Held annu-
ally in May, it offers students a range of multiple
choice and short answer questions that encourage
algorithmic thinking in puzzle-like settings. The
AIC and some sample problems are discussed in
detail in Section 3.

The AIC first ran in 2005, and has grown to over
3000 participants in 2007.

• The Australian Informatics Olympiad (AIO):
The AIO is a true programming contest, and acts
as the first round of selection in working towards
an IOI team. Although the problems are nec-
essarily simple, many of them retain a focus on
algorithm design even at this early stage. See
Section 4 for details and sample problems.

The AIO has run since 1998. Numbers in this
contest are typically much lower, with around 80
participants in 2007.

• The School of Excellence: The top twelve en-
trants from the AIO are invited to a live-in “pro-
gramming boot camp” at the Australian Na-
tional University in December, where they are
given ten days of lectures, labs, contests and
other activities. The school is intensive, and
students typically emerge exhausted but full of
ideas.

• Invitational Contests: The participants from the
School of Excellence are invited to sit additional
contests in February and March, including the
French-Australian contest discussed in Section 5.
These contests push the standard closer to IOI
level, and (unlike the AIO) do not shy away from
“required knowledge” such as graph theory and
dynamic programming.

• The Team Selection School: Based on the invita-
tional contests, a final eight students are invited
to a second training school at Macquarie Univer-
sity. Where the focus of the December school is
on teaching new material, the focus of this April
school is on using this material in creative and
unusual ways to solve problems of IOI difficulty.
At the end of this school a final team of four
members is chosen to represent Australia at the
coming IOI.

• The International Olympiad: The four team
members are individually mentored for the fol-
lowing 3–4 months. In August they meet for a fi-
nal short but intense training school, after which
they head directly overseas for the IOI.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

9

Online materials are available through the national
training site all year round (http://orac.amt.edu.
au/aioc/train/), and a series of books to comple-
ment these materials is currently under development.

3 Written Competitions

It was noted in the introduction that the AIO—an
entry level programming contest—has extremely low
participation each year. Whilst there may be many
reasons behind this, it is highly probable that the
following factors contribute:

• Programming contests are difficult for schools
to run. A typical mathematics contest requires
nothing more than a desk and a pen. In contrast,
a programming contest requires a computer for
every student, appropriate software (compilers
and debuggers), and a supervisor who can deal
with technical problems if they arise.

• Programming contests require students who can
write computer programs. In a mathematics con-
test, any student can follow their nose and scrib-
ble ideas down. In a programming contest—
certainly the traditional type in which programs
are scored according to their behaviour—a stu-
dent cannot score any points (or even have their
submissions judged) unless they can create a run-
ning program in a relatively short period of time.

For these reasons it was decided to complement
the programming contests with a written contest, in
the hope that this written contest might have broader
appeal. The result was the Australian Informatics
Competition, which has run annually since 2005.

Dungeon

(Australian Informatics Competition 2005, Intermediate)

A token (marked ‘X’ in the diagram) is in a maze. You
may move the token around according to the following
rule: in each move the token may travel any distance
either horizontally or vertically, but it cannot pass over
or stop on a shaded square.

For example, from its starting position the token could
travel either one square right, one square down, two
squares down or three squares down in a single move.
To reach any other square would require more than one
move.

What is the minimum number of moves that you need to
ensure that the token can reach any white square from
its starting position?

(A) 8 (B) 9 (C) 10 (D) 11 (E) 12

Figure 1: The problem “Dungeon”

Although the AIC is styled as an informatics com-
petition, AIC questions almost never use any code or
pseudocode, and only a minority describe any explicit
algorithm. Most problems pose some form of puzzle

Lost

(Australian Informatics Competition 2007, Intermediate)

You are wandering through the desert with a map, which
shows the desert as an (x, y) coordinate plane. You begin
your journey at (0, 0) facing north. In your hands are
directions to an oasis, written as a sequence of letters.
The possible letters are:

• F, indicating that you should walk forwards one kilo-
metre in the direction you are currently facing;

• L, indicating that you should turn 90◦ to the left;

• R, indicating that you should turn 90◦ to the right.

Alas, the directions contain a critical mistake—one of the
right hand turns has been deleted. Fortunately your map
also shows the coordinates of the oasis, and so you hope
to use this information to work out where the missing
right hand turn should be.

For example, suppose the directions are R F L F F F and
the oasis is at (2, 2). The first diagram below illustrates
this path, which ends at the incorrect location (1, 3).

(2,2) (2,2)

(1,3)

21 3

1

2

3

x

y

21 3

1

2

3

x

y

R F L F F F R F L F F R F

With some thought it can be seen that the directions
should be R F L F F R F. That is, the missing right hand
turn takes place just before the final walk forwards, as
shown in the second diagram above.

Each scenario below lists a series of directions, followed
by the location of the oasis. For each scenario, how many
letters appear before the missing R must be inserted?

1. R F F L F L F F F R F F −→ (3, 3)

2.
R F F L F R F F L F F L F L F R F F R

F F L F L F R F R F F R F L F F L F
−→ (5, 5)

3.
R F F F L F F R F F F R F R F F R F F F F

F F L F F L F F F L F L F F F F F L F F
−→ (8, 8)

Figure 2: The problem “Lost”

which, in order to be solved correctly, requires stu-
dents to devise some type of informal algorithm in
their heads.

An example from the first AIC is Dungeon, de-
scribed in Figure 1. Although the problem can be
solved by ad-hoc trials and guesses, it is faster and
more reliable to work systematically outwards from
the token, identifying all the squares that are one
move away, then two moves away, and so on. Essen-
tially the student who has never seen programming
is encouraged to informally conduct a breadth-first
search.

As well as multiple choice problems, the AIC con-
tains a number of “algorithmic problems”. An ex-
ample is Lost, seen in Figure 2. Each algorithmic
problem contains a task description followed by three
scenarios, each of which can be solved with an inte-
ger in the range 0–999. The first scenario is typically
small and easy to solve in an ad-hoc fashion, whereas
the third is typically large and requires a systematic
algorithm to solve quickly. The hope is that, as stu-
dents attempt the simpler scenarios, they develop a
feel for the problem and a systematic method that
will allow them to tackle the larger cases.

CRPIT Volume 74 - Computer Science 2008

10

Although written contests in computer science are
relatively rare in comparison to programming con-
tests, examples can be certainly be found elsewhere.
One prominent example is the Lithuanian Beaver con-
test, which like the AIC encourages algorithmic think-
ing without explicitly requiring an understanding of
computer programming (Dagienė 2006).

For a more detailed discussion of the AIC and ad-
ditional sample problems, the reader is referred to
Clark (2006).

4 Programming Competitions

Whilst written competitions can offer a highly acces-
sible introduction to algorithms, the core activities of
the Australian olympiad programme revolve around
programming competitions.

The competitions offered in the Australian pro-
gramme typically follow the model of the interna-
tional olympiad. Students are given a large amount of
time to solve a small number of tasks, each of which
requires them to write a computer program. Each
task describes the precise problem to solve, offers a
simple text format for reading input scenarios and
writing corresponding solutions, and sets time and/or
memory limits within which the program must run.

A typical task of this type is Mansion, illustrated
in Figure 3. Problems in the international olympiad
are of course more difficult; worked examples are dis-
cussed by Horváth et al. (2002) and Burton (2007),
and a comprehensive list of past IOI problems can
be found at the IOI secretariat (http://olympiads.
win.tue.nl/ioi/).

Readers might be familiar with tasks of this type
from university programming contests, such as the
ACM International Collegiate Programming Con-
test or the TopCoder contests. The International
Olympiad in Informatics differs from these contests
in the following ways:

• IOI tasks are graded on a sliding scale from 0 to
100, instead of an all-or-nothing pass or fail. This
allows a range of scores for solutions of varying
sophistication and efficiency.

• IOI tasks are extremely difficult to solve com-
pletely, since the running time and memory con-
straints for programs are often very tight. Whilst
it might be straightforward to write a correct but
inefficient solution that scores partial marks, it
is often a significant achievement to score full
marks for an IOI task.

• Students do not race each other. What matters
is not when they submit each program, but only
how it performs. This encourages stronger stu-
dents to take their time in implementing sophis-
ticated algorithms, in the hope of passing even
the most difficult test scenarios.

Of course different styles of contest have different
strengths. For instance, the all-or-nothing scoring for
the ACM and TopCoder contests places a strong em-
phasis on rigour, whereas the extreme running time
and memory constraints of IOI problems place the fo-
cus squarely on creative algorithm design. A more de-
tailed comparison of different programming contests
is given by Cormack et al. (2006).

At the national level, the Australian Informatics
Olympiad is intended as an entry-level programming
contest for students with little or no formal training.
At this level the scores are more likely to reflect the
nuts and bolts of computer programming; as men-
tioned in Section 3, merely asking for correct running
code is a relatively high bar for entry at the high
school level.

Mansion

(Australian Informatics Olympiad 2007, Intermediate Q2)

You wish to build a mansion beside a long road. The far
side of the road is filled with n houses, each containing
a given number of people. Your mansion is as long as w

houses combined. Your task is to position the mansion so
that as many people as possible live across the road from
you.

For instance, consider the road illustrated below, with
n = 7 and w = 4. Here the seven houses contain 3, 2,
5, 1, 4, 1 and 3 people respectively. The first diagram
places the mansion across from 2+5+1+4 = 12 people,
whereas the second diagram places it across from 5 + 1 +
4+1 = 11 people. Indeed, of all the possible locations for
the mansion, the largest possible number of people living
across the road is 12.

3 2 5 1 4 1 3 3 2 5 1 4 1 3

Input: Your program must read its input from the file
manin.txt. The first line of this file will give the integers
n and w, and the following n lines will give the number
of people living in each house.

Output: Your program must write its output to the file
manout.txt. This file must give the largest possible num-
ber of people living across from the mansion.

Limits: Your program must run within 1 second. The
input integers are guaranteed to lie in the range 1 ≤ w ≤
n ≤ 100 000.

Sample Input and Output: The sample input and
output files below correspond to the example given above.

manin.txt:

7 4

3

2

5

1

4

1

3

manout.txt:

12

Figure 3: The problem “Mansion”

Nevertheless, most problems in the AIO retain a
focus on algorithm design. The challenge for the prob-
lem setters is to find accessible problems, where (i) the
“obvious” algorithm is not necessarily the best, but
(ii) good students with no formal training can be ex-
pected to find optimal algorithms through insight and
creative thinking.

The problem Mansion (Figure 3) offers an example
from the 2007 AIO. Essentially the problems asks,
given an array of length n, for the continuous sub-
array of length w with the largest possible sum.

A simple algorithm might loop through all possi-
ble starting points, and for each starting point loop
again to sum the w elements of the sub-array. Whilst
correct, this algorithm runs in quadratic time and is
too slow to score 100% (in the AIO such a solution
scored 70%).

This algorithm can be improved as follows. We
retain the outer loop through all possible starting
points, but we avoid the inner loop by using a sliding
window. As we move from one starting point to the
next, we adjust the sum by subtracting the one ele-
ment that has been lost and adding the one element
that has been gained. The resulting algorithm runs

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

11

in linear time, and is fast enough to score 100%.
It is pleasing to note that, of the AIO entrants who

obtained correct or almost correct solutions to this
problem, 18 used the linear algorithm and 21 used
the quadratic algorithm. This suggests that the opti-
mal solution was indeed non-obvious but nevertheless
accessible, as the problem setters had hoped.

Figure 4 describes Restaurants, a more difficult
problem from the 2007 AIO. Whereas the challenge
in Mansion is efficiency, the challenge in Restaurants
is correctness.

Restaurants

(Australian Informatics Olympiad 2007, Senior Q3)

You are faced with the unenviable task of organising din-
ner for an international conference. Several countries are
represented at the conference, each with a given number
of delegates. You have also identified several restaurants
in the neighbourhood, each with a different number of
seats.

In order to break down international barriers, you can-
not seat two people from the same country at the same
restaurant. Your task is to find an arrangement that seats
as many people as possible.

As an example. suppose there are three countries with
4, 3 and 3 delegates respectively, and three restaurants
with 5, 2 and 3 seats respectively. You can seat most
of the delegates by placing one delegate from the second
country and one delegate from the third country in every
restaurant, and by placing two delegates from the first
country in the first and third restaurants. This leaves
two delegates without dinner, which is the best you can
do.

Input: Your program must read its input from the file
restin.txt. The first line of this file will give the number
of countries, and the second line will give the number of
delegates from each country. Likewise, the third line will
give the number of restaurants, and the fourth (and final)
line will give the number of seats in each restaurant.

Output: Your program must write its output to the file
restout.txt. This file must give the smallest possible
number of delegates who cannot be seated.

Limits: Your program must run within 1 second. There
will be at most 5000 countries and 5000 restaurants.

Sample Input and Output: The sample input and
output files below correspond to the example described
above.

restin.txt:

3

4 3 3

3

5 2 3

restout.txt:

2

Figure 4: The problem “Restaurants”

Most of the students who attempted this problem
adopted some type of greedy approach, and indeed
the official solution is greedy (for each country, seat
its delegates in order from the restaurant with the
most empty seats to the restaurant with the fewest).

The difficulty is that not all greedy approaches are
correct. For instance, some students adopted a sim-
ilar approach but began with the largest restaurant
instead of the emptiest; this works with the sample
input and output, but does not work for more com-
plex scenarios. In the end, 16 of the 27 students who
attempted this problem scored 100%.

It is worth pausing to consider the ways in which
this and other programming contests are judged. In
particular, because solutions are judged entirely by

their behaviour, students with partial or buggy imple-
mentations can score zero, even if they have derived
the correct algorithm. In some cases (particularly in
the IOI), good students may deliberately choose to
submit an inefficient solution to avoid the risk of bugs
that comes with more complex code.

This style of judging also raises pedagogical issues.
Judging purely by behaviour does little to encourage
good programming habits, and does not develop the
communication skills that are crucial for teamwork
and research in later life. This latter issue is explicitly
addressed at the Australian training schools, where
participants regularly present their algorithms to the
other students and analyse them in a group setting.

The limitations of the current judging style are
well understood, and the international community is
actively engaged in finding ways to address them.
Cormack et al. (2006) and Opmanis (2006) discuss
the issues in depth and offer some concrete sugges-
tions for improvement, and Burton (2007) examines
them in the context of human-evaluated mathemat-
ics competitions. The IOI itself is actively evolving to
find the right balance between competition, education
and encouragement.

5 Regional Activities

To complement the national programme, it is valu-
able for students to engage in international competi-
tion and cooperation. Not only does this give them
stronger experience in competition, but it also en-
hances the sense of camaraderie and helps them feel
part of a wider community.

The IOI itself is a pinnacle of international com-
petition, but with teams of four it can only be offered
to a handful of students. To complement this, the re-
gional and international communities have developed
several smaller events that allow a greater depth of
students to participate.

The first such event to appear on the Australian
calendar was the French-Australian Regional Infor-
matics Olympiad (http://www.fario.org/). This
began in 2004 as a collaborative effort between Aus-
tralia and France, and works well because the stu-
dents of both countries have comparable skills. The
contest has broader interest however, and each year
a handful of students from other countries enter as
unofficial participants.

More recently, the Asia-Pacific region has formed
a new contest in the lead-up to the IOI. The in-
augural Asia-Pacific Informatics Olympiad (http://
www.apio.olympiad.org/) was hosted by Australia
in 2007, with over 350 participants from 14 delega-
tions. With Thailand and India lined up to host in
2008 and 2009, the contest is set to become a regular
event on the regional calendar.

In addition to competitions, there is also collab-
oration in training between different countries. The
Australian team met with the French in 2007 for a fi-
nal week of joint training before the IOI, and two New
Zealand students joined the Australians for the 2007
School of Excellence. At the teaching level, France
and Australia regularly share problems and discuss
training methods, and at IOI 2007 there was a mini-
conference at which a diverse group of team leaders
shared ideas and experiences.

6 Becoming Involved

For anyone eager to become involved in the pro-
gramme as a teacher or a student, there are several
excellent resources for learning more about program-
ming contests.

CRPIT Volume 74 - Computer Science 2008

12

Skiena et al. (2003) have written a superb book
that focuses specifically on programming contests
such as the IOI. It is very readable, contains a wealth
of problems, and covers not only algorithms but also
the practical issues of writing code in a contest envi-
ronment.

Many countries have their own training sites,
through which students can teach themselves in their
own time. An excellent example is the USACO site
(http://www.usaco.org/), which offers problems,
reading notes and contest advice. The Australian
site (http://orac.amt.edu.au/aioc/train/) in-
cludes all past AIO, French-Australian and Asia-
Pacific papers. Both sites allow students to submit
solutions with instant feedback, and are open to par-
ticipants worldwide.

At the level of the IOI, Verhoeff et al. (2006) have
proposed a “syllabus” of topics that might be covered.
This list is currently under active discussion within
the IOI community.

Interested people are also encouraged to contact
their national organisation for information on lo-
cal contests and training materials. The IOI secre-
tariat (http://olympiads.win.tue.nl/ioi/) main-
tains a list of these organisations, alongside a wealth
of archival material on the IOI and related competi-
tions.

The Australian organisation can be reached
through the author of this paper, who currently holds
the role of Director of Training. The Australian
Mathematics Trust, which oversees and administers
the programme, can be reached through its Execu-
tive Director Peter Taylor at pjt@olympiad.org.

References

Burton, B. (2007), ‘Informatics olympiads: Ap-
proaching mathematics through code’, to appear
in Mathematics Competitions.

Clark, D. (2006), ‘The 2005 Australian Informat-
ics Competition’, The Australian Mathematics
Teacher 62(1) 30–35.

Cormack, G., Munro, I., Vasiga, T. & Kemkes, G.
(2006), ‘Structure, Scoring and Purpose of Com-
puting Competitions’, Informatics in Education
5(1) 15–36.

Dagienė, V. (2006), ‘Information technology con-
tests — introduction to computer science in an at-
tractive way’, Informatics in Education 5(1) 37–46.

Horváth, G. & Verhoeff, T. (2002), ‘Finding the me-
dian under IOI conditions’, Informatics in Educa-
tion 1 73–92.

Opmanis, M. (2006), ‘Some Ways to Improve Olym-
piads in Informatics’, Informatics in Education
5(1) 113–124.

Skiena, S. S. & Revilla, M. A. (2003), Program-
ming challenges: The programming contest training
manual, Springer.

Verhoeff, T., Horváth, G., Diks, K. & Cormack, G.
(2006), ‘A proposal for an IOI syllabus’, Teaching
Mathematics and Computer Science 4(1) 193–216.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

13

CRPIT Volume 74 - Computer Science 2008

14

Contributed Papers

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

15

CRPIT Volume 74 - Computer Science 2008

16

A Model, Schema, and Interface for Metadata File Systems

Stijn Dekeyser Richard Watson Lasse Motrøen

University of Southern Queensland, Australia
{dekeyser,rwatson}@usq.edu.au, lassemot@yahoo.com

Abstract

Modern computer systems are based on the tradi-
tional hierarchical file system model, but typically
contain large numbers of files with complex interre-
lationships. This traditional model is not capable of
meeting the needs of current computer system users,
who need to be able to store and retrieve files based
on flexible criteria. A metadata file system can asso-
ciate an extensive and rich set of data with a file, thus
enabling more effective file organisation and retrieval
than traditional file systems.

In this paper we review a wide range of existing
proposals to add metadata to files and make that
metadata available for searching. We then propose
a hierarchy of definitions for metadata file systems
based on the reviewed prototypes. We introduce a
data model for a database-oriented pure mdfss com-
plete with operations and semantics. The model sup-
ports user-initiated instance and schema updates and
file searches based on structured queries. We also
explore the design space of a set of user interface op-
erations intended to implement the pure model and
facilitate the capturing of rich metadata. We argue
that without such a simple method for users to cre-
ate rich metadata, progress in this field will remain
limited.

Keywords: Operating systems, Advanced applica-
tions of databases, Metadata.

1 Introduction

Traditional file systems store simple file metadata;
a predefined set of data, mostly maintained by the
operating system, is held in directories and file
control blocks (e.g. inodes). Apart from assigning
file names, users can effectively specify metadata
by creating a directory hierarchy. The file path
may encode some metadata. For instance the
path courses/csc2404/07/s2/ass1/1234/sync.c
assigns the following attributes to the file sync.c:
course=csc2404, year=2007, semester=2, stu-
dentId=1234, assignmentNum=1, filename=sync,
filetype=Csource. The ability to search based on
attributes is limited as these attributes are stored
hierarchically, and accessed via a path specification.
It is a simple matter to build a search query that
specifies all attributes in a file’s path; this will yield
all files in a directory. In our example, it is easy
to locate all student assignment submissions for a

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74, Gillian Dobbie and Bernard Mans, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

particular offer of a course. However, a query that
seeks to find all submissions for a particular student
in a given semester is not supported.

To further explore these problems, consider the
following common scenario. Bill has a multitude of
music and image files on his personal computer and
wants to organise his collection such that he can find
and relate files easily. Using a traditional folder ap-
proach leads to various problems. The multimedia
files can be placed in folders named according to sev-
eral properties such as genre, year, band name, and
location of photo. As discussed above, using hier-
archical folders means that Bill loses the ability to
search for files from different perspectives. He could
populate the folders with soft links (or shortcuts) to
the actual music files, but this would create an un-
acceptable burden of managing such links. Bill has
installed third-party applications such as Google Pi-
casa (for his image files) and RealPlayer (for his mu-
sic files). These applications manage the organisation
of files into groups based on the value of a property
like “genre”, which addresses the shortcoming of the
folder approach. However it offers no solution if Bill
wishes to link an image file to to a music file or if he
wants to add his own metadata fields to a file.

This scenario demonstrates that organising mul-
timedia using a traditional hierarchical file system,
even when enhanced with specific applications, often
proves to be impractical. The problem is not limited
to multimedia as every type of file can have a large
collection of metadata associated to it which can be
used to organise the file space.

Problem Statement Simply stated, the first prob-
lem we address is that users must be able to manage
files such that they can be located effectively at some
future time. We need to be able to search for a file
using multiple pathways (or search criteria). For ex-
ample, we may use keywords that have been auto-
matically extracted from the file, or attribute values
(assigned by system or user), or links to related files,
to seek the target file. A design for a metadata file
system must include both the metadata storage model
and appropriate user interfaces to allow a user to eas-
ily locate a file based on its metadata.

Critically, the second problem that we address is
that a successful metadata file system must feature a
user interface that allows users to easily assign mean-
ingful and rich metadata. Requiring the user to create
every piece of metadata through keyboard entry will
almost certainly impede the adoption of such poten-
tially revolutionary systems.

Existing Work Recently the advent of social net-
working websites that let users share images (e.g.
Flickr) and video (e.g. YouTube) has demonstrated
novel ways of organising multimedia. Such applica-
tions use the simple concept of tags to let users assign

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

17

metadata to their files, and allow others to search for
files easily. On the users’ own computers, more ad-
vanced applications such as Picasa and Google Desk-
top offer automated collection of metadata and use
localised databases to store metadata and use it in
search. Solutions proposed by researchers in the past
decade took a more comprehensive approach by ex-
tending file systems with metadata functionality. On
the commercial side, Microsoft is attempting1 to im-
plement a metadata file system called WinFS. We re-
view these efforts in Section 2.

Contribution It is clear that various approaches to
create, manage, and use metadata for files are being
considered and developed, and that there is no single
solution currently available that has wide adoption or
satisfactorily solves all issues. In this paper we review
a wide range of existing proposals to add metadata
to files and make that metadata available for search-
ing. We then propose a taxonomy for metadata file
systems based on the reviewed prototypes. We in-
troduce a data model for a database-oriented pure
mdfs complete with operations and semantics. We
explore a number of interesting and non-trivial issues
that must be solved before a full-scale pure mdfs can
be implemented. We also discuss two prototype im-
plementations of our model and outline user interface
interactions to capture rich metadata.

As evidenced by the fact that a major software
company has not been able to deliver one after many
years of work, it is clear that creating a truly useful
and powerful mdfs is a daunting task. The problems
are likely not only technical, but also of a more human
nature (complexity for users, compatibility issues for
businesses, etc). We therefore present our work as a
modest step and as a basis for future extensions.

Note that the work presented in this paper is,
within the context of computer science, of a highly
multidisciplinary nature, drawing on results from
multimedia systems, databases, programming lan-
guages, file systems, and human-computer interfaces.

2 Review of Existing Proposals and Systems

In this section we present existing systems and re-
search proposals that attempt to overcome some of
the shortcomings that are present in traditional hier-
archical file systems. They include file systems specif-
ically designed to make use of metadata and applica-
tions that make use of existing file systems to organ-
ise files. Due to space restrictions we refer the reader
to [15] for a more detailed review of these and other
systems (e.g. Nebula [3], Windows Media Player, etc).

Google Desktop Google Desktop provides a set
of features that allows users to search for content on
their computers, based on file name and, for some file
types, content as well. When Google Desktop is in-
stalled on a system, it automatically indexes files on
the computer. The index of words extracted from file
names and, where possible, file content are stored in
a local database. When new files are added to the
system, or files are modified, the index is updated.
Google Desktop relies on keyword search rather than
structured queries. A search will retrieve a list of
documents which are to some extent relevant to the
keywords entered by the user. Hence, both the user
interface and the kind of results are similar to those
in the Google web search engine. A significant limita-
tion is that users are not able to modify any metadata

1Both the history and future of WinFS is relatively opaque.
Contrary to earlier plans, it has not been shipped with Microsoft’s
Windows Vista operating system.

associated with a file. This can only be done by al-
tering the file itself which will result in re-indexation.
Windows Desktop Search is a similar system, based
on the research prototype Stuff I’ve Seen (SIS) [7].

MIT Semantic File System The MIT Semantic
File System [11] is one of the first file systems to ad-
dress the shortcomings of traditional tree structured
file systems. The main aim of the MIT Semantic File
System (SFS) is to allow users to access files based
on file content, as well as accessing files by name.

MIT SFS is designed to be integrated into a tree
structured file system and it does so through the con-
cept of virtual directories. Each virtual directory is
interpreted as a query and contains symbolic links to
the actual files stored in the underlying file system.

In order for SFS to provide file access based on file
content (to make use of virtual directories as queries)
the content of a file needs to be extracted. SFS does
this by associating each file type with a transducer
program that will extract the relevant metadata from
files in the system. Each file type will have a specific
transducer, and each transducer will be specifically
designed to extract desired attributes and values from
a file type. For example, a transducer for an email
file may extract attributes “To”, “From” and “Sub-
ject”. MIT SFS comes with a set of default transduc-
ers that can handle the most common file types, but
users are also able to implement their own transduc-
ers. A transducer table is used to determine which
transducer to use for a certain file type.

Gifford et al. [11] outline some of the shortcom-
ings of MIT SFS. The first point mentioned is that of
the query language that each virtual directory can be
associated with. MIT SFS offers only a basic query
language that prohibits users from using boolean op-
erators (such as ‘OR’, ‘AND’, etc.) to specify their
queries. Users are also unable to assign metadata to
files manually. It is also recognised by [11] that a more
expressive data model should be utilised, instead of
relying on simple attribute-value pairs.

To some extent, the open-source project
MoveMetaFS [16] is similar to MIT SFS. The
MMFS allows users to associate a set of tags to a file.
The tags can be queried in a simple manner. The
project mainly focusses on user interface operations
to tag files, using a similar, but more limited,
technique as we coined in [6] and describe in more
depth in Section 7.

Haystack The Haystack project [12] is mainly
based on the argument that developers cannot pre-
dict the ways a user wants to utilise information. All
users have different needs and preferences when it
comes to accessing information. Users should be able
to specify relationships between different information
objects, how these relationships should be presented,
and how information should be gathered. Haystack
currently accomplishes the required flexibility by stor-
ing all data using RDF [13]. Metadata for information
objects in Haystack is initially automatically captured
when a file is added to the system. It does so by gen-
erating RDF data using an extractor similar to MIT’s
transducer. The user interface for Haystack also al-
lows users to easily modify metadata associated with
files.

Aside from significant performance issues, an im-
portant shortcoming of the Haystack system is the
absence of an API that other applications may use.
Users have to interact with Haystack using its own
user interface.

WinFS WinFS, like Haystack, attempts to offer a
file system that allows information objects to be dy-

CRPIT Volume 74 - Computer Science 2008

18

namically related to other information objects. Ob-
jects in WinFS can range from files of various types
to persons, meetings, locations, etc., and they are
all treated as information objects. The WinFS data
model offers a rich set of operations that lets appli-
cations create, modify and query information objects,
and is implemented on a relational database back-end.

WinFS allows applications to modify metadata
stored in WinFS along with the schema for each infor-
mation object, but offers only limited functionality to
end-users. We argue that this unnecessarily curtails
the usefulness of the system.

A less comprehensive open source project similar
to WinFS is GNOME Storage which also uses a re-
lational database backend. However, Storage focuses
more on end-user keyword search rather than applica-
tions formulating structured queries. For more infor-
mation on Storage and other systems we again refer
the reader to [15].

Graffiti Graffiti [14] is a distributed organisation
layer that augments an existing file system to add
user-defined metadata and provide sharing of meta-
data across users and hosts. Graffiti supports the
association of a simple text string tag with either a
file or a pair of files (a named link). Apart from a
linking capability, this differs from the common tag-
ging systems (e.g. Flickr) in that it is generic rather
than application-specific. Command line and graphi-
cal interfaces are provided.

While its metadata structure is unsophisticated,
Graffiti addresses the problem of sharing files and
metadata with some success. File checksums are used
to ensure that a file and its metadata can be synchro-
nised across multiple platforms. See section 5.2 for
more discussion.

Linking File System The Linking File System [1]
(LiFS) is a prototype implemented on top of a Linux
filesystem. It augments a traditional file system with
user specified attributes on files, and links between
pairs of files. Links also have an associated set of at-
tributes. The attributes are key/value pairs. LiFS
implements the concept of a file trigger, which is an
executable file attribute, encoded as a pattern/action
pair. When a file operation occurs that matches
the pattern, the associated action is executed. This
generic mechanism is similar to the MIT SFS’s trans-
ducer concept and could be used to implement the
automatic collection of metadata (see Section 4.3).

The LiFS approach addresses the requirements of
storing arbitrary user metadata. However, the ab-
sence of a metadata schema is an obstacle to the cre-
ation of advanced user interfaces, and implementa-
tion of powerful search queries. LiFS does not accom-
modate either specialisation of metadata for related
file types through inheritance, or the ability to create
non-file objects that could be linked to files. While
the LiFS model is expressible using a database style
model like WinFS, or that described in this paper,
the reverse is not true.

3 A Taxonomy of Metadata File Systems

The full review of existing proposal and systems [15]
brings to light a number of features which can be used
to classify the systems into categories, and assist in
constructing a taxonomy for a variety of metadata file
systems and applications.

Data Model The data model for the reviewed sys-
tems ranges from attribute-value pairs over a re-
lational model to RDF graphs.

Metadata–Filesystem integration Some appli-
cations maintain metadata in special purpose
databases, and offer no filesystem functionality
(e.g. for launching files). More advanced systems
integrate the storage of metadata within the file
system itself, and also offer rich operations on
files.

Metadata Capture and Modification Most sys-
tems implement the concept of the MIT SFS
transducer to capture metadata automatically.
Few systems allow users to modify the metadata
manually. Hence, rich metadata that is impracti-
cal to capture automatically (e.g. appearance of
persons in images) is often neglected (some ap-
plications will allow users to add information in
a predefined “comments” field).

Metadata Schema Modification very few sys-
tems allow users (or even applications) to mod-
ify the schema of the metadata store. Hence it
is often impossible to create new types, new at-
tributes, or new relationships between types.

Dynamic Views Only a few systems support the
concept of dynamic views of objects defined by
metadata properties. In addition, the expressive
power of the view definition language is very lim-
ited.

We now propose a hierarchical classification of meta-
data file systems and applications.
Definition 1 (Metadata Enabled Application).
A Metadata enabled application is a stand-alone soft-
ware package that runs on top of a host file system
and has the following properties:

1. Manages its own database of metadata for files
of a limited number of types.

2. Has a user interface that allows files to be or-
ganised based on the metadata, and allows users
to search for files using keywords or simple
attribute-value comparison.

Such applications typically lack the ability to re-
late files of different types and to modify the schema
of the metadata store. Examples of such tools include
Google Picasa, Windows Media Player, Graffiti, and
even MIT SFS.
Definition 2 (Rich Metadata Applications). A
rich metadata application supports the features of a
metadata enabled application and also runs on top of
an existing file system. It has the following additional
features:

1. Allows end-users full power to manage meta-
data previously captured automatically, and al-
lows users to relate files of different types.

2. Allows the schema for the metadata store to be
modified.

Such applications typically lack an API that other
applications can use, and are not well integrated with
the host filesystem. Examples of rich metadata ap-
plications include Nebula and Haystack.
Definition 3 (Metadata File Systems). A Meta-
data file system (mdfs) supports the features of a
rich metadata application but is tightly integrated with
the traditional features of a filesystem. In addition it
uses an expressive data model (i.e. relational, object-
relational, object-oriented, or semi-structured), and
has a comprehensive API to be used by third-party
applications. Examples of such systems include Mi-
crosoft’s WinFS and GNOME’s Storage.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

19

Finally we present the definition used in the re-
mainder of this paper.
Definition 4 (Pure Metadata File Systems). A
Pure metadata file system is an mdfs built on an
object-oriented data model and features a powerful
generic graphical user interface allowing end-users to
fully manage metadata and schema modification.

WinFS is not a pure mdfs because it is aimed
towards software developers rather than end-users.
While Microsoft’s policy has the advantage of simpli-
fying implementation and has the potential of mak-
ing the introduction of WinFS on the desktop more
palatable, we take the view that it is unnecessarily
restrictive and misses the opportunity to present end-
users with a potentially revolutionary new approach
to file management. Indeed, users of WinFS will need
to rely on applications to capture and use metadata
and especially on their provisions to associate files of
various types. Hence, users will not have access to a
generic file browser for this functionality.

4 A Model for a Pure MDFS

In this section we present the formal definition of a
data model for a metadata file system. What form
should such a model take? A model must support the
association of named attributes to files, and also have
the ability to record relationships between files. A
metadata file system must also support non-file enti-
ties (e.g. Persons) in order to be able to store complex
metadata. A key feature of a pure metadata file sys-
tem is that users can extend the metadata structure,
typically by specialising an existing entity. Special-
isation can be implemented using inheritance. The
features described so far correspond closely with the
entity-relationship data model. However, we will also
need to provide special behaviour to entities (see Sec-
tion 4.3).

In essence then, the data model we use at the low-
est level is almost a subset of the ODMG Object
Model [17, 5]. A significant departure from the
ODMG model is that the deletion of a class from the
schema has novel and unusual semantics. As class
deletion implies object deletion, removing a class in
the usual manner could also remove files. We define
a more sophisticated delete operation (section 4.2.1)
that does not result in file deletion.

We support the functions of a metadata file sys-
tem by defining a series of schemas over the data
model. Such schemas naturally form a hierarchy, with
the base level ignoring concrete issues such as built-
in classes and relationships, an fundamental file at-
tributes. Schemas at higher levels are defined through
extending the base level with new classes and at-
tributes, mostly through inheritance. The next level
in the hierarchy shown in Figure 1, the minimal
schema, provides generic classes, file attributes and
relationships. It is the minimum system that could
be employed by users of an operating system which
includes an mdfs file system.

In many cases this vanilla file system will be ex-
tended by operating system vendors and distribu-
tors to meet their requirements, for example shipping
standard multimedia and word processing document
classes and built-in relationships between email and
person classes. Organisations could further extend
the metadata schema to meet corporate and project
specific needs. Finally, individual users can add to
the hierarchy of classes if needed.

The rich hierarchy of built-in classes and relation-
ships in the schema that end users will obtain with

Figure 1: Filesystem schema levels

their OS, means that a possible proliferation of mutu-
ally incompatible schemas is somewhat mitigated. In
addition, any two MDFS volumes will share at least
part of the class hierarchy, making data and schema
integration issues less of a problem. We discuss this
further in Section 5.

We will now define models for a schema and instance
of a schema. The operations defined over the schema
and instance are the application programming inter-
face (API) to the metadata file system. Like their
counterparts in a traditional file system, these would
be implemented as system calls and execute in kernel
space.

4.1 Data Model

The data model is class based, with relationships and
simple inheritance. A schema defines classes and re-
lationships between classes. Classes are also elements
of an inheritance tree that is part of a schema. In the
minimal schema we distinguish between classes that
are associated with files (fileable) and those that are
not (abstract). An instance over a schema defines in-
stances of classes (objects) and relationship instances.

4.1.1 Names, identifiers, and values

The sets of possible class, relationship, attribute, and
type names are respectively: class, rel , att and type.
Objects and files are identified by members of the
sets oid and fid , whereas value is the set of values. If
type = {t1 . . . tn} and dom t is the set of values asso-
ciated with type t , then value = dom(t1)∪ dom(t2)∪
. . .dom(tn). Each type contains a NULL value.

4.1.2 Schema definitions

A schema defines classes, organised into a specialisa-
tion hierarchy, and relationships between classes. We
define the schema as the triple (class function, hier-
archy relation, relationship relation). We define three
supplementary functions on classes P (parent), S (su-
perclass), and A (attribute), that are used in defining
the schema operation semantics, and the instance se-
mantics.

Each class introduces new attributes (class func-
tion C below), and instances of a class (objects) will
contain the union of attributes defined by all ances-
tor classes. A class also inherits relationships from its
ancestors.

S The schema S = (C ,R,H).

C The class function C : class 7→ (att 7→ type).

H The class hierarchy H ⊆ class × class such that
H is the set of branches between classes, forming
a single, rooted tree. Hence (c1, c2) ∈ H means

CRPIT Volume 74 - Computer Science 2008

20

that c2 inherits directly from c1, or c1 is the par-
ent class of c2 (see P below).
∀(c1, c2) ∈ H • dom(C (c2)) ∩ dom(A(c1) = ∅.
That is, subclasses can only extend a superclass
definition.
A few classes and a small hierarchy is pre-
defined in the minimal schema (the base schema
is empty). There is a single root class (TC),
which has two subclasses (FC and AC). All user-
created classes in the schema inherit from one of
these two subclasses.

TC The root of H . TC ∈ class.
C (TC) = {creationTime 7→ time}

FC The ‘fileable’ superclass FC ∈ class.
(TC ,FC) ∈ H .
C (FC) = {fileId 7→ fid}

AC The ‘abstract’ superclass AC ∈ class.
(TC ,AC) ∈ H ∧ TC 6= FC

R The set of relationships R ⊆ rel × class × class.
A class inherits its ancestors’ relationships, so
the same relationship cannot be defined for the
descendant classes.
∀(r , c1, c2) ∈ R • ¬∃(r1, c3, c4) ∈ R • r =
r1 ∧ c3 ∈ S (c1) ∧ c4 ∈ S (c2).

P The parent function on classes P : class 7→ class.
P = H−1.

S The superclass function S : class → P class.
S = P+.

A The attribute function on classes.
A : class 7→ (att 7→ type).
A(c) = {(a, t) | c′ ∈ S (c) ∧ (c′′, f) ∈ C ∧ c′ =
c′′∧(a, t) ∈ f }. A(c) defines the attributes, some
inherited from superclasses, of an object instance
of c.

4.1.3 Instance

The instance of a schema is modelled by a set of func-
tions that encode the state of objects (O), and provide
a means of identifying objects (IC), and relationship
instances (IR). We also present definitions for two
functions on object identifiers that are used to reveal
the type (T) of the associated class, and its attributes
(AO). These are used in defining the semantics of the
instance operations.

I The instance of schema S. I = (O , IC , IR).

O The object function O : oid 7→ (att 7→ value).
The familiar object.attribute field access notation
can be used as a shorthand:
∀ o : oid , a : att • o.a = O(o)(a)

IC The instance function identifies objects that have
been created as an instance of a class.
IC : class 7→ P oid .
∀ c1, c2 ∈ class • c1 6= c2 ⇒ IC (c1) ∩ IC (c2) = ∅.
(Object is instance of just one class.)
∀(c, s) ∈ IC • ∀ o ∈ s • dom(A(c)) =
dom(O(o))
∀(c, s) ∈ IC • ∀ o ∈ s • ∀ a ∈ dom(O(o)) •
O(o)(a) : A(c)(a)
(A class instance contains precisely the attributes
of its instantiating class.)

IR The relationship instance function
IR : (rel × class × class) 7→ P(oid × oid).
∀(r , c1, c2) ∈ R • ∀(o1, o2) ∈ IR(r , c1, c2) • c1 ∈
T (o1) ∧ c2 ∈ T (o2).

T The type function on object identifiers
T : oid 7→ P C .
T = S ◦ I−1

C
T (o) is a set that includes the class c that was
used to instantiate o as well as all the super-
classes of c.

AO The attribute function on object identifiers.
AO : oid 7→ (att 7→ type).
AO = A ◦ I−1

C .

4.2 Operations

The following operations are sufficient to maintain the
schema and an instance of a metadata store. Their
semantics are defined with respect to the data model.

For each operation we show state transformations,
the return value and, if the operation is partial, the
exception condition. A transformation of a relation
X is typically described as X ′ = f (X), where X is
the state of X before the operation and X ′ the post-
operation state.

4.2.1 Schema Operations

The following operations populate a schema. Note
that the schema “delete” operations also affect the
instance. The delete class operation is very powerful
and has interesting semantics. It removes the nomi-
nated class and all subclasses, and any relationships
that relate those classes. Class deletion removes in-
stances of deleted relationships, but objects are not
deleted. Objects are instead recast as instances of the
parent of the class being deleted. This will result in
deletion of some attribute values.
The initial state of the minimal schema is:

S = {{ TC 7→ {creationTime 7→ time},
FC 7→ {fileId 7→ fid},
AC 7→ ∅

},
∅,
{ (TC ,FC), (TC ,AC)}
}

createClass(c, p,m): class×class×P(att×type) → bool
C ′ = C ∪ {c 7→ m}
H ′ = H ∪ {(p, c)}
Returns: c 6∈ domC ∧ p ∈ domC

deleteClass(c): class → bool
C ′ = C −C D
H ′ = {(p, c) | (p, c) ∈ H ∧ p 6∈ D ∧ c 6∈ d}
R′ = {(r , c1, c2) | (r , c1, c2) ∈ R ∧ c1 6∈ D ∧ c2 6∈ D}
O ′ = O ⊕ {(o,O(o) C domA(P(c))) | c ∈ T (o)}
I ′C = IC −C D
I ′R = IR −C {(r , c1, c2) | (r , c1, c2) ∈ R ∧ (c1 ∈
D ∨ c2 ∈ D)}
Returns: c ∈ domC

where D = {c} ∪ {x | c ∈ S (x)}
createRelation(r , c1, c2): rel × class × class → bool

R′ = R ∪ {(r , c1, c2)}
Returns: (r , c1, c2) 6∈ R

deleteRelation(r , c1, c2): rel × class × class → bool
R′ = R \ {(r , c1, c2)}
I ′R = IR −C {(r , c1, c2)}
Returns: (r , c1, c2) ∈ R

4.2.2 Instance Operations

Operations that access the files, but do not update
metadata, are not presented here. A small set of op-
erations (open, close, read ,write, and position) would
be required; only write is likely to affect the contents

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

21

of the metadata store; we discuss this is section 4.3.
Note also that the createFile and deleteFile opera-
tions defined below reflect only the metadata store
semantics. createFile would create a zero length file
in the file store, and deleteFile would remove a file
from the file store. Initially, I = {∅, ∅, ∅}

createObject(c): class 7→ oid
O ′ = O ∪ {(o, {(a,NULL) | a ∈ dom(A(c))})} where
o ∈ oid ∧ o 6∈ domO
Exception: c 6∈ domC
Returns: o

deleteObject(o): oid → bool
O ′ = O −C {o}
I ′R = {(r , x1, x2) | (r , x1, x2) ∈ IR ∧ o 6= x1 ∧ o 6= x2}
Returns: o ∈ domO

createFile(o): oid → bool
Returns:
FC ∈ T (o) ∧ o.fileId = NULL ∧ setAtt(o,fileId , f)

where f ∈ fid ∧ ¬∃ o • o.fileId = f
deleteFile(o): oid → bool

Returns: FC ∈ T (o) ∧ setAttr(o,fileId ,NULL)
setAtt(o, a, v): oid × att × value → bool

O ′ = O ⊕ {(o,O(o)⊕ {(a, v)})}
Returns: o ∈ domO ∧a ∈ domAO(o)∧ v : AO(o)(a)

getAtt(o, a): oid × att 7→ value
Exception: o 6∈ domO ∨ a 6∈ domO(o)
Returns: o.a

relate(r , o1, o2): rel × oid × oid → bool
I ′R = IR ∪ {((c1, c2, r), (o1, o2)) | (r1, c1, c2) ∈
R ∧ r = r1 ∧ c1 : T (o1) ∧ c2 : T (o2)}
Returns:
∃(r1, c1, c2) ∈ R • r = r1 ∧ c1 : T (o1) ∧ c2 : T (o2)

unrelate(r , o1, o2): r × oid × oid → bool
I ′R = IR \ {(r , o1, o2)}
Returns: (r , o1, o2) ∈ IR

isClass(c): class → bool
Returns: c ∈ domC

isAtt(c, a): class × att → bool
Returns: a ∈ domA(c)

isInstance(o, c): oid × class → bool
Returns: c ∈ T (o)

isRelated(r , o1, o2): rel × oid × oid → bool
Returns:
∃(r1, c1, c2) ∈ R • c1 ∈ T (o1) ∧ c2 ∈ T (o2) ∧ r1 = r

search(c, f): class × F → P oid
Returns: {o | o ∈ isInstance(o, c) ∧ F}
F is a formula with the following syntax
F ::= atom | F ∧ F | F ∨ F | ¬F

| ∃ o • F | ∀ o • F
atom ::= isInstance(o, c) | isRelated(r , o, o)

| o.a Θ o.a | o.a Θ k
where c : class, a : att , k : value are constants,
Θ : value × value → bool is a comparison operator
and o : oid is a object variable. All variables except
o in a query expression must be bound, and
expressions must be safe, meaning that they should
not return infinite sets.

Example Suppose classes Audio and Wedding exist,
as does a relationship MusicUsedInWedding. The fol-
lowing query returns all music by the band Abba lis-
tened to while attending a wedding in Oslo:
search(Audio, o.artist = ‘Abba’

∧ ∃w(isInstance(w , Wedding)
∧ w .location=‘Oslo’
∧ isRelated(MusicUsedInWedding, o,w))).

4.3 Extending the Model with mdfs Trans-
ducers

In [15] we detail the extension of our model with an
active component; due to space constraints we give

an informal description.

Firstly, the model’s class attributes are extended with
system flags. The flag implies access restrictions that
work in both the instance and the schema of the
model. On the instance side, values of system at-
tributes can be read but not modified by applications
and end-users. Modification can only be done by the
mdfs system as described further in this section. On
the schema side, system attributes cannot be removed
from classes, nor can they be modified.

Note that this is not a form of security (see Sec-
tion 5), as access is not determined on the basis of a
user’s ID. Instead, this flag only denotes that some
attributes are owned by the system and cannot be
modified through the interface.

Secondly, classes are extended with behaviour in the
form of mdfs Transducers. These are functions2 that
modify the values of an object’s system attributes.
The transducers are called each time an object’s as-
sociated file stream is modified (hence also when the
file is first created); to this end, the semantics of the
file write operation mentioned in section 4.2.2 is mod-
ified.

Transducers automatically assign metadata that
can (and indeed, should) be captured without user
interaction. For example, keywords for a text docu-
ment, the from field of email messages, or the dimen-
sions of an image. A transducer recursively calls the
transducer of its parent class, up to the top-most class
TC . This ensures that system attributes such as file
size and access time are updated automatically, in this
case by the transducers of FC and TC respectively.

Note that relationships between objects are not set
by mdfs Transducers. Indeed, these constitute meta-
data that requires user interaction. Also note that if
an application or end-user creates a new class that
contains system attributes, a transducer for the class
should also be supplied, otherwise the values of these
attributes will always be set to null. Finally, trans-
ducers may (but are not required to) also set values
of non-system attributes if they are currently null,
but these may be overwritten by end-users.

5 Multiple Users, Multiple Volumes

The model defined in Section 4 is intended for a sin-
gle user, single volume pure metadata file system. As
Figure 2 shows, this basic (or personal) environment
is but one of four possible combinations when the twin
axes of number of users and number of volumes are
considered. The ultimate goal of our research project
is to define a metadata file system that allows mul-
tiple users and communication with other volumes,
whether they be MDFS or other systems on the same
computer or accessible over a network. In this section
we briefly outline some of the issues involved.

5.1 Security Aware MDFS

When several users have access to the information
stored in a single MDFS volume, the system will need
to provide security. Traditional file systems employ
a role-based security method [8] to control read and
write access of files’ contents. They also impose a
very limited degree of security on metadata, in that
they can make directories unreadable for some users,
thereby hiding file names, sizes, etc. However, the
main focus is on securing access to the file’s bitstream.

2An mdfs transducer is a reserved class method similar to a
Constructor or Destructor in Object-Oriented programming lan-
guages.

CRPIT Volume 74 - Computer Science 2008

22

Figure 2: Extending the basic MDFS model to sup-
port multiple users and multiple volumes.

Interestingly, database systems also employ role-
based security, but almost exclusively on the schema
level. A database’s information schema meta
schema contains a table that stores users’ privileges
on such objects as tables and attributes. Databases
do not offer security on the instance-level, where for
example a user could be prohibited to read or write a
tuple if the value of one of its attributes is a specific
string.

For metadata file systems, we need role-based se-
curity mechanisms that work on the file contents level,
the metadata level, and the schema level. It should
also allow the use of instance-dependent access rules.
For example, we may want to allow user A to write
the content of file f1 if the metadata field ‘owner’ is set
to A’s id, and the size of the file is less than 100 KB.
A second user B may be allowed to read metadata
associated with a file, but not to update it. Finally
a user C may be allowed to create a new class by in-
heriting from an existing class in the MDFS schema,
while other users are not.

We have studied instance-dependent access rules
in the context of another research project [4] and aim
to investigate their use in the context of metadata file
systems.

5.2 Network Aware MDFS

There are several scenarios for the use of more than
one file system volume. Consider that user A wants
to copy a file from a remote network volume into his
own MDFS volume. The remote volume may or may
not be a MDFS system on its own, but will have
some metadata associated to the file. In this sce-
nario, where both the file content and metadata is
copied to the local MDFS volume, the system, prob-
ably assisted to some degree by the user, needs to
decide on a suitable mapping of metadata from the
remote volume to the local volume.

Consider a second scenario, where two MDFS vol-
umes exist and communicate via a network. Ob-
jects and files exist in one location, but both systems
may use each other’s objects and files. Clearly this
scenario must solve the inherent schema integration
problem [2].

In a third scenario user B may want to store all ob-
jects and files locally, but the metadata for an object
is stored in a remote database. To make the exam-
ple more concrete, suppose that a university stores
data on its students in a central database, and indi-
vidual lecturers have objects in their MDFSs for each
of the students they teach. They can then create re-
lationships between word processing documents and
students in their local system. However, the student’s
metadata is accessed from the central database.

We note that Graffiti[14] is able to solve at least
the problems of the first two scenarios, but only be-
cause of the simple and uniform tag metadata struc-

ture. The Graffiti server is able to synchronise files
and metadata on two or more hosts because it does
not have to deal with the issue of integrating file sys-
tems with different metadata structures.

These scenarios outline different solutions to the
problem of letting a single MDFS volume communi-
cate with other data systems. Ideally, a complete
MDFS system will support each of the scenarios. We
are currently investigating a range of solutions in this
context.

6 Implementation Issues

6.1 Implementation Choices

Aside from storing files’ binary content, a Metadata
File System needs to store metadata and make it ac-
cessible through a query mechanism. The obvious tar-
get for implementing an MDFS is by using a database
management system for the metadata, combined with
a traditional file system to store file content. However,
there are several possible avenues for implementing
the model described in this paper. We briefly list
some of them.

Employing Databases Since at the core our
MDFS model is a subset of the ODMG Ob-
ject Model, the preferred implementation platform
is an ODMG-compliant object-oriented or object-
relational database. Such a database is ideally
equipped to handle class hierarchies and relation-
ships. The actual binary content of individual files
need not be stored in the database, however. It is
sufficient to store a pointer to a file’s inode in the
database, and let the underlying file system handle
subsequent file access. The database can natively
handle queries, and also determine whether views (or
Virtual Folders, as described in Section 7) are up-
datable. However, significant care must be taken in
optimising the database and integrating it with the
underlying file system.

Using WinFS Microsoft’s WinFS was a data stor-
age and management system based on a relational
database. It is therefore similar to the previous op-
tion. We have reviewed the system in Section 2. The
main advantage of using WinFS as an implementa-
tion base for a pure mdfs is that it natively supports
many of the features that we require. However, the
main disadvantage, apart from the incompleteness of
the project, is that the metadata schema is not updat-
able at run time. This means that new classes must
be compiled and made available as Dynamic-link Li-
braries. We argue that end users must be able to
modify the schema (in particular the ability to create
relationships) in order to achieve the full potential of
metadata file systems.

Extending File System architecture It is pos-
sible to modify the way in which current file sys-
tems store metadata. For example, the POSIX in-
ode structure could be extended to include a set of
attribute-name/value pairs, and a set of pointers to
other files. However, the notion of class with its spe-
cific attributes and its inheritance hierarchy would
still be lacking, reducing users’ power to model the
metadata schema. On the other hand, query effi-
ciency would be much less of an issue.

Use of links Soft links (or shortcuts) could be used
to virtually place one file in various directories, the
name of which represents a property of the file. As we

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

23

mentioned in the Introduction, managing the prolif-
eration of links and directories would be a significant
burden. In addition, relationships between files are
difficult to represent in this manner.

Tagging File and directory names can be used to
associate files with a set of tags. As mentioned in the
Introduction, tagging is currently enjoying significant
popularity in social web applications. Very likely this
is due to the inherent simplicity of the method. Some
of the metadata modelling power that we propose in
this paper can be simulated by tagging, but concepts
such as relationships pose a problem. In addition,
querying and keeping tags consistent becomes rather
convoluted.

6.2 Efficiency

This paper does not discuss efficiency issues as it con-
centrates on a model without bias towards any of the
possible implementation platforms discussed in the
previous section. However, it is clear that efficiency
will be one of the deciding factors in the success or
lack thereof of metadata file systems. We argue that
current database technology is sufficiently far evolved
to support the real-time data access needs required for
this application. In addition, the LiFS [1] approach
of storing metadata in new types of non-volatile main
memory is a promising avenue of research.

6.3 Prototypes

Lasse At present we have finished work on a first
tentative prototype of our model. The Lasse proto-
type was developed on top of a technology preview
of Microsoft’s WinFS. The main deliverable of Lasse
was an MDFS File Browser application which allowed
(1) the listing of objects in the MDFS file store, (2)
a simplified mechanism to capture rich metadata (see
Section 7), and (3) the creation of Virtual Folders
(view definitions). The MDFS File Browser under-
went a usability analysis by a number of staff in our
department, which provided our project with crucial
feedback to continue work on the model. The proto-
type also revealed the limitations of using WinFS as
an implementation platform, mainly in the difficulty
of letting users change the MDFS schema at run time.
Screenshots of Lasse are included in Figures 3 and 4.

Sam We are currently working on a second proof-
of-concept prototype, dubbed Sam. It is developed in
Linux using the fuse project which allows us to work
in user-space and reuse common file browser compo-
nents. We are using PostgreSQL as the database
backend to store metadata, while file content itself
will be stored in the default Linux file system. The
goal of Sam is to further explore user interface issues;
at first through a command-line interface, and later
through a graphical layer.

7 User Interface Design Decisions

In Section 4.3 we introduced mdfs Transducers
which, as in many commercial applications, handle
the automatic capture of metadata without the need
for user interaction. However, we argue that rich
metadata such as links between objects cannot be
captured automatically and requires user interaction.
We also claim that without an efficient and effective
generic GUI technique that helps end-users to rapidly
capture rich metadata, mdfs technology will not be
successful. In future work we will substantiate our
claim by performing a usability study on a number

of prototypes which we are implementing. In this
section we briefly describe several aspects that have
guided us in designing GUI operations for capturing
metadata as well as using it in search. Again we refer
the reader to [15] for more details.

Central in our approach is the concept of a virtual
folder, or dynamic View. The visual presentation of
a View is similar to a file browser (i.e. a table with
one row per file and columns for metadata attributes)
available in popular platforms, but Views have signif-
icantly different semantics. Files (or rather, fileable
objects) may appear in more than one View, while
being stored only once. A View is defined on the ba-
sis of a structured query (using the search function
described in Section 4) and is refreshed each time an
object (or set thereof) is “moved” in or out of the
View.

The move operation has a new meaning compared
to traditional file browsers, and plays a central role
in our approach for capturing rich metadata through
user interaction. Objects that are dragged into a View
will acquire metadata that is needed for the objects
to be in the result of the View’s definition. If this
process is successful the View, when refreshed, will
include the new objects. Hence, the View is updat-
able. There are several cases in which the process can
fail; (1) if the objects dragged into the View are of a
different type than the View’s definition, (2) if the
View definition is an unupdatable query, and (3) if
read-only attribute values must be changed in order
for the objects to appear in the result.

Following [9] we allow more complex queries to be
updatable than only those ranging over a single rela-
tion (class) and not using aggregation. In particular,
the joins that we use in Views contain the equivalent
of a where exists subquery and relate primary key
(object identifiers) only. Consider the query expres-
sion given in Section 4.2.2 and the end-user wanting
to drag a set of audio files into a View defined by that
query. If there is more than one wedding in the sys-
tem with location = ‘Oslo’, the GUI will prompt
the user for clarification. He may want to link the
new audio files to just one such wedding (the GUI
will display a list to choose from), or in some cases
opt for associating the audio files with all weddings
that took place in Oslo. As membership in the rela-
tionships is decidable at run time, such Views become
updatable as well.

Figure 3 illustrates the use of Virtual Folders as
a means to capture metadata through a move oper-
ation. The screenshots of the Lasse prototype show
that initially four Photo objects were selected from
the “Photos” Folder and subsequently dragged into
the Virtual Folder “Photos with Comments ‘Family
Holiday’”. The second screen then shows the con-
tent of the latter, and shows that the four objects
have obtained the necessary metadata to belong in
the Virtual Folder.

Views are persistent and can be organised into an
arbitrary hierarchy by end-users but can also be or-
ganised automatically. Since all Views are subsets of
the object store, a natural hierarchy based on set con-
tainment is implicit in the model. However, as View
definitions are First-Order Logic expressions, View
containment on the basis of their query definitions
is undecidable. Hence, an automatic organisation of
Folders will need to work on the instance level and re-
organise the hierarchy each time the content of a View
is changed. This is a potentially expensive operation
that end-users should be able to switch off, but can
be optimised by pruning parts of the hierarchy that
have not changed.

A large number of other non-trivial issues are asso-

CRPIT Volume 74 - Computer Science 2008

24

Figure 3: (a) Dragging photos into the Virtual Folder Photos with comment ‘Family Holiday’, (b) Result after
the drag operation, showing that metadata has been updated to make the photos appear in this Virtual Folder.

ciated with the operation of Views as a generic dual
mechanism of querying the file store and acquiring
new metadata for objects. For example, for a variety
of reasons Views should return homogeneous sets of
objects (as there always exists a common superclass
for objects contained in a view), and it should be
straightforward to decide which metadata attributes
should be displayed to the user.

Deletion of Views should not result in the deletion
of objects contained in the view, whereas the dele-
tion of an object should also delete all relationship
instances in which the object participated.

Creating Views should be possible in the GUI
in a effective and simple manner. Users could be
given a Wizard to create queries, use a Query-by-
Example [19] interface (this is the approach we took
in Lasse, see Figure 4 for a screenshot), employ a
graph-based query language such as PaMaL [10], or
orienteer [18] their way through class relationships to
construct Views. Regardless of how views are cre-
ated, users should see immediately whether their view
is updatable. This facilitates the creation of a men-
tal model so that users can employ the system more
effectively.

Even when a very good structured query-definition
interface exists, some users may opt to create a query
consisting of key words. This could be either trans-
lated to a structured query, or information-retrieval
algorithms can be used instead. Virtual Folders with
an unstructured query definition can also be saved
and placed in a hierarchy, but they are not updat-
able, and hence cannot be used to capture metadata.

These and other issues are detailed in [15].

8 Conclusion and Further Work

We have proposed a hierarchy of definitions for meta-
data applications and file systems based on a com-
prehensive review of existing implementations and re-
search proposals. We then formally defined a model
for a pure mdfs including data model, operations,
and behaviour. Finally we described design aspects
of a generic graphical user interface for capturing and
using metadata in a pure mdfs. We are currently
implementing a number of GUI prototypes, includ-
ing those described here, and are planning a usability
study with the aim to discover which strategies are
most effective and efficient for capturing rich meta-
data through end-user interaction.

References

[1] Alexander Ames, Nikhil Bobb, Scott Brandt,
Adam Hiatt, et al. Richer file system meta-
data using links and attributes. In Proceedings
of the 22nd IEEE / 13th NASA Goddard Confer-
ence on Mass Storage Systems and Technologies
(MSST05). IEEE, 2005.

[2] C. Batini, M. Lenzerini, and S. Navathe. A com-
parative analysis of methodologies for database
schema integration. ACM Comput. Surv.,
18(4):323–364, 1986.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

25

Figure 4: Creating a new Virtual Folder: query-by-example–like view definition interface.

[3] C. Mic Bowman, Chanda Dharap, Mrinal
Baruda, Bill Camargo, and Sunil Potti. A file
system for information management. In Proceed-
ings of the International Conference on Intelli-
gent Information Management Systems, Wash-
ington D.C., USA, March 1994, March 1994.

[4] T. Calders, S. Dekeyser, J. Hidders, and
J. Paredaens. Analyzing workflows implied by
instance-dependent access rules. In ACM SIG-
MOD/PODS 2006 Conference, Chicago, June
2006.

[5] R. Cattell, D. Barry, M. Berler, J. Eastman,
et al. The Object Data Standard: ODMG 3.0.
Morgan Kaufmann, January 2000.

[6] S. Dekeyser. A metadata collection technique for
documents in WinFS. In Proceedings of the 10th
Australasian Document Computing Symposium.
School of Information Technologies, University
of Sydney, 2005.

[7] Susan T. Dumais, Edward Cutrell, Jonathan J.
Cadiz, Gavin Jancke, Raman Sarin, and
Daniel C. Robbins. Stuff I’ve Seen: a system
for personal information retrieval and re-use. In
SIGIR, pages 72–79. ACM, 2003.

[8] D. Ferraiolo and R. Kuhn. Role-based access con-
trols. In 15th NIST-NCSC National Computer
Security Conference, pages 554–563, 1992.

[9] Antonio L. Furtado and Marco A. Casanova. Up-
dating relational views. In Query Processing
in Database Systems, pages 127–142. Springer,
1985.

[10] Marc Gemis and Jan Paredaens. An object-
oriented pattern matching language. In ISOTAS,
pages 339–355. Lecture Notes in Computer Sci-
ence, Springer, 1993.

[11] David K. Gifford, Pierre Jouvelot, Mark A. Shel-
don, and James O’Toole. Semantic file systems.
In Proceedings of the Thirteenth ACM Sympo-
sium on Operating System Principles, Asilomar
Conference Center, Pacific Grove, California,
October 13-16, 1991, pages 16–25. ACM, 1991.

[12] David R. Karger, Karun Bakshi, David Huynh,
Dennis Quan, and Vineet Sinha. Haystack: A
general-purpose information management tool

for end users based on semistructured data. In
CIDR 2005, Second Biennial Conference on In-
novative Data Systems Research, Asilomar, CA,
USA, January 4-7, 2005, pages 13–26, 2005.

[13] Graham Klyne. Resource description framework
(RDF), February 2004. W3C Recommendation.

[14] Carlos Maltzahn, Nikhil Bobb, Mark W. Storer,
Damian Eads, Scott A. Brandt, and Ethan L.
Miller. Graffiti: A framework for testing col-
laborative distributed metadata. In Proceedings
in Informatics, number 21, pages 97-111, March
2007.

[15] Lasse Motrøen. Metadata file systems and GUI
operations. Master’s thesis, University of South-
ern Queensland, Australia, 2007. Draft.

[16] Szabó Péter. MoveMetaFS – a searchable
filesystem metadata store for linux. Freshmeat
project http://freshmeat.net/projects/
movemetafs, 2007.

[17] Richard Soley and William Kent. The OMG Ob-
ject Model. pages 18–41, 1995.

[18] Jaime Teevan, Christine Alvarado, Mark S. Ack-
erman, and David R. Karger. The perfect search
engine is not enough: a study of orienteering be-
havior in directed search. In Elizabeth Dykstra-
Erickson and Manfred Tscheligi, editors, CHI,
pages 415–422. ACM, 2004.

[19] Moshé M. Zloof. Query-by-example: A data base
language. IBM Systems Journal, 16(4):324–343,
1977.

CRPIT Volume 74 - Computer Science 2008

26

Reasoning About Inherent Parallelism in

Modern Object-Oriented Languages

Wayne Reid, Wayne Kelly and Andrew Craik

Faculty of Information Technology
Queensland University of Technology

2 George Street, GPO 2434, Brisbane QLD 4000, Australia

[wa.reid@student.,w.kelly@,andrew.craik@student.]qut.edu.au

Abstract

In the future, if we are to continue to expect improved

application performance we will have to achieve it by

exploiting course-grained hardware parallelism rather

then simply relying on processor cycles getting faster.

Programmers will, therefore, need to accept some of the

burden of detecting and exploiting application level

parallelism because automatic parallelization is still far

from a reality. On the one hand we need to fundamentally

reconsider how we express algorithms as the languages

we currently use were never designed to make reasoning

about parallelism easy. On the other hand, to be widely

adopted, any new programming approach will need to be

only incrementally different to current paradigms. This

paper attempts to find that difficult balance. It extends

modern object-oriented programming techniques with a

new abstraction that allows either programmers or

automatic parallelizing compilers to reason about

inherent data parallelism.
.

Keywords: Reasoning; Parallelism; Object-oriented;
Ownership types

1 Introduction

For decades, the IT industry has relied on faster processor
clock cycles to deliver ever increasing application level
performance. Fundamental laws of physics dictate that
this will soon come to an end. Moore’s law – “that the

number of transistors that can be placed on a chip will

double every 18 months” – is, however, forecast to
continue in the foreseeable future. Therefore, there is the
potential for application level performance to continue to
improve, but these gains will be achieved through
exploitation of course grained parallelism rather than
simply relying on faster clock speeds. We have already
seen the widespread release of dual and quad core chips
and this trend is expected to continue. This poses an
enormous challenge for the software industry; unlike
faster clock speeds, application level parallelism can
typically only be detected and exploited with some help
from application developers.

Copyright © 2008, Australian Computer Society, Inc. This
paper appeared at the Thirty-First Australasian Computer
Science Conference (ACSC2008), Wollongong, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 74. Gillian Dobbie and Bernard
Mans, Ed. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

The world of parallel programming has, until now, been a
niche market characterized by high-end scientific
applications executing on multi-million dollar
supercomputers. Despite decades of research, the “holy
grail” of automatic parallelization is still largely out of
reach. Instead most resort to writing explicitly parallel
applications involving message passing between
processors. Only heroic efforts by highly trained
scientific programmers have been able to exploit the
massive parallelism provided by these supercomputers.
Unfortunately, the languages used in these projects, like
FORTRAN, are often decades old. The basic array data
structures used in these older languages are easier to
reason about than the complex pointer based structures of
many more modern languages. The complexity of writing
explicitly parallel programs decreases programmer
productivity and increases defect rates in code compared
to mainstream software development.

Expecting mainstream programmers to write explicitly
parallel message-passing applications is clearly not
reasonable. It is also unreasonable to ask them to
fundamentally change the manner in which they express
algorithms; for example, a switch to a purely functional
paradigm would be too radical a change for most.

We cannot, however, simply ignore the pressing need to
allow most applications developed in the future to exploit
course grained hardware parallelism. If automatic
parallelisation is too hard, we need to understand the
fundamental cause of the difficulties. Rather than simply
trying harder to overcome those difficulties, perhaps we
should change the problem to side step the difficulties –
failure is no longer an option.

Parallelizing a piece of code, either manually or
automatically requires three logical steps: (1) decide if the
code can be parallelized, (2) if it can, determine if any
performance gain can be obtained, and (3) if it is
worthwhile, refactor the program to include the constructs
of parallelism (threads, semaphores, etc). We argue, in
the context of modern general-purpose application
development, that step (1) – the reasoning about
parallelism – is the biggest challenge and is therefore the
principal topic of this paper.

Over the decades, programming paradigms have evolved
incrementally to include: structured control flow, abstract
data structures, object-oriented programming, and
component-oriented programming. Each evolutionary
step basically places self-imposed limits on how we use
certain programming language features; for example, the
elimination of go-to statements. By restricting how we

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

27

program, we have improved comprehensibility and
maintainability.

2 Reasoning about Parallelism

We argue that the next evolutionary step is to restrict the
way that we program so that we can better reason about
the inherent parallelism in applications. The fundamental
challenge for both automatic parallelizing compilers and
programmers trying to parallelize an application is being
able to reason about what parallelism exists. It should
come as no surprise that our current programming
languages and paradigms are not particularly supportive
of this goal since they were designed with sequential
processors in mind.

Parallelism exists provided dependences do not exist.
Dependencies are easy to define in terms of runtime
behaviour: if one piece of code writes to some memory
location that is later read by another piece of code, then
there is a dependence between them and they cannot be
executed in parallel. Reasoning about the presence of
such dependencies is much harder to do statically. We
have structured control flow and structured data, but the
relationship between the code constructs and the data
constructs is largely unconstrained. In modern object-
oriented languages data and code are grouped into
classes. The code in one class is free to mutate not just
the data in its class, but also the data of other arbitrary
classes. When trying to analyse the dependences in such
code, abstract interfaces provide no useful information
and we are forced to inspect the actual implementation of
each method. This becomes very difficult in large
complex applications and near impossible in the presence
of components for which source code is not available.

The fundamental problem arises from the concept of
mutable state; pure functional languages do not have such
implicit dependencies. Rather than declaring mutable
state and imperative programming to be “evil”, we seek
to learn how we can use it in a safe and controlled
fashion. We seek to safely exploit its many benefits – just
as our predecessors learned to safely use dangerous
elements such as fire.

3 Abstracting Effect

What we need is a way of abstracting the effect of a
piece of code (ie the set of memory locations that it reads
and writes). The effect should, somehow, be in the
interfaces to that code so that we can reason about its
dependencies without examining its actual
implementation. Object-oriented programming languages
provide a good foundation to build on in this regard.

When trying to detect parallelism we are most interested
in scalable parallelism: where the number of operations
that can be performed in parallel is at least O(n) rather
than O(1). In these cases, the performance will generally
continue to increase as we increase the number of
processors with each new generation of multi-core chips.
Scalable parallelism normally comes from parallelizing
loops. A very important case of this is data parallelism:
where some operation is performed in parallel on each
element of some data collection. In an object-oriented

language this would naturally take the form of a foreach
loop iterating over the elements of some collection class
invoking some method on it that performs the desired
operation as shown in Figure 1.

foreach (T element in collection)

{

 element.Operation(arguments);

}

Figure 1: Stereotypical data parallel loop

This paper seeks to develop new abstractions to capture
effects that allow conditions for parallelization to be
easily reasoned about by both programmers and
parallelizing compilers.

4 Sufficient Conditions for Parallelism

We start by informally considering what it would take for
the loop in Figure 1 to be parallelizable. First, if the
collection contains reference types then it is sufficient to
ensure that there are no duplicate entries. Cohen, Wu, and
Padua describe such collections as having the “comb”
property, an analogy to the parallel teeth of a hair comb
(2001). Note this property cannot generally be proved
statically. It does not matter, however, what shape the
collection takes; it may be a simple list, a tree, or a graph.
The shape is not important provided the iterator visits
each element exactly once.

Next we need to consider the properties of the Operation
method itself. Basically, we need to guarantee that the
method only mutates its own state and does not read the
state of any other elements in the collection. But what do
we mean when we say the state of an object? Clearly, it
includes the fields of the object in question. If those fields
contain pointers or references to other objects then, in
many cases, those other objects should also be considered
part of the state of the referencing object This
encapsulation of internal implementation details is one of
the hallmarks of object-oriented programming.
Unfortunately, the “private” annotations used in most
modern object-oriented languages do not ensure the kind
of strong encapsulation we require. Marking a field or
method as private means that “outsiders” cannot directly
access that member, but there is nothing to prevent
“outsiders” referring to the same object that the private
field refers to. Such references might escape, for
example, via a public method returning the value of such
a private field.

5 Ownership Types

Other researchers have proposed stronger encapsulation
mechanisms based on an idea called ownership types
(Clarke et al., 1998). We borrow many of the concepts
from that approach, so we take a moment to briefly
summarize those concepts in this section.

Early versions of type systems to enforced encapsulation
(Almeida, 1997, Hogg, 1991, Noble et al., 1998) were
based on annotating some fields of an object as being part
of its representation; this turned out to be insufficiently
expressive. Consider, for example the use of a generic
collection class such as a Stack within an object’s

CRPIT Volume 74 - Computer Science 2008

28

representation. In this scenario, the Stack class contains
two types of fields, those that refer to data elements
currently stored in the stack and those that form part of
the internal implementation details of the Stack class
itself. Clearly, the latter fields would be annotated as part
of the representation of the Stack class. The former fields
may not logically be part of the stack’s internal
representation, but they may logically be part of the
internal representation of the object that contains the
stack.

The idea, therefore, evolved to specifying the logical
owner of each object. In the example just considered, the
internal representation of the stack is owned by the stack,
whereas the data elements contained in the stack are
owned by the object containing the stack, or perhaps by
some other object higher in the hierarchy.

The basic assumption is that all objects are owned by
some other object. Globally visible top-level objects are
said to be owned by a special context called world. It is
assumed that the ownership relationship does not change
during the lifetime of the objects.

These ownership relationships are represented by
extending a language’s static type system. Class
definitions can be decorated with one or more ownership
context parameters using syntax similar to generic types.
In Figure 2, we declare a class named Stack with two
formal context parameters named o and d.

class Stack[o, d] {

 ...

}

Figure 2: Declaration of a class with context parameters

By convention, the first context parameter (in this case o)
always represents the owner of the current (or this)
object. Other context parameters represent other owners
possibly further up the representation hierarchy. Like
generic types, these formal context parameters act as
placeholders for actual contexts that must be provided
when the class is instantiated. These actual contexts must
be either this, world or a formal context parameter that is
visible in the current scope.

Figure 3 shows an example of instantiating a Stack
object; note that we provide the actual contexts this and
b so that the context parameter o will be substituted by
this and d by b.

class Sample[a, b] {

…

 public void op(…) {

 … = new Stack<this, b>();

 …

 }

…

}

Figure 3 Providing actual contexts when instantiating

The example in Figure 4 shows how a stack backed by a
singly-linked list would be implemented when using
ownership types.

class Stack[o, d] {

 Link<this,d> hd;

 Stack(Data<d> dt) {

 push(dt);

 }

 void push(Data<d> dt) {

 hd = new Link<this,d> (hd, dt);

 }

 Data<d> pop() {

 Link<this,d> ret = hd;

 hd = hd.next;

 return ret.data;

 }

}

class Link[o, d] {

 Link<o,d> next;

 Data<d> data;

 Link(Link<o,d> next, Data<d> data)

 {

 this.next = next;

 this.data = data;

 }

}

Figure 4 Stack implementation with annotations

If a field is part of a class’ representation then we
annotate its type as being owned by this. Doing so
effectively means that we cannot refer to that type from
outside of the containing class. Outside the containing
class the name this refers to a different class and there is
no way of referring to the other this. If we cannot name a
type, then we effectively cannot directly affect it nor can
its internal references escape. This is the basic
mechanism by which such ownership type systems
provide stronger encapsulation.

A known limitation of the ownership types approach is
that the encapsulation that it enforces is too strong to
allow a number of common object-oriented design
patterns such as factories and iterators. The idea was,
therefore, extended by Lu and Potter to effective
ownership types which weakens the conditions
sufficiently to allow these common patterns to be
expressed (2006). The key idea that we borrow from this
work is the notion of a special existential context called
any.

Ownership types (and effective owners) were originally
designed to provide stronger encapsulation so that class
invariants could be more easily reasoned about. They,
therefore, included in their type systems various
restrictions on which methods were allowed to read and
write various objects based on their owner contexts.
Whilst this is a laudable goal, we do not require any of
those additional properties. For simplicity we do not
include those additional restrictions in our type system. It
is possible, however, for those additional restrictions to
happily coexist with our type rules if the additional
guarantees that ownership types provide are desired.

A nice feature that our system shares with the original
ownership type systems is that it requires no runtime
representation. Once the type checks are performed at

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

29

compile time, the ownership annotations can be
completely dropped from the runtime type
representations.

Both ownership types and effective ownership types
require the programmer to provide the ownership type
annotations. Deciding the logical owner of an object is a
decision that requires human judgement. We feel that it is
not an unreasonable question to ask a programmer or
designer. Questions, like should this field be stored in a
register or should this loop be parallelized, are arguably
low level implementation decisions that should be
handled by a compiler and not the programmer. The
notion of ownership types allows designers to specify, in
the code, high-level architecture decisions that should
already be under consideration.

6 Annotating Effects

Now that we have a strong reliable notion of
encapsulation, we return to abstracting the effect of our
code constructs. The traditional approach to this problem
is to calculate which fields are read and written by each
method. This approach becomes increasingly complicated
in modern object-oriented languages due to the
complexity of programs written in these languages as
well as the large number of aliases they contain (Lhoták
and Hendren, 2006, Milanova et al., 2005). We, therefore,
simplify and abstract the problem by summarising the
sets of contexts that are read and written. These context
sets must be specified in terms of contexts that are
nameable in the current scope, so in some cases we need
to raise contexts up to a context that contains them if the
context actually affected is not nameable in the current
scope.

Figure 5 shows a number of example methods and their
corresponding read and write sets.

class A [o, d] {

 B<o,d> b = new B<o,d> ();

 void m1(C<d> c)

write<o,a> read <this> {

 this.b.update();

 this.c.update();

 }

 void m2()

write<this,o> read<this,world> {

 this.b = new B<o,d>();

 this.b.readWorld();

 this.b.c.e = …

 }

 void m3()

write<this,o> read<this,world> {

 m2();

 }

}

class B[a, b] {

 … f = …

 C<a> c = new C<a>();

 void update()

write<this> read<> {

 this.f = new…

 }

 void readWorld()

 write<> read<world> {

 …

 }

}

class C [a]{

 … e = …

 update()

write<this> read<> {

 this.e = new…

 }

}

Figure 5: Calculating read and write context sets

We briefly discuss the effect calculation of class A’s
methods. Consider method m1 whose effects are a
consequence of field and parameter modification. First
we must compute the effect of b.update(). To invoke
update on b we must first evaluate this.b which has the
effect of reading the this context. We then lookup the
effect of the update method in class B and see it writes to
this; however, the this context referred to by update is not
visible and so we must raise this effect to conclude that
update writes to o, its owning context. Similarly, we then
proceed to calculate the effect of this.c.update in a similar
manner and conclude it reads this and writes to d. We can
now conclude the effect of m1 is the summation of these
effects, namely read this and write to o and d.

Next consider method m2 whose effects are the result of
object creation, accessing world and the modification of a
field via a chain of field accesses. The instantiation of B
in m2 has no effect since the default constructor does not
initialize anything. We write the reference of this new
object to the b field in our class and so the overall effect
is a write to this. To invoke readWorld on b, we must first
read this.b which has the effect of read this. A lookup of
the effects of readWorld then shows that it has the effect
of read world which raises to itself. The net result of this
statement is, therefore, a read of this and world with no
write effects. Finally, the effect of writing to this.b.c.e is
to read this (to obtain this.b) then to read o (to obtain
this.b.c) and finally a write to the this context of class C
which raises to o. The overall effect of the method is,
therefore, write this and o and read this and world.

Finally, consider m3 which demonstrates the raising of
effects within the same context. To compute the effects of
m3 we lookup the effect of m2 and obtain write this and o
and read this and world. Note that the this effects of m2
remain unchanged since m3 and m2 are in the same
context which results in this being raised to this.

CRPIT Volume 74 - Computer Science 2008

30

As will be shown in the next section, it is possible to
automatically calculate the read and write sets of a
method given its implementation. As a result, the
programmer, therefore, can normally be spared the task of
calculating read and write sets. There are however, a
number of places where the read and write sets of
methods need to be explicitly annotated rather than
simply inferred. This occurs whenever we use any form
of indirect interface. For example, if our language
supported interfaces then we would need to declare the
read and write effects of the methods in the interface and
the methods of classes that implement that interface
would need to limit their read and write sets to at most
those defined in the interface. The same is true when a
base class effectively serves as an interface by providing
methods that can be overridden. Finally, read and write
effects must be made an explicit part of component
interfaces. If we need to use a class or component that is
not annotated with context parameters or effects we
simply assume that it reads and writes the world context.

7 Effect Computation

To formally demonstrate how effects can be
automatically computed we present the abstract syntax
and type rules which perform this computation. Note that
the following rules do not constitute a complete type
system; for clarity, we present only the effect calculation
rules.

In the syntax of the following sub-sections, an over-line
indicates a list.

7.1 Abstract Syntax

A program consists of a set of class definitions L and an
expression to be evaluated e:

::P Le=

The definition for a class with name C consists of a set of

context parameters X , a subtype T, a set of fields f of
type T and a set of method definitions M:

{ }:: class C ;L X T T f M =
 
�

A type T consists of the name of a class C and a list of

actual context parameters K :

:: CT K=

(the first context parameter is always the owner of T)

A context parameter K or E can be a real context (this or
world), an existential context (any) or a yet to be bound
formal context parameter X. I and J are context
parameters with restricted domains.

, :: | | | |

:: | | |

:: | |

K E X this world any unknown

I X this world any

J X this world

=

=

=

A definition for a method with name m consists of a
return type T, a list of formal parameters x of some types

T, and a body consisting of expression e. We also
associate a set of read and write sets (I and J respectively)
that can be automatically computed when we type the
method body:

() { }::M T m T x writes J reads I e=

Expressions can be either a formal parameter, a new
object instantiation, a field read or write or a method call:

()

()

::

| new

| .

| .

| .

e x

T e

e f

e f e

e m e

=

=

7.2 Type Rules

We now present our formal type system for calculating
read and write effects.

Type checking takes place within an environment Γ that
maps formal parameters x to their corresponding type T.

