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Preface

Accurate and efficient computational tools are essential in order for biologists to make sense of the vast
amounts of data being generated by high-throughput technologies such as genome sequencing and nucleotide
micro-arrays. Existing intelligent systems offer powerful methods by which many biological questions can
be addressed, ranging from the analysis of genomic and proteomic data, to the extraction of knowledge from
biomedical text and imagery, to the modelling of biological processes and molecules. With large amounts
of knowledge still waiting to be extracted from, for example, genomic data and biomedical text, and with
new technologies continually creating novel data types, the field of intelligent systems in bioinformatics is
receiving prime attention.

This book contains the proceedings of the first Workshop on Intelligent Systems for Bioinformatics,
held 4 December 2006 in Hobart, Tasmania, Australia. The workshop was organised in conjunction with
the Australian Joint Conference on Artificial Intelligence. The papers in this collection bring together work
aiming to apply intelligent systems technologies to bioinformatics problems. Mathematical, probabilistic
and computational methods (in the broad realm of intelligent systems) are applied in bioinformatics and
computational biology, and important biological results that are obtained from the use of these methods.
Contributions report on fundamental methodological research, on experimental and implementation is-
sues involved in complex computations, and/or on the application of methods and programs that lead to
discoveries of biological significance.

The papers presented here describe work on modelling biological processes, on clustering of numeric
data, on classification and prediction of biological features and on image analysis. The specific biological
biological applications include modelling of the gene regulatory cycle, clustering of gene expression data,
predicting the subcellular localization of proteins, predicting adverse cardiac risk, and detecting neural
differences in mice using image data. The researchers have applied a wide variety of algorithms and data
representation languages, some novel, including causal networks, phylogenetic footprinting, the global K-
means algorithm, expectation maximization, support vector machines, decision trees, and linear predictive
coding. We envisage that researchers in artificial intelligence with an interest in scientific discovery, and
bioinformatics researchers looking for the right tools, will gain from reading this collection of papers. It
showcases significant and representative efforts that advance bioinformatics and computational biology.

The program committee of the workshop was chaired by Mark A. Ragan at the Institute of Molecu-
lar Bioscience, The University of Queensland, Australia and the Australian Research Council Centre for
Bioinformatics. The program committee consisted of

– Adil Bagirov, The University of Ballarat, Australia
– Timothy L. Bailey, University of Queensland, Australia
– Regina Berretta, The University of Newcastle, Australia
– Mikael Bodén, University of Queensland, Australia
– Sarah Boyd, Monash University, Australia
– Vladimir Brusic, Harvard University, Australia
– Phoebe Chen, Deakin University, Australia
– Martin Frith, The University of Queensland, Australia and RIKEN, Japan
– Nicholas Hamilton, The University of Queensland, Australia
– Jim Hogan, Queensland University of Technology, Australia
– Lars Jermiin, The University of Sydney, Australia
– Geoff McLachlan, The University of Queensland, Australia
– Tuan Pham, James Cook University, Australia
– Alex Smola, National ICT Australia/The Australian National University, Australia
– Terry Speed, The Walter & Eliza Hall Institute, Australia
– Michael Towsey, Queensland University of Technology, Australia

The program committee reviewed all submitted contributions and at least two reviews (but usually three)
were completed for each paper. The success of the workshop was due not only to the authors, but also to
the advice from the program committee.

Mikael Bodén and Timothy L. Bailey

Brisbane, October 2006.
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Systems for their financial support.
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Learning Causal Networks from Microarray Data

Nasir Ahsan† Michael Bain†∗ John Potter† Bruno Gaëta†‡

Mark Temple‡ Ian Dawes‡

† School of Computer Science and Engineering
‡ School of Biotechnology and Biomolecular Sciences

University of New South Wales,
Sydney, Australia 2052

∗ Email: mike@cse.unsw.edu.au

Abstract
We report on a new approach to modelling and identi-
fying dependencies within a gene regulatory cycle. In
particular, we aim to learn the structure of a causal
network from gene expression microarray data. We
model causality in two ways: by using conditional de-
pendence assumptions to model the independence of
different causes on a common effect; and by relying
on time delays between cause and effect. Networks
therefore incorporate both probabilistic and tempo-
ral aspects of regulation. We are thus able to deal
with cyclic dependencies amongst genes, which is not
possible in standard Bayesian networks. However, our
model is kept deliberately simple to make it amenable
for learning from microarray data, which typically
contains a small number of samples for a large number
of genes. We have developed a learning algorithm for
this model which was implemented and experimen-
tally validated against simulated data and on yeast
cell cycle microarray time series data sets.

1 Introduction
With the complete genomic sequences of increasing
numbers of organisms available there are unprece-
dented opportunities for the biological analysis of
complex cellular processes. In this new era of cell
biology there have been major advances in the ability
to collect data on a genome-wide scale by the use of
high-throughput technology such as gene expression
microarrays. However this data requires analysis be-
yond the level of individual genes; we need to investi-
gate networks of genes acting within highly regulated
systems.

Owing to the complexity of the systems to be stud-
ied a wide range of methods to model networks and
learn them from data have been studied (Endy &
Brent 2001, de Jong 2002). However, in our work we
are not aiming to model the full dynamical systems of
the cell, but rather to learn key causal features from
data.