:: x TΓ = →

The primary goal of this section is to show how we can
formally type and compute the read and write sets of
arbitrary expressions. An expression e with read and
write sets of I and J respectively and of type T evaluated
under the environment Γ in the context K is represented
as:

,
; :

J I
K e TΓ �

7.2.1 Formal Parameters

()
,; :

x T

K x T
∅ ∅

Γ =

Γ �

Formal parameters are simply references to the actual
objects. So, reading a formal parameter does not read or
write the state of any objects or any ownership contexts.

7.2.2 Reading Fields

,

; this . : _

K

K f ϕ

ϕ = ∅

Γ �

The base case for this rule is reading a field from the
current context. When we do this we generate no write
effects and a read of the current context this. Note the _ in
the rule is simply a placeholder for a value that is not
used anywhere else in the rule and so is not assigned to a
variable.

() ()

; :

raise , , ,owner

; . : _

K e T

K T T

K e f

ϕ

ϕ

ϕ ϕ

′
Γ

′= ∪ ∅

Γ

�

�

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

31

For the general case, we must first compute the type and
effect of the expression e. The read set of the field access
expression will include the owner context of expression e
as well as the effects of computing the expression e.
However, we must raise these effects up to a level of
abstraction that can be named within the current class’
context K. See section 7.3 for a definition of raise. Note
that owner(T) is defined as:

() 1KKCowner =

7.2.3 Writing Fields

() { }

()

,
; :

raise , , ,

raise , ,

; this. :

J I
K e T

J K T K

I K T

K f e Tϕ

ϕ

′ ′
′ ′Γ

′ ′ ∪
=

′ ′

′ ′Γ =

�

�

In the base case of writing to a field in the current
context, we must compute the type and effect of the right
hand side of the assignment expression. We then raise the
computed effects to the current context and add a write of
the current context to the effects.

() () (){ }

() ()

,

,

; :

; :

raise , , raise , , owner ,

raise , , raise , ,

; . :

J I

J I

K e T

K e T

J K T J K T T

I K T I K T

K e f e Tϕ

ϕ

′ ′

Γ

′ ′Γ

′ ′∪ ∪
=

′ ′∪

′ ′Γ =

�

�

�

We must first compute the type and effect of the
expressions on the left and right hand sides. The read set
of the assignment expression will include the owner
context of the right hand expression e’ and the raised read
effects of e and e’. Similarly, the write set will include the
owner of the left hand expression e and the raised write
effects of e and e’.

7.2.4 Method Definition

()() ()

() { }

,
, : ; :

method , _ writes reads

; writes reads

J I
x T K e T

super m T m T J I

J J I I

K T m T x J I e

Γ

 ′ ′Γ =
 
 ′ ′⇒ ∧ 

Γ

� �

�

�

�

The advertised read and write effects of the method m
must match the read and write effects of the expression e.
If the method overrides a method in a super class then the
advertised read and write effects of this method must be
subsumed by the read and write effects of the super class
method because the overriding method must be
interchangeable with the method it replaces.

A context K is dominated by a context E (written K� E)
if K = E or K is owned either directly or indirectly by E.

7.2.5 Method Invocation

() ()

() ()

()
()

; : ; :

method , _ writes reads

 class ...

 raise , , raise , ,

 raise / , / , ,

; . :

K e C K K e T

T m T m T J I

C X

K C K K T

K X J K X I K C K

K e m e T

ϕ ϕ

ϕ

ϕ ϕ ϕ

′ ′′
Γ Γ

′=

  

′ ′′= ∪

   ∪    

′Γ

� �

�

We must first compute the type and effect of the receiver
object e. We then use that type to lookup the method m.
We also need to compute the type and effect of the actual
parameters. The net effect of the method invocation
consists of the read and write effects of the method with
actual context parameters substituted for the formal
context parameters and the result raised to the current
context, plus the raised effects of computing the receiver
and actual method parameters.

Note that it is possible that the method m could modify an
object passed by reference as an actual parameter.
Because the types in our system contain the ownership
information, the effect of modifying an actual parameter
will be shown in the effect annotations of the method
without any special handling.

7.2.6 Object Instantiation

() ()

() ()
()

; :

method C K , _ writes reads

class ...

raise , , / , / , ,

; new C K : C K

K e T

C C T J I

C X

K T riase K X J K X I K C K

K e

ϕ

ϕ

ϕ ϕ

′

Γ

=

  

   ′ = ∪    

Γ

�



�

Calling a constructor is largely the same as calling a
method.

7.3 Raising Contexts

When we summarize the read and write effects of an
expression we need to ensure that we use only contexts
that are nameable from the current scope.

raise(, ,) :: the result of raising context E

 from the scope of T into context K

E K T =

We also overload the raise function to work over sets of
contexts and pairs of read and write sets:

()

()
1

raise , ,

raise , ,

E

i

i

E K T

E K T

ϕ

ϕ

=

=

=

∪

()
()

raise , , raise(, ,)

raise , , , ,

J K T J I K T I

J I K T J I

′ ′= =

′ ′=

CRPIT Volume 74 - Computer Science 2008

32

Raising the this context requires us to determine if the
this context being raised is the same as the current this
context. If the this context is the same, then it is not
abstracted by the raise function. Otherwise, we must
abstract it to a visible context; that of its owner:

()
; _ :

raise this, ,

K T

K T K

Γ

=

�

()
; _ :

raise this, , owner()

K T T T

K T T

′ ′Γ ≠

=

�

The world and any contexts are nameable form anywhere:

raise(, _, _)world world=

()raise , _, _any any=

If the context to be raised is a formal context parameter,
we must resolve the actual context to which the formal
context parameter is bound:

()
class

raise , ,

i

i

C X X X

X K C K K

  =
 

=

8 Sufficient Conditions for Parallelism

With our abstraction for effects now defined, we return to
developing the sufficient conditions for parallelization of
our stereotypical data parallel loop:

foreach (T<c> e in collection)

 e.operation();

We want to ensure that the operation only mutates its own
state. To ensure this, we will prove that it is sufficient to
show that the operation’s write set is either empty or
{this}.

We also want to ensure that the operation does not read
the state of any of the other objects in the collection. To
ensure this, we will prove that it is sufficient to show that
its read set is also either empty or {this}. This
condition is sufficient but stronger than we would prefer
as it also precludes the reading of other global state.
Weakening this condition will be our primary goal in
future work.

The following provides a formal proof that our stated
conditions are sufficient to ensure safe parallelization.

We start by proving that if an expression (either directly
or indirectly) writes to a field of an object, then either the
owner context of that field, or a context which dominates
that context will be included in the write set of the
expression. We prove this by induction over our rules for
computing write effects as defined in Section 7. The base
case is the calculation of the write effects of a field
assignment which directly inserts the owner of the field
being modified into the expression’s write set. The other
type rules recursively ensure that if any writes occur as a
side effect of those expressions, then either the owning

context or the result of raising that context into the
surrounding context is contained in the write set. The
raise function, by construction, either returns the given
context or a context which dominates the given context.

We assume that the read and write set of the operation are
both {this} as the case of an empty read or write set is
a more trivial special case (reading less or writing less
can only help in proving our case).

We now show that if the operation’s write set is {this}
then executing e.operation() can (either directly or
indirectly) only write to fields of objects that are either e
itself or objects that are strictly dominated by e. Assume
by way of contradiction that e.operation() does
write to the fields of an object that is neither e nor strictly
dominated by e. In this case, by our earlier proof for all
expressions, either the owner context of the object written
or a context which dominates it would be included in the
method invocation’s write set. But for that to be the case,
according to our rule for calculating the write effects of a
method invocation, that context would need to have come
from the write set of either the receiving expression, the
arguments or the method definition. In this case, there are
no arguments, the receiver is simply a variable expression
which has no side effects and the write set of the method
is simply {this}. The this in this case refers to the
expression e, so the method invocation only writes to e
and contexts dominated by e - hence providing the
contradiction.

Through the same reasoning process we can show that if
the operation’s read set is {this} then executing
e.operation() can (either directly or indirectly) only
read fields of objects that are either e itself or objects
that are strictly dominated by e.

A loop can be parallelized unless a dependency exists
between iterations of the loop. A dependence can take
one of three forms:

Flow dependence: one iteration writes some memory
location which is read in some later iteration.

Output dependence: one iteration writes some memory
location which is overwritten by some later iteration.

Anti-dependence: one iteration reads some memory
location before it is overwritten by some later iteration.

Assume by way of contradiction that a flow dependence
exists. The collection must contain two elements e1 and e2
such that e1.operation() writes to a field of some
object x and e2.operation() reads that field of x.

e1 e2

x

≠

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

33

We know from the earlier proof that x is either e1 or
owned by a context that is strictly dominated by e1. We
also know that x is either e2 or owned by a context that is
strictly dominated by e2. We know from the “comb”
property of the collection that e1 ≠ e2, so x is not e1 or e2.
The object x must therefore be strictly dominated by both
e1 and e2. Each object is only owned by one object. If x is
strictly dominated by e1 and e2, it must be the case that
either e1 dominates e2 or e2 dominates e1. But we know
that e1 and e2 are both directly owned by context c, which
provides the contradiction (provided their owner c is not
the existential context any).
As the read and write sets are actually the same, the same
reasoning process can be used to rule out output and anti-
dependences.

9 Parallelization

If the sufficient conditions are met then the loop can be
parallelized. The performance benefit that can be
obtained by parallelizing the loop is a separate question
that depends, amongst other things, on the amount of
work to be done per iteration. We consider this question
to be outside the scope of this paper. If the decision is
made to parallelize the loop then some kind of thread-like
mechanism needs to be employed to enable the
parallelism; this is relatively mechanical and again
outside the scope of this paper. We do, however, consider
what the programmer would need to provide to facilitate
the loop parallelization. Help from the programmer may
be required to convert the iterator used with the collection
class into a parallel iterator. Ideally, the collection class is
extended to provide both a sequential iterator and a
parallel iterator.

A parallel iterator is simply a means by which to return
multiple iterators, one for each thread of execution.
Modern object-orientated languages typically define
sequential iterator behaviour through the use of an
interface. For example, the IEnumerator interface
presented below with effective ownership annotations:

iterface IEnumerator[o, d]{

 void Next()

 writes<this> reads<this, any>;

 Data<d> element()

 reads<this, any>;

}

Similarly, collections that return iterators are typically
required to implement an interface to advertise this
capability. For example, the IEnumerable interface
extended below with effective ownerships:

interface IEnumerable[o, d]{

 IEnumerator<o, d>

 GetIterator()

 reads<this>;

}

By extending the IEnumerable interface we can create a
parallel iterator that returns multiple iterators as needed.
An example follows:

interface ParallelEnumerable[o, d]:

IEnumerable[o, d]{

 IEnumerator<o, d>

 PIterator(int m, int N)

 reads<this>;

}

The PIterator method returns an iterator that
contains a subset of the items in the collection. The value
m is the processor and the value N is the total number of
processors. The collection programmer must ensure that
for each value of m the returned iterators contain
mutually disjoint sets of elements and that an element be
visited exactly once by only one of the returned iterators.

This approach allows the data structure designer to tailor
the iterators returned to provide the most efficient
traversal possible. Further, the number of iterators can be
specified at compile or run time, thus insulating the
iterator user from issues of load balancing and mapping.

On Processor m of N:
 foreach (T e in c.pIterator(m,N))

 e.Operation();

Collections are likely to exist in a set of standard class
libraries so that most programmers would not have to
worry about implementing them.

If there is no parallel iterator implementation, but a serial
iterator exists, we can use an inspector-executor pattern
(Ponnusamy et al., 1994). In the first sequential step, the
sequential iterator is used to determine all the elements of
the collection. Then the parallel step divides these objects
up and iterates over them in parallel:

int count = 0

foreach (T e in c)

 temp[count++] = e;

int size = Math.Ceiling(count/N);

On Processor m of N:

int start = m * size;

int end = min(count, (m+1)*size-1);

for (int i=start; i<=end; i++)

 temp[i].Operation();

This approach would be used when access to the source
code for the collection class is not available.

10 Related Work

As discussed earlier, parallelization requires three logical
steps: reasoning about parallelism, deciding if parallelism
is worth exploiting, and transforming the program into a
parallel form. There is a huge amount of related work
(Allen and Kennedy, 2002, Muchnick, 1997) on these
latter two topics, but we do not discuss it here as our
focus is on reasoning about parallelism.

The original work on ownership types, on which our
system is based, was published by Clarke, Potter, and

CRPIT Volume 74 - Computer Science 2008

34

Noble (Clarke et al., 1998). A number of different
variations on this system have since been proposed to
make standard design patterns easier to express and to
enhance the information that can be derived from it. Lu
and Potter extended ownership types to produce the
effective ownership system that we extend (2006).

There are a few ownership type extensions which attempt
to provide some of the same features as our system. We
now list these systems and discuss their similarity to our
contribution.

JOE extends ownership types to allow expression of
common patterns as well as adding effects to allow for
reasoning about the non-interference of code (Clarke and
Drossopoulou, 2002). JOE’s effect computations involve
the language’s dynamic semantics which we do not
require making our system static as opposed to dynamic
(Clarke and Drossopoulou, 2002).

Boyapati, Lee, and Rinard published a paper describing
how pure ownership types could be used to reason about
the safety of parallel code; more specifically guaranteeing
the absence of data races and deadlocks (2002). Their
system only reasons about the safety of locking protocols
used within explicitly parallel programs rather than
attempting to identify parallelism in a sequential program
(Boyapati et al., 2002).

A few other languages have introduced effect notations
and attempted to exploit the additional information they
provide. The Jade programming language by Lam and
Rinard allows programmers to annotate programs with
unverifiable effects at the granularity of variable and
relies on the programmer to reason about aliasing (1998).

Boyland, Noble and Retert presented several language
features related to effect containment and ownership
(Boyland et al., 2001). It does not explore concurrency or
parallelism other than to state that encapsulation and
abstraction are useful tools which potentially could be
used to enable safer concurrent programming.

Many have tried to perform general purpose inter-
procedural pointer alias analysis (Milanova et al., 2005,
Lhoták and Hendren, 2006), but without any form of
additional help from the programmer they tend to be very
conservative as well as very expensive to perform.

There have also been efforts to build systems that employ
formal logic to reason about inherent parallelism. Rus and
Van Wyk employed temporal logic and model checking
to identify opportunities for parallelism (1997). Dongol
and Mooij used process logic to construct a system to
derive safe concurrent programs from sequential ones
(2006). These systems are very powerful, but they are
also expensive to implement and the programmer has less
control over their operation.

11 Conclusion

We have borrowed the notion of ownership types to
create a new abstraction that allows both programmers
and automatic parallelising compilers to reason about
data parallel loops. An acknowledged weakness of our
current approach is that our sufficient conditions for

parallelization do not allow such loops to read any global
state. Addressing this problem will be the principal focus
of our future work. We have so far only considered data
parallel loops in their simplest possible form, just one
method call in the loop body and no arguments. We do
not suggest that our techniques in their current form are
ready to be applied to a wide range of real applications. It
is, however, an important first step towards a new
programming paradigm that is only incrementally
different to current paradigms, yet capable of reasoning
about parallelism. When faced with the extremely
daunting challenge of trying to reason about parallelism,
our philosophy has been that until we know how to
address the simple cases, it is fruitless to consider the
more general cases. This is, therefore, hopefully the first
step of a long and fruitful journey.

12 References

ALLEN, R. & KENNEDY, K. (2002) Optimizing
Compilers for Modern Architectures: A Dependance-
Based Approach, San Francisco, CA, Morgan
Kaufmann.

ALMEIDA, P. S. (1997) Balloon Types: Controlling
Sharing of State in Data Types. ECOOP '97 - Object-
Oriented Programming. Heidelberg, Berlin, Springer
Berlin / Heidelberg.

BOYAPATI, C., LEE, R. & RINARD, M. (2002)
Ownership types for safe programming: preventing
data races and deadlocks. Proceedings of the 17th
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications.
Seattle, Washington, USA, ACM Press.

BOYLAND, J., NOBLE, J. & RETERT, W. (2001)
Capabilities for sharing: A generalisation of
Uniqueness and Read-Only. 15th European Conference
on Object-Oriented Programming (ECOOP). Budapest,
Hungary, Springer Berlin / Heidleburg.

CLARKE, D. & DROSSOPOULOU, S. (2002)
Ownership, encapsulation and the disjointness of type
and effect. Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications. Seattle, Washington, USA,
ACM Press.

CLARKE, D. G., POTTER, J. M. & NOBLE, J. (1998)
Ownership types for flexible alias protection.
Proceedings of the 13th ACM SIGPLAN conference
on Object-oriented programming, systems, languages,
and applications. Vancouver, British Columbia,
Canada, ACM Press.

COHEN, A., WU, P. & PADUA, D. (2001) Pointer
Analysis for Monotonic Container Traversals (CSRD
TR-1586). Univeristy of Illinois at Urbana-Champaign.

DONGOL, B. & MOOIJ, A. J. (2006) Progress in
Deriving Concurrent Programs: Emphasizing the Role
of Stable Guards. 8th International Conference on the
Mathematics of Program Construction Kuressaare,
Estonia, Springer Berlin / Heidelberg.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

35

HOGG, J. (1991) Islands: aliasing protection in object-
oriented languages. Conference proceedings on Object-
oriented programming systems, languages, and
applications. Phoenix, Arizona, United States, ACM
Press.

LHOTÁK, O. & HENDREN, L. (2006) Context-
Sensitive Points-to Analysis: Is It Worth It? 15th
International Conference on Compiler Construction.
Vienna, Austria, Springer.

LU, Y. & POTTER, J. (2006) Protecting representation
with effect encapsulation. Conference record of the
33rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. Charleston,
South Carolina, USA, ACM Press.

MILANOVA, A., ROUNTEV, A. & RYDER, B. G.
(2005) Parameterized object sensitivity for points-to
analysis for Java. ACM Transactions on Software
Engineering Methodology, 14, 1-41.

MUCHNICK, S. S. (1997) Advanced Compiler Design &
Implementation, San Francisco, CA, Morgan
Kaufmann.

NOBLE, J., VITEK, J. & POTTER, J. (1998) Flexible
Alias Protection. IN JUL, E. (Ed.) Lecture Notes in
Computer Science. Berlin, Hidleburg, New York,
Springer Berlin / Hamburg.

PONNUSAMY, R., HWANG, Y.-S., DAS, R., SALTZ,
J., CHOUDHARY, A. & FOX, G. (1994) Supporting
irregular distributions in FORTRAN 90D/HPF
compilers (CSTR3268.1). University of Maryland at
College Park.

RINARD, M. C. & LAM, M. S. (1998) The design,
implementation, and evaluation of Jade. ACM Trans.
Program. Lang. Syst., 20, 483-545.

RUS, T. & VAN WYK, E. (1997) Model Checking as a
Tool Used by Parallelizing Compilers. 2nd
International Workshop on Formal Methods for
Parallel Programming: Theory and Applications.
Geneva, Switzerland.

CRPIT Volume 74 - Computer Science 2008

36

Ruby.NET:
A Ruby Compiler for the Common Language Infrastructure

Wayne Kelly and John Gough

Faculty of Information Technology
Queensland University of Technology

2 George Street, GPO 2434, Brisbane QLD 4000, Australia

w.kelly@qut.edu.au, j.gough@qut.edu.au

Abstract

The implementation of statically typed programming
languages on the .NET Common Language Infrastructure
(CLI) is by now well understood (Gough 2002).
However, the situation with dynamic languages is not so
clear. Typically such languages have objects that are
dynamically typed, while the CLI is statically typed at the
instruction code level. Nevertheless there is a growing
body of evidence suggesting that the CLI can be a suitable
target for such languages (Hugunin 2006). In order to
better understand the issues involved we set out to create
a full implementation of the Ruby language on the CLI.
This paper describes the challenges faced and design
decisions made in creating Ruby.NET – a Ruby compiler
for the CLI..

Keywords: Dynamic languages, Ruby, CLI, .NET and
Compilers.

1 Introduction

This paper discusses the design of Ruby.NET – a Ruby
compiler for the .NET Common Language Infrastructure
(CLI). Ruby is “a dynamic, open source programming
language with a focus on simplicity and productivity”
(Ruby). The Ruby language has traditionally been
implemented via an interpreter created by the language’s
inventor Yukihiro Matsumoto (“Matz”). The creation of a
Ruby compiler for .NET adds the Ruby language to the
stable of .NET languages and provides Ruby developers
convenient access to the resources of the .NET platform.

We provide two front-ends to our compiler to better cater
for the needs and preferences of developers from both the
Ruby and .NET camps. Our RubyCompiler front-end
compiles one or more Ruby source files into either .dll
or .exe .NET assembly files. These assemblies can then
be dynamically linked with other assemblies (possibly
created using other .NET languages) to create an
application. This front-end is designed primarily for
developers coming from the .NET world and so takes
approximately the same command line arguments as

Copyright © 2008, Australian Computer Society, Inc. This
paper appeared at the Thirty-First Australasian Computer
Science Conference (ACSC2008), Wollongong, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 74. Gillian Dobbie and Bernard
Mans, Ed. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

Microsoft’s C# compiler. We also provide a Visual
Studio integration package for Ruby.NET, for those
wishing to develop Ruby projects within a common
integrated development environment.

Our other front-end, Ruby.exe is intended to emulate
Matz’s Ruby Intepreter (MRI). It takes a single Ruby
source file and executes it. Internally Ruby.exe
compiles the Ruby source file into a .NET assembly and
then loads and executes it, but this is all transparent to the
user as no assembly files are actually written out to disk.
This front-end is designed primarily for developers
coming from the Ruby world and so takes approximately
the same command line arguments as MRI.

These two front-ends are in fact thin wrappers around a
common core called RubyRuntime.dll that contains
the entire compiler infrastructure as well as an
implementation of all of Ruby’s built-in classes and
modules. The compiler infrastructure is contained in the
Runtime library as Ruby is a very dynamic language and
new source code may be encountered or created at
runtime.

2 Related Work

Jim Hugunin et al. have previously developed a .NET
compiler for the Python language (2006). That effort was
largely successful and reported speedups compared to the
standard C-based Python implementation on Windows.
The Python language is however, considerably simpler
than Ruby.

MRI is widely acknowledged as one of the slower
dynamic language implementations around. The official
Ruby implementation will therefore soon change from
MRI to an implementation based on a new virtual
machine called YARV (Yet Another Ruby Virtual
machine) developed by Koichi Sasada (2005).

Apart from those “standard” implementations, a number
of alternative Ruby language implementations have
emerged in recent years. One of the more notable is
JRuby for the JVM platform. JRuby started out as an
interpreter and has gradually morphed into a compiler.

On the .NET platform, John Lam has previously
developed a Ruby/.NET bridge called RubyCLR that
allowed MRI and .NET to inter-operate. This was not a
true compiler, but a simple and practical means of
integrating the two worlds.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

37

Most recently, Microsoft has announced development of
IronRuby for the .NET platform. The goals of IronRuby
are very similar to those of Ruby.NET. IronRuby is a
newer project and so is currently less developed than
Ruby.NET. Parts of the Ruby.NET code base, including
its scanner and parser have been incorporated into
IronRuby.

While similar in goals, the approaches are slightly
different. IronRuby is built on Microsoft’s new Dynamic
Language Runtime (DLR) - a .NET framework for
implementing dynamic languages. The DLR is also used
by IronPython and a new managed implementation of
JScript. The DLR works by building an abstract syntax
tree from Ruby source files and then dynamically
converting them to Common Intermediate Language
(CIL) code at runtime in a “Just in Time” fashion. The
CIL code is then JIT compiled by the .NET JIT compiler.
Ruby.NET, by comparison, statically compiles Ruby
source files into .NET assemblies at compile time.

The DLR itself is simply a class library built on top of the
standard .NET platform. It does not make use of any
undocumented Microsoft internal system calls, so there is
nothing that it can do that we are fundamentally unable to
do also. IronRuby inherits both the advantages and
disadvantages of using the DLR. It can leverage all of the
optimization work that has gone into the DLR and it also
allows IronRuby programs to easily interoperate with
other DLR languages. However, the DLR is a large and
complex framework, so even loading it takes some time,
and at present the DLR is rather Python centric due to its
design heritage and so may not be optimally tuned to
Ruby’s specific needs.

3 Challenges

3.1 Formal Specification

The first challenge that we faced was the lack of a formal
specification for the Ruby language. This means that the
most widely used implementation of Ruby – an
interpreter implemented in C (RUBY, Thomas, Fowler &
Hunt 2004) becomes the de facto specification.
Fortunately, that implementation is open source and the
license allows others to derive new works from it.

3.2 Parsing

Parsing modern programming languages is normally a
relatively straight forward task. Unfortunately, Ruby’s
syntax is derived from Perl which is notoriously difficult
to parse using traditional techniques. On first inspection
the MRI grammar appears unnecessarily complex. For
example, the syntax for array indexing is replicated in
five separate contexts. MRI’s YACC based parser is also
tightly coupled to the hand written scanner with the two
working closely together to resolve many potential
ambiguities. We made extensive efforts to simplify the
grammar and scanner but were ultimately defeated by the
complexity and the lack of formal techniques for
reasoning about the equivalence of different grammars.

Ultimately, we simply mirrored the implementation used
in MRI. Even this was not a straight forward exercise as
there were no reliable YACC like tools for the CLI. We
were therefore forced to create our own tool – the
Gardens Point Parser Generator (GPPG) (Kelly 2005). As
we found, it was critical for our tool to behave virtually
identically to YACC (or Bison). For example, when
contemplating a reduce operation, the next input character
should only be read if it is necessary to resolve between
ambiguous reduce operations. This subtle behavior would
go unnoticed in parsing most languages – but it was
necessary for Ruby due to the tight interaction between
the parser and scanner.

3.3 Compiling vs Interpreting

Ruby has traditionally been implemented as an
interpreter. At “runtime” – the interpreter parses the Ruby
source code, builds a tree data structure that represents
the program, and then walks over this tree interpreting
each node as it goes. Interpretation generally consists of
two steps. The interpreter must first inspect the current
tree node to determine what to do next, and then it must
actually perform the appropriate operation.

A compiler does the parsing and determining what needs
to be done at compile time. Compiled code therefore
generally runs faster because at runtime because it only
needs to perform the appropriate operations. Dynamic
languages such as Ruby, however, introduce the
possibility of new source code being constructed and
encounter for the first time at runtime. In order to
“compile” such languages we need the compiler
infrastructure to be present at runtime so that we can
dynamically compile and load the new code.

The dynamic semantics of languages such as Ruby also
diminish the traditional performance advantages of
compilation. Take for example the operation of adding
two integers together. In a strongly typed language, the
compiler will know at compile time that an integer
addition is required and will be able to generate very
efficient code. In Ruby, however, when we come across a
“+” operator at compile time we cannot determine that it
will be an integer addition as the types of the operands in
the expression cannot be determined in general. Even if
we did know the type of one of the operands, for example
if the left operand was an integer literal, then we still
couldn’t be certain that an integer addition was required
as someone may have overridden the “+” method for the
Fixnum class. This overriding may have taken place in a
separately compiled component, so we have no way of
knowing whether this might have happened.

Now let us assume that the “+” method for the Fixnum
class has not been overridden. The standard
implementation for this method must still inspect the type
of the right operand before we can determine the type of
addition that is required. If the type of both operands is
found to be integer then even then we can not simply add
them together. We must check that the addition does not
result in an overflow; otherwise we will need to promote
the operands to Bignum.

CRPIT Volume 74 - Computer Science 2008

38

As this example illustrates, the cost of the interpretation
step tends to be relatively small compared to all the other
tests that must be performed at runtime to achieve the
correct dynamic semantics. The relative performance
advantage of compilation is therefore diminished.

In the case of compiling for the CLI we face two further
performance impediments compared to the native C-
interpreter. Firstly, the compiled CIL code that we
generate must be further just-in-time compiled at runtime
into native code. Secondly our goal is to generate fully
managed and verifiable CIL code. This means that the
code we generate must be completely type safe, so we
can not do the kind of pointer manipulation and type
conversion tricks that the C-interpreter uses.

So, in summary, we believe it is possible to implement
Ruby in a fully compiled manner, but we do not
necessarily expect it to run significantly faster than MRI.
The principal advantage then of producing a .NET
compiler for Ruby is not improved performance, but
providing the benefits of the CLI platform to Ruby
programmers and to add Ruby to the set of languages that
.NET programmers can choose from.

4 Mapping Ruby to the CLI

Ruby has objects, classes and methods. The CLI also
supports objects, classes and methods so one might think
compiling Ruby to the CLI to be a relatively straight
forward exercise as it is with languages such as C#.
However, as the previous section highlights, Ruby’s
dynamic semantics hinders such straight forward
implementations.

Firstly, the good news - all Ruby objects belong to a class
and the class that an object belongs to cannot change. The
super-class from which a class inherits can also not
change. The bad news is that the set of instance variables
of an object and the set of methods belonging to a class
can change at runtime. Variables and expressions are also
not typed. So when we invoke a method, we generally do
not statically know the type of the receiver object. Even
in those cases where the type of the receiver can be
inferred, we still don’t statically know anything about the
method that will bind to that method name at runtime –
we don’t even know how many parameters it will expect.

4.1 Ruby Classes

CLI classes have a fixed set of methods, so we cannot use
CLI classes to represent Ruby classes. While we could
dynamically generate CIL code for a Ruby class at
runtime, once we have created a CLI class and created
instances of it – it is then impossible to add or modify the
set of methods that it supports. Ruby allows classes to be
modified after instances of that class have been created.
Such changes to a Ruby class can also occur in separately
compiled source files, so it is generally impossible to
have complete knowledge of a Ruby class at compile
time. We therefore provide a CLI class called
Ruby.Class to represent Ruby classes at runtime.
These class objects contain a reference to their super-

class (another Ruby.Class object) and a table that
maps method names to the methods to which they are
currently bound.

The process then of invoking a Ruby method is to:

1) Determine the Ruby class of the receiver object.

2) Determine the Ruby method currently bound to
the specified method name for that Ruby class.

3) Invoke the found Ruby method.

4.2 Ruby Methods

Ruby methods need to be represented in such a way that
they can be referenced in method tables. We could use
CLI delegates for this purpose but since Ruby methods
are not statically associated with a class, we choose to
instead create a separate CLI class for each Ruby method.
We use a singleton pattern to ensure only one instance of
each Ruby method class is created – both for efficiency
and for identity purposes.

These Ruby method classes contain a Call method
which is used for invoking them. As these methods do not
belong to the class of the receiver object, the receiver (or
self) must be passed in as an explicit parameter. These
compiler implementation details are of course completed
hidden from application programmers.

If we had chosen to represent Ruby methods as delegates
we would have had to choose a standard signature which
would have involved passing an array of arguments. We
avoid the overhead of allocating and initializing such an
array in most common cases by providing overloaded
Call methods catering for each number of arguments up
to 10, plus a general purpose Call method for greater
than 10 arguments. Each concrete Ruby method class
overrides the Call method corresponding to the number
of arguments that it expects. The abstract RubyMethod
base class automatically takes care of calls to that method
with other numbers of arguments.

4.3 Ruby Objects

All Ruby objects inherit from a Ruby class called
Object which implements a number of standard
methods such as class, clone, freeze, inspect
and methods. An obvious approach therefore would be
to require all objects used within Ruby programs to
derive from a CLI class or interface called
Ruby.Object. We do provide such a class but we do
not assume that all objects passed as parameters to Ruby
methods (or stored in Ruby collection classes) are derived
from Ruby.Object. We instead allow any CLI
reference type (derived from System.Object) to be
used.

This has two advantages. Firstly, it supports
interoperability with other .NET languages, without
having to wrap other CLI objects within Ruby objects.
Secondly, it allows us to represent primitive Ruby types
more efficiently. For example, we can represent a Ruby

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

39

object of class Fixnum as a (boxed) Int32, Ruby
objects of class TrueClass and FalseClass can be
represented as boxed Bools and Ruby objects of class
NilClass are simply represented as a null reference.

So, if the only thing we know about an object is that it
derives from System.Object, how can we usefully
operate on it? What does a Ruby object need to be able to
do?

4.4 Finding an Object's Ruby Class

To invoke a method on an object we first need to be able
to determine its Ruby class. Rather than relying on the
object itself to provide a field or method that returns its
Ruby class, we instead provide a static method that takes
a System.Object and returns its Ruby.Class. In
most cases, the objects we use will derive from
Ruby.Object – in which case the static method simply
returns the Ruby.Class object stored in the
Ruby.Object. If the object is null, a boxed bool or
a boxed int32 then the method return the Ruby.Class
object corresponding to NilClass, TrueClass,
FalseClass or Fixnum class, as appropriate.
Otherwise the object must have been created by a
component implemented in another .NET language. In
that case, we dynamically create a special Ruby.Class
object to represent the foreign CLI type. We maintain a
static table that maps foreign CLI types to their
corresponding Ruby.Class object, so that if we
encounter an object of that type again, we can use the
already created Ruby.Class object rather creating a
new one. We use a special subclass of Ruby.Class
called Ruby.CLRClass that uses CLI reflection to
locate methods rather than the method table used by other
Ruby.Class objects.

4.5 Instance Variables

In statically typed languages, the class defines the set of
instance variable (or fields) that a class may possess, but
the value of those instance variables is a property of each
individual object. In Ruby, the class does not define a
fixed set of instance variables. Each object of a particular
class may have a different set of instance variables, and
the set of instance variables associated with an object can
change dynamically – separately compiled components
may independently add to the set of instance variables
that an object possesses. So, in general, the only way of
representing instance variables is as a dictionary that
maps instance variable names to their current value. And
since instance variables are not typed, those values must
simply be a reference to an object derived from
System.Object.

It is therefore possible for different Ruby objects
belonging to different Ruby classes to have the same CLI
class (say Ruby.Object). These Ruby.Object
objects will each contain references to their respective
Ruby.Class objects and will each contain a field for
their own instance variable dictionary. But what about
Fixnums, TrueClass, etc? Their representations are

not derived from Ruby.Object; where do their
instance variables get stored? We use the same trick as
MRI and store their instance variables in two dimensional
look-aside table indexed by object and instance variable
name.

4.6 Allocating Ruby Objects

As the previous section suggests, apart from a few special
cases such as int32s and bools, we can represent most
Ruby objects using just the Ruby.Object CLI class.
There are two reasons why we would not always want to
do this. Firstly, the Ruby language defines a set of built-in
Ruby classes such as String, Array, Hash, Regexp,
File, Dir etc. Objects of these classes have an intrinsic
value. For example a String encapsulates a list of
characters. We therefore provide in our runtime library,
separate CLI classes (derived from Ruby.Object) for
each of the Ruby built-in classes. Each of these classes
contains a private value field that is used by in our
implementation of the methods for these classes. For
example the Ruby.String class contains a value
field of type System.String. We cannot directly
represent Ruby strings as CLI strings as CLI strings are
immutable whereas Ruby strings are mutable. The
Ruby.String class contains methods to for example
capitalize or reverse the string. These methods work by
changing the value field of the Ruby.String object.

Obviously, then if a Ruby program calls the standard new
method of the String class, we need to allocate a CLI
object of class Ruby.String rather than just a
Ruby.Object. If however, the Ruby program calls the
new method of a class Foo that inherits from String,
then we also need to ensure that we allocate a CLI object
that at least derives from Ruby.String. The problem
is that we cannot generally determine at compile time the
super-class of a Ruby class. The super-class of a Ruby
class is not allowed to change after the class has first been
declared, but the super-class may be a runtime expression
rather than being a statically known value. Even when the
super-class is seemingly static, all may not be as it
appears. Consider the following example:

class Foo < String

 ...

end

It might appear from this example that we know that class
Foo inherits from the built-in String class. However,
the super-class expression String is really just a
“constant” expression, and in theory, the programmer
could have previously redefined this constant to refer to
some other String class – perhaps their own custom
String class. This redefinition could have occurred in a
separately compiled component, so in general, we have
no way of knowing for certain what the base class of a
Ruby class is at compile time.

When we are asked to create an instance of class Foo, we
do not necessarily have to create an instance of a CLI

CRPIT Volume 74 - Computer Science 2008

40

class called Foo, but if Foo does actually inherit from
built-in class String then we need to ensure that we at
least allocate an object that derives from Ruby.String
(so that the implementation of the standard string
methods can access its value field). Equally, if it turns out
String is actually an alias for say built-in class File, then
we need to at least ensure that we allocate an object that
derives from class Ruby.File. The decision of which
class to allocate must therefore be made at runtime. We
active this by using Ruby's normal method binding
mechanisms. We invoke a Ruby method called
allocate to create the appropriate class of object. In
this case, class Foo might not possess an allocate
method of its own, but one of its superclasses will. If the
parent-class turns out to be String (or derived from
String), then the String allocate method will be
encountered before the Object allocate method
using Ruby's normal inheritance hierarchy search process.

 The other reason we may not want to simply use an
object of CLI class Ruby.Object to represent a Ruby
Foo object is for interoperability purposes. Using a
Ruby.Object object will achieve all of the appropriate
semantics for a program implemented entirely in Ruby.
But if we wish components implemented in other .NET
languages to be able to conveniently use our Ruby
classes, it is preferable if we create a CLI class
specifically for Ruby class Foo and allocate such an
object when required. But again, the problem is knowing
statically what the base class is. So, in the above example,
we would create a CLI class called Foo that inherits from
Ruby.String, but at runtime we would have to decide
whether the allocator for class Foo, ie the
allocator that creates an instance of CLI class Foo
was actually safe to use. If that allocator creates an
object that does not derive from the type of object created
by the base classes' allocator then we instead defer to
using the base classes' allocator.

In either event, the CLI class Foo that we create is
primarily a wrapper class that simply provides convenient
access to that Ruby classes' methods and instance
variables. We add CLI methods to this class
corresponding to each of the statically known Ruby
methods in the class, but these wrapper methods simply
invoke the underlying Ruby methods via the normal
dynamic Ruby method lookup process. In this way, the
implementation of those methods can still change
dynamically. The Ruby object may also gain additional
dynamic methods that are not accessible via the static
CLI wrapper methods but they can still be called using a
more dynamic invoke API.

4.7 Local Variables

While the set of instance variables associated with an
object is impossible to determine statically, the set of
local variables used within a method or block is generally
known at compile time. Each invocation of a method
effectively gets its own copy of each of these variables.
Such local variables would in less dynamic languages be
allocated on the runtime stack as their lifetime

corresponds to the duration of the corresponding method
call. In Ruby, however, local variables may continue to
live after the method that created them has returned. This
can occur when a Ruby code block is created within that
method. The code within the block has access to all of the
local variables in its surrounding method. Such blocks
can be treated as objects and be returned or otherwise
escape the scope of the method. If this happens, the
captured local variables need to remain live for as long as
the block may be executed.

So, in general, rather than storing Ruby local variables as
CLI local variables (which are stored on the runtime
stack), we store Ruby local variables in special activation
frame objects that we allocate on the CLI heap. At
compile time we can generally determine which local
variables will be used within each method, so we create a
separate activation frame class (containing named fields
for each local variable) for each Ruby method and block.
The prologue of the Call method in each Ruby method
class is responsible for allocating a new activation frame
object. A reference to this frame object is stored in a CLI
local variable so that it can be conveniently accessed in
the remainder of the method. So, to access a local
variable, we need to follow the CLI local variable to the
activation frame and then access a named field within that
activation frame. This is actually more efficient than the
MRI implementation that traverses a list of local variables
to find a match. If a nested block exists and escapes from
the method then the block will contain a reference to the
frame. The frame object will remain live and then
naturally be garbage collected as soon as there are no
longer any references to it.

4.8 Blocks

Ruby code blocks can also be nested inside other code
blocks. Inner code blocks therefore have access to all
local variables in surrounding blocks as well as the
surrounding method. Blocks can be invoked just like
Ruby methods so we represent each block by a class
derived from RubyMethod. These custom created Block
classes contain fields which point to each of its
surrounding activation frame objects. When we access a
local variable from within a nested block we always
know statically at which nesting level it was defined. So
to access such a local variable, we simply need to access
the block’s (strongly typed) field that corresponds to that
level and then access the appropriately named local
variable field within that activation frame.

4.9 Passing Parameters to Blocks

Blocks behave much like regular methods in that they
both provide a list of formal arguments and they can be
encapsulated in a Proc object and then be either called
or invoked by yield. The processing of assigning
actual parameters to formal parameters for blocks does
however differ from the process used for methods. The
assignment of actual parameters to formals for blocks is
basically treated the same as Ruby's parallel assignment
construct. So, for example, calling the block

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

41

{ |x, y, z| ...}

with arguments expr1, expr2, expr3 is equivalent to:

x, y, z = expr1, expr2, expr3

This however means that we can have “strange” formal
argument lists such as:

{|a, (b, *c), c[a]| ... }

which contains duplicate arguments and L-value
expressions.

Another important property of parallel assignment is that
the syntax of the right hand side affects the semantics, not
just its value. For example:

a, *b = [1,2,3]

produces different results to

a,*b = [1,2,3], *[]

even though their right hand sides have effectively the
same value. A consequence of this is that if you pass
these two different right hand sides to a method then the
semantics will be the same, but if you pass them to a
block via a yield command, then the semantics will be
different (and if you pass them to a block via a call then
the semantics are the same!)

This mean, when evaluating arguments lists, we need to
maintain, not just the list of values computed, but also a
flag indicating whether the syntax consisted of a single
right hand side argument.

4.10 Dynamic Evaluation

Ruby provides a runtime method that takes a dynamically
constructed string and interprets it as Ruby source code at
runtime. In the simplest case, this is not difficult for us to
achieve. We simply invoke our compiler at runtime and
rather than writing the compiled code to a file, we write it
to a memory stream, dynamically load the assembly and
invoke the generated code. We use our own PE file writer
for all code generation. Our writer is based on the
published binary format specification used for CIL
assembly files and avoids the verification steps performed
by other CIL emitting APIs (verification is still performed
by the CLI when the memory stream is loaded as an
assembly).

The more complicated aspect of implementing the eval
method is providing access to Ruby classes and local
variables that already exist at runtime in outer contexts
within which the eval method is invoked. Our
implementation of the eval method first uses CLI
reflection to determine the context within which it is
invoked. It then sets up a static compiler context (abstract
syntax tree) that encapsulates this runtime context. The
given string is then parsed within this synthetically
generated compile time context, so that all local variables
encountered during parsing are automatically mapped to

local variables and frame types that already exist at
runtime.

The runtime context provided to the eval method might
be the current runtime context or it may be a different
runtime context as captured previously and encapsulated
in a Ruby Binding object. A Binding object
encapsulates the current self or receiver object as well
as the current activation frame.

4.11 Dynamic Local Variables

Normally, as stated earlier, the set of local variables for a
method or block can be statically determined. However,
this is not true of local variables created by calls to the
eval method. These dynamic local variables can,
however, only be accessed by other calls to eval within
the same frame. Other static code within the frame will
not know of these local variables and will treat them as an
undefined local or method. Consider for example:

def foo

 # x created dynamically within eval

 eval 'x = 42'

 # x is not treated as a local here

 puts x # undefined local or method

 # but x is visible here inside an eval

 eval ' bar {|y| puts x }

end

Such dynamic local variables need to be accessed via a
dictionary (similar to instance variables). But, as these
dynamic local variables can only arise within eval code
– they are relatively rare and we can lazily create a
dictionary for them only if it turns out one is actually
needed.

4.12 Non-local Control flow

One of the principal uses of code blocks in Ruby is as the
body of a for or each loop. In this context, control flow
constructs such as break, retry, redo and return
make sense. Break leaves the block and continues after
the loop, redo goes back to the start of the block,
retry goes back to the start of the loop and return
leaves the entire method. It must be remembered,
however, that a block may escape from the method in
which it is defined. If a control flow statement is executed
in such a situation then the resulting control flow can be
very non-local.

Consider the Ruby code below. A block is created within
methodA. It is saved as a Proc object and later passed
to methodB and subsequently passed as a block
parameter to methodC. The “yield” in methodC

CRPIT Volume 74 - Computer Science 2008

42

executes the block. The return statement causes control to
return not just from the block or the method that invoked
yeild, but all the way back to return from the method in
which the block was declared (if it is still active).

In this case the block was declared within methodA, so
control will leave the block, skip the end of methodC,
skip the end of methodB and return from methodA. If
the return statement is replaced by a break statement,
then control will instead return to the end of methodA. A
retry would cause methodB to re-execute (causing an
infinite loop in this case).

Note: this non-local branching behavior only occurs if the
block is invoked by yield. If we instead passed y as a
Proc parameter to methodC and then called it, the
return statement would only return control from the
block back to methodC. The behavior also depends on
how the block was defined, as lambda blocks behave
differently to proc blocks and differently again if you
pass a method as a Proc. All together there are about 24
semantic cases to consider – many of which are non-
orthogonal and seem counter-intuitive. We assume many
of these cases are simply consequences of the current
MRI implementation rather than carefully considered
language design choices.

In any event, our basic approach to achieving this kind of
non-local branching behavior is to use CLI exceptions.
We use three distinct exception classes for return,

retry and break. If a redo, break or retry occurs
within a loop then an appropriate branch instruction is
generated. In contexts where non-local branching is
required we instead throw an exception of the appropriate
kind (return, retry or break). Each block has a
reference to the frame of the scope in which it was
defined. This defining scope is stored in the exception
object when it is thrown, together with the any return
value that may be provided by the control flow statement.
We generate code that places every Ruby method call
within its own try block which catches Break and
Retry Exceptions. When one of these exceptions is
caught, we check to see if the defining scope stored in the
exception matches the current frame. If it does, then the
appropriate frame has been found, so it branches to the
appropriate label within that method and uses the return
value stored in the exception. If the frames do not match,
then the exception is re-thrown to the next outer call
level. Return exceptions are caught by try blocks that
we generate around each scope (class init, method or
body) rather than the try blocks which surround each
method call.

This process is potentially quite time consuming but it is
only needed when such non-local branching constructs
are encountered at runtime. In most cases control will
return from a method call normally and none of the code
in these catch blocks will ever be executed. This code
pattern does however seriously increase the amount of
code that we generate as it is replicated at each call site.

4.13 Continuations

Continuations allow a snapshot of the runtime stack to be
made and to then return to that state at some latter point.
We have not yet implemented continuations as there is
still much discussion going on regarding whether they
will be retained in future versions of the Ruby language.
The CLI does not provide developers sufficient access to
the CLI stack to perform these kinds of operations
directly, so our intended approach for dealing with
continuations also relies on CLI exceptions.

When a continuation is to be created, we would throw a
special CLI continuation exception. The try block
around each Ruby method call would also contain a
special catch clause for this kind of exception. This catch
block would save all of its local state (including the call
point) into the continuation object and then re-throw the
exception to the next call level for it to do the same.
When this exception reaches the outermost level, we will
have by that time captured all the state information
needed for the continuation but unfortunately in the
process completely pulled down the runtime stack. So, to
be able to continue normally after having created the
continuation, we then need to go about the process of
restoring the CLI call stack to its original state.

Each method would have a special recreating parameter
flag and the prologue code of each method would
depending on this flag either execute the method
normally, or jump to the call point where execution of
this stack frame was previously. When a continuation is

def methodA()

 # create block

 x = proc { return 42; };

 # and then much later ...

 methodB(x);

 puts 'end methodA';

end

def methodB(y)

 methodC(&y);

 puts 'end methodB';

end

def methodC()

 yield();

 puts 'end methodC';

end

methodA();

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

43

called, the same process would be used to pull down the
current call stack and to re-establish the stack of the
continuation.

This approach relies on all of the methods on the CLI call
stack being constructed according to a strict pattern to
support the tearing down and building up of call stacks.
This is fine for methods generated by our compiler. The
hundreds of methods of Ruby’s built-in classes and
modules that we have implemented by hand would be
more problematic. It does not work at all if there are
methods on the stack from components implemented
using other .NET languages.

4.14 Rescue Clauses

Ruby supports the raising of exceptions. These exceptions
all inherit from a built-in Ruby class called Exception
which we represent using a CLI class called
Ruby.Exception. Since Ruby.Exception inherits
from Ruby.Object and not System.Exception, it
is necessary to use a separate CLI class called
RubyException (which does inherit from
System.Exception) to actually throw the exception.
The Ruby.Exeception raise method generates a
RubyException object and the two objects work
together, with each containing a reference to the other.

Ruby also supports rescue clauses for catching Ruby
exceptions. Each rescue clause contains a list of
exceptions that it will catch. This exception list, however,
is not necessarily a list of the names of the exception
classes. In general, it is a list of expressions which are
meant to evaluate to Ruby objects that support method
"===". This Ruby method (which may be programmer
supplied) is used to determine whether the current
exception matches the specified exception. So, rather than
just catching a particular CLI exception based on the
Ruby exception listed in the rescue clause, we must
effectively catch all Ruby exceptions and then check to
see if it was one we where meant to catch, and if not, re-
throw it. For interoperability purposes, we also want to be
able to catch arbitrary other CLI exceptions in Ruby
rescue clauses by wrapping them in Ruby exceptions.
Rather than trying to catch and convert CLI exceptions to
Ruby exceptions as close to their origin as possible, we
instead lazily only convert them when and if they are
caught by a rescue clause. If a CLI exception is thrown
that is not within a rescue clause then it remains as a
pure CLI exception. We therefore need to catch all CLI
exceptions at every rescue clause (not just those derived
from RubyException). We must therefore be careful,
to ensure that we do not trap CLI exceptions such as our
Break exceptions that we use for the implementation of
non-local control flow.

Ruby also supports a separate and slightly different
exception mechanism based on throw and catch
constructs, but that mechanism is implemented as part of
the built-in class library rather than as a language feature.
We use a separate CLI exception class to implement that
type of exception.

4.15 Ruby Threads

The Ruby language defines its own threading model
rather than relying on the threading model of the
underlying platform. Ruby’s thread model is often
described as a “Green” thread model as it does not
support the concurrent execution of its threads. The
standard Ruby interpreter uses a single operating system
thread and manually time slices between them at certain
designated places within the runtime. Each thread is
guaranteed at least 10ms of uninterrupted execution
before possibly being switched out.

We have not yet implemented Ruby threads as there is
still some debate regarding whether their semantics will
change in future versions of the Ruby language. Our plan,
however, for implementing them was to use separate CLI
threads for each Ruby thread, but to carefully control the
use of those threads to ensure that only one thread was
executing at any given time and that switches between
threads could only happen at designed places within the
runtime.

We have, however, also tried to make our implementation
as thread safe as possible, so that we can also support
concurrent CLI threads. We have avoiding using global
variables to represent quantities that should be specific to
the currently executing thread. For example, we don’t
store the current class in a global variable as MRI does.

4.16 Code Generation Invariants

As explained in the previous sections, CLI exceptions are
used as part of the Ruby.NET implementation to achieve
non-local control flow. This means that all Ruby method
calls need to be placed in their own try-catch block.
One of the CLI's verification rules is that the CLI
argument stack must be empty when entering a try
block. This poses problems when method calls are nested.
Consider for example:

expr1.Foo(expr2, expr3.Bar(expr4, expr5));

Normally this would be translated into:

Code for expr1

Code for expr2

{

Code for expr3

Code for expr4

Code for expr5

Call Bar

}

Call Foo

But if we put a try block around just the call to Bar,
then the stack would contain expr1 and expr2 on entry to
the block.

CRPIT Volume 74 - Computer Science 2008

44

We therefore need to translate it into:

temp1 = Code for expr1;

temp2 = Code for expr2;

temp3 = Code for expr3;

temp4 = Code for expr4;

temp5 = Code for expr5;

try {

 load temp3

 load temp4

 load temp5

 temp6 = Call Bar

} catch …

try {

 load temp1

 load temp2

 load temp6

 Call Foo

} catch …

Obviously if any of the expressions are literal expressions
or expressions that do not themselves involve method
calls, then we can simply load that literal rather than
storing it in a temp. Our code generation for method calls
is then based around the idea of pre-computing each of
the arguments. If the argument is a literal then the pre-
computing step is a no-op, otherwise pre-computing
computes the value and stores it in a temp. These temps
are recycled once we are finished with them. This is a
very important pattern as just about everything in Ruby is
done via a method call. For example applying the '+'
operator is a method call, determining whether a Ruby
exception matches a particular Ruby rescue clause is a
method call, etc.

4.17 Different Notions of Current Class

The Ruby language has at least three different notions of
what the “current class” is in a given context.

One definition denoted ruby_cbase represents the
current lexical class and is used for accessing constants
and class variables. Another definition denoted
ruby_class is used when defining and undefining
methods and aliasing. This notion of current class may
not be the same as the current lexical class if an eval
method is in progress that is using a Binding from
another context. The dynamic nature of this notion of
current class requires us to propagate it via a parameter
passed to all blocks. The third notion of current class,
denoted last_class is used for making super calls. It

is propagated via a parameter passed to every Ruby
method and used by our FindSuperMethod method to
ensure that when a super method is called, that we look
for a method higher up the class hierarchy than where the
currently executing method was defined. Without it, an
infinite loop can result when invoking super methods.

4.18 Object Ids and Weak References

Ruby Objects support a method called id which maps to
a unique integer associated with that object. MPI
basically just returns the address of the object in question.
It is not possible to do this on the CLI in a strongly typed,
safe and verifiable manner. We don't however, need to
return the address of the object, we can return any integer,
provided it uniquely corresponds to this object. It is a
simple process to simply generate the next integer id in
sequence when a new object asks for its id. Once we
have returned an id we need to store it with the object so
that we can ensure we will return the same id if asked
again.

The bigger challenge is implemented the reverse
operation that locates a Ruby object given its id. This
can be done by maintaining a reverse lookup table. The
potential problem with this approach is that placing an
object in this table will prevent it from being garbage
collected. The solution is to use a special CLI class called
System.WeakReference which maintains a
reference to an object without preventing it from being
garbage collected. We can query a WeakReference
object at any time to determine if the object that it points
to has been garbage collected. We use this same approach
for implementing the each_object method of the
build-in module ObjectSpaces which enumerates all
of the currently live Ruby objects.

4.19 Dynamic Code Loading

We may need to dynamically generate CIL code in two
circumstances, firstly for eval methods and secondly
when another Ruby source file is loaded. If the source file
in question has already been compiled into a dynamic
link library and that library is newer than both the source
file and the Ruby compiler itself, then we load the
precompiled library and use it. Otherwise, we
dynamically parse, generate code to a memory stream and
then load the new assembly.

One of the issues with dynamically loaded assemblies is
that references to them by other dynamically loaded
assemblies are not automatically resolved in the way they
are for assemblies that originate from disk. We therefore
maintain a list of dynamically loaded assemblies and
manually resolve to them by providing a custom handler
for the AssemblyResolve event of our current
application domain. One disadvantage of our dynamic
generation and loading of assemblies is that they are
never garbage collected (as occurs with the CLI light-
weight code generation API used by IronPython
(Hugunin 2006)).

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

45

4.20 Command Line Arguments

Ruby has its origins on UNIX systems which support a
rich range of command line globbing functionality. By
the time the command line arguments find their way to
the Main method of a CLI executable some information
has already been lost (for example, the name of the
executable and various parameter quote characters). So,
rather than relying on the args array provided to the
Main function, we instead call:

 System.Environment.GetCommandLineArgs()

and manually perform our own globbing (analogous to
how the win32 version of MRI works).

4.21 Symbols and Interning

MRI “interns” all strings used as class names, method
names, etc, in a string table and then subsequently
represents them by their integer offset within this table.
We have so far, not performed such an interning and
represent all of our methods names etc as CLI strings.
This makes comparison slower but avoids the interning
step. It would be nice if we could perform the interning at
compile time, but this is not possible if we are to support
separate compilation of Ruby source files as two symbols
in different files with the same name should always be
treated as identical. Interning of method names if one of
many optimizations that we will soon experiment with.

5 Optimization

Our focus so far has been exclusively on attaining the
correct dynamic semantics of the Ruby language, and we
have made no attempt to optimize the performance of the
compiled code.

Nevertheless, we have attempted to avoid architectural
features that would stand in the way of future efforts to
improve the performance. Our aim is to incrementally
add optimization steps in an environment where our
regression test infrastructure can ensure that the changes
do not affect correctness.

Interning method names as an optimization of dictionary
lookup has already been mentioned in the previous
section.

Mature implementations of dynamic languages invariably
rely on call-site caching of method bindings to offset the
overhead of repeated lookups. Although it is possible for
such bindings to change, it is infrequent in practice. Thus
caching is a big win. Such a mechanism is effective in the
case of Ruby, and we expect to implement the mechanism
shortly. The challenge is to find the least conservative
rule for invalidating bindings that still ensures correct
behaviour.

Finally, we are aware the computational data paths in the
runtime libraries are far from optimal. As an example the
main line of computation in the equals test for Ruby
strings has a chain of method calls that between them
perform no less than seven type instance tests before
finally getting to start a character by character

comparison. This can surely be improved, although it is a
laborious task to ensure that all non-mainline control flow
paths in the replacement code still provide correct
semantics.

6 Conclusions

Our implementation of Ruby on the CLI has
demonstrated that a verifiable code, compiled approach
can achieve correct semantics. Our current
implementation passes all tests for the functionality that
we have implemented. As noted previously, the most
significant missing functionality is threading and
continuations. There is also some lack on functionality
due to the fact that we have not implemented many of the
libraries that are supplied as C-language interop libraries
in the standard Ruby distribution. We expect that
managed replacements for these will gradually be
provided by us, or by others, as the need arises.

The “experiment” has highlighted once again the issues
that arise in attempting new implementations of
languages that are informally defined. In return we have
been led rather more deeply into the unique detailed
semantics of the Ruby language. It has been a
challenging and rewarding journey, and we hope that our
experience will be of assistance to others who choose to
tread the same path.

7 Acknowledgements

We wish to thank Microsoft Research for their financial and
technical support of this project.

8 References

GOUGH, J, Compiling for the .NET Common Language
Runtime (CLI) Prentice Hall PTR, 2002

HUGUNIN, J. Jim Hugunin’s Thinking Dynamic,
http://blogs.msdn.com/hugunin/archive/2006/09/05/741
605.aspx, Accessed 18 October 2007.

IRONRUBY, A fast, compliant Ruby powered by .NET,
http://www.ironruby.net/, Accessed 18 October 2007.

JRUBY, Java powered Ruby Implementation,
http://jruby.codehaus.org/, Accessed 18 October 2007.

KELLY, W. Gardens Point Parser Generator.
http://www.plas.fit.qut.edu.au/gppg, Accessed 18
October 2007.

LAM J, RubyCLR, http://rubyforge.org/projects/rubyclr/,
Accessed 18 October 2007.

MILLER, J & RAGSDALE, S. The Common Language
Infrastructure Annotated Standard, Addison-Wesley
Professional, 2003

RUBY. Ruby Language home page, http://www.ruby-
lang.org, Accessed 18 October 2007.

SARADA K, YARV: Yet Another Ruby VM,
http://www.atdot.net/yarv/, Accessed 18 October 2007.

THOMAS, D, FOWLER, C & HUNT, A. Programming
Ruby, 2nd Edition, Pragmatic Bookshelf, 2004

CRPIT Volume 74 - Computer Science 2008

46

Privacy Preserving Set Intersection Based on Bilinear Groups

Yingpeng Sang Hong Shen

School of Computer Science
The University of Adelaide,

Adelaide, South Australia 5005, Australia,
Email: {yingpeng.sang, hong.shen}@adelaide.edu.au

Abstract

We propose a more efficient privacy preserving set
intersection protocol which improves the previously
known result by a factor of O(N) in both the com-
putation and communication complexities (N is the
number of parties in the protocol). Our protocol
is obtained in the malicious model, in which we as-
sume a probabilistic polynomial-time bounded adver-
sary actively controls a fixed set of t (t < N/2) par-
ties. We use a (t + 1, N)-threshold version of the
Boneh-Goh-Nissim (BGN) cryptosystem whose un-
derlying group supports bilinear maps. The BGN
cryptosystem is generally used in applications where
the plaintext space should be small, because there
is still a Discrete Logarithm (DL) problem after the
decryption. In our protocol the plaintext space can
be as large as bounded by the security parameter τ ,
and the intractability of DL problem is utilized to
protect the private datasets. Based on the bilinear
map, we also construct some efficient non-interactive
proofs. The security of our protocol can be reduced
to the common intractable problems including the
random oracle, subgroup decision and discrete log-
arithm problems. The computation complexity of
our protocol is O(NS2τ3) (S is the cardinality of
each party’s dataset), and the communication com-
plexity is O(NS2τ) bits. A similar work by Kissner
et al. (2006) needs O(N2S2τ3) computation complex-
ity and O(N2S2τ) communication complexity for the
same level of correctness as ours.

Keywords: cryptographic protocol, privacy preserva-
tion, bilinear groups, set intersection, non interactive
zero-knowledge proof.

1 Introduction

For datasets distributed on different sources, com-
puting the intersection without leaking the other ele-
ments is a frequently required task. One example is
that one airline company is always required to find out
those passengers who are on their private passenger
list and the government’s “do-not-fly” list. Another
example is that some companies may decide whether
to make a business alliance by the percentage of cus-
tomers who have consumption records in all of them.
In these scenarios, none of the companies or govern-
ment is willing to to publish the other elements in
their datasets than those of the intersection. In this
paper, we address this problem as Privacy Preserving

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74, Gillian Dobbie and Bernard Mans, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

Set Intersection (PPSI), in which there are N (N ≥ 2)
parties, each party Pi (i = 1, ..., N) has a set (or mul-
tiset) Ti and |Ti| = S, each party wants to learn the
intersection TI = T1 ∩ ... ∩ TN , without gleaning any
information on the other parties’ private elements ex-
cept TI.

Generally speaking two types of probabilistic
polynomial-time (PPT) bounded adversaries are con-
sidered in the research of Secure Multiparty Compu-
tation (SMC) : semi-honest (passive) and malicious
(active). A semi-honest party is assumed to follow the
protocol exactly as what is prescribed by the proto-
col, except that it analyzes the records of intermediate
computations. A malicious party can arbitrarily devi-
ate from the protocol. Theoretically if the adversary
controls N/2 or more parties, a robust protocol can
not be achieved to tolerate early-quitting of the ma-
licious parties. More details on the semi-honest and
malicious models can be found in other works (Yao
1982, Goldreich et al. 1987, Goldreich 2004). In this
paper, we assume that the adversary corrupts a set of
less than N/2 parties before the start, and maliciously
controls the fixed set during the execution. The ad-
versary we consider is also called non-adaptive. There
are also adaptive adversaries that can select the par-
ties they control as the execution proceeds, but they
are not considered in this paper.

We also assume a physical broadcast channel exists
for all parties where there is a public board whose
content change can be publicly tracked. In practice
this broadcast channel can be implemented by the
Authenticated Byzantine Agreement in the point-to-
point network. More details can be found in works of
Lamport et al (1982) and Dolev et al (1983).

A PPSI protocol was proposed by Kissner et al.
(2005) by constructing a randomized polynomial Y
whose roots set contains the intersection set TI. In
this paper, we construct a simplified Y , while still
keeping the private relationship among Y and all
Ti. Specifically we construct the encrypted Y by
one cryptosystem which is semantically secure un-
der the Subgroup Decision Assumption (SDA). Cryp-
tosystems based on SDA generally require a limited
plaintext space because after the decryption there is
still one discrete log computation to recover the plain-
text, as found in other works (Yamamura et al. 2001,
Boneh et al. 2005). However, in this paper we show
how they can be applicable on a plaintext space as
large as the order of the subgroup on which the cryp-
tosystems are constructed. A few candidate cryp-
tosystems by Yamamura et al. (2001) can be consid-
ered for our protocol, but we choose the Boneh-Goh-
Nissim (BGN) cryptosystem from Boneh et al. (2005),
because it is based on the bilinear map by which we
can construct efficient non-interactive zero-knowledge
NIZK proofs.

Our PPSI protocol based on the NIZK proofs has
O(NS2τ3) computation complexity, and O(NS2τ)

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

47

communication complexity. The PPSI protocol by
Kissner et al. (2006) need O(N2S2τ3) computation
complexity and O(N2S2τ) communication complex-
ity. Though they have stated that the communication
complexity may be reduced to O(N2Sτ) by applying
cut-and-choose technique, it has not been shown how
this can be achieved and what is the reduced compu-
tation complexity.

The remainder of the paper is organized as follow-
ing: Section 2 discusses some related work. Section 3
formally defines the problem of PPSI. Section 4 lists
the basic tools for our protocol. Section 5 constructs
the non-interactive proofs required in our protocol.
Section 6 proposes the PPSI protocol for the mali-
cious model. In Section 7 we analyze the computation
and communication costs of our protocol. Section 8
concludes the whole paper.

2 Related Work

A solution for the multi-party case of PPSI was firstly
proposed by Freedman et al. (2004). The solution
is based on evaluating polynomials representing ele-
ments in the sets. Kissner et al. (2005) proposed a
more efficient solution for PPSI, in which each poly-
nomial representing each set is multiplied by a ran-
dom polynomial which has the same degree with the
former polynomial. The degree of the random poly-
nomial was optimized by Sang et al. (2006). All these
protocols are based on the semi-honest model.

Kissner et al. (2006) extended their PPSI protocol
(Kissner et al. 2005) to the malicious model using zero
knowledge proofs. The main idea of their protocol is
constructing a polynomial Y =

∑N
l=1(fl ∗

∑N
i=1 ri,l)

where fl is a polynomial having Pl’s dataset Tl as the
roots set, ri,l is a uniformly selected polynomial with
the same degree with fl. Specifically each Pi com-
putes and broadcasts yi = f1 ∗ ri,1 + ... + fN ∗ ri,N ,
then they sums all yi to get Y . With overwhelm-
ing probability, the roots set of Y equals TI. The
major cost of their protocol is computing the N2

polynomials multiplications E(fl ∗ ri,l), given E(fl)
and ri,l, and then proving the correctness of each
multiplication. Suppose fl =

∑S
k=0 al,kxk, E(fl) =

{E(al,k)|k = 0, ..., S}, ri,l =
∑S

k=0 bi,l,kxk, E(·) is
an additive homomorphic encryption scheme, then
each coefficient of E(fl ∗rl,k) can be computed by the
corresponding coefficient-multiplications of E(fl) and
ri,l. It is easy to get that totally (S + 1)2 coefficient-
multiplications are required, and each of them need
one modular exponentiation. The proof of correct
coefficient-multiplication is proposed by Cramer et al.
(2001), which is constant size. Thus Kissner et al.
(2006)’s protocol is O(N2S2) size, i.e. the computa-
tion complexity is O(N2S2τ3) (τ is the length of each
element, O(τ3) is the complexity of one modular ex-
ponentiation), and the communication complexity is
O(N2S2τ) bits.

Kissner et al. (2006) also proposed that cut-and-
choose technique may be used to simplify the proof
of correct E(fl ∗ rl,k), but cut-and-choose technique
may compromise the correctness of the proof. For
example, in a simplified proof the prover can firstly
broadcast the 2S + 1 coefficients of E(fl ∗ rl,k), the
verifiers randomly select a coefficient (by means of se-
lecting random common challenge from Cramer et al.
(2001)), then the prover proves the multiplications
inside the selected coefficient are all correct. This
proof is of O(S) size, and reduces the communication
complexity of the whole protocol to O(N2Sτ) bits,
but will not reduce the computation complexity to

O(N2Sτ3). At least O(NS2τ3) computation cost is
still required to compute N numbers of E(fl ∗rl,k) on
each party. What’s more, in this simplified proof the
probability of one coefficient not being chosen by the
verifiers is 1− 1

2S+1 . When S is large, this probability
can not be negligible. Then a wrong coefficient will
not likely be found out, by which a malicious party
can multiply rl,k with another E(f ′l) other than E(fl),
then Y will not be correctly constructed, and its roots
set will not equal TI. Some other techniques can be
found to simplify the zero knowledge proof.

Sang et al. (2007) also extended their work (Sang
et al. 2006) to get a PPSI protocol in the malicious
model with O(t2S2τ3) computation complexity, using
interactive zero-knowledge proofs from Cramer et al.
(2001), but there was still high cost polynomials mul-
tiplications in this extension. The complexity will be
ideal if there is no polynomials multiplications in con-
structing Y , i.e., Y =

∑N
l=1(fl ∗ Rl) in which Rl is a

random number. However, a malicious party knowing
the coefficients of this Y will get advantage on guess-
ing the coefficients of fl from an honest party. In this
paper we will construct this Y in its encrypted form,
evaluate E(Y) without leaking its coefficients.

Hohenberger et al. (2006) proposed a solution to
two-part set disjointness testing, the security of which
is based on the subgroup decision assumption, the
same assumption with this paper. They also extended
their solution to solve two-party set intersection prob-
lem, but the soundness will be violated in their exten-
sion, because a malicious party can reveal any element
as an intersected element to the other party. To en-
sure the soundness, a commonly-shared polynomial
Y can be constructed, and each party judges the in-
tersection for himself by evaluating his elements in Y ,
as Kissner et al. (2006), Sang et al. (2007) and this
paper have done.

3 Problem Definition

3.1 Assumptions and Major Notations

Suppose T is the domain of the inputs on all par-
ties, we assume the size of T, i.e. |T|, is sufficiently
large to prevent the dictionary attack. Specifically,
we assume |T| À tS. If tS is comparable with |T|,
the adversary controlling t parties may manipulate
the t datasets to cover T, then he can defraud the
intersection of all honest parties’ private inputs. We
stress that this assumption is practical in the exam-
ples of airline company and business alliance, where
the key of each record can be the customer’s iden-
tity or passport number, and the domain of the key
is much larger than tS.

We also assume the parties have negotiated an S
that is not a sensitive privacy for each of them. The
parties also do not mind the leakage of such informa-
tion as all parties have less than S elements in their
datasets. Then if a party has less than S elements,
he can add dummy elements like ′|T|+1′ to fulfill the
size of S. The result of ′|T|+ 1′ being in TI leaks no
information except that all parties have less than S
elements.

In Table 1, we define the major notations in this
paper.

3.2 Definitions

In SMC, the security in both types (semi-honest and
malicious) of adversaries is argued by the computa-
tional indistinguishability of the views in the ideal
model and real model (as found in works of Goldre-
ich et al. (1987), Lindell (2003)).

CRPIT Volume 74 - Computer Science 2008

48

Table 1: Major Notations

Notation Definition
N Total number of parties
Pi The i-th party
Ti The set or multiset on Pi

S Total number of elements on each party
Ti,j The j-th element on Pi, j = 1, ..., S

T (T1, ..., TN)
TI T1 ∩ ... ∩ TN

t Total number of colluded parties, t < N/2
I The index set of t colluded parties, {i1, ..., it}
I′ The index set of honest parties, {i′1, ..., i′N−t}
τ The security parameter which can be 256

r ∈R Zn Uniformly select an element r from a group Zn

Definition 1 (Computational indistinguishability)
Suppose an ensemble X = {Xn} be a sequence of
random variables Xn for n ∈ {1, ..., M}, which
are ranging over strings of length poly(n). Two
ensembles X = {Xn} and Y = {Yn} are com-
putationally indistinguishable, denoted by
X ≡c Y , if for every PPT algorithm A, and every
c > 0, there exists an integer K such that for all
n ≥ K, |Pr[A(Xn) = 1] − Pr[A(Yn) = 1]| < 1

nc .
Pr[A(x) = 1] is the probability that A outputs 1 on
input x.

Definition 2 (Intersection Function f) The
intersection function f is an N -ary func-
tion: ({0, 1}τ∗S∗N) → ({0, 1})S∗N , i.e.,
f(T) = {fij(T)|i = 1, ..., N, j = 1, ..., S}, where
fij(T) = 1 if Ti,j ∈ TI, and fij(T) = 0 if Ti,j /∈ TI.

Definition 3 (PPSI in the malicious model)
Let Π be an N -party protocol for computing f. Let a
pair (I, A), where A is a PPT algorithm representing
an adversary in the real model, and I = {i1, ..., it}
(t < N/2) is the index set of parties controlled by
A. The joint execution of Π under (I,A) in the
real model, denoted REALΠ,I,A(T), is defined as the
output sequence of A and honest parties, resulting
from their interaction in the execution of Π.

Let a pair (I, B), where B is a PPT algorithm,
represent an adversary in the ideal model, where
there is an available trusted party. The joint exe-
cution of f under (I, B) in the ideal model, denoted
IDEALf,I,B(T), is defined as the output pair of B
and the honest parties in the ideal execution.

Π is said to securely solve the problem of pri-
vacy preserving set intersection in the malicious
model, if for every PPT algorithm A, there exists a
PPT algorithm B, such that the views of A and B are
computationally indistinguishable, i.e.,

{IDEALf,I,B(T)} ≡c {REALΠ,I,A(T)}. (1)

4 Basic Tools

4.1 Bilinear Groups

Bilinear group G1 is a group which supports an ad-
missible bilinear map e : G1 ×G1 → G2 in which G2
have the same order with G1. A bilinear map is said
admissible if it satisfies the following properties:

- Bilinear: ∀u, v ∈ G1, ∀a, b ∈ Z, e(ua, vb) =
e(u, v)ab.

- Non-degenerate: If g is a generator of G1, then
e(g, g) is also a generator of G2.

- Computable: There is an efficient algorithm to
compute e(u, v) for any u, v ∈ G1.

In this paper we use the bilinear group G1 of com-
posite order n = q1q2 for two large primes q1 and q2,
which is a subgroup of the additive group of points of
an elliptic curve E over Fp (p+1 is divisible by n). An
admissible bilinear map e for G1 can be the modified
Weil pairing or Tate pairing over the curve (as found
in works of Boneh et al. (2003), Miller (2004)). G2 is
an order n subgroup of the multiplicative group of a
finite field F∗p2 .

4.2 A Threshold Version of Boneh-Goh-
Nissim Cryptosystem

We use the BGN cryptosystem (Boneh et al. 2005)
based on the composite order bilinear group for its
additive homomorphism and one-time multiplicative
homomorphism. Boneh et al. (2005) has used its
threshold version for electronic election, but the de-
tails on the key generation and decryption are not
given. Below we give these algorithms.

- Distributed Key Generation Algorithm G: Given
a security parameter τ , a key generation al-
gorithm G(τ) can be run to get a tuple
(q1, q2,G1,G2, e). Specifically, q1 and q2 are two
τ -bit random primes. Let n = q1q2. Find
the smallest positive integer l ∈ Z such that
p = ln−1 is prime and p = 2 mod 3. In practice,
τ can be 256 to get p of at least 512-bit length.
The elliptic curve y2 = x3+1 defined over Fp has
p+1 = ln points in Fp. Then G1 is the subgroup
of order n in the group of points on the curve.
Let G2 be the subgroup of F∗p2 of order n. The
bilinear map e : G1 × G1 → G2 is the modified
Weil pairing on the curve. Select two random
generators g, u ∈R G1 and set h = uq2 . Then h
is a random generator of the order q1 subgroup
of G1.
The public key is (n,G1,G2, e, g, h). The secret
key sk = q1. sk is distributed among the N par-
ties as ski for i = 1, ..., N by Shamir’s secret shar-
ing scheme (Shamir 1979). The verification key
vki is also generated as hski . The public key and
each share of secrete key can be generated by the
technique of Frankel et al. (1998) and Pedersen
(1991) without a trusted dealer. For simplicity
we assume there is a trusted dealer that can run
G as an offline phase.

- Encryption Algorithm E : To encrypt a message
m ∈ {0, ..., 2τ−1}, select r ∈R Zn and compute
C = E(m) = gmhr ∈ G1.

- Partial Decryption Algorithm Di: To decrypt a
ciphertext C, party Pi computes and broadcasts
Di(C) = Cski . Each party checks whether
e(C, vki) = e(Di(C), h) to verify the correctness
of Di(C). Because e(C, vki) = e(gmhr, hski) =
e(g, h)mskie(h, h)rski , and e(Di(C), h) =
e(gmskihrski , h) = e(g, h)mskie(h, h)rski , inter-
active zero knowledge proofs are not needed
here.

- Recovery Algorithm: If less than t + 1 parties
pass the verification of partial decryptions, the
algorithm fails. Otherwise, suppose S be a set
of t + 1 verified parties, and λi (i ∈ S) be the
appropriate Lagrange coefficients, the decryption
D(C) =

∏
i∈S Cλiski = Cq1 = gmq1 .

In our constructions we only need to know whether
m = 0. For m ∈ {0, ..., 2τ−1}, m = 0 if and only if
D(C) = 1. If m 6= 0, D(C) is an element in the or-
der q2 subgroup of G1. To know m, a practical way is

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

49

computing firstly the discrete log mq1, then the great-
est common divisor GCD(mq1, n) to get q1. Though
the latter computation can be solved by Euclid’s algo-
rithm within polynomial time, the former problem is
known as hard as the Discrete Log (DL) problem over
a finite field (as proved by Menezes et al. (1993)). Our
construction also utilizes the intractability of m 6= 0
in D(C) to protect privacy.

The semantic security of BGN encryption is based
on the hardness of subgroup decision problem as
proved by Boneh et al. (2005): Given (n,G1,G2, e)
generated by G where n = q1q2, and an element
x ∈ G1, output ′1′ if the order of x is q1 (i.e. x is
over an order q1 subgroup of G1), and output ′0′ oth-
erwise. We assume there is no PPT algorithm that
can solve the subgroup decision problem efficiently.

The BGN encryption supports additive homomor-
phism. Given C1 = E(m1) and C2 = E(m2),
it is easy to compute E(m1 + m2) = C1C2. It
also supports one-time multiplicative homomorphism.
Given u = gα, h = gαq2 for a random α ∈R
Zn, e(g, h) = e(h, g) = e(g, g)αq2 , e(h, h) =
e(g, h)αq2 , so e(C1, C2) = e(gm1hr1 , gm2hr2) =
e(g, g)m1m2e(g, h)m1r2+m2r1+αq2r1r2 . e(g, g) is of or-
der n, e(g, h) is of order q1, e(C1, C2) is an encryption
of m1m2 over F∗p2 and the decryption key is q1.

4.3 Calculations on encrypted polynomials

In our protocol, we need do some calculations on
encrypted polynomials. For a polynomial f(x) =∑m

i=0 aix
i, we use E(f(x)) to denote the sequence

of encrypted coefficients {E(ai)|i = 0, ...,m}. Given
E(f(x)), where E is an additive homomorphic en-
cryption scheme, some computations can be made as
following:

1) Evaluate E(f(x)) at a value v: E(f(v)) =
E(amvm + am−1v

m−1 + ... + a0) =
E(am)vm

E(am−1)vm−1 · · · E(a0).

2) Given a constant scalar c, compute E(c · f(x)) =
{E(am)c, ..., E(a0)c}.

3) Given E(g(x)) where g(x) =∑m
j=0 bjx

j , compute E(f(x) + g(x)) =
{E(am)E(bm), ..., E(a0)E(b0)}.

5 Non-interactive Proofs for the PPSI Pro-
tocol

5.1 Main Idea of the PPSI Protocol in the
semi-honest model

Briefly, our protocol for PPSI is based on evaluating
a randomized polynomial Y whose roots set contains
the intersection.

1) Each Pi computes fi = (x − Ti,1) · · · (x −
Ti,S) =

∑S
k=0 ci,kxk, and broadcasts E(ci,k) for

k = 0, ..., S.

2) For i = 0, ..., N − 1,

2.1) Pi selects Ri,l ∈R Zn, computes E(Ri,l ∗ fl)
for l = i, ..., i + t mod N .

2.2) Pi sums all E(Ri,l ∗ fl) to get E(yi) =
E(Ri,i∗fi+...+Ri,(i+t mod N)∗fi+t mod N),
and broadcasts E(yi).

3) Each Pi sums all E(yi) to get E(Y) =
E((RN−t,0 + ... + RN−1,0 + R0,0) ∗ f0 + ... +
(RN−t−1,N−1 + ... + RN−1,N−1) ∗ fN−1) =
E(

∑N−1
l=0 (

∑l
i′=(l−t mod N) Ri′,l) ∗ fl).

4) Each Pi evaluates Ti,j in E(Y) for j = 1, ..., S.
Pi decrypts E(Y (Ti,j)) by the help of other t par-
ties. If the decryption is 1, Ti,j ∈ TI; otherwise,
it determines Ti,j /∈ TI.

Since
∑l

i′=(l−t mod N) Ri′,l in Y is generated by
t + 1 parties, it is always a random number that can
not be manipulated by the adversary.

One encryption scheme based on subgroup deci-
sion problem, such as the BGN encryption, is nec-
essary for the security of the protocol. If we use
some other encryption schemes in which D(E(Yi,j)) =
Y (Ti,j), then one adversary controlling t (t < N/2)
parties can compute the coefficients of Y by the La-
grange interpolation, with S + 1 different evaluations
he can get. From the coefficients of Y , the adversary
will get some advantage on guessing the distribution
of an honest party’s inputs. However, in BGN encryp-
tion, the adversary can get only |TI| evaluations, thus
he can not know any of Y ’s coefficients.

What’s more, a malicious (active) adversary con-
trolling t parties may have attacks in the protocol. In
step 1), after receiveing E(fi) from an honest party
Pi, he can substitute his inputs with fi by just broad-
casting E(fi) to others. He can also broadcast zero
polynomials, then the roots set of Y will be the in-
tersection of all honest parties, and he can test this
intersection in the evaluations. In step 2.2), he can
broadcast an arbitrary E(y′i), then the outputs of the
protocol will also be arbitrary, because the roots set
of Y will have no certain relationship with the orig-
inal inputs. In step 4) he can evaluate some values
on E(fi) from an honest Pi instead of on E(Y), and
ask for the decryptions of them, then test the inputs
of Pi. We construct non-interactive zero knowledge
(NIZK) proofs to prevent these attacks.

5.2 Proof of Correct Multiplication

Suppose the prover and verifier have the common
input a1 = E(m) = gmhr where the prover does
not know the plaintext m, the prover is required to
prove he does a correct multiplication a2 = E(mR).
This Proof of Correct Multiplication (POCM) can
be denoted as POCM{R, s1|a1 = gmhr, a2 =
gmRhrR+s1}, which means the prover should prove
knowing R, s1 such that a2 = aR

1 hs1 . POCM can be
based on the bilinear map e as following:

1) The prover generates R, s1, x, s2 ∈R Zn, com-
putes a2 = aR

1 hs1 = gmRhrR+s1 , a3 = ax
1hs2 =

gmxhrx+s2 , a4 = H(a1, a2, a3, pid, sid), z1 =
x + a4R mod n, z2 = s2 + a4s1 mod n, then
broadcasts a2, a3, z1 and z2. H(·) is a one-way
hash function (e.g. SHA-2), pid is the unique
identity of the prover, sid is the unique identity
of the current session which POCM is belonging
to.

2) The verifier computes a′ = H(a1, a2, a3, pid, sid),
outputs ‘1’ if e(a1, g

z1)e(g, hz2) =
e(a2, g

a′)e(a3, g), and outputs ‘0’ otherwise.

The correctness of POCM is
easy to verify. e(a1, g

z1) =
e(gmhr, gx+a4R) = e(g, g)mx+ma4Re(g, h)rx+ra4R,
e(g, hz2) = e(g, h)s2+a4s1 , e(a2, g

a′) =
e(g, g)mRa′e(g, h)rRa′+s1a′ , and e(a3, g) =
e(g, g)mxe(g, h)rx+s2 . Because a′ = a4, it is easy to
see that e(a1, g

z1)e(g, hz2) = e(a2, g
a′)e(a3, g).

The zero-knowledge property can be based on the
subgroup decision problem of BGN cryptosystem and

CRPIT Volume 74 - Computer Science 2008

50

the random oracle H(·). A simulator can randomly
select m from a given domain, select r,R, s1, x, s2 ∈R

Zn, and compute a′1 = gmhr, a′2 = gmRhrR+s1 , a′3 =
gmxhrx+s2 , a′4 = H(a′1, a

′
2, a

′
3, pid, sid), z′1 = x + Ra′4

mod n, z′2 = s2 + s1a
′
4 mod n. Because of the sub-

group decision problem, distinguishing the distribu-
tions (a′1, a

′
2, a

′
3) from (a1, a2, a3) in the real execution

of POCM is computationally hard. Then distinguish-
ing a′4 from a4 is computationally hard in a random
oracle H(·), and it is also hard to distinguish (z′1, z

′
2)

from (z1, z2) because x,R, s1, s2 in them are all uni-
formly selected. Therefore, we can say that the views
of the simulator and the adversary-controlled verifier
in POCM are computationally indistinguishable.

In POCM the prover computes 4 exps (i.e. modu-
lar exponentiations in G2 or point multiplications in
G1), 4 multis (i.e. modular multiplications in G2 or
point addition in G1), and one hash value. The veri-
fier computes 3 exps, 2 multis, one hash value and 3
pairings. 4 messages need to be broadcasted.

5.3 Proof of Knowing Plaintext

The Proof of Knowing Plaintext (POKP) can be de-
noted as POKP{m, r|a1 = gmhr}, which means the
prover should prove that he knows m, r such that
a1 = E(m) = gmhr. POKP can be based on the
bilinear map e as following:

1) The prover generates x, s ∈R Zn, computes a2 =
gxhs, a3 = H(a1, a2, pid, sid), z1 = x + a3m
mod n, z2 = s + a3r mod n, then broadcasts
a2, z1, z2.

2) The verifier computes a′ = H(a1, a2, pid, sid),
checks whether e(gz1hz2 , g) = e(a1, g

a′)e(a2, g),
outputs ‘1’ if it is the case, and outputs ‘0’ oth-
erwise.

POKP can be treated as a special case of POCM,
i.e. given a common input E(1), the prover should
prove that he knows m such that a1 = E(1 · m).
Thus the correctness and zero-knowledge property of
POKP are also easy to get. Including the computa-
tion of a1 the prover computes 4 exps, 4 multis, one
hash value, broadcasts 3 messages. The verifier com-
putes one hash value, 3 exps, 2 multis and 3 pairings.

5.4 Proof of Correct Polynomial Evaluation

Suppose E(Y) = {E(ci)|i = 0, ..., S} for polynomial
Y =

∑S
i=0 cix

i is the common input, the prover is re-
quired to prove that he correctly evaluates a value v
on E(Y). This Proof of Correct Polynomial Evalua-
tion (POCPE) can be denoted as POCPE{v|∀i =
0, ..., S, E(ci) = gcihγi , E(Y (v)) = E(

∑S
i=0 civ

i)}.
POCPE can be constructed based on POKP, and
POCM:

1) The prover proves knowing the plaintext of E(v)
by POKP{v, r1|a1 = gvhr1}.

2) For i = 2, ..., S, given a1 = gvhr1 and ai−1 =
gvi−1

hri−1 , the prover proves knowing some v and
ri ∈R Zn such that ai = gvi

hri . This proof is a
simplified POCM as following:

2.1) The prover generates ri ∈R Zn, com-
putes ai = gvi

hri , bi = g−ri+vri−1ar1
i−1 =

g−ri+vri−1+vi−1r1hr1ri−1 , and broadcasts
ai, bi.

2.2) The verifier checks whether e(a1, ai−1) =
e(ai, g)e(bi, h).

3) Then the prover proves he correctly computes
E(Y (v)) = E(

∑S
i=0 civ

i):

3.1) The prover generates R ∈R Zn,
computes c = E(Y (v)) =
hR

∏S
i=0(E(ci))vi

= g
PS

i=0 civ
i

h
PS

i=0 γiv
i+R,

d = g−R
∏S

i=1(E(ci))ri =
g−R+

PS
i=1 cirih

PS
i=1 γiri , and broadcasts

c, d.
3.2) The verifier checks whether e(c, g)e(d, h) =

e(E(c0), g)
∏S

i=1 e(E(ci), ai).

The correctness and zero-knowledge property of
POCPE are also easy to get since POCPE is com-
posed of POKP, POCM. In sum the prover computes
6S +2 exps, 4S +3 multis and one hash value, broad-
casts 2S + 3 messages. The verifier computes 3 exps,
2S + 2 multis, one hash value and 2S + 3 pairings.

6 The PPSI Protocol in the Malicious Model

We add zero knowledge proofs into the PPSI protocol
for the semi-honest model to get a protocol in the
malicious model. A malicious adversary will be forced
to behave in the semi-honest manners, otherwise he
will be found cheating by these proofs. In Figure 1,
we give the PPSI protocol for the malicious model.
As analyzed in Section 5.1, the malicious behaviors
should be prevented as following:

1) To prevent the adversary from generating zero
polynomials, notice that ci,S , the leading coeffi-
cient of fi, should always be 1, so in step 2.2) of
Figure 1, each party will set the leading coeffi-
cient E(ci,S) = E(1) by themselves, then E(fi)
from Pi will have at least one nonzero coefficient,
the roots set of Y will not equal the intersection
of the honest parties.

2) To prevent the adversary from replacing his in-
puts by an honest party, ideally each party
should run S times of POKP on its encrypted
coefficients in step 1) of Figure 1. However, one
POKP for any encrypted coefficient other than
the leading one (say, POKP for E(ci,S−1)) suf-
fices to prove the party generates its polyno-
mial independently. The adversary may sub-
stitute his other coefficients (say, E(ci,S−2), ...,
E(ci,0)) with the coefficients received from an
honest party, but any of his substitution will gen-
erate a polynomial whose roots are not known by
him.

3) To prevent the adversary from broadcasting ar-
bitrary encryptions in step 2.1) of Figure 1, each
party should run POCM to prove the multiplica-
tions are correct.

4) To prevent the adversary from evaluating E(fi)
from an honest Pi in step 4.1) of Figure 1, each
party should prove the evaluations are correct by
POCPE.

In Figure 1, if there is some party removed from
the verified list in Step 1), only the intersection of the
remaining parties’ datasets will be computed. For the
party removed in Step 2), any remaining party can be
elected to act his part in the protocol. In Step 3), a
removed party will not know the intersection. At least
there are t+1 parties left in the final decryption, from
which they know the final intersection. The protocol
can also be applicable when N ≥ 2 and t ≥ N/2, but
if there are less than t+1 parties remained in the final
decryption, they can not get the final intersection.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

51

Inputs: There are N parties, t of them may collude in malicious manners. Each party has a private

set of S elements, denoted Ti. Each party holds the public key and its own share of the secret key

for the (t + 1,N)-threshold BGN cryptosystem. All party have a common session identification

number sid for running the current protocol in the computing system. Each party has a unique

identity pid.

Output: Each party Pi knows TI = T0 ∩ ... ∩ TN−1.

Steps:

1) Computing E(fi): For i = 0, ...,N − 1, Pi computes fi = (x − Ti,1) · · · (x − Ti,S) =
∑

S

k=0 ci,kx
k,

encrypts ci,k for k = 0, ..., S−1, broadcasts all the encrypted values, and then runs POKP{ci,S−1 :

E(ci,S−1)} to prove he knows the plaintext of E(ci,S−1).

2) Computing E(yi): For i = 0, ...,N − 1,

2.1) Pi selects Ri,l ∈R Zn, computes E(Ri,l ∗ fl) for l = i, ..., i + t mod N , and then broadcasts

the coefficient E(Ri,lcl,k) for k = 0, ..., S −1, runs POCM{Ri,l : E(Ri,lcl,k)} to prove he does

the correct multiplication.

2.2) each party sets cl,S = 1, E(Ri,lcl,S) = E(Ri,l), sums E(Ri,l ∗ fl) for l = i, ..., i + t mod N , to

get E(yi) = E(Ri,i ∗ fi + ... + Ri,(i+t mod N) ∗ fi+t mod N).

3) Each Pi sums all E(yi) to get E(Y) = E((RN−t,0 + ... + RN−1,0 + R0,0) ∗ f0 + ... + (RN−t−1,N−1 +

... + RN−1,N−1) ∗ fN−1) = E(
∑

S

k=0 βkx
k).

4) Decryption and Evaluation: For i = 0, ...,N − 1,

4.1) For j = 1, ..., S, Pi evaluates Ti,j in E(Y) to get E(βkT
k

i,j
) for k = 1, ..., S, then runs

POCPE{Ti,j : E(βkT
k

i,j
), k = 1, ..., S} to prove the correctness of the evaluation.

4.2) For j = 1, ..., S, all party of the t+1 quorum including Pi compute E(Y (Ti,j)) =
∏

S

k=0 E(βkT
k

i,j
).

Pi decrypts E(Y (Ti,j)) by the help of the other t parties. If the decryption is 1, Ti,j ∈ TI;

otherwise, it determines Ti,j /∈ TI.

Figure 1: Protocol for Privacy Preserving Set Intersection in the Malicious Model

We show below briefly the correctness and secu-
rity of our protocol, though these claims can also be
mathematically proving.

Correctness If Ti,j ∈ TI, then fl(Ti,j) = 0 for
l = 0, ..., N − 1. Then the evaluation Y (Ti,j) = 0
and D(E(Y (Ti,j))) = g0q1 = 1. If Ti,j /∈ TI, then
there exists fl′(Ti,j) 6= 0 for some l′ ∈ {0, ..., N −
1}. Then Y (Ti,j) =

∑
l′(

∑l′

i′=(l′−t mod N) Ri′,l′) ∗
fl′(Ti,j), D(E(Y (Ti,j))) = gq1Y (Ti,j), whose order
is q2. Because each Ri′,l′ ∈R Zn, overwhelmingly
Y (Ti,j) 6= 0 and D(E(Y (Ti,j))) 6= 1.

Security Suppose A is the adversary in the real
execution of PPSI protocol in Figure 1 which controls
parties PI = {Pi1 , ..., Pit |t < N/2}, B is the adver-
sary which controls the same parties in the ideal exe-
cution assuming there is a trusted party T . Based on
the zero-knowledge properties of POCM, POKP and
POCPE, B’s views in the simulations of these proofs
are computationally indistinguishable from A’s views
in the real execution of them. The zero-knowledge
properties of our NIZK proofs are based on the basic
assumptions of random oracle model, the subgroup
decision and discrete logarithm problems, so by the
same assumptions, the views of A and B are com-
putationally indistinguishable from each other, which

accounts for the security of our PPSI protocol as de-
fined in Definition 3.

7 Complexity of the PPSI Protocol

The computation complexity of our protocol is mainly
due to the encryptions, exponentiations, bilinear
maps and multiplications. One BGN encryption
needs 2 exponentiations. One exponentiation in G2
with a τ -bit exponent (or point multiplication in G1)
requires O(τ3) computation. One bilinear map, such
as Weil pairing by Miller’s algorithm, has the same
complexity with the exponentiation in G2. One mul-
tiplication of two τ -bit elements in G2 (or point ad-
dition in G1) has cost of O(τ2). One element in G1
has O(τ) bits.

Computation Complexity : We assume the N
parties execute the protocol in parallel, and the com-
putation cost of one party Pi can be representative
of the whole protocol’s complexity. In Step 1), Pi
computes E(fi) by 2S exps, computes POKP by 2
exps, 3 multis and one hash value, checks POKP by
3(N−1) exps, 3(N−1) bilinear maps 2(N−1) multis
and N − 1 hash values. In Step 2.1), Pi computes all
POCM by 4(S + 1)(t + 1) exps, 4(S + 1)(t + 1) mul-
tis and (S + 1)(t + 1) hash values, checks POCM by

CRPIT Volume 74 - Computer Science 2008

52

3S(t+1)(N−1) exps, 3S(t+1)(N−1) bilinear maps,
2S(t+1)(N−1) multis and S(t+1)(N−1) hash values.
In Step 2.2), Pi computes all yi by (S + 1)tN multi-
plications. In Step 3), Pi computes Y by S(N − 1)
multiplications. In Step 4.1), for each evaluation of
Ti,j , Pi computes one POCE, thus for S evluations
Pi computes 6S2 + 2S exps, 4S2 + 3S multis and
S hash values. Pi also checks S(N − 1) POCE for
other parties, which need (2S + 3)S(N − 1) bilinear
maps, 3S(N − 1) exps, S(N − 1) hash values and
(2S + 3)S(N − 1) multis. In Step 4.2), Pi computes
S decryptions, which need S exps, 2tS bilinear maps,
and tS multis. Pi also computes (N − 1)S exps for
other parties’ decryptions.

The complexity for one exp (or bilinear map) is
O(τ) times of that of one multiplication or hash
value, so the complexity for all exps plus all bilin-
ear maps can be representative for the whole pro-
tocol’s complexity, as we have done in calculating
Kissner et al. (2006)’s computation complexity. We
also consider only the practical instance that S À t,
i.e. O(StN + NS2) = O(NS2). The major cost of
our protocol is in Step 4.1), for the computation of
O(NS2) bilinear maps. The whole protocol’s compu-
tation complexity is O(NS2τ3).

Communication Complexity : In Step 1),
N(S + 3) elements are broadcasted by the N parties.
In Step 2.1), 4N(S + 1)(t + 1) elements are broad-
casted. In Step 4.1), NS(2S +3) elements are broad-
casted. In Step 4.2), NtS elements are broadcasted.
The major cost is in Step 4.1), the communication
complexity is O(NS2) elements, or O(NS2τ) bits.

8 Concluding Remarks

We proposed a more efficient privacy preserving set
intersection protocol which improves a previous work
by Kissner et al. (2006) by an O(N) factor in the
computation and communication complexities, with
the same level of correctness. Though cut-and-choose
technique may reduce the communication complex-
ity of Kissner et al. (2006)’s protocol, the correctness
may be compromised and the reduced computation
complexity is the same with us. We proved the se-
curity of our protocol in the malicious model assum-
ing an adversary actively controlling a fixed set of
t (t < N/2) parties. Our construction is based on the
BGN cryptosystem which supports bilinear maps. Ef-
ficient NIZK proofs for correct multiplications, know-
ing the plaintext, and correct polynomial evaluation
are also constructed. In the future we will utilize the
bilinear group and NIZK proofs in other privacy pre-
serving set operations.

References

Boneh, D. & Franklin, M. (2003), Identity-Based En-
cryption from the Weil Pairing, in ’SIAM Journal
of Computing’, Vol. 32(3), pp. 586–615.

Boneh, D., Goh, E. & Nissim, K. (2005), Evaluat-
ing 2-DNF Formulas on Ciphertexts, in ’Proc. of
TCC’05’, Vol. 3378, LNCS, pp. 325–341.

Barreto, P., Kim, H., Lynn, B., & Scott, M., (2002),
Efficient Algorithms for Pairing-Based Cryptosys-
tems, in ‘Proc. of CRYPTO’02’, Vol. 2442, LNCS,
pp. 354–369.

Cramer, R., Damgard, I. & Nielsen, J. (2001), Multi-
party Computation from Threshold Homomorphic
Encryption, in ’Advances in Cryptology - EURO-
CRYPT 2001’, Vol. 2045, LNCS, pp. 280–300.

Dolev, D. & Strong, H. (1983), Authenticated Algo-
rithms for Byzantine Agreement, in ‘SIAM J. Com-
put’, Vol. 12(4), pp. 656–665.

Frankel, Y., MacKenzie, P. & Yung, M. (1998), Ro-
bust efficient distributed RSA-key generation, in
‘Proc. of the 17th annual ACM symposium on
Principles of distributed computing’, ACM Press,
pp. 320–330.

Freedman, M., Nissim, K. & Pinkas, B. (2004), Ef-
ficient Private Matching and Set Intersection, in
‘Proc. of Eurocrypt’04’, Vol. 3027, LNCS, pp. 1–
19.

Goldreich, O. (2004), Foundations of Cryptography:
Volume 2, Basic Applications, Cambridge Univer-
sity Press, 2004.

Goldreich, O., Micali, S. & Wigderson, A. (1987),
How to Play Any Mental Game, in ‘Proc. of 19th
STOC’, ACM Press, pp. 218-229.

Hohenberger, S. & Weis, S. (2006), Honest-Verifier
Private Disjointness Testing Without Random Or-
acles, in ‘6th International Workshop of Privacy
Enhancing Technologies (PET 2006)’, Vol. 4285,
LNCS, pp. 277–294.

Kissner, L. & Song, D. (2005), Privacy-Preserving Set
Operations, in ‘Advances in Cryptology - CRYPTO
2005’, Vol. 3621, LNCS, pp. 241–257.

Kissner, L. & Song, D. (2006), Privacy-Preserving Set
Operations, in ‘Technical Report CMU-CS-05-113’,
Carnegie Mellon University, June 2006.

Lamport, L., Shostack, R. & Pease, M. (1982), The
Byzantine Generals Problem, in ‘ACM Trans. on
Programming Languages and Systems’, Vol. 4(3),
ACM Press, pp. 382–401.

Lindell, Y. (2003), Parallel Coin-Tossing and
Constant-Round Secure Two-Party Computation,
in ‘Journal of Cryptology’, Vol. 16(3), pp. 143-184.

Menezes, A., Vanstone, S., & Okamoto, T. (1993),
Reducing elliptic curve logarithms to logarithms in
a finite field, in ‘IEEE Trans. on Information The-
ory’, Vol. 39, pp. 1639–1646.

Miller, V. (2004), The Weil Pairing, and Its Efficient
Calculation, in ‘Journal of Cryptology’, Vol. 17,
pp. 235–261.

Pedersen, T. (1991), A Threshold Cryptosystem with-
out a Trusted Party, in ‘Proc. of Eurocrypt 1991’,
Vol. 547, LNCS, pp. 522–526.

Sang, Y., Shen, H., Tan, Y. & Xiong, N. (2006),
Efficient Protocols for Privacy Preserving Match-
ing Against Distributed Datasets, in ‘Proc. of the
8th International Conference on Information and
Communications Security (ICICS ’06)’, Vol. 4307,
LNCS, pp. 210–227.

Sang, Y. & Shen, H. (2007), Privacy Preserving Set
Intersection Protocol Secure Against Malicious Be-
haviours, accepted by ‘The 8th International Con-
ference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT 2007)’,
Adelaide, Australia, Dec. 2007.

Shamir, A. (1979), How to Share a Secret, in ‘Com-
munications of the ACM’, Vol. 22(11), ACM Press,
pp. 612–613.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

53

Yamamura, A. & Saito, T. (2001), Private Informa-
tion Retrieval Based on the Subgroup Membership
Problem, in ‘Australian Conference on Informa-
tion Security and Privacy (ACISP’01)’, Vol. 2119,
LNCS, pp. 206–220.

Yao, A. (1982), Protocols for Secure Computations,
in ‘Proc. of the 23rd Annual IEEE Symposium on
Foundations of Computer Science’, pp. 160–164.

CRPIT Volume 74 - Computer Science 2008

54

A Local Broker Enabled MobiPass Architecture for Enhancing
Trusted Interaction Efficiency

Will Tao, Robert Steele
Department of Computer Systems, Faculty of Information Technology

University of Technology, Sydney
PO Box 123, Broadway, 2007, New South Wales

{wtao, rsteele}@it.uts.edu.au

Abstract

While mobile computing provides a potentially vast
business opportunity for many industry participants, it also
raises issues such as security and performance. This paper
proposes a Local Broker enabled MobiPass architecture
based on our previous research outcomes. Our MobiPass
architecture can convert the unpredictable and highly
dynamic mobile environment into a trusted business
platform. By setting customised rules against a
MobiPolicy, the Mobipass architecture enables fine
grained access control without necessarily having a prior
knowledge or interaction with other encountered parties
and environments. This paper extends our MobiPass
architecture by introducing an additional element – the
Local Broker, to enhance the architecture’s performance
and efficiency. A detailed case study has been provided to
explain the role that the Local Broker takes in the

architecture.1

Keywords: Mobile Computing, Ubiquitous Computing,
Trusted Interaction

1 Introduction

Recent advances in technology have provided portable
devices such as the mobile phone, personal digital
assistant (PDA), portable data terminal (PDT) and smart
phone with wireless computing capabilities. This kind of
wireless computing model is often referred to by the
generic term “mobile computing” and has already attained
a substantial fundamental role in the business world.

However, to gain wide acceptance and success with this
computing model, certain conditions will need to be
satisfied before applying mobile computing into a critical,
enterprise level system. An example of an inhibitor that
deters mobile computing is that it is very difficult to build
a trusted environment among all transacting entities within
a mobile environment as it is highly dynamic and
unpredictable (Satyanarayanan 2000, Ranganathan 2004).
Unlike the traditional computing environment that is static
and closed, with fixed, well-known entities within the
network, mobile computing involves a large number of
interactions, co-ordinations and collaborations with a large

Copyright © 2007, Australian Computer Society, Inc. This paper
appeared at the Thirty-First Australasian Computer Science
Conference (ACSC2008), Wollongong, Australia. Conferences
in Research and Practice in Information Technology, Vol. 74.
Gillian Dobbie, Bernard Mans, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

number of casually accessible yet portable mobile devices.
The strategy and approach in building a trusted
environment is fundamentally difficult and different when
compared with more static networks.

In the case where there is a limited amount of knowledge
about different transacting entities, a feasible mechanism
that protects sensitive information and determines the
level of trust between those entities in the mobile
computing network is essential, as a lack of trust can result
in failure to implement business models that build on top
of this mobile environment. In addition, users will not be
willing to participate as they do not have confidence in
interacting with each other.

In this paper, based on our previously proposed MobiPass
architecture, we put forward an alternative approach to
establish a trusted interaction in mobile computing. The
new approach introduces the new element, Local Broker
(LB) into the architecture that will enhance performance,
flexibility and other aspects. The case study, described in
Section 4, will clearly illustrate the architecture.

The paper is structured as follows – Section 2 provides a
review of the MobiPass architecture with a brief
explanation, and Section 3 describes the Local Broker
based MobiPass architecture. A case study is examined in
Section 4 and in Section 5 related work is discussed
followed by future work and the conclusion in Section 6.

2 MobiPass Architecture Review
The purpose of the MobiPass architecture is to help mobile
entities to establish trusted interactions and provide a fine
grained information access control among those
transacting entities. The definition of trust in this paper is
defined as “a subjective expectation about other's future
behavior” as we believe that the trusted platform is a
necessary and non-replaceable condition that can enable
mobile computing to achieve a higher level of success.

MobiPass is a generic architecture that creates a flexible
and secure environment in mobile computing; it can be
applied to a large number of scenarios where trusted
interaction is required. As the MobiPass architecture
utilises and extends digital certificate technologies to
provide more detailed certified information in a
distributed manner, it is not necessary to have a central
server to implement trusted interaction among large
numbers of mobile entities. This distributed nature is a
critical attribute, given the vast number of potential mobile
entity interactions for which trusted interaction must be
achieved. To clearly describe the MobiPass architecture,
we will use the mobile phone as an example to

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

55

demonstrate how this architecture works within a mobile
computing environment.

By enabling a set of customised preset preferences, the
MobiPass architecture allows mobile entities which are
previously unknown to each other to interact and
communicate in a trusted manner. In the architecture, the
mobile entity only talks with and makes itself visible to the
trusted entity/environment which satisfies the customised
access control rules.
The core elements in the MobiPass architecture are: The
Central Registry, MobiPolicy, Extended Certificated
Authority (ECA), MobiPass and the MobiManager
(Figure 1), for a more detailed description of its
architecture and functionality, see (Steele, Tao 2006, Tao
Steele 2006):

Figure 1: The overall MobiPass architecture

Figure 1 shows that the ECA is an extension of the
currently known certificate authority which issues
MobiPasses. MobiPass works like a passport in our
architecture which is described by XML and complies
with the corresponding XML schema, represented in a
MobiPolicy. It contains the real data describing a
particular service and/or mobile entity in relation to a
certain service. Due to the diversity of ubiquitous
computing, it is impossible to have one universal
specification to model all sorts of services and entities.
Therefore a MobiPolicy is introduced to distinguish
individual services. It provides a flexible and extensible
approach to describe the service and/or mobile entities
based on relevant information for this particular service,
and MobiPolicy is represented by XML Schema in our
architecture. MobiPolicy can be published by any
organisations for any services, but the procedure in issuing
a corresponding MobiPass is controlled by the ECA,
which can also be the same entity as this policy publisher.
Moreover, as there is no restriction for any organisation to
be an ECA, a non-mandatory Central Registry is
introduced to manage all these ECAs. It should be noted
that the word central in our architecture is only a logical
concept. The implementation of a central registry can be
totally distributed. The MobiManager is an extra module
which is installed on handset devices such as the mobile
phone to perform all necessary operations, for example:
sending and receiving MobiPass, parsing an incoming
MobiPass, helping users to do their preference settings and
detecting other surrounding MobiPass devices.
In the MobiPass architecture, multiple ECAs are allowed

in the MobiPass with different levels of trustworthiness.
Any entity within the MobiPass architecture can act as the
ECA to issue certified evaluation results, also, multiple
policies are used for different services. A customised
policy can be published by any entity to meet the
requirement for their particular service.

3 Local Broker Enabled MobiPass
Architecture

3.1 Architecture Overview

As described in Section 2, the MobiPass architecture
allows previously unknown entities to communicate with
each other in a trusted manner. However, in some cases,
the performance can be improved if we introduce a Local
Broker (LB) into the architecture. As asymmetric key
encryption is relatively resource consuming, the
performance might be an issue for MobiPass architecture
adoption (Diffie 1998, Lenstra & Verheul, 2000). Based
on our current research, we have found that in many cases,
where mobile entities are previously unaware of each
other’s existence, there is usually a broker that links all
these mobile entities and the broker knows how to deal
with each other. Consider the following analogy. Bob
organised a party and he invites group of people. However,
his guests may not know each other because some of them
are Bob’s classmates while some of them are his business
associates and the rest of them may be his relatives.

Although they do not know each other, one common thing
is that they all know Bob and he knows how close he is
with each one of them (authentication). If we assume that
all guests trust Bob, hence they will assign each other a
minimal level of trust, until they have received further
information from Bob. The same scenario happens quite
often in the area of mobile computing, i.e. the host
(referred as the LB in this paper) which provides the
service has enough knowledge of participating mobile
entities and knows how to assign privileges to different
mobile entities with fine grained access control level, and
all these mobile entities fully trust the LB (see case study
in Section 4). This means that as long as these mobile
entities can establish a trusted relationship with the LB,
that trust can be expanded across that service network.

Based on our previously published MobiPass architecture,
we have developed a variant, the LB enabled MobiPass
architecture. This architecture introduces a new element -
the LB, and the assumption in this architecture is that the
LB is fully trusted during the entire interaction. The LB is
the core in this architecture as it does the initial
authentication and authorisation and it needs to decide
how to assign privileges to different entities. The LB is
also responsible for announcing the service so when a
MobiPass enabled device enters into the vicinity, it can
easily discover the desired service which is being
advertised and attempts to initiate communication. To
improve the availability, LB can be deployed in a
clustering mode which means that multiple LBs can share
a single access point address and synchronise the
application data in real time. Also, when mobile devices
cannot communicate with the LB, devices will try to skip
the LB and interact with other transacting parties directly.

CRPIT Volume 74 - Computer Science 2008

56

An important point is that the LB only works locally, i.e.,
there is no centralised broker. To establish a trusted link
that facilitates interaction between devices, different
elements are required to collaborate with each other.

Figure 2: Overview of the Local Broker enabled
MobiPass Architecture

Figure 2 demonstrates how the service works. MobiPass
enabled devices will keep on discovering the available
services.

Compared to the normal MobiPass architecture, there are
no changes in how MobiPass is applied by MobiPass users
and is granted by ECAs. The users will still go through the
normal processes, i.e., first, users are required to find the
right MobiPolicy then fill in all necessary information for
that particular MobiPolicy. Next, the MobiPolicy will then
need to be sent to the ECA and apply to the MobiPass. If
all information has been verified as true and genuine, the
ECA will issue a MobiPass to this user which contains a
valid ECA's digital signature.

The difference with the LB based MobiPass architecture is
that rather than having a direct communication with each
individual mobile entity, the MobiPass enabled device will
talk to the LB instead of directly to the targeted entity.
Additionally, the LB can act as a pure “forwarder” or fully
on behalf of the involved mobile entities. It should be
noted that the LB also holds a special role, it needs to apply
a MobiPass from the relevant ECA, which indicates that it
is from the MobiPolicy publisher, and the ECA will also
verify the relevant documents to make sure that all
information in this MobiPass is genuine. It will then sign
this LB's MobiPass using the ECA's private key. When the
MobiPass is installed in the transaction entity's mobile
device, a XML schema based user interface generating
system, Xplorer, (Steele et al 2005) will generate
preference settings interface based on MobiPolicy's XML
schema and users will be required to fill in the options
based on the incoming MobiPass's data. For example, in a
Mobile social introduction service, users can set his/her
preference for their device to only look for software
engineers whose age is between 30 and 35. Once the
preference is set, users can activate his/her MobiPass
enabled service on his/her mobile device. It should also be
noted that this LB enabled MobiPass device will keep on
discovering any available services which match the
MobiPolicy. On the other hand, unlike the MobiPass

enabled device, LB enabled MobiPass devices will not
advertise themselves; it will only discover the service. The
LB is responsible for advertising the available services as
all communications are surrounding the LB, so the LB will
keep on announcing the services with their corresponding
MobiPolicy IDs.

Once the MobiPass enabled device has found the right
MobiPolicy ID through the LB, the following actions will
take place:

1 The mobile device will ask the LB to send the
MobiPass to check whether this LB is a genuine
ECA signed Broker.

2 After receiving a MobiPass from a LB, a check
will take place to assess whether or not this LB is
a Known Local Broker (KLB). A KLB is one that
has a public key already existing in the mobile
device or its MobiPass can be found in the list
containing existing trusted MobiPasses.

3 In the case where a LB is not a KLB, the normal
procedure for verifying MobiPasses will be
applied onto this broker's MobiPass. Once this
has been done, the LB can be confirmed as a true
LB for the advertised MobiPolicy.

4 The mobile device will send a list of supported
symmetric key algorithms such as DES or
BlowFish, it will also send out the MobiPass
which contains the user's public key, as well as
the ECA's public key and signature to the LB for
the random security number.

5 The LB will try to validate the incoming
MobiPass by evaluating ECA's signature to see
whether this MobiPass is valid, assuming that LB
has a very good knowledge of ECAs, especially
for ECA's public keys. If the incoming MobiPass
is considered as a valid MobiPass and matches
the MobiPass’s holder, the LB will then choose a
supported encryption algorithm, generate a
security token (e.g. a large random number),
which will then be encrypted by the MobiPass
holder's public key that is extracted from the
MobiPass. The encrypted security token will then
be encrypted by the LB's private key and then
sent back to the mobile device.

6 Once the mobile device has received the
enhanced MobiPass from the LB, it will decrypt
the message by the LB's public key and the
MobiPass holder’s private key to get the original
sender’s MobiPass and run the normal MobiPass
interaction procedure to establish the trusted
interaction.

After this, both LB and the mobile device know the secret
key and the secret key is only shared between these two
parties. To perform the service smoothly for interacting
mobile entities, a session timeout value can be set at the
LB to prevent the interacting entities accidentally
dropping out of the service. As it is not unusual that the
mobile device may roam out of the service vicinity
temporarily, once the LB receives the incoming MobiPass
and this MobiPass cannot be delivered, this MobiPass will
be kept until the session timeout value has been reached.
This means that after this time, the LB will consider that
this transacting entity has formally quit the session

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

57

(service).

As previously mentioned, the LB runs under two modes,
they are:

1. Forward only mode
2. Access Level Control (ALC) Mode

Depending on the current condition, the LB will run in
either of the modes, the following sub-sections will
explain these two modes in detail.

3.2 Forward Only Mode

The Forward Only Mode means that the LB will only pass
and forward MobiPasses among mobile entities, no further
operations/processing will be made.

One advantage of the Forward Only Mode is that all
mobile devices will only communicate to the LB. Once a
successful handshake has been initiated, there is no need
for the asymmetric encryption anymore in ongoing
communications. The mobile device will automatically
discover each other, and track down the address. Therefore
when they want to start the communication, they only need
to forward the MobiPass to the LB, along with the
destination address. Once the LB receives the MobiPass, it
will decrypt the MobiPass using the secret key which is
shared by the sender. When decryption is successfully
finished, the LB will encrypt the MobiPass content using
another secret key which is shared by the receiver.
Therefore during the message transmission stage, only the
sender, receiver and LB can read the message, and as the
LB is fully trusted, it means that during the transaction of
the message, the MobiPass will be safe and there is no
need to contact the ECA to ensure that the MobiPass and
the content in the MobiPass is authentic. This mode allows
mobile devices within the entire network to each do one
public key encryption operation and the rest of the
operations will be conducted by private key encryption.
This greatly improves the performance and eases the
communication especially when there are a large number
of transacting entities.

When the mobile entity receives the incoming MobiPass,
they will run the whole workflow as discussed in our
previous paper, please note that even if the MobiPass has
successfully been delivered it does not guarantee that a
transaction will be conducted. Interactions between
devices will only be conducted when the MobiPass
matches the receiver's profile to present access control
rules.

3.3 Access Level Control (ALC) Mode

ALC mode is a more advanced mode for the LB. Rather
than just simply forwarding the incoming MobiPass, it
actually runs the authentication and authorisation for the
MobiPass.

Once the LB and the mobile entities have finished the
handshake, the LB will request the copy of the mobile
device's preference for this MobiPass/MobiPolicy profile,
and this preference setting will be transmitted by using the
shared symmetric key between this mobile device and the
LB. In this case, no public key encryption is required
anymore as the shared secret key and algorithm is

sufficient to identity the sender's ID.

The entire handshake is finished once the LB has
successfully received the preference settings. Extending
the forward mode, the LB not only forwards the MobiPass,
it also runs the preference check on users’ behalf every
time a transaction occurs. As discussed previously, after
the MobiPass has been verified, the LB will request the
encrypted preference settings from the mobile device, as
the LB has full knowledge of this MobiPolicy, it is very
easy for the LB to check all incoming MobiPasses. Under
this mode, the LB is responsible to perform the
authentication and authorisation for building the trusted
interaction between two mobile entities. The steps for
communications are explained below:

● Receive the sender's MobiPass.
● Decrypt the incoming MobiPass by using a

shared secret key with the sender.
● Detect the designated device from the MobiPass
● Look up the preference settings of this destination

device, if the preference setting can not be found,
then it will contact the designated device to
initiate a handshake, then the symmetric key will
be shared and the encrypted preference setting
will be acquired.

● If the destination device is no longer in the
network, the sender will be notified, otherwise,
the LB will extract all the values and compare to
the receiver's preferences. If the incoming
MobiPass matches the receiver's preference
settings, it will be forwarded to start conducting a
trusted transaction, otherwise, a request will be
sent out.

The ALC mode will greatly reduce the load of the mobile
devices, as the computational part has been successfully
transferred to the LB. As the LB is not necessarily a
mobile device, it can in all probability easily handles the
load and perform the authorisation as well. In the next
section, a detailed case study will be given to clearly
describe the LB enabled MobiPass architecture.

4 Case Study

In this section, a university community based case study
will be used to explain how the LB enabled MobiPass
architecture can assist in establishing a trusted interaction
as the research community is familiar with the university
environment. It should be noted that the scope of the LB
enabled MobiPass architecture is not limited to the
university environment, any environment which requires a
trusted interaction between several mobile entities and
satisfies the requirements of the LB i.e. transaction entities
might not know each other but they all trust the LB, can
benefit from this architecture.

These are the facts that exist in most public universities:

● There are a large number of students in the
university; the number of student can exceed
100,000, and many different units coexists in the
university, such as faculties, departments, service
units, student unions and clubs.

● Most students only know a limited number of
other students in the university. However

CRPIT Volume 74 - Computer Science 2008

58

collaborations are often required, even though
students/staff do not know each other.

● Every staff/student is supposed to trust the
administration unit in the university.

 From these facts, we can derive that there is a demand for
a trusted interaction and it is not an easy task to implement
such an interaction within the university as there might be
a large number of staffs and students, all with a different
background e.g. language and culture. Moreover, most of
them do not have a previous knowledge of each other. For
example, a group of students from different faculties doing
some outdoor activities together, or they are looking for a
flat mate to share accommodation with. A trusted
interaction is required for transactions within all the above
mentioned cases. We will now use the Accommodation
Finder Service (AFS) as an example to demonstrate how
the LB enabled MobiPass architecture works.

As there are many rural, inter-state and international
students in the university, it is necessary for them to find
their own accommodation as it might not be financially
feasible for them to travel to the university from home
everyday, so some students will go and find others to share
accommodation. Also, due to security concerns, students
like to share with other students from the same university;
some students even like to share accommodation with
others who have the same background or interest.
Currently the main approach which has been used in many
universities to find a flat mate is to read notes or
advertisements posted on bulletin boards, this way can be
dangerous as by just referring to the information given out
in the post, there is no way in telling whether the
information is true. Also, as this is not a real time
interaction, a student will need to arrange and meet with a
potential flat mate somewhere else. This kind of
appointment can be dangerous, especially for female
students. By using the LB enabled MobiPass architecture,
it is very easy to enable a trusted interaction for the AFS.

In this case, the ECA and MobiPass publisher will be the
Student Service Union (SSU) and as students currently
trust the SSU; we can assume that trust will extend to the
SSU published ECA and MobiPass. SSU can provide a
online form which has an equivalent schema as the AFS
MobiPolicy, and students can carry out and apply for their
AFS MobiPass from this portal. Students will only be
required to fill in extra information such as their interests
and hobbies, as the SSU already has part of the student's
personal information which has already been
authenticated, such as their real name, gender, age, major
and nationality. The extra information will only act as a
supplement to help students to find flat mates who are
more compatible with them and therefore certification is
not required. Once they have filled in the forms, the SSU
will generate the MobiPass for the AFS for this student.

For instance, Alice is a 20 years old first year international
student who is studying computing science, and she is
currently looking for a flat mate. Alice would like to share
accommodation with another female international student
of a similar age and background because this makes her
feels comfortable and safe. Therefore her preferred flat

mate will be a female student, aged between 20 to 25 years
old, and can speak her language. Alice does not want to
use the traditional approach to find flat mates as Alice can
only gather potential flat mate's information by reading
posts and there is no way to tell whether this information is
true or false. Also, after she has contacted the poster, she
might go somewhere else with this potential flat mate to
find accommodations. This can happen at night and Alice
feels that it is dangerous to meet with a stranger in an
unknown location. So she signs onto the SSU portal site
and applies for a MobiPass for the AFS. To ensure the
level of security, Alice must hold her public/private key
pair before applying for the MobiPass from the SSU. Once
she has signed in, she would found that most information
about her has already been filled and cannot be modified;
only the self explanation and descriptions are left for her to
fill. At the same time, Alice's public key for the AFS is
uploaded to the SSU. Once submitting the form and
reviewed by the SSU staffs, Alice will receive a MobiPass
for the AFS from SSU. The message snippet is shown in
Figure 3.
<MobiPass>
 <meta>
 <digestValue>RjzP...DGY8=</digestValue>

 <signatureValue>=</signatureValue>
 </meta>
 <certified>
 <expired>2007-08-05</expired>
 <issuer>
 <ECA>
 <ECA-ID>124..626</ECA-ID>
 <ECA-name>AFS, Univ of Techo, Sydney </ECA-name>
<publicKey>https://ssu.mobipass.uts.edu.au/afs.pub.key</publicKey>
 </ECA>

 <policy>
 <policy-ID>11...34</policy-ID>
 <description>....</description>

<schemaLocation>https://ssu.mobipass.uts.edu.au/afs.schema.xsd</sche
maLocation>
 </policy>
 </issuer>

 <studentInfo>
 <publicKeyOfHolder>Daz==.z==</publicKeyOfHolder>
 <gender>female</gender>
 <age-range>20-25</age-range>

 <department>computer science</department>
 <faculty>information technology</faculty>
 <nationality>Chinese</nationality>
 …

 </studentInfo>
 </certified>
 <nonCertified>
 <selfDescription><![CDATA[… easy going, nice person!....
]]></selfDescription>
<interests>
 <element>fishing</element>

 <element>reading</element>
 <element>...</element>
 </interests>
<smoker>false<smoker>

<hasPet>false<hasPet>
 </nonCertified>
 <timestamp>

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

59

 <notBefore>1132622517640</notBefore>
 <notAfter>1132622519640</notAfter>
 <timestampSignatureValue>skz...==z</timestampSignatureValue>
 </timestamp>

</MobiPass>

Figure 3: MobiPass Message Snippet for AFS

After receiving this AFS MobiPass, Alice imports this
MobiPass to her mobile phone and tries to setup the
service correctly. We can assume that Alice already has
SSU's public key in her mobile phone, and the MobiPolicy
for this AFS has been downloaded onto her mobile phone.
So Alice runs her MobPolicy setup to load her AFS
service, and fill in all other criteria for this service. Such
as:

● Gender: Female
● Flat mate Age Range: 20-25
● Nationality: {Chinese, Korean, Japanese,

Australian}
● Flat mate Major: Accounting, Business, Music
● List of Suburbs, which are within walking

distance to the university
● Monthly rental budget, for Alice, the limit is $150

per week.
● Furnish – fully furnished etc

The service is activated once the setup is finished. So when
Alice walks into the campus, her mobile phone will try to
find an AFS LBs to run the service. For example, the AFS
LB reception might cover the central common areas within
the university, and the LB will run the service in ALC
mode. This means that when Alice enters the campus, the
AFS service will be up and running on her mobile phone,
then her MobiPass application will try to contact the LB
for the AFS service. When Alice's mobile device has
found the SSU's LB, it will then try to authenticate the LB;
initiate a handshake with the local SSU for exchanging the
symmetric key. As the local SSU is running in ALC mode,
the SSU's LB will also be asking for Bob's AFS service
settings, so Alice's mobile device will send his settings to
the SSU's LB. The SSU's LB will then act on Alice's behalf
and announces to the entire wireless network that a new
member has joined the network and this new member is
looking for a flat mate. After receiving the message,
students who are using the same service might try to
contact Alice by their MobiPass through the LB, and the
SSU LB will try to authenticate the incoming MobiPass
for Alice, i.e, whether this sender has a valid MobiPass e.g.
a student from the university. If the MobiPass is valid, the
LB will try to match their profiles and if it matches Alice’s
criteria, she will receive a notification that there are people
around who are interested to share an accommodation with
her.

This notification by her MobiPass-enabled device will
allow Alice to meet with potential matching students
within a very short time in the university common area, so
that they can speak face-to-face, therefore allowing Alice
to make a final decision on whether the potential student is
a match. In this way, trusted interaction for mobile devices
supported by the MobiPass architecture can provide
greater immediacy and functionality than other electronic
interactions.

This case study has described the steps taken in applying
the LB based MobiPass architecture to the AFS, the
MobiPass architecture, in this example, provides an
excellent platform for university students to find their
accommodation and flat mates securely and efficiently. By
using the MobiPass architecture, students can very easily
distinguish potential flat mates. The scope of potential flat
mates is limited to university students with matching
profiles. Also, the communication can happen in real time
and once they find each other by mobile phone, they can
start meeting immediately, such as in the university's
common area where the MobiPass-based interaction
initially occurs. Students are not required to make
appointments and meet somewhere which might be
unfamiliar and potentially dangerous to them. Also the
architecture is very open and flexible; it is easy to apply
this architecture to a more mission critical service to
ensure that interactions will take place in a trusted manner.

5 Related Work

This research outcome is based on our previous research
on ubiquitous and mobile computing, the MobiPass
architecture (Steele, Tao 2006, Tao, Steele 2006). The goal
of this research is to provide a highly effective approach to
build a trusted interaction between different entities within
an open and dynamic environment. There are also other
researchers that have focused their efforts in addressing
this issue.

Kagal, Finin and Joshi (Kagal, Finin, Joshi 2002) proposed
the Centaurus system which provides a fine grained access
control in their Smart Office ubiquitous computing
scenario, the system utilises the distributed trust approach
and extends the Role Based Access Control(RBAC) to
allow foreign users from another security domain to be
granted the proper privileges in order to gets access. Based
on their implementation, Hong and Landay (2004) propose
the architecture to perform the authentication and
authorisation in ubiquitous computing by assigning tags to
pieces of information; information is associated with a
policy and indicated by the tag. Park and Sandhu (1999)
proposed a concept named smart certificate for improving
scalability in web servers, which has some interest to our
work. The smart certificate is an extended version of
X.509 certificate with several remarkable features. These
previous research works are more focused on
authentication which can help interacting entities to
identify the transacting parties; however, fine grained
access control is not covered comprehensively, which, is a
very important aspect in mobile computing.

6 Future Work and Conclusion

To build a trusted environment in mobile computing, the
MobiPass architecture is introduced to allow mobile
devices to be recognised by only presenting their
MobiPass and also it allows one entity to judge other
entities by examining their respective MobiPasses.
However, for performance considerations, a variant that
introduces the LB to reduce the load for each mobile
device has been introduced in this paper. The LB enabled
MobiPass architecture works under the condition that a
group of mobile devices do not know each other, but they

CRPIT Volume 74 - Computer Science 2008

60

all have a solid relationship with the LB. According to our
research, there are a large number of scenarios in which
the device has such good knowledge of the LB. Our future
work will focus on extending the LB enabled MobiPass
architecture to enable arbitrary MobiPass processing in
real time, i.e. do not need to have manually imported the
ECA’s public key, and proposing a good mechanism for
allowing to reuse a MobiPolicy by multiple service
providers. Efforts will also be made to improve our service
discovery protocol, i.e., how different entities can discover
each other and how to negotiate and send the MobiPass
during the discovery. Our ongoing research will be to
refine the MobiPolicy and to make the MobiPass
architecture generic enough to be pluggable into most
trustworthiness mobile systems.

References

Steele, R., Tao, W. (2006) MobiPass: A Passport for
Mobile Business. Personal and Ubiquitous Computing,
Springer, 11 (3): pp.157-169

Tao, W., Steele, R. (2006) Mobile Trust Via Extended
Digital Certificates, Proc of The 2nd IEEE International
Symposium on Dependable, Autonomic and Secure
Computing (DASC 06), pp. 284-292.

Satyanarayanan, M. (2001), Pervasive computing: vision
and challenges, IEEE Wireless Communications, 8 (4),
10-17

Ranganathan, K. (2004), Trustworthy Pervasive
Computing: The Hard Security Problems, Proc of the 2nd
IEEE Annual Conference on Pervasive Computing and
Communications Workshops 119

Diffie, W. (1998), The first ten years of public-key
cryptography, Proc of IEEE, 76 (5), 560- 577

Steele R, Gardner W, Rajugan R, Dillon TS (2005) A
design methodology for user access control (UAC)
middleware. Proc of the 2005 IEEE international
conference on e-technology, e-commerce and e-service
(EEE’05), pp 385–390

Kagal L, Finin T, Joshi A (2002) A security architecture
based on trust management for pervasive computing
systems”. Grace Hopper Celebration of Women in
Computing, October 2002

Hong J, Landay J (2004) An architecture for
privacy-sensitive ubiquitous computing” Proc of the 2nd
international conference on mobile systems, applications,
and services, pp 177–189

Park J.S, Sandhu R (1999) RBAC on the Web by smart
certificates Procof the 4th ACM workshop on role-based
access control. ACM Press, New York, pp 1–9

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

61

CRPIT Volume 74 - Computer Science 2008

62

HOVER: Hybrid On-demand Distance Vector
Routing for Wireless Mesh Networks

Stephan Mir†, Asad Amir Pirzada and Marius Portmann‡

Queensland Research Laboratory,
National ICT Australia Limited,
Brisbane, QLD 4000, Australia.

{stephan.mir,asad.pirzada,marius.portmann}@nicta.com.au

Abstract

Hybrid Wireless Mesh Networks are a combination
of mobile ad hoc networks and infrastructure wire-
less mesh networks, consisting of two types of nodes:
mobile Mesh Clients and static Mesh Routers. Mesh
Routers, which are typically equipped with multiple
radios, provide a wireless multi-hop backhaul. The
resource constrained Mesh Clients also participate
in the routing and forwarding of packets to extend
the reach of the network. Current ad-hoc routing
protocols have been designed for relatively homoge-
neous networks and do not perform well in Hybrid
Wireless Mesh Networks. In this paper, we present
HOVER (Hybrid On-demand Distance Vector Rout-
ing), a modified version of the AODV routing pro-
tocol, that achieves significant performance improve-
ments in terms of packet delivery and latency in Hy-
brid Wireless Mesh Networks. Our modifications in-
clude a link quality estimation technique based on
HELLO packets, a new routing metric that differ-
entiates between node types, and a channel selec-
tion scheme that minimises interference in multi-radio
mesh networks. We present an evaluation of our im-
provements via extensive simulations. We further
show the practicality of the protocol through pro-
totype implementation and provide measurement re-
sults obtained from our test-bed∗.

Keywords: Multi-radio, routing, mesh, wireless, net-
work

1 Introduction

Wireless Mesh Networks (WMN) have recently gained
considerable popularity due to their self-healing, self-
configuring and self-optimising capabilities. The low
cost of commodity IEEE 802.11 wireless hardware,
on which most WMNs are based, further adds to the
appeal of the technology. WMNs offer an attrac-
tive platform for a wide range of applications, such
as public safety and emergency response communica-
tions, intelligent transportation systems, and commu-
nity networks.

†The author is also affiliated with Télécom Paris, ENST,
Paris, France and Ecole Polytechnique, Palaiseau, France.

‡The author is also affiliated with the School of Informa-
tion Technology and Electrical Engineering, The University of
Queensland, Brisbane, QLD 4072, Australia.

∗The research work presented here is in continuation with our
primary concept paper published in the Proceedings of the
Thirtieth Australasian Computer Science Conference (Pirzada,
Portmann & Indulska 2007).

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at the Thirty-First Australasian Computer
Science Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74. Gillian Dobbie and Bernard Mans, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

A WMN consist of two types of wireless nodes:
Mesh Routers and Mesh Clients. The Mesh Routers
have improved computational, communication and
power resources as compared to Mesh Clients. Mesh
Routers are generally static and form the multi-hop
backhaul network. A subset of Mesh Routers can also
provide gateway functionality and connect the WMN
to external networks. Mesh Routers are also typi-
cally equipped with multiple wireless network inter-
faces and are, therefore, able to establish high capac-
ity connections by using multiple orthogonal chan-
nels. Mesh Clients are mobile devices, which take ad-
vantage of the existing communication infrastructure
provided by the Mesh Routers.

WMNs can be divided into three main types
(Akyildiz & Wang 2005): Infrastructure, Client, and
Hybrid. In an Infrastructure WMN, Mesh Clients
gain access to each other or to the backhaul network
through Mesh Routers and are not actively involved
in routing and forwarding of packets. Thus, all Mesh
Clients gain access to Mesh Routers via a single wire-
less hop. In Client WMNs, Mesh Clients communi-
cate with each other directly, without involving any
Mesh Routers. A Client WMN is essentially a pure
multi-hop mobile ad-hoc wireless network (Pirzada &
McDonald 2004).

A Hybrid WMN combines the connectivity pattern
of both the Infrastructure and Client WMNs. In these
networks, both Mesh Clients and Mesh Routers are
actively involved in routing and forwarding of packets,
and Mesh Clients can access the wireless backhaul
network via multiple client hops.

A typical scenario where a Hybrid WMN might be
employed is in emergency response and disaster re-
covery situations, where traditional communications
infrastructure might not be available. In such a case,
a hybrid WMN can provide a so-called incident area
network, as illustrated in Figure 1.

Mesh-Router

Mesh-Client

Mesh-Client

Mesh-Router

INCIDENT AREA
NETWORK

Figure 1: Hybrid Wireless Mesh Network

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

63

Current WMNs suffer from the problem of perfor-
mance degradation with increasing number of wire-
less hops. One of the reasons is the limitation of the
IEEE 802.11 MAC layer based on CSMA/CA, which
has not been designed for multi-hop networks. A ma-
jor problem is co-channel interference, where nodes
within interference range are transmitting simultane-
ously on the same channel, resulting in collisions, re-
duced throughput and increased communication de-
lays (Gupta & Kumar 2000). A further limiting fac-
tor is the half-duplex nature of IEEE 802.11 network
interface cards, which does not allow simultaneous
sending and receiving.

Even though some of these problems can be mit-
igated by providing nodes with multiple network in-
terfaces (Raniwala & Chiueh 2005) (Kyasanur &
Vaidya 2006), the problem of finding optimal routes in
WMNs, and in Hybrid WMNs in particular, is largely
an open research issue. Challenges are mobility, het-
erogeneity and the problem of channel selection with
the goal of minimising interference.

The Ad-hoc On-demand Distance Vector (AODV)
protocol (Perkins, Royer & Das 2003) is one of
the predominant reactive ad-hoc routing protocols.
AODV was originally developed for homogenous mo-
bile ad-hoc networks, where nodes typically have a
single wireless network interface and have comparable
computational and communication resources. Conse-
quently, AODV has some shortcomings when applied
to Hybrid WMNs. First of all, with hop-count as
its routing metric, it lacks the ability to differenti-
ate between node types, i.e. Mesh Routers and Mesh
Clients. Thus it is unable to exploit the heterogeneity
in the network. Furthermore, AODV is not aware of
the wireless channels used for the network interfaces
and, therefore, it cannot minimise co-channel inter-
ference and maximise the use of multiple orthogonal
channels between node pairs.

In this paper, we present three modifications to
AODV to address these shortcomings and to improve
its performance in Hybrid WMNs. HOVER (Hybrid
On-demand Distance Vector Routing), our modified
version of AODV, outperforms standard multi-radio
AODV by a considerable margin, as we will show in
Section 4 and 5. Our proposed modifications, and
also our key contributions, are as follows:

• We propose a modification to AODV’s route dis-
covery mechanism that maximises the involve-
ment of Mesh Routers in the establishment of
end-to-end paths. It is achieved by introducing
a new routing metric that differentiates between
Mesh Routers and Mesh Clients.

• In a multi-radio WMN, neighbouring nodes can
be connected via multiple links on orthogonal
channels. We integrated a channel selection
scheme into AODV’s route discover mechanism
that can select the“best” of these available links
for each hop of the path.

• We implemented a link quality estimation
scheme based on HELLO packets in AODV.
HELLO packets are broadcast regularly by each
node to monitor link connectivity and to detect
link breaks. Hence, no additional overhead is
introduced in the network.

The rest of the paper is organised as follows. Sec-
tion 2 discusses relevant related work. The HOVER
protocol is discussed in detail in Section 3. Simulation
results and their analysis are discussed in Section 4.
A prototype implementation of HOVER and its eval-
uation is presented in Section 5. Section 6 concludes
the paper.

2 Related Work

AODV-ST (Ramachandran, Buddhikot, Chandran-
menon, Miller, Belding-Royer & Almeroth 2005) is
a Hybrid routing protocol developed specifically for
infrastructure mesh networks. The protocol has been
designed with the aim of providing Internet access
to Mesh Clients with the help of one or more gate-
ways. AODV-ST uses a proactive strategy to dis-
cover routes between the Mesh Routers and the gate-
ways, and a reactive strategy to find routes between
Mesh Routers. In the proactive case, the gateways
periodically broadcast special Route Request packets
to initiate the creation of spanning trees. All subse-
quent Route Request packets with a better routing
metric are used to update the existing reverse route
to the gateway. AODV-ST uses the Expected Trans-
mission Time (ETT) (Draves, Padhye & Zill 2004)
routing metric, which measures the expected time
needed to successfully transmit a fixed-size packet on
a link. The ETT of a link is computed using the Ex-
pected Transmission Count (ETX), bandwidth and
packet loss. AODV-ST has primarily been designed
for single-radio wireless nodes and hence cannot ex-
ploit the full potential of multi-radio nodes in the net-
work. Neither does it differentiate between different
types of nodes in Hybrid WMNs.

Hyacinth (Raniwala & Chiueh 2005) is a multi-
channel static wireless mesh network protocol that
uses multiple radios and channels to improve the net-
work performance. It implements a routing protocol
and supports a fully distributed channel assignment
algorithm, which can dynamically adapt to varying
traffic loads. Hyacinth’s channel assignment algo-
rithm breaks a single-channel collision domain into
multiple collision domains, each operating on a dif-
ferent frequency.

The Multi-Radio Link Quality Source Routing
(MR-LQSR) (Draves et al. 2004) protocol has been
developed for static community wireless networks.
The protocol works in conjunction with the Mesh
Connectivity Layer (MCL). The protocol identifies
all nodes in the wireless mesh network and assigns
weights to all possible links. The link information in-
cluding channel assignment, bandwidth and loss rates
are propagated to all nodes in the network to com-
pute the Weighted Cumulative Expected Transmis-
sion Time (WCETT), which is a routing metric that
also takes channel diversity into account.

The Multi-Channel Routing (MCR) protocol
(Kyasanur & Vaidya 2006) has been developed for
dynamic WMNs where nodes have multiple wireless
interfaces and each interface supports multiple chan-
nels. The protocol makes use of an interface switch-
ing mechanism to assign interfaces to channels. Two
types of interfaces are assumed: fixed and switchable.
Switching is carried out depending upon the maxi-
mum number of data packets queued for a single chan-
nel. The switching mechanism assists the MCR pro-
tocol in finding routes over multiple channels. MCR
uses a new routing metric which is computed as a
function of channel diversity, interface switching cost
and hop-count. The diversity cost is assigned accord-
ing to the least number of channels used in a route.
Thus a route with a larger number of distinct channels
is considered to have lower diversity cost. The switch-
ing cost is used to minimise the frequent switching of
wireless interfaces.

Some of the works discussed use dynamic channel
allocation and switching mechanisms to improve the
routing performance of the network. However, the
accurate and synchronised execution of these mech-
anisms in a mobile network requires the availability
of a virtual switching protocol and incurs switching
delays (Chandra & Bahl 2004, Draves et al. 2004).

CRPIT Volume 74 - Computer Science 2008

64

Our protocol avoids this complexity by assuming a
static allocation of channels to interfaces, while still
achieving significant performance improvements.

Some related work introduce new routing metrics
to improve the quality of end-to-end paths. However,
to the best of our knowledge, HOVER is the first pro-
tocol that specifically addresses the problem of rout-
ing in Hybrid WMNs by differentiating between dif-
ferent node types. A further contribution of this pa-
per is the integration of an intelligent channel selec-
tion mechanism with the route discovery mechanism
of a reactive routing protocol.

3 Hybrid On-Demand Distance Vector Rout-
ing (HOVER) Protocol

Our contributions presented in this paper consist of a
number of modifications to AODV. Therefore, we first
provide a brief overview of AODV’s route discovery
mechanism before discussing our proposed extensions.

3.1 AODV

The AODV routing protocol is a distance vector rout-
ing protocol that has been optimised for ad-hoc wire-
less networks. It is an on-demand or reactive proto-
col, as it finds the routes only when required. AODV
borrows basic route establishment and maintenance
mechanisms from the DSR protocol (Johnson, Maltz
& Hu 2003) and hop-to-hop routing vectors from
the Destination-Sequenced Distance-Vector (DSDV)
routing protocol (Perkins & Bhagwat 1994). To avoid
the problem of routing loops, AODV makes extensive
use of sequence numbers in control packets.

When a source node intends to communicate with
a destination node, whose route is not known, it
broadcasts a Route Request packet (RREQ) with a
unique ID field. Each recipient of the RREQ, which
has not seen a RREQ with the same source IP and
ID pair or does not maintain a fresher (with larger
sequence number) route to the destination, rebroad-
casts the same packet. Such intermediate nodes also
create a reverse route to the source node.

When the RREQ reaches the destination or an
intermediate node, which has a fresher route to the
destination, a Route Reply packet (RREP) is gener-
ated and unicast back to the originator of the RREQ.
Each RREP contains the destination sequence num-
ber, the source and the destination IP addresses,
route lifetime, together with hop-count and control
flags. Each intermediate node that receives the RREP
increments the hop-count and establishes a forward
route to the source of the RREP. The RREP finally
reaches the originator of the RREQ by traversing re-
verse routes that were established while forwarding
the corresponding RREQ.

To maintain connectivity information, nodes can
either use link-layer feedback or periodic Hello pack-
ets to detect link breaks to immediate neighbours. In
case a link break is detected for a next hop of an ac-
tive route, a Route Error (RERR) packet is sent to
the active neighbours that were using that particular
link.

When using AODV on a multi-radio node each
RREQ is broadcast on all interfaces. Intermediate
nodes with one or more interfaces operating on a com-
mon channel receive the RREQ and create a reverse
route that points towards the source node. If the
RREQ is a duplicate, it is simply dropped. The first
RREQ received by the destination or any intermedi-
ary node is selected and all other RREQs belonging to
the same route discovery are discarded. The RREP
is generated in response to the selected RREQ and
is sent back to the source node on the established

reverse route (Pirzada, Portmann & Indulska 2006).
We refer the standard AODV protocol with support
for multiple radios as AODV-MR in this paper.

3.2 HOVER

HOVER uses the same basic route discovery mech-
anism as that of AODV-MR. However, in order to
guarantee that routes are preferentially established
via Mesh Routers, and to provide optimal link se-
lection when multiple links exist between immediate
neighbours, it implements the following three addi-
tional mechanisms:

• Node-type aware routing

• Link quality estimation

• Optimal link selection

3.2.1 Node-type aware routing

Hop-count is the default routing metric used by
AODV-MR. However, this metric does not guarantee
the selection of optimal paths. A longer path con-
sisting of high quality links can perform much better
than a shorter path consisting of low quality links.
Since Mesh Routers are more static, have multiple
radios and are typically equipped with higher gain
antennas, they are expected to maintain higher qual-
ity links with their neighbours than Mesh Clients. A
longer path comprised of Mesh Routers can, there-
fore, be expected to perform better than a shorter
path comprised only of Mesh Clients. The basic idea
is to preferentially involve Mesh Routers in the cre-
ation of end-to-end paths. This not only improves
the performance of the path, but also minimises un-
necessary draining of batteries belonging to resource
constrained mobile devices.

We therefore introduce a new path cost routing
metric, which is computed as follows:

Cost = MR COUNT ×MR COST +
MC COUNT ×MC COST

The parameter MR COUNT represents the num-
ber of Mesh Routers in the path and MC COUNT
represents the number of Mesh Clients. MR COST
and MC COST are the relative weights (or costs) as-
sociated with each type of node. In our implementa-
tion, we set the MR COST = 1 and MC COST = 4
implying that the Mesh Client traversal cost is four
times higher than the Mesh Router traversal cost.
These costs were determined through a series of sim-
ulations and actual tests.

The path cost is computed by accumulating the
individual link costs during the route discovery pro-
cess. The path cost metric is stored as a 8-bit field in
the extension header for RREQs and RREPs.

During the propagation of RREQs, this cost field
is used for the creation of optimal reverse routes from
destination and intermediary nodes back to the orig-
inator of the RREQ. Similarly, while forwarding the
RREPs, the cost field is used for creating optimal for-
ward routes. This mechanism is explained in detail
in Section 3.3.

3.2.2 Link quality estimation

Each node running HOVER maintains a set of links
to its adjacent nodes. Since we consider multi-radio
nodes, multiple links can exist between a pair of
nodes. The maximum number of links is limited

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

65

by the number of available interfaces on the nodes.
HOVER keeps track of the quality of these links by
listening to Hello packets from its neighbours. When
a node receives a Hello packet from a neighbour it
validates the link, which is identified by the receiving
interface and the IP address of the sender.

When no Hello packets are received for a
given period of time (ALLOWED HELLO LOSS ×
HELLO INTERV AL), the corresponding link is
marked as invalid. If the invalidated link is part of an
active route, HOVER simply switches the route to use
another valid link to the same neighbour. This repair
mechanism is extremely efficient and quick, since it is
done locally and does not involve sending any rout-
ing control packets, in contrast to AODV-MR’s local
route repair mechanism.

To keep track of the quality of the links between
two nodes, we count the number of Hello packets
that are received and lost over a period of time.
In our implementation, we set this time window to
10 × HELLO INTERV AL seconds. Individual Hello
counters are maintained for each neighbour and in-
terface pair. These counters allow us to find the pa-
rameters dr and df , which are the delivery ratios of
Hello packets for the reverse and forward direction of
a link respectively.

The parameter dr is simply the number of Hello
packets that were actually received in a given time
window, divided by the number of expected Hello
packets. This parameter, therefore, indicates the link
quality for incoming traffic, i.e. the reverse route di-
rection. Since wireless links are often asymmetric,
this quality is not necessarily the same for traffic flow-
ing in the other direction.

The parameter dr is communicated back to the
corresponding neighbour by piggybacking it on the
RREPs. For the receiving node, the received pa-
rameter dr corresponds to its parameter df , i.e. the
delivery ratio on the forward path. With both of
these parameters, a node can compute the Expected
Transmission Count (ETX) (Couto, Aguayo, Bicket
& Morris 2005) parameter.

ETX =
1

df × dr

We use ETX as a simple link quality metric for all
the links that a node maintains with its immediate
neighbours. This link quality metric can be used to
select the best link between two nodes during route
creation.

3.2.3 Optimal link selection

During the route discovery phase, an end-to-end path
is established through the concatenation of individual
links. The nodes involved in the path are determined
by our node-type aware routing metric. However, if
multiple links exist between two neighbouring nodes
in the path, we need to select one of these links to be
used for the route. Our goal is to choose the link that
provides the best performance for the path.

During each path discovery process, every node
considers the quality of its links to the relevant neigh-
bour and computes a preference or grading value for
each link. In addition to the ETX link quality met-
ric, a node can take into consideration other factors
such as channel diversity or current channel use, e.g.
determined by the number of active flows using that
channel (Ko, Padhye, Misra & Rubenstein 2005).

When the RREPs are forwarded, each node also
recommends the grading of each link on the reverse
path. The grading value is piggybacked onto the

RREPs and helps the RREP recipient in determin-
ing the optimal link to be used for communication
with the RREP sender.

To convey the path cost and link grading, we add
an extension header (shown in Fig. 2) to all RREQs
and RREPs.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type Length o Grade Cost

Figure 2: HOVER Packet Extension

The extension header further contains an optimi-
sation flag (o-flag), which will be discussed below.
Path cost and link grades are expressed as 8-bit and
7-bit fields respectively. The o-flag is used to differen-
tiate between the non-optimal and optimal RREPs.
The extension is compliant to the IETF RFC (Perkins
et al. 2003) and will be ignored by nodes that do not
understand the extension. Alternately, the existing
reserved fields in the RREQs and RREPs can be used
to convey the cost, grading and o-flag. The cost field
is only used for RREQs, while all three fields are used
for RREPs.

3.3 Path Discovery in HOVER

The basic idea of HOVER’s path discovery mecha-
nism is to establish a potentially non-optimal path
as quickly as possible, in order to minimise the path
creation delay. The path discovery mechanism is not
finished at this stage but continues to search for a
more optimal path. When the optimal path has been
found, the route is switched over to the new one.

This is implemented as a two phase optimisation
process. The first phase is carried out during the
propagation of the RREQs, while the second phase
is carried out during the propagation of the RREPs.
Phase I and II of this process are depicted in Figures 3
and 4 respectively. The behaviour of AODV-MR is
indicated with solid lines, while HOVER extensions
are shown via dashed lines.

During Phase I, each intermediary node that re-
ceives a RREQ first checks whether it is a duplicate
or not. If this is not the case and the packet is the first
RREQ with a particular ID, the node stores informa-
tion about this RREQ, including its cost metric and
its ID. A reverse route is then created to the source
of the RREQ.

If the RREQ is a duplicate, it is accepted only
if it has a lower path cost. Thus, an intermediate
node may forward multiple copies of the same RREQ
if the path cost of subsequently received RREQs is
lower than the previously received copy. This is in
contrast to AODV-MR, where only the initially re-
ceived RREQ is forwarded.

If an intermediate node has a route to the desti-
nation, it can send only a single RREP to the first re-
ceived RREQ with the same ID. This condition is im-
posed in order to avoid intermediate nodes from reply-
ing to all copies of the same RREQ, which would re-
sult in significant overhead. For all subsequent copies
of the same RREQ, intermediate nodes simply set the
‘Destination Only’1 flag in the RREQ and forward it
(Perkins & Royer 1999).

In order to establish an initial route as quickly
as possible, the destination responds immediately to
the first received RREQ. To indicate that this is a
temporary, and possibly non-optimal route, the o-flag
in the RREP header is set to false.

1The ‘Destination Only’ flag indicates that only the destination
can respond to this RREQ.

CRPIT Volume 74 - Computer Science 2008

66

Figure 3: Phase I Flow Chart

This non-optimal RREP is used to establish a path
from the source to the destination, which may be sub-
optimal, both in terms of Mesh Client involvement
and link selection. This essentially replicates the be-
haviour of AODV-MR.

In HOVER, once an initial non-optimal RREP has
been sent, the destination node starts a RREQ opti-
misation timer. Until the timer expires, the destina-
tion node continues to receive and buffer RREQs with
the same ID. When the timer expires, the destination
node selects the optimal RREQ, i.e. the one with the
lowest path cost according to our metric, and replies
with a corresponding optimal RREP.

Both the non-optimal and the optimal RREP fol-
low the Phase II process. In contrast to the non-
optimal RREP, the optimal RREP is sent via all wire-
less interfaces. Before sending the optimal RREP, the
responding node sets the o-flag to true and initialises
the path cost field to zero. The node further sets the
link priority or link grading, based on the link quality
metric or other factors such as channel diversity. This
allows the node to recommend a link for the forward
route to the next node.

Sending of multiple RREPs for a single route dis-
covery is one of the key differences from AODV-MR,
where the RREP is sent only on the single wireless
interface on which the first RREQ was received. The
primary reason for sending multiple RREPs is to give

Figure 4: Phase II Flow Chart

the receiving node the opportunity to select the opti-
mal link for the forward route. This also avoids the
problem of uni-directional links being created as a re-
sult of Hello packets having a longer range than the
RREPs (Chakeres & Belding-Royer 2002), since they
are sent via broadcast at a lower rate than unicast
packets.

The non-optimal RREP is treated as a normal
RREP, with the only difference being that the path
cost field is updated according to the same rule used
during the forwarding of RREQs. If the correspond-
ing forward route already exists at the node that re-
ceived the RREP, the cost of the existing route is
compared with the cost field of the RREP. In case
the path cost value in the RREP is lower than the
cost of the existing forward route, the route is up-
dated and the RREP is forwarded. Otherwise, the
RREP with a higher cost is simply discarded.

The optimal RREP is transmitted on all wire-
less interfaces by the destination or the intermediate
nodes. Upon receipt of a RREP, all nodes first check
the status of the o-flag. If the flag is set the RREP is
buffered and a RREP optimisation timer is started.
The node continues to receive and buffer RREPs (in-
cluding link grades) with the same ID and a set o-flag
until the RREPs have been received via all interfaces
or the optimisation timer has expired.

If multiple optimal RREPs have been received, the
receiving node needs to select one for creating or up-
dating the forward route to the sender of the RREP.
The selection of RREP is based on the link grading
and local link information, which includes link usage
and channel diversity. The main advantage of sending
the link priorities or grades in the optimal RREP is
that it provides the RREP recipient with link quality
information from the perspective of the RREP sender.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

67

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Maximum Speed

A
gg

re
ga

te
 G

oo
dp

ut
 (

bp
s)

0 5 10 15 20
5

10

15

Maximum Speed

R
ou

tin
g

P
ac

ke
t O

ve
rh

ea
d

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Maximum Speed

A
ve

ra
ge

 L
at

en
cy

 (
se

co
nd

s)

Tx−Rate
AODV−MR
HOVER

AODV−MR
HOVER

AODV−MR
HOVER

Figure 5: Test 1 Results - Varying the Mesh Client speeds

This process continues until the optimal RREP is
received by the source that initiated the route dis-
covery. The source now switches from the earlier cre-
ated non-optimal route to the newly formed optimised
route.

4 Simulation Results and Analysis

4.1 Simulation Environment

We evaluated the efficiency of the HOVER protocol
through extensive simulations in NS-2 (NS 1989), us-
ing the Extended Network Simulator (ENS) exten-
sions (Raman & Chebrolu 2005). A dense WMN
covering an area of 1 square km is established us-
ing 25 Mesh Routers arranged in a regular 5x5 grid,
with a distance of 176 meters between immediate
neighbours. The network further consists of 50 mo-
bile Mesh Clients. Concurrent UDP flows are estab-
lished between randomly selected source and destina-
tion Mesh Client pairs.

The following two tests were conducted to evalu-
ate the performance of the HOVER protocol under
varying mobility and traffic load conditions:

• Test 1: Varying the Mesh Client speeds

• Test 2: Varying the traffic load

Table 1: Simulation Parameters
Examined protocols AODV-MR & HOVER
Simulation time 900 seconds
Simulation area 1000 x 1000 m
Propagation model Two-ray Ground Reflec-

tion
Mobility model for Mesh
Clients

Random waypoint

Maximum Speed of Mesh
Clients

20 m/s

Transmission range 250 m
Number of Connections 30
Traffic type CBR (UDP)
Packet Size 512 bytes
Packet Rate 32 pkts/sec
Transmission Rate 128 kbps/flow
Number of Mesh Routers 25
Number of 802.11b radios in
Mesh Router2

6

Number of Mesh Clients 50
Number of 802.11b radios in
Mesh Client

1

RREQ Optimisation Timer 1 second
RREP Optimisation Timer 20 milliseconds

The performance metrics are obtained by ensem-
ble averaging the results from over 50 individual sim-
ulation runs for each test (Pirzada, McDonald &
Datta 2006). The parameters common to the two
tests are listed in Table 1.

The simulations provide the following performance
metrics:

• Aggregate Goodput: The total number of appli-
cation layer data bits successfully transmitted in
the network per second.

• Average Latency: The mean time (in seconds)
taken by the data packets to reach their respec-
tive destinations.

• Routing Packet Overhead: The ratio of the total
number of control packets generated to the to-
tal number of data packets that are successfully
received.

4.2 Test 1 : Varying the Mesh Client Speeds

In Test 1, we varied the speed of the Mesh Clients
from 0 to 20 m/s. The results of Test 1 are shown in
Fig. 5.

AODV-MR endeavours to create the shortest path
(in terms of the number of hops) between a source
and destination node pair. Thus it essentially ignores
whether a node is a Mesh Router or a Mesh Client
and focuses on rapid route creation. The rationale
behind the rapid route creation is that the quickest
path is most likely the optimal path. Thus paths cre-
ated by AODV-MR may or may not consist of Mesh
Routers. Thus once the traffic starts to flow over the
paths, we observe a high packet loss due primarily to
the interference observed in the dense network. As
the number of flows is relatively high, each flow con-
tends with other flows to gain access to the wireless
medium. Furthermore, we also have contention for
the shared medium within a single flow, if a common
channel is used for multiple hops.

Each flow created using HOVER initially goes over
a non-optimal path, just as in the case of AODV-
MR. However, upon expiry of the RREQ optimisation
timer, the flow is switched to a better route compris-
ing mostly of Mesh Routers and with optimal link

2Although, 802.11b can support only three orthogonal channels,
we have configured the NS-2 802.11b physical layer to consider all
channels to be orthogonal. This allows us to simulate the behaviour
of radios that support a high number of orthogonal channels such
as 802.11a.

CRPIT Volume 74 - Computer Science 2008

68

10 20 30 40 50
0

1

2

3

4

5

6
x 10

6

Number of Flows

A
gg

re
ga

te
 G

oo
dp

ut
 (

bp
s)

Tx−Rate
AODV−MR
HOVER

10 20 30 40 50
0

5

10

15

20

25

30

Number of Flows

R
ou

tin
g

P
ac

ke
t O

ve
rh

ea
d

AODV−MR
HOVER

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Flows

A
ve

ra
ge

 L
at

en
cy

 (
se

co
nd

s)

AODV−MR
HOVER

Figure 6: Test 2 Results - Varying the traffic load

selection. As a consequence, HOVER achieves a sig-
nificantly higher goodput than AODV-MR.

The node-type aware routing mechanism allows
HOVER to route most of the traffic via the Mesh
Routers. Due to the availability of multiple links and
the optimal link selection mechanism, HOVER is able
to forward packets via paths with less contention and
interference. As a result, the packet delays are signif-
icantly reduced.

The total number of control packets generated
by HOVER is always higher than for AODV-MR,
due to the fact that multiple copies of RREQs are
forwarded. However, at zero Mesh Client speeds,
HOVER achieves a lower routing overhead than
AODV-MR, even though it generates a higher num-
ber of control packets. This is due to the fact that
the routing overhead metric is computed as a ratio
of control packets generated to successfully received
data packets, which is higher in the case of HOVER.

Once the client speed is higher than zero, HOVER
has a higher routing overhead. In this case routes are
less stable and need to be re-established more often,
and the overhead of sending multiple copies of RREQs
and RREPs starts to become more evident.

4.3 Test 2 : Varying the Traffic Load

The results of Test 2 are depicted in Fig. 6. In this
test, we increased the number of simultaneous 128
kbps flows from 10 to 50.

In this case, the aggregate application layer data
rate is more than 5Mbps (40 x 128kbps). This
essentially saturates the physical layer, which has
a rough effective throughput of no more than 5
Mbps (Anderson & Youell 2002). However, HOVER
achieves a significantly lower packet loss rate when
the number of flows is less than 40.

The aggregate goodput achieved by HOVER re-
mains higher than that of AODV-MR due to reduced
packet losses at lower traffic loads. The packet deliv-
ery ratio for both protocols remains at almost 100%
when the number of flows is set to 10. However,
HOVER shows an improvement of around 25% in the
packet delivery ratio over AODV-MR when the num-
ber of flows is set to 20 or 30.

The latency of the packets using HOVER remains
more than 100 ms lower than that observed using
AODV-MR, with 20 or more simultaneous data flows.
The routing overhead of HOVER remains lower than
that of AODV-MR when the number of flows remains
below 40. This is essentially due to the low speed of
the Mesh Clients (1 m/s) maintained in Test 2.

5 Prototype Implementation and Evaluation

5.1 Prototype Implementation

We implemented a prototype of HOVER based on
AODV-UU (version 0.9.3)3. Some of the key changes
to the code that were required to implement our ex-
tensions are summarised as follows:

• Contrary to claims, the current version of
AODV-UU (0.9.3) does not correctly support
multiple network interfaces per node. We made
a number of changes to the original AODV-UU
code to fix this problem.

• We added a mechanism to keep track of multiple
links to neighbours and their respective quality
metrics. This was achieved by extending AODV-
MR’s routing table.

• An optimisation timer was associated with each
routing table entry. This timer is started when
the first RREQ is received, and the optimal
RREP is sent when the timer expires.

• AODV-MR’s Hello mechanism has been modified
to compute the link quality metric.

5.2 Testbed Set-up

To evaluate the efficacy of HOVER, we implemented
a small testbed consisting of nine wireless nodes as
shown in Fig. 7. The hardware and software setup
are explained in the following sub-sections.

Mesh Client

Mesh Router

Mesh ClientMesh Client

Mesh RouterMesh RouterMesh Router

Client Server

HOVER Route

AODV-MR Route

Figure 7: Hybrid Mesh Network Testbed

3http://core.it.uu.se/AdHoc/AodvUUImpl

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

69

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.5 Mbps 1 Mbps 1.5 Mbps 2 Mbps 2.5 Mbps

Traffic Load (Mbps)

T
hr

ou
gh

pu
t

AODV-MR
HOVER

Figure 8: Throughput results under varying traffic
loads

5.2.1 Hardware

The testbed consists of four Mesh Routers shown at
the bottom of Fig. 7. Mesh Routers are implemented
as standard PCs (AMD Sempron 2800+ processor
and 512MB of RAM), running Linux kernel version
2.6.8. Each Mesh Router is equipped with three mini-
PCI CM9 (AR5212 802.11a/b/g) wireless radios, us-
ing the Madwifi driver SVN version r1639. One ra-
dio is tuned to 802.11b channel 1, and the remain-
ing two are tuned to 802.11a channel 42 and 160 re-
spectively. Linksys WRT54GL wireless routers were
used as Mesh Clients and were running the openWRT
Linux distribution. The WRT54GLs are equipped
with one 802.11b radio only, tuned to 802.11b chan-
nel 1.

5.2.2 Software

We used Iperf4 and Ping to measure the network
throughput and latency respectively. Since all nodes
are located within close proximity of each other in
our lab, and therefore are within one-hop range of
each other, we implemented virtual topology control
via MAC layer filtering using iptables5. The resulting
topology is illustrated in Fig. 7. Two possible paths
exist between the client and the server: a four hop
path via the Mesh Clients and a five hop path via the
Mesh Routers.

5.3 Prototype Evaluation

A UDP session was established using Iperf between
the server and the client, which are respectively po-
sitioned at the far right and left sides of Fig. 7. The
offered load of each session was increased from 500
kbps to 2.5 Mbps. All results have been averaged
over twenty individual test runs.

The results, shown in Fig. 8, indicate that AODV-
MR always selects the first path, due to its smaller
hop-count. HOVER also initially selects the first
path, but after the expiry of the optimisation timer,
switches over to the second (optimal) path. HOVER
efficiently uses the multiple links that are available
between nodes in the second path to increase the
throughput significantly.

The latency results, shown in Fig 9, also confirm
minimal contention for the physical wireless medium
due to optimal channel selection. The results are in
line with our simulation results, in which HOVER
shows a notable improvement over AODV-MR in

4http://dast.nlanr.net/Projects/Iperf/
5http://www.netfilter.org

0

200

400

600

800

1000

1200

1400

1600

0 Mbps 0.5 Mbps 1 Mbps 1.5 Mbps 2 Mbps 2.5 Mbps

Traffic Load (Mbps)

La
te

nc
y

(m
s)

AODV-MR
HOVER

Figure 9: Latency results under varying traffic loads

terms of latency. However, due to the absence of any
inter-flow interference (Yang, Wang & Kravets 2005)
in the testbed, the improvement in latency is notably
higher in the testbed than in the simulation results.