In this paper we investigate the use of causal net-
works to model relations between genes as measured
in microarray data. More specifically, we explore
learning the structure of a genetic regulatory net-
work in this setting. Our approach to causal networks
is based on a form of dynamic Bayesian network in
which causality is represented in two ways: by relying
on conditional independence assumptions to model
the independence of different causes on a common ef-
fect; and by relying on time delays between cause and
effect. By incorporating time delays into our model,
Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at The 2006 Workshop on Intelligent Systems for
Bioinformatics (WISB2006), Hobart, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 73. Mikael Bodén and Timothy L. Bailey, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

we are able to deal with cyclic dependencies amongst
genes. From a high-level perspective, we address the
following problems:

1. How can we formalize the model of a causal net-
work which combines probabilistic and temporal
aspects, in particular, conditional independence
and temporal precedence?

2. How can we learn such a model from observa-
tions of the variables over time in a robust and
computationally efficient manner?

The paper is organised as follows. In Section 2 we
introduce our representation for causal models, and
in Section 3 we develop a learning algorithm for such
models. In Section 4 we present results from experi-
mental application of the approach to cell cycle time
series microarray data.

2 A new probabilistic model
We introduce a probabilistic model that satisfies cer-
tain assumptions and addresses the problems of com-
plexity discussed above. We then extend this proba-
bilistic model to include time, and develop methods
for estimating our probabilistic model from time se-
ries data, specifically microarray data. Note that in
this paper our models contain only discrete random
variables.
2.1 The F -model
In the Bayesian network model an effect is condition-
ally independent of its ancestors given its immediate
causes. This allows one to model an effect θ with
immediate causes β1, . . . , βn as shown on the left in
Figure 1. Unfortunately modelling an effect in this
way requires the estimation of at least 2n parame-
ters, where n is the number of causes. Clearly the
number of probabilities to be estimated increases ex-
ponentially in n.

However, if certain combinations of causes are
known a priori to be unlikely they may be safely
ignored in the interests of simplifying the problem.
This suggests a way to reduce the number of distinct
events that need to be modelled, effectively compress-
ing the space of events for which probabilities need to
be estimated. To do this we will use a function F ,
called a compression function, to compress the joint
probability distribution. In the standard Bayesian
network framework the conditional probability for the
dependence of an effect θ on its causes β1, . . . , βn is
P (θ | β1, . . . , βn). Using the compression function
this becomes P (θ | F (β1, . . . , βn)), as shown on the
right in Figure 1.

If we assume that P (θ | β1, . . . , βn) ≡ P (θ |
F (β1, . . . , βn)), for some arbitrary F , a joint proba-
bility distribution may be decomposed using F -based
conditional independence factors.
Definition 1 (F -model) Let M denote a proba-
bility model over the random variable space Θ =

Proc. 2006 Workshop on Intelligent Systems for Bioinformatics (WISB 2006)
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{θ1, . . . , θn}, and let F be some arbitrary mapping
over observations of Θ. An F -model is the pair
〈Θ, G〉, where G is a directed acyclic graph and each
edge in G represents a dependence between a pair of
variables, letting α ≡ β1, . . . , βn, such that the set of
immediate parents αi ⊂ Θ of θi ∈ Θ in G render it in-
dependent of its other ancestors in G. The F -model
defines the following factorization of M :

P (Θ) =
n∏

i=1

P (θi | F (αi))

where P (θi | F (αi)) ≡ P (θi | αi).

Effectively, for a set of random variables {θi, . . . , θj},
F induces a new random variable F (θi, . . . , θj). Note
that if our assumption above is valid with respect to
the system under enquiry then the F -model, by defi-
nition, is equivalent to a Bayesian network, assuming
no cycles in the ancestor relation.

θ

· · ·β1 βn

P (θ | β1, · · · , βn)

(a)

· · ·

F

θ

β1 βn

P (θ | F (β1, · · · , βn))

(b)

Figure 1: Modelling via (a) Bayes net dependencies
and (b) F based dependencies.

2.2 Temporal extension of the F -model
In order to model a causal system we must account
for time. Therefore we provide a temporal general-
ization of the F -model that accounts for temporal
precedence and contiguity in time (Hume 1999). We
extend the F -model, by replacing the set of random
variables Θ with a corresponding random process Θ(t)
and its history at any time.

Definition 2 (Discrete Time Random Process
and History) Θ(t) = {θ1(t), . . . , θn(t)} is a discrete
time random process for t ∈ Z. At time t the his-
tory of the random process is H (t) =

⋃
{θi(τ) | i ∈

1, . . . , n, τ < t}.

A causal model for Θ(t) requires the parent set
α(t) for some θ(t) to be drawn from the history

H (t). Each random process θi(t) has a finite set
of parents βi1 , . . . , βim ⊆ Θ with associated time
shifts δi1 , . . . , δim . Thus we may write the parent set
αi(t) = {βi1(t−δi1), . . . , βim(t−δim)} ⊆ H (t), allow-
ing us to model causal relationships by the conditional
probabilities P (θi(t) | αi(t)).

We also make a stationarity assumption, i.e., we
assume that the underlying causal relationships do
not change over time. This is clearly not the case
for cellular systems, but acts as a useful simplifying
assumption. It follows that the parent sets α(t) =
〈β1(t), . . . , βm(t)〉 and associated delays δi are inde-
pendent of time t.

Hence the F -model represents a stationary dis-
tribution by a graph where nodes are variables in Θ
and edges are labelled with time shifts. Note that
this graph may include cycles. However, since time
shifts are positive, these cycles do not represent a
cyclic probabilistic dependency, but merely that θ(t)
depends on θ(t− λ), where λ is the period of a single
cycle. Note that cycles are not permitted in the stan-
dard Bayesian network formalism which is restricted
to acyclic graphs.

F

δ1 δk

β1(t − 3) βk(t − 3)

θ(t − 2)

F

F

δ1 δk

θ(t)

β1(t − 1) βk(t − 1)

δθ

Figure 2: A temporal F-model “unrolled” in time:
each δi = 1 time unit, and the cycle period = 2 time
units.