6 Conclusions

Hybrid Wireless Mesh Networks are composed of a
combination of static Mesh Routers and mobile Mesh
Clients. The Mesh Routers have significantly higher
computation and communication resources compared
with the Mesh Clients. However, current routing
protocols do not discriminate between the two type
of nodes and are, therefore, not able to exploit this
heterogeneity. In this paper, we presented a num-
ber of extensions to the multi-radio AODV protocol
that significantly improve its performance in terms of
throughput and latency in Hybrid WMNs. Our ex-
tensions allow differentiation between node types and
optimal use of the multiple links that are available
at Mesh Routers. We implemented three methods
to achieve this: node-type aware routing, link qual-
ity estimation, and optimal link selection. We have
demonstrated the superior performance of HOVER
over multi-radio AODV with the help of extensive
simulations. We have also shown the practicality of
our concept via an actual implementation, and pro-
vided realistic evaluations via testbed experiments.

Acknowledgements

National ICT Australia is funded by the Australian
Government’s Department of Communications, Infor-
mation Technology, and the Arts and the Australian
Research Council through Backing Australia’s Ability
and the ICT Research Centre of Excellence programs
and the Queensland Government.

References

Akyildiz, I. F. & Wang, X. (2005), ‘A Survey on
Wireless Mesh Networks’, IEEE Communica-
tions Magazine 43(9), S23–S30.

Anderson, J. K. & Youell, N. (2002), ‘A Closer
Look at WLAN Throughput and Performance’,
Bechtel Telecommunications Technical Journal
1(1), 86–94.

Chakeres, I. & Belding-Royer, E. (2002), The utility
of hello messages for determining link connectiv-
ity, in ‘Proceedings of the 5th International Sym-
posium on Wireless Personal Multimedia Com-
munications’, Vol. 2, pp. 504–508.

CRPIT Volume 74 - Computer Science 2008

70

Chandra, R. & Bahl, P. (2004), MultiNet: Con-
necting to Multiple IEEE 802.11 Networks us-
ing a Single Wireless Card, in ‘Proceedings of
the Twenty-third Annual Joint Conference of the
IEEE Computer and Communications Societies
(INFOCOM)’, Vol. 2, IEEE Press, pp. 882–893.

Couto, D. S. J., Aguayo, D., Bicket, J. & Morris,
R. (2005), ‘A high-throughput path metric for
multi-hop wireless routing’, Wireless Networks
11(4), 419–434.

Draves, R., Padhye, J. & Zill, B. (2004), Routing
in Multi-Radio, Multi-Hop Wireless Mesh Net-
works, in ‘Proceedings of the 10th Annual Inter-
national Conference on Mobile Computing and
Networking’, ACM Press, pp. 114–128.

Gupta, P. & Kumar, P. R. (2000), ‘The Capacity of
Wireless Networks’, IEEE Transactions on In-
formation Theory 46(2), 388–404.

Johnson, D. B., Maltz, D. A. & Hu, Y. (2003), ‘The
Dynamic Source Routing Protocol for Mobile Ad
hoc Networks (DSR)’, IETF MANET, Internet
Draft .

Ko, B. J., Padhye, J., Misra, V. & Rubenstein,
D. (2005), Distributed Channel Assignment in
Multi-radio 802.11 Mesh Networks. , Technical
report, Columbia University.

Kyasanur, P. & Vaidya, N. H. (2006), ‘Routing and
Link-layer Protocols for Multi-Channel Multi-
Interface Ad Hoc Wireless Networks’, SIGMO-
BILE Mobile Computing and Communications
Review 10(1), 31–43.

NS (1989), ‘The Network Simulator’,
http://www.isi.edu/nsnam/ns/ .

Perkins, C. E. & Bhagwat, P. (1994), Highly Dynamic
Destination-Sequenced Distance-Vector Routing
(DSDV) for Mobile Computers, in ‘Proceed-
ings of the SIGCOMM Conference on Commu-
nications, Architectures, Protocols and Applica-
tions’, ACM Press, pp. 234–244.

Perkins, C. & Royer, E. M. (1999), Ad hoc On-
Demand Distance Vector Routing, in ‘Proceed-
ings of the 2nd IEEE Workshop on Mobile Com-
puting Systems and Applications’, pp. 90–100.

Perkins, C., Royer, E. M. & Das, S. (2003), ‘Ad hoc
On-Demand Distance Vector (AODV) Routing’,
IETF RFC 3561 .

Pirzada, A. A. & McDonald, C. (2004), Establishing
Trust in Pure Ad-hoc Networks, in ‘Proceedings
of the 27th Australasian Computer Science Con-
ference (ACSC)’, Vol. 26, Australian Computer
Society, pp. 47–54.

Pirzada, A. A., McDonald, C. & Datta, A. (2006),
‘Performance Comparison of Trust-Based Reac-
tive Routing Protocols’, IEEE Transactions on
Mobile Computing 5(6), 695–710.

Pirzada, A. A., Portmann, M. & Indulska, J. (2006),
Evaluation of MultiRadio Extensions to AODV
for Wireless Mesh Networks, in ‘Proceedings of
the 4th ACM International Workshop on Mo-
bility Management and Wireless Access (Mobi-
Wac)’, pp. 45–51.

Pirzada, A. A., Portmann, M. & Indulska, J. (2007),
Hybrid Mesh Ad-hoc On-demand Distance Vec-
tor Routing Protocol, in ‘Proceedings of the
Thirtieth Australasian Computer Science Con-
ference (ACSC’07)’, Vol. 29, pp. 49–58.

Ramachandran, K., Buddhikot, M., Chandranmenon,
G., Miller, S., Belding-Royer, E. & Almeroth, K.
(2005), On the Design and Implementation of In-
frastructure Mesh Networks, in ‘Proceedings of
the IEEE Workshop on Wireless Mesh Networks
(WiMesh)’, IEEE Press, pp. 4–15.

Raman, B. & Chebrolu, C. (2005), Design and Evalu-
ation of a new MAC Protocol for Long-Distance
802.11 Mesh Networks, in ‘Proceedings of the
11th Annual International Conference on Mobile
Computing and Networking (MobiCom)’, ACM
Press, pp. 156–169.

Raniwala, A. & Chiueh, T. C. (2005), Architecture
and Algorithms for an IEEE 802.11-based Multi-
Channel Wireless Mesh Network, in ‘Proceed-
ings of the 24th Annual Joint Conference of the
IEEE Computer and Communications Societies
(INFOCOM)’, Vol. 3, IEEE Press, pp. 2223–
2234.

Yang, Y., Wang, J. & Kravets, R. (2005), Designing
Routing Metrics for Mesh Networks, in ‘Proceed-
ings of the IEEE Workshop on Wireless Mesh
Networks (WiMesh)’, IEEE Press.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

71

CRPIT Volume 74 - Computer Science 2008

72

Product Flow Analysis in Distribution
Networks With a Fixed Time Horizon

M. T. Wynn C. J. Fidge A. H. M. ter Hofstede M. Dumas

Faculty of Information Technology,
Queensland University of Technology, Australia.

Email: {m.wynn, c.fidge, a.terhofstede, m.dumas}@qut.edu.au

Abstract

The movement of items through a product distribu-
tion network is a complex dynamic process which de-
pends not only on the network’s static topology but
also on a knowledge of how each node stores, handles
and forwards items. Analysing this time-dependent
behaviour would normally require a simulation algo-
rithm which maintains a globally-synchronised sys-
tem state. For a certain class of problem, however,
where the simulation is required to stop in a consis-
tent state but not necessarily maintain consistency at
all times, we show that an algorithm that makes lo-
calised decisions only is sufficient. As a motivating
example we consider the practical problem of prod-
uct recalls, in which our primary concern is the state
of the distribution network at a specific time after a
batch of suspect items was released, but we do not
necessarily care about intermediate states leading up
to the final one.

Keywords: Network analysis; Product distribution.

1 Introduction

A product distribution network routes items from
source nodes to their final destinations, with each
item typically passing through several nodes en route.
The route that each item takes is controlled by the
logistic processes governing each node. Examples in-
clude mail systems, small-scale retail networks and
large-scale shipping networks. Understanding the be-
haviour of distribution networks is vital to business
process modelling, but is challenging because the dy-
namic properties of such a network cannot be pre-
dicted easily from its static topology. Instead, some
form of simulation is usually required to analyse its
behaviour.

Such an analysis would normally require us to use
an algorithm which maintains a global notion of time
throughout the simulated network. Unfortunately,
maintaining global states is awkward when dealing
with asynchronous distributed systems. Keeping the
global state consistent at all points in the computa-
tion forces us to allow for the possibility that an action
in one node completes mid-way through a concurrent

Acknowledgments We wish to thank the anonymous ACSC
reviewers for their helpful comments. This research was funded
by Australian Research Council grant DP0773012, Rapidly
Locating Items in Distribution Networks with Process-Driven
Nodes.

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74, Gillian Dobbie and Bernard Mans, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

action in another node. The resulting simulation al-
gorithm thus needs to partition logically atomic steps,
adding to its complexity. Also, the algorithm can be
inefficient if the time-scale is fine-grained.

We have found, however, that for a certain class
of distribution network problem there is no need to
maintain a global state. Specifically, when the items
moving through the network behave independently of
one another, and when the desired result of the anal-
ysis is to discover the state of the network at some
pre-determined time, we can use an algorithm that
does not require synchronisation across the nodes. In-
stead, we define a global ‘horizon’ for the calculation
and model each item’s passage through the network
separately until it reaches the horizon. The result-
ing calculation can be more efficient than the corre-
sponding globally-synchronised simulation algorithm
because each item can make progress in compara-
tively large time steps.

Here we use the highly-topical issue of product
recalls as a motivating example to demonstrate the
approach. Recent dangerous product recalls in Aus-
tralia, including several triggered by extortion at-
tempts, have proven enormously difficult and expen-
sive for the companies involved (Safe 2005). Devel-
oping a reliable solution to this problem is highly
significant: ‘over-recalling’ is needlessly expensive,
whereas ‘under-recalling’ danger products can cost
lives. Finding an efficient solution is also important,
given the size of typical product distribution networks
(Safe 2005).

Barcodes and RFID tags do not solve the problem
of locating goods, because they are useful only after
items have been located. Also, recent recalls have
involved small, high-volume items, such as chocolate
bars, paracetamol tablets, and baked goods (Indus-
try Search 2006). Low-cost items such as these cannot
be tracked cost-effectively using satellite technologies.
Therefore, when a recall becomes necessary, we must
rely on our knowledge of the product distribution net-
work’s typical behaviour in order to predict the likely
location of suspect items. In this paper we present
such an analysis algorithm based around the items
themselves.

2 Related Work

Our interest here is an algorithm for analysing the
behaviour of a physical distribution network repre-
sented as an acyclic directed graph with quantities
attached to the nodes and arcs. There are numer-
ous graph analysis algorithms for such capacitated
digraphs, including algorithms for calculating short-
est paths, minimum spanning trees, maximum capac-
ity along a path, and so on (Berman & Paul 2005,
Ch. 11). While relevant, none of these static analy-
sis principles is directly applicable to our problem of
identifying a particular state in the dynamic evolution

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

73

BrisbaneToowoomba
<0.5>

Dalby

Charleville
<1.0>

Cunnamulla
<1.0>

Bundaberg

Rockhampton
<0.3>

Longreach

Mackay

Townsville

Cairns
<1.0>

Mt Isa
<1.0>

310 [0.8]

110 [0.2]

260 [1.0]

300 [0.5]

340 [1.0]

300[0.8]

660 [0.2]

80 [0.5]600 [0.5]

550 [0.5]

630 [1.0]

870 [0.2]

Distribution degree

Store degree

km
Surface route

Town

[0.0]

<0.0>

Figure 1: Major Queensland distribution routes from Brisbane

of a distribution network.
With respect to our motivating example of indus-

trial product recalls, there are already several com-
mercial products for managing product recalls in the
manufacturing industry. However, these tools are pri-
marily intended for products that are still within the
confines of the factory or warehouse (Pulse Logistics
Systems 2005, Hajnal et al. 2004), and are normally
designed to help isolate the invoices and shipping or-
ders for suspect products. They allow each item’s first
port of call to be identified, but it is expected that
each of these distribution points will then be con-
tacted individually in order to determine what has
happened to the items in question (Seradex 2005).
Our goal is instead to determine where suspect items
are likely to be found after they have left the con-
trolled facility and have started circulating in a phys-
ical distribution network.

There is extensive literature in the fields of logis-
tics and supply chain management dealing with the
analysis of physical distribution networks (Sarmiento
& Nagi 1999). Techniques developed in this field
support the design of such networks under various
constraints and optimisation criteria like, for exam-
ple, identifying optimal warehouse locations and ve-
hicle routes (Daskin & Owen 2003). Other problems
addressed in this field include performance measure-
ment, such as estimating travel times between loca-
tions in a network (Lin et al. 2005). In contrast to this
prior work, we do not deal with the design, evaluation
or optimization of physical distribution networks. It
is assumed that the network is given and that data
on its topology, routing behaviour at each node and
transportation delays are available. Given these data,
we seek to estimate the possible location of products
dispatched on a given date, within a fixed time hori-
zon.

A problem closer to the one faced here is that of
tracking information flow through electronic commu-
nication networks. Prior research on security-critical

communications devices has shown how the potential
destinations of classified data can be determined by
treating circuitry schematics as digraphs and by mod-
elling the routing of information through each node
via the different operating ‘modes’ of the individual
electronic components (Rae & Fidge 2005, Fidge &
McComb 2006). A practical tool for information-flow
analysis was developed from this theory (McComb &
Wildman 2005). Although similar to the problem ad-
dressed in this paper, this previous work is distinct
because, unlike physical items, ‘information’ is in-
finitely copiable. Therefore, this previous information
flow algorithm traced all nodes through which infor-
mation has passed, rather than identifying its ‘cur-
rent’ location. Furthermore, this previous work did
not incorporate the notion of elapsed time, or of a
time horizon, both of which are central to this paper.

3 Motivating Example

As a motivating example we consider the topical prob-
lem of locating specific items circulating in large or-
ganisations or supply chain networks. This can be
a security-critical or safety-critical issue when the
item’s status changes. For example, rapidly finding
a memorandum circulating in a government depart-
ment can be critical if the document’s classification is
changed from ‘unclassified’ to ‘secret’. Tracking down
a package that has been sent into a postal network is
vital if authorities are told it may contain explosive
materials. Similarly, locating frozen foods en route to
retailers can be a public health issue if they come from
a batch found to be contaminated with salmonella. In
each of these cases the challenge is to isolate the likely
location of particular items which have been released
into a largely autonomous, or self-regulating, distri-
bution network.

Consider the situation where a Brisbane-based
company must issue an urgent recall for a prod-
uct that was shipped 48 hours ago for distribution

CRPIT Volume 74 - Computer Science 2008

74

throughout Queensland. Figure 1 shows all the com-
pany’s known transport routes. With the geographi-
cal data expressed as a directed graph, it is possible
to perform a transitive connectivity analysis to de-
termine where the items of interest may have gone.
However, this proves to be useless in practice. As-
suming an average land speed of 60km/h, the items
could have traveled 2,880km since they were released,
making it possible to reach any node in the graph. In
other words, our conclusion from this simple analysis
is that the suspect items could be anywhere! This
static analysis fails because it does not take into ac-
count how the items are routed at each node and pre-
cisely how long they take to travel between nodes.

Now assume that the company has more detailed
information about the typical behaviour of each node
in the distribution network, including how items are
typically stored, handled and forwarded, including
any seasonal differences. For example, the arcs in Fig-
ure 1 have been annotated with the distribution per-
centage between each pair of nodes, in square brack-
ets. It shows, for instance, that 80% of all products
arriving at Townsville are forwarded to Cairns and
the remaining 20% are sent to Mt. Isa. Similarly,
the storage percentage associated with a node, in an-
gled brackets, represents the percentage of arriving
products offloaded at a particular town for distribu-
tion locally. For instance, the figure shows that 50%
of all products sent to Toowoomba are consumed in
the local region. At sink nodes, i.e., the ends of the
distribution chain, we assume that all products are
offloaded. For instance, 100% of items arriving at
Cairns are offloaded.

In practice this model can be developed and cal-
ibrated incrementally over time, using information
supplied by distributors based on actual observations
of products in the field. (However, if no information
is yet available for a particular node a default worst-
case model can be assumed. For the product recall
problem, this is when the node forwards items on all
its outgoing arcs and stores some locally, i.e., it dis-
tributes items as widely as possible.)

With this additional information, it is now pos-
sible to carry out a more detailed analysis for the
possible locations of particular products. Our main
concern when a product recall is ordered is to identify
those towns at which dangerous goods amay be found.
This means we are interested in the state of the net-
work at a specific moment in time (usually the present
moment) following the release of the items. We call
this the ‘horizon’ of the analysis. However, we usu-
ally have no interest in how the network reached this
state. These characteristics of the problem are cen-
tral to our algorithm, since they allow us to perform
calculations without the need to maintain consistency
in the intermediate states leading up to the final one.

4 Basic Product Flow Algorithm

In this section, we describe our algorithm for perform-
ing product flow analyses up to a fixed time horizon.
We first explain key concepts and the data structures
central to the algorithm, and then the individual func-
tions from which the algorithm is composed. Finally,
we give a step-by-step explanation of the algorithm’s
calculation, using the motivating example from Sec-
tion 3 above.

4.1 Data Structures

In this section the data structures and access func-
tions which are used by the algorithm are defined.

4.1.1 Network Topology

To perform the analysis, it is critical that the infor-
mation about distribution routes and connections be-
tween different towns is known in advance. A dis-
tribution network can be considered as a ‘directed
graph’ with vertices representing distribution nodes
and edges representing the connections between two
nodes. The role of a node in a particular distribu-
tion route can vary. A node could represent an initial
source of the distribution route (e.g., Brisbane in our
sample network), or a final sink node for products
(e.g., Cairns in our example), or it could be an in-
termediate destination for a product, acting as both
a target and a source (e.g., Rockhampton). We also
assume that the graph of a distribution network is
acyclic.

To formalise this notation, let type Node represent
the distribution nodes in the network graph. A possi-
ble connection between two nodes (a source and a tar-
get) is defined as an element of relation Connection ⊆
Node × Node. Function src : Connection → Node re-
turns the source node of a connection and function
tgt : Connection → Node returns the target node of
a connection.

4.1.2 Distribution Functions

The more detailed information we have about how
each node operates, the more reliable the results of
the analysis will be. For our purpose, we need to
know how a node distributes products to its outgoing
connections and what proportion of products are of-
floaded locally, if any. We use the term ‘distribution
degree’ to represent the percentage of products dis-
tributed to each connection from a node and ‘store
degree’ to represent the percentage of products of-
floaded at a node.

The distribution degree for a connection is de-
fined as real-valued function degree : Connection →
[0 . . . 1]. The store degree for a node is defined as
partial function storeDegree : Node 9 [0 . . . 1], since
not all nodes will store items locally. The set of
nodes where items could be offloaded is the domain
of this function, i.e., dom storeDegree. Let Set be
the powerset type constructor, N be the set of nat-
ural numbers, and type NodeStorage = Node × N
comprise node-number pairs. Then function split :
Set(Connection) × N → SetNodeStorage makes use
of the degree and storeDegree functions to return a
set of node-number pairs that represents the number
of items to be sent to a given node. This function
ensures that the total number of products forwarded
to various nodes is the same as the total number re-
ceived.

4.1.3 Packages

We use the term ‘package’ to describe a parcel of
products that is being distributed on a network route.
We assume that a package contains a number of items
of a given product. It is possible to split a package
into two or more non-empty packages, preserving the
total number of items, that can be then distributed
further in the network. The route that a package fol-
lows is solely dependent on the logistical behaviour of
the network nodes (i.e., packages are not individually
addressed).

In the algorithm we keep track of the number of
items in each package, the time the package arrived
at its current (or last) node, the location of the pack-
age (the source and target of the last distribution
step) and whether or not a package has reached its
final destination. Let Package represent the type
of a package that is routed across a network. The

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

75

Function DistributePackage
Input: p : Package
Output: P ′ : SetPackage
Pre: ¬finalDestination(p)
begin

SetConnection NextConnections := {c : Connection|tgt(location(p)) = src(c)};
SetNodeStorage SplitCount := split(NextConnections, count(p));
for c ∈ NextConnections do

Package p′ := new Package();
timeStamp(p′) := timeStamp(p) + delay(c, p);
location(p′) := c;
count(p′) := SplitCount(tgt(c));
finalDestination(p′) := false;
P ′ := P ′ ∪ {p′};

end
if tgt(location(p)) ∈ dom storeDegree then

Package p′ := new Package();
timeStamp(p′) := timeStamp(p);
location(p′) := location(p);
count(p′) := SplitCount(tgt(location(p)));
finalDestination(p′) := true;
P ′ := P ′ ∪ {p′};

end
return P ′;

end

functions associated with a package are as follows:
count : Package → N returns the number of items
in a package, timeStamp : Package → N returns the
absolute time delay (in hours) since a package started
its journey, location : Package → Connection re-
turns the current location of a package, which is inter-
preted to mean that the package is either en route on
this connection or has reached the connection’s tar-
get node, and finalDestination : Package → Boolean
returns whether or not the package has reached its
final destination.

The propagation delay, in hours, of a package
traversing a connection is determined by function
delay : Connection × Package → N . For now, we
treat this function as a simple mapping from connec-
tions to fixed delays. In Section 5, we demonstrate
how this function can be made more realistic by intro-
ducing the notions of package handling delays, trans-
port delays, and lead time delays.

4.1.4 Time Horizons

The time horizon indicates when the analysis should
terminate and it is an important feature of our anal-
ysis technique. The intention is to calculate the way
packages move through the network until a predeter-
mined time is reached. At this time it is possible
that all packages have arrived at their final destina-
tions and the network is quiescent. Alternatively, only
some of the packages may have reached their final
destinations and others may be still en route. This
latter situation is the challenge of particular interest
to us. In effect, we want the calculation to stop in a
state which gives a consistent snapshot of where each
package is in the network when the time horizon is
reached. The horizon itself is provided as an input
to the algorithm and it is represented as an integer
denoting elapsed hours.

4.1.5 Network State

The algorithm’s state represents the status of pack-
ages at intermediate steps during their journey as well
as the status of the various packages at the final state,
when the analysis reaches a given time horizon. The

state is made up of three sets of packages, as explained
below.

The analysis stops when the predetermined time
horizon is reached by all packages. When completed
the calculation returns the following three sets of
packages:
• Final: This set represents all the packages that

have reached their final destinations before or
at the given time horizon. If all packages have
reached their final destinations, the other two
sets will be empty.

• Leading edges: This set represents all the pack-
ages that are in transit, i.e., traversing a con-
nection, when the time horizon is reached. It in-
cludes the (future) times at which they will reach
their next node.

• Trailing edges: This set also represents the pack-
ages that are in transit when the time horizon
is reached. However the additional attribute in
this set is the (past) time at which each package
left its previous node.

To support this, the algorithm’s data structure
State is declared as SetPackage × SetPackage ×
SetPackage, in which function final returns the first
set of packages, function leading returns the second
set of packages, and function trailing returns the third
set of packages in a state.

4.2 Baseline Algorithm

Here we describe the three functions that make up
the basic algorithm for product flow analysis.
• DistributePackage: This function describes how

a package could be split into child packages and
distributed to the connected nodes in one step
using the distribution functions available for each
node. Function DistributePackage (above) takes
a package as input and returns a set of packages
that are to be distributed in the next step.

• ProgressPackages: This function contains the
program logic whereby the timestamp of a pack-
age is compared with the given time horizon to

CRPIT Volume 74 - Computer Science 2008

76

Function ProgressPackages
Input: packages : SetPackage, horizon : N, sn : State
Output: state : State
begin

state := sn;
for p ∈ packages do

for p′ ∈ DistributePackage(p) do
if timeStamp(p′) ≤ horizon ∨ finalDestination(p′) then

final(state) := final(state) ∪ {p′};
end
else

leading(state) := leading(state) ∪ {p′};
Package pt := new Package();
timeStamp(pt) := timeStamp(p);
location(pt) := location(p);
count(pt) := count(p′);
finalDestination(pt) := finalDestination(p′);
trailing(state) := trailing(state) ∪ {pt};

end
end

end
return state;

end

Function PerformFlowAnalysis
Input: I : SetPackage, horizon : N
Output: state : State
begin

State state := new State();
SetPackage P := I;
state := ProgressPackages(I , horizon, state);
while P 6= final(state) do

P := final(state);
final(state) := ∅;
state := ProgressPackages(P , horizon, state);

end
return state;

end

determine how the state of the analysis should
be updated with the information about the child
packages. If the timestamp of a child package is
less than or equal to the horizon, the package is
put back into the final set for further distribu-
tion and/or storage. Otherwise, the package is
stored in the leading and trailing sets. This in-
dicates that the package is in transit and it has
left the source at the time recorded in the trail-
ing set and it should arrive at the target node
at the time recorded in the leading set. Func-
tion ProgressPackages (above) takes as input a
set of packages, produces a number of children
packages for distribution (in one step) and then
returns the results based on the given horizon.
This function makes use of the DistributePackage
function.

• PerformFlowAnalysis: This is the main func-
tion that calls the ProgressPackages function it-
eratively until the final state is reached for a
given horizon. Function PerformFlowAnalysis
(above) performs a fixed-point calculation and
stops when there is no change in the final set of
packages in the state. The function takes as in-
puts the initial set of packages to distribute and
the time horizon to stop the analysis.

To validate this algorithm, we have devel-
oped a prototype implementation (downloadable
from http://www.yawlfoundation.org/research/
simulation.php).

4.3 Illustration

Here we illustrate the functioning of the algorithm us-
ing our earlier motivating example (Section 3). Con-
sider the scenario where a Brisbane-based company
must issue an urgent recall for a product which was
shipped as a package containing 1000 items 48 hours
ago for distribution as per the network shown in Fig-
ure 1.

Using the data given in Figure 1, regarding the dis-
tances between nodes and the way items are routed,
we calculated where the products could be after
48 hours. Figure 2 shows the ‘final state’ informa-
tion from the analysis overlayed with the network
graph. The algorithm starts with a package of 1000
items, with timestamp ‘0’ at Brisbane and horizon of
‘48’. The sample distribution degrees and store de-
grees for each node are then used to determine the
appropriate splitting of packages. For instance, from
Brisbane a package with 800 items (due to the 0.8 de-
gree assigned to the connection Brisbane-Bundaberg)
is sent to Bundaberg and a package with 200 items
is sent to Toowoomba (due to the 0.2 degree assigned
to the connection Brisbane-Toowoomba). The pack-
age arrives at Toowoomba after a certain delay, in
this case 7 hours from the time it left Brisbane. The
timestamp represents the arrival time of the pack-
age at a node and it is represented using the “@”
symbol. At Toowoomba, a package with 100 items
is stored (due to the 0.5 store degree assigned to the
node Toowoomba) and a package with 100 items is

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

77

BrisbaneToowoomba
 100@7<S>

Dalby

Charleville
50@27<S>

Cunnamulla
50@28<S>

Bundaberg

Rockhampton
240@19<S>

Longreach

Mackay

Townsville

Cairns

Mt Isa

80@63<L>
 @38<T>

<S> stored
<L> leading
<T> trailing
0@0 count@timestamp

160@50<L>
 @35<T>

320@50<L>
 @40<T>

Figure 2: Possible locations of 1000 items distributed from Brisbane 48 hours ago

forwarded to Dalby. From Dalby, the packages are
distributed to Charleville and Cunnamulla as shown
in the figure. As the example network shows Cunna-
mulla and Charleville as final destinations, all items
are offloaded at these destinations and marked as
‘stored’ (dashed boxes in the diagram). For other
packages, the distribution continues until the given
horizon is reached. From the figure, one can see that
three packages are still en route after 48 hours has
elapsed (solid boxes in the diagram with bold arrows
for connections). These packages are shown with the
trailing and leading times. For instance, there is a
package containing 160 items travelling between Lon-
greach and Mt. Isa. The package is expected to ar-
rive at Mt. Isa at time 50 and it left Longreach at
time 35. Similarly, there is another package contain-
ing 80 items due to arrive at Mt. Isa at time 63 from
Townsville. This snapshot information is very useful
to determine not only where items could be located
but also to eliminate locations where items could not
be.

5 Computing Delays

The basic algorithm uses a simple delay function to
determine how long it takes a package to get from
one node to the next. In this section, we show how
to compute a more realistic delay duration by taking
into account the transport delay based on the dis-
tance between connections, the transport mode and
its speed, the handling delay at each node based on
the availability of resources, and the lead time delay
based on the operating hours of a distribution node.

To do this the delay function is extended to take
into account the transport delay, the handling delay,
and the lead time delay as follows.

Function delay
Input: c : Connection, p : Package
Output: delay : N
begin

Node n := tgt(location(p));
Day d := day(arrivalDayTime(p));
Time t := time(arrivalDayTime(p));
delay := transportDelay(c) +

handlingDelay(n, count(p)) +
leadtimeDelay(n, d , t);

return delay ;
end

We first describe how the transport delay can
be calculated based on the various modes of travel
and corresponding speed, and how the handling de-
lay can take into account the employee’s work rates
at each node. (Of course, further data about trans-
port speeds and handling rates could be incorporated
into the algorithm in practice.) To do this we as-
sume that the following additional functions are avail-
able for a connection: distance : Connection → N
and speed : Connection × Mode 9 N , where type
Mode = {air , surface}. The transport delay can be
then calculated as follows:

delay := (integer)distance(c)/speed(c, mode(c)) .

Further, assume that the following additional func-
tions are available for a node: empNum : Node → N
which returns the number of employees and rate :
Node → N which returns the average number of items
that could be handled by an employee per hour. From
this information, the handling delay can be calculated
as follows:

delay := (integer)items/rate(n) ∗ empNum(n) .

We can also introduce a realistic lead time delay
function either based on a weekly schedule or calen-

CRPIT Volume 74 - Computer Science 2008

78

BrisbaneToowoomba
 100@7<S>

Mon 4pm

Dalby

Charleville
50@38<S>
Tue 11pm

Cunnamulla
50@39<S>
Wed 12am

Bundaberg

Rockhampton
240@33<S>

Tue 6pm

Longreach

Mackay

Townsville

Cairns

Mt Isa

<S> stored
<L> leading
<T> trailing
0@0 count@timestamp

160@63<L>Thu 12am
 @33<T>Tue 6pm

400@58<L>Wed 7pm
 @33<T>Tue 6pm

Figure 3: Locations of 1000 items 48 hours after being distributed from Brisbane on Monday at 9am

dar time. We base the weekly schedule on the known
operating hours of each distribution node. For in-
stance, a distribution centre may be open between
9–5pm Monday to Friday and 10–4pm on Saturdays
but is closed on Sundays. In addition, we assume that
the timestamps associated with packages are based
on calendar, rather than elapsed, time. For instance,
we may know that a package was sent on a Monday
morning at 9am.

We can then determine where items from that
package are in 48 hours time by taking into account
the operating hours of the distribution nodes along
the way. In this situation the location of the items
could vary significantly due to effect of distribution
nodes being either open or closed when a package ar-
rives.

Let data type Day represent days of the week
[Mon. . . Sun], and Time represent hours of the day
[00. . . 23]. Constructor DayTime : Day × Time re-
turns the combination of the two, and selectors day :
DayTime → Day and time : DayTime → Time
extract the component parts of a timestamp. Let
function next : Day → Day return the next day of
the week, and function addHours : DayTime ×N →
DayTime return the new day and time after adding
the number of hours given as N , both using circular
arithmetic.

Also let functions SB : Node × Day 9 Time and
CB : Node×Day 9 Time return the start of business
and close of business times of a distribution node, re-
spectively. Function DayOff : Node×Day 9 Boolean
returns whether a distribution node is closed on a cer-
tain day. New function arrivalDayTime : Package →
DayTime returns the arrival day and time of a pack-
age.

We can now define function leadtimeDelay to take
as inputs a distribution node and a day and a time
(which represent the arrival day time of a package)

and return the delay in hours. The resulting delay
is calculated based on the arrival time of the pack-
age, the number of days that the distribution node
is closed and the opening hours of the next business
day.

Function leadtimeDelay
Input: n : Node, d : Day , t : Time
Output: delay : N
begin

delay := 0;
if t ≥ CB(n, d) then

delay := 24− t;
while DayOff (n, next(d)) do

delay := delay + 24;
d := next(d);

end
delay := delay + SB(n, d);

end
return delay ;

end

This delay calculation, including a weekly calen-
dar, has been implemented in the prototype analysis
program. In the calculations, we assume that it is
possible for a package to arrive at any point in time
(even during the closing hours). However, package
are only forwarded to their next destination during
opening hours.

As an example, Figures 3 and 4 provide a com-
parison of two calculations involving packages of the
same size (1000 items) and the same fixed time hori-
zon (48 hours). The difference between them is the
day of the week on which the package is assumed to
have started its journey. From Figure 3 it can be
seen that if the package is sent on Monday at 9am,
some of the items will reach their final destinations of
Charleville and Cunnamulla before the expiry of the
48 hours time horizon. Other items will be in transit

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

79

BrisbaneToowoomba
 100@7<S>

Fri 4pm

Dalby

Charleville

Cunnamulla

Bundaberg

RockhamptonLongreach

Mackay

Townsville

Cairns

Mt Isa

<S> stored
<L> leading
<T> trailing
0@0 count@timestamp

800@81<L>Mon 6pm
 @10<T>Fri 7pm

50@87<L>Tue 12am
@13<T>Fri 10pm

50@86<L>Mon 11pm
@13<T>Fri 10pm

Figure 4: Locations of 1000 items 48 hours after being distributed from Brisbane on Friday at 9am

beyond Longreach and Mackay. However, Figure 4 re-
veals a quite different situation if the package is sent
on Friday morning. Thanks to the processing delay
introduced by the weekend, no items will have reached
Charleville or Cunnamulla when the time horizon is
reached, nor will any have gone as far north as Rock-
hampton. Being aware of the dramatic difference be-
tween these two outcomes would have a major impact
on the speed with which a recall of dangerous goods
could be conducted.

Another alternative extension to the basic algo-
rithm is to take into account the actual date that a
package has been sent, e.g., 24/12/2007, rather than
the weekday. Function leadtimeDelayDate (below)
describes how the delay can be calculated using a cal-
endar date.
Function leadtimeDelayDate
Input: n : Node, d : Date, t : Time
Output: delay : N
begin

delay := 0;
if t ≥ CBDate(n, d) then

delay := 24− t;
while Holiday(n, nextDate(d)) do

delay := delay + 24;
d := nextDate(d);

end
delay := delay + SBDate(n, d);

end
return delay ;

end

Here data type Date is Day ×Month × Year repre-
senting a date such that Day is in range [0. . . 31],
Month is in [0. . . 12] and Year is a 4-digit num-
ber. Let function nextDate : Date → Date return
the next day. Similar to the functions defined for
DayTime, we can now define a set of functions for cal-
endar dates that take into account the opening and

closing times for a particular date as well as pub-
lic holidays. To do this we would let partial func-
tions SBDate : Node × Date 9 Time and CBDate :
Node ×Date 9 Time return the opening and closing
times respectively of a distribution node; partial func-
tion Holiday : Node×Day 9 Boolean return whether
or not a distribution node is closed on a certain date;
and define functions arrivalDate : Package → Date
and arrivalTime : Package → Time.

6 Conclusion

Simulating the behaviour of a communications or
transport network is normally a complex and chal-
lenging computation, requiring maintenance of a con-
sistent global state across all nodes. However, we have
identified an algorithm for analysing such behaviours
that relies on local states only, provided that objects
move through the network independently, and our
overall goal is to determine their location at a pre-
determined time. The algorithm determines the way
each item, or package of items, moves through the
network, but achieves a consistent global state only
when all items reach the fixed time horizon.

The usefulness of the algorithm was illustrated by
showing how it can be applied to the problem of prod-
uct recalls in distribution networks. It was also shown
how the basic algorithm could be made more realistic
by, for instance, incorporating a notion of calendar,
rather than just elapsed, time.

Finally, we note that the algorithm described in
this paper can be extended further in a number of
ways:

• Rather than showing how a batch of items is
split-up and distributed throughout the network,
the probability that a particular single item ar-
rives at different destinations can be calculated
merely by changing the way we interpret the ‘dis-

CRPIT Volume 74 - Computer Science 2008

80

tribution degree’. Instead of representing a per-
centage split of items, it can be viewed as a per-
centage probability that the item of interest fol-
lows a particular route. The number at each node
when the calculation ends then denotes the prob-
ability that the item is there at the time horizon.

• The functions for accounting for the handling
and transport times could be made more real-
istic by changing them from simple numbers into
probability distributions, based on observed or
measured data. (In this case we would want to
associate confidence intervals with the items’ lo-
cations.)

A more dramatic extension would be to relax the as-
sumption that items do not interact with one another.
Doing this would require basing computational steps
around nodes rather than packages. Nevertheless, it
may be useful to introduce this concept to allow, for
instance, modelling of the situation where a delivery
truck will not depart from a node until enough items
have arrived to fill it.

References

Berman, K. A. & Paul, J. L. (2005), Algorithms: Se-
quential, Parallel and Distributed, Thomson. ISBN
0-534-42057-5.

Daskin, M. & Owen, S. (2003), Location models
in transportation, in R. Hall, ed., ‘Handbook of
Transportation Science’, Kluwer, pp. 321–370.

Fidge, C. J. & McComb, T. (2006), Tracing se-
cure information flow through mode changes., in
V. Estivill-Castro & G. Dobbie, eds, ‘Computer
Science 2006, Twenty-Ninth Australasian Com-
puter Science Conference (ACSC2006)’, Vol. 48 of
Conferences on Research and Practice in Infor-
mation Technology, Australian Computer Society,
pp. 303–310.

Hajnal, E., Kollar, G. & Lang-Lazi, M. (2004), ‘IT
support and statistics in traceability and product
recall at food logistics providers’, Periodica Poly-
technica Chemical Engineering 48(1), 21–29.

Industry Search (2006), ‘Forty lines of Top
Taste products are on recall nationwide’,
http://www.industrysearch.com.au/news/
printarticle.asp?id=20402. Accessed June
2006.

Lin, H.-E., Zito, R. & Taylor, M. (2005), ‘A review
of travel-time prediction in transport and logistics’,
Proceedings of the Eastern Asia Society for Trans-
portation Studies 5, 1433–1448.

McComb, T. & Wildman, L. (2005), SIFA: A tool
for evaluation of high-grade security devices., in
C. Boyd & J. M. G. Nieto, eds, ‘Information Se-
curity and Privacy, 10th Australasian Conference
(ACISP 2005)’, Vol. 3574 of Lecture Notes in Com-
puter Science, Springer, pp. 230–241.

Pulse Logistics Systems (2005), ‘Product re-
call software added’, http://www.pulse.com.au/
news detail.asp?NewsID=55&Source=News. Ac-
cessed January 2005.

Rae, A. & Fidge, C. (2005), ‘Information flow anal-
ysis for fail-secure devices’, The Computer Journal
48(1), 17–26.

Safe, M. (2005), ‘Mars attack’, The Weekend Aus-
tralian Magazine, 10–11 September pp. 18–23.

Sarmiento, A.-M. & Nagi, R. (1999), ‘A review of
integrated analysis of production-distribution sys-
tems’, IIE Transactions 31(11), 1061–1074.

Seradex (2005), ‘Product recall—Seradex
ERP module’, http://www.seradex.com/
Product Recall Module.shtml. Accessed January
2005.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

81

CRPIT Volume 74 - Computer Science 2008

82

Experiments in the Dynamics of Phase Coupled Oscillators

When Applied to Graph Colouring

Sofianto Lee and Raymond Lister
Faculty of Information Technology
University of Technology Sydney

{sofianto,raymond}@it.uts.edu.au

Abstract*

This paper examines the capacity of networks of phase
coupled oscillators to coordinate activity in a parallel,
distributed fashion. To benchmark these networks of
oscillators, we present empirical results from a study of the
capacity of such networks to colour graphs. We generalise
the update equation of Aihara et al. (2006) to an equation
that can be applied to graphs requiring multiple colours.
We find that our simple multi-phase model can colour
some types of graphs, especially complete graphs and
complete k-partite graphs with equal or a near equal
number of vertices in each partition. A surprising
empirical result is that the effectiveness of the approach
appears to be more dependent upon the topology of the
graph than the size of the graph.

Keywords: graph colouring, phase coupled oscillators.

1 Introduction

Observations of the phenomena of coupled oscillators date
back to the early seventeenth century, when Christiaan
Huygens noticed that the pendula of two of his clocks,
suspended side-by-side, always settled into swinging in
opposite directions, even after he disturbed the position of
the pendula (Bennett et al., 2002; Strogatz, 2003). In 1680,
Engelbert Kaempfer reported another form of phased
coupled oscillation, in the synchronous flashing of
hundreds of fireflies on trees along the Chao Phraya River
in Thailand (Buck & Buck, 1976). Many similar instances
of naturally occurring synchronization have since been
discovered, such as in heart pacemaker cells and in neural
networks (Camazine et al., 2001).

Fireflies generate light from the lantern in the abdomen; it
usually takes about 800 milliseconds to recharge the
lantern and 200 milliseconds to produce a spark; the
process may then repeat. Formal models of this behaviour
describe a single firefly as an oscillator with a phase 0 ≤ θ
≤ π2 and period ώ. For a large proportion of each cycle,

* Copyright (c) 2008, Australian Computer Society, Inc.
This paper appeared at the Thirty-First Australasian
Computer Science Conference (ACSC2008), Wollongong,
Australia. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 74. Gillian Dobbie
and Bernard Mans, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is
included.

the oscillator is recharging and therefore discharging is
impossible. For the remaining portion of the cycle, the
firefly/oscillator is ready to discharge or “fire”. If the
firefly/oscillator is operating in isolation from other
firefly/oscillators, then it fires at θ = π2 . If a
firefly/oscillator is not operating in isolation, has
completed recharging, and sees sufficient light (stimulus)
from neighbouring fireflies, the firefly/oscillator can
adjust its phase slightly so as to bring itself closer to
synchronization with the other firefly/oscillators
(Camazine et al., 2001). Mirollo & Strogatz (1990)
demonstrated, by mathematical proof and computer
simulation, the conditions under which a fully connected
network of oscillators will synchronise.

Networks of oscillators have properties that make them an
interesting approach to coordinating activity in large
networks of simple computational elements. First, the
synchronization mechanism of the oscillators is parallel
and distributed – no global coordination is required.
Second, the oscillators can be implemented in hardware
with very simple circuitry, making it a promising approach
for massive networks of tiny processing elements. In fact,
the approach has already received some attention for
synchronization in ad-hoc sensor networks (Hong &
Scaglione, 2003; Lucarelli & Wang, 2004; Werner-Allen
et al., 2005), and the coordination of multi agent systems
(Bettstetter, 2006; Spong, 2006).

1.1 Anti-phase Synchronisation with Two
Oscillators

Phase coupling need not be confined to phase
synchronisation (i.e. where the phase difference of
oscillators is 0). In some applications, the desired effect
may be to have the computational elements differentiate
into two or more groups. One of the simplest models of
anti-phase synchronisation was studied by Aihara et al.
(2006). They studied the mating calls of rain frogs, which
they modelled as a network of exactly two oscillators,
where the oscillators were intended to interact in such a
way that they would settle into having a phase difference
of π .

In the Aihara et al. model, the two frogs/oscillators are
denoted a and b. The phases of the frogs/oscillators are

denoted aθ , bθ with the respective frogs calling when

their phase is zero, and the frequency of the oscillators are

denoted aω , bω . The dynamic of oscillator a in isolation

from oscillator b is described by:

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

83

a
a

dt

d ωθ
=

)(
 … (1)

By extending Ermentrout & Rinzel (1984)’s model of
firefly entrainment, Aihara et al. specified the interaction
between the two oscillators as follows:

)(
)(

)(
)(

βθθωθ

αθθωθ

−−−=

−−−=

bab
b

aba
a

g
dt

d

g
dt

d

 … (2)

Where g is a π2 periodic function, and the constants α and
β are frustration parameters (we will assume α = β).

Typically g is)sin(βθθ −− baK where the constant K is

the coupling strength

Aihara et al. were able to show that a stable equilibrium

phase difference ba θθϕ −= of π exists between the

two oscillators provided Kba <<−ωω .

We performed a computer simulation of the Aihara et al.
model. The phases of the two oscillators were randomly
initialised and we used a coupling strength K of 0.1. The
waveforms in Figures 1 and 2 show the phases of the two
oscillators, where they are initially out of phase by
approximately 0.4 of a radian, finally reaching a stable
anti-phase difference of ~3.14 from the 14th cycle
onwards.

Figure 1: Evolution of the phases of two oscillators,
which are eventually out of phase byπ .

Figure 2: An alternative visualisation of the simulation
from Figure 1. The wheel on the left shows the initial
phase of each oscillator, which are similar. The wheel
on the right shows the simulation at a later stage, when
the phases of the two oscillators are separated by π .

1.2 Graph Colouring

In this paper, we further investigate the computational
power of networks of oscillators. Like Hopfield & Tank
(1985, p. 142), we believe that the computational power of
such networks is best characterized by studying the
behaviour of such networks when applied to difficult but
well understood combinatorial optimization problems.
Consequently, we have chosen to study the dynamics of
networks of oscillators when applied to graph colouring.

The task of colouring a graph involves an assignment of
colours to vertices in the graph such that no two vertices
that share an edge have the same colour (Garey & Johnson,
1979). In our models, each node of the graph is an
oscillator. Two oscillators are coupled if the respective
nodes in the graph are connected. The colour of a node is
represented by the phase of the oscillator. To visualise the
graph colourings, we use a colour scheme that maps the
phase of the oscillator in a 2π periodic system to a colour
in the RGB (Red, Green, Blue) domain.

Wu (2002) conducted some simple experiments using
oscillators to perform graph colouring. He conducted
computer simulations for 300 graphs with the number of
vertices ranging from 4 to 16, and where all graphs were
known to be 2- or 3-colourable. His system coloured all 2-
colourable graphs correctly, with a single exception, and
also coloured approximately 80% of the 3-colourable
graphs correctly. However, there are several limitations in
Wu’s study:
• Wu’s approach to graph colouring was hybrid, where an

initial colouring from the oscillators was subsequently
“cleaned up” by an algorithm. Since our interest is in
using oscillators to coordinate real networks, a hybrid
approach is not practical: we need a purely parallel,
distributed algorithm.

• Wu did not consider problems where more than three
colours are required.

• Wu did not consider the effect of the graph topology on
the effectiveness of the network of oscillators.

• Wu only considered the final state of his system, not the
dynamics leading to the final state.

In this paper, we address these limitations in Wu’s study.
Furthermore, we generalise the Aihara et al. model so that
it can be applied to more general graph colouring
problems.

2 Two-Colouring in a Plane: The Ising Model

As a preliminary experiment, we chose to apply the Aihara
et al. model to a simple and very well understood
2-colouring problem, the two-dimensional Ising Spin
Problem (Kindermann & Snell, 1980). In this problem,
which is illustrated in Figure 3, the nodes of the graph can
be thought of as squares in a plane. Two nodes of the graph
are adjacent if the corresponding squares share a common
edge; therefore, each node is connected to four other nodes.
It is obvious that such a graph can be 2-coloured, as shown
in Figure 3.

Figure 3: An example of the Ising Spin problem.

The Ising Spin problem is an interesting benchmark for
two reasons. First, a planar mesh of computational
elements is a realistic model of how a network of
oscillators may be organised. Second, while the optimal

CRPIT Volume 74 - Computer Science 2008

84

solution is obvious, simple distributed algorithms – where
each computational element can only “see” its four
neighbours – do not reliably produce the optimal
2-colouring. For example, Lister (1992) showed that, for
an 8×32 problem, like that shown in Figure 3, a simple
iterative improvement algorithm only produces the
optimal 2-colouring 15% of the time.

In performing our benchmark of networks of oscillators,
we implemented the Aihara et al. anti-phase model,
applying the equations from (2) above to each pair of
connected oscillators.

Figure 4 illustrates six “snap shots” from a typical
simulation of the system (with K = 0.1). Snap shot (a) in
the figure shows the initial state of the 32x8 configuration
where the oscillators were randomly initialised to a phase.
The sequence of the states as indicated in part (b), (c), (d),
(e) and (f) are the states of the oscillators after 150, 300,
450, 600 and 800 oscillator cycles. The final state of the
system, as shown in (f) is the optimal solution, with all
oscillators in anti-phase with their neighbours.

Figure 4: Stages in the convergence of the Ising model

Detailed examinations of the progress of the 32x8
oscillators demonstrate that the oscillators congregate into
a number of groups and these groups slowly merge. For
example, there are about 6 distinct groups in figure (b) as
identifiable by the colour. The six groups begin to
consolidate and increase in size in figure (c). In figure (d),
two nearly synchronised groups start to dominate the right
half of the network and in figure (e) the synchronised
group converts the remaining oscillators on the left.

We ran the above simulation 100 times. Seventy-seven of
the runs reached a global synchronised state after 1300
cycles. Investigation on the remaining twenty-three runs
show that the oscillators in those runs form limit cycles.
That is, the oscillators change their phases in a way that
eventually brings them back to an identical set of phases;
these changes then repeat. Figure 5 shows such a sequence
of phases. Configuration (f) in the figure is identical to
configuration (a).

Figure 5: A limit cycle in a suboptimal run.

The occurrence of limit cycles is observable during
simulations, as waves or rotating spiral-like patterns as
shown in the following snapshots Figure 6. The simulation
in this figure consists of 1024 vertices. The patterns can be
seen from early in a simulation.

Figure 6: Rotating spirals in a simulation with 1024
vertices

3 Generalisation to a Multi-Phase Model

In order to perform an arbitrary k-colouring where k > 2,
the phase coupled oscillators need to achieve a stable
phase configurations with oscillators grouping into k
phase-clusters. For example, for 3-fully connected
oscillators, the phase difference between the oscillators
should be near 3/2π (120 degrees). To admit such phase
configurations, we generalised the Aihara et al. equations
from section 1.1, as described in this section.

For a general case, where there are n fully connected
interacting oscillators, we assume a mean field model
(Kuramoto, 1984) to derive our generalisation of the
Aihara et al. model:

Ni
N

K

dt

d
ij

N

j
i

i ,...,1),(sin
0

=−−+= ∑
=

βθθωθ … (3)

The frustration parameter β and the frequency ω are the

same for all the oscillators in the system.

An attractive feature of this model is that there are no
parameters that need to be tuned depending upon the
number of colours required by a graph.

Below, we describe an empirical study that shows this
model meets our initial requirement that the angle
separation should be a multiple of 1/n for n fully connected
oscillators.

3.1 Testing Multi-Phase Synchrony for n>=3

Fully connected networks are a realistic scenario to
explore, as nodes connected by wireless could easily
implement such a completely connected network topology,
with the only necessary communication among the
oscillators being a broadcast of their firings.

Figure 7 shows examples of colourings for small complete
graphs. The leftmost portion of the diagram shows a graph,
with 3 vertices. Next to it is a colour wheel showing the
phases of the three oscillators, which are spread evenly,
indicating a correct colouring. Beside that is another
graph, with 4 vertices. Its associated colour wheel also
shows that the phases of the oscillators evenly spread.

We have tested the update equation in (3) on complete
graphs, up to n=100 vertices (larger graphs are not
practical with our simulation software). We used a
coupling strength K/N=0.1. We have found that our
simulations reliably converge to good solutions for a wide
variety of values of β, provided n/2πβ ≥ .

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

85

Figure 7: Angle separation in a 3 & 4 fully connected
oscillators

The 3-colour problem in Figure 7 typically requires 20
oscillator cycles to reach a stable state, with a worst case of
30 oscillator cycles. The 4-colour problem in Figure 7
typically requires 50 oscillator cycles to give a reasonable
phase difference between the oscillators, but requires an
approximately 150 cycles to achieve a near perfect
multiple 2/π phase difference.

Phase separation over a number of cycles is illustrated in
Figure 8, for a complete graph of 8 nodes. The horizontal
axis represents time. The vertical axis shows the phase of
each of the eight oscillators when oscillator 0 fires. The
phases of the oscillators are randomly initialised. Soon
after the system starts, several oscillators are already in a
near stable synchronisation. As the clock continues, the
remaining pairs of oscillators (0 and 5) and (3 and 6) begin
to separate evenly after 80 cycles. The oscillators
ultimately synchronise at the 300th cycle with a near even
phase difference of 4/π .

Figure 8: The phase of 8-fully connected oscillators
over 300 cycles

4 Multi-phase Oscillators in Complete
k-Partite Graphs

A complete k-partite graph has its vertices split into k
partitions where (1) vertices in the same partitions are not
connected, but (2) all nodes in each partition are connected
to all nodes in the other partitions. Figure 9 illustrates
k-partite graphs for k = 2, 3 and 7. Such graphs are an
interesting case study to explore, as the optimal solutions
are obvious (each partition requires one colour), and the
results offer insight into the limitations of our
generalisation of the Aihara et al. model.

4.1 Equal Complete k-Partite Graphs

The results from our experiment indicate that multi-phase
coupled oscillators can reliably find a minimal graph
colouring of complete k-partite graphs provided the

number of vertices in each partition is equal. Figure 9
demonstrate colourings we have found using our update
equation (3) for k-partite graphs with k=2, 3 and 7 using
coupled oscillators. Colours are typically found in a small
number of cycles and the system synchronises rapidly.

Figure 9: Complete 2, 3 and 7-partite graphs

4.2 Unequal Complete k-Partite Graphs

We performed tests where the number of vertices differs in
the partitions of the complete k-partite graphs. We found
that the quality of the results varies according to the size
difference between partitions. Figure 10 demonstrates the
colouring of k-partite graphs with unequal number of
vertices in the partitions. Part (a) illustrates that good
colourings can still occur if the number of oscillators in
each partition is approximately equal, but part (b)
demonstrates what happens as the size difference in the
partitions grows.

Figure 10: K-partite graphs with unequal number of
vertices in each partition

4.3 A Further Illustration

A fundamental problem with colouring k-partite graphs
with unequal partition sizes is more obviously illustrated
on a simpler case that is not a k-partite graph. This case is
illustrated in Figure 11. The graph shown can be thought
of as containing two overlapping complete subgraphs of
different sizes: vertices v0-v3 form one complete subgraph,
(S1) and vertices v3-v5 form the other subgraph (S2). The
four oscillators forming S1 tend to separate into equal
phase differences corresponding to four colours (as
illustrated by the leftmost colour wheel in the figure),
while the three oscillators forming S2 tend to separate into
equal phase differences corresponding to three colours (as
illustrated by the middle colour wheel). The combined
effect (as illustrated by the rightmost colour wheel) is a
suboptimal solution.

Figure 11: A simple illustration on two overlapping
complete sub graphs

CRPIT Volume 74 - Computer Science 2008

86

5 Multi-Phase Oscillators in a Plane:
Experiments with Three Colours

Earlier, we examined the standard Ising Spin problem,
where 2 colours are sufficient. This problem is easily
generalised to forms that require 3 and 4 colours, by (for
example) replacing the squares in the plane with
tessellations of hexagons (3 colours) or adding extra
connections to the squares so that the squares also connect
diagonally (four colours).

We performed tests on four hexagonal topologies as
shown in Figure 12. The top left graph in Figure 12
illustrates the simplest case for a hexagonal arrangement
that can be 3-coloured. As the associated colour wheel
illustrates, the oscillators forming this simple graph always
synchronise with a minimum number of colours. For
larger graphs, as illustrated in part (b), (c) and (d), there is
an observable clustering of the oscillators phases into
three groups (less obvious in part (d)), but the phases of the
oscillators within those clusters remain separated.

The reason why oscillator phases remain separated is
related to the reason why oscillators do not converge in
k-partite graphs with unequal number of vertices in each
partition. An inspection of the graphs in Figure 12 reveals
that nodes in these graphs have unequal numbers of
neighbours. Nodes at the periphery of the graphs can have
as few as three neighbours, whereas nodes inside the
graphs have as many as six neighbours. The dynamics of
the update equation (3) has internal nodes and peripheral
nodes having asymmetric effects on each other.

Figure 12: Colouring of hexagons

The graph colouring problem illustrated in Figure 12
scales to arbitrarily large numbers of nodes. As the size of
such a network grows the ratio of peripheral elements to
internal nodes decreases. Thus, the problem illustrated in
Figure 12 may be less evident in large networks of
computational elements.

6 Multi-phase Oscillators in Regular Graphs

The results described in the previous section, for
tessellations of hexagons on a plane, show that the model
does not colour the graph optimally. This suboptimal
behaviour is at least partly due the unequal degree of
vertices in the tessellation. For example, in Figure 12, the
vertices on the fringe of the graphs typically have degree 3
or 4 while the inner vertices have degree 6.

To test whether the unequal degree of vertices completely
explains such suboptimal behaviour, we performed tests
on graphs where the vertices within each of the graphs
have the same degree ─ we used graphs based on the
Platonic solids and also the Ising Spin Problem on a torus.

6.1 Platonic Solids

Our experiments indicate that colourings of the first three
Platonic solids, the tetrahedron, hexahedron and
octahedron (all 3 and 4-regular graphs) are always optimal
and are achieved in a small number of cycles. Figure 13
shows these results.

Figure 13: Colouring of simple solids

However, colourings are sub optimal for the dodecahedron
(3-regular) and icosahedron (5-regular) as illustrated on
Figure 14. Typically, the oscillators settle into 6 colours
instead of the minimum of 3 and 4 respectively.

Figure 14: Colouring of dodecahedron & icosahedron

6.2 The Ising Model on a Torus

The torus formation of the Ising Spin Problem is achieved
by taking a standard Euclidean Ising Spin Problem (as
described in section 2), then connecting the upper and
lower ends, and also the left and right ends. Consequently,
all vertices have a degree of 4. This is illustrated in Figure
15. The results of 100 runs of such an 8×32 problem
resulted in network convergence that was 50% faster than
that of the 8×32 Euclidean Ising Spin Problem. However,
only 64% of the runs attain an optimal synchronisation.
Figure 15 illustrates a typical suboptimal solution, where
subsets of the oscillators are optimal within their
respective subsets, but the relationships between subsets is
suboptimal.

Figure 15: Sub optimal colouring on torus Ising

To illustrate this suboptimal behaviour further, we
constructed a simple 1x7 Ising Spin Problem on a torus,
which is a 2-regular ring graph. Ideally, the network

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

87

should converge to 3 colours. Figure 16 shows a run of
such a network at 200, 400, 600 and 800 oscillator cycles.
At 200 cycles, the oscillators tend to form 2 clusters at
π apart. As the run continues to 800 cycles, the oscillators
spread out evenly. By way of contrast, in similar
experiments with rings containing an even number of
oscillators, the networks always converged to an optimal 2
colouring.

Figure 16: A simulation on a 1x7 ring

7 Characteristics of the Aihara Model

From our experiments, and as a direct consequence of the
model in Equation (3), we observe the following general
characteristics of networks of oscillators using our
generalised Aihara model:

Observation 1: Convergence to a stable point in phase
space does not imply a minimum colouring.

Observation 2: Convergence to a stable point in phase
space does not imply an even phase separation among the
oscillators.

Observation 3: The dynamic of the generalised Aihara
equation is such that an oscillator connected to two other
oscillators will move to a phase that is equidistant from the
phase of the other two oscillators.

Observation 3’: An oscillator O connected to two disjoint
sets of oscillators, S1 and S2, where the oscillators within
each set have the same phase, will move to a phase such
that ratios of the phase separations from O to S1 and O to
S2 will be proportional to the ratio of the sizes of S1 and
S2.

Observation 4: The effectiveness of colouring graphs
using networks of oscillators appears to be less dependent
upon the size of the graph and more dependent on the
graph topology ─ the degree of the vertices and the
existence of odd or even cycles in the graph.

8 Conclusion

The purpose of carrying out this study was certainly not to
find an algorithm guaranteed to minimally colour graphs –
complexity theory suggests that such an algorithm does
not exist. Instead, the purpose was to use graph colouring
to benchmark the capacity of phase coupled oscillators to
coordinate activity, in a parallel distributed fashion, within
a network of simple computational elements. The results
of our experiments clearly indicate that the basic oscillator
phase coupling approach can effectively coordinate
activity, in a parallel distributed fashion, in some types of
graphs. Surprisingly, the size of graphs to be coloured is
not the major determinant of effectiveness, but instead it is

the topology of the graphs that most determines the
effectiveness of this approach to graph colouring.

In this paper, our goal was to explore models close to the
original biological source of the idea. Having identified
some limitations of the pure biological approach, our
future work will focus on overcoming these limitations
using techniques that can be implemented in simple
computational elements, without undermining the
fundamental parallel, distributed nature of phase coupled
oscillators. The remainder of the conclusion indicates
some solutions to the problems identified in this paper.

The problem of suboptimal limit cycles, which was
identified in the experiments on the standard Ising Spin
problem, might be addressed by injecting a small amount
of noise into the system (i.e. randomly perturbing the
phase of oscillators).

A core issue to solve is the problem highlighted in the
studies of k-partite graphs with unequal vertices in the
partitions. One approach might be to decrease the effect of
an oscillator as its phase approaches the phase of other
oscillators. By a suitable formulation of the update
equation, a group of closely synchronized oscillators could
have the same effect on other oscillators as a single non-
synchronized oscillator has on those other oscillators.

A solution to the problem highlighted in Figure 11 may
only require (1) an initial global broadcast that
communicates the number of colours (C) to be used in the
colouring of a graph, and (2) a global agreement, via either
a regular broadcasted synchronization signal, or via clocks
aboard each processing element, that the final phase values
of all oscillators will only differ by multiples of 2π/C.

The characteristics of the Aihara model, and observation 3
in particular, indicate that a mechanism may be required
whereby an oscillator can escape from having its phase
trapped between the phases of two other oscillators. This
might be achieved by introducing an annealing component
into the way an oscillator alters its phase.

9 References

Aihara, I., Kitahata, H., Aihara, K. & Yoshikawa, K. 2006,
Periodic rhythms and anti-phase synchronization
in calling behaviours of Japanese rain frogs,
University of Tokyo,
http://www.i.u-tokyo.ac.jp/mi/mi-e.htm, viewed
18 September 2006.

Bennett, M., Schatz, M.F., Rockwood, H. & Wiesenfeld,
K. 2002, 'Huygens' clocks', Proceedings (A) of
the Royal Society, vol. 458, pp. 563-579.

Bettstetter, C. 2006, Self-Organization in Communication
Networks,
www.bettstetter.com/talks/bettstetter-so-2006-06
-passau.pdf viewed 18 September 2006.

Buck, E. & Buck, J. 1976, 'Synchronous fireflies',
Scientific American, no. 234, pp. 74-85.

Buck, J., Buck, E., Case, J.F. & Hanson, F.E. 1981,
'Control of flashing in fireflies. V. Pacemaker
Synchronization in Pteroptyx cribellata', Journal
of comparative physiology A, vol. 144, no. 3, pp.
287-298.

CRPIT Volume 74 - Computer Science 2008

88

Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J.,
Theraulaz, G. & Bonabeau, E. 2001,
Self-synchronization in biological systems,
Princeton University Press, Princeton, New
Jersey.

Ermentrout, G.B. & Rinzel, J. 1984, 'Beyond a
pacemaker's entrainment limit: phase
walk-through', American Journal of Physiology -
Regulatory, Integrative and Comparative
Physiology, vol. 246, no. 1, pp. 102-106.

Garey, M.R. & Johnson, D.S. 1979, Computers and
Intractability: A guide to the Theory of
NP-Completeness, W. H. Freeman.

Hong, Y.W. & Scaglione, A. 2003, 'Time synchronization
and reach-back communications with
pulse-coupled oscillators for UWB wireless ad
hoc networks', Proceedings of the IEEE
conference on Ultra Wideband Systems and
Technologies, Reston, VA, pp. 190-194.

Hopfield, J.J. & Tank, D.W. 1985, 'Neural computation of
decisions in optimization problems', Biological
Cybernetics, no. 52, pp. 141-152.

Kindermann, R. and Snell, J. L. (1980) Random Markov
Fields and Their Applications, American
Mathematical Society, ISBN 0-8218-3381-2.

Kuramoto, Y. 1984, Chemical Oscillations, Waves and
Turbolence, Spinger, Berlin.

Lister, R. 1992, 'On making the right moves: Neural
networks, gradient descent and simulated
annealing', Unpublished PhD Thesis, Basser
Department of Computer Science, The
University of Sydney, Sydney.

Lucarelli, d. & Wang, I.-J. 2004, 'Decentralized
Synchronization Protocols with Nearest
Neighbor Communication', paper presented to
the SenSys'04, Baltimore, Maryland, November
3-5, 2004.

Mirollo, R.E. & Strogatz, S.H. 1990, 'Synchronization of
Pulse-Coupled Biological Oscillators', SIAM
Journals on Applied Mathematics, vol. 50, no. 6,
pp. 1645-1662.

Spong, M.W. 2006, 'Coordination of multi-agent systems',
The eight IASTED international conference on
control and applications, ed. C.Y. Su, Montreal,
Canada, pp. 10-16.

Strogatz, S.H. 2003, SYNC: The emerging science of
spontaneous order, Hyperion, New York.

Werner-Allen, G., Tewari, G., Patel, A., Welsh, M. &
Nagpal, R. 2005, 'Firefly-Inspired Sensor
Network Synchronicity with Realistic Radio
Effects', paper presented to the SenSys'05, San
Diego, California, November 2-4, 2005.

Wu, C.W. 2002, Synchronization in coupled chaotic
circuits and systems, World Scientific Publishing
Co, Singapore.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

89

CRPIT Volume 74 - Computer Science 2008

90

Integrating Recommendation Models for Improved Web Page
Prediction Accuracy

Faten Khalil1 Jiuyong Li2 Hua Wang1

1 Department of Mathematics & Computing
University of Southern Queensland,

Toowoomba, Australia, 4350,
Email: {khalil and wang}@usq.edu.au

2 School of Computer & Information Science
University of South Australia,

Mason Lakes, Australia,
Email: Jiuyong.Li@unisa.edu.au

Abstract

Recent research initiatives have addressed the need
for improved performance of Web page prediction
accuracy that would profit many applications, e-
business in particular. Different Web usage min-
ing frameworks have been implemented for this pur-
pose specifically Association rules, clustering, and
Markov model. Each of these frameworks has its own
strengths and weaknesses and it has been proved that
using each of these frameworks individually does not
provide a suitable solution that answers today’s Web
page prediction needs. This paper endeavors to pro-
vide an improved Web page prediction accuracy by
using a novel approach that involves integrating clus-
tering, association rules and Markov models accord-
ing to some constraints. Experimental results prove
that this integration provides better prediction accu-
racy than using each technique individually.

Keywords: Web page prediction, association rules,
clustering, Markov model.

1 Introduction

Web page access prediction gained its importance
from the ever increasing number of e-commerce Web
information systems and e-businesses. Web page pre-
diction that involves personalizing the Web users’
browsing experiences assists Web masters in the im-
provement of the Web site structure, and helps Web
users in navigating the site and accessing the infor-
mation they need. Various attempts have been ex-
ploited to achieve Web page access prediction by pre-
processing Web server log files and analyzing Web
users’ navigational patterns. The most widely used
approach for this purpose is Web usage mining that
entails many techniques like Markov model, associa-
tion rules and clustering (Srivastava et al. 2000).

• Markov models are the most effective tech-
niques for Web page access prediction and many
researchers stress the importance in the field
(Bouras & Konidaris 2004, chen et al. 2002,
Deshpande & Karypis 2004, Eirinaki et al. 2005,
Zhu et al. 2002). Other researchers use Markov
models to improve the Web server access effi-
ciency either by using object prefetching (Pons

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74. Gillian Dobbie and Bernard Mans, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

2006) or by helping reduce the Web server over-
head (Mathur & Apte 2007). Lower order
Markov models are known for their low accuracy
due to the limited availability of users’ brows-
ing history. Higher order Markov models achieve
higher accuracy but are associated with higher
state space complexity.

• Association rule mining is a major pattern dis-
covery technique (Mobasher et al. 2001). The
original goal of association rule mining is to solve
market basket problem but the applications of
association rules are far beyond that. Using as-
sociation rules for Web page access prediction in-
volves dealing with too many rules and it is not
easy to find a suitable subset of rules to make ac-
curate and reliable predictions (Kim et al. 2004,
Mobasher et al. 2001, Yong et al. 2005).

• Although clustering techniques have been used
for personalization purposes by discovering Web
site structure and extracting useful patterns
(Adami et al. 2003, Cadez et al. 2003, Papadakis
& Skoutas 2005, Rigou et al. 2006, Strehl et al.
2000), usually, they are not very successful in at-
taining good results. Proper clustering groups
users sessions with similar browsing history to-
gether, and this facilitates classification. How-
ever, prediction is performed on the cluster sets
rather than the actual sessions.

Therefore, there arises a need for improvement
when using any of the aforementioned techniques.
This paper integrates all three frameworks together,
clustering, association rules and Markov model, to
achieve better Web page access prediction perfor-
mance specifically when it comes to accuracy.

Web page access prediction can be useful in many
applications. The improvement in accuracy can make
a change in the Web advertisement area where a sub-
stantial amount of money is paid for placing the cor-
rect advertisements on Web sites. Using Web page
access prediction, the right ad will be predicted ac-
cording to the users’ browsing patterns. Also, using
the Web users’ browsing patterns Web page access
prediction helps Web administrators restructure the
Web sites to improve site topology and user person-
alization as well as market segmentation. Web page
access prediction is also helpful for caching the pre-
dicted page for faster access, for improved Web page
ranking and for improving browsing and navigation
orders.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

91

2 Related Work

A number of researchers attempted to improve the
Web page access prediction precision or coverage
by combining different recommendation frameworks.
For instance, many papers combined clustering with
association rules (Lai & Yang 2000, Liu et al. 2001).
Lai & Yang (2000) have introduced a customized mar-
keting on the Web approach using a combination of
clustering and association rules. The authors col-
lected information about customers using forms, Web
server log files and cookies. They categorized cus-
tomers according to the information collected. Since
k-means clustering algorithm works only with numeri-
cal data, the authors used PAM (Partitioning Around
Medoids) algorithm to cluster data using categorical
scales. They then performed association rules tech-
niques on each cluster. They proved through exper-
imentations that implementing association rules on
clusters achieves better results than on non-clustered
data for customizing the customers’ marketing prefer-
ences. Liu et al. (2001) have introduced MARC (Min-
ing Association Rules using Clustering) that helps
reduce the I/O overhead associated with large data-
bases by making only one pass over the database when
learning association rules. The authors group similar
transactions together and they mine association rules
on the summaries of clusters instead of the whole data
set. Although the authors prove through experimen-
tation that MARC can learn association rules more
efficiently, their algorithm does not improve on the
accuracy of the association rules learned.

Other papers combined clustering with Markov
model (Cadez et al. 2003, Zhu et al. 2002, Lu et al.
2005). Cadez et al. (2003) partitioned site users us-
ing a model-based clustering approach where they
implemented first order Markov model using the
Expectation-Maximization algorithm. After parti-
tioning the users into clusters, they displayed the
paths for users within each cluster. They also devel-
oped a visualization tool called WebCANVAS based
on their model. Zhu et al. (2002) construct Markov
models from log files and use co-citation and coupling
similarities for measuring the conceptual relationships
between Web pages. CitationCluster algorithm is
then proposed to cluster conceptually related pages.
A hierarchy of the Web site is constructed from the
clustering results. The authors then combine Markov
model based link prediction to the conceptual hier-
archy into a prototype called ONE to assist users’
navigation. Lu et al. (2005) were able to generate
Significant Usage Patterns (SUP) from clusters of ab-
stracted Web sessions. Clustering was applied based
on a two-phase abstraction technique. First, ses-
sion similarity is computed using Needleman-Wunsch
alignment algorithm and sessions are clustered ac-
cording to their similarities. Second, a concept-based
abstraction approach is used for further abstraction
and a first order Markov model is built for each clus-
ter of sessions. SUPs are the paths that are generated
from first order Markov model with each cluster of
user sessions.

Combining association rules with Markov model
is novel to our knowledge and only few of past re-
searches combined all three models together (Kim
et al. 2004). Kim et al. (2004) improve the perfor-
mance of Markov model, sequential association rules,
association rules and clustering by combining all these
models together. For instance, Markov model is used
first. If MM cannot cover an active session or a state,
sequential association rules are used. If sequential
association rules cannot cover the state, association
rules are used. If association rules cannot cover the
state, clustering algorithm is applied. Kim et al.
(2004) work improved recall and it did not improve

the Web page prediction accuracy. Our work proves
to outperform previous works in terms of Web page
prediction accuracy using a combination of clustering,
association rules and Markov model techniques.

3 Related Methods

3.1 Clustering

This paper introduces a new model called Integrated
Prediction Model, or IPM, that integrates clustering,
Markov model and association rules mining frame-
works in order to improve the Web page access pre-
diction accuracy. The first problem encountered in
this paper is the grouping of such sessions into k num-
ber of clusters in order to improve the Markov model
prediction accuracy. Performing clustering tasks can
be tedious and complex due to the increased num-
ber of clustering methods and algorithms. Cluster-
ing could be hierarchical or non-hierarchical (Jain
et al. 1999), distance-based or model-based (Zhong &
Ghosh 2003), and supervised or unsupervised (Eick
et al. 2004). For the purpose of this paper, we
use a straightforward implementation of the k-means
clustering algorithm which is distance-based, based
on user sessions, unsupervised and partitional non-
hierarchical. K-means clustering algorithm involves
the following:

1. defining a set of sessions (n-by-p data matrix) to
be clustered where n represents sessions and p
represents pages,

2. defining a chosen number of clusters (k) and
3. randomly assign a number of sessions to each

cluster.
K-means clustering then repeatedly calculates the
mean vector for all items in each cluster and reassigns
the items to the cluster whose center is closest to the
session until there is no change for all cluster cen-
ters. Because the first clusters are created randomly,
k-means runs different times each time it starts from
a different point giving different results. The differ-
ent clustering solutions are compared using the sum
of distances within clusters. In this paper, clusters
were achieved using MatLab that considers the clus-
tering solution with the least sum of distances. k-
means clustering depends greatly on the number of
clusters (k), the number of runs and the distance
measure used. There exists a variety of distance mea-
sures, in particular, Euclidean, Squared Euclidean,
City Block, Hamming, Cosine and Correlation (Strehl
et al. 2000). In this paper we use Cosine distance
measure that yields better clustering results than the
other distance measures and is a direct application of
the extended Jaccard coefficient (Strehl et al. 2000,
Halkidi et al. 2003, Casale 2005).

3.2 Markov Model

After dividing user sessions into a number of clusters
using cosine distance measure, Markov model analysis
are carried out on each of the clusters. Markov mod-
els are used in the identification of the next page to be
accessed by the Web site user based on the sequence
of previously accessed pages (Deshpande & Karypis
2004). Let P = {p1, p2, . . . , pm} be a set of pages in
a Web site. Let W be a user session including a se-
quence of pages visited by the user in a visit. Assum-
ing that the user has visited l pages, then prob(pi|W)
is the probability that the user visits pages pi next.
Page pl+1 the user will visit next is estimated by:

Pl+1=argmaxp∈IP{P (Pl+1 = p|W)}
=argmaxp∈IP{P (Pl+1 = p|pl, pl−1, . . . , p1)}(1)

CRPIT Volume 74 - Computer Science 2008

92

This probability, prob(pi|W), is estimated by using
all sequences of all users in history (or training data),
denoted by W . Naturally, the longer l and the larger
W , the more accurate prob(pi|W). However, it is in-
feasible to have very long l and large W and it leads
to unnecessary complexity. Therefore, a more fea-
sible probability is estimated by assuming that the
sequence of the Web pages visited by users follows a
Markov process that imposes a limit on the number
of previously accessed pages k. In other words, the
probability of visiting a page pi does not depend on
all the pages in the Web session, but only on a small
set of k preceding pages, where k << l.

The equation becomes:

Pl+1 = argmaxp∈IP{P (Pl+1 = p|pl, pl−1, . . . , pl−(k−1)}
(2)

where k denotes the number of the preceding pages
and it identifies the order of the Markov model. The
resulting model of this equation is called the all kth

order Markov model. Of course, the Markov model
starts calculating the highest probability of the last
page visited because during a Web session, the user
can only link the page he is currently visiting to the
next one. The probability of P

(
pi|Sk

j

)
is estimated

as follows from a history (training) data set.

P
(
pi|Sk

j

)
=

Frequency
(〈

Sk
j , pi

〉)

Frequency
(
Sk

j

) . (3)

This formula calculates the conditional probability
as the ratio of the frequency of the sequence occur-
ring in the training set to the frequency of the page
occurring directly after the sequence.

The fundamental assumption of predictions based
on Markov models is that the next state is dependent
on the previous k states. The longer the k is, the
more accurate the predictions are. However, longer k
causes the following two problems: The coverage of
model is limited and leaves many states uncovered;
and the complexity of the model becomes unmanage-
able (Deshpande & Karypis 2004). Therefore, the
following are three modified Markov models for pre-
dicting Web page access.

1. All kth Markov model: This model is to tackle
the problem of low coverage of a high order
Markov model. For each test instance, the high-
est order Markov model that covers the instance
is used to predict the instance. For example, if
we build an all 4-Markov model including 1-, 2-
, 3-, and 4-, for a test instance, we try to use
4-Markov model to make prediction. If the 4-
Markov model does not contain the correspond-
ing states, we then use the 3-Markov model, and
so forth (Pitkow & Pirolli 1999).

2. Frequency pruned Markov model: Though all kth

order Markov models result in low coverage, they
exacerbate the problem of complexity since the
states of all Markov models are added up. Note
that many states have low statistically predictive
reliability since their occurrence frequencies are
very low. The removal of these low frequency
states affects the accuracy of a Markov model.
However, the number of states of the pruned
Markov model will be significantly reduced.

3. Accuracy pruned Markov model: Frequency
pruned Markov model does not capture factors
that affect the accuracy of states. A high fre-
quent state may not present accurate prediction.
When we use a means to estimate the predictive

accuracy of states, states with low predictive ac-
curacy can be eliminated. One way to estimate
the predictive accuracy using conditional proba-
bility is called confidence pruning. Another way
to estimate the predictive accuracy is to count
(estimated) errors involved, called error pruning.

In this paper, we employ the frequency pruned
Markov model. When choosing the Markov model
order, our aim is to determine a Markov model order
that leads to high accuracy with low state space com-
plexity. Figure 1 reveals the increase of precision as
the frequency pruned Markov model increases using
the four data sets introduced in section 5 below. On
the other hand, table 1 and table 2 show the increase
of the state space complexity as the order of all kth

and frequency pruned Markov model increases for all
four data sets. The frequency pruned Markov model
orders, and as it has been proposed by (Deshpande
& Karypis 2004), does not increase the prediction ac-
curacy significantly. It rather plays a major role in
decreasing the state space complexity. Based on this
information, we use the 2-FP order Markov model
because it has better accuracy than that of the 1-
FP order Markov model without the drawback of the
state space complexity associated with higher order
Markov models.

1−FP 2−FP 3−FP 4−FP
0

10

20

30

40

50

60

Frequency pruned Markov model

P
re

ci
si

o
n

 in
 %

D1
D2
D3
D4

Figure 1: Precision of all 1-, 2-, 3- and 4- frequency
pruned Markov model orders.

Table 1: Number of states of all 1- to 4- Markov model
orders.

1-MM 2-MM 3-MM 4-MM
D1 1945 39162 72524 101365
D2 1036 25060 89815 128516
D3 674 21392 50971 83867
D4 2054 34469 90123 131106

Table 2: Number of states of frequency pruned
Markov model orders.

1-FP 2-FP 3-FP 4-FP
D1 745 9162 14977 17034
D2 502 6032 18121 22954
D3 623 5290 11218 13697
D4 807 7961 19032 23541

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

93

3.3 Association Rules

The final step in the training process is to generate
global association rules from the original data. Asso-
ciation rules are mainly defined by two metrics: sup-
port and confidence. Let A be a subsequence of W ,
and pi be a page. We say that W supports A if A is a
subsequence of W , and W supports 〈A, pi〉 if 〈A, pi〉
is a subsequence of W . The support for sequence A is
the fraction of sessions supporting A in the data set
D as follows:

σ = supp(A) =
{W ∈ D : A ⊆ W}

D
(4)

The confidence of the implication is:

α = conf(A) =
supp(〈A,P 〉)

supp(A)
(5)

An implication is called an association rule if its sup-
port and confidence are not less than some user speci-
fied minimum thresholds. The selection of parameter
values for σ and α usually has to be based on ex-
perience or even resorts to try and error. The most
common association mining algorithm is Apriori algo-
rithm (Agrawal & Srikant 1994). The main problem
of mining association rules is composed of two steps:

1. Discovery of large itemsets.

2. Using the large itemsets to generate the associa-
tion rules.

The second step is simple and the overall performance
of mining association rules is determined by the first
step. Apriori (Agrawal & Srikant 1994) addresses the
issue of discovering large itemsets. In each iteration,
Apriori constructs a candidate set of large itemsets,
counts the number of occurrences of each candidate
and determines the large itemsets based on a pre-
determined minimum support and confidence thresh-
olds. In the first iteration, Apriori scans all the trans-
actions to count the number of occurrences for each
item and based on the minimum support threshold
(σ), the first large itemset is determined. There-
fore, the cost of the first iteration is O(D). Next,
the second large itemset is determined by concate-
nating items in the first large itemset and applying
the minimum support test to the results. More itera-
tions will take place until there are no more candidate
itemsets. In simple terms, the cost of the algorithm
is O(I ∗D) where I denotes the number of iterations
used. Association rules are generated based on all
large itemsets. The generated rules are so large and
complex that they can lead to conflicting results.

The Apriori algorithm is usually implemented on
large data sets where the items within the one trans-
action are not in any particular order. This contra-
dicts Web data sets where the pages are accessed in a
particular order. Therefore, there was a need to im-
plement sequential association rules using the Apriori
algorithm. There are four types of sequential associ-
ation rules presented by Yang et al. (2004):

1. Subsequence rules: they represent the sequential
association rules where the items are listed in
order.

2. Latest subsequence rules: They take into consid-
eration the order of the items and most recent
items in the set.

3. Substring rules: They take into consideration the
order and the adjacency of the items.

4. Latest substring rules: They take into considera-
tion the order of the items, the most recent items
in the set as well as the adjacency of the items.

In this paper, we will use sequential association rule
mining on user transaction data to discover Web page
usage patterns. Prediction of the next page to be
accessed by the user is performed by matching the
discovered patterns against the user sessions. This is
usually done online.

4 Proposed Model

4.1 Motivation for the Combined Approach

Our work is based on combining clustering algorithm,
association rules mining and Markov model during
the prediction process. The IPM integration during
the prediction process is novel and proves to outper-
form each individual prediction model mentioned in
section 1 as well as the different combination models
addressed in section 2. The IPM integration model
improves the prediction accuracy as opposed to other
combinations that prove to improve the prediction
coverage and complexity. The improvement in ac-
curacy is based on different constraints like divid-
ing the data set into a number of clusters based on
services requested by users. This page categoriza-
tion method proves to yield better clustering results
(Wang et al. 2004). Therefore, better clusters means
better Markov model prediction accuracy because the
Markov model prediction will be based on more mean-
ingfully grouped data. It also improves the state
space complexity because Markov model prediction
will be carried out on one particular cluster as op-
posed to the whole data set. The other constraint is
using association rules mining in the case of a state
absence in the training data or where the state predic-
tion probability is not marginal. This helps improve
the prediction accuracy because association rules look
at more history and examine more states than Markov
models. Also, IPM will not be subjected to the com-
plexity associated with the number of rules gener-
ated because the rules will be examined in special
cases only. Another constraint is the distance mea-
sure used in the identification of the appropriate clus-
ter that each new page should belong to. The cosine
distance measure has proved to outperform other dis-
tance measures like Euclidean, hamming, correlation
and city block (Strehl et al. 2000, Halkidi et al. 2003).
The prediction accuracy based on the integration of
the three frameworks together according to these con-
straints proves to outperform the prediction accuracy
based on each of the frameworks individually.

4.2 Algorithm

The process is as follows:
Training:

(1)Combine functionally related pages according
to services requested

(2)Cluster user sessions into l-clusters

(3)Build a k-Markov model for each cluster

(4) For Markov model states where the
majority is not clear

(5) Discover association rules for each
state

(6)EndFor

CRPIT Volume 74 - Computer Science 2008

94

Combining similar pages or allocating related
pages to categories is an important step in the
training process of the IPM model. Consider a data
set D containing N number of sessions. Let W be
a user session including a sequence of pages visited
by the user in a visit. D = {W1, ...,WN}. Let
P = {p1, p2, . . . , pm} be a set of pages in a Web site.
Since Markov model techniques will be implemented
on the data, the pages have to remain in the order
by which they were visited. Wi = (pi

1, ..., p
i
L) is a

session of length L composed of multivariate feature
vectors p. The set of pages P is divided into a
number of categories Ci where Ci = {p1, p2, . . . , pn}.
This results in less number of pages since Ci ⊂ P
and n < m. For each session, a binary representation
is used assuming each page is either visited or not
visited. If the page is visited, a weight factor w
is added to the pages representing the number of
times the page was visited in the new session Si.
Si = {(ci

1, w
i
1), ..., (c

i
L, wi

j)}. Ds is the data set
containing N number of sessions SN .

The categories are formed as follows:

Input: D containing N number of sessions WN .

(1) For each page pi in session Wi

(2) If pi ⊂ Ci

(3) wi.count++

(4) Else,

(5) wi = 0

(6) EndIf

(7) EndFor

Output: Ds containing N number of Sessions SN .

Combining the similar Web pages into categories
Ci, increases the value of w and makes all sessions of
equal length. According to Casale (2005), sessions of
equal length give better similarity measures results.
As an example, consider the following three sessions:

W1 1, 2, 3, 1, 3
W2 1, 2, 1,
W3 3, 1, 3

If pages 1 and 2 belong to category1 and page
3 belongs to category2, we have the following sessions:

Category 1 2
S1 3 2
S2 3 0
S3 1 2

Clustering the resulting sessions SN was imple-
mented using k-means clustering algorithm according
to the Cosine distance between the sessions. Consider
two sessions Sa and Sb. The Cosine distance between
Sa and Sb is given by:

distCosine(Sa, Sb) =
∑

(SaiSbi)√∑
(Sai)2

√∑
(Sbi)2

(6)

Table 3 has 4 sessions with 4 pages each. If we are
to form two clusters with two sessions each, we have
to measure the distances between the sessions.

Table 3: Sessions

S1 3, 0, 5, 1
S2 2, 0, 5, 0
S3 0, 5, 0, 4
S4 0, 3, 0, 3

Table 4: Sessions distances

distCosine(S1, S2) 0.019
distCosine(S1, S3) 0.89
distCosine(S2, S3) 1.0
distCosine(S1, S4) 0.88
distCosine(S3, S4) 0.06

Table 4 reveals the distances calculated using
equation 1:

Clusters are formed according to the least dis-
tances between sessions, or the closest distances be-
tween sessions. Therefore, {S1, S2} will form a clus-
ter and {S3, S4} will form another cluster.

Prediction:

(1)For each coming session

(2) Find its closest cluster

(3) Use corresponding Markov model to make
prediction

(4) If the predictions are made by states
that do not belong to a majority class

(5) Use association rules to make a
revised prediction

(6) EndIf

(7)EndFor

During the prediction process, each new page is exam-
ined and the appropriate cluster the new test point
belongs to is identified. Let pt be a new test point
where pt ⊂ P . Web sessions W are divided into
K groups or clusters. The new point pt has prob-
ability prob(xi = k) of belonging to cluster k where∑

k prob(xi = k) = 1 and xi indicates the cluster
membership of the new point pt. The actual cluster
k that the point pt belongs to depends on the mini-
mum distance of pt to the mean values of K cluster
centroids using the Cosine distance measure as fol-
lows:

distCosine(pt, µ) =
∑K

k=1(ptµ)√∑K
k=1(pt)2

√∑K
k=1(µ)2

(7)

To continue with the prediction process, Markov
model prediction is performed on the new identified
cluster. If the Markov model prediction results in no
state or a state that does not belong to the majority
class, association rules mining is used instead. The
majority class includes states with high probabilities
where probability differences between two pages are
significant. On the other hand, the minority class
includes all other cases. In particular, the minority
class includes:

1. States with high probabilities where probability
differences between two pages are below (φc) or
equal to zero.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

95

2. States where test data does not match any of the
Markov model outcomes.

A Markov model state is retained only if the prob-
ability difference between the most probable state and
the second probable state is above (φc) (Deshpande
& Karypis 2004). Another important issue here is
defining the majority class and identifying whether
the new state belongs to the majority or the minor-
ity class. This in mind, we employ the confidence
pruned Markov model introduced by Deshpande et.
al, (Deshpande & Karypis 2004). The confidence
threshold is calculated as follows:

φc = p̂− zα/2

√
p̂(1− p̂)

n
(8)

Where zα/2 is the upper α/2 percentage point of the
standard normal distribution, and n is the frequency
of the Markov state. Equation 5 stresses out the fact
that states with high frequency would lead to smaller
confidence threshold. That means that even if the dif-
ference between the two most probable pages is small,
the state with higher probability will be chosen in the
case of high frequency of the state occurrence. The
smaller confidence threshold results in larger major-
ity class. The effect of the confidence threshold value
and, therefore, the majority class size on the predic-
tion accuracy depends on the actual data set. To
determine the optimal value of zα/2 and, as a result,
the value of the confidence factor φc we conducted an
experiment using the EPA data set (later referred to
as D1 and described in section 6). As Table 5 depicts,
the increase of the minority class or, in other words,
the increase in the confidence factor is affected by
the decrease of zα/2. During the prediction process,
if the Markov model probability belongs to the mi-
nority class, association rules probability for the item
is taken into consideration instead. Table 3 displays
the results of the IPM accuracy using different val-
ues for zα/2. It is clear that the accuracy increases
at first with lower confidence threshold and therefore,
larger minority class. However, after a certain point,
accuracy starts to decrease when the majority class
is reduced to the extent where it looses the advan-
tage of the accuracy obtained by combining Markov
model and clustering. The optimal value for zα/2 is
1.15. Note that the number of states has dramatically
decreased.

Table 5: Accuracy according to zα/2 value

zα/2 Accuracy # states
0 31.29 9162
0.75 33.57 2061
0.84 35.45 1932
0.93 37.80 1744
1.03 40.60 1729
1.15 44.91 1706
1.28 43.81 1689
1.44 40.93 1614
1.64 38.85 1557
1.96 37.91 1479
2.57 36.81 1304

With zα/2=1.15, the most probable pages range
approximately between 80% and 40% with φc ranging
between 47% and zero respectively given n=2. This
results in approximately 0.78 as the ratio of the ma-
jority class to the whole data set. This leaves space for
22% improvement using association rules mining not

including instances that have zero matching states in
the training data set.

4.3 Example

Consider table 6 that depicts data transactions per-
formed by a user browsing a Web site.

Table 6: User sessions

T1 A,F,I,J,E,C,D,H,N,I,J,G,D,H,N,C,I,J,G
T2 F,D,H,N,I,J,E,A,C,D,H,N,I,J,G
T5 E,C,A,C,F,I,A,C,G,A,D,H,M,G,J
T3 F,D,H,I,J,E,H,F,I,J,E,D,H,M
T4 G,E,A,C,F,D,H,M,I,C,A,C,G

Performing clustering analysis on the data set
using k-means clustering algorithm and Cosine
distance measure where the number of clusters k=2
results in the following two clusters:

Cluster 1:

T1 A,F,I,J,E,C,D,H,N,I,J,G,D,H,N,C,I,J,G
T2 F,D,H,N,I,J,E,A,C,D,H,N,I,J,G
T3 F,D,H,I,J,E,H,F,I,J,E,D,H,M

Cluster 2:

T5 E,C,A,C,F,I,A,C,G,A,D,H,M,G,J
T4 G,E,A,C,F,D,H,M,I,C,A,C,G

Consider the following test data state I → J → ?.
Applying the 2nd order Markov Model to the above
training user sessions we notice that the state 〈I, J〉
belongs to cluster 1 and it appeared 7 times as follows:

Pl+1 = argmax{P (E|J, I)} = argmax{E → 0.57}

Pl+1 = argmax{P (G|J, I)} = argmax{G → 0.43}
This information alone does not provide us with

correct prediction of the next page to be accessed by
the user as we have high probabilities for both pages,
G and E. Although the result does not conclude with a
tie, neither G nor E belong to the majority class. The
difference between the two pages (0.14), is not higher
than the confidence threshold (in this case 0.2745).
In order to find out which page would lead to the
most accurate prediction, we have to look at previous
pages in history. This is where we use subsequence
association rules as it appears in Table 7 below.

Table 7: User sessions history

A, F, 〈I, J〉 E
C, D, H, N, 〈I, J〉 G
D, H, N, C, 〈I, J〉 G
F, D, H, N, 〈I, J〉 E

A, C, D, H, N, 〈I, J〉 G
F, D, H, 〈I, J〉 E

H, F, 〈I, J〉 E

Table 8 and Table 9 summarise the results of ap-
plying subsequence association rules to the training

CRPIT Volume 74 - Computer Science 2008

96

Table 8: Confidence of accessing page E using subse-
quence association rules

A → E AE/A 1/2 50%
F → E FE/F 4/4 100%
D → E DE/D 2/6 33%
H → E HE/H 2/7 29%
N → E NE/N 1/4 25%

Table 9: Confidence of accessing page G using subse-
quence association rules

C → G CG/C 3/3 100%
D → G DG/D 3/6 50%
H → G HG/H 3/7 43%
N → G NG/N 3/4 75%
A → G AG/A 1/2 50%

data. Table 8 shows that F → E has the highest con-
fidence of 100%. While Table 9 shows that C→ G has
the highest confidence of 100%.

Using Markov models, we can determine that the
next page to be accessed by the user after accessing
the pages I and J could be either E or G. Whereas
subsequence association rules take this result a step
further by determining that if the user accesses page F
before pages I and J, then there is a 100% confidence
that the user will access page E next. Whereas, if the
user visits page C before visiting pages I and J, then
there is a 100% confidence that the user will access
page G next.

5 Experimental Evaluation

In this section, we present experimental results to
evaluate the performance of our algorithm. All ex-
periments were conducted on a P4 1.8 GH PC with
1GB of RAM running Windows XP Professional. The
algorithms were implemented using MATLAB.

For our experiments, the first step was to gather
log files from active web servers. Usually, Web log
files are the main source of data for any e-commerce
or Web related session analysis (Spiliopoulou et al.
1999). The logs are an ASCII file with one line per
request, with the following information: The host
making the request, date and time of request, re-
quested page, HTTP reply code and bytes in the re-
ply. The first log file used is a day’s worth of all
HTTP requests to the EPA WWW server located at
Research Triangle Park, NC. The logs were collected
for Wednesday, August 30 1995. There were 47,748
total requests, 46,014 GET requests, 1,622 POST re-
quests, 107 HEAD requests and 6 invalid requests.
The second log file is SDSC-HTTP that contains a
day’s worth of all HTTP requests to the SDCS WWW
server located at the San Diego Supercomputer Cen-
ter in San Diego, California. The logs were collected
from 00:00:00 PDT through 23:59:41 PDT on Tues-
day, August 22 1995. There were 28,338 requests and
no known losses. The third log file is CTI that con-
tains a random sample of users visiting the CTI Web
site for two weeks in April 2002. There were 115,460
total requests. The fourth log file is Saskatchewan-
HTTP which contains one week worth of all HTTP
requests to the University of Saskatchewan’s WWW
server. The log was collected from June 1, 1995
through June 7, 1995, a total of seven days. In this
one week period there were 44,298 requests.

Before using the log files data, it was necessary

to perform data preprocessing (Zhao et al. 2005,
Sarukkai 2000). We removed erroneous and invalid
pages. Those include HTTP error codes 400s, 500s,
and HTTP 1.0 errors, as well as, 302 and 304 HTTP
errors that involve requests with no server replies. We
also eliminated multi-media files such as gif, jpg and
script files such as js and cgi.

Next step was to identify user sessions. A session is
a sequence of URLs requested by the same user within
a reasonable time. The end of a session is determined
by a 30 minute threshold between two consecutive
web page requests. If the number of requests is more
than the predefined threshold value, we conclude that
the user is not a regular user; it is either a robot
activity, a web spider or a programmed web crawler.
The sessions of the data sets are of different lengths.
They were represented by vectors with the number of
occurrence of pages as weights.

Table 10 represents the different data sets after
preprocessing.

Table 10: Sessions

D1 D2 D3 D4
Requests 47,748 28,338 115,460 44,298
Sessions 2,520 4,356 13,745 5,673
Pages 3,730 1,072 683 2,385
Unique IPs 2,249 3,422 5,446 4,985

Further preprocessing of the Web log sessions took
place by removing short sessions and only sessions
with at least 5 pages were considered. This re-
sulted in further reducing the number of sessions.
Finally, sessions were categorized according to fea-
ture selection techniques introduced by Wang et al.
(Wang et al. 2004). The pages were grouped ac-
cording to services requested which yield best re-
sults if carried out according to functionality (Wang
et al. 2004). This could be done either by remov-
ing the suffix of visited pages or the prefix. In our
case, we could not merge according to suffix be-
cause, for example, pages with suffix index.html could
mean any default page like OWOW/sec4/index.html
or OWOW/sec9/index.html or ozone/index.html.
Therefore, merging was according to a prefix. Since
not all Web sites have a specific structure where we
can go up the hierarchy to a suitable level, we had to
come up with a suitable automatic method that can
merge similar pages automatically. A program runs
and examines each record. It only keeps the delim-
ited and unique word. A manual examination of the
results also takes place to further reduce the number
of categories by combining similar pages.

5.1 Clustering, Markov Model and Associa-
tion Rules

All clustering experiments were developed using
MATLAB statistics toolbox. Since k-means computes
different centroids each run and this yields different
clustering results each time, the best clustering so-
lution with the least sum of distances is considered
using MATLAB k-means clustering solutions. There-
fore, using Cosine distance measure with the number
of clusters (k)=7 leads to good clustering results while
keeping the number of clusters to a minimum.

Merging Web pages by web services according to
functionality reduces the number of unique pages and,
accordingly, the number of sessions. The categorized
sessions were divided into 7 clusters using the k-means
algorithm and according to the Cosine distance mea-
sure.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

97

Markov model implementation was carried out for
the original data in each cluster. The clusters were
divided into a training set and a test set each and 2-
Markov model accuracy was calculated accordingly.
Then, using the test set, each transaction was consid-
ered as a new point and distance measures were cal-
culated in order to define the cluster that the point
belongs to. Next, 2-Markov model prediction accu-
racy was computed considering the transaction as a
test set and only the cluster that the transaction be-
longs to as a training set.

Since association rules techniques require the de-
termination of a minimum support factor and a con-
fidence factor, we used the experimental data to help
determine such factors. We can only consider rules
with certain support factor and above a certain con-
fidence threshold.

Using the D1, or EPA, data set, Figure 2 below
shows that the number of generated association rules
dramatically decreases with the increase of the mini-
mum support threshold with a fixed 90% confidence
factor. Reducing the confidence factor results in an
increase in the number of rules generated. This is
apparent in Figure 3 where the number of generated
rules decreases with the increase of the confidence fac-
tor while the support threshold is a fixed 4% value.
It is also apparent from Figure 2 and Figure 3 below
that the influence of the minimum support factor is
much greater on the number of rules than the influ-
ence of the confidence factor. The association rules
precision is calculated as a fraction of correct recom-
mendations to total test cases used.

Precision(Te) =
Te ∩ Tr

Te
(9)

Te represents the test cases whereas Tr represents
training test cases or (D-Te).

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Support threshold

N
u

m
b

er
 o

f
ru

le
s

90% Confidence

Figure 2: Number of rules generated according to dif-
ferent support threshold values and a fixed confidence
factor: 90%.

Larger minimum support means less number of
rules but it could also mean that genuine rules might
be omitted. Figure 4 depicts the time complexity of
generating association rules using different values of
σ for D1 data set.

5.2 Experiments Results

Figure 5 depicts better Web page access prediction
accuracy by integrating Markov model, Association
rules and clustering (IPM). Prediction accuracy was
computed as follows:

1. The data set is clustered according to k-means
clustering algorithm and Cosine distance mea-
sure.

0 20 40 60 80 100
2000

4000

6000

8000

10000

12000

14000

Confidence factor

N
u

m
b

er
 o

f
ru

le
s

4% support

Figure 3: No. of rules generated according to a fixed
support threshold: 4%.

0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

minimum support in %

ti
m

e
in

 s
ec

o
n

d
s

Figure 4: Time complexity in seconds for different
support value.

2. For each new instance, the prediction accuracy is
calculated based on the 2-MM performed on the
closest cluster.

3. If the prediction results in a state that does not
belong to the majority class, global association
rules are used for prediction.

4. The frequency of the item is also determined in
that particular cluster.

5. φc is calculated for the new instance using zα/2

value to determine if it belongs to the majority
class.

6. if the state does not belong to the majority class,
global association rules are used to determine the
prediction accuracy, otherwise, the original accu-
racy is used.

Figure 5 shows that IPM results in better predic-
tion accuracy than any of the other techniques indi-
vidually. It also reveals that the increase in accuracy
depends on the actual data set used. For instance,
D4 prediction accuracy was increased while using a
combination of MM and AR than by combining MM
and clustering. On the other hand, D2 experienced
more increase in accuracy using MM and clustering
than using MM and AR. The accuracy increase of D1
and D3 was somewhat constant. Prediction accuracy
results were achieved using the maximum likelihood
based on conditional probabilities as stated in equa-
tion 4 above. All predictions in the test data that
did not exist in the training data sets were assumed

CRPIT Volume 74 - Computer Science 2008

98

MM MM & AR MM & clust IPM
20

25

30

35

40

45

50

55

60

65

70

Model

P
re

ci
si

o
n

 in
 %

D1
D2
D3
D4

Figure 5: Precision of Markov model (MM) and MM
with Association rules mining and MM with Cluster-
ing and all three models together (IPM) .

incorrect and were given a zero value. The Markov
model accuracy was calculated using a 10-fold cross
validation. The data was partitioned into T for test-
ing and (D − T) for training where D represents the
data set. This procedure was repeated 10 times, each
time T is moved by T number of transactions. The
mean cross validation was evaluated as the average
over the 10 runs. Table 11 reveals the standard devi-
ation of all mean values of prediction accuracy for all
four data sets.

Table 11: Accuracy values standard deviation

D1 D2 D3 D4
MM 4.69 3.90 2.71 1.36
MM + AR 3.07 1.98 5.32 2.17
MM + Clust 2.55 2.94 1.45 3.83
IPM 1.32 3.07 6.19 2.69

The standard deviation results are considerably
low compared to the mean values. This means
that MM, MM + AR, MM + Clust and IPM accu-
racy results are quite different from each other lying
on an improved baseline. The low standard devia-
tion figures give more weight and significance to the
improved prediction accuracy displayed in figure 5
above.

5.3 IPM Efficiency Analysis

All clustering runs were performed on a desktop PC
with a Pentium IV Intel processor running at 2 GHz
with 2 GB of RAM and 100 GB of hard disk memory.
The runtime of the k-means algorithm, regardless of
the distance measure used, is equivalent to O(nkl)
(Jain et al. 1999), where n is the number of items,
k is the number of clusters and l is the number of
iterations taken by the algorithm to converge. For
our experiments, where n and k are fixed, the algo-
rithm has a linear time complexity in terms of the
size of the data set. The k-means algorithm has a
O(k + n) space complexity. This is because it re-
quires space to store the data matrix. It is feasible
to store the data matrix in a secondary memory and
then the space complexity will become O(k). k-means
algorithm is more time and space efficient than hi-
erarchical clustering algorithms with O(n2logn) time
complexity and O(n2) space complexity. As for all 2nd

order Markov model, the running time of the whole

data set was similar to that of the clusters added to-
gether because the running time is in terms of the size
of the data. i.e. T(n)=T(k1)+T(k2)+T(k3)+...T(ki)
where time is denoted by T, the number of items in
the data set is denoted by n, and the clusters are
denoted by ki. The running time of association rule
mining is O(I.D) as explained above. The association
rules produced were for the whole data set. Accessing
the appropriate rule is, however, performed online at
time of prediction.

Constructing the IPM model is more complex than
the individual models as it involves constructing k-
means clustering, Markov model and association rules
for the whole data sets. However, the IPM model pre-
diction complexity is reduced due to the fact that the
prediction process involves retrieving Markov models
of one cluster as opposed to the whole data set. This
reduces the running time by around 85%. Also, as-
sociation rules are only retrieved in the case where
the state does not belong to the majority class. This
gives the conclusion that the complexity of IPM de-
pends on the size of the majority class. Larger major-
ity class yields less complex prediction as it involves
less association rules accesses. However, larger ma-
jority class does not leave a larger room for accuracy
improvement.

6 Conclusion

This paper improves the Web page access prediction
accuracy by integrating all three prediction models:
Markov model, Clustering and association rules ac-
cording to certain constraints. Our model, IPM, in-
tegrates the three models using 2-Markov model com-
puted on clusters achieved using k-means clustering
algorithm and Cosine distance measures for states
that belong to the majority class and performing as-
sociation rules mining on the rest. The IPM model
could be extended to a completely ”hands-off” or au-
tomated system. Currently, some human interven-
tion is required especially during the features selec-
tion process.

7 Acknowledgement

This work has been partially supported by ARC Dis-
covery Grant DP0774450 to Li and Wang.

References

Adami, G., Avesani, P. & Sona, D. (2003), ‘Cluster-
ing documents in a web directory’, WIDM’03, USA
pp. 66–73.

Agrawal, R. & Srikant, R. (1994), ‘Fast algorithms for
mining association rules’, VLDB’94, Chile pp. 487–
499.

Bouras, C. & Konidaris, A. (2004), ‘Predictive
prefetching on the web and its potential impact in
the wide area’, WWW: Internet and Web Informa-
tion Systems (7), 143–179.

Cadez, I., Heckerman, D., Meek, C., Smyth, P. &
White, S. (2003), ‘Model-based clustering and vi-
sualization of navigation patterns on a web site’,
Data Mining and Knowledge Discovery 7.

Casale, G. (2005), ‘Combining queueing networks and
web usage mining techniques for web performance
analysis’, ACM Symposium on Applied Computing
pp. 1699–1703.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

99

chen, M., LaPaugh, A. S. & Singh, J. P. (2002), ‘Pre-
dicting category accesses for a user in a structured
information space’, SIGIR’02, Finland pp. 65–72.

Deshpande, M. & Karypis, G. (2004), ‘Selective
markov models for predicting web page accesses’,
Transactions on Internet Technology 4(2), 163–184.

Eick, C. F., Zeidat, N. & Zhao, Z. (2004), ‘Super-
vised clustering - algorithms and benefits’, IEEE
ICTAI’04 pp. 774–776.

Eirinaki, M., Vazirgiannis, M. & Kapogiannis, D.
(2005), ‘Web path recommendations based on page
ranking and markov models’, WIDM’05 pp. 2–9.

Halkidi, M., Nguyen, B., Varlamis, I. & Vazirgiannis,
M. (2003), ‘Thesus: Organizing web document col-
lections based on link semantics’, The VLDB Jour-
nal 2003(12), 320–332.

Jain, A. K., Murty, M. N. & Flynn, P. J. (1999),
‘Data clustering: A review’, ACM Computing Sur-
veys 31(3), 264–323.

Kim, D., Adam, N., Alturi, V., Bieber, M. & Yesha,
Y. (2004), ‘A clickstream-based collaborative filter-
ing personalization model: Towards a better perfor-
mance’, WIDM ’04 pp. 88–95.

Lai, H. & Yang, T. C. (2000), ‘A group-based infer-
ence approach to customized marketing on the web
- integrating clustering and association rules tech-
niques’, Hawaii International Conference on Sys-
tem Sciences pp. 37–46.

Liu, F., Lu, Z. & Lu, S. (2001), ‘Mining association
rules using clustering’, Intelligent Data Analysis
(5), 309–326.

Lu, L., Dunham, M. & Meng, Y. (2005), ‘Discovery
of significant usage patterns from clusters of click-
stream data’, WebKDD ’05 .

Mathur, V. & Apte, V. (2007), ‘An overhead and re-
source contention aware analytical model for over-
loaded web servers’, WOSP’07, Argentina .

Mobasher, B., Dai, H., Luo, T. & Nakagawa, M.
(2001), ‘Effective personalization based on as-
sociation rule discovery from web usage data’,
WIDM’01, USA pp. 9–15.

Papadakis, N. K. & Skoutas, D. (2005), ‘STAVIES:
A system for information extraction from unknown
web data sources through automatic web warp-
per generation using clustering techniques’, IEEE
Transactions on Knowledge and Data Engineering
17(12), 1638–1652.

Pitkow, J. & Pirolli, P. (1999), ‘Mining longest
repeating subsequences to predict www surfing’,
USENIX Annual Technical Conference pp. 139–
150.

Pons, A. P. (2006), ‘Object prefetching using seman-
tic links’, The DATA BASE for Advances in Infor-
mation Systems 37(1), 97–109.

Rigou, M., Sirmakesses, S. & Tzimas, G. (2006), ‘A
method for personalized clustering in data intensive
web applications’, APS’06, Denmark pp. 35–40.

Sarukkai, R. (2000), ‘Link prediction and path analy-
sis using markov chains’, 9th International WWW
Conference, Amsterdam pp. 377–386.

Spiliopoulou, M., Faulstich, L. C. & Winkler, K.
(1999), ‘A data miner analysing the navigational
behaviour of web users’, Workshop on Machine
Learning in User Modelling of the ACAI’99, Greece
.

Srivastava, J., Cooley, R., Deshpande, M. & Tan, P.
(2000), ‘Web usage mining: Discovery and appli-
cations of usage patterns from web data.’, SIGDD
Explorations 1(2), 12–23.

Strehl, A., Ghosh, J. & Mooney, R. J. (2000), ‘Impact
of similarity measures on web-page clustering’, AI
for Web Search pp. 58–64.

Wang, Q., Makaroff, D. J. & Edwards, H. K. (2004),
‘Characterizing customer groups for an e-commerce
website’, EC’04, USA pp. 218–227.

Yang, Q., Li, T. & Wang, K. (2004), ‘Building
association-rule based sequential classifiers for web-
document prediction’, Journal of Data Mining and
Knowledge Discovery 8.

Yong, W., Zhanhuai, L. & Yang, Z. (2005), ‘Mining
sequential association-rule for improving web doc-
ument prediction’, ICCIMA’05 pp. 146–151.

Zhao, Q., Bhomick, S. S. & Gruenwald, L. (2005),
‘Wam miner: In the search of web access motifs
from historical web log data’, CIKM’05, Germany
pp. 421–428.

Zhong, S. & Ghosh, J. (2003), ‘A unified framework
for model-based clustering’, Machine Learning Re-
search 4, 1001–1037.

Zhu, J., Hong, J. & Hughes, J. G. (2002), ‘Using
markov models for web site link prediction’, HT’02,
USA pp. 169–170.

CRPIT Volume 74 - Computer Science 2008

100

An efficient hash-based algorithm for minimal k-anonymity

Xiaoxun Sun Min Li Hua Wang Ashley Plank

Department of Mathematics & Computing
University of Southern Queensland

Toowoomba, Queensland 4350, Australia
Email: {sunx, limin, wang, plank}@usq.edu.au

Abstract

A number of organizations publish microdata for pur-
poses such as public health and demographic research.
Although attributes of microdata that clearly iden-
tify individuals, such as name and medical care card
number, are generally removed, these databases can
sometimes be joined with other public databases on
attributes such as Zip code, Gender and Age to re-
identify individuals who were supposed to remain
anonymous. “Linking” attacks are made easier by the
availability of other complementary databases over
the Internet.

k-anonymity is a technique that prevents “link-
ing” attacks by generalizing and/or suppressing por-
tions of the released microdata so that no individual
can be uniquely distinguished from a group of size k.
In this paper, we investigate a practical model of k-
anonymity, called full-domain generalization. We ex-
amine the issue of computing minimal k-anonymous
table based on the definition of minimality described
by Samarati. We introduce the hash-based technique
previously used in mining associate rules and present
an efficient hash-based algorithm to find the minimal
k-anonymous table, which improves the previous bi-
nary search algorithm first proposed by Samarati.

Keywords: microdata release, hash-based algorithm,
k-anonymity.

1 Introduction

Several microdata1 disclosure protection techniques
have been developed in the context of statistical
database, such as scrambling and swapping values
and adding noise to the data while maintaining an
overall statistical integrity of the result (Adam &
Wortman 1989, Willenborg & DeWaal 1996). How-
ever, many applications require release and explicit
management of microdata while maintaining truthful
information within each tuple. This ‘data quality’ re-
quirement makes inappropriate those techniques that
disturb data and therefore, although preserving sta-
tistical properties, compromise the correctness of the
single pieces of information. Among the techniques
proposed for providing anonymity in the release of mi-
crodata (Federal Committee on Statistical Methodol-
ogy 1994) we focus on two techniques in particular:

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at the Thirty-First Australasian Computer
Science Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74. Gillian Dobbie and Bernard Mans, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

1The term “microdata” refers to data published in raw, non-
aggregated form (Willenborg & DeWaal 2001).

generalization and suppression (in the Statistics liter-
ature, this approach is often called recording), which
unlike other existing techniques, such as scrambling
or swapping, preserve the truthfulness of the informa-
tion.

k-anonymity is a technique that prevents joining
attacks by generalizing and/or suppressing portions of
the released microdata so that no individual can be
uniquely distinguished from a group of size k. There
are a number of models for producing an anonymous
table. One class of models, called global-recoding
(Willenborg & DeWaal 2001), map the values in the
domains of quasi-identifier attributes (defined in Sec-
tion 2) to other values. This paper is primarily con-
cerned with a specific global-recoding model, called
full-domain generalization. Full-domain generaliza-
tion was proposed by Samarati and Sweeney (Sama-
rati & Sweeney 1998, Samarati 2001) and maps the
entire domain of each quasi-identifier attribute in a
table to a more general domain in its domain gener-
alization hierarchy. This scheme guarantees that all
values of a particular attribute in the anonymous ta-
ble belong to the same domain.

For any anonymity mechanism, it is desirable to
define some notion of minimality. Intuitively, a k-
anonymous table should not generalize, suppress, or
distort the data more than is necessary to achieve
such k-anonymity. Indeed, there are a number of ways
to define minimality. One notion of minimality is de-
fined as to generalize or suppress the minimum num-
ber of attribute values in order to satisfy a given k-
anonymity requirement. Such a problem is NP -hard
(Aggarwal et al. 2005, Meyerson & Williams 2004).
As to our model, the notion of minimal full-domain
generalization was defined in (Samarati & Sweeney
1998, Samarati 2001) using the distance vector of
the domain generalization. Informally, this definition
says that a full-domain generalized private table (PT)
is minimal if PT is k-anonymous, and the height of
the resulting generalization is less than or equal to
that of any other k-anonymous full-domain general-
ization.

In this paper, we focus on this specific global-
recoding model of k-anonymity. Our objective is to
find the minimal k-anonymous generalization (table)
under the definition of minimality defined by Sama-
rati (Samarati 2001). By introducing the hash-based
technique, we provide a new approach to generate
minimal k-anonymous tables that not only improves
the search algorithm proposed by Samarati (Samarati
2001) but is also useful for computing other optimal
criteria for k-anonymity.

The remainder of this paper is organized as fol-
lows. In Section 2, we introduce some notions of k-
anonymous table. In Section 3, we introduce our hash
technique used in this paper. In Section 4, we intro-
duce the generalization relationship and the definition
of minimal k-anonymous table. Our core hash-based

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

101

Gender Age Zip Other Attributes Diseases

Male 25 4370 · · · · · · Hypertension

Male 25 4370 · · · · · · Hypertension

Male 22 4352 · · · · · · Depression

Female 28 4373 · · · · · · Chest Pain

Female 28 4373 · · · · · · Obesity

Female 34 4350 · · · · · · Flu

Table 1: Released microdata

Bucket 0 1 2 3

Contents (22,4352) (25, 4370) (34, 4350) (28, 4373)

(25, 4370) (28, 4373)

Table 2: Hashed table 1 with QI = {Age, Zip}

Bucket 0 1 2 3

COUNT 1 2 1 2

Contents (22,4352) (25, 4370) (34, 4350) (28, 4373)

(25, 4370) (28, 4373)

Table 3: Hash table with COUNT

algorithm and comparisons with previous algorithm
discussed in Section 5. Related work is discussed in
Section 6. Conclusion and future work are drawn in
Section 7.

2 k-anonymous private table

The concept of k-anonymity (Samarati & Sweeney
1998) tries to capture one of the main requirements
that has been followed by the statistical community
and by agencies releasing data on the private table
(PT). According to the requirement, the released
data should be indistinguishably related to no less
than a certain number of respondents. The set of
attributes included in the private table, also exter-
nally available and therefore exploitable for linking,
is called quasi-identifier (QI). The requirement just
stated is then translated into the k-anonymity re-
quirement below, which states that every tuple re-
leased cannot be related to fewer than k respondents.
Definition 1 (k-anonymous requirement): Each
release of data must be such that every combination of
values of quasi-identifiers can be indistinctly matched
to at least k respondents.

Since it seems impossible or highly impractical to
make assumptions on the datasets available for link-
ing to external attackers or curious data recipients,
essentially k-anonymity takes a safe approach requir-
ing that the respondents should be indistinguishable
(within a given set) with respect to the set of at-
tributes in the released table. To guarantee the k-
anonymity requirement, k-anonymity requires each
value of a quasi-identifier in the released table to have
at least k occurrences. Formally, we have the follow-
ing definition.
Definition 2 (k-anonymity): Let PT (A1, · · · , Am)
be a private table and QI be a quasi-identifier as-
sociated with it. PT is said to satisfy k-anonymity
with respect to QI if and only if each sequence of val-
ues in PT [QI] appears at least with k occurrences in
PT [QI]2.

If a set of attributes of external tables appears in
the quasi-identifier associated with the private table
(PT) and the table satisfies k-anonymity, then the
combination of the released data with the external
data will never allow the recipient to associate each
released tuple with less than k respondents. For in-
stance, consider the released microdata in Table 1
with quasi-identifier QI = {Gender, Age, Zip}, we
see that the table satisfies k-anonymous with k = 1
only since there exists single occurrence of values
over the considered QI (e.g., the single occurrence
of “Male, 22 and 4352”).

2PT [QI] denotes the projection, maintaining duplicate tuples,
of attributes QI in PT .

3 Hash table

A hash table is a data structure that will increase
the search efficiency from O(log(n)) (binary search)
to O(1) (constant time) (Cormen et al. 2001). A hash
table is made up of two parts: an array (the actual
table where the data to be searched is stored) and
a mapping function, known as a hash function. The
hash function is a mapping from the input data space
to the integer space that defines the indices of the
array (bucket). In other words, the hash function
provides a way for assigning numbers to the input
data such that the data can then be stored at the
array (bucket) with the index corresponding to the
assigned number. For example, the data in Table 1
are mapped into buckets labeled 0, 1, 2, 3 in Table 2.
The data in the bucket with the same assigned num-
ber is called a hash equivalence class. Depending on
the different problems, we could choose different hash
functions to classify our input data as we need. For
instance, consider quasi-identifier QI = {Age, Zip}
in Table 1. We hash them into different buckets with
the function ((Age− 20) + (Zip− 4350)) mod 4 (see
Table 2).

From Table 2 we see that two identical data (25,
4350) and (28, 4353) in the quasi-identifier fall into
two different hash equivalence classes. Further, if we
add a row (labeled COUNT) to record the number
of contents in the corresponding bucket (see Table
3), we can easily determine whether or not the table
satisfies the k-anonymity requirement. For instance,
according to the row COUNT in Table 3, Table 1 only
satisfies k-anonymity with k = 1.

This hash-based technique is not new in data min-
ing. In (Park et al. 1995), the authors used this
technique to present an efficient hash-based algorithm
for mining association rules which improves previous
well-known A priori algorithm. In this paper, we in-
tegrate this technique into computation of minimal
k-anonymous table. By using such a technique, we
can reduce the number of potential sets that need to
be checked whether they are k-anonymous during bi-
nary search and thus improve the time complexity in
(Samarati 2001)

Concerning the efficiency of hash table and binary
search, we note the following. (1) Hash table has a
faster average lookup time O(1) (Cormen et al. 2001)
3 than the binary search algorithm O(log(n)). Hash

3Note that the worst case in hash tables happens when every
data element are hashed to the same value due to some bad luck
in choosing the hash function and bad programming. In that case,
to do a lookup, we would really be doing a straight linear search
on a linked list, which means that our search operation is back to
being O(n). The worst case search time for a hash table is O(n).
However, the probability of that happening is so small that, while
the worst case search time is O(n), both the best and average cases
are O(1).

CRPIT Volume 74 - Computer Science 2008

102

table shines in very large arrays, where O(1) perfor-
mance is important. (2) Building a hash table re-
quires a reasonable hash function, which sometimes
can be difficult to write well, while binary search re-
quires a total ordering on the input data. On the
other hand, with hash tables the data may be only
partially ordered.

4 Data generalization

4.1 Generalization relationship

Among the techniques proposed for providing
anonymity in the release of microdata, the k-
anonymity proposal focuses on two techniques in par-
ticular: generalization and suppression, which unlike
other existing techniques, such as scrambling or swap-
ping, preserve the truthfulness of the information.

Generalization consists in substituting the values
of a given attribute with more general values. We use
∗ to denote the more general value. For instance, we
could generalize two different Zip code 4370 and 4373
to 437∗. The other technique, referred to as data sup-
pression, removes the part or entire value of attributes
from the table. Since suppressing an attribute (i.e.,
not releasing any of its values) to reach k-anonymity
can equivalently be modeled via a generalization of
all the attribute values to the most generalized data
∗4, we consider only data generalization.

The notion of domain (i.e., the set of values that
an attribute can assume) is extended to capture the
generalization process by assuming the existence of
a set of generalized domains. The set of original do-
mains together with their generalizations is referred
to as Dom. Each generalized domain contains gen-
eralized values and there exists a mapping between
each domain and its generalizations. (For example,
Zip codes can be generalized by dropping the least
significant digit at each generalization step, Ages can
be generalized to an interval, and so on). This map-
ping is described by means of a generalization rela-
tionship ≤D. Given two domains Di and Dj ∈ Dom,
Di ≤D Dj states that values in domain Dj are gen-
eralizations of values in Di. The generalization rela-
tionship ≤D defines a partial order on the set Dom of
domains, and is required to satisfy the following two
conditions:

C1: ∀Di, Dj , Dz ∈ Dom:
Di ≤D Dj , Di ≤D Dz ⇒ Dj ≤D Dz ∨Dz ≤D Dj

C2: all maximal element of Dom are singleton.

Condition C1 states that for each domain Di, the
set of domains generalization of Di is totally ordered
and we can think of the whole generalization domain
as a chain of nodes, and if there is an edge from Di to
Dj , we call Dj the direct generalization of Di. Note
that the generalization relationship ≤D is transitive,
and thus, if Di ≤ Dj and Dj ≤ Dk, then Di ≤ Dk.
In this case, we call Dk the implied generalization of
Di. Condition C1 implies that each Di has at most
one direct generalization domain Dj , thus ensuring
determinism in the generalization process. Condi-
tion C2 ensures that all values in each domain can
be generalized to a single value. For each domain
D ∈ Dom, the definition of a generalization relation-
ship implies the existence of a totally ordered hierar-
chy, called the domain generalization hierarchy, de-
noted DGHD. Pathes in the domain generalization
hierarchy correspond to implied generalizations and

4Note that this observation holds assuming that attribute sup-
pression removes only the values and not the attribute (column)
itself. This assumption is reasonable since removal of the attribute
(column) is not needed for k-anonymity.

Z1 = {435∗, 437∗}

Z0 = {4350, 4352, 4370, 4373}

Z2 = {43 ∗ ∗}

DGHZ0

person

437∗

4370 43734352

435∗

43 ∗ ∗

V GHZ0

G0 = {male, female}

G1 = {person}

DGHG0

female

4350

male

V GHG0

A0 = {22, 25, 28, 34}

A1 = {(22 − 25), (28 − 34))}

A2 = {(22 − 34)}

DGHA0

22 25 28 34

(22-25) (28-34)

(22-34)

V GHA0

Figure 1: Domain and value generalization hierarchies for Zip, Age
and Gender

edges correspond to direct generalizations. For exam-
ple, consider DGHZ0 in Figure 1. Z1 is the direct
generalization of Z0 and Z2 is the implied generaliza-
tion of Z0.

A value generalization relationship denoted ≤V ,
can also be defined, which associates with each value
in domain Di a unique value in domain Dj . For each
domain D ∈ Dom, the value generalization relation-
ship implies the existence of a value generalization
hierarchy, denoted V GHD. It is easy to see that the
value generalization hierarchy V GHD is a tree, where
the leaves are the minimal values in D and the root
(i.e., the most general value) is the value of the max-
imum element in DGHD.

EXAMPLE: Figure 1 illustrates an example of do-
main and value generalization hierarchies for do-
mains: Z0, A0 and G0. Z0 represents a subset of
the Zip codes in Table 1; A0 represents Age; and
G0 represents Gender. The generalization relation-
ship specified for Zip codes generalizes a 4-digit Zip
code, first to a 3-digit Zip code, and then to a 2-digit
Zip code. The attribute Age is first generalized to
the interval (22-25) and (28-34), then to the inter-
val (22-34). The Gender hierarchy in the figure is of
immediate interpretation.

Since the approach in (Samarati 2001) works on
sets of attributes, the generalization relationship and
hierarchies are extended to refer to tuples composed
of elements of Dom or of their values. Given a do-
main tuple DT =< D1, · · · , Dn > such that Di ∈
Dom, i = 1, · · · , n, the domain generalization hierar-
chy of DT is DGHDT = DGHD1 × · · · × DGHDn ,
where the Cartesian product is ordered by impos-
ing coordinate-wise order. Since each DGHDi

is to-
tally ordered, DGHDT defines a lattice with DT as
its minimal element and the tuple composed of the
top of each DGHDi

, i = 1, · · · , n as its maximal
element. Each path from DT to the unique maxi-
mal element of DGHDT defines a possible alterna-
tive path, called generalization strategy for DGHDT ,
which can be followed when generalizing a quasi-
identifier QI = (A1, · · · , An) of attributes on domains
D1, · · · , Dn. In correspondence with each generaliza-
tion strategy of a domain tuple, there is a value gener-
alization strategy describing the generalization at the
value level. Such a generalization strategy hierarchy
is actually a tree structure. The top unique maximal
element can be regarded as the root of the tree and
the minimal element on the bottom is the leaf of the
tree. Let L[i, j] denote the jth data at height i (The
bottom data is at the height 0) and L[i] denote the
number of data at the height i.

EXAMPLE: Consider domains G0 (Gender) and
Z0 (Zip code) whose generalization hierarchies are
illustrated in Figure 1. Figure 2 illustrates the do-
main generalization hierarchy of the domain tuple
< G0, Z0 > together with the corresponding do-

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

103

G0 Z0

Male 4370

Male 4370

Male 4352

Female 4373

Female 4373

Female 4350

Fig 3. 1: PT

G0 Z2

Male 43∗∗
Male 43∗∗
Male 43∗∗

Female 43∗∗
Female 43∗∗
Female 43∗∗

Fig 3. 2: GT[0,2]

G1 Z1

person 437∗
person 437∗
person 435∗
person 437∗
person 437∗
person 435∗

Fig 3. 3: GT[1,1]

G1 Z2

person 43∗∗
person 43∗∗
person 43∗∗
person 43∗∗
person 43∗∗
person 43∗∗

Fig 3. 4: GT[1,2]

Figure 3: Generalized table for PT

< G0, Z0 >

< G0, Z1 >

< G0, Z2 >

< G1, Z2 >

< G1, Z1 >

< G1, Z0 >

DGH<G0,Z0>

(female, 4373) (male, 4352) (female, 4350)(male, 4370)

(person, 4370) (person, 4373) (person, 4352) (person, 4350)

(person, 437∗) (person, 435∗)

(person, 43∗∗)

< G1, Z1 >

< G1, Z2 >

< G0, Z0 >

< G1, Z0 >

Generalization Strategy 1

(female, 4373)(male, 4370)

(female, 4373) (male, 4352) (female, 4350)(male, 4370)

(male, 437∗) (female, 437∗) (male, 435∗) (female, 435∗)

(person, 437∗) (person, 435∗)

(person, 43∗∗)

< G1, Z1 >

< G1, Z2 >

< G0, Z0 >

< G0, Z1 >

Generalization Strategy 2

(female, 4373)(male, 4370)

(female, 4373)(male, 4352) (female, 4350)(male, 4370)

(male, 437∗) (female, 437∗)(male, 435∗) (female, 435∗)

(male, 43∗∗) (female, 43∗∗)

(person, 43∗∗)

< G0, Z2 >

< G1, Z2 >

< G0, Z0 >

< G0, Z1 >

Generalization Strategy 3

(female, 4373)(male, 4370)

Figure 2: Hierarchy DGH<G0,Z0> and corresponding domain and
value generalization strategies

main and value generalization strategies. There are
three different generalization strategies corresponding
to the three paths from the bottom to the top element
of lattice DGH<G0,Z0>. In the generalization strat-
egy 1, L[0, 2] is (male, 4370), L[0] = 6 and L[2, 2] is
(person, 435∗), L[2] = 2.

4.2 Generalized table and minimal general-
ization

Given a private table (PT), our approach to provide
k-anonymity is to generalize the values stored in the
table. Intuitively, attribute values stored in the pri-
vate table (PT) can be substituted with generalized
values upon release. Since multiple values can be
mapped to a single generalized value, generalization
may decrease the number of distinct tuples, thereby
possibly increasing the size of the clusters containing

tuples with the same values. We perform generaliza-
tion at the attribute level. Generalizing an attribute
means substituting its values with corresponding val-
ues from a more general domain. Generalization at
the attribute level ensures that all values of an at-
tribute belong to the same domain. In the following,
dom(Ai, PT) denotes the domain of attribute Ai in
private table PT .
Definition 3 (Generalized table): Let
PTi(A1, · · · , An) and PTj(A1, · · · , An) be two tables
defined in the same set of attributes. PTj is said to
be a generalization of PTi, written PTi ¹ PTj , if and
only if: (1) |PTi| = |PTj |; (2) ∀Az ∈ {A1, · · · , An} :
dom(Az, PTi) ≤D dom(Az, PTj); and (3) It is
possible to define a bijective mapping between PTi
and PTj that associates each tuple pti ∈ PTi with a
tuple ptj ∈ PTj such that pti[Az] ≤V ptj [Az] for all
Az ∈ {A1, · · · , An}.
EXAMPLE: Consider the private table PT illus-
trated in Figure 3.1 and the domain and value gener-
alization hierarchies for G0(Gender) and Z0(Zip) il-
lustrated in Figure 2. Assume QI = {Gender, Zip}
to be a quasi-identifier. The following three tables
in Figure 3 are all possible generalized tables for PT .
For the clarity, each table reports the domain for each
attribute in the table. With respect to k-anonymity,
GT[1,1] satisfies k-anonymity for k = 1, 2; GT[0,2] sat-
isfies k-anonymity for k = 1, 2, 3 and GT[1,2] satisfies
k-anonymity for k = 1, · · · , 6.

Given a private table PT , different possible gen-
eralizations exist. However, not all generalizations
can be considered equally satisfactory. For instance,
the trivial generalization bringing each attribute to
the highest possible level of generalization provides
k-anonymity at the price of a strong generalization of
the data. Such extreme generalization is not needed
if a table containing more specific values exists which
satisfies k-anonymity as well. This concept is cap-
tured by the definition of minimal k-anonymity (gen-
eralization). To introduce it we first introduce the
notion of distance vector. 5

Definition 4 (Distance vector): Let
PTi(A1, · · · , An) and PTj(A1, · · · , An) be two
tables such that PTi ¹ PTj . The distance vector
of PTj from PTi is the vector DVi,j = [d1, · · · , dn]
where each dz, z = 1, · · · , n, is the length of the
unique path between Dz = dom(Az, PTi) and
dom(Az, PTj) in the domain generalization hierarchy
DGHDz .
EXAMPLE: Consider the private table PT and its
generalizations illustrated in Figure 3. The distance
vectors between PT and each of its generalized ta-
bles is the vector appearing as a subscript of the ta-
ble. A generalization hierarchy for a domain tuple
can be seen as a hierarchy (lattice) on the correspond-
ing distance vectors. Figure 4 illustrates the lattice

5In (LeFevre et al. 2005) the star scheme is used for large
databases. Here, we use distance vector to define minimal k-
anonymity.

CRPIT Volume 74 - Computer Science 2008

104

Bucket 0 1 2

Children[i, j] 0 1 ≥ 2

Contents L[0, 1], L[0, 2], L[0, 3] L[1, 3] L[1, 1], L[1, 2]

L[0, 4], L[0, 5], L[0, 6] L[1, 4] L[2, 1], L[2, 2], L[3, 1]

Table 4: Hash table of Generalization Strategy 1 in Figure 2

Algorithm 1: Finding minimal solution in k-anonymous class.

Input: the k-anonymous class

1. Sort the data in k-anonymous class.

2. Compute the number n(i) of L[i, j] at each height i;

3. If n(i) 6= L[i], discard the all the L[i, j] at the height i.

4. Otherwise, keep them.

Output: The height at which the first data is in the remaining

k-anonymous class, and generalize the data to this height could

obtain the minimal k-anonymous table.

Algorithm 2: Hash-based algorithm for minimal k-anonymity.

Input: Generalization hierarchy and anonymous requirement k

Output: A minimal k-anonymous table.

1. Create a table with k + 1 column labeling 0, 1, · · · , k − 1, k.

Compute Children[i, j] for each data j at the height i.

2. For l = 0, 1, · · · , k − 1

if Children[i, j] = l, put Children[i, j] to the bucket labeled l.

else put Children[i, j] to the bucket labeled k.

3. Compute the minimal k-anonymous table by Algorithm 1.

< G0, Z0 >

< G0, Z1 >

< G0, Z2 >

[1, 2]

< G1, Z1 >

< G1, Z0 >

DGH<G0,Z0>

< G1, Z2 >

[1, 1] [0, 2]

[1, 0] [0, 1]

[0, 0]

Figure 4: Hierarchy DGH<G0,Z0> and corresponding lattice on
distance vectors

representing the dominance relationship between the
distance vectors corresponding to the possible gener-
alizations of < G0, Z0 >.

We extend the dominance relationship ≤D on in-
tegers to distance vectors by requiring coordinate-
wise ordering as follows. Given two distance vec-
tors DV = [d1, · · · , dn] and DV ′ = [d′1, · · · , d′n],
DV ≤ DV ′ if and only if di ≤ d′i for all i = 1, · · · , n.
Moreover, DV < DV ′ if and only if DV ≤ DV ′ and
DV 6= DV ′.

Intuitively, a generalization PTi(A1, · · · , An) is
minimal k-anonymity (generalization) if and only
if there does not exist another generalization
PTz(A1, · · · , An) satisfying k-anonymity and whose
domain tuple is dominated by PTj in the correspond-
ing lattice of distance vectors. Formally, we can define
it as follows:

Definition 5 (Minimal k-anonymity): Let
PTi(A1, · · · , An) and PTj(A1, · · · , An) be two tables
such that PTi ¹ PTj . PTj is said to be a minimal
k-anonymity (generalization) of PTi if and only if:
(1) PTj satisfies k-anonymity; and (2) ∀PTz : PTi ¹
PTz, PTz satisfies k-anonymity ⇒ ¬(DVi,z ≤ DVi,j).

EXAMPLE: Consider table PT and its generalized
tables illustrated in Figure 3. For k = 2 two minimal
k-anonymous table exist, namely GT[0,2] and GT[1,1].
GT[1,2] is not minimal because it is a generation of
GT[1,1] and GT[0,2]. Also, there is only one minimal
k-generalized tables with k = 3, which is GT[0,2].

5 Hash-based algorithm

A number of convincing parallels exist between Sama-
rati and Sweeney’s generalization framework (Sama-
rati & Sweeney 1998, Samarati 2001) and ideas used
in mining association rules (Agrawal & Srikant 1994,
Srikant & Agrawal 1995) and the hash-based tech-
nique used in (Park et al. 1995). By bringing these

techniques to bear on our model of full-domain gener-
alization problem, we develop an efficient hash-based
algorithm for computing k-minimal anonymity.

In (Samarati 2001), Samarati describes an algo-
rithm for finding a single minimal k-anonymous full-
domain generalization based on the specific definition
of minimality outlined in the previous section. The al-
gorithm uses the observation that if no generalization
of height h satisfies k-anonymity, then no generaliza-
tion of height h′ < h will satisfy k-anonymity. For this
reason, the algorithm performs a binary search on the
height value. If the maximum height in the general-
ization lattice is h, the algorithm begins by checking
each generalization at height bh

2 c. If a generaliza-
tion exists at this height that satisfies k-anonymity,
the search proceeds to look at the generalizations of
height bh

4 c. Otherwise, generalizations of height b 3h
4 c

are searched, and so forth. This algorithm is proven
to find a single minimal k-anonymous table.

We integrate the hash technique into the algorithm
and develop a more efficient algorithm based on our
definition of minimality (Definition 5). A drawback
of Samarati’s algorithm is that for arbitrary defini-
tions of minimality this binary search algorithm is not
always guaranteed to find the minimal k-anonymity
table. We conjecture that the hash technique used in
this paper might be suitable for the further improve-
ment of algorithms based on other optimal criteria for
k-anonymity.

Let the domain generalization hierarchy be
DGHDT , where DT is the tuples of the domains of
the quasi-identifier. Assume that the top generaliza-
tion data with the highest height in DGHDT satisfies
the required k-anonymity. The idea of the algorithm
is to hash the data in DGHDT to a different hash
equivalence class. Under our definition of the mini-
mality, the hash function that we choose should hash
all generalizations with height h > 0 in DGHDT that
satisfies k-anonymity to the same hash equivalence
class, which is called the k-anonymous class. (The
bucket labeled 2 in Table 4). The hash-based algo-
rithm consists of two main steps. At the first stage,
the data that satisfies k-anonymity are hashed into
the k-anonymous class. The second step is to use Al-
gorithm 1 to find the minimal k-anonymous table in
the k-anonymous class.

Algorithm 1 illustrate how to find the minimal
k-anonymous table in k-anonymous class. Con-
sider Table 1 and its Generalization Strategy 1 in
Figure 2. Generalized data L[1, 1], L[1, 2], L[2, 1],
L[2, 2] and L[3, 1] are hashed into the k-anonymous
class. We sort the data in k-anonymous class as
{L[1, 1], L[1, 2], L[2, 1], L[2, 2], L[3, 1]}. Since L[1] =
4 and the number of data at the height 1 in k-
anonymous class is 2. According to Step 3 in Al-

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

105

gorithm 1, we delete L[1, 1] and L[1, 2] from k-
anonymous class. At last, the output height is 2, and
we could generalize the table to this height so that
it satisfies 2-anonymity with quasi-identifier QI =
{Gender, Zip}.

Next, we illustrate how to hash the generalization
data in DGHDT to the k-anonymous class. Denote
Children[i, j] the number of children that the jth

data at the height i have. For example, in Gener-
alization Strategy 1 in Figure 2, Children[1, 3] = 1
and Children[2, 1] = 4. Suppose we have the require-
ment of k-anonymity. The desired hash table con-
tains k +1 buckets, labeled as 0, 1, 2, · · · , k−1, k, the
labeled number 0, 1, · · · , k − 1 denotes the value of
Children[i, j] in DGHDT and the kth bucket has the
data whose Children[i, j] ≥ k. Note that the bucket
labeled k is actually the k-anonymous class. We
could see the following Table 4 as an example(where
k = 2). All the potential generalization data satisfy-
ing 2-anonymity are classified into the third bucket,
which consists of the k-anonymous class.

Algorithm 2 is our hash-based algorithm. Com-
pared to Samarati’s binary search algorithm, Algo-
rithm 2 finds the minimal k-anonymous table in the k-
anonymous class, which is smaller than the potential
sets that need to be checked in Samarati’s algorithm.
Because of the hash technique we used in Algorithm
2, the search complexity is reduced from O(log(n))
(binary search) to O(1) (Cormen et al. 2001).

6 Related work

Protecting anonymity when publishing microdata has
long been recognized as a problem (Willenborg & De-
Waal 2001), and there has been much recent work
on computing k-anonymity for this purpose. The µ-
Argus system (Hundepool & Willenborg 1996) was
implemented to anonymize microdata but consid-
ered attribute combinations of only a limited size,
so the results were not always guaranteed to be k-
anonymous.

In recent years, numerous algorithms have been
proposed for implementing k-anonymity via general-
ization and suppression. The framework was origi-
nally defined by Samarati and Sweeney (Samarati &
Sweeney 1998). Sweeney proposed a greedy heuristic
algorithm for full-domain generalization (“Datafly”)
(Sweeney 2002). Although the resulting generaliza-
tion is guaranteed to be k-anonymous, there are no
minimality guarantees. Samarati proposed the binary
search algorithm for discovering a single minimal full-
domain generalization that is described in Section 5.
LeFevre et al. described an efficient search algorithm
called Incognito, for anonymous full-domain general-
ization (LeFevre et al. 2005).

Cost metrics intended to quantify loss of informa-
tion due to generalization were described in (Iyen-
gar 2002). Given such a cost metric, Iyengar (Iyen-
gar 2002) developed a genetic algorithm and Win-
kler (Winkler 2002) described a stochastic algorithm
based on simulated annealing to find locally min-
imal anonymous table. Recently, top-down (Fung
et al. 2005) and bottom-up (Wang, Yu & Chakraborty
2004) greedy heuristic algorithms were proposed to
produce anonymous data.

Bayardo and Agrawal (Bayardo & Agrawal 2005)
described a set enumeration approach to find an opti-
mal anonymous table according to a given cost met-
ric. Subsequent work shows that optimal anonymity
under this model may not be as good as anonymity
produced with a multi- dimension variation (LeFevre
et al. 2005). Finally, Meyerson and Williams (Mey-
erson & Williams 2004) and Aggarwal et al. (Ag-
garwal et al. 2005) proved the optimal k-anonymity

is NP -hard (based on the number of cells and num-
ber of attributes that are generalized and suppressed)
and describe approximation algorithms for optimal k-
anonymity.

In addition to generalization and suppression, re-
lated techniques based on clustering have also been
proposed in the literature. Microaggregation first
clusters data into (ideally homogeneous) groups of
required minimal occupancy and then publishes the
centroid of each group (Domingo-Ferrer & Mateo-
Sanz 2002). Similarly, Aggarwal et al. propose clus-
tering data into groups of at least size k and then
publish various summary statistics for each cluster
(Aggarwal et al. 2006).

7 Conclusion and future work

In this paper, we focus on a specific global-recoding
model of k-anonymity. Our objective is to find
the minimal k-anonymous generalization (table) un-
der the definition of minimality defined by Samarati
(Samarati 2001). By introducing the hash-based tech-
nique, we provide a new approach to generate mini-
mal k-anonymous table, which not only improves pre-
vious search algorithm proposed by Samarati (Sama-
rati 2001), but might be useful for computing other
optimal criteria solution for k-anonymity.

In future work, we conjecture this hash-based tech-
nique might be suitable for further improvement of
the Incognito (LeFevre et al. 2005) for full-domain
generalization, since it might significantly reduce the
number of 2-attribute candidate sets. The technique
might also apply in multilevel generalization. For
many applications, it is difficult to find required k-
anonymity tables at low or primitive levels of the
generalization hierarchy due to the sparsity of data
in multidimensional space. k-anonymous table gen-
erated at very high levels in the generalization hier-
archy might be suitable for some attributes, however,
to some extent, it may be too generalized in some
attributes. Therefore, data mining system should
provide capability to generate k-anonymous tables
at multiple levels of the generalization hierarchy and
traverse easily among different generalization levels.
The hash-based technique may provide a new point
of view and a more efficient way to make multilevel
k-anonymous tables.

References

Adam, N. R. and Wortman, J. C. Security-Control
Methods for Statistical Databases: A Comparative
Study, ACM Computing Surveys, vol. 21, no. 4, pp.
515-556, 1989.

Aggarwal, G., Feder, T., Kenthapadi, K., Mot-
wani, R., Panigrahy, R., Thomas, D. and Zhu, A.
Anonymizing tables. In Proc. of the 10th Interna-
tional Conference on Database Theory (ICDT05),
pp. 246-258, Edinburgh, Scotland.

Aggarwal, G., Feder, T., Kenthapadi, K., Panigrahy,
R., Thomas, D. and Zhu, A. Achieving anonymity
via clustering in a metric space. In Proceedings of
the 25th ACM SIGACTSIGMOD- SIGART Sym-
posium on Principles of Database Systems (PODS),
2006.

Agrawal, R and Srikant, R. Fast algorithms for min-
ing association rules. In Proc. of the 20th Int’l Con-
ference on Very Large Databases, August 1994.

Bayardo, R. and Agrawal, R. Data privacy through
optimal k-anonymity. In Proceedings of the 21st

CRPIT Volume 74 - Computer Science 2008

106

International Conference on Data Engineering
(ICDE), 2005.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein,
C. Introduction to Algorithms, second edition, MIT
Press and McGraw-Hill. ISBN 0-262-53196-8.

Domingo-Ferrer, J and Mateo-Sanz, J. M. Practical
data-oriented microaggregation for statistical dis-
closure control. IEEE Transactions on Knowledge
and Data Engineering, 4(1), 2002.

Federal Committee on Statistical Methodology, Sta-
tistical Policy Working Paper 22, Report on Sta-
tistical Disclosure Limitation Methodology, May
1994.

Fung B, Wang K and Yu P. Top-down specialization
for information and privacy preservation. In Proc.
of the 21st International Conference on Data Engi-
neering (ICDE’05), Tokyo, Japan.

Hundepool, A. and Willenborg, L. µ and τ -ARGUS:
Software for statistical disclosure control. In Proc.
of the Third International Seminar on Statistical
Confidentiality, 1996.

Iyengar V. Transforming data to satisfy privacy con-
straints. In Proc. of the 8th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, pp. 279-288, Edmonton, Alberta,
Canada, 2002.

LeFevre K, DeWitt DJ, Ramakrishnan R. Incognito:
Efficient fulldomain k-anonymity. In Proc. of the
24th ACM SIGMOD International Conference on
Management of Data, pp. 49-60, Baltimore, Mary-
land, USA, 2005.

LeFevre, K., DeWitt, D. and Ramakrishnan, R. Mul-
tidimensional k-anonymity. Technical Report 1521,
University of Wisconsin, 2005.

Meyerson A and Williams R. On the complexity of
optimal k-anonymity. In Proc. of the 23rd ACM-
SIGMOD-SIGACT-SIGART Symposium on the
Principles of Database Systems, pp. 223-228, Paris,
France, 2004.

Park, J. S., Chen, M. S. and Yu, P. S. An Effec-
tive Hash-Based Algorithm for Mining Association
Rules. Proceedings of the 1995 ACM SIGMOD In-
ternational Conference on Management of Data.
PP. 175-186, 1995.

Samarati, P and Sweeney, L. Protecting privacy when
disclosing information: k-anonymity and its en-
forcement through generalization and suppression.
Technical Report SRI-CSL-98-04, SRI Computer
Science Laboratory, 1998.

Samarati P. Protecting respondents’ identities in mi-
crodata release. IEEE Transactions on Knowledge
and Data Engineering, 13(6):1010-1027. 2001

Samarati P, Sweeney L. Generalizing Data to Pro-
vide Anonymity when Disclosing Information (Ab-
stract). In Proc. of ACM Symposium on Principles
of Database Systems, pp. 188, 1998.

Srikant, R and Agrawal, R. Mining generalized asso-
ciation rules. In Proc. of the 21st Int’l Conference
on Very Large Databases, August 1995.

Sweeney L. Achieving k-anonynity privacy protection
using generalization and suppression. International
Journal on Uncertainty, Fuzziness and Knowledge-
based Systems, 2002, 10(5):571-588.

Wang, K., Yu, P. S and Chakraborty, S. Bottom-up
generalization: A data mining solution to privacy
protection. In Proceedings of the 4th IEEE Interna-
tional Conference on Data Mining (ICDM), 2004.

Willenborg, L and DeWaal, T. Statistical Disclosure
Control in Practice. Springer-Verlag, 1996.

Willenborg, L and DeWaal, T. Elements of Statistical
Disclosure Control. Springer Verlag Lecture Notes
in Statistics, 2000.

Winkler, W. Using simulated annealing for k-
anonymity. Research Report 2002-07, US Census
Bureau Statistical Research Division, 2002.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

107

CRPIT Volume 74 - Computer Science 2008

108

JWS: A Flexible Web Service

Andrew Cho, Paresh Deva, Ewan Tempero

Department of Computer Science

University of Auckland

Auckland, New Zealand

ewan@cs.auckland.ac.nz

Abstract

Web services have been proposed as means to provide more
convenient access to computation services. An issue that still
must be dealt with is what to do if there is no web service
with the desired functionality. Deploying a new web service
requires expertise in the relevant technologies as well as access
to a web services server. In this paper we present the Java
Web Service, a web service that allows the provision of almost
arbitrary functionality by means of uploading the functionality
as a plug-in at run-time. Plug-ins can also be combined through
a simple scripting mechanism.

Keywords: Flexible computation service, Web ser-
vices, Distributed systems.

1 Introduction

The ability to access computation across a network or
to distribute computation around a network has been
a goal of distributed systems research for many years.
Each new generation of distributed systems technol-
ogy removes one more barrier to providing such an
ability. The most recent step has been the intro-
duction of web services, which provide network ac-
cess to to software systems in an interoperable man-
ner (Booth, D. et al. 2004), meaning that use of the
systems is language and platform independent.

An issue that still remains with web services is
that the services they offer are under the control of
whoever controls the servers. If the required func-
tionality does not exist as a web service, then there
are few options. Those that need new functionality
can create it themselves but if they want to make it
available to others then they face starting and man-
aging their own server. For those who would rather
not take this route, we propose creating a web service
that is flexible — the functionality it provides can be
added to at runtime by any user without affecting ex-
isting users. In this paper, we describe the Java Web
Service (JWS), a web service that can be configured
at runtime to allow almost arbitrary functionality.

Web services are claimed to provide several advan-
tages over other distributed computing technologies,
including:

• Interoperability — Requests and responses are
encoded in neutral formats, such as XML. This
means there is no requirement that client and
server have to agree in advance on programming
language, operating system, or hardware, in or-
der to communication. For example, a Java web

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74, Gillian Dobbie and Bernard Mans, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

service client running on OS X could communi-
cate with a web service provider implemented in
C# running on windows.

• Reuse — The interoperability aspect of web ser-
vices allows an existing module to be wrapped
by a web service implementation and have its
functionality made available to clients on differ-
ent software platforms. This avoids the need to
duplicate functionality for each platform.

• Open standards — Web services use open non-
proprietary standards such as XML and HTTP.
This ensures no one company has control over
web services. This has helped the popularity of
web services.

We wish to retain these advantages as much as
possible, while at the same time adding:

• Flexibility — Provide a general computation ser-
vice by supporting any functionality. This flexi-
bility should not come at the cost of down time.
Many clients may be using the service through
the Internet at any time and so restarting the
service with new functionality is not practical.

• Security — The service should not cause harm
to the server that it is running on, such as the
deletion of files.

The basic approach we take is to develop a web
service with a plug-in architecture, in a manner sim-
ilar to applications such as Eclipse (Gamma & Beck
2004). New functionality can be uploaded to the web
services server at run-time, and plug-ins can be com-
bined through a simple scripting mechanism.

The remainder of the paper is organised as fol-
lows. The next section provides the background on
web services necessary for understanding the rest of
the paper. Section 3 describes JWS, with details on
the design and implementation in section 4. Section
5 gives an example use of JWS. In section 6 we give
an evaluation of the success of JWS, and then discuss
related work in section 7. Finally, we give our con-
clusions and discuss possible future work in section
8.

2 Web Services

Web services are software systems that can be used
over a network in an interoperable manner (Booth, D.
et al. 2004). They can be used by any program that
can process eXtensible Markup Language (XML) and
access a network. The simplest form of web services
involves two parties: a web service provider (server)
and a web service requester (client). The web service
provider makes available some functionality that it
performs on behalf of the web service clients. The
client, of which there could be many, consumes the

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

109

Figure 1: Web Service Architecture Diagram

web service and calls the provider’s functionality. The
web services concept can also involve a third party, a
web services registry. Clients may browse this registry
for web service providers with specific functionality
and bind to them dynamically. Figure 1 illustrates
this case.

The provider is responsible for publishing its
functionality by implementing a service interface.
Providers are described through a service description
file. This file is written in the Web Service Descrip-
tion Language (WSDL), which is a language for de-
scribing web services based on XML. The service de-
scription file describes the web service’s functionality,
such as the available methods, arguments and return
types, and the service’s network location, and is pub-
lished to the registry (Booth, D. et al. 2004).

A web service client may not know exactly which
web service provider it will interact with. Therefore
the client must “discover” a web service provider.
Web services can be discovered either manually or
automatically. In manual discovery, the client’s devel-
oper may hard-code the client to use a particular web
service. In automatic discovery, web service providers
publish their WSDL documents to a registry service,
such as Universal Description Discovery and Integra-
tion (UDDI). Clients then use this registry service to
search for suitable web service providers, obtain their
WSDL documents, and bind to them dynamically.

After binding, the requester and provider com-
municate by sending Simple Object Access Protocol
(SOAP) messages to each other. SOAP encodes the
parameters and results of a service invocation into
XML. These messages are transported over a commu-
nication protocol such as HTTP, SMTP, FTP, IIOP,
or proprietary protocols.

3 The Java Web Service

The JWS provides a flexible computation service that
clients can invoke over a network. It provides flexi-
bility in two ways: the JWS can compile and execute
almost any Java source code, and JWS has the ability
to have its functionality extended by uploading plug-
ins. These two features combine to allow the JWS to
support almost arbitrary functionality.

Figure 2 provides an overview of the JWS. The
JWS has a minimalist core of a web service inter-
face, script manager, and plug-in manager. The web
service interface receives requests from web service
clients and forwards them to the appropriate compo-
nent. The plug-in manager is responsible for load-
ing, configuring, and invoking plug-ins. The script
manager invokes scripts. Plug-ins and scripts are de-
scribed in more detail in sections 3.2 and 3.3 respec-
tively.

By themselves, these core components provide
very little functionality for clients. All of the useful
functionality are implemented as plug-ins. Plug-ins
provide the first mechanism for the JWS’s flexibil-
ity in that new functionality can be uploaded to the

Figure 2: Overview of the Java Web Service

<?xml version="1.0" encoding="UTF-8"?>

<ExecutionResult ExitValue="0"

PluginName="ExecutionPlugin">

<ExecutionSuccessful>

true

</ExecutionSuccessful>

<ExitValue>

0

</ExitValue>

<Filename>

TestExecSampleClass

</Filename>

<StandardOutput>

Hello World!

</StandardOutput>

</ExecutionResult>

Figure 3: Example document describing the
result from the execute method applied to
TestExecSampleClass
.

JWS as a plug-in. They are integrated dynamically
into the JWS while it is running and this integration
causes no down time.

The compilation and execution plug-ins are re-
sponsible for compiling and executing Java source
code respectively. They provide the second mecha-
nism for the JWS’s flexibility in that they can be
used to execute almost any Java source code. These
plug-ins are bundled with the JWS and are always
available.

3.1 JWS Service Methods

The JWS contains several different service methods
that can be invoked by its clients. These are:

compile This method takes one argument that is a
string. The string represents the code that the
client requires to be compiled. The compilation
plug-in is called from this method and the result
of this call is a string (an XML document) de-
scribing the result of the compilation that is sent
back to the client.

execute This method takes one argument that is the
name of a Java class file and calls the execution
plug-in to execute this file. There is a form of this
method that takes an integer as a second argu-
ment. This argument specifies the amount of the
time that the execution is allowed to continue for
before the execution process is killed. In the first
form of this method, the time is defaults to ten
seconds. As with compile, an XML document is
returned describing the result of the execution.
An example is given in figure 3.

uploadPlugin This is the method that installs a
plug-in provided by the client. Its argument is
an array of byte codes. This method converts
the data into a file and saves this file in the plug-
in repository directory (specified at start-up). A
boolean is returned indicate whether or not the
upload was successful.

CRPIT Volume 74 - Computer Science 2008

110

<?xml version="1.0" encoding="UTF-8"?>

<plugin name="EchoPlugin"

class="echoplugin.EchoPlugin">

<pluginDescription>

This plug-in is just for testing

</pluginDescription>

<method>

<name>

echo

</name>

<argument>

java.lang.String

</argument>

<description>

Echoes back the given String

</description>

</method>

</plugin>

Figure 4: An example of a plug-in manifest file

getListOfPlugins This method is used to send in-
formation to the client about what plug-ins cur-
rently exist in the plug-in directory. It returns
an XML document containing the names and de-
scriptions of all of plug-ins. It also contains the
names, descriptions and arguments of all of the
methods of the plug-ins.

runScript The runScript method is used to run a
script submitted by the client. It accepts two ar-
guments: script and input. The script is a string
and is of the format specified in section 3.3. The
input is a string that represents the argument to
be used for the first plug-in as specified in the
script. The Script Manager executes the script
and returns an XML document describing the
result of the execution.

3.2 Plug-ins

A plug-in is a small program that provides certain
functionality. It can be uploaded to the JWS in order
to add new functionality. The JWS’s plug-in archi-
tecture resembles a simplified version of the Eclipse
plug-in architecture (Gamma & Beck 2004). Eclipse
is also an application that has a minimalist core of
functionality that is extended by plug-ins. As with
Eclipse, plug-ins for JWS are packaged within a Java
Archive (JAR) file. This archive contains the plug-
in’s class files and an XML manifest file. The manifest
tells the JWS the name of the plug-in, the class to in-
stantiate, and the methods the plug-in has to offer.
An example of a manifest file is shown in Figure 4.

For the example in figure 4, the name of the
plug-in is “EchoPlugin” and its implementation class
is “echoPlugin.EchoPlugin.” It only defines one
method, “echo”, which accepts a java.lang.String
object as an argument.

The plug-in’s implementation class must imple-
ment an interface specific to JWS called IPlugin so as
to be recognised by the JWS as a plug-in. This inter-
face defines two methods: init() and shutdown().
These methods are called just after instantiation and
before removal respectively. They give the plug-in the
opportunity to configure and release resources.

3.3 Scripts

Clients submit scripts to the JWS that define which
plug-ins should be invoked. Ideally the JWS would
publish any methods that plug-ins make available in
its WSDL document. However if a new plug-in was

NumberPlugin multiplyBy3

EchoPlugin echo

Figure 5: An example of a simple plug-in script

IF FAIL NumberPlugin multiplyBy3

EXIT

ELSE

EchoPlugin echo

ENDIF

Figure 6: An example of a plug-in script with condi-
tional behaviour

uploaded, then the WSDL document would need to
change and this would require the web service’s clients
to re-acquire the latest version of the WSDL and pos-
sibly be recompiled. The JWS would also need to be
recompiled and re-deployed to Apache Axis, because
the JWS’s implementation class would need to imple-
ment these new methods. As we want to avoid down
time, this approach is impractical.

Scripts allow the WSDL document to remain the
same while still enabling new plug-ins to be invoked.
As mentioned above, the JWS defines a method,
runScript(Stringscript,Stringinput), that exe-
cutes the given script using the given input, and re-
turns the result of executing the script. A script is
essentially a list of plug-ins in the order they are to
be executed. Scripts operate in a similar fashion to
the UNIX pipe and filter interaction paradigm with
the output of one plug-in being passed to the input
of the next plug-in.

An example of a script is shown in Figure 5. This
simple script uses two plug-ins. The plug-in named
NumberPlugin has a method called multiplyBy3 that
converts the script’s input to a number, multiplies it
by three, and returns the result. If the input into this
script were “100” then the output after the first line of
the script would be “300.” This result is passed onto
the plug-in named EchoPlugin. The echo method of
this plug-in concatenates its input string with itself.
If this method were executed with an input of “300”
the result would be “300300.” Therefore the result of
executing the example script with an input of “100”
is “300300.”

Scripts also have the ability to support condi-
tional behaviour based upon whether a plug-in suc-
ceeds or not. Figure 6 shows an example of such a
script. This script says: if the NumberPlugin fails
then exit the script, otherwise use the EchoPlugin.
The NumberPluginwill fail if the input into the script
can not be converted into a number. Conditional be-
haviour allows the path of execution to change based
upon the outcome of a plug-in.

Plug-ins can tell the JWS whether they have failed
in their execution in two ways. Firstly, a plug-in can
set an exit value state variable that the JWS will
check. This exit value uses the convention that a
value of zero means the plug-in was successful and a
non-zero value means failure. The second method in-
volves the plug-in returning an XML document. The
root node of the document defines the attribute “Ex-
itValue” that contains the exit value described above
(similar to that shown in figure 3). The exit value
contained within the document will override the exit
value contained within the state variable.

The scripting language is very simple, providing

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

111

Figure 7: Architecture of the JWS

only the sequencing and conditional behaviour shown
here, however we believe that this is sufficient for a
wide range of applications.

4 Design and Implementation

4.1 Technologies

Java was chosen because the Java Virtual Machine
(JVM) allows the same compiled source code to be
run on all operating systems where the JVM is avail-
able. This allows development and deployment to be-
come operating system independent.

The web server chosen was Apache Tomcat
(Apache 2006a) due to its ease of deployment and
local expertise. By itself, Apache Tomcat can not
host web services because it does not include an im-
plementation of SOAP. Apache Axis (Apache 2006b)
provides this implementation and also includes sev-
eral tools to aid web service development and deploy-
ment.

From the perspective of the JWS’s clients, the
technology choices have negligible impact. Web ser-
vices are interoperable and the implementation de-
tails of the service, such as the programming language
and choice of server, are hidden away from clients.
The only impact of these choices is that plug-ins must
be written in Java. Allowing plug-ins to be written
in any language was outside the scope of this project
but would further improve the flexibility of the JWS.

4.2 Architecture

Figure 7 shows the process structure of the JWS.
All of the processes shown reside on the server that
hosts the JWS. The main process running on the JWS
server is the Apache Tomcat JVM. This process runs
the Apache Axis web application (not shown), which
in turn runs the JWS. The script manager processes
incoming scripts and uses the plug-in manager to in-
voke plug-ins. The compilation and execution plug-
ins are shown to be within the JWS application be-
cause they are always available.

To compile Java source code the compilation plug-
in writes the source code to a .java file and saves it
on the file system. Then the javac process is started,
which compiles the .java file to a .class file. The
execution plug-in then starts the java process to ex-
ecute the .class file in its own JVM. The plug-in
returns any output that the program sent to either
standard output or standard error.

Unlike submitted Java source code, uploaded plug-
ins are loaded and executed within the same JVM
as the JWS. Submitted Java source code is executed
in its own JVM because it can generate output by
calling System.out.println(...). This method re-
turns output to the JVM’s console and not to the
caller. There is only one console per JVM and if
multiple programs sent their output to the console
it would be difficult to differentiate the output of one
program from another. There is a performance cost
for this decision as we discuss in section 6.

4.3 Security

The security concerns for the JWS are more prevalent
than traditional web services. With traditional web
services the service provider is not modified by the
client. The JWS is not only modified by uploading
plug-ins but arbitrary Java code can also be executed.
Both uploaded plug-ins and submitted source code
could attempt to cause harm to the server. This in-
cludes manipulating the file system (reading, modify-
ing, or deleting files), starting new processes (starting
a UNIX shell and executing commands), or opening a
network connection allowing back-door access to the
server.

To minimise the effect of malicious code harming
the server, Java’s security manager is enabled for both
the Apache Tomcat JVM and the JVM in which sub-
mitted Java source code is executed. By default the
security manager gives all code none of the permis-
sions specified within the Java Security Architecture
framework (Gong 2002). Java security policy files
are used to grant certain permissions to certain Java
classes. The compilation plug-in is allowed to write
to the file system because the compilation process re-
quires writing .java and .class files to the file sys-
tem. The execution plug-in is allowed to read these
files. To maximise security, all uploaded plug-ins are
given no permissions. Uploaded plug-ins can not be
trusted because they could be written by anyone.

Security policy files are incapable of preventing
infinite loops. An infinite loop is a situation where
a program executes continuously inside a loop and
never reaches the condition that tells the program to
exit the loop. To prevent infinite loops from wasting
CPU time on the server, the JWS executes submit-
ted Java code in its own process and kills its process
if it goes beyond a certain time limit. This time limit
can be modified to the client’s demands. More expen-
sive computational tasks will require a longer timeout.
However uploaded plug-ins are executed in the same
process as the JWS so this approach can not be used
for plug-ins that are in an infinite loop. This and
other security issues are discussed in section 6.