In high dimensional spaces such as microarray
data many independent processes may run concur-
rently and there may exist various causal chains, each
with different cycle periods. Hence assuming a global
cycle period on all variables of the system is too re-
strictive. Therefore we use a relative cycle period for
each variable.

Definition 3 (Cycle period) Let X(t) =
〈x1, . . . , xm〉 be an expression vector and
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λ ∈ {1, . . . , m}. Then the cycle period for X(t)
is the first off-zero peak correlation, i.e., the first λ
for which

arg max
λ∈{1,...,m}

(
m−λ∑

t=1

X(t) · X(t + λ)

)
> 0

As mentioned in Section 2 we use discretized data.
In (Friedman, Linial, Nachman & Pe’er 2000) a dis-
cretization was used where any log expression ra-
tio outside a central band of ±0.5 was taken as
gene activity. However, this will tend to ignore low-
amplitude gene expressions which could form part of
regulatory interactions, e.g., certain transcription fac-
tors. Therefore we discretize each expression vector
separately using a relative threshold: expression val-
ues greater (resp. less) than the threshold are mapped
to 1 (resp. −1), otherwise they are mapped to zero.
The relative threshold is set via a kth order statistic,
where k is a parameter to the algorithm.

Finally, the compression function F combines a
set of variables (candidate causes) into a single vari-
able. In application to microarray data the variables
are time-shifted, discretized gene expression profiles
representing candidate regulators of a selected target
gene. For our implementation we used the following
compression function:

Definition 4 Given a set of expression values X ≡
〈x1, . . . , xn〉 for n genes at some point in time the
compressed version of X is:

F (x1, . . . , xn) =






+1, if |X+| ≥ n − g
−1, if |X−| ≤ n − g
0, otherwise

where X+ = {x ∈ X | x = +1}, and X− = {x ∈ X |
x = −1} and 0 ≤ g < n/2 is a slack parameter to
allow some variation in + or −.

The slack parameter is to allow for noise. This com-
pression function is applied to all columns in the set of
candidate causes, giving a compressed variable. Note
that as the number of variables n increases, the com-
pressed values either remain at +1 or −1, or go to
zero. This helps to avoid overfitting of the model:
adding too many variables as causes will tend to re-
duce the compressed value to zero, which implies the
model loses any dependency between the candidate
causes and the effect. We only add genes as candidate
causes whose expression profiles are closely similar to
the target gene. Further details on the compression
function F are in Ahsan (2006).

3 A local learning algorithm
The key problem investigated here may be formalized
as: Given a data set D, find an F -model which ad-
equately explains D. Since computational efficiency
is a key issue for microarray data which has many
variables we propose searching for local neighborhoods
instead of searching for an entire network, as condi-
tional independence may be efficiently computed.

For directed graphs this problem simplifies to
searching for the immediate parents of a variable.
Various definitions of an immediate parent have been
used, e.g., (Pearl 1988, Margaritis & Thrun 2004,
Koller & Sahami 1996). For us, however, immediate
parents (a) temporally precede the target, (b) signif-
icantly correlate with the target, and (c) render the
target independent of all its ancestors. Based on this
definition we propose the following local learning al-
gorithm.

Algorithm 1 learns causes of an effect, and is di-
vided into two phases. Phase 1 filters out a set of

Algorithm 1 Learning Immediate Causes of an Ef-
fect: PIA
Input: Initial candidates Θ, Effect θ and Threshold

τ for score
Output: Set of immediate causes for θ

1: PHASE 1: Selecting a Set of Candidate Causes
for θ

2: α ← {}
3: for β ∈ Θ do
4: if I(θ; β) > τ then
5: α ← α ∪ {β}
6: PHASE 2: Learn local neighborhood of θ
7: Sort α according to ,θ //see text for details
8: α′ ← {}
9: //Seek causes that increase the score given the

current α
10: repeat
11: β ← max(α)
12: if I(θ; F (α′, β(t − δθβ))) − I(θ; F (α′)) > 0

then
13: α′ ← α′ ∪ {β}
14: α ← α − {β }
15: until α = ∅
16: return α′

plausible candidates based on a pairwise score be-
tween each candidate and the effect (lines 3-5). The
score used was the mutual information I(X ; Y ) be-
tween a pair of variables (Kullback & Leibler 1951).

In phase 2 the algorithm consists of two further
stages. At line 7 the algorithm first sorts the fil-
tered candidates α with respect to the following or-
der: β1 ,θ β2 iff either δθβ1 < δθβ2, or δθβ1 = δθβ2

and I(θ, β1) > I(θ, β2). This ordering relies on com-
putation of delays or time shifts δXY between vari-
ables X and Y . The time shift between a pair of
variables is simply the time difference between the
respective peaks in each time series. Sorting in this
way implements criteria (a) and (b) of the definition
of immediate parents.

The algorithm then iteratively processes each
cause according to the order ,θ in a greedy man-
ner (lines 10-15). At each step the current candidate
cause β is added to the set of immediate causes of θ if
this results in an increase in the mutual information
score between θ and the updated compressed vari-
able F (α′, β(t−δθβ)). This test implements criterion
(c) of the definition of immediate parents. The nota-
tion β(t − δθβ) denotes the application of a variable-
specific time shift before computing the score. Note
that our selection procedure is biased towards vari-
ables with shorter time delays; the rationale for this
is that longer time delays can be caused by a chain of
causes in the network, whereas shorter ones cannot.

The temporal F -model is based on the assumption
that the time shift for any cycle in an F -model is a
multiple of the period λ, and that any path with the
time shift greater than λ must include a cycle. How-
ever, target variables may vary in λ, and therefore
simply piecing all local neighborhoods will not result
in a true F -model. Currently, no constraint has been
enforced on the local learning algorithm PIA which
would allow one to induce a global structure in a mod-
ular manner. However, one may induce F -models by
grouping target variables with similar cycle periods,
and post-pruning any edges that conflict with cyclic-
ity assumptions made in Section 2.2. This approach,
called the Piece-wise Network Induction Algorithm
(PWNIA), was used for the experiments in the next
section.

Proc. 2006 Workshop on Intelligent Systems for Bioinformatics (WISB 2006)
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4 Experimental results
A major issue in current research on learning genetic
regulatory networks from genome-wide data is that
there are no reference “ground truth” models. How-
ever, we attempted to validate our approach in two
ways: by reconstruction experiments using simulated
data; and on real 0 data by using selected sets of genes
and evaluating features of learned network structures
against known properties of the cellular system.
4.1 Simulated data
We conducted simulation experiments by implement-
ing a simple model of cell-cycle gene expression. Input
to the simulator was in the form of a directed graph,
modelling a genetic regulatory network, plus prop-
erties of each edge in the graph, representing a gene
interaction, such as cycle length, time delays, etc. For
each edge A → B in the graph, the dependence of B
on A was modelled as a probabilistic, time-delayed
function of A, with added Gaussian noise. Variables
with no parents (root nodes) were modelled as sine
functions with added Gaussian noise. The simulator
was implemented to enable manipulation of a number
of parameters, such as the amount of added noise, the
sampling frequency of data, etc.

Graphs were generated randomly using the
preferential attachment model of Albert and
Barabasi (1999) implemented as part of the Python
random graph library NetworkX 1. The edges of
these undirected graphs were directed arbitrarily,
avoiding cycles.

For each randomly-generated graph and a set of
associated probabilistic dependencies, the simulator
was used to generate multiple time series data sets to
which the PWNIA algorithm was applied to learn a
network. Learned networks were then compared with
the originals to evaluate the reconstruction. Features
of the reconstructed networks were evaluated using
a version of the approach in Friedman et al. (1999)
adapted for time series data.

We investigated the effect on learning of (a) adding
varying amounts of noise, (b) varying the number
of time points, (c) varying network density, and (d)
varying parameters of the learning algorithm. Preci-
sion and recall measures were recorded for recovery of
order and Markov relations (Friedman, Goldszmidt &
Wyner 1999). Order relations are true for gene-gene
interactions A → B where A is an ancestor of B.
However, Markov relations are more stringent, con-
taining only the subset of genes that make a gene
probabilistically independent of all other genes in the
network. Note that precision and recall curves were
generated as opposed to the use of either sensitiv-
ity/specificity or ROC analysis due to the difficulty
of generating true negatives for order and, particu-
larly, Markov relations in our experimental setup.

In terms of precision; which reflects the extent to
which predicted gene-to-gene relationships made by
our learning algorithm were correct, our results were
similar for both order and Markov relations over ex-
perimental conditions (a) to (d). However, for re-
call; the extent to which actual relationships were
predicted by our algorithm, we found that order re-
lations were much easier to reconstruct than Markov
relations.

For example, condition (a), adding noise to the
generation of simulated data, led to reductions in pre-
cision (from 0.9 to 0.6 for order relations and from
0.85 to 0.65 for Markov relations) and greater reduc-
tions in recall (from 1.0 to 0.7 for order relations and
from 0.45 to 0.25 for Markov relations), all measures
are rounded mean values for 30 data sets. Since recall
for order relations was higher than for Markov rela-
tions, it follows that it should be easier on real data to

1https://networkx.lanl.gov

discover general causal ordering relations than more
detailed gene-to-gene regulatory interactions. This
formed the basis for the experiments on real microar-
ray data discussed below.

Real microarray data contains typically only a few
time points, since each time point represents a sepa-
rate microarray experiment, which is time-consuming
and relatively expensive to carry out. With simulated
data, however, the number of data points measured
can be varied. We found that under experimental
conditions (b) and (c), increasing the number of data
points per cycle, led to increases in both recall and
precision, except for precision on reconstruction of the
denser networks. This was as expected, since a chance
correlation is more likely because more variables have
shorter time shifts and hence appear near the top of
the order ,θ, leading to possible inclusion as immedi-
ate causes. Experimental condition (d), varying the
similarity threshold above which genes are considered
potential parents, showed an inverse relationship for
both order and Markov relations, i.e., recall fell while
precision rose as the threshold was increased. This
suggests that the threshold may be acting to control
the number of false positives, although at the expense
of coverage. If so this could be a useful property of
the algorithm and should be investigated further.

An additional parameter, not investigated due to
lack of time, that may be useful in reducing the ef-
fect of noise on the algorithm is the slack parameter.
This has the effect of relaxing the strict requirement
of direct or inverted similarity between a gene and
its candidate regulators. As part of future work this
should be investigated in combination with the sim-
ilarity threshold, as the former may compensate for
the reduction in recall due to the application of the
latter. Lastly, we have implemented a fixed form of
compression function F . This may not be the most
appropriate for for learning genetic regulatory inter-
actions, and it would be interesting to investigate the
possibility of learning the compression function from
data.

The simulation experiments are described in more
detail in Ahsan (2006). We concluded from these
results on simulated data that the algorithm shows
promise for the discovery of gene relationships, al-
though it is likely to be susceptible to noise and low
numbers of instances.
4.2 Yeast cell cycle data
Since it is not currently possible to evaluate network
learning attempts against a “real” genetic regulatory
network, even in well-studied organisms such as the
budding yeast Saccharomyces cerevisiae, on real data
we took the approach of examining key temporal fea-
tures. At this stage we are only attempting to validate
our approach rather than generate biologically useful
knowledge. Therefore, following the results discussed
above on learning order relations on simulated data
we investigated the extent to which the edges in a
learned network reflect known temporal features of
the domain.