4.4 Communicating between plug-ins

To achieve complex behaviour, plug-ins may be
chained together in a script. For example there may
be the need to invoke the execution plug-in after using
compilation plug-in. Coordination between plug-ins
is difficult because plug-ins could potentially be de-
veloped by different developers. If the output of one
plug-in does not match the input of the next plug-in
then the communication breaks down and the oper-
ation will fail. This issue is further complicated by
plug-ins that could potentially pass anything (text,
files, images) to the next plug-in.

Ideally a plug-in will accept and return a string
of text formatted in XML. XML is helpful because it
can be used to represent any object and is machine
readable, allowing it to be processed dynamically at
runtime.

CRPIT Volume 74 - Computer Science 2008

112

Although passing objects instead of XML would
have improved performance (the task of transforming
objects to XML and back to objects again would be
avoided) it would be a less flexible solution. For a
plug-in to pass an object to another plug-in, the re-
ceiving plug-in must have an implementation of that
object. Therefore there would need to be an agree-
ment between the two plug-ins at design time. This
would severely limit the number of plug-ins a given
plug-in could interact with.

Plug-ins still need to agree to what XML they ex-
pect to receive and produce. This is done by plug-ins
providing a Document Type Definition (DTD) file of
the XML they produce. This file is machine readable
and is a standard way of defining the structure of an
XML document.

5 JWS in Action

This section demonstrates how the flexibility of JWS
would be used to build an application. The applica-
tion we developed is called the Online Learning Appli-
cation (OLA). This application aims to help beginner
Java programmers learn the Java syntax. Students go
to the OLA’s website and are asked to perform Java
programming exercises. An example exercise may be
to write a for-loop that prints the numbers from one
to ten. Students would then write a small piece of
Java code that performs this task. The OLA would
then compile and execute the student’s submission,
and compare the result of execution against an ex-
pected answer.

Using the OLA as a motivating example for the
JWS raises some challenging issues. Novel solutions
are required because these issues are not encountered
with traditional web service implementations. These
issues are outlined below:

• In addition to the JWS acting as an execution
engine by executing Java code, it must also be
able to compile Java code. Together, compilation
and execution provide a flexible mechanism for
performing computational tasks.

• Security concerns arise because the JWS could be
asked to execute any code that students submit
to it. This code could attempt to delete files from
the server. Such behaviour must be prevented.

• Plug-ins must be able to be integrated into the
JWS despite plug-ins and the JWS being devel-
oped by different people. Standardisation is re-
quired so that all plug-ins can be integrated into
the JWS.

• It is desirable to have plug-ins that can communi-
cate with each other. There must be some agree-
ment on how to pass output from one plug-in to
the input of the next plug-in. For example, the
compilation plug-in should pass its output to the
execution plug-in. The execution plug-in should
be able to interpret the compilation plug-in’s out-
put and execute any compiled classes.

• Functionality should also be invoked condition-
ally. For example if the compilation plug-in fails
in compiling Java source code, the execution
plug-in should not be invoked.

• Some plug-ins require the allocation of machine-
dependent resources. For example, the compi-
lation plug-in must have access to a directory to
compile its .class files to. This directory will be
different for every server the plug-in is deployed
on.

Figure 8: Overview of the Online Learning Applica-
tion

for (int i = 1; i <= 10; i++)

System.out.println(i);

Figure 9: Expected submission for a Java exercise

An overview of the OLA and its relationship with
the JWS is shown in Figure 8. The OLA does not
implement much functionality. It essentially passes
students’ submissions to the JWS for compilation and
execution, and checks the result against an expected
answer. This feedback is then passed back to the
student. This demonstration illustrates how applica-
tions can be composed quickly by leveraging existing
services. Any gaps in functionality can be filled by
uploading a plug-in to the JWS.

Students access the OLA through their web
browser and complete Java exercises. If the OLA
asked the student to write the code that prints the
numbers from one to ten, the student would be ex-
pected to write something similar to the code shown
in Figure 9.

The OLA uses the script shown in Figure 10, with
the student’s code snippet as the input, to invoke the
JWS.

First, the WrapperPlugin’s wrap method is in-
voked. Java requires code to be declared within a
class. This plug-in wraps the student’s submission
with a class declaration and returns the result. For
the above example, this plug-in would produce some-
thing similar to the class shown in Figure 11.

The name of class is made unique by append-
ing a random number to the end. This minimises
the chance that saving the .java and .class files
to the file system will conflict with existing .java
and .class files. These files need to be periodically
deleted.

The rest of the script says the code should be com-
piled with the CompilationPlugin. If compilation is
successful then ExecutionPlugin is used to execute
the code. Any output from standard output or stan-
dard error is sent back to the OLA. The OLA checks
this result against an expected answer and informs
the student whether they were correct or not.

If the student’s submission does not compile, the
script will return the compiler’s compilation error
messages. These messages are difficult to understand
and pose a significant obstacle for beginner program-
mers (Flowers et al. 2004, Lang 2002). It would be
helpful if the OLA had the ability to convert these
messages to a more understandable format. This gap
in functionality can be filled by developing a plug-in.

WrapperPlugin wrap

IF SUCCESS CompilationPlugin compile

ExecutionPlugin execute

ENDIF

Figure 10: Script used by the OLA to invoke the JWS

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

113

public class Test123456789

public static

void main(String[] args)

for (int i = 1; i <= 10; i++)

System.out.println(i);

Figure 11: Student’s code inside a class declaration

WrapperPlugin wrap

IF SUCCESS CompilationPlugin compile

ExecutionPlugin execute

ELSE

CompilationErrorPlugin transform

ENDIF

Figure 12: Script with the CompilationErrorPlugin

CompilationErrorPlugin was developed to perform
this task. It examines the compiler’s error messages,
attempts to match them against a catalogue of errors,
and replaces them with a more descriptive message.
The only change the OLA requires to use this new
plug-in is to add an else condition to its script as
shown in Figure 12.

This new script says if compilation does not suc-
ceed, then the compilation error plug-in should be
used to transform the output of the compilation plug-
in (compilation errors) into a more understandable
format.

The potential for functionality of the OLA is
not limited by the JWS. For example a user could
decide to extend the OLA to accept a language
other than Java by writing a plug-in that would
provide this functionality, or if a user feels the
CompilationErrorPluginplug-in is insufficient, they
can write a better one to be used in its place.

Similarly, the OLA does very simple checking that
the student’s submission is correct. This checking
could be made more sophisticated, in which case it
could be incorporated into the OLA application code
itself, or made in to a plug-in and uploaded to the
JWS server. This plug-in would then be available for
anyone else to use.

The OLA requires user code to be executed on the
web server, so security becomes an issue. The security
policy (mentioned in section 4) for the user-submitted
code is specified just before the code is actually run.
This is allowable as security policies can be specified
when a process is started up for execution, which oc-
curs when the execution plug-in is used. This allows
different policies to be specified for different code; so
trusted users can use a less stringent policy, which
grants more permissions.

For the OLA, a timeout facility is used to ensure
that user submitted code that would never complete,
such as infinite loops that would continually run but
never get any closer to finishing, does not stall the
server. After a set amount of time the code would
time out (the ’timeout time’). This is implemented
utilising the timeOutTime specified in the execution
plug-in. For the OLA, the timeout time is set to ten
seconds, as only beginner code is expected to be sub-
mitted, resulting in quick execution times.

6 Evaluation

The primary goals of this work were to develop a dis-
tributed computation system with functionality that
is not determined just at deployment time, but allows
changes to functionality with no down time, is inter-
operable, that is, was usable by any client regardless
of the programming language, operating system, or
hardware of the client, and is secure. By using web
services and Java for interoperability, and a plug-in
architecture for flexibility, JWS does, in theory, meet
these goals.

We have provided evidence of the JWS’s flexibility
and interoperability in a more practical sense by de-
veloping OLA. We face that same problem of any new
“enabler” technology. The technology by itself pro-
vides no directly observable functionality, so to really
prove its usefulness requires devoting significant re-
sources developing many different uses of it. In our
case, we chose OLA because it exercises all the fea-
tures provided by JWS in a single application, and we
feel it is representative of a large class of applications
of the kind that JWS is intended to support.

In particular, OLA has requirements that motivate
the need for flexibility. Had OLA been developed as
a standard web service, then its behaviour would be
fixed at that time. If, for example, it is determined
that the deployed presentation of compilation errors
is not informative enough, the users must wait until a
better presentation is produced and deployed. With
our implementation of OLA users can provide their
own plug-in to present such information.

JWS does, however, have its limitations.

• Computational tasks must be specified in Java,
either by submitting Java source code or a plug-
in. No support is provided for executing source
code in other programming languages.

• The JWS is a designed to perform computational
tasks and can not be used to display user inter-
faces and graphics.

• The Java security manager prevents code from
causing harm to the server. Any tasks that re-
quire operations such as writing to the file sys-
tem, the creation of new processes, or use of
network connections will result in security vio-
lations. Currently there is no mechanism that
grants permissions to uploaded plug-ins.

As mentioned earlier, the decision to execute sub-
mitted Java source code in its own process as opposed
to loading it into the same process as JWS has a per-
formance cost. Figure 13 gives an indication as to
what this cost is. It shows the cost of performing a
compilation, execution in a new process, or execution
in the existing process. These timings were done us-
ing a Java class that executed an empty for-loop for
approximately 16 milliseconds. The tests were run
100 times and the results averaged to minimise ran-
dom variation. While this is a fairly simplistic test,
it does provide the information we are interested in.
From the test we can see that executing in a new
process takes on average 140 milliseconds longer than
executing in the same process. In the context of the
various other performance costs associated with web
services, we feel this extra time is acceptable.

There are a number of directions that JWS could
go. As JWS provides a general computation ser-
vice, it would be interesting to extend it to provide
a distributed parallel computation service. To realise
the benefits of parallel computing, this would require
developing a a plug-in that allows one JWS server
to communicate to other JWS servers. This plug-
in would need to disseminate the computational task

CRPIT Volume 74 - Computer Science 2008

114

Figure 13: Performance of compilation and execution

amongst the other JWSs and recombine the results.
This plug-in would require permission to open net-
work connections. Ideally this plug-in should be bun-
dled with the JWS in a similar manner as the compi-
lation and execution plug-ins.

If parallel computation can be realised the JWS
will resemble the Globus (Globus 2006) system.
Globus provides the Globus Toolkit, which is used
to create grid computing solutions and has become a
middleware standard for a number of grid projects.
Globus’ web services grid resource allocation man-
ager (WS-GRAM) provides dynamic deployment of
web services.

The current form of JWS is as secure as the Java
security manager is. The security policy we use rules
out most security concerns when using JWS. As men-
tioned in section 4.3, security policies cannot prevent
all malicious behaviour from occurring. An uploaded
plug-in could execute an infinite loop and the JWS
will be blocked while waiting for plug-in to finish.
Since uploaded plug-ins are executed in the same pro-
cess as the JWS itself, killing the process would also
kill the JWS, Apache Tomcat, and any other web ap-
plications Apache Tomcat was hosting at the time.
This issue could be addressed by executing uploaded
plug-ins within their own process and killing their
process if a timeout is exceeded. This is the same
method for terminating infinite loops in submitted
Java source code.

Like other web services, the JWS can benefit from
the incorporation of the Web Services Security (WSS)
policy (Open 2006). This policy aims to provide web
services with message integrity and confidentiality. It
specifies mechanisms for encrypting messages and au-
thenticating clients and servers.

The WSS policy mentioned above provides a
mechanism for authenticating clients but does not
provide a mechanism for authenticating uploading
plug-ins. It could be possible for an authenticated
client to upload an untrustworthy plug-in. This could
be addressed by using the JAR signing and verifica-
tion tool, which is part of the Java Security Architec-
ture (Gong 2002). This tool allows JAR files to be
digitally signed so that the JWS can be sure about
the origins of the plug-in. This is only part of solution
because there must be some mechanism that ensures
only trustworthy plug-ins are signed.

Currently the only resource that uploaded plug-
ins are allowed to manipulate are the arguments that
are passed to it. To allow more powerful plug-ins,
such as the parallel computing plug-in, plug-ins must
be able to request resources from the JWS. Grant-
ing resources is non-trivial because the JWS will not
know what resources a plug-in requires until it is re-
quested. In addition, the JWS and plug-ins have no
prior agreement, therefore an arbitrary plug-in could
request an arbitrary resource. The compilation and
execution plug-ins are given a directory to write files
to through the plug-ins’ constructors. However these

plug-ins are special case because they were developed
as an integral part of the JWS. Foreign plug-ins can
not be passed resources through their constructor be-
cause the JWS has no idea what resources are re-
quired.

The plug-in could specify the type of resource it
requires in its manifest file. For example, the paral-
lel computing plug-in could request a network con-
nection by specifying the value “network connection”
within a resources tag element and ideally the JWS
will grant the plug-in the ability to create network
connections. But there are still issues, such has how
the JWS and plug-in developers know that the value
“network connection” should be used as opposed to
“socket connection,” “network,” or even “network
permission”.

Even if the JWS understood what the plug-in was
requesting, it still may not know what object to re-
turn. For example, if the JWS was asked to provide a
directory it may not be clear whether the JWS should
return a string that represents a path to the directory,
a URL, or a java.io.File object.

Prior agreement is required. The JWS could pub-
lish a list of resources and the values used to retrieve
them as comments in its WSDL document or even a
website. However this requires the plug-in developer
to know the JWS it will be uploading the plug-in to
at design time and modifying the plug-in’s manifest
file for each JWS server. This is inflexible and fragile
if the JWS changes.

7 Related Work

Researchers have attempted to make web services
more flexible as well. Most approaches relate to the
dynamic composition of web services. This involves
creating complex web services by dynamically inte-
grating several simple web services together. In Sam
et al.’s (Sam et al. 2006) implementation of this ap-
proach web service clients provide a specification of
the web service they require to a registry service. If
there are no web service providers that match the
specification exactly, the registry returns the closest
match. Then additional web services are used to fill
the gaps in functionality and make the original web
service match the user’s specification more closely.

Sam et al. use the example of a Japanese tourist
wanting to book a hotel in France via a web service.
The registry returns a web service that allows the
tourist to book French hotels however, it is in French
and uses Euros as its currency, which is meaningless
for the Japanese tourist. Intermediary web services
are used to convert French to Japanese and Euros to
Japanese Yen.

Although the hotel booking web service is made
more flexible, it relies on these intermediary web ser-
vices to already exist in the registry. Even if an inter-
mediary web service does exist it may not fit the user’s
requirements exactly. In contrast, the JWS allows
users to modify the JWS’s functionality by uploading
a plug-in. Since users can develop their functionality
their requirements are matched exactly.

Another project looking at dynamic web services
is the “Web Services Management Layer” (WSML)
project (Verheecke et al. 2003). This project aims
to remedy the problems caused by the traditional
“Wrapper” approach to web services design, which is
a static methodology, used in development environ-
ments such as Microsoft .NET. The WSML project
creates a layer in between the web application and
web service. This provides a layer of abstraction that
can be used to allow “hot-swapping” of web services
at run time. Different modules are present in this

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

115

layer, controlling areas such as security and transac-
tion management (Verheecke et al. 2003).

The idea of making the execution of program
code a web service comes from a project on verifying
dynamic reconfigurations of systems (Warren et al.
2006). This project extended OpenRec, a framework
that comprises a reflective component model plus an
open and extensible reconfiguration management in-
frastructure, by integrating it with the Alloy analyser
(Jackson 2002). The integration of the existing Open-
Rec framework, written in Python, and Alloy, written
in Java, was achieved by delivering Alloy as a web ser-
vice.

8 Conclusions

The key objectives of this work were to create a ser-
vice that is interoperable and flexible enough to allow
new functionality to be added without down time and
secure enough to prevent harmful behaviour from oc-
curring at the server. JWS meets these goals through
it being a web service and through its plug-in archi-
tecture and ability to compile and execute submitted
Java code. Plug-ins can be submitted and will become
available at run-time without affecting the server. A
further advantage of its plug-in architecture is that
plug-ins are available to any client of JWS, giving
further opportunities for reuse.

Plug-ins are invoked through a simple scripting
language. Scripts allow users to specify which plug-
ins are invoked and the order of execution of these
plug-ins. Simple conditional processing is provided.
Whether such a simple language is sufficient for all
envisioned uses of JWS is the subject of future work.

Security of the JWS is implemented through use of
the Java Security Framework. The minimum number
of permissions that still allow the JWS to function are
given. No permissions are currently given to uploaded
plug-ins, so no uploaded code can damage the server.
The only security concern in the current implemen-
tation is that denial-of-service is possible through the
submission of a long-running plug-in, something that
could be addressed through alternative implementa-
tions. Indeed, the security policies of the current im-
plementation probably reduce the flexibility of JWS
more than is necessary, and providing a more flexible
security model is also the subject of future work.

We are not the first to consider how to provide
more flexibility in web services, but we have taken a
different approach to other projects, namely provid-
ing a mechanism to give the user more control over
the functionality provided by the web service. We
believe our minimalistic design provides a convincing
proof-of-concept that our approach is viable.

References

Apache (2006a), ‘Apache Tomcat’, Apache Software
Foundation http://tomcat.apache.org.

Apache (2006b), ‘Web services - Axis’, Apache Soft-
ware Foundation http://ws.apache.org/axis.

Booth, D. et al. (2004), ‘Web services architecture:
W3c working group note 11 february 2004’, Re-
trieved 23rd August, 2006 from http://www.w3.
org/TR/ws-arch.

Flowers, T., Carver, C. & Jackson, J. (2004), Empow-
ering students and building confidence in novice
programmers through gauntlet, in ‘Proceedings of
the 34th ASEE/IEEE Frontiers in Education Con-
ference’, pp. 10–13.

Gamma, E. & Beck, K. (2004), Contributing
to Eclipse: Principles, Patterns, and Plug-Ins,
Addison-Wesley.

Globus (2006), ‘Globus’, The Globus Alliance http:
//www.globus.org.

Gong, L. (2002), ‘Javatm 2 platform security
architecture’, Retrieved April 26, 2006 from
http://java.sun.com/j2se/1.5.0/docs/guide/
security/spec/security-spec.doc.html.

Jackson, D. (2002), ‘Alloy: a lightweight object
modelling notation’, ACM Trans. Softw. Eng.
Methodol. 11(2), 256–290.

Lang, B. (2002), Teaching new programmers: A Java
toolset as a student teaching aid, in ‘Proceedings
of the Inaugural Conference on the Principles and
Practice of Programming’, pp. 95–100.

Open, O. (2006), ‘Oasis web services secu-
rity (wss) tc’, Retrieved August 27, 2006
from http://www.oasis-open.org/committees/
tc home.php?wg abbrev=wss.

Sam, Y., Boucelma, O. & Hacid, M.-S. (2006), Web
services customization: a composition-based ap-
proach, in ‘ICWE ’06: Proceedings of the 6th in-
ternational conference on Web engineering’, ACM
Press, New York, NY, USA, pp. 25–31.

Verheecke, B., Cibrán, M. A. & Jonckers, V. (2003),
AOP for Dynamic Configuration and Management
of Web Services, in ‘The International Conference
on Web Services - Europe’, pp. 137–151.

Warren, I., Sun, J., Krishnamohan, S. & Weeras-
inghe, T. (2006), An automated formal approach
to managing dynamic reconfiguration, in ‘ASE
’06: Proceedings of the 21st IEEE International
Conference on Automated Software Engineering
(ASE’06)’, IEEE Computer Society, Washington,
DC, USA, pp. 37–46.

CRPIT Volume 74 - Computer Science 2008

116

An Investigation on a Community’s Web Search Variability

Mingfang Wu Andrew Turpin Justin Zobel

School of Computer Science and Information Technology
RMIT University

Melbourne, Australia
Email: {mingfang.wu, andrew.turpin}@rmit.edu.au, jz@acm.org

Abstract

Users’ past search behaviour provides a rich context
that an information retrieval system can use to tailor
its search results to suit an individual’s or a commu-
nity’s information needs. In this paper, we present an
investigation of the variability in search behaviours
for the same queries in a close-knit community. By
examining web proxy cache logs over a period of nine
months, we extracted a set of 135 queries that had
been issued by at least ten users. Our analysis in-
dicates that, overall, users clicked on highly ranked
and relevant pages, but they tend to click on different
sets of pages. Examination of the query reformulation
history revealed that users often have different search
intents behind the same query. We identify three ma-
jor causes for the community’s interaction behaviour
differences: the variance of task, the different intents
expressed with the query, and the snippet and char-
acteristics of retrieved documents. Based on our ob-
servations, we identify opportunities to improve the
design of different search and delivery tools to better
support community and individual search experience.

Keywords: Web Search, Search Context, Search Log
Analysis, Community Search Behaviour.

1 Introduction

A major limitation of traditional information retrieval
systems is that they focus on queries and documents,
and neglect the users of the systems. This is primarily
because the relationships between queries and docu-
ments, and the relationships among documents, are
much easier to capture, model, and compute than re-
lationships among queries, documents, and a user’s
search context. Consequently, documents are re-
trieved because of evidence such as that they contain
the query words, and are frequently referred to by
other authors in the web context, instead of matching
users’ search intentions. This often leads to unsatis-
factory search experiences.

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74. Gillian Dobbie and Bernard Mans, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

Recently, there is a trend to improve traditional in-
formation retrieval by leveraging users’ actions. This
includes explicitly asking users to give relevance scales
to retrieved documents (White et al. 2001), and im-
plicitly capturing users’ interactions with retrieval
systems, such as eye tracking (Granka et al. 2004,
Joachims et al. 2007) and desktop application mon-
itoring (Budzik & Hammond 2000)). Among these
methods, one of the most popular is trying to pred-
icate a user’s search intention/interest through min-
ing past clickthrough data from Web based search en-
gines. Clickthrough data includes past queries issued
by users, the set of retrieved pages for those queries,
and the set of pages chosen (clicked) for viewing by
users from the list of search results.

The premise behind exploiting clickthrough data
is that past interaction history could reveal a user’s
current search intention, assuming that there was a
good reason for the user to click on a link and visit a
page. If, after reading the snippet of that page, the
user clicks on a document because they find the page
worth further investigation, then the “click” action
could be interpreted as an implicit relevance judg-
ment of the page. As such, this clickthrough data
could help to reformulate the user’s current query,
or re-rank current search results. By incorporating
this clickthrough data into retrieval and ranking cri-
teria, the original query and document based ranking
can be enhanced with users’ contextual information.
Of course, the click could be accidental, or the user
was distracted from the original information need and
clicked a page that was off topic, and so on, so click-
through data must be employed with caution.

When we collect and use users’ clickthrough data,
we can treat each user as an individual, and per-
sonalise a user’s current search result based on the
user’s own action; alternatively, we can aggregate the
clickthrough data from the communities with which
the user is assoicated, and use this information to
tailor search results to meet the information needs
unique to that user’s community. Community click-
through data has been used in collaborative filter-
ing (Wang et al. 2006) and social recommendation
(Smyth et al. 2004). The underlying assumption
is that users from a community have similar back-
grounds and like minds, thus their needs for informa-
tion behind a query are likely to be similar, hence a
document clicked by many users in the past should be
useful to future searches of the same query by other
users from that community.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

117

However, this assumption has yet to be validated:
would users from a community who submitted the
same queries have the same information needs? If so,
would they be interested in the same set of search re-
sults? In this paper, we present a study that examines
this assumption.

Through studying a community’s search history
in its everyday search environment, we aim to in-
vestigate the variability of a community’s search be-
haviour and identify key factors that could influence
search performance within a community. We selected
a well-defined community whose members are stu-
dents (or staff) from the School of Computer Sci-
ence of our University. The clickthrough data (in-
cluding the queries and their associated clicks) were
captured through a web proxy over a period of more
than 9 months. The data log captured 540,424 queries
(327,064 are unique) to Google search engine. To re-
flect the shared interests of the community, we only
extracted a set of 135 queries where each query has
been issued by at least ten users. We have also re-
stricted the queries to those occurring in the comput-
ing domain; in our investigation, queries of a personal
or non-computing nature were ignored. We believe
that the findings from this real community with a
large set of clickthrough data would help us to re-
veal and understand better the nature of community
search, thus allowing better informed design of infor-
mation search and delivery tools for community-based
search.

We present a review of the background and related
work in Section 2 followed with a description of the
cache log used in this study. Section 4 explores a
series of research questions; and Section 5 discusses
our findings and their implications to the design of
information search and delivery tools. Finally Section
6 concludes the paper.

2 Background and Related Work

Substantial research, in particular from the informa-
tion science perspective, has investigated users’ infor-
mation needs, search behaviours and processes, and
perceptions of relevance (Dervin & Nilan 1986, Ing-
wersen 1992, Saracevic 1997), with the aim of better
understanding how humans process and retrieve infor-
mation. The findings from these research areas played
an important role in the design and development of
traditional information retrieval systems and current
web search engines. Of the most relevance to our
work are studies on web search context: how users
search the web, what they are searching for, what
the characteristics of their search queries are (Jansen
et al. 2000, Spink et al. 2001), how users with differ-
ent search expertise, domain knowledge, and cogni-
tive approach search the web (Hoelscher 1998, Kim
& Allen 2002), and which features of web pages may
influence users’ search tasks (Tombros et al. 2005).
Broder (2002) and Rose & Levinson (2004) analysed
users’ goals for searching the web and developed a web
search taxonomy to classify such goals. These stud-
ies provide a broad understanding of how the general
population use web search tools, and the requirements
for a search engine to satisfy this web population.

At a lower level of investigation, clickthrough data
is used to implicitly capture an individual’s search

context, with a view to using this information to per-
sonalize search results. This method assumes that a
user’s past queries and their associated clicks would
reveal the user’s interests, and thus it could be used
to predict the user’s future preference. This click-
through data can be used to model a user’s imme-
diate information need or long term preferences, de-
pending on the period of time over which the click-
through data was captured. For example, Shen et al.
(2005) infer a user’s immediate information need by
her recent queries and the snippets of clicked search
results. When this model of a user’s short term inter-
ests is updated by a new query or click on a new
page, the user’s longer-term interests could be in-
ferred (Sugiyama et al. 2004).

When the clickthrough data from users with sim-
ilar information needs is aggregated, it could plausi-
bly be used to tailor search results for the members
of that community. By doing so, the privacy of indi-
vidual users is also protected. Here the community
refers to groups who share similar interests or infor-
mation needs. This community may be predefined;
for example, because the members of the community
have the same or similar social background, such as
a same job role in a working environment; or could
be interest-based, for example dynamically inferred
through users’ search history (Almeida & Almeida
2004).

The usual way to use a community’s clickthrough
data is to treat a click associated with a query as
a vote for the page’s relevance. For example, Smyth
et al. (2004) used a hit matrix that records the relative
click frequency of retrieved pages per query, and this
information is used to re-rank future search results
for the same query or similar queries. They found
that the current users using lists reordered with their
approach could answer more fact finding questions
in a given time limit, and that more questions are
answered correctly.

In some work the boundary between the per-
sonal search history and community search history
is blurred. In the methods of Agichtein et al. (2006)
and Joachims (2002), ranking algorithms are trained
based on aggregated search history obtained over a
large number of users. The search history includes not
only the usual clickthrough data, but also fine-grained
features such as query-text features, and browsing
features such as page dwell time.

Almost all of these studies (and many others that
can not be mentioned here due to space considera-
tions) report positive results, and the use of click-
through data is a key component of all of these meth-
ods. It is natural to ask whether clickthrough data is
sufficient reliable as an indicator of user preference.
Would a user’s own past search history or a commu-
nity’s search history predict the user’s current inter-
ests? Teevan et al. (2005) show that a group of people
from the same company and with similar IT back-
ground had different intents even when they issued
the same query to a search engine, and thus they rated
the retrieved pages differently. Joachims et al. (2007)
conducted a controlled experiment to study the relia-
bility of clickthrough data through manipulating the
relevance ordering of search results and comparing
explicit feedback against manual relevance judgment.
They concluded that clicks are informative, but bi-
ased.

CRPIT Volume 74 - Computer Science 2008

118

However, there are few studies on the characteris-
tics of a community’s search behaviour. In this study,
we examine such search behaviour by analysing click-
through data from a well-defined community. We
focus on users’ search variability behind the same
queries, and the factors that may cause search varia-
tions.

3 A Community Web Cache

The data set used for our study is originally from the
cache logs from our school’s web proxy server. This
log recorded all web activities of those students and
staff for the period from 1st January 2006 through to
6th October 2006.

User Identification One of the difficulties in
search log analysis is that de-identification of data
to protect privacy can remove information from the
log. Most studies (Spink et al. 2001) use IP ad-
dresses as an identity marker, but, in a shared com-
puting area, a computer can be used by many differ-
ent users, and a user can have access to many com-
puters. In our case, according to the school’s policy,
users need to use their personal identifier to access the
web. This enables us to assign each activity clearly
to a distinguishable individual, and thus we can trace
an individual’s search history. To preserve privacy,
each user’s account information was replaced with an
anonymous ID prior to us receiving the data.

Search Session Identification We divided the
data set into search sessions. In principle, a search
session should start when a searcher submits a query
and end when the searcher gets information to satisfy
her need or otherwise gives up the search. However,
it can be difficult to rigorously detect such search ses-
sion boundaries automatically from query logs. Pre-
vious studies have used various timeout periods for
session segmentation, ranging from 15 minutes (He
et al. 2002) or 30 minutes (Mat-Hassan & Levene
2005) to a whole day (Spink et al. 2001) according
to different research goals. As our purpose of using a
session is to identify those search activities of a query,
we examined our data and found 15 minutes to be a
reasonable boundary — our users usually shifted their
search topics within 15 minutes. Later, for our tar-
geted queries, we combined neighbouring 15 minute
sessions manually where we believed a search session
may have been split by the 15 minute cut-offs.

Query Statistics The Google search engine is the
most frequently used search engine in our proxy logs,
hence we focus our attention to those queries sent
to Google. There are 540,424 Google queries in the
collection (after removing empty queries and those
queries from subsequent result page requests). These
queries were submitted by 3,574 unique users. On
average, each user submitted 151 queries over the
9 month period. The average query length is 2.64
words. This is very close to that of the general web
user population (Spink et al. 2001).

Among the 540,424 queries, 260,786 (48.3%) were
issued only once, with the remainder (51.7%) re-
occurring at least once. Overall, there are 66,279 dis-

tinct re-occurring queries, so on average each of these
was submitted 4.2 times. Table 1 shows the number
of users that submitted each re-occurring query. We
can see that 70% of queries that occurred more than
once in the log were always submitted by the same
person (though a different person for each recurring
query; for example, one user issued the query “bbc
news” once or twice every day), while the other 30%,
which occurred multiple times in the log, were issued
by more than one user.

Data Set The users recorded in our cache log
searched a wide range of topics from sports, music,
news, computers, science and so on. Although the
majority of them have the same study major and in a
similar age group and economic status, their interests
as expressed in searched topics were diverse. How-
ever, they are expected to form a close-knit commu-
nity when they search on the topics related to their
studied major, that is, computer science and infor-
mation technology. For example, when searching a
particular topic, it is likely that they were taking the
same lecture or doing the same assignments.

We selected queries that can meet the following
criteria: 1) the query is in the computer science and
information technology domain and was submitted to
the Google search engine; 2) the query has been sent
by at least ten users; and 3) the search sessions can
be reconstructed.1 In the end, we collected 135 such
queries.

To identify the clicks associated with this set of
queries, we first located all search sessions that had
any of these queries, then cleaned up the following
clicks by filtering out those pages that either resulted
from browsing actions within a site, or were not as-
sociated with the selected query. After the clean-up,
we found that these 135 queries were searched 3,480
times by 1,115 users, each query re-occurring 25.8
times on average. There were 4697 clicks in total —
1.3 clicks per search on average. There were 14.9%,
56.5%, and 28.6% searches that had zero clicks, one
click, and more than one click respectively. The rea-
sons behind the queries with zero clicks are unknown;
the searchers could be satisfied (or unsatisfied) by
looking at snippets only, or users were handling mul-
tiple tasks (Spink et al. 2006) at the same time.

4 Community Search Analysis

4.1 Overall Click Behaviour

It is often assumed that a user’s action of clicking on
a URL indicates the page’s relevance to the submit-
ted query. However, studies of user clicking behaviour
show that, while a user’s decision to click is mainly
influenced by the relevance of the snippets associated
with the pages, it may also be biased due by the order

1
As the retrieved document set was not recorded at the time

when a user issued the query, we reconstructed this set by send-

ing the same query to the Google search engine at a later date

(from 2nd December 2006 to 7th December 2006), and recorded

the URLs of the top ten retrieved pages. In order to minimise the

differences between the original and reconstructed retrieved sets,

we don’t include queries where most of their clicked pages are not

in the reconstructed top ten list. Here we take ten as a thresh-

old because previous studies showed that most users do not access

search results past the first page (Jansen et al. 2000).

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

119

No. of users 1 2 3 4 5 6 7 8 9 10+
Queries (%) 70.2 19.9 4.3 1.8 1.0 0.6 0.4 0.3 0.2 1.1

Table 1: The proportion (%) of users responsible for re-occurring queries.

0 1 2 3 4 5 6 7 8 9 10 11

Rank Position

0.0

0.2

0.4

0.6

%
 o

f
C

lic
ks

Figure 1: Percentage of clicks at each rank position.

of a page in a ranked list of search results (Joachims
et al. 2007). In this section, we presented our inves-
tigation if the above claims still hold true for our se-
lected close-kit community. In particular, we set out
to investigate the following three research questions.

1. Is it true that a page with higher rank would be
clicked by users more frequently than a page with
lower rank?

2. Does a ranking of documents based on click fre-
quency correlate with a relevance-based ranking?

3. Are clicked pages relevant?

Q1. Is it true that a higher ranked page would
be clicked by users more frequently?

For each page in the search result set (10 per query for
1350 in total), Overall, there are 762 retrieved pages
that have zero clicks, and their average rank is 6.5,
while the average rank of the other 588 pages with
at least one click is 4.1. The ranks of clicked pages
is significantly higher than that of un-clicked pages
(un-paired t-test, p < 0.01). This shows that those
clicked pages have higher rank on average.

Figure 1 shows the distribution of clicks for each
ranked position. Clicks that do not select a page in
the top ten answers for a query are assigned rank
eleven. Nearly half of the clicks (46.7%) are on the
top-ranked URL, 12.3% of clicks are on the second-
ranked URL, and 14% of clicks are at 11th posi-
tion. These figures indicate that higher-ranked pages
are selected more frequently than lower-ranked pages,
confirming that our query log shares characteristics of
that used by Joachims et al. (2007).

Q2. Does ranking based on click frequency
correlate with relevance-based ranking?

We re-ranked each of the top ten search results in the
order of their click frequency from high to low, and use

0 1 2 3 4 5 6 7 8 9 10

Rank/Click Position

0.0

0.5

1.0

1.5

2.0

A
ve

ra
ge

 R
el

ev
an

ce
 S

co
re

Retrieved Set
Clicked Set

Figure 2: Average relevance score at each position in
two ranked lists.

Kendall’s-τ rank correlation coefficient to measure
the degree of correspondence between two ordered
lists. The Kendall’s-τ coefficient ranges from −1 (per-
fect disagreement — one list is the reverse of the
other), through 0 (the ranks of two lists are inde-
pendent), to 1 (perfect agreement — the ranks of the
two lists are exactly the same). As there are ties in
the re-ranked list, the Kendall τb is used (Fagin et al.
2003).

Among the 135 queries, there are 86 queries whose
paired lists have strong tendency of agreement (τb >=
0.4, of which 40 are significant at p < 0.05 level, by
the two-tailed Z-test), and for the other 49 queries
the paired lists are independent (|τb| < 0.4). There
was no perfect disagreement found for any query.

Q3. Are the clicked pages relevant?

The assumption behind utilizing clickthrough data for
ranking is that a click is a form of relevance judgment
— the clicked pages are more relevant than those not
clicked. Did our users click on a page selectively or
just click on the top-ranked pages? To answer this
question, we examined the relevance of the top ten
pages from each search result.

Each page was judged for relevance (by either one
of authors or a postgraduate student) on a three-
point scale: highly relevant, relevant and irrelevant.
These corresponded to scores of 2, 1, and 0 respec-
tively. Figure 2 shows the mean relevance scores over
all search sessions for the set ranked using click fre-
quency, and the set ranked as per the Google result.
We can see that the clicked data are of high relevance
to the queries. Over 49,240 clicks, there are only 591
(12%) that were judged to be on an irrelevant page.

We have seen that our users tend to click the top-
ranked search pages, and Figure 2 shows that the top
ranked pages are also of high quality. A remaining
question is whether our users clicked the top-ranked
search results blindly or clicked relevant URLs that
happened to be highly ranked.

CRPIT Volume 74 - Computer Science 2008

120

We have only three queries in our data set whose
first ranked page was judged irrelevant. We found
that, in these cases, the majority of our users clicked
lower ranked, yet relevant, pages. For example, for
the query “ssi”, the relevant pages appear at positions
4, 5, and 7 (the pages at position 4 and 5 are from
the same site). Of the 25 users that issued this query:

• 11 users did not click any page;

• 6 users clicked on the fourth or seventh ranked
page;

• 2 users first clicked on the first ranked page and
then clicked on the fourth search page; and

• For the remaining 6 users, their first click is not
on the top ten list but 5 of them are judged rel-
evant or highly relevant.

For the 11 sessions without any click, there are
query modifications in 10 sessions to either expand
the query to “server side includes” or include more
contextual words such as “ssi in html”. In these cases,
we assume that the users make relevance judgments
by reading the snippets only. From these observa-
tions and the finding from a systematic evaluation
(Thomas & Hawking 2006) that users were able to
reliably distinguish between high- and low-quality re-
sult sets, we can be confident that our users did not
click a relevant page just by chance.

4.2 User Click Variability

From the above discussion, we see that users demon-
strated a tendency to click on highly ranked docu-
ments. However, we observed a difference in click
patterns among users even for the same query. Here
we measure this difference by using inter-rater agree-
ment2. We calculate it in two ways. First, we treat
the clicks from a query as a simple click-list ignoring
the position of the click in the ranked list. The av-
erage inter-rater agreements over all queries is 0.36.
That is, only about a third of all possible pairs of
users over all queries clicked the same set of pages.

Second, we calculate the inter-rater agreement
amongst the first click made by all users, then the
second click, and so on (we refer to this as the click
position of the click, as opposed to the click rank). As
shown in Figure 3, the inter-rater agreement for click
position 1 is 0.52. It then dropped dramatically to
0.25 for click position 2. The decreasing inter-rater
agreement as click position increases indicates that
users have a tendency to click the top-ranked page
(hence the high agreement for click position one) and
then accessed the remaining search results in different
orders. This could be because they interpret the snip-
pets on the results pages differently, or because their
search intentions differ for identical query strings.

4.3 Task Variability

To understand why the members of this close-knit
community sent the same query but clicked on differ-
ent pages, we scrutinised those queries and their as-
sociated clicks. We found that search task variation

2
Inter-rater agreement gives a score of how much consensus

there in the ratings given by judges. Here we treat each user as a

rater, and her click on a URL as a judge.

0 1 2 3 4 5 6 7

click position

0.0

0.2

0.4

0.6

In
te

r-
ra

te
r

A
gr

ee
m

en
t

Figure 3: Inter-rater agreement at each click position.

Query type Examples
navigational cygwin

delicious
java api 1.5
apache
ctrl alt del

broad big o notation
informational css tutorial

software requirement specification
project management
bioinformatics
xml schema

specific c printf
informational matrix multiplication

ascii chart
sql max
php date

Table 2: Examples of queries in each categories

is one of the factors that may cause the click differ-
ence. Referring to search task classification in the web
search context (Broder 2002, Rose & Levinson 2004),
we classified our queries into three categories: nav-
igational queries, specific informational queries, and
broad informational queries. Here the navigational
queries are those whose intent is to reach a particu-
lar site (for example, “cygwin” and “delicious”, while
the informational queries are aimed to acquire infor-
mation or facts that may be contained in one or more
web pages (which are unknown to the user). Here
we further divide the informational queries into two
groups: specific and broad information queries, de-
pending on whether a query implies a multitude of
facets or interpretations. For example, “binary tree”,
“c tutorial”, and “test plan” would be regarded as
broad informational queries while “binary search tree
in c”, “c strtok”, and “sql max” are specific informa-
tional queries. Table 2 shows some example queries
in each of categories.

We conjecture that users’ click patterns may
be more similar for navigational and specific infor-
mational queries, and less on broad informational
queries, on the grounds that the former two types
of queries embody a clear information goal, while the
motivations behind the broad informational queries
may be quite diverse and rich. A user might want
to investigate a broad topic (“c tutorial”), or a user

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

121

Inter-rater agreement
High Medium Low Overall

Navigational 12 2 0 14 (14.4%)
Specific Inf. 17 12 3 32 (23.7%)
Broad Inf. 9 30 50 89 (66.9%)

Table 3: Number of queries categorised by type and
inter-rater agreement of click-patterns. High inter-
rater agreement is larger than 0.7, Medium is between
0.4 and 0.7, and Low is less than 0.4.

could target a particular concept (“c strtok”) as part
of a typical search strategy that ranges from broad
to narrow (Spink et al. 2001). Alternatively, a user
may first issue a specific informational query, but, on
receiving poor results, then re-issue a broad query.

Table 3 shows the distribution of queries at each
level of inter-rater agreement (of click-lists) among
the three query categories. Overall, there are about
10%, 23%, and 67% of the queries in navigational,
specific informational, and broad informational cat-
egories respectively. In the high inter-rater interval,
where agreement is at least 0.7, 76.3% of queries are
in the navigational and specific informational query
categories, as opposed to the low inter-rater interval
(agreement less than 0.4), where 94.3% queries are
broad informational queries.

Note that some broad queries have unexpect-
edly high inter-rater agreement. We examined the
search results and clicked pages for these nine queries
and found that all these queries lead to clicks on
comprehensive resource pages (four of them are
www.w3.org); these pages provide easy-to-navigate
links to most facets of a topic domain, and so users
with diverse information needs can find their infor-
mation through navigation rather than search. This
also indicate that a user’s click behaviour is also in-
fluenced by the characteristics of a retrieved page.

Three specific informational queries have low inter-
rater agreement, and it is not obvious why this is
the case. We suspect that the difference in snippet
quality for these queries may be the major reason.
For example, for the query “c strtok” the users’ clicks
are divided into the top three documents, which all
have the same quality of information (example and
explanation), yet the snippets of the three documents
are slightly different as shown in Figure 4. The first
is highly generic, while the second shows an example
code line and the third has a problem diagnosis. This
may explain why some users skipped the first and
clicked either the second or the third.

We find that both navigational and specific queries
have significantly more clicks than broad information
queries (un-paired two tailed t-test, p < 0.03, 0.002,
respectively); the low inter-rater category also has
more clicks than the high-inter category, as shown in
Table 4. Figure 5 also shows that the click distribu-
tions for each query type are different: the clicks from
navigational queries and specific information queries
are skewed towards the top-ranked page and the top
three pages respectively, while the clicks from broad
information queries are scattered, although the top-
ranked pages attract more clicks.

Tables 5 and 6 also show that the average ranks of
first clicks and all clicks for the broad informational

Figure 4: The snippets for the top three results for
the query “c strtok”.

Inter-rater High Middle Low Overall
Navigational 1.44 1.36 1.43
Specific Inf. 1.32 1.57 1.47 1.43
Broad Inf. 1.61 1.62 1.79 1.72

Table 4: Average number of clicks per query.

queries are significantly lower than the other two cat-
egories (p < 0.0001), even more so for the broad infor-
mational queries with low inter-rater agreement. This
may indicate that these two measures could be taken
to identify query types, thus allowing application of
different search and relevance feedback strategies to
the queries of each category.

4.4 Query Reformulation Variability

Given that our users show different search patterns
for different tasks but can still find a set of relevant
retrieved pages, does the set of relevant pages satisfy
our user’s information needs? Relevance of a page
can range from topic relevance and situational rele-
vance to cognitive relevance (Saracevic 1996). The
relevance judgements we have used in this study
are at the topic relevance level, that is, whether a
search result is relevant to the search query topic —
a TREC-like (Text REtrieval Conference) assessment
(Voorhees 2005). The ultimate goal of an information
system is to satisfy users’ informational needs at a sit-
uational and cognitive level; that is, whether a search
result is useful to a user’s task at hand and right to
her knowledge level. The best way to answer this
question is to interview users at the time of search.
In the absence of this information, we can estimate
satisfaction by examining users’ query reformulation
history. We assume that if a user keeps reformulating
her query, most likely the information she has so far
does not satisfy her information need.

For each query in the selected query set, we located
the search sessions, and manually examined whether
a query has been modified. For each query, the query
modification rate is calculated as the number of ses-
sions with modified queries divided by the total num-
ber of sessions. Thus, the higher the query modifica-
tion rate, the more users modified the query. Overall,
the average query modification rate is 41.5%. This
high query modification rate indicates that merely
delivering a list of highly ranked, topically relevant

CRPIT Volume 74 - Computer Science 2008

122

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

Rank Position

P
er

ce
nt

ag
e

of
 C

lic
ks

Navigational
Specific Inf.
Broad Inf.

Figure 5: Click distribution at each rank position.

Inter-rater High Middle Low Overall
Navigational 1.23 1.63 1.29
Specific Inf. 1.22 2.27 2.91 1.77
Broad Inf. 1.34 2.59 4.23 3.38

Table 5: Average rank of first click.

documents is not enough to satisfy 41.5% of informa-
tion needs.

By closely examining the query modification his-
tory, we found that, for queries with high query re-
formulation rates, the initial query is reformulated
by different users into different facets of the original
query topic. Take the query “test plan” as an ex-
ample. This query was sent 17 times (by 12 users)
and was modified 12 times. The subsequent modi-
fied queries include: “test plan template”, “what is
test plan”, “test plan sample”, “test plan technique”,
“test case distribution”, and “test plan acceptance
criteria”.

A strong correlation is observed between the query
modification rate and the inter-rater agreement of
click-lists (r = −0.41, t = −5.26, p < 0.01) or agree-
ment amongst the first clicked page (r = −0.38, t =
−4.68, p < 0.01). Task by task, navigational and
specific informational queries have significantly lower
query reformulation rates than broad informational
queries, as shown in Table 7. This may indicate that,
if the inter-rater agreement among users’ click set is
low, there may be a high chance that the query carries
multiple information intents.

5 Discussion and Implications

We have explored the community’s overall search pat-
tern. Our results confirm that users tend to click on
top ranked pages, and consequently that those top
ranked pages also have a high click frequency. A de-
tailed analysis of users’ click history revealed that the
majority of users clicked on pages that are topically
relevant to search queries.

However, we inferred that a users’ decision to click
on a page was limited by what snippets were pre-
sented. In most cases, users’ clicked pages are relevant
but might not be useful, as evidenced by low inter-
rater agreement on clicked pages and a high query
reformulation rate. We observed that different users

Inter-rater High Middle Low Overall
Navigational 1.64 1.93 1.68
Specific Inf. 1.56 2.59 3.02 2.08
Broad Inf. 1.92 3.05 4.59 3.80

Table 6: Average rank of all clicks.

Inter-rater High Middle Low total
Navigational 0.26 0.54 0.30
Specific Inf. 0.31 0.35 0.38 0.34
Broad Inf. 0.36 0.46 0.49 0.47

Table 7: Query reformulation rates in each query cat-
egory

reformulated their queries into queries on different
facets of their search topic. This branch out from the
same query to different facets indicates that users’
information needs may be different even though they
have a similar background and submitted the same
query.

In Section 4.3 we examined the task variation on
clicking variability and identified a number of dif-
ferent click patterns for different search tasks. We
found that users clicked significantly more pages for
broad informational queries than those for naviga-
tional and specific informational queries. The rank
of clicked pages from those broad information queries
are significantly lower than those from navigational
and specific informational queries. Users agree more
on navigational and specific information queries than
the broad informational queries. These findings indi-
cate that the value of community clickthrough data
varies for different search tasks.

Using clickthrough data to alter rankings will most
likely benefit the specific informational search tasks
and the homepage finding task, as these tasks are
precision oriented and a user’s information need can
usually be satisfied by just one web page. If a search
result list already has a high precision, then incor-
porating community clickthrough data may not help
much, but would not do any harm either. However,
if a search result list has a poor precision, then us-
ing the community’s click frequency data would most
likely bring relevant pages to the top of the list as the
majority of community members click on the relevant
page (especially when the snippet of the page is of
high quality). An alternative use of the clickthrough
data is to automatically expand the query by using
the pages with a high click frequency.

Care should be taken when using community click-
through data in relevance feedback for broad informa-
tional queries. For these type of queries, it may be
preferable to deliver search results that cover as many
facets as possible (width first). We tried a traditional
relevance feedback method (using the text or snippet
of clicked pages as a source for query expansion) for
two broad queries. The effect was to raise the rank-
ing of pages that are similar to the clicked pages (in-
creasing the depth), without increasing the coverage
of more facets of the searched topics. In our opin-
ion, for this type of query, not only the relevance of a
page but also the novelty of the page should be consid-
ered; and the snippets of each retrieved page should
also differentiate one page from each other. Other

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

123

work (Carbonell & Boldstein 1998, Zhai & Lafferty
2003) gives examples of how to increase the diversity
of search results.

To accommodate the diverse search intentions be-
hind a broad informational query, a search system
should support not only the querying activities but
also the after-query browsing activity. We could use
a domain specific taxonomy to categorise search re-
sults as demonstrated in DynaCat (Pratt et al. 1999).
In case there isn’t a ready-to-use taxonomy for a par-
ticular domain, we could use the community query
reformulation history to guide the search and search
result organisation. Take the query “test plan” from
Section 4.4 as an example; we can derive all facets
of a broad query from the community’s query refor-
mulation history. If we could take one or two top-
ranked pages from each of these reformulated queries
or facets to form a new list, it would implicitly show
a diversified list that covers many facets. As shown in
Figure 6, we may even explicitly show the pages un-
der headings derived from the query reformulations,
to give users a clearer view what has been retrieved
and help users navigate this retrieved document space
to get information they need. The more members of
the community search on a topic, the more compre-
hensive an answer list would be.

Finally, to support various search tasks, a search
engine should have the ability to automatically iden-
tify each query type so that it can apply the optimal
ranking scheme for each task. Click distribution and
anchor-link distribution have been explored to pred-
icate a users’ search goal (Lee et al. 2005). Here,
in a community search context, we could use a vari-
ety of criteria to classify a query: inter-rater agree-
ment among users’ clicks, query reformulation rate,
the average number of clicks, or the average rank of
first click. All these measures are significantly cor-
related (p < 0.01). Different thresholds should be
tested for each measure and data set. For example, in
our data set, 74.9% queries with query modification
rate greater than 0.4 are broad queries, and 75.0%
with query modification rate less than or equal to 0.2
are navigational and specific queries; 83.3% queries
with the average rank of the first click greater than
1.5 are broad queries, and 76.3% queries with the av-
erage rank of the first click less than or equal to 1.5
are navigational and specific queries.

6 Conclusion

We have explored community search history aiming
to identify opportunities to better support commu-
nity members’ information searching tasks. We found
that: users tend to click on highly ranked pages and
consequently the highly ranked pages also have a high
click frequency; the community shows diverse search
patterns for different search tasks; and the informa-
tion needs behind broad informational queries are dif-
ferent even for members of the close-knit community.

Our findings indicate that, the gain of using a com-
munity’s search history to improve future search expe-
rience mainly from the specific informational searches
and the navigational searches. For broad information
searches, using clickthough data can only bring to-
gether similar pages, and this will not satisfy the di-
verse information needs of the community. We found

that users’ query reformulation history may provide
a potential source for query expansion to broaden the
range of web pages returned, and to organise those
pages clearly to different facets to highlight the diver-
sity and thus to support browsing activities. Further
experiments with users will be necessary to determine
the benefit of this claim.

In this study, we focused on the community search
of web content. The characteristics of communities
and searched domains may vary in other situations.
In our future work, we will also investigate the search
behaviour of close-kit communities with a closed set
document collection, as well as the search behaviours
of dynamically bonded community with various doc-
ument collections.

Acknowlegements

This work was supported by the Australian Research
Council.
We would like to thank Yanghong Xiang for collecting
some data for this study.

References

Agichtein, E., Brill, E. & Dumais, S. (2006), Improv-
ing web search ranking by incorporating user be-
haviour information, in S. Dumais, D. Hawking &
K. Jarvelin, eds, ‘Proceedings of the 29st ACM-
SIGIR Conference on Research and Development in
Information Retrieval’, Seattle, Washington, USA,
pp. 19–26.

Almeida, R. & Almeida, V. (2004), A community-
aware search engine, in M. Najork & C. Wills, eds,
‘Proceeding of the 13th ACM-WWW Conference
on on World Wide Web’, New York, USA, pp. 413–
421.

Broder, A. (2002), ‘A taxonomy of web search’, ACM
SIGIR Forum 36(2).

Budzik, J. & Hammond, K. (2000), User interactions
with everyday applications as context for just-in-
time information access, in D. Riecken, D. Benyon
& H. Lieberman, eds, ‘Proceedings of ACM-IUI
Conference on Intelligent User Interfaces’, New Or-
leans, Louisiana, pp. 44–51.

Carbonell, J. & Boldstein, J. (1998), The user
of MMR, diversity-based reranking for reordering
documents and producing summaries, in W. B.
Croft, A. Moffat, C. J. van Rijsbergen, r. Wilkin-
son & J. Zobel, eds, ‘Proceedings of the 21st ACM-
SIGIR Conference on Research and Development
in Information Retrieval’, Melbourne, Australia,
pp. 335–336.

Dervin, B. & Nilan, M. (1986), ‘Information needs
and uses’, Annual Review of Information Science
and Technology 21, 3–33.

Fagin, R., Kuman, R. & Sivakumar, D. (2003), ‘Com-
paring top k lists’, SIAM Journal on Discrete
Mathematics 17(1), 134–160.

CRPIT Volume 74 - Computer Science 2008

124

Figure 6: Using query reformulation history for comprehensive answer constructing

Granka, L. A., Joachims, T. & Gay, G. (2004), Eye-
tracking analysis of user behavior in www search,
in K. Jarvelin, J. Allan & P. Bruza, eds, ‘Proceed-
ings of the 27st ACM-SIGIR Conference on Re-
search and Development in Information Retrieval’,
Sheffield, UK, pp. 44–51.

He, D., Goker, A. & Harper, D. J. (2002), ‘Combining
evidence for automatic web session identification’,
Information Processing and Management 38, 727–
742.

Hoelscher, C. (1998), How internet experts search for
information on the web, in ‘Proceedings of Web-
Net’98’.

Ingwersen, P. (1992), Information Retrieval Interac-
tion, Taylor Graham.

Jansen, B. J., Spink, A. & Saracevic, T. (2000), ‘Real
life, real users and real needs: a study and analysis
of user queries on the web’, Information Processing
and Management 36, 207–227.

Joachims, T. (2002), Optimizing search engines us-
ing clickthrough data, in ‘Proceedings of ACM-
SIGKDD Conference on Knowledge Discovery and
Datamining’, Alberta, Canada, pp. 133–142.

Joachims, T., Granka, L., Pan, B., Hembrooke, H.,
Radlinski, P. & Gay, G. (2007), ‘Evaluating the
accuracy of implicit feedback from clicks and query
reformulations in web search’, ACM Transactions
on Information Systems (TOIS) 25(2), 1–26.

Kim, K.-S. & Allen, B. (2002), ‘Cognitive and task
influences on web search behavior’, Journal of
the American Society for Information Science and
Technology 53(2), 109–119.

Lee, U., Liu, Z. & Cho, J. (2005), Automatic identi-
fication of user goals in web search, in ‘Proceeding
of the 14th ACM-WWW Conference on on World
Wide Web’, Chiba, Japan, pp. 391–400.

Mat-Hassan, M. & Levene, M. (2005), ‘Associating
search and navigation behavior through log analy-
sis’, Journal of the American Society for Informa-
tion Science and Technology 56(9), 913–934.

Pratt, W., Hearst, M. A. & Fagan, L. M. (1999), A
knowledge-based approach to organizing retrieved
documents, in ‘American Association for Artificial
Intelligence’, pp. 80–85.

Rose, D. E. & Levinson, D. (2004), Understanding
user goals in web search, in M. Najork & C. Wills,
eds, ‘Proceeding of the 13th ACM-WWW Confer-
ence on on World Wide Web’, New York, USA.

Saracevic, T. (1996), Relevance reconsidered, in P. In-
gwerson & N. O. Pors, eds, ‘Proceedings of the
Second International Conference on Conceptions of
Library and Information Science (CoLIS): Integra-
tion in Perspective’, Copenhagen: Royal School of
Librarianship, pp. 201–218.

Saracevic, T. (1997), ‘The stratified model of infor-
mation retrieval interaction: extension and appli-
cations’, Proceedings of the American Society for
Information Science 34, 313–327.

Shen, X., Tan, B. & Zhai, C. (2005), Context-
sensitive information retrieval using implict feed-
back, in G. Marchionini, A. Moffat & J. Tait, eds,
‘Proceedings of the 28st ACM-SIGIR Conference
on Research and Development in Information Re-
trieval’, Salvador, Brazil, pp. 43–50.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

125

Smyth, B., Balfe, E., Freyne, J., Briggs, P., Coyle,
M. & Boydell, O. (2004), ‘Exploiting query rep-
etition and regularity in an adaptive community-
based web search engine’, User Modeling and User-
Adaped Interaction 14(5), 383–423.

Spink, A., Park, M., Jansen, B. & Pedersen, J. (2006),
‘Multitasking during web search sessions’, Informa-
tion Processing and Management 42(1), 264–275.

Spink, A., Wolfram, D., Jansen, B. J. & Saracevic,
T. (2001), ‘Searching the web: the public and their
queries’, Journal of the American Society for Infor-
mation Science and Technology 52(3), 226–234.

Sugiyama, K., Hatano, K. & Yoshikawa, M. (2004),
Adatptive web search based on user profile con-
structed without any effort from users, in M. Na-
jork & C. Wills, eds, ‘Proceeding of the 13th ACM-
WWW Conference on on World Wide Web’, New
York, USA, pp. 675–684.

Teevan, J., Dumais, S. T. & Horvitz, E. (2005), Be-
yond the commons: Investigating the value of per-
sonalizing web search, in ‘Proceedings PIA 2005:
Workshop on New Technologies for Personalized In-
formation Access’, pp. 84–92.

Thomas, P. & Hawking, D. (2006), Evaluation by
comparing result sets in context, in V. Tso-
tras, E. Fox & B. Liu, eds, ‘Proceedings of the
15th ACM-CIKM Conference on Information and
Knowledge Management’, Virginia, USA, pp. 94–
101.

Tombros, A., Ruthven, I. & Jose, J. M. (2005), ‘How
users access web pages for information seeking’,
Journal of the American Society for Information
Science and Technology 56(4), 327–344.

Voorhees, E. M. (2005), Overview of trec 2005, in
‘The 14th Text REtrieval Conference (TREC 2005)
Proceedings’, Gaithersburg, MD, USA.

Wang, J., de Vries, A. P. & Reinders, M. J. T. (2006),
A user-item relevance model for log-based collabo-
rative filtering, in M. Lalmas & A. Tombros, eds,
‘Proceedings of the Annual European Conference
on Information Retrieval (ECIR)’, London, UK,
pp. 37–48.

White, R. W., Jose, J. M. & Ruthven, I. (2001), Com-
paring explicit and implicit feedback techniques for
web retrieva: Trec-10 interactive track report, in
‘Proceedings of the 10th Text REtrieval Conference
(TREC)’, Gaithersburg, Maryland, USA.

Zhai, C. & Lafferty, J. (2003), Beyond indepen-
dent relevance: Methods and evaluation metrics
for subtopic retrieval, in J. Callan, D. Hawking &
A. Smeaton, eds, ‘Proceedings of the 26st ACM-
SIGIR Conference on Research and Development in
Information Retrieval’, Toronto, Cannada, pp. 10–
17.

CRPIT Volume 74 - Computer Science 2008

126

On Illegal Composition of First-Class Agent Interaction Protocols

Tim Miller1∗ Peter McBurney2

1Department of Computer Science and Software Engineering
The University of Melbourne, Victoria, 3010, Australia

2Department of Computer Science,
University of Liverpool, Liverpool, L69 7ZF, UK

p.j.mcburney@csc.liv.ac.uk

Abstract

In this paper, we examine the composition of first-
class protocols for multi-agent systems. First-class
protocols are protocols that exist as executable spec-
ifications that agents use at runtime to acquire the
rules of the protocol. This is in contrast to the stan-
dard approach of hard-coding interaction protocols
directly into agents — an approach that seems too re-
strictive for many intelligent and adaptive agents. In
previous work, we have proposed a framework called
RASA, which regards protocols as first-class entities.
RASA includes a formal, executable language for
multi-agent protocol specification, which, in addition
to specifying the order of messages using a process
algebra, also allows designers to specify the rules and
consequences of protocols using constraints. Rather
than having hard-coded decision making mechanisms
for choosing their next move, agents can inspect the
protocol specification at runtime to do so. Such an
approach would allow the agents to compose proto-
cols at runtime, instead of relying on statically de-
signed protocols. In this paper, we investigate the
implications of protocol composition by examining the
conditions under which composing existing legal pro-
tocols would lead to illegal protocols — that is, pro-
tocols that can fail during execution through no fault
of the participants. We precisely define what consti-
tutes an illegal protocol, and present proof obligations
about compositions that, when discharged, demon-
strate that a composition is legal.

Keywords: interaction protocols, multi-agent sys-
tems.

1 Introduction

Research into multi-agent systems aims to promote
autonomy and intelligence into software agents. Intel-
ligent agents should be able to interact socially with
other agents, and adapt their behaviour to changing
conditions. Despite this, research into interaction in
multi-agent systems is focused mainly on the docu-
mentation of interaction protocols, which specify the
set of possible interactions for a protocol in which
agents engage. Agent developers use these specifi-
cations to hard-code the interactions of agents. We
identify three significant disadvantages with this ap-
proach: 1) it strongly couples agents with the pro-

∗The work published in this paper was carried out while Tim
Miller was at the Department of Computer Science, University of
Liverpool.
Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74, Gillian Dobbie and Bernard Mans, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

tocols they use — something which is unanimously
discouraged in software engineering — therefore re-
quiring agent code to changed with every change in
a protocol; 2) agents can only interact using proto-
cols that are known at design time, a restriction that
seems too restrictive for many intelligent and adap-
tive agents; and 3) agents cannot compose protocols
at runtime to bring about more complex interactions,
therefore restricting them to protocols that have been
specified by human designers — again, this seems too
restrictive for many intelligent and adaptive agents.

In previous work [9, 10], we have proposed a frame-
work called RASA, which regards protocols as first-
class entities. These first-class protocols are docu-
ments that exist within a multi-agent system, in con-
trast to hard-coded protocols, which exist merely as
abstractions that emerge from the messages sent by
the participants. To promote decoupling of agents
from the protocols they use, we propose a formal,
executable language for protocol specification. This
language consists of a process algebra, used to specify
the sequencing of messages. The messages are rep-
resented as atomic actions, and each atomic action
contains the rules governing under which conditions
the message can be sent, and the effects that send-
ing the message has on a system. Rather than a
protocol specification being just a sequence of arbi-
trary tokens, these rules and effects give the protocol
meaning, and the rules and effects of the overall proto-
col can be derived compositionally from the meaning
of the atomic protocols that comprise it. Instead of
hard-coding the decision process of when to send mes-
sages, agent designers can implement goal-directed
agents that reason about the effect of the messages
they send and receive, and can choose the course of
action that best achieves their goals, allowing agents
to learn new protocols at runtime, and maintain li-
braries of protocols through which they can search to
find the protocols that best achieve their goals. In
addition, agents would be able to compose new pro-
tocols from existing protocols at runtime if they know
of protocols that achieve their goals.

Composing protocols, whether statically at design
time, or dynamically at runtime, is not an arbitrary
task. Clearly, the composer must consider whether
the composite protocol will go some way to achieving
its goals. Determining this is a domain-specific (and
most likely, agent-specific) problem, in which differ-
ent agents will have different ideas within different
environments or at different times as to whether a
composite protocol is suitable.

However, there are certain conditions in which a
protocol composition results in a protocol that can
lead to a runtime error, which we categorise as illegal
protocols. In this paper, we define what it means for
a protocol to be illegal, and then identify the prop-
erties that must hold for protocols to be legal. We
provide proof obligations for each type of composi-

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

127

tion that, when discharged, imply that a protocol is
legal, and then identify how to verify a composition
from existing legal protocols using these proof obliga-
tions. These proof obligations should be discharged
every time a composition is performed, whether stati-
cally or dynamically. Emphasis is placed on protocols
specified in the RASA protocol language, but such
ideas would be applicable to protocols specified in any
language with features similar to RASA’s.

The outline of this paper is as follows. Section 2
presents a brief overview of the RASA framework,
and an example protocol specified using the RASA
language. Section 3 formally defines our notion of an
illegal protocol composition, and Section 4 presents
the proofs the must be discharged to verify that a
composition is illegal, and a method for discharging
these. Section 5 presents related work and Section 6
concludes the paper.

2 RASA Overview

In this section, we present a brief overview of the
RASA framework.

2.1 Modelling Information

Communication in multi-agent systems is performed
across a universe of discourse. Agents send messages
expressing particular properties about the universe.
We assume that these messages refer to variables,
which represent the parts of the universe that have
changing values, and use other tokens to represent re-
lations, functions, and constants to specify the prop-
erties of these variables and how they relate to each
other.

Rather than devise a new language for express-
ing information, or using an existing language, we
take the approach that any constraint language can
be used to model the universe of discourse, provided
that it has a few basic constants, operators and prop-
erties.

We use the definition of a cylindric constraint sys-
tem proposed by De Boer et al. [2]. They define a
cylindric constraint system as a complete algebraic
lattice, 〈C,w,∧, true, false, V ar,∃〉. In this structure,
C is the set of atomic propositions in the language,
for example X ≤ Y , w is an entailment operator, true
and false are the least and greatest elements of C re-
spectively, ∧ is the least upper bound operator, V ar
is a countable set of variables, and ∃ is an operator
for hiding variables. The entailment operator defines
a partial order over the elements in the lattice, such
that c w d means that the information in d can be
derived from c. The shorthand c ≡ d is equivalent
to c w d and d w c. We will use L to refer to the
language, as well as the set of all constraints in the
language; for example, c ∈ L.

A constraint is one of the following: an atomic
proposition, c, for example, X = 1, where X is a
variable; a conjunction, φ ∧ ψ, where φ and ψ are
constraints; or ∃xφ, where φ is a constraint and x ∈
V ar. We extend this notation by allowing negation on
the right of an entailment operator, for example, c w
¬d, which is equivalent to c 6w d. Other propositional
operators are then defined from these: φ∨ψ =̂ ¬(¬φ∧
¬ψ), φ→ ψ =̂ ¬φ∨ψ, and φ↔ ψ =̂ φ→ ψ∧ψ → φ.
We will continue to use the symbols φ and ψ to refer
to constraints throughout this paper.

We introduce a renaming operator, which we will
write as [x/y], such that φ[x/y] means ‘replace all
references of y in φ with x’. The reader may have
already noted that φ[x/y] is shorthand for ∃y(y =
x ∧ φ).

2.2 Modelling Protocols

The RASA protocol specification language is based
on process algebras, and resembles languages such as
CSP [7]. However, we add the notion of state to the
language. State is useful, because it allows us to build
up the meaning of protocols compositionally, for ex-
ample, the effect of sending two messages is the effect
of sending the second in the state that results after
sending the first. The final outcome of the protocol
is the end state. A detailed presentation of the speci-
fication language, including operational semantics, is
available in [10].

A protocol specification is a collection of protocol
definitions of the format N(x, . . . , y) =̂ π, in which
N,x, . . . , y ∈ V ar, and π represents a protocol.

Protocols are defined using the two types of atomic
protocol, and algebraic operators for building up com-
pound protocols from these. The first atomic protocol
is message sending, contains three parts, and is spec-

ified like so: ψ
c(i,j).φm−−−−−−→ ψ′. This is read as follows:

if the precondition, ψ, is provable from the current
state, then the agent i is permitted to send the mes-
sage φm, or any message φ′

m, such that φ′
m w φm,

to agent j. The effect of this message on the state is
specified by the postcondition, ψ′. We allow agents
to send the message φ′

m, such that φ′
m w φm, so that

agents can further constrain the values of the mes-
sages; thus, φm is only a template of the message.
Omitting the prefix c(i, j) from a message template
implies that φm is an action that must be performed.
In this paper, we omit (i, j) when we do not care
who the sender and receiver of the message is. We
use the notion of inertia in calculating the new state
from the postcondition; that is, any variables in ψ′

are constrained by ψ′ in the new state, and any other
variables in the state are left unchanged. The second
atomic action/protocol is the empty action, the syn-
tax of which is ψ → ε. This specifies that if the pre-
condition ψ is provable from the current state, then
no message sending is required.

Compound protocols can be built up from these
atomic protocols. If π1 and π2 are two protocols, then
the following are also protocols: the protocol π1;π2,
which represents sequential concatenation, such that
π1 is executed, followed by π2; the protocol π1 ∪ π2,
which represents a choice between π1 and π2; and the
protocol varψx ·π1, which is a protocol the same as
π1, except that a local variable x is available over the
scope of π1, but with the constraints ψ on x remain-
ing unchanged throughout that scope. Any variable
x already in the state is out of scope until π1 finishes
executing. In addition, RASA supports the referenc-
ing of protocols via their names. That is, for a proto-
col definition N(x) =̂ π1, one can reference this from
within another protocol using N(y), where y ∈ V ar.

A key feature of this language is that it has the
same syntax and semantics at all dialogue levels. Sin-
gle messages are themselves protocols, and the syn-
tax and semantics for composing two atomic proto-
cols is the same for composing two other composite
protocols. Thus, individual utterances, sequences of
utterances, protocols, and combinations of protocols
can all be reasoned-over, modified, composed and in-
voked by agents participating in an interaction using
the same reasoning mechanism.

Example 2.1. We present a small example of a sim-
ple interaction in which an agent, A, proposes that
another agent, B, commits to P , and B can accept
or refuse this proposal.

The semantics of RASA is compositional, so it
makes sense to present the protocol in a bottom-
up manner. First, we define the Prop protocol, an

CRPIT Volume 74 - Computer Science 2008

128

atomic protocol which models A sending the proposal
to B:

Prop(A,B, P) b= true
c(A,B).propose(P)−−−−−−−−−−−−−→ prop(P)

The postcondition prop(P) simply indicates that
the current proposal is P . The Acc and Rej protocols
model B accepting or rejecting the proposal respec-
tively:

Acc(A,B) b= prop(P)
c(B,A).accept(P)−−−−−−−−−−−−→ cmt(B,A, P)

Rej(A,B) b= prop(P)
c(B,A).reject(P)−−−−−−−−−−−−→ true

The notation cmt(B,A, P) is a constraint repre-
senting B’s commitment to perform P for the creditor
A.

Finally, we compose these three atomic protocols
together into a composite protocol, which defines the
order that the messages must occur:

Prot(A,B, P) b= Prop; (Acc ∪Ref)

This definition enforces the condition that the pro-
posal must be sent by A before B can accept or reject
it, and that B can only send either an accept or re-
ject, but not both. In addition, if the path Prop;Acc
is taken, then B is committed to P .

One can see that, provided an agent understands
the meaning of cmt(B,A, P), such a protocol can
be reasoned about at runtime. Firstly, agent A de-
cides to use this protocol because it calculate that
cmt(B,A, P) is an outcome. If B agrees to using the
protocol, then, after it receives the proposal, it can
reason that accepting the proposal will lead to the
state in which it is committed to performing B. If
it does not accept, then there is no change, so it can
decide its reply by analysing its goals and assessing
their compatibility with the outcomes.

3 Illegal Protocols and Compositions

We define composition of a protocol as the process
of either deriving a new atomic protocol, or taking
one or more existing protocol definitions, and form-
ing a larger compound protocol using the algebraic
operators of the RASA specification language. For
example, taking protocols π1 and π2, the composite
protocol π1;π2 can be defined. The vision of first-
class protocols includes agents composing their own
protocols in this way, at runtime, if they do not have
a protocol in their library that achieves their goals.

Clearly, there are verification issues regarding pro-
tocol composition. Some of these issues relate to the
messages that are sent, the order that are sent in,
and when they can be sent. Others are related to the
rules and outcomes, such as whether they are correct
with respect to an informal definition. Such issues
are domain specific, and in fact, they may even be
agent specific. In contrast, the purpose of this paper
is to study generic properties of protocols. That is,
issues regarding the relationship between protocols,
and most specifically, the conditions under which they
can be composed. Such properties would apply to ev-
ery protocol, regardless of the domain.

In this section, we define and discuss one such
generic property, which relates to protocol composi-
tion. We call this property stuckness. Stuckness is a
property that should not be exhibited for any agent
interaction protocol, and we assert that any protocol
to be used should first be proved to be stuckness free.

Definition 3.1. Protocol Stuckness

The execution of a protocol becomes stuck if:

1. it is not terminated; and

2. it is either in a state from which no transition
can be made, or the state is equivalent to false.

That is, at the current state, the rules of the proto-
col are such that no move can be made by any partic-
ipant, or the current state contains an unsatisfiable
constraint. We say that any protocol that can be-
come stuck suffers from stuckness. Stuckness refers
to some form of runtime error, in which agents can
execute part of a protocol, but then come to a point
at which they are unable to continue executing. Such
a property is an undesirable property, and one which
we want to prove is not possible for any protocol1.

This is similar to the notion of deadlock in process
algebras such as CSP [7]. However, stuckness does not
occur as a result of processes waiting for each other,
which is the definition of gridlock. Instead, the con-
dition permitting an event to occur is a precondition,
not another event, as it is in CSP.

Example 3.1. As an example of stuckness, consider
the following protocol definition:

N(x) =̂ x = 1
c.a(x)−−−−→ x = 2;x = 3

c.b(x)−−−→ x = 4

After a(x) is sent across the channel, the state is x =
2. However, x = 2 does not entail the precondition
x = 3, so the protocol execution becomes stuck.

To help us formally define stuckness for RASA
protocol specifications, we first introduce some auxil-
iary definitions.

Definition 3.2. Local Constraints

Local constraints are the constraints on locally de-
clared variables — that is, variables declared using
the form varψx ·π. Consider the following example
protocol, which increments the values of x and y, pro-
vided that x is less than 10:

varx0=x∧y0=y
x0,y0 · (x < 10

c.a(x)−−−−→ x = x0+1∧y = y0+1)

If this is executed in the state x = 0∧y = 5, then the
local constraints over the scope of the atomic protocol
would be x0 = 0 ∧ y0 = 5.

Throughout this section, when we discuss proto-
cols, we will assume that they are evaluated under lo-
cal constraints. If a protocol is not contained within
the scope of a variable declaration, the local con-
straints are equivalent to the constraint ‘true’. Fur-
ther discussion of this is presented later in Section 4.1
at a point when their purpose should be clearer.

Definition 3.3. Weakest Explicit Precondition

The weakest explicit precondition of a protocol is
the weakest (or most general) constraint that satis-
fies the precondition of the protocol. The weakest
explicit precondition is in contrast to the weakest cal-
culated precondition, which is the weakest constraint
from which a protocol cannot become stuck. The ter-
minology is used because the weakest calculated pre-
condition must be computed taking into account the
entire protocol, whereas the explicit precondition is
taken as the disjunction of the preconditions of all
of the atomic protocols that can be executed as the
first step in the protocol. For example, consider the
following protocol:

Q(x) =̂ x = 0
c.a(x)−−−−→ x = 1; y = 0

c.b(x)−−−→ y = 1
1However, we note that there may be situations in which an

agent desires an interaction to become stuck, e.g. to distract a
competitor, as described in [6].

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

129

The weakest explicit precondition of this protocol is
x = 0, because x = 0 is the most general constraint
under which the protocol can begin to execute. How-
ever, the calculated precondition is x = 0 ∧ y = 0,
because y = 0 must hold for the protocol to execute
fully due to the fact that it is the precondition of the
second sub-protocol, and that the first sub-protocol
does not ensure this.

We define a function, pre ∈ π × L → L, which,
for a protocol, π and local constraints, L, returns the
weakest explicit precondition of π. pre is defined for-
mally as follows:
pre(ψ → ε, χ) = ψ ∧ χ
pre(ψ

c.φm−−−→ ψ′, χ) = ψ ∧ χ
pre(π1;π2, χ) = pre(π1, χ)
pre(π1 ∪ π2, χ) = pre(π1, χ) ∨ pre(π2, χ)
pre(varψx ·π, χ) = ∃xpre(π,∃xχ ∧ ψ)
pre(N(x), χ) = pre(π[x/y], χ)

where N(y) =̂ π ∈ D
We discuss these definitions briefly. The explicit

preconditions of an empty or atomic protocol is the
explicit precondition, ψ, conjoined with the local con-
straints, χ. The explicit precondition of a sequential
composition, π1;π2, is the precondition of π1. For a
choice, π1 ∪ π2, it is the disjunction of the precon-
ditions of π1 and π2. The explicit precondition of a
variable declaration, varψx ·π, is the precondition of
π, but including the local constraints, ψ, and with x
hidden from χ so the local declaration is not confused
with any already-declared x. References to x in the
precondition of π are then hidden, because x is local.
Finally, the explicit precondition of a reference name
protocol is the precondition of the corresponding def-
inition with the parameters appropriately renamed.
We omit the local constraints parameter if it is un-
necessary.
Definition 3.4. Maximal Calculated Postcondition

The maximal calculated postcondition (or simply
maximal postcondition) of a protocol is the most gen-
eral constraint such that every end state satisfies that
constraint, and and that it is satisfied only by those
end states. We use the term calculated because, un-
like the precondition, the calculated postcondition re-
quires one to calculate the end state over entire traces
of protocols.

The maximal calculated postcondition is defined
as a function, post ∈ (π × L × L) → L, which, for a
protocol, initial state, and local constraints, returns
the constraint that satisfies all postconditions, and
only those postconditions. This can be computed on
a syntactic level using the following definitions:
post(ψ → ε, φ, χ) = φ

post(ψ
c.φm−−−→ ψ′, φ, χ) = ∃free(φ′)φ ∧ φ′

where φ′ ≡ ψ′ ∧ φm ∧ χ
post(π1;π2, φ, χ) = post(π2, post(π1, φ, χ))
post(π1 ∪ π2, φ, χ) = post(π1, φ, χ)∨

post(π2, φ, χ)

post(varψx ·π, φ, χ) = ∃x post(π, ∃xφ, ∃xχ ∧ ψ′)
post(N(x), φ, χ) = post(π[x/y], φ, χ)

where N(y) =̂ π ∈ D

We comment on this definition briefly. The max-
imal postcondition of an empty protocol executed
from a pre-state is the pre-state, because it does not
change. For an atomic protocol, ψ

c.φm−−−→ ψ′, the max-
imal postcondition is the weakest constraint, φ′, that
satisfies the explicit postcondition, ψ′, the message
φm, and the local constraints χ. This is clear from the

definition in [9], in which the postcondition is equiv-
alent to this, except it is constrained by φ′

m instead
of φm, such that φ′

m w φm, allowing agents to con-
strain messages. However, if we are calculating the
most general constraint, then φm is the most general
message constraint, so we use this rather than any
further constrained message. In addition, we conjoin
this constraint with the pre-state, φ, but with all free
variables in φ′ hidden from φ.

The maximal postcondition of the sequential com-
position π1;π2 under the state φ is the maximal post-
condition of π2 under the initial state post(π1, φ, χ).
That is, the maximal postcondition from executing π2
under the maximal postcondition of π1 under φ. The
maximal postcondition of the choice protocol π1 ∪ π2
is the disjunction of the two protocol’s maximal post-
conditions, because one of these postconditions will
hold after executing the choice. The maximal post-
condition of a variable declaration varψx ·π is the max-
imal precondition of π under the state ∃xφ and with
local constraints ∃xχ ∧ ψ′. References to x in φ and
χ are hidden because any references already declared
are out of scope. The maximal precondition of the
referenced name N(x) is the maximal precondition
of the corresponding protocol π, with the parameters
renamed. We omit the local constraints parameter if
it is unnecessary.

Example 3.2. Refer to the definition of the protocol
Q(x) from above. The weakest precondition of the
protocol is determined as follows:

pre(Q(x))

≡ pre(x = 0
c.a(x)−−−−→ x = 1; y = 0

c.b(x)−−−→ y = 1)

≡ pre(x = 0
c.a(x)−−−−→ x = 1)

≡ x = 0
The maximal postcondition is determined using

the definition of post. The overall maximal postcon-
dition of a protocol is the maximal postcondition with
the weakest precondition as the initial state:

post(Q(x), pre(Q(x)))
≡ post(Q(x), x = 0)

≡ post(x = 0
c.a(x)−−−−→ x = 1;

y = 0
c.b(y)−−−→ y = 1, x = 0)

≡ post(y = 0
c.b(y)−−−→ y = 1,

post(x = 0
c.a(x)−−−−→ x = 1), x = 0)

≡ post(y = 0
c.b(y)−−−→ y = 1, x = 1)

≡ y = 1 ∧ x = 1

Definition 3.5. Formal Definition of Stuckness

Definition 3.1 presented an informal definition of
stuckness for a protocol. The notion of stuckness,
and its related proof obligations, is similar to the way
in which preconditions are verified in model-oriented
specification languages such as Z [14] and B [13].
However, in these methods, the proof is generally of
the form: pre → ∃post. That is, the proof is that if
the precondition holds, there exists at least one post-
state that satisfies the postcondition.

This definition is not enough to prove that a proto-
col is stuckness free. Take for example, the following
protocol:

R(x) =̂ (x = 0
c.a(x)−−−−→ x = 1 ∪ x = 0

c.b(x)−−−→ x = 2);

x = 1
c.d(x)−−−−→ x = 10

This defines a choice followed by an atomic protocol.
The precondition for both options in the choice is

CRPIT Volume 74 - Computer Science 2008

130

x = 0, therefore, the overall precondition is x = 0. If
the protocol is in a state in which the precondition
holds, then the left option can be chosen, resulting in
the state x = 1. The precondition of the next protocol
is x = 1, so execution can complete. However, if the
right option is chosen, resulting in the state x = 2,
then the protocol becomes stuck. So, even though
the precondition of this protocol implies that there is
a postcondition (take the first option of the choice),
the protocol can still become stuck. Therefore, an
alternate definition to the pre → ∃post definition is
needed.