Our starting point was the seminal experimental
work on the budding yeast cell cycle by Spellman et
al. (1998). In this work the cell cycle was arrested by
different means and on release the cells went through
one to two synchronised cell cycle iterations, during
which microarray gene expression measurements were
take at regular intervals. Using a Fourier analysis-
based scoring function, calibrated to known cell-cycle
regulated genes, 800 genes were determined as being
cell-cycle regulated in terms of their gene expression.
In addition, a temporal ordering was applied to sort
these 800 genes into one of five cell cycle phases, G1,
S, S/G2, G2/M or M/G1. This provides a bench-
mark, similar to the order relations from our simu-
lated data, against which to evaluate our algorithm.

The objective is as follows: given a yeast cell-
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Figure 3: A network learned from the top-scoring 135 genes on the alpha cell cycle data set. Each node with
an in-arrow is labelled by its mutual information with the compressed parent set. Each edge from parent to
target represents a G1 to S phase interaction and is labelled with 2 numbers: time shift and pairwise correlation
coefficient (see text for details).

cycle microarray time series data set, run the net-
work learning algorithm and compare the edges thus
obtained to the known temporal ordering in terms of
their phase coherence. Phase coherence is defined by
a set of rules stating the biological plausibility of each
possible phase labelling of edges in a network graph.
For example, if the cause and effect were both in the
same phase, this would be acceptable, whereas if the
cause and effect were separated by a large number of
phases, this is unlikely to be a biologically valid causal
relationship.

The rules were:

Cause phase Possible effect phases
G1 S, S/G2 or G2/M
S S/G2, G2/M or M/G1
S/G2 G2/M or M/G1
G2/M M/G1 (current cycle) or G1 (next)
M/G1 G1 (next cycle) or S (next cycle)

This defines 12 out of a possible 25 cause-effect
phase relations. Allowing the 5 same-phase relations
gives a total of 17 permitted by these rules. No-
tice that the last two phases in the cell cycle, G2/M
and M/G1, have causal relations that cross the cell-
division boundary.

To test the phase coherence of the 0 learned by our
algorithms we performed a number of network learn-
ing experiments using three yeast cell-cycle time se-
ries data sets from the work of Spellman et al. (1998).
Since our algorithm requires microarray data contain-
ing reasonable cyclic expression profiles, we restricted
attention to the 800 genes determined to be cell cy-
cle regulated. We ranked these in decreasing order of
their aggregate score – known as the “CDC score” –
generated by Spellman et al. (1998). The higher the
CDC score, the clearer the periodic “signal” in the
microarray data. This score is calibrated to genes
known to be cell-cycle regulated, and ranges from
15.990 (maximum) to 1.314 (minimum). We set two
thresholds on this score: ≥ 5.0 and ≥ 3.0. There
are 135 genes above the first threshold and 297 genes
above the second. This gave us the basis to construct
three sets of genes, in decreasing order of “cyclicity”,
of size 135, 297 and 800.

We ran our network learning algorithm with de-
fault parameter settings for the three gene sets on
each of the three microarray data sets known as al-
pha, cdc15 and cdc28. (We did not use the elutriation
data set since it does not comprise two complete cell
cycles and our algorithm currently requires ≥ 2 cy-
cles.) The set of edges from each learned network was
filtered to select only those having a Pearson pairwise
correlation above a certain correlation threshold (re-
sults shown are for r ≥ 0.7). Nodes in each set of
“well-correlating” edges was then labelled their re-
spective phase. This phase labelling was then evalu-
ated for coherence against the above rules.

Data 135 297 800
alpha corr. 0.75 (239) 0.73 (508) 0.63 (1154)

legal 0.91 (180) 0.90 (369) 0.85 (726)
cdc15 corr. 0.85 (217) 0.78 (498) 0.56 (1592)

legal 0.91 (184) 0.89 (387) 0.83 (888)
cdc28 corr. 0.71 (224) 0.70 (490) 0.59 (1383)

legal 0.91 (154) 0.89 (344) 0.87 (816)

Table 1: Results from phase coherence tests on edges
from learned networks on 3 cell-cycle regulated data
sets. Shown are the proportions (totals) of well-
correlating edges and phase-coherent edges for 3 gene
sets of increasing size and reducing overall quality (see
text for details).

The results are summarised in Table 1. For each
data set there are two rows, labelled “corr.” and “le-
gal”. The “corr.” row contains the proportion (to-
tal in brackets) of edges above the correlation thresh-
old. The “legal” row contains the proportion (total
in brackets) of edges that are phase coherent, i.e., are
in accord with the rules above. The three columns
refer to the three different-sized gene sets.

The results show that the algorithm is construct-
ing network graphs containing a majority of well-
correlated edges. In addition, the phase-coherence
of the edge sets remains high even on the largest data
set (800) which produces networks with many low-
correlating edges. Note that the pairwise correlation
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is not the necessarily a good measure of functional
relatedness, since it ignores multi-gene dependencies,
unlike the mutual information score used by our algo-
rithm. However, we use it here as a useful heuristic,
since it could easily form a pre-processing step for our
algorithm. Note also that the algorithm is not given
the phase information – phase coherence is used solely
to assess performance.

We are continuing to work on examining the phase
coherence of this approach. For example, we can iso-
late genes from different phases to use as candidate
cause and effect sets to initialise our algorithm. The
edge sets can then illustrate how well temporal or-
dering is being recovered during learning. Figure 3
shows one network, learned by setting the candidate
causes to G1-phase genes in the top-scoring 135 and
the candidate effects to S-phase genes from the same
set. So far we have not compared the performance of
this algorithm with alternative approaches, but this
should be undertaken as part of future work. We be-
lieve that ideas such as phase coherence may provide
useful methods to compare performance of such algo-
rithms in the absence of a “gold standard”.

5 Conclusions
In this paper we have developed a novel framework
for modelling and learning causal gene-to-gene in-
teractions from microarray data. Our approach ex-
tends the standard Bayesian network formalism to
allow temporal relations and enable cyclic dependen-
cies which is a critical requirement for the represen-
tation of biological regulation. Some key simplify-
ing features of the approach are that gene expression
is discretized, and each gene has a set of immediate
causes, with an associated time shift, on its gene ex-
pression. Furthermore, the effect of multiple causes is
combined into a single variable, also discretized, via
a novel compression function.

The dependence of the gene on its compressed par-
ent, which precedes it in the temporal ordering, is
modelled with a simple discrete probability distribu-
tion. Our learning algorithm focuses on identifying
the immediate causes of a given gene. The compres-
sion function limits the introduction of new parents
through its behavior in losing information with more
parents, and fixes the number of parameters to be
learnt (avoiding over-fitting).

Experimental validation is promising, based on
simulated and real data. On real data we demon-
strated that the networks learned are largely consis-
tent with the temporal ordering properties of the cell
cycle, reinforcing some results from experiments on
simulated data.

The extent to which learned interactions are spu-
rious (false positives) is not known. This is a key
area for future work. We believe that combining mi-
croarray data with data from other sources, such as
protein-protein interactions, has potential for improv-
ing this aspect of our approach. For example, some
critical aspects of function are clearly absent from mi-
croarray data. An example is the gene CDC28, which
is central to cell-cycle regulation, but assumed to be
expressed in excess and therefore will not be learned
as part of any interaction from microarray data alone,
although it is well-represented in protein interaction
databases.
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Abstract

We constructed σ70-promoter models of varying com-
plexity to predict promoter locations and to evaluate
the importance of specific promoter elements. For
this purpose, a novel software, named Beagle, was de-
veloped that utilizes an easy description language to
conveniently specify promoter models. Model speci-
fications are translated into position weight matrices
and gap distributions which are refined using data
from known promoters.

The method is transparent, fast and allows the
rapid exploration of different promoter models. Ap-
plied to promoter prediction in E. coli and B. subtilis,
we show that inclusion of UP-elements and extended
-10 motifs into the model yields a significant increase
in prediction accuracy.

The software, data sets and extended results can
be downloaded at http://eresearch.fit.qut.edu.
au/Beagle/.

Keywords: Beagle, Promoter, sigma-70, Escherichia
coli, Bacillus subtilis

1 Introduction

Promoters are regions of DNA responsible for the ini-
tiation of gene transcription. Their identification is
crucial for understanding gene regulation but they
are difficult to identify in silico because their impor-
tant functional sites are poorly conserved. Identifying
promoters using wet-lab techniques is time consum-
ing and given the exponentially growing number of
sequenced genomes, there is a definite need for com-
putational methods to detect and study promoters.

Many methods have been devised to identify pro-
moter sites using for example, Regular Expressions
(REs), Position Weight Matrices (PWMs), Hidden
Markov Models (HMMs), Neural Networks (NNs) and
Support Vector Machines (SVMs) (Vanet, Marsan
& Sagot 1999). The different model types have
strengths and weaknesses which typically involve
trade-offs between accuracy, transparency, speed and
ease of use. Despite (or perhaps because of) their
simplicity, PWMs continue to be a frequently used
approach to search for promoters. In addition their
use finds theoretical justification in Information The-
ory (Schneider, Stormo, Gold & Ehrenfeucht 1986).

PWMs have been used in two ways to search
for promoters. The direct approach is to search for
DNA motifs that bind the RNA Polymerase (RNAP)
holoenzyme. In the case of the σ70 family of bacterial
promoters, with which we are solely concerned in this
paper, this means having PWM definitions for two
binding sites located at -35 and -10 base pairs (bp)
with respect to the Transcription Start Site (TSS).
The difficulty with this direct approach is that the
known binding sites are highly variable, leading to a

high rate of false positive predictions for a satisfactory
rate of recall.

The indirect approach to promoter prediction de-
pends on the observation that promoters are accom-
panied by other binding sites for transcription factors
which modulate transcription. Given access to a suffi-
ciently large number of definitions of known transcrip-
tion factor binding sites (TFBSs), clusters of high
scoring hits indicate the presence of a promoter. For
example, the well known MatInspector (Cartharius,
Frech, Grote, Klocke, Haltmeier, Klingenhoff, Frisch,
Bayerlein & Werner 2005) and Cluster-Buster (Frith,
Li & Weng 2003) programs both use this strategy
which is particularly useful with eukaryotic organ-
isms.

As more becomes known about the structure and
function of bacterial RNAP, it is clear that the en-
zyme interacts with the DNA double helix in more
complex ways than just the canonical -10 and -35 in-
teractions (Mitchell, Zheng, Busby & Minchin 2003,
Miroslavova & Busby 2006). The purpose of this pa-
per is to revisit the direct approach to identifying
bacterial promoters but to build models that incor-
porate more of what we have recently learned about
the DNA-RNAP interaction. To this end, we have
developed a software tool, Beagle, that utilizes a sim-
ple description language to specify bacterial promoter
models. Internally, the models are realized as a se-
quence of PWMs and gap length distributions. The
model parameters are refined using experimentally
confirmed TSSs. Beagle achieves good accuracy com-
pared to more complex machine learning methods but
is faster to train and easier to use. In addition, the
generated models are transparent and permit direct
biological interpretation.