We formally define stuckness as a relation called
stuck, in which, for a protocol π, an initial state φ,
and local constraints χ, stuck(π, φ, χ) is true if and
only if π can become stuck from the starting state φ
under the local constraints χ. Devising a neat, formal
definition of stuckness for any arbitrary protocol, like
the pre→ ∃post from above, does not seem possible,
so instead, we define it such that each protocol oper-
ator has its own definition, each shown in Table 1.

This definition is not immediately obvious, so we
spend some time discussing it. The empty protocol,
ψ → ε, can only become stuck if its precondition is not
enabled. [9] specifies the denotational semantics of

an atomic protocol, ψ
c.φm−−−→ ψ′, as follows2, assuming

that φ is the pre-state and χ the local constraints:
∃φ′

m, φ
′ • (φ ∧ χ w ψ) ∧ (φ′

m w φm) ∧
φ′ ≡ (ψ′ ∧ φ′

m ∧ χ ∧ ∃vφ)
where v is the free variables in ψ′ ∧ φ′

m ∧ χ
Here, φ′

m represents the message, and φ′ the post-
state. So, this definition says that φ ∧ χ must satisfy
the precondition, the message φ′

m must be a refine-
ment of the message template φm, and the post-state
is the postcondition, ψ′, conjoined with the informa-
tion from the message, φ′

m, conjoined with the local
constraints, χ (which must hold after the execution),
and finally, conjoined with ∃vφ, in which v is the set
of variables that this protocol changed, therefore ∃vφ
is the information from the pre-state φ that is not
overridden by the postcondition.

An atomic protocol is stuck under an initial state φ
if it defines no behaviour. So, for the pre-state φ, this
is equivalent to negating the definition from above:

¬∃φ′
m, φ

′ • (φ ∧ χ w ψ) ∧
(φ′

m w φm) ∧ φ′ ≡ (ψ′ ∧ φ′
m ∧ χ ∧ ∃vφ)

≡ ∀φ′
m, φ

′ • (φ ∧ χ 6w ψ) ∨ φ′
m 6w φm ∨

φ′ 6≡ (ψ′ ∧ φ′
m ∧ χ ∧ ∃vφ)

If for every φ′
m, φ′

m 6w φm, that must mean that
φm is equivalent to false, and therefore φm is unsatis-
fiable. Otherwise, if there is a φ′

m such that φ′
m w φm,

but for every φ′, φ′ 6≡ (ψ′ ∧ φ′
m ∧ χ ∧ ∃vφ), this must

mean that ψ′∧φ′
m∧χ∧∃vφ is unsatisfiable. Therefore,

the above predicate becomes:
∀φ′

m • (φ ∧ χ 6w ψ) ∨ φm w false ∨
(φ′

m w φm → (ψ′ ∧ φ′
m ∧ χ ∧ ∃vφ) w false)

If for every φ′
m such that φ′

m w φm (including
φm itself), (ψ′ ∧ φ′

m ∧ χ ∧ ∃vφ) w false, then we can
substitute φm for φ′

m in this predicate (removing the
quantification), because φm is the most general case
of φ′

m:

(φ ∧ χ 6w ψ) ∨
φm w false ∨ (ψ′ ∧ φm ∧ χ ∧ ∃vφ) w false

Clearly, if φm w false then also (ψ′∧φm∧χ∧∃vφ) w
2The definition from [9] is in fact defined as a set of pre- and

post-states, however, the definition presented here will suffice for
discussion.

false, so this first case is not necessary. Using the def-
inition of implication, we are left with the following:

(φ ∧ χ w ψ) → (ψ′ ∧ φm ∧ χ ∧ ∃vφ) w false
However, ∃vφ contains no information about the

other variables in the post-state, because these vari-
ables are hidden by ∃v, so conjoining it to the post-
condition cannot result in an unsatisfiable constraint.
We assume that φ is satisfiable (because it is the post-
state of another protocol), we can remove it from the
proof obligation. This leaves us with the following:

(φ ∧ χ w ψ) → (ψ′ ∧ φm ∧ χ) w false
Therefore, an atomic protocol becomes stuck if the

precondition is not enabled by the current state, or if
the postcondition (including any constraints specified
by local variable declarations) and message are incon-
sistent with each other, which is an intuitive definition
of stuckness.

The case for the sequentially composed protocol
π1;π2 is straightforward; it is stuck under a pre-state
φ if either π1 is stuck under φ, or if, once π1 has
executed, π2 is stuck under the end-state of π1.

This case for a choice is less straightforward than it
may first appear. An initial attempt to model stuck-
ness for a choice protocol may be to specify that the
protocol π1 ∪ π2 is stuck under a state φ if and only
if π1 and π2 are both stuck under φ. This is cer-
tainly true for the ‘if’, but not for the ‘only if’ — we
are aiming to verify that protocol can never become
stuck, so we have to consider the case in which one
of the protocols is not stuck, so can execute to its
end, but the other may be, so the composite protocol
can still get stuck. An initial attempt to model this
may be to specify that π1 ∪ π2 is stuck in a state φ
if and only if π1 or π2 is stuck in φ. However, this
does not consider the case in which the precondition
of only one protocol is enabled, which does not in-
dicate a stuck protocol, because the other protocol
may still be executed in another state that satisfies
its precondition.

Considering all these cases, we have the following
three cases in which the protocol π1∪π2 is stuck under
φ:

• the precondition of the protocol is not enabled:
φ 6w pre(π1 ∪ π2);

• the precondition of the protocol π1 is enabled,
but π1 is stuck under φ: φ w pre(π1) ∧
stuck(π1, φ); and

• the precondition of the protocol π2 is enabled,
but π2 is stuck under phi: φ w pre(π2) ∧
stuck(π2, φ).

Therefore, stuck(π1 ∪ π2, φ) is true if and only if
any of the above three conditions holds.

A variable declaration protocol, varψx ·π, is stuck
under φ if and only if the sub-protocol π is stuck
under φ once the locals constraints on x are taken into
consideration. This is straightforward to derive from
the semantics from [9] — varψx ·π is stuck in state φ
and local constraints χ if and only if π is stuck under
the state ∃xφ and local constraints ∃xχ ∧ ψ.

Finally, the referenced name N(x) is stuck in φ if
either N is not a name in the protocol specification,
or if the protocol, π, corresponding to the definition of
N(y), becomes stuck in φ when variable y is renamed
to x.

4 Verification of Protocols

In this section, we discuss how to prove that a proto-
col is stuckness free. Proofs are performed inductively

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

131

stuck(ψ → ε, φ, χ) iff φ ∧ χ 6w ψ

stuck(ψ
c.φm−−−→ ψ′, φ, χ) iff (φ ∧ χ w ψ) → (φm ∧ ψ′ ∧ χ w false)

stuck(π1;π2, φ, χ) iff stuck(π1, φ, χ) ∨ ∃φ′ ∈ L • φ′ w post(π, φ, χ) → stuck(π2, φ
′, χ)

stuck(π1 ∪ π2, φ, χ) iff φ 6w pre(π1 ∪ π2, χ) ∨
φ w pre(π1, χ) ∧ stuck(π1, φ, χ) ∨
φ w pre(π2, χ) ∧ stuck(π2, φ, χ)

stuck(varψx ·π, φ, χ) iff stuck(π, ∃xφ, ∃xχ ∧ ψ)
stuck(D,N(x), φ, χ) iff N(y) =̂ π /∈ D ∨ stuck(π[x/y], φ, χ)

Table 1: Formal Definition of Stuckness

over the structure of the protocols, and are divided
into two cases: the first proving that there exists at
least one state that satisfies the precondition of the
protocol; and the second proving that for every state
that does satisfy the precondition, executing the pro-
tocol from this state does not result in it becoming
stuck.

4.1 Proof Obligations

The first proof obligation is showing that an initial
state, other than false, exists. This is formally defined
as follows:

∃φ ∈ L \ {false} • φ w pre(π, χ)
Clearly, if there is no φ that satisfies the precondi-

tion of π, then the precondition is equivalent to false.
Therefore, this proof obligation can be reduced to the
following:

pre(π, χ) 6w false
This proof obligation is called the initialisation

proof. The second case, proving that any states satis-
fying the precondition do not lead to the protocol to
becoming stuck, is formally defined as follows:

∀φ ∈ L • φ ∈ pre(π, χ) → ¬stuck(π, φ, χ)
Therefore, we are proving that any constraint that

satisfies the precondition of a protocol cannot lead
it to become stuck. However, this is equivalent to
proving that π is not stuck for the most general case;
that is, the weakest explicit precondition. Therefore,
the following proof obligation will suffice:

¬stuck(π, pre(π, χ), χ)
This proof obligation is called the stuckness proof.
In this section, we investigate methods for prov-

ing these properties for the different protocol oper-
ators. In addition, we make the assumption that
structural induction is used to prove the legality of
a protocol. Structural induction is a proof method
in which one proves a property for the elements that
make up a structure before proving the property for
the structure itself. In the case of RASA protocols,
the induction is performed over the protocol oper-
ators, with atomic protocols and the empty proto-
col as base cases. Our assumption seems reasonable
given that the RASA framework is designed to en-
courage agents to compose protocols at runtime, and
the protocols from which the new composite protocols
are composed should already be verified as stuckness-
free, so the inductive step will have already been per-
formed.

However, proving that the sub-protocols are stuck-
ness free does not necessarily prove it for the com-
pound protocol. For example, consider the protocol
π1;π2 — we have already established that all post-
states of π1 must satisfy the precondition of π2, there-
fore, proving the legality of π1 and π2 is not enough
to establish the legality of the composite protocol. In

this section, we identify the additional proof obliga-
tions that must be discharged on top of the structural
induction to prove that protocols are stuckness free.

Remark 1. Regarding Local Constraints
So far in this section, we have defined the weakest

precondition and postcondition with respect to local
constraints. It must be noted that we make some
assumptions about the local constraints. Firstly, the
reader may have noted that we define the weakest
precondition of an atomic protocol, ψ

c.φm−−−→ ψ′, as
ψ ∧ χ, in which χ represents the constraints on local
variables. However, we do not define from where χ is
derived.

We assume that a protocol is proved correct only
for the local constraints under which is used. There-
fore, one must collect the local constraints as they
inductively move down the structure of the protocol.
For example, consider the following protocol, which
increments the value of the variables x and y, pro-
vided x < 10 holds before hand:

varx0=x
x0

·vary0=y
y0 ·x < 10

c.φm−−−→ x = x0+1∧y = y0+1

To evaluate the precondition of this protocol, one
would assume that there are no local constraints.
Then, the inner variable declaration, vary0=y

y0 · . . . is
evaluate under the local constraints x0 = x, and the
inner atomic protocol is evaluated under the local
constraints x0 = x ∧ y0 = y. Therefore, the weak-
est explicit precondition of the inner atomic protocol
is the precondition, x < 10, conjoined with the local
constraints, to get x < 10 ∧ x0 = x ∧ y0 = y, which
simplifies to x < 10 ∧ x0 < 10 ∧ y0 = y.

4.1.1 Empty Protocol

From the definitions in Section 3, we know that the
empty protocol can only become stuck if its precon-
dition does not hold. For the initialisation proof, we
substitute in an empty protocol for π from the generic
proof obligation and simplify:

pre(ψ → ε, χ) 6w false
≡ ψ ∧ χ 6w false from defn. of pre

Therefore, to discharge the initialisation proof for
an empty protocol, one must simply prove that its
weakest precondition, ψ ∧ χ in this instance, is satis-
fiable.

To prove the absence of stuckness in a protocol, we
substitute in an empty protocol for π from the generic
proof obligation and simplify:

¬stuck(ψ → ε, pre(ψ → ε, χ), χ)
≡ ¬(ψ ∧ χ 6w ψ) from defn. of stuck
≡ ψ ∧ χ w ψ double negation

This final line is trivially true, so we conclude
that no proof obligation is necessary for the stuck-
ness proof.

CRPIT Volume 74 - Computer Science 2008

132

4.1.2 Atomic Protocols

Atomic protocols, along with the empty protocol, are
the base cases of the inductive proof — that is, there
are no sub-protocols that we must verify before prov-
ing this protocol is legal.

For the initialisation proof of atomic protocols, we
substitute in an atomic protocol for π from the generic
proof obligation and simplify:

pre(ψ
c.φm−−−→ ψ′, χ) 6w false

≡ ψ ∧ χ 6w false from defn. of pre
Therefore, to discharge the initialisation proof for

an atomic protocol, one must simply prove that its
weakest precondition, ψ ∧ χ in this instance, is satis-
fiable.

To prove the absence of stuckness in a protocol,
we substitute in an atomic protocol for π from the
generic proof obligation and simplify:

¬stuck(ψ c.φm−−−→ ψ′, pre(ψ
c.φm−−−→ ψ′, χ), χ)

≡ ¬stuck(ψ c.φm−−−→ ψ′, ψ ∧ χ, χ)
from defn. of pre

≡ ¬(ψ ∧ χ w ψ → (ψ′ ∧ φm ∧ χ w false))
from defn. of stuck

≡ ψ ∧ χ 6w ψ ∨ (ψ′ ∧ φm ∧ χ) 6w false
from de Morgan’s laws

≡ (ψ′ ∧ φm ∧ χ) 6w false
because ψ ∧ χ w ψ for any ψ, χ

Therefore, to discharge the stuckness proof obli-
gation, one must prove that there exists a postcondi-
tion from the weakest precondition, by proving that
ψ′ ∧ φm ∧ χ is satisfiable.

4.1.3 Sequential Composition

For the initialisation proof of sequential composition
protocols, we substitute in a sequential composition
for π from the generic proof obligation and simplify:

pre(π1;π2) 6w false
≡ pre(π1) 6w false from defn. of pre

Therefore, to discharge the initialisation proof
obligation for a sequential composition, π1;π2, one
must discharge the proof obligation for π1. Assuming
an inductive proof over the structure of π1;π2, this
will have already been discharged, therefore, such a
proof is not necessary.

To prove the absence of stuckness in a protocol,
we substitute in a sequential composition for π from
the generic proof obligation and simplify:

¬stuck(π1;π2, pre(π1;π2, χ), χ)
≡ ¬stuck(π1;π2, pre(π1, χ), χ)

from defn. of pre
≡ ¬(stuck(π1, pre(π1, χ), χ) ∨

stuck(π2, post(π1, pre(π1, χ), χ), χ)
from defn. of stuck

≡ ¬stuck(π1, pre(π1, χ), χ) ∧
¬stuck(π2, post(π1, pre(π1, χ), χ), χ)
from de Morgan’s laws

Assuming an inductive proof over the structure
of π1;π2, the stuckness proof obligations for π1 and
π2 would have already been discharged. Therefore,
¬stuck(π1, pre(π1, χ), χ) need not be proved again.
However, protocol π2 would have been proved to be
stuckness free only for its precondition, so we need
to prove that every postcondition of π1 satisfies the
precondition of π2. We can do this by proving that

the maximal postcondition of π1, post(π1, pre(π1, χ),
is a stronger constraint than the precondition of π2:

post(π1, pre(π1, χ), χ) w pre(π2, χ)
Therefore, to prove that sequentially composed

protocol, π1;π2, is stuckness free, one must prove that
the postcondition of π1, under its weakest precondi-
tion, implies weakest precondition of π2.

We also include an additional proof obligation for
special case for sequential composition: protocols of
the form π1; (π2∪π3). In such protocols, it is possible
that the protocol is not stuck, however, that one of
π2 or π3 is never enabled. For example:

N(x) =̂ x = 1
c.a(x)−−−−→ x = 2;

(x = 2
c.b(x)−−−→ x = 3 ∪ x 6= 2

c.d(x)−−−−→ x = 4)

In this example, the postcondition x = 2 enables
the left side of the choice every time, but never the
right hand side. While this does not imply stuckness,
because the left case is always enabled, it does mean
that the right hand side is unnecessary. Therefore,
in this case, we prove that π1;π2 and π1;π3 are both
stuckness free. This seems reasonable, because

π1; (π2 ∪ π3) = π1;π2 ∪ π1;π3

for any π1, π2, and π3, therefore, it would be in-
consistent for the protocol on the right side of the
equality to be declared stuck, while the protocol on
the left side is not. Similarly protocols of the format
(π1 ∪ π2);π3 can be broken into the two cases π1;π3
and π2;π3. This is strictly not necessary, but it may
make a proof of such a property more straightforward.

4.1.4 Choice

For the initialisation proof of a choice protocol, we
substitute in a choice for π from the generic proof
obligation and simplify:

pre(π1 ∪ π2) 6w false
≡ pre(π1) ∨ pre(π2) 6w false

Therefore, to discharge the initialisation proof
obligation for a choice, π1 ∪ π2, one must prove that
one of π1 or π2 has an initialisation state. Assuming
an inductive proof over the structure of π1 ∪ π2, this
will have already been discharged for both π1 and π2,
therefore, it trivially holds for either, and this proof
is not necessary.

To prove the absence of stuckness in a choice pro-
tocol, we substitute in a choice for π from the generic
proof obligation and simplify:

¬stuck(π1 ∪ π2, pre(π1 ∪ π2), χ)
≡ ¬stuck(π1 ∪ π2, pre(π1) ∨ pre(π2), χ)

from defn. of pre
≡ ¬

(
(pre(π1) ∨ pre(π2) 6w pre(π1) ∨ pre(π2)) ∨
pre(π1) ∨ pre(π2) w pre(π1) ∧
stuck(π1, pre(π1) ∨ pre(π2), χ) ∨

pre(π2) ∨ pre(π2) w pre(π2) ∧
stuck(π2, pre(π1) ∨ pre(π2), χ)

)
from defn. of stuck

The first line of the above predicate is trivially
false, because pre(π1) ∨ pre(π2) enables one of the
preconditions of π1 and π2 respectively. In addition, if
we are proving that π1 is not stuck in pre(π1)∨pre(π2)
in which pre(π1) ∨ pre(π2) w pre(π1), then we can
prove this for the more general case of pre(π1), and
similarly for π2. So, we are left with the following:

⇐ ¬
(
stuck(π1, pre(π1), χ) ∨ stuck(π2, pre(π2), χ)

)
≡ ¬stuck(π1, pre(π1), χ) ∧ ¬stuck(π2, pre(π2), χ)

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

133

So, we are left to prove that protocols π1 and π2 are
not stuck from their weakest precondition. Assuming
an inductive proof over the structure of π1 ∪ π2, π1
and π2 would have already been proven to not become
stuck from their weakest precondition. This implies
that the composing two stuckness-free protocols with
the choice operator will produce a new protocol that
is stuckness free, and therefore, no proof obligation is
necessary.

4.1.5 Variable Declaration

For the initialisation proof of variable declarations,
we substitute in a variable declaration for π from the
generic proof obligation and simplify:

pre(varψx ·π) 6w false
≡ ∃xpre(π,∃xχ ∧ ψ) 6w false from defn. of pre
≡ pre(π,∃xχ ∧ ψ) 6w false from defn. of ∃

Assuming an inductive proof over the structure
of varψx ·π, this will have already been proved for π,
therefore, no additional proof obligation is necessary.
However, if we assume an agent is composing an exist-
ing protocol π that has been verified, but not under
the local constraints ∃xχ ∧ ψ, then this additional
proof obligation must be discharged. This can be
done by either proving the above, or by proving that
∃xχ ∧ ψ entails the local constraints under which it
was previously proved. The latter case is possible be-
cause, if this is proved for a specific case, then it will
also hold for a more general case.

To prove the absence of stuckness in a variable
declaration, we substitute in a variable declaration
for π from the proof obligation and simplify:

¬stuck(varψx ·π, pre(varψx ·π, χ), χ)

≡ ¬stuck(varψx ·π, ∃xpre(π,∃xχ ∧ ψ), χ)
from defn. of pre

≡ ¬stuck(π, ∃xpre(π,∃xχ ∧ ψ),∃xχ ∧ ψ)
from defn. of stuck

Assuming an inductive proof over the structure
of varψx ·π, the following would already have been
proved:

¬stuck(π, pre(π,∃xχ ∧ ψ),∃xχ ∧ ψ)
This looks close to the predicate we wish to

prove, except that the weakest precondition of π is
pre(π,∃xχ∧ψ), rather than ∃xpre(π,∃xχ∧ψ), which
is even weaker because x is hidden, and therefore un-
constrained. However, these predicates are in fact
the same, because the constraints on x specified by
ψ in ∃xpre(π,∃xχ ∧ ψ) may be hidden, but they still
influence the behaviour of π via the ψ in the local con-
straints. Therefore, if any value of x from ψ is causing
π to become stuck, the same value will also cause this
to become stuck from ψ. This means that a stuckness
proof obligation is not necessary for variable declara-
tions. This is not difficult to see considering that π is
already proved to be never become stuck when its pre-
condition is enabled, and the precondition of varψx ·π
is exactly those states that, when taking into consid-
eration the additional variable x and its constraints,
satisfy the precondition of π.

However, as with the initialisation proof, if we as-
sume that π has been proved in the context of a dif-
ferent set of local constraints, then the above proof
obligation must be discharged for the local constraints
∃xχ ∧ ψ.

4.1.6 Reference Name

For the initialisation proof of reference names, we sub-
stitute in a reference name for π from the generic
proof obligation and simplify:

pre(N(x), χ) 6w false
≡ pre(π[x/y], χ) 6w false where N(y) =̂ π ∈ D
≡ pre(π, χ) 6w false

because φ ∈ L implies φ[y/x] ∈ L

Therefore, to discharge the initialisation proof
obligation for a reference name, N(x), in which
N(y) =̂ π is in the protocol specification D, one must
prove that there exists a pre-state that satisfies the
precondition of π. Assuming an inductive proof over
the structure of the protocol, π will have already been
proven to have an initial state, therefore, this proof
obligation is not necessary in the case that N(y) =̂ π.

However, we have a different case, in which N(y)
is not a name in the protocol specification:

pre(N(x)) 6w false
≡ nothing where N(y) =̂ π /∈ D

Therefore, to discharge the initialisation proof
obligation for a reference name, N(x), one has to
prove that N(y) =̂ π is a named protocol in the pro-
tocol specification. That is, one must prove:

N(y) =̂ π ∈ D for some y
To prove the absence of stuckness in a reference

name protocol, we substitute in a reference name for
π from the proof obligation and simplify:

¬stuck(N(x), pre(N(x), χ), χ)
≡ N(y) =̂ π ∈ D ∧ ¬stuck(π[x/y], pre(π[x/y]), χ))

Clearly, the right side of the conjunction is equiv-
alent to the proof obligation of π, so assuming an in-
ductive proof over the structure of the protocol, this
part of the proof obligation is not necessary. The left
side of the conjunction has already been proved for
the initialisation proof of this protocol, therefore, no
additional proof obligation is necessary.

4.2 Proving the Absence of Stuckness

When composing a protocol, we want to prove that
our compositions are legal. To do this, we can dis-
charge the proof obligations outlined in this section.
However, many of these proof obligations refer to the
local constraints, so one must relate these to the com-
position we are verifying. In this section, we outline
an algorithm for verifying an arbitrary protocol.

The algorithm, which we call prove, takes a pro-
tocol and local constraints, and returns true or false,
indicating whether the composition is legal or not.
The sketch is shown in Figure 1, and should be clear
to understand from the discussions in this section.

To prove a protocol π, is legal, one simply uses
prove(π, true), in which true is the local constraint;
that is, there are no local variables, so there are no
local constraints.

The reader may have already noted a problem with
the algorithm in Figure 1 regarding termination. If
there are mutually recursive references to names in
a protocol, this algorithm will not terminate. For
example, take the following protocol specification:

A =̂ B ∪ ε
B =̂ A ∪ ε

This protocol can run infinitely, as well as termi-
nate (if an agent chooses ε). The prove algorithm,
as it is above, will attempt to prove the legality of
A by looking up its respective definition, B ∪ ε and

CRPIT Volume 74 - Computer Science 2008

134

prove(π, χ) : {true, false}
if π = ψ → ε then

return ψ ∧ χ 6w false
else if π = ψ

c.φm−−−→ ψ′ then
return ψ ∧ χ 6w false and ψ ∧ φm ∧ χ 6w false

else if π = π1; (π2 ∪ π3) then
return prove(π1;π2, χ) and prove(π1;π3, χ)

else if π = π1;π2 then
return prove(π1, χ) and prove(π2, χ) and
post(π1, pre(π1), χ) w pre(π2, χ)

else if π = π1 ∪ π2 then
return prove(π1, χ) and prove(π2, χ)

else if π = varψx ·π1 then
return prove(π1,∃xχ ∧ ψ)

else if π = N(x) then
return N(y) =̂ π ∈ D and prove(π[x/y], χ)

Figure 1: Algorithm for Proving Protocols are Legal

verifying that. B will in turn be verified by looking
up its definition, A ∪ ε, and verifying that, and the
problem starts again with A, therefore running in-
finitely. A minor adjustment to the above algorithm
that keeps track of the named protocols and parame-
ters that have been verified will resolve this problem.

4.3 Proving Compositions

If we are to compose two existing protocols, then the
proof system is somewhat different to that outlined in
the prove algorithm. This is because we assume that,
if an agent is to construct a new protocol from exist-
ing protocols that reside in some form of library, then
the protocols in the library are already legal. This
means we only have to discharge the proof obligations
outlined in Section 4.1. Therefore, a composition al-
gorithm only has to prove the following:

• For every empty protocol:

– prove the existence of an initial state.

• For every atomic protocol:

– prove the existence of an initial state; and
– prove the existence of a post-state.

• For every sequential composition:

– prove that every post-state of the protocol
on the left enables a precondition on the
right.

• For every variable declaration:

– prove that adding the constraints on the
new local variable do not lead the sub-
protocol becoming stuck.

• For every referenced name:

– prove that the name is in the protocol spec-
ification.

Proving the legality of compositions can be done
with less effort than proving the legality of entire pro-
tocols. In addition, if the protocols are taken from
the library, then they will have been proved under
the assumption that there are no local constraints.
A composition is not under any local constraints ei-
ther, so we know that the sub-protocols used in the
composition are proved under the same local con-
straints. The exception to this is variable declara-
tions. If we compose protocol π with a declaration of

compose(π) : {true, false}
if π = ψ → ε then

return ψ 6w false
else if π = ψ

c.φm−−−→ ψ′ then
return ψ 6w false and ψ ∧ φm 6w false

else if π = π1; (π2 ∪ π3) then
return compose(π1;π2, χ) and

compose(π1;π3, χ)
else if π = π1;π2 then

return post(π1, pre(π1), true) w pre(π2, true)
else if π = varψx ·π1 then

return prove(π1, ψ)
else if π = N(x) then

return N(y) =̂ π ∈ D
else return true

Figure 2: Algorithm for Proving Compositions are
Legal

a variable, such as varψx ·π, then we must prove, us-
ing the prove algorithm from Figure 1 that π is valid
under the local constraints ψ. The reason for this
is easily demonstrated with an example. The atomic
protocol, x < 10

c.φm−−−−→ x = y + 1, which is a legal pro-
tocol, can be composed with the variable declaration
var

x=y
x,y ·x < 10

c.φm−−−−→ x = y + 1. This new composi-
tion is not legal, because the local constraint x = y
must hold over the scope of x and y, but this makes
the postcondition unsatisfiable: there does not exist
values for x and y such that x = y and x = y + 1.
Therefore, in the case of creating a variable declara-
tion composed from a legal protocol, one must prove
that this protocol is satisfied under the specified local
constraints.

The procedure for verifying composite protocols
that have been derived from other legal protocols is
specified in the algorithm called compose, shown in
Figure 2.

Note that compose does not take any local con-
straints as a parameter. As well as not recursively
proving the legality of the sub-protocols, compose is
also different to prove in that atomic protocols are
verified without the local constraints χ, because the
local constraints are assume to be just ‘true’. The
variable declaration case uses the prove algorithm
from Figure 1, for the reasons discussed above. Fi-
nally, any instances of choice protocols need not be
verified, because they are legal by default, therefore,
these default to the final ‘else’, which returns ‘true’.

5 Related Work

There are a handful of languages that have been used
for first-class protocol specification. Various authors
have had success with approaches based on Petri
Nets [3] and on declarative specification languages
[4, 5, 15], as well as an algebraic language similar
to RASA called the Lightweight Coordination Cal-
culus [12]. [8] presents a detailed comparison of these
languages, including RASA, so we do not cover this
here. The authors of the cited work have discussed
and demonstrated proof methods for these languages,
but these involved proving domain-specific properties,
not generic properties such as stuckness.

As noted in Section 3, verification of model-
oriented specifications often prove generic properties
that resemble our work. For example, the Cogito [1]
and B method [13] development architectures both
recommend an initialisation proof, which is similar
our notion of an initialisation proof, and that a pre-
condition of an operation should satisfy its postcon-

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

135

dition, which is similar to the second proof obligation
for atomic protocols in RASA. However, these meth-
ods differ significantly because operations in these
languages as modelled as relations between precon-
dition and postconditions using predicates, whereas
RASA specifies no relationship between precondition
and postconditions, just some information that holds
after a protocol executes.

Our notion of stuckness is similar to that of
Pierce’s definition of stuckness for programs [11], and
in fact, this is from where we take the term. However,
Pierce’s motivation for identifying stuckness is to de-
fine programming languages such that it is not possi-
ble to write a program that becomes stuck, whereas
we are aiming to prove the absence of stuckness, while
defining the RASA language such that stuckness is
possible. Pierce uses runtime exceptions to handle
programs that would otherwise become stuck. Ex-
ceptions could be added to RASA, but we feel that
raising runtime exceptions when a protocol cannot
continue executing is no more desirable than becom-
ing stuck, so we prefer to eliminate stuckness for pro-
tocols before their use.

6 Conclusions and Future Work

By treating agent interaction protocols as first-class
entities, RASA permits protocols to be dynamically
inspected, referenced, invoked, composed, and shared
by ever-changing collections of agents engaged in in-
teraction. The task of protocol composition, se-
lection, and invocation may thus be undertaken by
agents rather than agent designers, acting at run-time
rather than at design-time. Frameworks such as this
will be necessary to achieve the full vision of collec-
tions of intelligent autonomous agents interacting in
dynamic environments.

This paper takes us one step towards such visions,
by identifying generic cases in which first-class pro-
tocols are deemed to be illegal. We define a notion
of stuckness for agent interaction protocols, and for-
mally defined stuckness for the RASA framework.
We have presented a method for proving that a pro-
tocol composition is legal, and noted the specific proof
obligations that must be discharged when composing
legal protocols into larger protocols. Proof obliga-
tions are specific to the composition operator that is
being used in the composition, and can be discharged
by the agents at runtime. Emphasis is placed on pro-
tocols specified in the RASA protocol language, but
such ideas would be applicable to protocols specified
in any language with features similar to RASA’s.

Before our full visions are realised, significant fur-
ther work is required. In other work [9], we are in-
vestigating methods for documenting the outcomes
of protocols, which will allow agents to search for the
protocols that best achieve their goals. In addition,
meta-protocols are needed that allow agents to pro-
pose and negotiate which protocols are to be used,
and suitable protocols for doing so will be investi-
gated. To develop and test these ideas, we plan a
prototype implementation in which agents negotiate
the exchange of information using protocols specified
using the RASA framework.

Acknowledgements

We are grateful for financial support from the EC-
funded PIPS project (EC-FP6-IST-507019), website:
http://www.pips.eu.org, the EC-funded ASPIC
project (IST-FPC-002307), website: http://www.
argumentation.org/, and the EPSRC Market-Based
Control project (GR/T10657/01), website: http:
//www.marketbasedcontrol.com/.

References

[1] A. Bloesch and O. Traynor. The Cogito tool ar-
chitecture. Technical Report 95-7, Software Ver-
ification Research Centre, 1995.

[2] F. S. De Boer, M. Gabbrielli, E. Marchiori, and
C. Palamidessi. Proving concurrent constraint
programs correct. ACM Transactions on Pro-
gramming Languages and Systems, 19(5):685–
725, September 1997.

[3] L. P. de Silva, M. Winikoff, and W. Liu. Extend-
ing agents by transmitting protocols in open sys-
tems. In Proceedings of the Challenges in Open
Agent Systems Workshop, Melbourne, Australia,
2003.

[4] N. Desai, A. U. Mallya, A. K. Chopra, and M. P.
Singh. OWL-P: A methodology for business pro-
cess modeling and enactment. In Workshop on
Agent Oriented Information Systems, pages 50–
57, July 2005.

[5] N. Desai and M. P. Singh. A modular action
description language for protocol composition.
In Proceedings of the 22nd Conference on Artifi-
cial Intelligence (AAAI), pages 962–967. AAAI
Press, 2007.

[6] P. E. Dunne. Prevarication in dispute protocols.
In G. Sartor, editor, Proceedings of the Ninth In-
ternational Conference on AI and Law, pages 12–
21, New York, NY, USA, 2003. ACM Press.

[7] C. A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall International, 1985.

[8] J. McGinnis and T. Miller. Amongst first-class
protocols. In Engineering Societies in the Agents
World VIII, LNAI, 2007. (To Appear).

[9] T. Miller and P. McBurney. Executable logic for
reasoning and annotation of first-class interac-
tion protocols. Technical Report ULCS-07-015,
University of Liverpool, Department of Com-
puter Science, 2007.

[10] T. Miller and P. McBurney. Using constraints
and process algebra for specification of first-
class agent interaction protocols. In G. O’Hare,
A. Ricci, M. O’Grady, and O. Dikenelli, editors,
Engineering Societies in the Agents World VII,
volume 4457 of LNAI, pages 245–264, 2007.

[11] B. C. Pierce. Types and programming languages.
MIT Press, Cambridge, MA, USA, 2002.

[12] D. Robertson. Multi-agent coordination as dis-
tributed logic programming. In Proceedings of
the International Conference on Logic Program-
ming, volume 3132 of LNCS, pages 416–430.
Springer, 2004.

[13] S. Schneider. The B-Method: An Introduction.
Palgrave, 2001.

[14] J. Spivey. The Z Notation: A Reference Manual.
Prentice Hall, 2nd edition, 1992.

[15] P. Yolum and M. P. Singh. Reasoning about
commitments in the event calculus: An approach
for specifying and executing protocols. Annals of
Mathematics and AI, 42(1–3):227–253, 2004.

CRPIT Volume 74 - Computer Science 2008

136

An Investigation of the State Formation and Transition Limitations
for Prediction Problems in Recurrent Neural Networks

Angel Kennedy and Cara MacNish
School of Computer Science and Software Engineering

The University of Western Australia
{angel,cara}@csse.uwa.edu.au

Abstract

Recurrent neural networks are able to store informa-
tion about previous as well as current inputs. This
“memory” allows them to solve temporal problems
such as language recognition and sequence prediction,
and provide memory elements for larger cognitive net-
works. It is generally understood that there is an (in-
creasing) relationship between the number of nodes
(and connections) in a network, the capabilities of
the network, and the amount of training required.
However the specifics of this relationship are less well
understood. In particular, given that the state of a
recurrent network is encoded as a real-valued vector
of activation levels, even for small networks there are
infinitely many states to choose from. What then de-
termines, or limits, the capabilities of the network?

In this paper we use dynamical systems techniques
to examine this question in regard to temporal lag.
We show that for simple delay problems that the net-
work is unable to solve, the system is able to learn
sufficient state representations, but appears to be un-
able to create transitions that allow it to access those
states in the correct order (or equivalently, is unable
to arrange its states to suit the transitions that it can
support).

1 Introduction

Recurrent neural networks (RNNs) are able to store
information about previous as well as current inputs.
This “memory” allows them to solve temporal prob-
lems such as language recognition and sequence pre-
diction [1],[2], and provide memory elements for larger
cognitive networks, such as Long Short-Term Memory
(LSTM) [3]. It is generally understood that there is
an (increasing) relationship between the number of
nodes (and connections) in a network, the capabilities
of the network, and the amount of training required.
However the specifics of this relationship are less well
understood.

In our work we are interested in the capabilities
of recurrent networks as memory units in the context
of larger cognitive systems. More specifically we are
interested in the impact of changing the activation
dynamics or altering the amount of structure in the
network on these capabilities. One important aspect
of this is the degree to which recurrent networks can
learn to “remember” across time lags. It has been
argued, for example, that the error in RNNs trained

Copyright c© 2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. xx. Gillian Dobbie, Ed. Reproduction for aca-
demic, not-for profit purposes permitted provided this text is
included.

by backpropagation either vanishes or blows up caus-
ing RNNs to fail in the presence of time lags greater
than 5-10 discrete time steps between input and corre-
sponding output events [3],[4]. However these papers
do not examine the relationship between network size
(and hence “degrees of freedom”) and time lag.

In the last decade or so a number of authors have
attempted to elucidate the “inner workings” of RNNs
(see for example [1],[5] and [6]). Many of these pa-
pers focussed on the ability observed in RNNs to per-
form sequential recognition tasks, such as recognis-
ing regular languages, and thereby mimic finite state
machines (FSMs). In his seminal paper, Casey [1]
presented a number of theoretical results linking the
dynamics of RNNs and their performance on FSM
computations. He showed, for example, that for an
RNN to perform FSM behaviour it must necessar-
ily partition its state space into disjoint regions that
correspond to the states of the minimal deterministic
finite automata (DFA). He also showed that cycles
in the DFA will induce attractors in transition maps
of the dynamical system induced by the network. We
will explain these concepts in more detail in Section 2.

A number of authors have more recently deter-
mined computational limitations for a variety of
RNNs (e.g. Hopfield, threshold, sigmoid) in mod-
elling DFAs in terms of the relationship between the
number of states of the deterministic finite automata
that have to be modelled and the number of nodes or
units a network requires (see [7] for a review). Whilst
useful, these analyses suffer from several drawbacks
in terms of providing the level of understanding we
require. One is that they define the complexity only
for the case where the network robustly models the
underlying DFA. In our current work we do not neces-
sarily require one hundred percent accuracy from the
network. Another problem is that they do not seem
to address the question in a way that considers quali-
ties of the required transitions of the underlying DFA.
Preliminary analyses by Casey [1] suggested that par-
ticular qualities of the transitions or the relationship
between transitions within the DFA are important for
the required complexity of the underlying dynamical
system, in our case the RNN.

In this paper we apply the dynamical systems tech-
niques used by Casey and others to examine the prac-
tical problem of time lag in RNNs, and its relationship
to network size. To achieve this we run experiments
on small RNNs that attempt to learn to delay a bi-
nary signal. When the number of nodes is equal to
or larger than the number of time delay steps these
problems are easily solved by “pipelining” the units,
and this is indeed what we found the RNNs learned
to do. The more interesting case is where the number
of units is less than the required delay. In this case
the ability of the network to solve the problem, for a
fixed difference between number of nodes and delay
length, depends on the number of nodes. In partic-

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

137

ular, smaller networks are less successful at compen-
sating for a fixed difference.

Intuitively one might expect a smaller network to
have fewer “degrees of freedom” in some sense at its
disposal. However, given that the state of a recurrent
network is encoded as a real-valued vector of activa-
tion levels, even for small networks there are infinitely
many states to choose from. Our emphasis is there-
fore on studying the internal dynamics of networks
attempting to solve the time delay problem to iden-
tify the limiting factors. We show that for simple
delay problems, which the network is unable to solve,
the system is able to learn sufficient state representa-
tions, but appears to be unable to create transitions
that allow it to access those states in the correct order
(or equivalently, is unable to arrange its states to suit
the transitions that it can support.)

In Section 2 we provide some background to the
dynamical systems approach to studying RNNs and
the DFAs they learn to execute, and introduce the ter-
minology used in the paper. We give examples of the
simple pipelining case. In Section 3 we report results
for cases where the number of nodes is less than the
delay required. These cases force the network to use
areas of the state space not required for the simpler
problems. In Section 4 we examine one case in detail
to see how the network partitions its state space in its
best attempt at a solution, and show why the avail-
able transitions do not allow it to solve the problem
with this partion. Based on this we offer some conjec-
tures for why the network cannot solve the problem.
In Section 5 we provide support for some of these
conjectures by examining the changes that take place
when particular states are removed from the input.
Section 6 concludes the paper and discusses further
avenues for exploration.

2 RNNs, DFA and Dynamical Systems

One of the challenges of understanding ANNs is gain-
ing a good understanding of what the network is re-
ally doing when it learns a particular set of param-
eters or weights. According to Tino et al “Most of
the important qualitative behaviours of a nonlinear
system can be made explicit in the state space with a
state space analysis.” ([6], p4). The use of tools from
dyanamical systems (DS) allows such an explicit view
of the state space created by the activation dynam-
ics of the network. The term “activation dynamics”,
when used to refer to a recurrent network, describes
the relationship between the activation state of the
network at the previous time step, the current input
vector and the new activation state of the network.
The activation functions of the network determine
the particular formula that describes this relation-
ship. The weights are the parameters of the formula.

The dynamical systems approach has been used
successfully by researchers within the investigative
paradigm of dynamical systems to study the interac-
tion between the low dimensional attractor space of
sensory prediction networks and the low dimensional
attractor space of higher level chunking systems [8].
It has also been successfully used to analyse the inner
workings of either RNNs solving specific problems or
a class of RNNs [1]. Casey [1] used tools for analysing
dynamical systems to show what properties a dynam-
ical system must have, given in terms of the properties
of the individual dynamical systems (created by giv-
ing the system constant input), if it is to perform an
FSM calculation. These definitions are given for noisy
as well as non-noisy systems and applied to exam-
ple instances of second-order networks trained using
Real-Time-Recurrent-Learning (RTRL).

We have based our analysis on the work of

Casey [1] and Tino et al [6] who used DS analyses
to track the correspondence between recurrent net-
works and the deterministic finite automata (DFA)
they mimicked. Each network is treated as a set
of discrete time dynamical systems associated with
the presentation of input symbols M to the network.
Casey and Tino trained their networks to recognise
a language. In order to do so, their networks had to
be able to model the DFA associated with accepting
states for strings which are members of the language.
The signal delay problem, on the other hand, requires
the network to translate a set of inputs into a set of
outputs based on a deterministic rule. This has an as-
sociated Moore Machine (MM; equivalent to a DFA
except that the set of accept states is replaced by a set
of outputs). For networks of sufficiently low dimen-
sionality, or number of units, the i-maps (explained
in further detail below) corresponding to the dynam-
ical systems of the network can be displayed easily.
This allows for a visual analysis of the state space of
the network and hence the model of the DFA or MM
learned by it.

The following subsections describe the signal delay
problem and a typical pipeline solution in terms of the
concepts described above. The relationship between
the associated MM and the typical pipeline solution
are demonstrated.

2.1 Signal delay: The problem and its corre-
sponding MM

The signal delay problem involves a single binary in-
put presented to the network that should be output
by it after a specified number of discrete time steps.
The number of states s in the MM that the network
needs to model in order to solve the problem is di-
rectly related to the number of bits that the network
needs to remember to produce the correct output,
and hence to the time delay ∆t (1). The activation
function for an RTRL based network is given in equa-
tion (2), where Aa(t) is the activation of unit a at
time t, u is the number of units in the network, wai
is the weight from unit i to unit a and f is a sig-
moidal squashing function. One implication of this
function is that the network has an inbuilt time-step
delay ∆t of one and therefore the minimum delay it
is capable of learning is ∆t = 1. Figure 1 depicts the
MM associated with the signal delay problem when
∆t = 2.

s = 2∆t (1)

Aa(t) = f(
u∑
i=1

waiA(t− 1)) (2)

Each network has a bias input that is always set
to one, a binary input and u fully connected recur-
rent units. Each input is connected to all units within
the network. One unit is selected as the output unit
before training. The network is trained to perform
the task of having the output mimic the input after
a specified time delay. The network is considered to
have successfully solved the task if the average out-
put error is less than 0.05. We consider the network to
have correctly classified a string of inputs if each out-
put is within 0.5 of the expected output. This metric
is not used in training the network however. It is used
here only as a means of evaluating network solutions
after training. Figure 2 depicts a 2-unit version of
this network structure.

CRPIT Volume 74 - Computer Science 2008

138

Figure 1: The MM associated with the signal delay
problem for ∆t = 2. The ∆t binary digits labelling
each state correspond to the inputs presented over the
last ∆t time steps (with the rightmost digit presented
last). The arrows, labelled with the corresponding
input and output, indicate the state transitions.

Figure 2: A 2-unit fully connected RNN. The possible
activation value(s) are displayed within each input or
unit. The arrowed lines indicate the weights and the
direction of the connection between the units to which
the weight is applied. The weights are initialised as a
uniform random double between -1.0 and 1.0

2.2 The typical “pipeline” solution: corre-
spondence between the weight based and
state-space based representations

If the network is allowed to have as many units as
the number of required delay steps (u ≥ ∆t) then it
has at least one unit available for each bit of stored
information. If the units in the network are allowed
only binary activation then this supports 2∆t possible
different states, which is equal to the number of states
in the minimal MM corresponding to a time step de-
lay of ∆t (1). Intuitively this implies that a network
with u ≥ ∆t will be capable of modelling the states
required. Figure 3 demonstrates a typical “pipeline”
solution found by a two-unit network to the problem
with a one and two-step time delay.

Previous analysis of the required complexity of bi-
nary units modelling DFAs has demonstrated that in
the worst case the lower bounds of the number of units
required to solve a DFA with s states is Ω(

√
s) [7]. In

our case this would indicate Ω(
√

2∆t) units. We have
found, however, that with our solve criterion of error
< 0.05 then for 1 ≤ ∆t ≤ 10, when the network is al-
lowed to have at least as many units as the length of
time it is required to delay the signal (u ≥ ∆t) it usu-
ally creates such a pipeline. This only requires Ω(∆t)

Figure 3: A representation of the structure of a 2 unit
networks used in our experiments. The circles repre-
sent input lines and units, as labelled. The arrows
in between indicate directional weights between the
units. The boldness of the arrows corresponds the
the strength of the weights. The bold lines on both
the circles and arrows indicate the path an input takes
over ∆t steps before it is “forgotten” by the network.
The first network (top) was trained to delay a binary
signal by one step. The second network (bottom) was
trained to delay it by two steps.

units. This could imply that the signal delay prob-
lem is easier to model than the worst case scenario.
When ∆t > 10 we start to experience computational
problems with obtaining results. However this could
be due to the vanishing error gradients mentioned by
Gers et al [4].

The dynamical systems analysis tools used by
Casey [1] provide a representation of the transitions
between states that occur within the network. Fol-
lowing Casey’s definition, an i−map, viewed as a dy-
namical system, is the mapping from the u-cube(Iu)
into itself given a fixed input vector i and an u-unit
RNN. The dimensions of the cube are equal to the
number of units in the network and the range in each
dimension is determined by the range of activation
values those units are allowed to take. The activation
function provides the mapping from one point in the
cube to the next The weights of the RNN are param-
eters of the system. An I-map is the composition of
the ij maps given a string of symbols I = i1, i2, ...in.

In order for an RNN, as a set of dynamical sys-
tems, to model the states and state transitions in a
MM it has to be able to create mappings or transi-
tions between activations such that the activation of
the RNN always corresponds to the correct output.
To perform robust calculations it has to be able to
stay within some specified level of error ε of the re-
quired activation at time t + 1 if it is within some
specified level of error ε of the current state at time t.
To do this it has to create classes of transitions that
behave the same way in terms of moving from some
continuous area to another continuous area. What
we mean by continuous is that within the area there
are no transitions that do not behave the same way
as the surrounding transitions. When we refer to a

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

139

state within an RNN, as opposed to a particular lo-
cation in the state space, we are referring to a range
of locations in the state space, such that the transi-
tions from any point within that range will be of the
same class as any other point in that range for any
input string. In other words for those points in the
state space the RNNs dynamical systems (created by
holding each different possible I constant) will have
the same class of transitions. The description of these
concepts is based on the formal definition provided by
Casey [1].

An important feature of RNN states is that they
can either have the property of being transient states
(known as transients) or attracting states (known as
attractors) of any of the I-maps corresponding to the
RNN. Casey [1] provides a precise mathematical def-
inition of such attractor and transient states. A ba-
sic summary of this definition is that an attractor of
an I-map is a state having the property that once
the activation of the dynamical system is within that
state it will not leave it (that is it will not transition
to another state) provided the underlying dynamical
system continues to receive the input string I. A
transient, on the other hand, is a state having the
property that once the dynamical system is in that
state the application of the input string I will cause
the dynamical system to transition to another state.

Casey [1] notes several features of the correspon-
dence between properties of RNN states and prop-
erties of the MMs they model. For example, cycles
in a DFA will correspond to attractors in the tran-
sition maps of the dynamical system created by the
RNN that models it. A cycle occurs when a MM,
starting in state si transitions to si after reading in
a particular input string. For a MM corresponding
to a signal delay problem of delay ∆t there will exist
a cycle in the MM for every input string of length
∆t. This has implications for some of the properties
an RNN, successfully trained to solve the signal delay
problem, will require. If an RNN correctly models
the MM then for every state of the MM there exists a
corresponding state of the RNN that is an attractor
of some I-map, where I is of length ∆t.

A visualisation tool, useful for small networks and
referred to here as an activation map, is to plot the ac-
tivations of the network in u dimensions over a num-
ber of time steps. This provides a reasonable view of
the boundaries of the states modelled by the network.

Figure 4 displays the appropriate section of the
MM overlaid on the vector field for the 0-map and 1-
map of a solution found by one of our 2 unit networks
to the delay problem with ∆t = 2. The correspon-
dence between the MM and the dynamical system de-
fined by the network becomes very clear. The vector
field display, for example, provides a visualisation of
the attractors of the i-maps. For the 0-map there is
an attractor located in the bottom left (corresponding
to state 00) of the vector field. For the 1-map there
is one located in the top right (corresponding to state
11). These attractors correspond to cycles of length
one of the MM when it is in state 00 or 11. Overlaying
the activation map on the i-map compliments the vec-
tor field display by providing a better understanding
of the practical implications of the particular vector
field. Figure 5 displays the activation states visited
by the network over 5000 consecutive time steps for a
solution to the same problem. If the 2 unit network
solution were exactly binary (that is each unit was
allowed to take on only activations 0 or 1) then the
activations of the network would all be in the corners
of the space.

Figure 4: The vector fields of the 0-map (top) and 1-
map (bottom) of a solution to the signal delay prob-
lem for ∆t = 2. Notice how the vector field learned by
the RNN generates the transitions corresponding to
the MM. The MM transitions corresponding to an in-
put of 0 have been overlaid on the 0-map to emphasise
this relationship. Equivalently the transitions corre-
sponding to an input of 1 have been overlaid on the
1-map.

3 Forcing the Network Away From a Pipe-
Line

The recurrent networks described above can model
the MM associated with the signal delay problem of
delay ∆t using close to binary activations for their
inputs provided they have at least ∆t units. How-
ever the fact that the activations of units are contin-
uous implies that the network is capable of represent-
ing an infinite number of states. It could do this by
partitioning its transitions appropriately, or in other
words, by creating attractors for each possible input
string I of length ∆t in regions of the u-cube away
from the corners. Theoretically then it could learn to
represent more complex MMs than those correspond-
ing to a pipeline solution provided it can learn the
required states and their transitions with sufficient
accuracy. With this in mind we designed signal de-
lay experiments that force the network to make use
of more of the state space available to it. This was
initially achieved by reducing u to ∆t− 1.

Table 1 displays the results of training networks of
size ∆t−1 to delay a signal for ∆t steps over 10 trials
each. This was done for all ∆t where 3 ≤ ∆t ≤ 11
(larger networks with larger time delays did not ter-

CRPIT Volume 74 - Computer Science 2008

140

Table 1: The results of training networks on the signal delay problem where (u = ∆t−1 | ∆t = 1, 2, . . . , 11).
Termination of training occurred either when the average network error was below 0.05 or the maximum number
of training runs was reached. The labels expand to number of units / time delay, solve rate over 10 trials,
training iterations to solve, mean minimum error reached if unsolved, time to reach mean minimum error if
unsolved, mean classification accuracy (CA) when solved, and mean CA when not solved. The criterion for
solving the problem was mean error < 0.05 over 100 time steps.

u/∆t Slv Rate Slv Time MER(unslvd) MER Time(unslvd) CA - slvd CA - not slvd
2/3 0.0 NA 0.293696 20,000,017 NA 0.780083
3/4 0.0 NA 0.173661 11,585,450 NA 0.872621
4/5 0.2 8,994,213 0.099954 7,207,508 0.978607 0.953271
5/6 0.1 7,015,836 0.094973 7,036,484 0.979563 0.949131
6/7 0.5 7,478,422 0.081307 7,461,881 0.974914 0.961935
7/8 0.8 6,751,568 0.099986 5,051,617 0.978364 0.955215
8/9 1.0 7,386,683 NA NA 0.982654 NA
9/10 1.0 8,732,683 NA NA 0.994315 NA
10/11 0.4 11,068,611 0.249964 10,723,936 0.998651 0.813540

Figure 5: The vector fields of the 0−map (top) and
1 − map (bottom) of a solution to the signal delay
problem for ∆t = 2. The activation values of the
network (dark patches) over 5000 consecutive time-
steps are plotted over the top. All but one of the
activation values are within 0.2 of the correct output.
The incorrect output occurs only because the network
was not initialised to a correct state. The network
manages to correct this error very quickly.

minate appropriately due to computational limita-
tions). The general trend depicted in the table is that
larger networks are better able to accommodate the
extra bit of information they are required to remem-

ber than smaller networks. The smaller networks,
where u < 4, do not solve the problem on any trials.
The networks always learn the problem at least par-
tially, producing better than chance levels of correct
classification, and the overall accuracy of the trained
networks, in general, improves as u increases even for
those cases where the network does not reach the er-
ror criterion where it is considered to have solved the
problem.

Intuitively it seems as though the larger networks
have more “degrees of freedom” available to accom-
modate the extra states and/or state transitions re-
quired. However even if this is the case, and it is not
obvious where these degrees of freedom would come
from, we know that the u-cube corresponding to our
RNNs can be partitioned infinitely. We don’t know,
at this stage, that it can learn or even model appro-
priate partitions of transitions that correspond to the
required MM. Section 4 contains a closer examination
of the particular case where u = 2 and ∆t = 3 referred
to as the 2-3 condition with the aim of elucidating the
cause of the networks’ ability to consistently solve the
3 step delay problem only partially.

4 The 2-3 Condition: What the network has
to learn and what it actually learns

In order for a recurrent network to solve the 2-3 prob-
lem it has to be able to mimic or model the MM
associated with the signal delay problem. Figure 6
depicts this MM. It is worth noting several features
of the MM in terms of the problems they pose the
network. First there are eight states in the MM that
will have to be represented. Secondly, to achieve the
correct output classification, four of these states (de-
picted in Figure 6 in bold) must be located in the
top half of the activation space of the output unit
whilst the other four must be located in the bottom
half (denoting a 0 or a 1 output respectively). As the
mean-squared-error is used to train the network it will
attempt to position states as close to the appropriate
extreme (1 or 0) as it can. Finally the network must
be able to make all the necessary transitions.

Figure 7 displays the 0−map and 1−map of a so-
lution to the 2-3 problem. The maps are overlaid with
the activation state visited by the network over 5000
successive time steps. The lighter areas correspond to
the times the network output had the correct classifi-
cation (error < 0.5) and the darker areas those where
it did not. All 2-3 condition trials produced almost
identical i−maps.

The activation map appears to be divided into an
appropriate number of states. This suggests that the

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

141

Figure 6: The MM for the signal delay problem where
∆t = 3. The states depicted in bold are those where
the network is expected to output a one on the next
transition. The others output a zero

network managed to partition its transitions into an
appropriate number of classes. We confirmed that
these sections correspond to each of the states within
the MM (marked on the maps) and that the network
transitions between these states in the appropriate
order.

While the network seems able to partition the ac-
tivation space into appropriate state, as we have seen
in Figure 7 it is still unable to solve the task. The
problem seems to be that the network cannot arrange
the transition partitions so that the states are also
positioned in such a way that correct classification
is achieved. The networks do not even arrange the
states so that there is no overlap, along the output
axis or dimension, between states where the output
should be 0 at the next transition and those where
it should be 1 at the next transition. Closer exami-
nation of the network outputs when long strings are
processed shows that there is some overlap between
some of the states, but that after a few time steps the
network recovers from it’s lapse. Thus the network
does not robustly model all the states.

If the problem for the network is arranging the ap-
propriate relationship between state transition parti-
tions rather than representing the required number of
partitions then it would be useful to have some idea of
why these transitions or transition relationships are
so difficult for the network. One possibility is that
there are simply too many transitions for the net-
work to arrange accurately or robustly. The fact that
previous analyses of the computational complexity of
various types of RNNs have yielded lower bounds in
terms of the number of states and/or the length of
the input alphabet suggests that this is usually an
important factor. Another possibility is that there
is some quality of the particular transitions involved
in this problem that make things difficult, potentially
impossible, for the 2 unit network to solve.

In his analysis of what properties a network has to
achieve in order to model a particular FSM Casey [1]
defines two classes of computation, transient and hys-
teretic, that may be required to model different FSMs.

Definitions for these terms are given in 4.1 and 4.2.
Casey comments that the number of states is unlikely
to be a good measure of complexity and proposes that
other measures such as the number of behaviours (in-
creased with greater levels of hysteretic computation)
are likely to be more important factors. He provides
examples where hysteretic and transient computation
add to the complexity of the problem.

Definition 4.1 Transient computation is computa-
tion that must be performed using transients (or tran-
sient states) of the I-map. A transient of the I-map
is a point that is not in the set Rε(f), which is the set
of all points such that if you start at that point (call
it x), given some number of applications of the input
string I to the map function f the dynamical system
will have returned to within ε of x.

Definition 4.2 Hysteretic computation is computa-
tion that can be performed using periodic orbits (of
periods ≥ 1) of the I-map of an RNN. Casey defines
a periodic orbit of period n of map I as an n-cycle of
the I-map meaning that when I is read in n times the
RNN will be in its starting state. An I-map is hys-
teretic if it has more than one ε-pseudoattractor. For
our purposes this is an attracting state or attractor
of the I-map where once activation enters this area
it does not leave it given the continued application of
the input string I. See [1] for a more exact definition.
An RNN is hysteretic if for some string of inputs I,
its I-map is hysteretic.

In his examples, Casey noted that for one particu-
lar problem it was computation that was transient for
the 0 and 1 maps that caused the increased difficulty
in solving the problem. He did this by proving that
for a particular problem (recognising the language of
strings beginning with 0 and having no 00 or 11 sub-
strings) it was the transient computation that limited
the conditions under which a one-unit network could
learn an appropriate model. A comparison of two lan-
guages whose FSMs had the same number of states
and transitions but different numbers of I-maps with
hysteretic computation found that the problem with
higher levels of hysteretic computation resulted in a
lower solve rate and longer training times.

An examination of the typical solution to the 2-
3 problem demonstrates that when our networks fail
it always tends to be on the same set of state tran-
sitions. In particular it seems to fail most often on
transitions involving the 010, 101, 100 and 011 states.
The consistency of this finding seems to suggest that
some transitions are indeed more difficult than others
in this case. If we classify the transitions in the MM
that correspond to the 3 step signal delay problem we
see that none of the I maps of a minimal solution to
the problem require more than one attractor and so
the problem does not require hysteretic computation.
However for the 0 and 1 maps there are seven tran-
sient states. Only when the network is in state 000
will 0 input mean that the network should not transi-
tion to a new state but should stay in the same state.
The same is true of a 1 input when the network is
in state 111. Thus removing a state corresponding to
000 or 111 should result in less improvement for the
network than removing one of the other states if tran-
sient computation in the 0 or 1 map is more difficult
than non-transient computation.

Another possibility is that the longer a transition
has to be, in terms of the Euclidean distance between
the starting and ending states of a transition, is im-
portant for how easy it is for the network to model
that transition accurately. For our particular prob-
lem, the only limitation placed on the network in
terms of how long transitions have to be is that during

CRPIT Volume 74 - Computer Science 2008

142

Figure 7: The vector fields of the 0-map (top) and 1-map (bottom) of an attempt at the 2-3 problem. The
activation map produced by running the network continuously for 5000 time-steps is overlaid. To create this
map the activation of the network at each time step is plotted using a point, whose location is determined by
the hidden unit along the x-axis and the output unit along the y-axis. Points corresponding to activations that
were within 0.5 of the expected output are plotted in green and those corresponding to activations that were
0.5 or more away from the expected output (0 or 1) are plotted in red.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

143

training it is “rewarded” for placing states as close to
the required output, along the output dimension, as
possible. As the output is required to be either 0 or 1,
the network is encouraged to place states where the
output at the next transition should be 0 as far away
as possible along the output dimension from states
where the output at the next transition should be
1. As an explanation, this theory seems to fit well
with the observation that the transitions the network
seems to fail on most often are those that involve a
transition between states in different output regions.

One observable feature of the i-maps in figure 7
that may be relevant to the network’s apparent dif-
ficulty in learning to model the transitions involving
states 010, 101 100, and 011, is that to correctly tran-
sition between these states, the network seems to be
required to transition in a different rotational direc-
tion from the one used for the majority of the transi-
tions between states. The network has arranged it’s
transitions so that activation moves in an anticlock-
wise lopsided ellipse for both the 0 and 1 maps. The
difference in transitions arising from the application
of a 0 or 1 input seems to be created by having slightly
different axes of rotation for each of the maps. The
transitions between 101 and 010 look like they might
conceivably be performed using anticlockwise transi-
tions with an adjusted map. However, the sequence
010, 101, 011 for the 1-map requires clockwise rota-
tion. Similarly the transition sequence 101, 010 and
100 for the 0-map also requires clockwise rotation. It
is possible that the degrees of freedom available to the
2 unit network limit the extent to which the direction
of transitions can vary along a given dimension. This
potential contribution to the difficulty of represent-
ing transitions concerns the relationship between the
transitions rather than being a property of a single
transition partition. This makes it harder to say that
it leads to particular transitions being more difficult
than others.

Section 5 describes an experiment aimed at sup-
porting the contention that the type of transitions is
an important factor in the difficulty the network has
in modelling the appropriate MM for the 3 step signal
delay problem.

5 Excluding patterns

If it is only the number of transitions that makes
this problem difficult for the network to solve then
the removal of a single state from the input and test
data (by making sure that a particular combination
of sequential inputs never occurs), which necessarily
results in the removal of 2 transitions, should corre-
spond to improved performance by the network. If
it is only a question of the total number of transi-
tions then the choice of state to remove should have
no effect on the average ability of the networks to
solve the problem. Alternatively, if there are qualita-
tive differences in the difficulty of modelling different
types of transition then potentially this will not be
the case. In order to test whether the removal of more
difficult transitions and consequently states will make
the problem easier for the network than the removal
of less difficult states we had to be able to classify
states as being “easy” or “hard” based on whether
their corresponding transitions were considered to be
easy or hard. We used the first two explanations for
the network’s difficulty in solving the 2-3 problem,
provided above, to make this classification. States
are classified as easy or hard only if they would be
considered easy or hard for both the first and second
explanations. This resulted in the set of easy states
being 000 and 111 as these states are the only states
that are transients of only one of the 0 and 1 maps

rather than both. Also the transitions leading from
these states do not involve a change in the required
output. The set of hard states includes 010, 101, 100,
and 011 as these states, in addition to being tran-
sients of both the 0 and 1 maps lead to transitions
that require that the output at the next step is dif-
ferent from the output at the current step. For the
states 010 and 101 the required outputs from the state
following the next state will be different once again
from the required output of the previous state.

The sequential nature of the problem meant that
only the states 000, 111, 010 and 101 could be re-
moved from the possible input set without making it
impossible to reach other states. Thus only the states
010 and 101 were used to represent hard states in our
experiments. Each experiment was composed of 30
trials. Table 2 displays the results over 30 trials for
each of the four patterns (000,111,010,101).

One of the most noticeable features of the results
in Table 2 is that removing one state did not make the
problem easy for the network to solve in any of the
conditions. However it does seem to have improved
the overall accuracy of the trained networks for both
easy and hard states implying that there was some
reduction in problem difficulty.

Another notable feature is that, although low, the
solve rate for networks trained on the problem with
a hard state removed is above zero and it is the only
condition for which this is the case. The minimum
error reached when networks failed to solve problems
in this condition is also noticeably lower than for the
condition with an easy state or no state removed.
In general these results seem to provide support for
the conjecture that the distinctions we made between
easy and hard states were real and that the apparent
difficulty of the transitions impacted the ability of the
network to solve the problem.

6 Conclusion

Previous proofs of the computational limitations of
neural network complexity seem to describe these lim-
itations solely in terms of the number of states within
the DFA the network is modelling and in some cases
also in terms of the length of the input alphabet of
the DFA [9]. However as Casey [1] and Tino et al [10]
note this prognosis seems incomplete without refer-
ence to the impact of the quality of the transitions.

The analysis and experiments we described above
attempt to address this issue for a specific instance
of the signal delay problem. We suggested that the
problem for the network lay in arranging the states
spatially so that it can learn the transitions, or equally
that given the spatial arrangements of states it was
capable of learning it could not learn to make the
required transitions.

Based on our study of the activation maps and i-
maps of networks with time delay greater than the
number of nodes, we suggested several possible ex-
planations for why some of the transitions of the MM
associated with the problem might be more difficult
for the network to represent than others. In follow up
experiments to test these hypotheses we found that
there was, in fact, a difference between the accuracy
of networks trained and tested on the problem with
an easy versus a hard state removed. This is con-
sistent with Casey’s contention that some transitions
are harder than others to learn.

There are several major limitations to our study
that limit the conclusions that can be drawn from our
findings. One such limitation is that our methodology
does not provide enough information to make a real
distinction between the difficulty involved in learning
to solve the problem versus the difficulty of actually

CRPIT Volume 74 - Computer Science 2008

144

Table 2: The results of training networks on the 2-3 problem with different states removed. The labels expand
to; pattern removed, solve rate over 30 trials, steps to solve, mean minimum error reached, time to reach mean
minimum error if unsolved, mean classification accuracy (CA) when solved, and mean CA when not solved.
The criterion for solving the problem was mean error < 0.05 over 100 time steps.

Pat Ex Slv Rate Slv Time MER(unslvd) MER Time CA - slvd CA - not slvd
None 0.0 NA 0.293696 20,000,017 NA 0.780083
000 0.0 NA 0.204928363 16158806 NA 0.844467497
111 0.0 NA 0.127827034 20000017 NA 0.91791148
010 0.267 16889206 0.067628225 20000017 0.996369295 0.98528857
101 0.3 17393607 0.075848266 18517316 0.992392808 0.97816637

performing the computation. The consistency of the
pattern of states learned in the 2-3 problem gives us
some confidence that the learning is working effec-
tively. However it does not rule out the possibility
that this solution is a local minimum. The examples
presented by Casey [1] also suffer from this limitation.

The other main problem is that our method of re-
moving states did not enable us to remove all states
individually. This meant that we were unable to select
states for removal that would enable us to distinguish
between some of the possible explanations for why
some transitions would be harder than others. For
example, it would have been useful to compare net-
work performance with one of the states 110 and 001
removed to the performance with one of the states
010 and 101 removed. This would have allowed us to
compare the relative contribution of transition length
and the amount of transient computation.

In future, alternative methods such as combining
two states may allow for removal of arbitrary states in
the signal delay problem. Alternatively, the selection
of a problem more amenable to the removal of arbi-
trary states might enable experiments that provide
a better insight into the relative importance of these
factors. The possibility that the number of changes
in the direction of transitions along particular dimen-
sions is important may need to be addressed with
an alternative experimental structure. The need to
manipulate the relationship between transitions may
mean that solutions to different problems with the
same number of states and input alphabet but dif-
ferent types of transition patterns may have to be
compared.

A final and very important consideration for in-
terpreting these results is that it is hard to know
how they would scale up from small two unit net-
works. It is well established that understanding the
behaviour of small dynamical systems often does not
lead to an understanding of how a larger scale version
will behave [10]. One strength of the proofs provided
previously concerning the complexity relationship be-
tween the number of nodes required and the number
of states in the network is that these results are scal-
able [7].

Future work in exploring the impact of the quality
of required transitions would need to attempt to ad-
dress this as well as the other issues mentioned above.
However we feel that the findings presented here pro-
vide some interesting support for the idea that the
quality of transitions is of interest in assessing the
computational capabilities of RNNs.

References

[1] Casey, M.: The dynamics of discrete-time com-
putation, with application to recurrent neural
networks and finite state machine extraction.
Neural Computation 8 (1996) 1135–1178

[2] Elman, J.L.: Finding structure in time. Cogni-
tive Science: A Multidisciplinary Journal 14(2)
(1990) 179–211

[3] Hochreiter, S., Schmidhuber, J.: Long short-
term memory. Neural Computation 9 (1997)
1735–1780

[4] Gers, F.A., Schmidhuber, J., Cummins, F.:
Learning to forget: Continual prediction with
LSTM. Neural Computation 12 (2000) 2451–
2471

[5] Cummins, F.: Representation of temporal pat-
terns in recurrent networks. In: Proceeding of
the 15th Annual Conference of the Cognitive Sci-
ence Society. (1994)

[6] Tino, P., Horne, B.G., Giles, C.L., Collingwood,
P.C.: Finite state machines and recurrent neural
networks - automata and dynamical systems ap-
proaches. Technical Report UMIACS-TR-95-1
and CS-TR-3396, Institute for Advanced Com-
puter Studies, University of Maryland, College
Pare, MD (1995)

[7] Sima, J., Orponen, P.: General-purpose compu-
tation with neural networks: A survey of com-
plexity theoretic results. Neural Computation
15 (2003) 2727–2778

[8] Fujita, M.: Intelligence dynamics: An overview.
In: International Workshop on Synergistic
Intelligence Dynamics, Synergistic Intelligence
Project, Sony corporation (2006)

[9] Carrasco, R.C., Oncina, J., Forcada, M.L.: Effi-
cient encoding of finite automata in discrete-time
recurrent neural networks. In: Artificial Neural
Networks, 1999, ICANN 99. Ninth International
Conference on. Volume 2. (1999) 673–677

[10] Tino, P., Horne, B.G., Giles, C.: Fixed points
in two-neuron discrete time recurrent networks:
Stability and bifurcation considerations. Techni-
cal Report UMIACS-TR-95-51 and CS-TR-3461,
Institute for Advanced Computer Studies, Uni-
versity of Maryland, College Park, MD (1995)

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

145

CRPIT Volume 74 - Computer Science 2008

146

Automatic Thesaurus Construction

Dongqiang Yang | David M. Powers
School of Informatics and Engineering
Flinders University of South Australia

PO Box 2100, Adelaide 5001, South Australia

Dongqiang.Yang|David.Powers@flinders.edu.au

Abstract1

In this paper we introduce a novel method of automating
thesauri using syntactically constrained distributional
similarity. With respect to syntactically conditioned co-
occurrences, most popular approaches to automatic
thesaurus construction simply ignore the salience of
grammatical relations and effectively merge them into
one united ‘context’. We distinguish semantic differences
of each syntactic dependency and propose to generate
thesauri through word overlapping across major types of
grammatical relations. The encouraging results show that
our proposal can build automatic thesauri with
significantly higher precision than the traditional
methods.

Keywords: syntactic dependency, distribution, similarity.

1 Introduction

The usual way of automatic thesaurus construction is to
extract the top n words in the similar word list of each
seed word as its thesaurus entries, after calculating and
ranking distributional similarity between the seed word
and all of the other words occurring in the corpora. The
attractive aspect of automatically constructing or
extending lexical resources rests clearly on its time
efficiency and effectiveness in contrast to the time-
consuming and outdated publication of manually
compiled lexicons. Its application mainly includes
constructing domain-oriented thesauri for automatic
keyword indexing and document classification in
Information Retrieval, Question Answering, Word Sense
Disambiguation, and Word Sense Induction.

As the ground of automatic thesaurus construction,
distributional similarity is often calculated in the high-
dimensional vector space model (VSM). With respect to
the basic elements in VSM (Lowe, 2001), the
dimensionality of word space can be syntactically
conditioned (i.e. grammatical relations) or unconditioned
(i.e. ‘a bag of words’). Under these two context settings,
different similarity methods have been widely surveyed,
for example for ‘a bag of words’ (Sahlgren, 2006) and for

1Copyright (c) 2008, Australian Computer Society, Inc. This
paper appeared at the Thirty-First Australasian Computer
Science Conference (ACSC2008), Wollongong, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 74. Gillian Dobbie and Bernard
Mans, Ed. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

grammatical relations (Curran, 2003; Weeds, 2003).
Moreover, the framework conducted by Padó and Lapata
(2007) compared the difference between the two settings.
They observed that the syntactically constrained VSM
outperformed the unconditioned one that exclusively
counts word co-occurrences in a ±n window.

Given the hypothesis that similar words share similar
grammatical relationships and semantic contents, the
basic procedure for estimating such distributional
similarity can consist of (1) pre-processing sentences in
the corpora with shallow or complete parsing; (2)
extracting syntactic dependencies into distinctive subsets
or vector spaces (Xs) according to head-modifier,
including adjective-noun (AN) and adverb or the nominal
head in a prepositional phrase to verb (RV) and
grammatical roles including subject-verb (SV) and verb-
object (VO); and (3) determining distributional similarity
using similarity measures such as the Jaccard coefficient
and the cosine, or probabilistic measures such as KL
divergence and information radius. On the other hand,
without the premise of grammatical relations in sematic
regulation, calculating distributional similarity can simply
work on word co-occurrences.

Instead of arguing the pros and cons of these two context
representations in specific applications, we focus on how
to effectively and efficiently produce automatic thesauri
with syntactically conditioned co-occurrences.

Without distinguishing the latent differences of
grammatical relations in dominating word meanings in
context, most approaches simply chained or clumped
these syntactic dependencies into one unified context
representation for computing distributional similarity
such as in automatic thesaurus construction (Hirschman
et al., 1975; Hindle, 1990; Grefenstette, 1992; Lin, 1998;
Curran, 2003), along with in Word Sense Disambiguation
(Yarowsky, 1993; Lin, 1997; Resnik, 1997), word sense
induction (Pantel and Lin, 2002), and finding the
predominant sense (McCarthy et al., 2004). These
approaches improved the distributional representation of
a word through a fine-grained context that can filter out
the unrelated or unnecessary words produced in the
traditional way of ‘a bag of words’ or the unordered
context, given that the parsing errors introduced are
acceptable or negligible.

It is clear that these approaches, based on observed
events, often scaled each grammatical relation through its
frequency statistics in computing distributional similarity,
for example in the weighted (Grefenstette, 1992) or
mutual information based (Lin, 1998) Jaccard coefficient.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

147

Although they proposed to replace the unordered context
with the syntactically conditioned one, they have
overlooked the linguistic specificity of grammatical
relations in word distribution. Except for the extraction of
syntactically conditioned contexts, they in fact make no
differentiation between them, which are similar to
computing distributional similarity with unordered
context. The advantage of using the syntactic constrained
context has not yet been fully exploited when yielding
statistical semantics from word distributions.

To fully harvest the advantages of computing
distributional similarity in the syntactically constrained
contexts, we proposed to first categorize contexts in terms
of grammatical relations, and then overlapped the top n
similar words yielded in each context to generate
automatic thesauri. This is in contrast to averaging
distributional similarity across these contexts, which is
commonly adopted in the literature.

2 Context interchangeability of similar words

Word meaning can be regarded as a function of word
distribution within different contexts in the form of co-
occurrent frequencies, where similar words share similar
contexts (Harris, 1985). Miller and Charles (1991)
propose that word similarity depends on to what extent
they are interchangeable across different context settings.
The flexibility of one word or phrase substituting another
indicates its extent to be synonymous providing that the
alternation of meaning in discourse is acceptable. We
calculated distributional similarity in different syntactic
dependencies such as subject-predicate and predicate-
object. Given the interchangeability of synonyms or near-
synonyms in different contexts, semantically similar
words derived with distributional similarity should span
at least two types of syntactically constrained contexts. In
other words, once we can derive the thesaurus items from
each dependency set, the final thesaurus comprises the
intersection of the items across any two types of
dependency sets.

The heuristic of deriving automatic thesauri with the
interchangeability of synonyms or near-synonyms in
contexts (‘any two’) can be expressed:

� Nouns:)(
,

ji
ji

SS IU where i and j stand for any two types

of dependency sets in terms of grammatical relations:
AN, SV, and VO.

� Verbs:)(
,

ji
ji

SS IU where i and j stand for any two of

RV, SV, and VO.

where for a given word, S is the thesaurus items produced
through distributional similarity in a single dependency
set. Note that we also used the heuristics of ‘any three’
and ‘any four’ to construct automatic thesauri, but found
most target words had no distributionally similar words
under these stricter conditions than ‘any two’. We did not
attempt to demonstrate the conditions here.

We similarly hypothesized the union of all grammatical
relations from the co-occurrence matrices as a baseline
(‘all’), which compute distributional similarity with the
union of all relations and can be indicated:

� Nouns:
i

SU
where i is one of AN, SV, and VO

� Verbs:
i

SU S

where i is one of RV, SV, and VO

3 Syntactically constrained distributional
similarity

To automate thesauri, we first employed an English
syntactic parser based on Link Grammar to construct a
syntactically constrained VSM. The word space consists
of four major syntactic dependency sets that are widely
adopted in the current research on distributional
similarity. Following the reduction of dimensionality on
the dependency sets, we created the latent semantic
representation of words through which distributional
similarity can be measured so that thesaurus items can be
retrieved.

3.1 Syntactic dependency

The syntactically conditioned representation mainly rely
on the following grounds: (1) the meaning of a noun
depends on its modifiers such as adjectives, nouns, and
the nominal head in a prepositional phrase as well as the
grammatical role of a noun in a sentence as a subject or
object (Hirschman et al., 1975; Hindle, 1990); and (2) the
meaning of a verb depends on its direct object, subject, or
modifier such as the head of a prepositional phrase
(Hirschman et al., 1975). These results are partly
consistent with the findings in studying word association
and the psychological reality of the paradigmatic
relationships of WordNet (Fellbaum, 1998).

With the hypothesis of ‘one sense per collocation’ in
WSD, Yarowsky (1993) observed that the direct object of
a verb played a more dominant role than its subject,
whereas a noun acquired more credits for disambiguation
from its nominal or adjective modifiers. As an application
of the distributional features of words, Resnik (1997) and
Lin (1997) employed the selectional restraints in subject-
verb, verb-object, head-modifier and the like to conduct
sense disambiguation.

The syntactic dependencies can provide a clue for
tracking down the meaning of a word in context. Cruse
(1986) points out that the semantic requirements are of
two directions in head-modifier and head-complement,
namely, determination (selector and selectee) and
dependency (dependee and depender). The determination
requirement emphasizes the dominant role of the selector
in the semantic traits of a construction, while the
dependency supplements some additional traits to
formulate the integrity of the construction.

3.2 Categorizing syntactic dependencies

Suppose that a tuple <wi, r, wj> describes the words: wi
and wj, and their bi-directional dependency relation r. For
example, if wi modifies wj through r, all such wj with r to
wi form a context profile for wi, likewise wi for wj. In the
hierarchy of syntactic dependencies (Carroll et al., 1998),
the major types of grammatical relationships (r) can be
generally clustered into:

CRPIT Volume 74 - Computer Science 2008

148

� RV: verbs with all verb-modifying adverbs and the
head nouns in the prepositional phrases;

� AN: nouns with noun-modifiers including adjective
use and pre/post-modification;

� SV: grammatical subjects and their predicates;

� VO: predicates and their objects.

To capture these dependencies we employ a widely used
and freely available parser2 based on Link Grammar
(Sleator and Temperley, 1991). In Link Grammar each
word is equipped with ‘left-pointing’ and/or ‘right-
pointing’ connectors. Based on the crafted rules of the
connectors in validating word usages, a link between two
words can be formed in reflecting a dependency relation.
Apart from these word rules, ‘crossing-links’ and
‘connectivity’ are the two global rules working on
interlinks, which respectively restrict a link from starting
or ending in the middle of pre-existed links and force all
the words of a sentence to be traced along links. There are
in total 107 major link types in the Link Grammar parser
(ver. 4.1), whereas there are also various sub-link types
that specify special cases of dependencies. Using this
parser, we extracted and classified the following link
types into the four main types of dependencies:

� RV

1. E: verbs and their adverb pre-modifiers

2. EE: adverbs and their adverb pre-modifiers

3. MV: verbs and their post-modifiers such as adverbs,
prepositional phrase

� AN

1. A: nouns and their adjective pre-modifiers

2. AN: nouns and their noun pre-modifiers

3. GN: proper nouns and their common nouns

4. M: nouns and their various post-modifiers such as
prepositional phrases, adjectives, and participles

� SV

1. S: subject-nouns/gerunds and their finite verbs. There
are also some sub-link types under S, for example,
Ss*g stands for gerunds and their predicates, and Sp
plural nouns and their plural verbs

2. SI: the inversion of subjects and their verbs in
questions

� VO

1. O: verbs and their direct or indirect objects

2. OD: verbs and their distance-complement

3. OT: verbs and their time objects

4. P: verbs and their complements such as adjectives
and passive participles

Note that except for RV, we define the AN, SV, and VO
dependencies almost identically to shallow parsers

2http://www.link.cs.cmu.edu/link/

(Grefenstette, 1992; Curran, 2003), or a full parser of
MINIPAR (Lin, 1998) but we retrieve them instead
through the Link Grammar parser.

Consider, for example, a short sentence from British
National Corpus (BNC):

‘Home care Coordinator, Margaret Gillies,
currently has a team of 20 volunteers from a
variety of churches providing practical help to a
number of clients already referred.’

The parse of this sentence with the lowest cost in the link
grammar parser is shown in Figure 1, where LEFT-
WALL indicates the start of the sentence

 +--
 | +-------------------Ss------------------+
 | +---------MX---------+ +-----
 +-----------Wd-----------+ +------Xd-----+ +---Os
 | +--AN--+---GN---+ | +---G---+-Xc-+ +---E---+ +-
 | | | | | | | | | | |
LEFT-WALL Home.n care.n Coordinator , Margaret Gillies , currently has.v a

-------------------------------Xp------------------------------------
----------MVp---------------+ +------
---+ +----Jp----+ +---Jp---+ +------
Ds-+-Mp-+ +--Dmcn-+ | +-Dsu-+--Mp--+--Jp--+----Mg----+
| | | | | | | | | |
team.n of 20 volunteers.n from a variety.n of churches.n providing.v

---+
 |
------MVp-----------+ |
----Os---------+ +---J---+ +--------Mv--------+ |
 +----A----+ | +--Ds-+--Mp-+--Jp-+ +----E----+ |
 | | | | | | | | | |
practical.a help.n to a number.n of clients.n already referred.v .