This paper is organized as follows: In Section 2
we discuss related supervised learning algorithms for
promoter prediction. The biological background that
drives our promoter models is provided in Section 3
and the data utilized to evaluate various models are
described in Section 4. Section 5 explains some of the
algorithmic detail behind Beagle. Prediction results
are presented in Section 6 followed by the conclusion
in Section 7.

2 Related work

Many methods have been developed for promoter pre-
diction. Vanet et al. (Vanet et al. 1999) provides a
good overview of the various approaches. We focus
our attention on three more recent contributions to
the literature that offer interesting comparisons with
our work.

Huerta et al. (2003) derived PWMs for the -35 and
-10 elements of σ70 promoters in E. coli from multiple
alignments of known promoters. The PWMs were op-
timized using information content and similarity to a
known consensus. Typically their derived PWMs ex-
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tended two or more bases upstream of the canonical
-10 and -35 hexamers and their models also incorpo-
rated scores derived from frequency of spacer lengths
and distance to the gene start site (GSS). They ob-
served that true promoters tend to occur in regions
where there is a cluster of high scoring putative pro-
moters. And in about 50% of cases, the true promoter
was not the highest scoring location.

Gordon et al. (2006) trained an ensemble of Sup-
port Vector Machines (SVMs) for bacterial promoter
prediction using a variant of the mismatch string ker-
nel. The SVM approach was more accurate than the
PWM approach but highest accuracy was obtained
with a model that combined scores from the ensemble-
SVM, PWMs and GSS to TSS distance. An obvious
drawback with an ensemble of 40 SVMs is the time
required to train them – typically several orders of
magnitude more than the estimation of parameters
for PWM models.

Burden et al. (2005) trained a series of Time De-
lay Neural Networks (TDNNs) to model multiple pro-
moter elements. They demonstrate greatly improved
accuracy when distance to GSS is incorporated into
the models. However the number and type of model
elements was fixed and TDNNs are typically time con-
suming to train.

The primary motivation for Beagle is the explicit
incorporation of additional DNA motifs into promoter
models based on our emerging understanding of the
action of RNAP. Beagle gives the experimenter con-
trol over all elements of the promoter model, enabling
a variety of hypotheses to be tested. While the PWM
models of Huerta et al. (2003) included extended -10
and extended -35 elements, they were not user defined
and it was not demonstrated how these contributed
to prediction accuracy. In the case of the ensemble-
SVM approach, Gordon et al. (2006) identified DNA
locations important for classification accuracy. Not
surprisingly the -10 and -35 locations were most im-
portant but also the ribosomal binding site motif fig-
ured strongly around the +20 location, indicative of
the fact that most promoters lie close to their GSS.
Locations upstream of the -35 box and an extended
-10 were not identified as important for classification
but the method had limited resolution.

3 Biological Background

Bacterial RNAP is a protein complex composed of five
subunits, α2ββ′ω (Murakami & Darst 2003). To ini-
tiate transcription, the core enzyme must first acquire
an additional σ subunit whose function is to recognize
a promoter (Gross, Chan, Dombroski, Gruber, Sharp,
Tupy & Young 1998). DNA binding initiates a series
of structural changes that result in DNA strand sepa-
ration at the -10 site. After several cycles of formation
and release of short transcripts, the σ-factor dissoci-
ates and gene transcription commences (Murakami &
Darst 2003).

It has long been known that domains 2 and 4 of the
σ factor bind to the strongly conserved -10 and -35
boxes. More recently, it has been demonstrated that
a third domain interacts with a so-called extended -
10 element (see Fig. 1) (Miroslavova & Busby 2006).
First identified in B. subtilis, the extended -10 ele-
ment is also present in about 20% of E. coli promot-
ers. It is located three base pairs upstream of the
-10 element with consensus TG (Mitchell et al. 2003).
Mitchell et al. (2003) also identified the importance
of a longer extended -16 region (consensus TRTG1),
which is important for some E. coli promoters. In
vitro experiments have demonstrated that domain 3

1N = any nucleotide, R = A or G and W = A or T, according to the
IUPAC DNA alphabet.

Figure 1: Schematic diagram of the RNA polymerase
holoenzyme and its binding elements within the pro-
moter region.

interaction with an extended -10 or -16 consensus site
can compensate for weaker -10 or -35 interactions but
that a combination of consensus -10, extended -10
and -35 motifs reduces gene expression (Miroslavova
& Busby 2006).

The α subunits also play a key role in the initia-
tion of transcription. Each consists of two domains
connected by a flexible linker. The amino-terminal
domains (αNTD) form part of the main body of
the holoenzyme, while the carboxy-terminal domains
(αCTD) are free to interact with UP-elements and
activators (Estrem, Ross, Gaal, Chen, Niu, Ebright
& Gourse 1999).

An UP-element is an A/T rich region about 20 bp
long located immediately upstream of the -35 ele-
ment. Each of the two αCTD domains can bind au-
tonomously to the proximal or distal part of an UP-
element (Typas & Hengge 2005). It has been shown
for some promoters that interactions between one or
both α subunits and the UP-elements can increase
promoter activity by a factor of 10 or more (Estrem
et al. 1999).

The focus of this paper is to determine whether
incorporation of these more recently discovered func-
tional sites into promoter models improves the pre-
diction of σ70 dependent promoters.