Figure 1: A complete linkage of parsing a sentence
using Link Grammar

The parse of this sentence with the lowest cost in the link
grammar parser is shown in Figure 1, where LEFT-
WALL indicates the start of the sentence. We can classify
four types of grammatical relations from this parse,
namely:

� RV: <currently, E, has>, <already, E, referred>

� AN: <home, AN, care>, <care, GN, coordinator>,
<volunteer, Mp, team>, <church, Mp, variety>,
<practical, A, help>, <client, Mp, number>,
<referred, Mv, clients>

� SV: <coordinator, Ss, has>

� VO: <has, Os, team>, <providing, Os, help>

After parsing the 100 million-word BNC and filtering out
non-content words and morphology analysis, we
separately extracted the relationships to construct four
parallel matrixes or co-occurrence sets, denoted as RX:
RVX, ANX, SVX, and VOX in terms of the four types of
syntactic dependencies above. The row vectors of RX
denoted respectively RvX, AnX, SvX, and VoX for the four
dependencies. Similarly, the column vectors of RX are
denoted as rV X, aNX, sVX, and vOX respectively.

Consider SVX a m by n matrix representing subject-verb
dependencies between m subjects and n verbs. We
illustrate the SV relation using the rows (SvX or {X i,*}) of
SVX corresponding to nouns conditioned as subjects of
verbs in sentences, and the columns (sVX or {X *,j}) to

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

149

verbs conditioned by nouns as subjects. The cell Xi,j
shows the frequency of the ith subject with the jth verb.
The ith row Xi,* of SVX is a profile of the ith subject in
terms of its all verbs and the jth column X*,j of SVX
profiles the jth verb versus its subjects.

The parsing results are shown in Table 1, where Dim
refer to the size of each matrix in the form of rows by
columns, and Freq segmentations are the classification of
frequency distribution, and Token/Type stands for the
statistical frequencies of specific relationships with their
corresponding dependency category R.

Dim Freq 1 2-10 11-20 21-30 >31

Token 1,813.7 6,243.4 1,483.1 799.8 3,617.8 ANX 48.5 by

37.6 Type 1,813.7 2,040.0 103.6 32.2 44.9

Token 863.1 2,276.4 481.4 234.9 692.2 RVX 37.4 by

14.2 Type 863.1 751.9 33.8 9.5 10.9

Token 511.8 1,699.4 297.8 133.3 380.7 SVX 32.7 by

11.3 Type 511.8 587.4 21.0 5.4 6.0

Token 488.5 1,811.5 475.4 266.2 1,286.9 VOX 6.1 by

33.3 Type 488.5 575.1 33.1 10.7 15.6

Table 1: The statistics of the syntactically conditioned
matrices derived from parsing BNC (thousand)

Given different methodologies to implementing parsing,
it is hardly fair to appraise a syntactic parser. Molla and
Hutchinson (2003) compared the Link Grammar parser
and the Conexor Functional Dependency Grammar
(CFDG) parser with respect to intrinsic and extrinsic
evaluations. In the intrinsic evaluation the performance of
the two parsers was compared and measured in terms of
the precision and recall of extracting four types of
dependencies, including subject-verb, verb-object, head-
modifier, and head-complement. In the extrinsic
evaluation a question-answering application was used to
contrast the two parsers. Although the Link Grammar
parser is inferior to the CFDG parser in locating the four
types of dependencies, they are not significantly different
when applied in question answering. Given that our main
task is to investigate the function of the syntactic
dependencies: RV, AN, SV, and VO, acquired with the
same Link Grammar parser, in automatic thesaurus
construction, it is appropriate to use the Link Grammar
parser to extract these dependencies.

3.3 Dimensionality reduction in VSM

The four syntactically conditioned matrices, as shown in
Table 1, are extremely sparse with nulls in over 95% of
the cells. Instead of eliminating the cells with lower
frequencies, we kept all co-occurrences unchanged to
avoid worsening data sparseness.

Our matrices record the context with both syntactic
dependencies and semantic content. These dual
constraints yield rarer events than word co-occurrences in
‘a bag of words’. However, they impose more accurate or

meaningful grammatical relationships between words
providing the parser is reasonable accurate.

We initially substituted each cell frequency freq(Xi,j) with
its information form using log(freq(Xi,j)+1) to retain
sparsity (0�0) (Landauer and Dumais, 1997). It can
produce ‘a kind of space effect’ that can lessen the
gradient of the frequency-rank curve in Zipf’s Law
(1965), reducing the gap between rarer events and
frequent ones.

Singular Value Decomposition (SVD) often acts as an
effective way of reducing the dimensionality of word
space in natural language processing. A reduced SVD
representation can diminish both ‘noise’ and redundancy
whilst retaining the useful information that has the
maximum variance. This approach has been dubbed
Latent Semantic Analysis (LSA) (Deerwester et al., 1990;
Landauer and Dumais, 1997) and maps the word-by-
document space into word-by-concept and document-by-
concept spaces. Note that the ‘noisy’ data in the raw co-
occurrence matrices mainly comes from the results of
wrong parsing and also redundancy exists as a common
problem of expressing similar concepts in synonyms.

Typically at least 200 principal components are employed
in Information Retrieval to describe the SVD compressed
word space. Instead of optimising the semantic space
versus other algorithms (through tuning the number of
principal components in applications or evaluations), we
specified a fixed dimension size for the compressed
semantic space, which is thus not expected to be optimal
for our experiment. We established 250 as a fixed size of
the compressed semantic space. Among the singular
values, the first 20 components account for around 50%
of the variance, and the first 250 components for over
75%.

As is usual with the SVD/LSA application, we assume
that the semantic representation of words is a linear
combination of eigenvectors representing their distinct
subcategorizations and senses, and that relating the
uncorrelated eigenvector feature sets of different words
can thus score their proximity in the semantic space.

3.4 Distributional similarity

We consistently employed the cosine similarity of word
vectors as used in LSA and commonly adopted in
assessing distributional similarity (Salton and McGill,
1986; Schütze, 1992). The cosine of the angle θ between
vectors x and y in the n-dimensional space is defined as:

∑ ∑

∑

= =

==⋅=
n

i i

n

i
ii

n

i
ii

yx

yx

yx

yx

1 1

22

1cosθ

where the length of x and y is ||x|| and ||y||.

Note that the accuracy and coverage of automatic term
clustering inevitably depend on the size and domains of
the corpora employed, as well as similarity measures.
Consistently using one similarity method—the cosine,
our main task in this paper is to explore the context

CRPIT Volume 74 - Computer Science 2008

150

interchangeability in automatic thesaurus construction,
rather than to compare different similarity measures with
one united syntactic structure that combines all the
dependencies together. Although taking into account
more similarity measures in the evaluations may solidify
conclusions, this would take us beyond the scope of the
work.

4 Evaluation

4.1 The ‘gold standard’ thesaurus

It is not a trivial task to evaluate automatic thesauri in the
absence of a benchmark set. Subjective assessment on
distributionally similar words seems a plausible approach
to assessing the quality of term clusters. It is practically
unfeasible to implement it given the size of the term
clusters. A low agreement on word relatedness also exists
between human subjects.

The alternative way of measuring term clusters is to
contrast them with existing lexical resources. For
example, Grefenstette (1993) evaluated his automatic
thesaurus with a ‘gold standard’ dataset consisting of
Roget’s Thesaurus ver. 1911, Macquarie Thesaurus, and
Webster’s 7th dictionary. If two words were located
under the same topic in Roget or Macquarie, or shared
two or more terms in their definitions in the dictionary,
they were counted as a successful hit for synonyms or
semantic-relatedness. To improve the coverage of the
‘gold standard’ dataset, Curran (2003) incorporated more
thesauri: Roget’s Thesaurus (supplementing the free
version of 1911 provided by Project Gutenberg with the
modern version of Roget’s Thesaurus II), Moby
Thesaurus, The New Oxford Thesaurus of English, and
The Macquarie Encyclopaedic Thesaurus.

The ‘gold standard’ datasets are not without problem due
to their domain and coverage, because they are at best a
snapshot of general or specific English vocabulary
knowledge (Kilgarriff, 1997; Kilgarriff and Yallop,
2000). Moreover, the organization of thesauri forces
different notions of being synonymous or similar, given
the etymologic trend of words and different purposes of
lexicographers. For example, as 1 of 1,000 topics in
Roget’s Thesaurus ver. 1911, there are two groups of
synonyms {teacher, trainer, instructor, institutor, master,
tutor, director, etc.} or {professor, lecturer, reader, etc.}
under the topic of teacher. They express an academic
concept of being in the position of supervision over
somebody. In the noun taxonomy of WordNet, the
synonym of teacher only consists of instructor, affiliated
with the coordinate terms (sharing one common
superordinate) such as lecturer and reader, or the
hyponyms such as coach and tutor, or the hypernyms
such as educator and pedagogue. As for professor and
master, they both distance teacher by three links through
their hypernym educator.

Subject to the availability of these thesauri or
dictionaries, we incorporated both WordNet and Roget’s
Thesaurus, freely acquired, into the ‘gold standard’
thesaurus. WordNet only consists of paradigmatic
relations and organizes a fine-grained semantic taxonomy

mainly with the relationships of syn/antonym, IS-A,
HAS-A, whereas Roget’s Thesaurus covers both
syntagmatic and paradigmatic relations and hierarchically
clusters related words or phrases into each topic without
explicitly annotating their relationships.

Kilgarriff and Yallop (2000) claimed that WordNet, along
with the automatic thesauri generated under the
hypothesis of similar words sharing similar syntactic
structures, are tighter rather than looser in defining
whether they are ‘synonyms’ or related words. This
contrasts with Roget and the automatic thesauri derived
through unordered word co-occurrences. Since we
accounted for distributional similarity in the syntactically
conditioned VSM, the reasonable way of evaluating it is
to compare our automatic thesauri to WordNet. Apart
from that, to perform a systematic evaluation on the
relationships among distributionally similar words, we
also included Roget as a supplement to the ‘gold
standard’, as it covers words with both paradigmatic and
syntagmatic relationships.

4.2 Similarity comparison

We defined two distinctive measures to compare
automatic thesauri with the ‘gold standard’, which are
SimWN for WordNet and SimRT for Roget.

4.2.1 Similarity in WordNet

SimWN is based on the taxonomic similarity method
proposed by Yang and Powers (2005; 2006). Since Yang
and Powers’s method outperformed most popular
similarity methods in terms of correlation with human
similarity judgements, we employed them in the
evaluation. Given two nominal or verbal concepts: c1 and
c2, SimWN scores their similarity with:

γβαα ≤××= − distccSim dist
ttstr ,)2,1(1

� αstr: 1 for nouns but for verbs successively falls back
to αstm the verb stem polysemy ignoring sense and
form; or αder the cognate noun hierarchy of the verb;
or αgls the definition of the verb.

� αt: the path type factor to specify the weights of
different link types, i.e. syn/antonym, hyper/
hyponym and holo/meronym in WordNet.

� β: the probability associated with a direct link
between concepts (type t).

� dist: the distance between two concept nodes

� γ: the path length dist is limited to depth factor γ,
otherwise the similarity is 0

As for multiple senses of a word, word similarity
maximizes their sense or concept similarity in WordNet.

Yang and Powers (2005) compared their taxonomic
similarity metric with human judgements on the 65 noun
pairs, where the cut-off point 2.36 of human similarity
scores for nouns on a Likert scale from 0 to 4 divides
each dataset into similar (≥ 2.36) and dissimilar subsets
(< 2.36). We found that the cut-off of 2.36 for nouns
corresponds to the searching depth limit γ = 4 in SimWN,

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

151

and likewise the cut-off of 2 on the 130 verb pairs (Yang
and Powers, 2006) corresponds to γ = 2. Thus for the
noun candidates in automatic thesauri, we set up γ = 4, to
identify similar words within the distance of less than
four links. If two nodes are syn/antonyms or related to
each other in the taxonomy with the shortest path length
of less than 4, we counted them as a successful hit. So too
is the shorter distance limit γ = 2 for verb candidates.

4.2.2 Similarity in Roget’s Thesaurus

Roget’s Thesaurus divides its hierarchy into seven levels
from the top class to the bottom topic, and stores topic-
related words under 1 of 1,000 topics. SimRT counted it a
hit if two words are situated under the same topic.

Note that the relationships among the ‘gold standard’
words retrieved by SimRT are anonymous. Although
WordNet only organizes paradigmatic relationships,
SimWN does not distinguish in what way two words are
similar, for example, IS-A, HAS-A, or a mixture of them,
and only collects words within a distance from zero
(syn/antonyms) to four links in WordNet.

4.3 Candidate words in the ‘gold standard’

 WordNet Roget Total

 SA D1 D2 D3 D4 ∑

Noun aNX 462 2,825 14,244 41,483 48,625 107,639 141,102 232,181

 AnX 458 2,887 14,278 41,940 49,267 108,830 142,218 234,424

 vOX 439 2,619 13,027 37,433 43,620 97,138 133,733 214,727

 SvX 434 2,607 12,938 37,355 43,274 96,608 131,527 212,156

∑X 469 2,979 14,967 44,185 52,054 114,779 146,435 244,245

Verb rV X 1,282 24,702 58,617 84,601 81,713 144,545

 VoX 1,260 24,265 57,225 82,750 79,771 141,039

 sVX 1,269 24,354 57,642 83,265 80,681 142,256

∑X 1,297 25,283 60,483 87,165 83,415 148,455

Table 2: The word relatedness distribution in the
‘gold-standard’ across each matrix

We select 100 seed nouns and 100 seed verbs with term
frequencies of around 10,000 times in BNC. The average
frequency of these nouns is about 8,988.9, and 10,364.4
for these verbs. High frequency words are likely to be
generic or general terms and the less frequent words may
not happen in the semantic sets. The average frequency of
the nouns in AnX, aNX, SvX, and vOX is in fact decreased
to 3,361.1, 5,629.1, 1,156.7, and 1,692.1, and the verbs in
rV X, VoX, and sVX are decreased to 3,014.3, 3,328.9, and
1,971.8, as we only extracted syntactic dependencies
from BNC. Overall, the average frequency of the nouns is
about 2,959.7 across AnX, aNX, SvX, and vOX, and
3,960.9 for the verbs across rV X, VoX, and sVX.

We first used SimWN and SimRT to compare each seed
word to all other words from the dependency sets, namely
AnX, aNX, SvX, and vOX for nouns and rV X, VoX, and
sVX for verbs, to retrieve its candidate words in the ‘gold
standard’. Instead of a normal thesaurus with a full
coverage of PoS tags, we only compiled the synonyms of

nouns and verbs that account for the major part of
published thesauri and are more informative than other
PoS tags. The word distribution within different distances
to the 100 nouns and 100 verbs in the ‘gold-standard’ are
listed in Table 2, where ∑X indicates the overall nouns
from AnX, aNX, SvX, and vOX and verbs from rV X, VoX,
and sVX in the ‘gold-standard’. For the ‘gold-standard’
words from WordNet, SA denotes syn/antonyms of the
targets, and DI the words with exactly I link distance to
targets (for nouns I ≤ γ = 4; for verbs I ≤ γ = 2); ∑
denotes the total number of ‘gold-standard’ words in each
matrix; and Total means the overall number of ‘gold-
standard’ words from both WordNet and Roget. In Table
2 the average number of ‘gold-standard’ words across
each matrix is evenly distributed.

The agreement between the WordNet-style and Roget-
style words in the ‘gold-standard’ across these matrices,
that is, the ratio of the number of words retrieved by
SimWN and SimRT in both WordNet and Roget against the
total number of ‘gold-standard’ words, is on average
7.3% on nouns and less than 15.2% on verbs. We
aggregated all the ‘gold-standard’ words across AnX,
aNX, SvX, and vOX for nouns, as well as rV X, VoX, and
sVX for verbs, which results in 244,245 nouns and
148,455 verbs overall in the ‘gold standard’. The
agreement between WordNet and Roget candidates on
nouns and verbs is respectively about 6.9% and 14.9%,
that is to say, about 14.8% and 11.6% nouns in WordNet
and Roget are of same, so are 25.4% and 26.5% for verbs.
Each target noun on average owns about 1,148 WordNet,
1,464 Roget, and 2442 Total words in the ‘gold standard’,
and each target verb 872, 834, and 1485 words
respectively.

4.4 A walk-through example

For each seed word, after computing the cosine similarity
of the seed with all other words in each dependency
matrix, we produced and ranked the top n words as
candidates. We then applied the two heuristics: ‘any two’
and ‘all’ on these candidates to forming automatic
thesauri.

In Table 3 we exemplify the top 20 similar words of
sentence and attack yielded in each dependency set and
the two heuristics. Consider the distributionally similar
words of sentence and attack in aNX and rV X for
example. The words related to the linguistic sense of
sentence consists of syllable, words, adjective, etc, in
aNX, while the words with the judicial sense make up
around half of the 20 words including imprisonment,
penalty, and the like. The words such as rape and
slaughter from rV X are from the literal sense of attack,
together with its metaphorical sense among other words
like badmouth, flame, and so on.

The heuristic of ‘any two’ collected the intersection of
thesaurus items across these dependency sets. For
example, punishment and words are the similar words to
sentence, which respectively occurred in aNX and vOX as
well as in aNX and AnX; criticise and bomb are the
similar words to attack, which respectively occurred in
VoX and rV X as well as in VoX and sVX.

CRPIT Volume 74 - Computer Science 2008

152

(a) The similar words to sentence (as a noun)

 Similar words
rV X assault rape criticize arm slaughter abduct mortar accuse defend

fire avow lash badmouth blaspheme slit singe flame kidnap
persecute

VoX Raid criticise bomb realign outwit beleaguer guard raze bombard
criticize resemble spy pulse misspend reformulate alkalinise
metastasise placard ruck glory

sVX ambush invade fraternize palpitate patrol wound pillage bomb
billet shell fire liberate kidnap raid garrison accuse assault arrest
slaughter outnumber

any
two

assault criticize bomb ambush accuse raid fire rape bombard
kidnap infiltrate patrol defend storm invade arrest garrison
torture stab shoot

all raid bomb assault criticize ambush accuse fire guard bombard
patrol rape storm infiltrate wound kidnap criticise garrison
alkalinize torture spy

(b) The similar words to attack (as a verb)

Table 3: A sample of thesaurus items

4.5 Performance evaluation

Instead of simply matching with the ‘gold standard’
thesauri, Lin (1998) proposed to compare his automatic
thesaurus with WordNet and Roget on their structures,
taking into account the similarity scores and orders of
similar words respectively produced from distributional
similarity and taxonomic similarity. This approach can
account for thesaurus resemblance under the hierarchy of
WordNet or Roget, which is an apparent advantage over
straight word matching.

Instead of calculating the varied cosine similarity
between each target vector yielded from automatic
thesaurus and from WordNet or Roget (Lin, 1998), we
adapted the concept of Precision (Pn) and Recall-
precision (Rp) from information retrieval to demonstrate
much sensible values of precision and recall for a ranked
list. Given the top n similar words S for a target T in an
automatic thesaurus Pn is defined as |S|/n, where |S| refers
to the number of S that can be retrieved in the top n
similar words of T in WordNet or Roget. Rp is
conditioned on precision and is correspondingly defined
as |S|/∑d(S), where in terms of words d(S) denotes
minimum distance between T and S if S can be located
within the top n similar words of T in WordNet or Roget.

Analogously for the ranked word list from an automatic
thesaurus, the top n similar words with respect to each
sense of T in WordNet are produced in the order of
hyper/hyponyms and holo/meronyms with exhausting
initially synonyms and then antonyms, whereas the top n
words in Roget can be subsequently acquired within +/-n
(preceding/succeeding) words from T in each of its
category. Through these redefined precision and recall Pn
can stand for the coverage of the automatic thesaurus on
potentially arbitrary senses or categories of T and Rp can
describe relatedness of the thesaurus on the actual sense
or category of T.

5 Results

We took the top n similar words derived from each co-
occurrence matrix for ‘any two’ or ‘all’, with n varying
from 1 to 1000 in ten steps, roughly doubling each time.
The results are shown in Table 4. We individually listed
Pn and Rp values with respect to WordNet, Roget, and
the union of WordNet and Roget (Total).

 ‘all’ ‘ any two’

 WordNe
t

Roget Total WordNe
t

Roget Total

N Pn Rp Pn Rp Pn Rp Pn Rp Pn Rp Pn Rp

1 noun 22.0 22.0 15.0 15.0 27.0 27.0 24.0 24.0 12.0 12.0 28.0 28.0

 verb 13.0 13.0 7.0 7.0 16.0 16.0 15.0 15.0 8.0 8.0 20.0 20.0

2 noun 31.0 35.2 19.0 23.7 36.0 41.2 34.0 34.0 20.0 20.0 42.0 37.5

 verb 39.0 31.7 9.5 12.0 40.0 34.2 48.5 34.4 11.0 13.3 49.5 38.2

5 noun 42.4 21.1 22.2 29.5 46.8 27.1 56.6 17.1 28.4 24.0 63.2 20.0

 verb 54.2 25.6 20.2 17.1 55.8 26.9 62.6 27.4 23.8 15.0 64.0 28.7

10 noun 43.4 11.8 19.4 18.5 47.5 15.5 56.6 10.4 26.9 17.1 62.3 11.0

 verb 53.3 19.5 18.0 17.5 54.7 19.6 62.3 21.7 20.9 15.9 63.7 21.2

20 noun 37.7 9.5 16.1 13.8 41.6 9.8 50.2 8.7 22.7 16.5 56.0 8.4

 verb 49.3 15.0 13.9 15.0 50.9 14.7 57.5 15.6 16.1 13.8 59.0 15.4

50 noun 29.0 8.0 11.2 11.2 32.3 7.4 41.4 7.2 16.7 9.5 46.4 6.8

 verb 43.8 11.9 10.0 10.9 45.4 11.3 49.5 12.2 11.4 9.9 51.3 11.5

100 noun 22.9 8.4 8.2 9.5 25.7 7.4 33.8 6.6 12.8 6.6 38.4 5.9

 verb 39.7 10.0 7.7 8.4 41.2 9.2 44.1 10.4 8.4 7.5 45.6 9.8

200 noun 18.6 6.9 5.9 7.8 20.9 5.9 26.6 6.2 8.9 6.2 30.2 5.5

 verb 36.0 9.3 5.9 6.5 37.4 8.6 39.6 9.3 6.4 6.2 41.0 8.5

500 noun 13.6 6.4 3.9 6.1 15.4 5.5 18.6 6.0 5.4 5.8 21.0 5.3

 verb 32.6 8.5 4.2 5.7 33.8 7.7 35.1 8.5 4.6 5.3 36.4 7.7

1000 noun 11.0 6.3 2.8 5.5 12.4 5.4 14.1 6.1 3.6 5.5 16.0 5.2

 verb 30.5 8.2 3.4 4.9 31.6 7.3 32.7 8.2 3.6 4.9 33.8 7.3

Table 4: The precision and recall in automatic thesauri
under the heuristics of ‘any two’ and ‘all’ (percentage)

6 Discussion

6.1 ‘any two’ vs ‘all’

It is clear that in terms of Pn measurement ‘any two’
consistently outperformed ‘all’ for both nouns and verbs
in thesaurus construction. The improvement in the
precision of the ‘any two’ clusters over the ‘all’ heuristic

 Similar words
aNX imprisonment term utterance penalty excommunication syllable

words punishment prison prisoner phrase detention
hospitalisation fisticuffs banishment verdict Minnesota meaning
adjective warder

AnX words syllable utterance clause nictation word swarthiness
paragraph text homograph discourse imprisonment nonce
phrase hexagram adjective verb niacin savarin micheas

vOX soubise cybele sextet cristal raper stint concatenation kohlrabi
tostada apprenticeship ban contrivance Guadalcanal necropolis
misanthropy roulade gasworks curacy jejunum punishment

SvX

ratel occurrence cragsman jingoism shiism Oklahoma
genuineness unimportance language gathering letting grimm
chaucer accent taxation ultimatum arrogance test verticality
habituation

any
two

imprisonment words utterance word term punishment
paragraph text phrase jail verb meaning noun poem
language passage sequence syllable lexicon fine

all Imprisonment utterance penalty excommunication punishment
prison prisoner detention hospitalisation banishment Minnesota
meaning contrariety phoneme consonant counterintelligence
starvation fine cathedra lifespan

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

153

was significant (p < 0.05, paired t test). This is achieved
under the condition of comparable Rp. Before reaching
the threshold 200, the overall Rp for verbs for ‘any two’
almost stay higher than for ‘all’, which is contrary in the
case of nouns. Since then no noticeable difference can be
observed. The reason behind this could be that some
‘gold-standard’ words derived from a matrix may never
occur in the thesaurus entries from another matrix, which
are neglected in ‘any two’.

We also extend this work to the words with intermediate
(around 4,000) and low (around 1,000) term frequencies
in BNC. For the 100 nouns and 100 verbs with the
intermediate frequencies, 3,753.9 and 3,675.2
respectively, the average frequency of the nouns across
AnX, aNX, SvX, and vOX is 1,274.7, and the verbs across
rV X, VoX, and sVX is 1,422.0. For the 100 nouns and 100
verbs with low frequencies: 824.1 and 864.6, the average
frequency of the nouns across AnX, aNX, SvX, and vOX is
297.0, and the verbs 342.2 across rV X, VoX, and sVX. For
the intermediate and low frequency words, the heuristic
of ‘any two’ still significantly outperformed the ‘all’ in
yielding automatic thesauri (p < 0.05) with higher
precision.

As the threshold increasing from 1 to 1000 in Table 4,
both the nominal and verbal parts of thesaurus using the
heuristics of ‘any two’ and ‘all’ could corroborate a
preference for relationships from WordNet rather than
from Roget, since both Pn in WordNet contributed
majority of the overall Pn in contrast to it in Roget. Note
that from the figures shown in Table 2, we can observe
that the overlap between WordNet and Roget is rather
small, where only 14.8% of WordNet or 11.6% of Roget
for nouns co-occur, so does 25.4% of WordNet or 26.5%
of Roget for verbs. This could be caused by filtering out
more Roget words present in the ‘all’ or ‘any two’
thesaurus. This trend keep unchanged even when more
unrelated words could be introduced as the threshold
approached 1000.

We can compare the entry of sentence and attack with the
threshold of 20 in the ‘any two’ thesaurus to their
respective entries in the ‘all’ thesaurus, that are listed in
Table 3. The entry of sentence in the ‘any two’ thesaurus
constituted the top 20 similar words in Table 3 (a), they
were all akin to sentence without any ‘noisy’ words such
as Minnesota and counterintelligence in the ‘all’
thesaurus. So did attack in Table 3 (b), which comprised
near-synonyms after filtering out the unrelated words
such as alkalinise in the ‘all’ thesaurus. However, some
truly related words were also missed out in the ‘any two’
thesauri, for example, the similar words penalty and
banishment to sentence in the ‘all’ thesaurus, as well as
guard and wound to attack. This can be partly
complemented through increasing the threshold. Even
with the threshold 50, the overall thesaurus entries of
were still acceptable with approximately 50% of total
precision.

6.2 The predominant sense

Word senses in WordNet are ranked by their frequencies,
where the first sense often serves as the predominant

sense of a word. The predominant sense often serves as a
back-off in sense disambiguation. To study the sense
distribution of the words in automatic thesaurus, we also
calculated Pn on the condition of extracting the ‘gold-
standard’ words exclusively related to the first sense of a
target (First), in contrast to all the senses.

Overall the precision of First sense is not less than 50%
of the precision of all sense for both nouns and verbs in
the ‘any two’ heuristic. This implies that distributionally
similar words derived using the ‘any two’ heuristic are
more semantically related to the first sense of a target,
around 50% or more, than other senses. Even in the ‘all’
heuristic around 50% of the words that match a ‘gold-
standard’ for any sense, hold semantic relatedness with
the first senses of targets.

The unbalanced sense distribution among the thesaurus
items shows the uneven usages of words with respect to
the Zipf’s Law (1965). Kilgarriff (2004) also noted
Zipfian distribution of both word sense and words when
analysing the Brown corpus and BNC. The predominant
sense of a word can be formed through their
distributionally similar words instead of laborious sense
annotation work, which serves as an important resource
in sense disambiguation.

6.3 Distributional similarity and semantic
relatedness

Semantic similarity is often regarded as a special case of
semantic relatedness, while the latter also contains word
association. Distributional similarity consists of both
semantic similarity and word association between a seed
word and candidate words in its thesaurus items, except
for the ‘noisy’ words (due to the parsing or statistical
errors) that hold no plausible relationships with the seed.
Consider the distributionally similar words of sentence
produced in aNX in Table 3 (a) for example. Only three
words, namely term, phrase, and verdict, were connected
with sentence through the similarity measurement of
SimWN in WordNet, whereas 14 words such as phrase and
penalty shared the same topics with sentence in Roget.
The noun sentence consists of three senses in WordNet,

� sentence#n#1: a string of words satisfying the
grammatical rules of a language

� sentence#n#2: (criminal law) a final judgment of
guilty in a criminal case and the punishment that is
imposed

� sentence#n#3: the period of time a prisoner is
imprisoned

The word sentence is also located in Section 480
(Judgement), 496 (Maxim), 535 (Affirmation), 566
(Phrase), and 971 (Condemnation) in Roget. For
example, the nominal part of Section 480 is,

480. Judgment. [Conclusion.]

N. result, conclusion, upshot; deduction, inference,
ergotism[Med]; illation; corollary, porism[obs3];
moral. estimation, valuation, appreciation,
judication[obs3]; dijudication[obs3], adjudication;
arbitrament, arbitrement[obs3], arbitration;

CRPIT Volume 74 - Computer Science 2008

154

assessment, ponderation[obs3]; valorization.
award, estimate; review, criticism, critique, notice,
report. decision, determination, judgment, finding,
verdict, sentence, decree; findings of fact; findings
of law; res judicata[Lat]. plebiscite, voice, casting
vote; vote &c. (choice) 609; opinion &c. (belief)
484; good judgment &c. (wisdom) 498. judge,
umpire; arbiter, arbitrator; assessor, referee.
censor, reviewer, critic;

connoisseur; commentator &c. 524; inspector,
inspecting officer. twenty-twenty hindsight
[judgment after the fact]; armchair general,
Monday morning quarterback.

Generally sentence#n#1 in WordNet can be projected into
Section 496 and 566, and sentence#n#2 into Section 480
and 971, and sentence#n#3 into Section 535. With respect
to the evaluation of SimWN in WordNet, term in Table 3
(a) is the hypernym of sentence#n#3; and phrase and
sentence#n#1 distance themselves in three links, say,
sentence#n#1 has a meronym of clause that is a
coordinate of phrase; and sentence#n#2 bears the same
hypernym with verdict within four links. Apart from the
paradigmatic relationships in WordNet, the three words
also connect with sentence through SimRT in Roget, where
words such as verdict and sentences are located under the
same section—Judgement (480). However, sentence
holds more relations of being in the same domain with its
similar words in the thesaurus from aNX. For example,
penalty and sentence come from/exist in Section 971,
which expresses the notion of criminality deserving a
penalty in a way of judicial sentence, and prisoner and
sentence are situated in Section 971, which illustrates
being in prison resulting from judgements in a court in
the context of criminal law.

As we compute distributional similarity on the
assumption of similar words sharing similar contexts
conditioned by grammatical relations, in general more
paradigmatic relations can be found than syntagmatic
ones. In Table 4, the higher precision for WordNet than
for Roget’s Thesaurus show that distributionally similar
words are more semantically similar rather than
associated words. This is consistent with the conclusion
of Kilgarriff and Yallop (2000) on computing
distributional similarity that the hypothesis of similar
words sharing similar contexts constrained by
grammatical relations can yield tighter or WordNet-style
thesauri, whereas the hypothesis of similar words sharing
unconditioned co-occurrences can yield looser or Roget-
style thesauri. Note that distributionally similar words
could be semantically opposite to each other, given the
common grammatical relations they often share. For
example, in the automatic thesaurus produced with ‘any
two’, the nouns failure and success, or strength and
weakness, are antonymous, as well the verbs cry and
laugh, deny and admit.

It is clear that the ‘gold standard’ is subject to the
vocabulary size of WordNet and Roget’s Thesaurus. The
worse case is from the 1911 version of Roget’s Thesaurus
we adopted, where words generated in modern times are
not contained. For example words such as software and

its distributionally similar words, including emulator,
unix, NT, Cobol, Oracle (as the database system),
processor, and PC, are not included in the 1911 version
of Roget. We selected the target word with relatively
higher frequencies in BNC and did a simple morphology
analysis in the construction of the matrices using word-
mapping table in WordNet, so that all nouns and verbs
from automatic term clustering can be covered (at least in
WordNet). However, not all word relationships in
automatic thesauri could be contained in WordNet, even
though we have included Roget to supply richer
relationships. For example, take the words sentence and
detention. In Table 3 (a) detention is listed in the top 20
similar words to sentence on aNX, but they have no direct
or indirect links in WordNet, nor are they situated under
any topic or section in Roget, but their intense association
has become commonly used. Likewise, kidnap as one of
the top 20 similar words to attack on rV X in Table 3 (b),
which is distributionally similar to attack, but there are no
existing connections between them in WordNet and
Roget.

7 Conclusion

With the introduction of grammatical relations in
computing distributional similarity, automatic thesaurus
construction can be improved through the
interchangeability of similar words in diverse
syntactically conditional contexts. Most methods still
combined these contexts into one united representation
for similarity computation, which worked analogously to
these based on the premise of ‘a bag of words’. After the
categorization of the syntactically conditioned contexts,
through which similar words can be formed under the
assumption of context interchangeability, automatic
thesauri were yielded with significantly higher precision
than the traditional methods. Future research will focus
on clustering dependencies and extracting word senses
from the thesaurus entries. Learning or enriching
ontologies from automatic thesauri is also the next task.

8 References

Carroll, John, Ted Briscoe and Antonio Sanfilippo
(1998). Parser Evaluation: a Survey and a New
Proposal. In the First International Conference on
Language Resources and Evaluation, 447-454.
Granada, Spain.

Cruse, D. A. (1986). Lexical Semantics, Cambridge
University Press.

Curran, James R. (2003). From Distributional to Semantic
Similarity. Ph.D thesis

Deerwester, Scott C., Susan T. Dumais, Thomas K.
Landauer, George W. Furnas and Richard A. Harshman
(1990). Indexing by Latent Semantic Analysis. Journal
of the American Society of Information Science 41(6):
391-407.

Fellbaum, Christiane (1998). WordNet: An Electronic
Lexical Database. Cambridge, MA, The MIT Press.

Grefenstette, Gregory (1992). Sextant: Exploring
Unexplored Contexts for Semantic Extraction from

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

155

Syntactic Analysis. In the 30th Annual Meeting of the
Association for Computational Linguistics, 324-326.
Newark, Delaware.

Grefenstette, Gregory (1993). Evaluation Techniques for
Automatic Semantic Extraction: Comparing Syntactic
and Window Based Approaches. In the Workshop on
Acquisition of Lexical Knowledge from Text, 143-153.

Harris, Zellig (1985). Distributional Structure. In The
Philosophy of Linguistics J. J. Katz, (ed). New York,
Oxford University Press: 26-47.

Hindle, Donald (1990). Noun Classification from
Predicate-argument Structures. In the 28th Annual
Meeting of the Association for Computational
Linguistics, 268-275. Pittsburgh, Pennsylvania.

Hirschman, Lynette, Ralph Grishman and Naomi Sager
(1975). Grammatically-based Automatic Word Class
Formation. Information Processing and Management
11: 39-57.

Kilgarriff, Adam (1997). I don't Believe in Word Senses.
Computers and the Humanities 31(2): 91-113.

Kilgarriff, Adam (2004). How Dominant is the
Commonest Sense of a Word? In the 7th International
Conference (TSD 2004, Text, Speech and Dialogue),
103-112. Brno, Czech Republic.

Kilgarriff, Adam and Colin Yallop (2000). What's in a
Thesaurus? In the Second International Conference on
Language Resources and Evaluation, LREC-2000,
1371-1379. Athens, Greece.

Landauer, Thomas K. and Susan T. Dumais (1997). A
Solution to Plato's Problem: the Latent Semantic
Analysis Theory of Acquisition, Induction, and
Representation of Knowledge. Psychological Review
104: 211-240.

Lin, Dekang (1997). Using Syntactic Dependency as a
Local Context to Resolve Word Sense Ambiguity. In
the 35th Annual Meeting of the Association for
Computational Linguistics, 64-71. Madrid, Spain.

Lin, Dekang (1998). Automatic Retrieval and Clustering
of Similar Words. In the 17th International Conference
on Computational Linguistics, 768-774. Montreal,
Quebec, Canada.

Lowe, Will (2001). Towards a Theory of Semantic Space.
In the 23rd Annual Conference of the Cognitive
Science Society, 576-581. Edinburgh, UK.

McCarthy, Diana, Rob Koeling, Julie Weeds and John
Carroll (2004). Finding Predominant Senses in
Untagged Text. In the 42nd Annual Meeting of the
Association for Computational Linguistics (ACL-04),
267-287. Barcelona, Spain.

Miller, George A. and Walter G. Charles (1991).
Contextual Correlates of Semantic Similarity.
Language and Cognitive Processes 6(1): 1-28.

Molla, Diego and Ben Hutchinson (2003). Intrinsic
versus Extrinsic Evaluations of Parsing Systems. In
European Association for Computational

Linguistics(EACL), workshop on Evaluation Initiatives
in Natural Language Processing, 43-50. Budapest,
Hungary.

Padó, Sebastian and Mirella Lapata (2007). Dependency-
based construction of semantic space models. To
appear in Computational Linguistics 33(2).

Pantel, Patrick and Dekang Lin (2002). Discovering
Word Senses from Text. In the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 613-619. New York, NY, USA.

Resnik, Philip (1997). Selectional Preference and Sense
Disambiguation. In ACL Siglex Workshop on Tagging
Text with Lexical Semantics, Why, What and How?,
52-57. Washington, USA.

Sahlgren, Magnus (2006). The Word-Space Model: Using
Distributional Analysis to Represent Syntagmatic and
Paradigmatic Relations between Words in High-
Dimensional Vector Spaces. Ph.D thesis

Salton, Gerard and Michael J. McGill (1986).
Introduction to Modern Information Retrieval. New
York, NY, USA, McGraw-Hill.

Schütze, Hinrich (1992). Dimensions of Meaning. In the
1992 ACM/IEEE Conference on Supercomputing, 787-
796. Minneapolis, Minnesota, USA.

Sleator, Daniel and Davy Temperley (1991). Parsing
English with a Link Grammar, Carnegie Mellon
University.

Weeds, Julie Elizabeth (2003). Measures and
Applications of Lexical Distributional Similarity. Ph.D
thesis

Yang, Dongqiang and David M.W. Powers (2005).
Measuring Semantic Similarity in the Taxonomy of
WordNet. In the Twenty-Eighth Australasian Computer
Science Conference (ACSC2005), 315-322. Newcastle,
Australia, ACS.

Yang, Dongqiang and David M.W. Powers (2006). Verb
Similarity on the Taxonomy of WordNet. In the 3rd
International WordNet Conference (GWC-06), 121-
128. Jeju Island, Korea.

Yarowsky, David (1993). One Sense per Collocation. In
ARPA Human Language Technology Workshop, 266-
271. Princeton, New Jersey.

Zipf, George Kingsley (1965). Human Behavior and the
Principle of Least Effort: an Introduction to Human
Ecology. N.Y., Hafner Pub. Co.

CRPIT Volume 74 - Computer Science 2008

156

Relative Simulation and Model
Checking of Real-Time Processes

Colin Fidge

Faculty of Information Technology,
Queensland University of Technology,

Brisbane, Queensland, Australia.
Email: c.fidge@qut.edu.au

Abstract

Simulation and model checking are commonly used to
compare the behaviour of a computer-based system
with its requirements specification. However, when
upgrading an operational legacy system the challenge
is usually to compare the behaviour of a proposed
new system against an old trusted one. Doing this
for time-sensitive control systems is awkward because
the behaviour of the system is dependent on that
of its physical environment. Consequently, the old
and new systems can be compared meaningfully only
when they are simulated under exactly the same con-
ditions. In this paper we show how this can be done
by simulating both the old and new systems simulta-
neously, with both system models linked to the same
environment model. The resulting simulation traces
and model checking counterexamples allow the be-
haviours of a legacy real-time system and its proposed
replacement to be compared directly and easily.

Keywords: Simulation; Model checking; Real-time
systems.

1 Introduction

Software upgrades are a serious maintenance issue for
long-lived control systems. While major engineer-
ing assets such as coal draglines and aircraft have
lifetimes measured in decades, the microprocessors
and accompanying software embedded within them
become obsolete within a few years. Techniques for
safely replacing outmoded computer control systems
with newer versions are the subject of considerable
practical interest (Luke et al. 2001) and the process
is governed by strict regulations worldwide (U.S. Fed-
eral Aviation Administration 2001).

A particular problem with upgrading such legacy
systems is that the original requirements documents,
system specifications and certification tests may no
longer exist or may be irrelevant for a system which
has evolved over a number of years. Instead, reliance
is often placed on the old system having a ‘clean’
in-service history (Australian Defence Force 2003) so
that the proposed upgrade can be assessed directly
against the current system’s behaviour.

Acknowledgements I wish to thank the anonymous review-
ers for their suggested improvements to this paper. This work
was funded by Australian Research Council Discovery-Projects
grant DP0773012, Rapidly Locating Items in Distribution Net-
works with Process-Driven Nodes.

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74, Gillian Dobbie and Bernard Mans, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

In particular, we are interested in formally mod-
elling old and new real-time control systems so that
their task-level behaviour can be compared using sim-
ulation and model checking. However, this process is
difficult because the behaviour of embedded timing-
dependent control systems is intimately linked to that
of their physical environment. Therefore, an appro-
priate model of the (uncontrolled) external environ-
ment must be devised as well.

Furthermore, the behaviours of the old and new
systems can be compared meaningfully only if they
are simulated under exactly the same circumstances.
It is not adequate, for instance, to run a random sim-
ulation of the old system followed by a simulation of
the proposed new system if the model of the environ-
ment behaves differently in the two simulations.

An ‘obvious solution’ to this dilemma is to record a
trace of the environment’s behaviour during the first
simulation and replay it during the second. Unfor-
tunately, this is not possible in practice due to the
inherently discrete nature of the simulations. For in-
stance, consider a situation where we want to replace
a legacy task running at a frequency of 5Hz with a
new one running at 4Hz. The trace of the first task’s
simulation will include its interactions with the envi-
ronment at times 200ms, 400ms, 600ms, 800ms, etc.
The data in this trace is not useful when attempting
to simulate the second task’s interactions at times
250ms, 500ms, 750ms, etc. Creating environmental
traces with events recorded at both tasks’ frequen-
cies is not possible either because there is typically
a degree of ‘jitter’ (variability) in a task’s periodic-
ity, so the precise times at which it interacts with its
environment cannot be predicted in advance.

In this paper we develop a solution to this problem
which involves simulating the behaviours of both the
old and new systems simultaneously, with both sys-
tem models interacting independently with the same
model of the environment. This allows the behaviours
of the two systems, under exactly the same circum-
stances, to be compared directly. The simultaneous
traces of the two systems’ behaviours then provide
an easy and intuitive way to see their similarities and
differences. Model checking can also be used to ex-
plore the combined state space of the two systems and
search for specific differences between them.

2 Previous Work

Our interest in this research is analysis of time-critical
software tasks. A central concern with such tasks is
whether or not they can be guaranteed to meet their
deadlines when faced by preemption from higher-
priority tasks and locking of shared resources by
lower-priority tasks. Fortunately, real-time schedu-
lability tests can be used to determine this, given cer-
tain timing characteristics of the task set (Buttazzo
1997). We take it for granted that such analyses have

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

157

already been done and that the task set’s schedulabil-
ity is not in question. Instead we are interested in the
tasks’ functional behaviour, an issue not addressed at
all by scheduling theory.

Our approach is based on modelling the real-time
tasks of interest and then analysing the models via
simulation and model checking. There are, of course,
numerous published case studies on modelling and
analysis of time-critical processes. Behrmann et al.
(2004) even cite several examples using the specific
simulation toolkit that we use, including models of
a gearbox controller, a power supply controller, an
automobile supervisory controller, and so on. In
each case, however, the analysis involves developing
a model of a single system and either exploring its
possible behaviours through simulation or confirming
its adherence to formally-stated requirements through
model checking. None of these prior examples address
our concern of allowing two separate models to be di-
rectly compared with one another.

In fact, the approach closest to ours is the pro-
gramming technique of ‘relative’ code debugging
(Searle 2007). Relative debugging helps programmers
locate errors by comparing the contents of key data
structures within two executing programs, one pro-
gram acting as a reference for the other. If the con-
tents of the data structures differ at selected points
during execution then there may be an error. The
principle underlying this approach matches ours, but
work in this area to date has not been devoted to
real-time programs. Furthermore, our interest is in
analysing systems at the tasking level, not at the level
of individual program statements and data structures.

Environment
model

New system
model

Old system
model

Figure 1: Overall structure of the simulations.

3 Approach

The fundamental idea underlying our approach is to
link models of both the old control system and its pro-
posed replacement to the same model of the physical
environment (Figure 1). In this section we describe
our formal models of periodic control tasks and their
environment. As a motivating case study, we assume
that the computational tasks of interest are part of
an avionics system, and are meant to calculate the
vertical veclocity of an aircraft via heights sampled
periodically from the radar altimeter.

3.1 Experimental Environment

The models were developed using the Uppaal real-
time toolkit, which comprises an editor, simulator and
model checker (Behrmann et al. 2004). Uppaal al-
lows systems to be modelled as sets of concurrent fi-
nite state automata augmented with integer-valued

variables, special ‘clock’ variables, and synchronisa-
tion channels.

Uppaal was chosen because it is optimised for
analysis of time-dependent models (although our ap-
proach could equally well be applied in other sim-
ulation environments). In particular, Uppaal’s se-
mantics assumes that all clock variables progress at
the same rate, providing a form of implicit synchro-
nisation between automata. Automata may share
globally-declared variables. The timing semantics is
that time progresses while an automaton resides in a
particular state; transitions are instantaneous. States
may be annotated with boolean expressions which
must be true for the automaton to remain in that
state. Transitions may be annotated with conditions
that must be true for that transition to occur. Tran-
sitions may include variable assignments which are
performed when the transition occurs. Transitions in
concurrent automata may be explicitly synchronised
via input and output events on shared channels, in
which case the assignments performed by the ‘out-
put’ transition are completed before those of the cor-
responding ‘input’ transition.

The experiments described in Section 4 below were
conducted using Uppaal Version 4.0.6 on an Apple
MacBook laptop computer running the OS X oper-
ating system, Version 10.4.10. The simulation traces
and model checking counterexamples were exported
from Uppaal as text files and filtered through a small
‘awk’ script written by the author to make them com-
patible with Apple’s Grapher tool, Version 1.1. Fig-
ures 5 to 10 below were then all exported in Portable
Document Format from Grapher.

3.1.1 Model of the Physical Environment

Simulating a real-time control system using finite
state automata introduces the challenge of devising
an appropriate discrete approximation of the sys-
tem’s continuous environment. For the particular
case study of interest here we needed to simulate the
altitude of an aircraft, taking into account its vertical
velocity and acceleration.

In previous work we developed an environment
model by treating each value of the observed vari-
able’s velocity as a distinct state (Fidge & Tian 2006).
Here we use a different approach in which the veloc-
ity and acceleration are modelled as state variables.
This produces a more concise automaton, but requires
transitions to update a larger number of variables.

Figure 2 shows our Uppaal model of the control
task’s physical environment. There is only a single
state, SensorIdle. (Uppaal’s graphical user inter-
face uses coloured text to distinguish different kinds
of state and transition annotation. Here we use key-
words when, sync, while and do for this purpose.)

As usual in a model checking tool, one of our pri-
mary modelling aims is to minimise the number of
state changes, so a state transition occurs only when
one of the old or new system tasks wishes to sample
the aircraft’s altitude, which it indicates by synchro-
nising with channel sample. For each of the old and
new system models there are three synchronised tran-
sitions, representing the cases where the aircraft’s in-
stantaneous acceleration increases, stays unchanged,
or decreases, respectively.

Considering the middle transition in Figure 2,
which represents the case where the acceleration is
unchanged, we can see that the aircraft’s instanta-
neous vertical velocity v is set to its previous value
plus the instantaneous acceleration a multiplied by
the difference between the time s at which the current
altitude sample is being taken and the time p at which
the last sample was taken (by either the old or new

CRPIT Volume 74 - Computer Science 2008

158

SensorIdle

… plus three symmetric
transitions for the other
system model

when a < A ∧ s ≥ i + M
sync sample!
do a := min(a + I, A);
 v := min(max(−V, v + (a ∗ (s − p))), V);
 h := h + (v ∗ (s − p));
 i := s; p := s

when a > −A ∧ s ≥ i + M
sync sample!
do a := max(a − I, −A);
 v := min(max(−V, v + (a ∗ (s − p))), V);
 h := h + (v ∗ (s − p));
 i := s; p := s

sync sample!
do v := min(max(−V, v + (a ∗ (s − p))), V);
 h := h + (v ∗ (s − p));
 p := s

Figure 2: The state-machine model of the physical environment. Constants: A—Maximum possible accel-
eration (metres per second per second); V —Maximum possible velocity (metres per second); M—Minimum
time allowed between increments of the acceleration (seconds); I—How much the acceleration changes in one
increment (metres per second per second). Variables: h—Height (metres); v—Instantaneous velocity (metres
per second); a—Instantaneous acceleration (metres per second per second); i—Time at which acceleration was
last incremented (seconds); s—Time at which next altitude sample will be taken (seconds); p—Previous sample
time (seconds). Variables h and s are shared with the tasks (Figure 4).

system models). Also, the velocity is bounded by con-
stant V representing the aircraft’s maximum possible
vertical velocity (or at least the velocity within which
the control system is required to function reliably).
The aircraft’s height h is then set to its previous value
plus the velocity v times the difference between the
current s and previous p sample times. Finally, the
previous sample time p is set to the current sample
time s in readiness for the next transition.

The uppermost transition in Figure 2 represents
the case where the aircraft’s vertical accleration in-
creases. It is guarded by the requirement that the
acceleration a is less than the maximum possible as-
sumed acceleration A, and that the last sample time s
is no less than the time i at which the acceleration
last changed plus the minimum allowed separation
between acceleration changes M . In this case the
aircraft’s instantaneous vertical acceleration a is in-
creased by constant I (but is still bounded by max-
imum possible acceleration A). Also the time i at
which the acceleration was last changed is set to the
current sample time s. The aircraft’s vertical veloc-
ity v, height h, and previous sample time p are up-
dated as explained above.

Finally, the lowermost transition in Figure 2 mod-
els the case where the vertical acceleration decreases,
and mirrors the uppermost transition. Although com-
plicated, we have found that modelling the physical
environment in this much detail produces reasonably
‘smooth’ behaviours and minimises modelling arti-
facts in the results. By changing the constants we can
also simulate a wide range of dynamic behaviours.

Most importantly for our purposes, the model of
the physical environment allows the aircraft’s altitude
to be sampled by either the model of the old system
or its intended replacement. Thus, each of the three
transitions described above is duplicated for the sec-

ond system model. The only difference is that there
is a separate ‘sample’ synchronisation channel and a
separate sample time variable ‘s’ for each of the two
control task models. In particular, since transitions
are instantaneous in Uppaal, both system models
can sample from the environment concurrently with-
out interfering with one another.

3.1.2 Model of Control Tasks

Our models of the legacy and replacement control
tasks all follow the same general structure. The chal-
lenge was to devise a model that captures the be-
haviour of a periodic control task which, at each in-
vocation, takes a sample from the altitude sensor, uses
this and one or more previous measurements to calcu-
late the aircraft’s vertical velocity, and then produces
the calculated velocity as its output.

Taking our cue from real-time scheduling the-
ory (Audsley et al. 1993), we assume that periodic
task invocations are scheduled every T seconds and
must complete their computation within a deadline
of D seconds. We assume that the best-case (short-
est) duration between the task sampling the altititude
and producing the calculated vertical velocity is B
seconds. (We also assume that a schedulability test
has already been used to verify that each task invoca-
tion will finish by its deadline, so the task’s worst-case
execution time need not be modelled explicitly.)

Given these task characteristics, we modelled three
extreme behaviours of interest, as shown in Figure 3.
Case 1 represents the situation where the task invo-
cation suffers no interference from other processor ac-
tivity and completes its computation as early as pos-
sible. Case 2 describes the situation where the task
completes all of its activities as late as possible, but
still within its deadline. Case 3 models the maxi-

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

159

sync sample?
do m[0] := h;
 o := s + B

when t ≥ b
do s := b + (D − B)

C NoDelaySuspended
while t ≤ b

Pending
while t ≤ s

Executing
while t ≤ o

when t ≥ b
do s := b

when t ≥ o
do c := f(m, H); ... see text
 m[2] := m[1];
 m[1] := m[0];
 b := b + T

sync sample?
do m[0] := h;
 o := s + D

when t ≥ s
sync sample?
do m[0] := h;
 o := s + B

Figure 4: Model of a periodic task. Constants: T—Period (seconds); D—Deadline (seconds); B—Best-case
execution time (seconds); H—Frequency (hertz). Variables: t—Current time (seconds); h—Height (metres);
s—Time at which task takes next sample (seconds); c—Calculated velocity (metres per second); m—Measured
altitudes (metres); b—Beginning time of the next task invocation (seconds); o—Time at which task produces
its output (seconds).

Sample Output

nT nT + B nT + D (n + 1)T

Sample Output

nT nT + (D − B) nT + D (n + 1)T

Sample Output

nT nT + D (n + 1)T

1.

2.

3.

Figure 3: Timelines showing the three behaviours
modelled for the nth invocation of a task. Con-
stants: T—Period; D—Deadline; B—Best-case ex-
ecution time.

mum possible separation between the task sampling
its input and producing its output. Although there
are other possible task behaviours between these ex-
tremes, these cases are sufficient for comparing the
worst-case behaviours of each task.

To capture these task behaviours in Uppaal we
developed the state machine model shown in Figure 4.
State Suspended represents the situation where the
task is waiting for its next invocation. (The nested
circle indicates that this is the initial state.) This
state persists while the current time t does not ex-
ceed the task invocation’s beginning time b. The

three paths leading from state Suspended back to
itself model the three behaviours described in Fig-
ure 3. All transitions leading from state Suspended
are guarded by the requirement that current time t is
not less than the task’s beginning time b. Combined
with the constraint on the state, this forces the chosen
transition to occur at time b exactly.

The uppermost path in Figure 4 models the case
where the task invocation performs all of its actions
as late as possible (Case 2 in Figure 3). When state
Suspended is left the time s at which the task sam-
ples the aircraft’s altitude is set to the latest pos-
sible time, and the task enters state Pending until
this time. When state Pending is left the task syn-
chronises with the environment model, via channel
sample, and stores a measurement of the aircraft’s
height h in array m. The model also sets the time o
at which the task invocation will produce its output,
and enters state Executing which represents the sit-
uation where the task is calculating the aircraft’s ver-
tical velocity from recently sampled altitude readings.

When state Executing is left, at time o, the task’s
calculated velocity c is produced as a function f of
the array m of altitude measurements and the task’s
frequency H. The choice of function f depends on
the type of task being modelled (see Section 4). In
addition, the most recent altitude measurements are
shifted along array m and the beginning time b for
the next task invocation is calculated as the last in-
vocation’s beginning time plus the task’s period T .

The other two paths through Figure 4, via state
NoDelay, model Cases 1 and 3 from Figure 3. In
both cases the task invocation samples the aircraft’s
altitude immediately. (In Uppaal a ‘C’ within a state
indicates that this is a ‘committed’ transition which
occurs straight away.) From state NoDelay the only
difference between these two cases is the time o at
which the subsequent output will be produced.

Although simple, the results in Section 4 below
show that this model accurately captures a periodic
task’s dynamic behaviour.

CRPIT Volume 74 - Computer Science 2008

160

500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 17005

10

15

20

25

30

35

40

45

50

55

60

Elapsed time (cs)

V
el

oc
ity

 (m
/s

)

Figure 6: Effect of (worst-case) jitter on a simple task. A simulation showing the task’s calculated velocity (the
step function) against the environment’s instantaneous velocity (smooth curve). Task constants: T = 250ms,
D = 100ms, B = 60ms.

350 400 450 500 550 60010

12

14

16

18

20

22

24

26

V
el

oc
ity

 (m
/s

)

Elapsed time (cs)

Figure 5: Velocity calculated by a simple task (the
step function) compared with the instantaneous ve-
locity used by the environment model (smooth curve)
with no task jitter. Task constants: T = 250ms,
D = 60ms, B = 60ms.

4 Experimental Results

In this section we present the outcomes of a number of
experiments conducted using the models described in
Section 3. In particular, we show how our approach of
simulating both the old and new systems simultane-
ously, interacting with the same environment, allows
their respective behaviours to be compared easily.

The same environment model was used for all of
the experiments shown below. With respect to Fig-
ure 2, the environmental constants used in the ex-
periments were a maximum vertical acceleration A of
10m/s2, a maximum vertical velocity V of 140m/s, a
fixed increment I to the acceleration when it changes
of 3m/s2, and a minimum allowed time M between
changes to the acceleration of 500ms.

4.1 Validating the Task Model

We firstly need to confirm that our models of periodic
control tasks and their environment reflect the actual
dynamic behaviour of such systems.

As an initial test, Figure 5 shows a simulation of a
simple task which calculates the aircraft’s vertical ve-
locity based on the last two measured altitudes. With
respect to function f in Figure 4, the calculated ve-
locity c was produced from the task’s frequency H
and array m of measured altitudes as follows.

c := (m[0]−m[1]) ∗H

Figure 5 clearly shows the calculated velocity lag-
ging behind the ‘true’ instantaneous velocity, which
is climbing rapidly at this point in the simulation, as
we would expect due to the time required to sample
altitudes and perform the calculation. (The horizon-
tal axis in this and subsequent figures is measured in
centiseconds, i.e., hundredths of a second. The rea-
son for this unusual choice of time unit is discussed
in Section 5.)

The task’s deadline D and best-case execution
time B were the same in this experiment, so there
was no jitter (variability) in the periodicity of times
at which the task sampled altitudes or produced ve-
locities. In practice, however, the execution of most
periodic tasks is disturbed by either preemption from
other software tasks running on the processor or in-
terruptions from hardware events. To model this sit-
uation we ran another experiment in which the task’s
deadline D was increased. This allowed variability in
the times at which each task invocation performs its
actions, as per Figure 3.

The results of this experiment are shown in Fig-
ure 6. This time the task’s calculated behaviour fails
to follow the instantaneous velocity closely. Further-
more, as the velocity increases, so do the errors in the
calculated velocity.

In fact, this is exactly the behaviour we expect
from a task with appreciable jitter. The expression
above for calculating velocity c assumes that consec-
utive altitude measurements are taken exactly 1/H
seconds apart. However, if the actual samples are
taken closer together than this, due to jitter in the

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

161

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 230020

25

30

35

40

45

50

55

60

V
el

oc
ity

 (m
/s

)

Elapsed time (cs)

Instantaneous velocity

Instantaneous velocityInstantaneous velocity

Simple task's
calculated velocity

Smart task's
calculated velocity

Figure 7: Comparison of a fast simple task (dashed line) with a slower but smarter one (solid line). Simple
task constants: T = 333ms, D = 60ms, B = 20ms. Smart task constants: T = 500ms, D = 50ms, B = 20ms.

task’s periodicity, then the velocity will be underes-
timated. If samples are taken further apart than ex-
pected then the velocity will be overestimated. These
effects account for the way the task both under and
overestimates the calculated velocity in our simula-
tion, and the fact that the magnitude of the error is
proportional to the absolute velocity.

For instance, in Figure 6 samples could be taken
as far apart as T + (D − B) = 250 + (100 − 60) =
290ms. This would skew the results by a factor of
290/250 = 1.16, meaning that when the true velocity
is, for example, 45m/s, the simple task may report it
as 52.2m/s. Indeed, we see this occur at the top of
the curve in Figure 6 where, even though the instan-
taneous velocity is constant, the calculated velocity
jumps upwards. (The effects of jitter would not nor-
mally be as severe as shown here, but keep in mind
that we are modelling worst-case behaviours.)

From these and other experiments we concluded
that our task and environment models do indeed cap-
ture the dynamic system properties of interest.

4.2 Comparing Different Calculations

Most importantly, however, by constructing our mod-
els as shown in Figure 1, we can simulate two different
tasks under exactly the same conditions to compare
their respective behaviours.

For example, having observed the erratic be-
haviour of the simple task in Section 4.1, we may
consider whether we can improve its (worst-case) be-
haviour by changing the way the velocity is calcu-
lated. One way of doing this would be to calculate
the velocity using the last three measured altitudes,
rather than just the last two, using an average value
as follows.

c :=
((m[0]−m[1]) + (m[1]−m[2])) ∗H

2
Figure 7 then shows the result of an experiment to

directly compare the behaviour of the original simple
task and this proposed new ‘smart’ one, both suffer-
ing from worst-case jitter. Furthermore, in this par-
ticular example the simple task runs at a frequency

of 3Hz, while the smart task runs at only 2Hz, thus
putting the smart task at a significant disadvantage.
Around 18 seconds into the simulation, for instance,
it is obvious that the smart task’s output lags fur-
ther behind the instantaneous velocity than that of
the simple task, because the simple task’s output is
updated more often.

Nevertheless, the figure clearly shows that the
different calculation in the smart task produces a
smoother result, despite this handicap. As the true
velocity increases the simple task’s calculated velocity
becomes unstable, whereas the smart task continues
to follow the true velocity closely. (In the particular
experiment shown in Figure 7 the smart task has a
shorter deadline than the simple one and thus suf-
fers less from jitter. Nevertheless other experiments
showed that the relative ‘smoothness’ of the smart
task’s behaviour is primarily due to the averaging ef-
fect of the way it calculates velocities.)

Simulating the behaviour of the two tasks together
in this way thus allows us to compare various aspects
of their behaviours quickly and easily. By varying
the task constants we can also calibrate them with
respect to one another.

4.3 Comparing Different Task Sets

We can also use our approach to compare not just sin-
gle tasks but different task sets. For instance, a com-
mon architecture in avionics control systems is to have
an autonomous Input-Output Processor running in
parallel with the Central Processing Unit (Falardeau
1994). This allows the cpu to continue calculating
while the iop interacts with hardware devices to get
sensor data.

Therefore, we decided to conduct an experiment
which compared the behaviour of a single dedicated
task to an iop-cpu task pair. We assumed that the
vertical velocity calculation is split into two halves. A
periodic task on the Input-Output Processor samples
altitudes and puts the values into a shared memory
location, and a periodic task in the Central Processing
Unit reads these values and uses them to calculate
the vertical velocity. Both task models were based

CRPIT Volume 74 - Computer Science 2008

162

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 210020

30

40

50

60

70

80

V
el

oc
ity

 (m
/s

)

Elapsed time (cs)

Instantaneous
velocity

Single task's
calculated velocity

IOP-CPU tasks'
calculated velocity

Figure 8: Comparison of a single task with a combination of an iop task and a cpu task. Single task constants:
T = 500ms, D = 100ms, B = 70ms. Iop task constants: T = 200ms, D = 40ms, B = 30ms. Cpu task
constants: T = 333ms, D = 60ms, B = 40ms.

on the one in Figure 4. The iop task synchronised
with the environment via a sample channel in the
usual way and put the sampled altitude into a shared
variable. However, the cpu task was slightly simpler
than Figure 4 because it did not need to synchronise
and just read from the global variable shared with
the iop task at appropriate times. (At the tasking
level the delay caused by code being blocked awaiting
access to the shared variable is accounted for in the
task’s timing constants.)

We then conducted an experiment to compare a
single task with an iop-cpu task combination. Both
the single task and the cpu task used the ‘smart’ ve-
locity calculation from Section 4.2. For the purposes
of comparison the single task’s execution time was
split between the iop and cpu tasks. However, both
the iop and cpu tasks were given shorter periods than
the single task. Also their periods were different from
one another. The iop task was scheduled at a fre-
quency of 5Hz, while the cpu task ran at only 3Hz.
This was done on the assumption that it would allow
the cpu task to always find a reasonably ‘fresh’ alti-
tude stored in the memory location shared with the
iop task, so that we should get a smooth calculated
velocity.

However, as shown in Figure 8, the iop-cpu tasks
performed worse than the single task, despite the sin-
gle task running at only 2Hz. The highly erratic be-
haviour of the iop-cpu combination was caused by
the difference in their frequencies which created an ex-
treme kind of jitter across successive task invocations.
Furthermore, we also recognised from this result that
the velocity calculation in the cpu task, which was
based on its own frequency, was inadequate in this
situation since it also needs to take into account the
delay introduced by the iop task. This explains the
asymmetry in the iop-cpu tasks’ calculated velocity.

To solve this, we realised that there needs to be
a harmonic relationship in the communicating tasks’
periods. To confirm this hypothesis we changed the
cpu task’s period to match that of the iop task.
We also introduced an initial 100ms offset in the

cpu task’s schedule, so that cpu task invocations
never overlap in time with those of the iop task. (In
practice this would allow us to avoid the need for a
mutual-exclusion lock on the variable shared by the
two tasks.)

Rerunning the experiment then produced a dra-
matically different result as shown in Figure 9. Not
only does the iop-cpu pair now produce a smooth cal-
culated velocity, but thanks to their higher (shared)
frequency they outperform the single task. It is clear
from the figure that the iop-cpu tasks’ calculated ve-
locity stays closer to the true velocity than that of the
single task.

Again, these experiments show how the model al-
lows us to compare different possible implementations
easily and to identify design problems even before the
corresponding programs are written.

4.4 Searching for Differences

Of course, the real advantage of using a tool such
as Uppaal is that as well as exploring random or
user-guided behaviours via simulation, we can also
use model checking to search for particular states of
interest. Recall that model checking involves an ex-
haustive state-space search to locate specific states
expressed through temporal logic formulæ (Clarke &
Schlingloff 1999). In our application this means that
we can use Uppaal’s model checker to search for sig-
nificant differences in the behaviour of an old system
and its intended replacement.

As an example, consider the situation where as
part of a software upgrade we need to change the
tasking schedule. The original task was invoked fre-
quently but had high jitter. The question is whether
it would be acceptable to replace it with a task that is
invoked less frequently but which has a lower degree
of jitter. (Both tasks calculate velocities as per the
‘smart’ task described in Section 4.2.)

In this case we may wish to check the following
temporal logic safety property, where c is the more
frequent (4Hz) task’s calculated velocity and c′ is the

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

163

7500 7600 7700 7800 7900 800025

30

35

40

45

50

IOP-CPU tasks'
calculated velocity

Instantaneous
velocity

Elapsed time (cs)

Single task's
calculated velocity

V
el

oc
ity

 (m
/s

)

Figure 9: Comparison of a single task with an improved iop-cpu task combination. Single task constants:
T = 500ms, D = 100ms, B = 70ms. Iop task constants: T = 200ms, D = 40ms, B = 30ms. Cpu task
constants: T = 200ms, D = 60ms, B = 40ms and initial offset 100ms.

less frequent (2Hz) task’s calculated velocity.

�(c− 6 ≤ c′ ≤ c + 6)

In other words, we want to confirm that the replace-
ment task’s calculated velocity c′ always stays within
6m/s of the original task’s calculation c.

In this case Uppaal’s model checker quickly pro-
duced a counterexample to prove that this property
does not hold. Figure 10 shows the resulting trace.
The particular situation found is one where the veloc-
ity is decreasing rapidly and at a high negative veloc-
ity the difference in the two task’s velocities exceeds
6m/s.

Interestingly, although a large difference was found
between the original and proposed replacement tasks’
behaviours, this does not necessarily suggest that the
replacement task is not adequate. In fact, the primary
cause of the difference here is the jitter in the orig-
inal task. The figure shows that the less-frequently
invoked replacement task (dashed line) has a compar-
atively smooth behaviour, so we may still choose to
use it in place of the original task.

4.5 Failing to Find Differences

As a final experiment we chose to refine our model
checking result. In the particular counterexample in
Figure 10 the large difference between the two tasks’
calculated vertical velocities occurs in the circum-
stance of a high negative velocity exceeding −90m/s.
We may therefore ask whether such a difference could
ever occur under less extreme conditions.

The following safety property asserts that the re-
placement task’s calculated velocity c′ always stays
within 6m/s of the original task’s calculation c, pro-
vided that the original task’s velocity does not exceed
an absolute value of 70m/s.

�((−70 ≤ c ≤ 70)⇒ (c− 6 ≤ c′ ≤ c + 6))

Attempting to check this property using Up-
paal’s model checker produced inconclusive results,
however. Trying depth-first or ‘random depth-first’
searches resulted in immediate integer overflows. This

is not surprising given the way we have expressed the
models, because the timestamp and altitude variables
in the model can grow without bound.

On the other hand a breadth-first search became
hopelessly memory-bound, attempting to maintain
the enormous tree of states visited, despite the power-
ful optimisation techniques used by Uppaal (Larsen
et al. 1997). Again this is not surprising given that
this particular model has numerous integer-valued
variables, thus resulting in an enormous state space.

Ultimately, therefore, all we can conclude is that it
appears highly likely that the safety property holds,
since no counterexample could be found within rea-
sonable time and space limits. However, it is an in-
evitable characteristic of models such as ours, with
unbounded integer-valued variables, that the entire
state space cannot be searched.

5 Discussion

The Uppaal toolkit provided an extremely conve-
nient environment in which to conduct this research.
In particular, the implicitly synchronised clocks sup-
ported by its timed automata semantics allowed us to
express independent models of the old and new sys-
tems which nonetheless both progressed at the same
rate, and the instantaneous transitions in Uppaal’s
timed automata semantics allowed the two system
models to access the same environment concurrently
without interfering with one another.

A weakness of Uppaal, however, is its limited sup-
port for arithmetic. The current version supports 16-
bit integers only. Working with such a limited range
of values was awkward. Our first attempted models
used centimetres as the unit for lengths and millisec-
onds as the unit for time, as these were natural choices
for the problem domain. However, these units were
so small that the simulations failed with integer over-
flows after only a few seconds of simulated time. We
were forced, therefore, to re-express our models using
larger units, specifically decimetres for lengths and
centiseconds for times. This complicated the arith-
metic in the models somewhat because it became nec-
essary to scale the results to more commonly-used

CRPIT Volume 74 - Computer Science 2008

164

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10
Elapsed time (cs)

V
el

oc
ity

 (m
/s

)

Instantaneous
velocity

More frequent task's
calculated velocity

Less frequent task's
calculated velocity

Safety
property
is violated

Figure 10: Model checking counterexample showing how a 6m/s difference can occur between two task’s
calculated velocities. More frequent task’s constants: T = 250ms, D = 100ms, B = 70ms. Less frequent task’s
constants: T = 500ms, D = 50ms, B = 40ms.

units. (For clarity, the arithmetic needed to do this
has been excised from Figures 2 and 4.)

6 Conclusion

The dynamic behaviour of real-time control tasks is
complex and is intimately linked to that of their phys-
ical environment. In control system maintenance the
behaviour of a proposed new system can be compared
meaningfully with that of an existing legacy system
only within the same environment. Here we have
shown how this can be done in a real-time simula-
tion and model checking toolkit by modelling both
old and new systems concurrently with a shared en-
vironment model. The environment was accessed by
each of the system models in a way that prevented the
two models from interfering with one another. This
allowed the separate behaviour of the two systems to
be compared directly. Pleasingly, a variety of exper-
iments showed that the outcomes are both easy to
interpret, and match our intuitive understanding of
the dynamic processes involved.

References

Audsley, N., Burns, A., Richardson, M., Tindell, K.
& Wellings, A. (1993), ‘Applying new scheduling
theory to static priority pre-emptive scheduling’,
Software Engineering Journal 8(5), 284–292.

Australian Defence Force (2003), Airworthiness De-
sign Requirements Manual. Australian Air Publi-
cation 7001.054(AM1).

Behrmann, G., David, A. & Larsen, K. G. (2004), A
tutorial on uppaal, Technical report, Department
of Computer Science, Aalborg University.

Buttazzo, G. C. (1997), Hard Real-Time Computing
Systems: Predictable Scheduling Algorithms and
Applications, Kluwer.

Clarke, E. M. & Schlingloff, B.-H. (1999), Model
checking, in A. Robinson & A. Voronkov, eds,
‘Handbook of Automated Reasoning’, Elsevier.

Falardeau, J. D. G. (1994), Schedulability analysis in
rate monotonic based systems with application to
the CF-188, Master’s thesis, Department of Elec-
trical and Computer Engineering, Royal Military
College of Canada.

Fidge, C. J. & Tian, Y.-C. (2006), Functional anal-
ysis of a real-time protocol for networked control
systems, in S. Graf & W. Zhang, eds, ‘Proceed-
ings of the Fourth International Symposium on Au-
tomated Technology for Verification and Analysis
(ATVA 2006)’, Vol. 4218 of Lecture Notes in Com-
puter Science, Springer-Verlag, pp. 446–460.

Larsen, K. G., Larsson, F., Pettersson, P. & Yi, W.
(1997), Efficient verification of real-time systems:
Compact data structure and state space reduction,
in ‘Proceedings of the 18th IEEE Real-Time Sys-
tems Symposium (RTSS’97)’, IEEE Computer So-
ciety, pp. 14–24.

Luke, J. A., Haldeman, D. G. & Cannon, W. J.
(2001), ‘A COTS-based replacement strategy for
aging avionics computers’, CrossTalk—The Jour-
nal of Defense Software Engineering pp. 14–17.

Searle, A. (2007), Automatic Relative Debugging,
PhD thesis, Faculty of Information Technology,
Queensland University of Technology.

U.S. Federal Aviation Administration (2001), Guide-
lines for the Approval of Software Changes in
Legacy Systems Using RTCA DO-178B. FAA No-
tice N8110.89.

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

165

CRPIT Volume 74 - Computer Science 2008

166

Author Index

Burton, Benjamin A., 9

Cho, Andrew, 109
Craik, Andrew, 27

Dekeyser, Stijn, 17
Deva, Paresh, 109
Dobbie, Gillian, iii
Dumas, M., 73

Fidge, Colin, 73, 157

Gough, John, 37

Jaffar, Joxan, 3

Kelly, Wayne, 27, 37
Kennedy, Angel, 137
Khalil, Faten, 91

Lee, Sofianto, 83
Li, Jiuyong, 91
Li, Min, 101
Lister, Raymond, 83

MacNish, Cara, 137
Mans, Bernard, iii
McBurney, Peter, 127
Miller, Tim, 127

Mir, Stephan, 63
Motrøen, Lasse, 17

Pirzada, Asad, 63
Plank, Ashley, 101
Portmann, Marius, 63
Powers, David M., 147

Reid, Wayne, 27

Sang, Yingpeng, 47
Shen, Hong, 47
Steele, Robert, 55
Sun, Xiaoxun, 101

Tao, Will, 55
Tempero, Ewan, 7, 109
ter Hofstede, A.H.M., 73
Turpin, Andrew, 117

Wang, Hua, 91, 101
Watson, Richard, 17
Wu, Mingfang, 117
Wynn, M.T., 73

Yang, Dongqiang, 147

Zobel, Justin, 117

Proc. 31st Australasian Computer Science Conference (ACSC 2008), Wollongong, Australia

167

Recent Volumes in the CRPIT Series

ISSN 1445-1336
Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 67 - Conceptual Modelling 2007
Edited by John F. Roddick, Flinders University and
Annika Hinze, University of Waikato, New Zealand.
January, 2007. 978-1-920682-48-4.

Contains the proceedings of the Fourth Asia-Pacific Conference on Conceptual Modelling
(APCCM2007), Ballarat, Victoria, Australia, January 2007.

Volume 68 - ACSW Frontiers 2007
Edited by Ljiljana Brankovic, University of Newcas-
tle, Paul Coddington, University of Adelaide, John
F. Roddick, Flinders University, Chris Steketee,
University of South Australia, Jim Warren, the Univer-
sity of Auckland, and Andrew Wendelborn, Univer-
sity of Adelaide. January, 2007. 978-1-920682-49-1.

Contains the proceedings of the ACSW Workshops - The Australasian Information Security
Workshop: Privacy Enhancing Systems (AISW), the Australasian Symposium on Grid Com-
puting and Research (AUSGRID), and the Australasian Workshop on Health Knowledge Man-
agement and Discovery (HKMD), Ballarat, Victoria, Australia, January 2007.

Volume 69 - Safety Critical Systems and Software 2006
Edited by Tony Cant, Defence Science and Technol-
ogy Organisation, Australia. February, 2007. 978-1-
920682-50-7.

Contains the proceedings of the 11th Australian Conference on Safety Critical Systems and
Software, August 2006, Melbourne, Australia.

Volume 70 - Data Mining and Analytics 2007
Edited by Peter Christen, Paul Kennedy, Jiuy-
ong Li, Inna Kolyshkina and Graham Williams.
December, 2007. 978-1-920682-51-4.

Contains the proceedings of the 6th Australasian Data Mining Conference (AusDM 2007), Gold
Coast, Australia. December 2007.

Volume 72 - Advances in Ontologies 2006
Edited by Mehmet Orgun Macquarie University and
Thomas Meyer, National ICT Australia, Sydney. De-
cember, 2006. 978-1-920682-53-8.

Contains the proceedings of the Australasian Ontology Workshop (AOW 2006), Hobart, Aus-
tralia, December 2006.

Volume 73 - Intelligent Systems for Bioinformatics 2006
Edited by Mikael Boden and Timothy Bailey
University of Queensland. December, 2006. 978-1-
920682-54-5.

Contains the proceedings of the AI 2006 Workshop on Intelligent Systems for Bioinformatics
(WISB-2006), Hobart, Australia, December 2006.

Volume 74 - Computer Science 2008
Edited by Gillian Dobbie, University of Auckland,
New Zealand and Bernard Mans Macquarie Univer-
sity. January, 2008. 978-1-920682-55-2.

Contains the proceedings of the Thirty-First Australasian Computer Science Conference
(ACSC2008), Wollongong, NSW, Australia, January 2008.

Volume 75 - Database Technologies 2008
Edited by Alan Fekete, University of Sydney
and Xuemin Lin, University of New South Wales.
January, 2008. 978-1-920682-56-9.

Contains the proceedings of the Nineteenth Australasian Database Conference (ADC2008),
Wollongong, NSW, Australia, January 2008.

Volume 76 - User Interfaces 2008
Edited by Beryl Plimmer and Gerald Weber Uni-
versity of Auckland. January, 2008. 978-1-920682-
57-6.

Contains the proceedings of the Ninth Australasian User Interface Conference (AUIC2008),
Wollongong, NSW, Australia, January 2008.

Volume 77 - Theory of Computing 2008
Edited by James Harland, RMIT University and
Prabhu Manyem, University of Ballarat. January,
2008. 978-1-920682-58-3.

Contains the proceedings of the Fourteenth Computing: The Australasian Theory Symposium
(CATS2008), Wollongong, NSW, Australia, January 2008.

Volume 78 - Computing Education 2008
Edited by Simon, University of Newcastle and Mar-
garet Hamilton, RMIT University. January, 2008.
978-1-920682-59-0.

Contains the proceedings of the Tenth Australasian Computing Education Conference
(ACE2008), Wollongong, NSW, Australia, January 2008.

Volume 79 - Conceptual Modelling 2008
Edited by Annika Hinze, University of Waikato, New
Zealand and Markus Kirchberg, Massey University,
New Zealand. January, 2008. 978-1-920682-60-6.

Contains the proceedings of the Fifth Asia-Pacific Conference on Conceptual Modelling
(APCCM2008), Wollongong, NSW, Australia, January 2008.

Volume 80 - Health Data and Knowledge Management 2008
Edited by James R. Warren, Ping Yu, John Year-
wood and Jon D. Patrick. January, 2008. 978-1-
920682-61-3.

Contains the proceedings of the Australasian Workshop on Health Data and Knowledge Man-
agement (HDKM 2008), Wollongong, NSW, Australia, January 2008.

Volume 81 - Information Security 2008
Edited by Ljiljana Brankovic, University of New-
castle and Mirka Miller, University of Ballarat.
January, 2008. 978-1-920682-62-0.

Contains the proceedings of the Australasian Information Security Conference (AISC 2008),
Wollongong, NSW, Australia, January 2008.

Volume 82 - Grid Computing and e-Research
Edited by Wayne Kelly and Paul Roe QUT.
January, 2008. 978-1-920682-63-7.

Contains the proceedings of the Australasian Workshop on Grid Computing and e-Research
(AusGrid 2008), Wollongong, NSW, Australia, January 2008.

Volume 83 - Challenges in Conceptual Modelling
Edited by John Grundy, University of Auckland,
New Zealand, Sven Hartmann, Massey University,
New Zealand, Alberto H.F. Laender, UFMG, Brazil,
Leszek Maciaszek, Macquarie University, Australia
and John F. Roddick, Flinders University, Australia.
December, 2007. 978-1-920682-64-4.

Contains the tutorials, posters, panels and industrial contributions to the 26th International
Conference on Conceptual Modeling - ER 2007.

Volume 84 - Artificial Intelligence and Data Mining 2007
Edited by Kok-Leong Ong, Deakin University, Aus-
tralia, Wenyuan Li, University of Texas at Dallas,
USA and Junbin Gao, Charles Sturt University, Aus-
tralia. December, 2007. 978-1-920682-65-1.

Contains the proceedings of the 2nd International Workshop on Integrating AI and Data Mining
(AIDM 2007), Gold Coast, Australia. December 2007.

Volume 86 - Safety Critical Systems and Software 2007
Edited by Tony Cant, Defence Science and Technol-
ogy Organisation, Australia. December, 2007. 978-1-
920682-67-5.

Contains the proceedings of the 12th Australian Conference on Safety Critical Systems and
Software, August 2006, Adelaide, Australia.

CRPIT Volume 74 - Computer Science 2008

168

	A00 Headers.pdf
	K01CRPITV74Joxan.pdf
	K02 Headers.pdf
	K02CRPITV74Tempero.pdf
	K02ZZZ.pdf
	K03CRPITV74Burton.pdf
	P00 Headers.pdf
	P07CRPITV74Dekeyser.pdf
	P08CRPITV74Reid.pdf
	P09CRPITV74Kelly.pdf
	P10CRPITV74Sang.pdf
	P11CRPITV74Tao.pdf
	P11ZZZ copy.pdf
	P12CRPITV74Mir.pdf
	P12ZZZ copy 2.pdf
	P13CRPITV74Wynn.pdf
	P13ZZZ copy 3.pdf
	P14CRPITV74Lee.pdf
	P14ZZZ copy 4.pdf
	P15CRPITV74Khalil.pdf
	P16CRPITV74Sun.pdf
	P16ZZZ copy 5.pdf
	P17CRPITV74Cho.pdf
	P18CRPITV74Wu.pdf
	P19CRPITV74Miller.pdf
	P20CRPITV74Kennedy.pdf
	P20ZZZ copy 6.pdf
	P21CRPITV74Yang.pdf
	P22CRPITV74Fidge.pdf
	Trailers.pdf