4 Data set

For our experiments we utilized the bacterial genomes
of Escherichia Coli K-12 MG1655 (ACCN:U00096.2)2

and Bacillus subtilis (ACCN: NC 000964.2)3.
Experimentally confirmed TSS locations for E. coli

were obtained from the RegulonDB database4. The
data set was filtered for unique σ70-promoters with
known TSS locations, resulting in 542 records. We
then determined the genes in E. coli closest to the
given TSS locations and extracted the corresponding
upstream regions. Following Huerta et al (2003), we
eliminated all upstream regions (USRs) with a TSS
location further than 250 bp from the gene start. The
final data set for E. coli consisted of 492 sequences,
each containing a single annotated TSS location.

A list of TSS locations for B. subtilis was was ob-
tained from DBTBS (Release 4)5, a database of tran-
scriptional regulation in Bacillus subtilis. This list
contains 275 TSS predictions from which we selected
205 that were within 250 bp upstream of the nearest
gene start site.

2ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/
Escherichia_coli_K12/U00096.gbk

3http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi??db=
nucleotide&val=NC_000964

4http://regulondb.ccg.unam.mx/data/PromoterSet.txt
5http://dbtbs.hgc.jp/COG/tfac/SigA.html
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5 Beagle

Beagle builds promoter models in two steps. The first
step involves initialization of the model using a simple
promoter description language and the second step re-
fines the model iteratively. The final model consists
of a series of optimized PWMs and gap length distri-
butions.

The initialization phase takes as input a promoter
description string which defines a set of consensus mo-
tifs and the gaps between them. For instance, the
canonical model of a σ70-promoter has a -35 TTGACA
element, a 15-21 bp spacer, a -10 TATAAT element and
a 4-13 bp discriminator culminating in the TSS. This
canonical promoter can be specified in Beagle by the
description string:

<TTGACA (15,21) TATAAT (4,13) TSS>

A promoter description can contain an arbitrary num-
ber of binding motifs and gap definitions. In partic-
ular, models can include the gap between TSS and
GSS and incorporate UP elements and extended -10
motifs.

Beagle parses the description string and translates
it into a model composed of PWMs and weighted
gaps. In the initialization step, the PWM elements
are set to represent the required consensus sequences
and the gap length frequencies are initialized to a uni-
form distribution.

The model parameters are optimized during a
training phase using an iterative bootstrap approach.
At each iteration, the model’s TSS position is an-
chored to the known TSS position of a training se-
quence and, by exhaustively scoring all valid arrange-
ments of PWM matches taking the current gap dis-
tribution into account, the highest scoring combined
match is found. Gap weights also contribute to the
score6. To generate an improved model, maximum
likelihood estimates for new PWM and gap weights
are calculated from the best match in each of the
training sequences. This bootstrapping process con-
tinues iteratively until the information content of the
PWMs ceases to increase.

For prediction, the model TSS is anchored at each
position of the query sequence and the score of the
best match is given to that position. The position
with the highest overall match score becomes the pre-
dicted, putative TSS for that sequence. For more de-
tails see the manual which accompanies the software
download.

The initial promoter description string may also
incorporate a marker for the gene start site (GSS).
This permits the definition of models that take the
distance to the downstream GSS into account. The
GSS marker is always anchored to the nearest gene
start site and the weights for the distribution of TSS-
GSS gaps are evaluated in exactly the same way as
for other gap/spacers in the model. Gaps have a so
called impact factor, which weights the relative con-
tribution of the gap score to the overall model score.
In the following model of a canonical promoter with
extended -10 and TSS-GSS gap, gap scores contribute
20% to the overall score:

TTGACA (12,18,0.2) TGNTATAAT (4,13,0.2) TSS (0,249,0.2) GSS

The overall match score sall of a sequence to a
model consisting of N elements (PWMs or gaps) with
element scores si and impact factors fi, is calculated
as follows:

sall =

∑
N

i
fi · si

∑
N

i
fi

, with si, fi ∈ {0, 1}. (1)

6Beagle utilizes the BioPatML pattern matching engine for this
purpose. See http://eresearch.fit.qut.edu.au/BioPatML/ for de-
tails.

Beagle has some similarity to Meta-
MEME (Grundy, Bailey, Elkan & Baker 1997)
in that the required patterns are modeled as a set
of conserved motifs separated by gaps. But where
Meta-MEME uses MEME to obtain an initial PWM
description of the conserved motifs, Beagle derives
its PWM description from a user supplied consensus.
And whereas Meta-MEME then embeds the PWMs
into a Hidden Markov Model along with a proba-
bilistic description of the gaps, Beagle preserves the
PWMs and gaps as discrete entities.

In the next section, we demonstrate the perfor-
mance of various promoter models for TSS prediction.

6 Results

We used Beagle to explore extensions to the canoni-
cal promoter model by incorporating various combi-
nations of (1) the extended -10 element (consensus
TG), (2) the -16 element (consensus TRTG), (3) UP-
elements and (4) distance between TSS and GSS (see
Fig. 1). We experimented with three different UP-
element sequences that appear to be prominent in sev-
eral E. coli and B. subtilis promoters: (1) The most
general UP-element is an A/T-rich region described in
our description language as NNWWWWWWWWWWWWWWWNN.
(2) For the promoter rrnB-P1 in E. coli, Estrem
et al. (Estrem, Gaal, Ross & Gourse 1998) re-
ported an UP-element with the consensus sequence
NNAAAWWTWTTNNAAANNN. (3) According to Gourse et

al. (2000), UP-elements can be divided into a more
important proximal motif (AAAAAARNR) and a distal
motif (NNAAAWWTWTTN). We incorporated the proximal
half of the motif only.

Table 1 shows the prediction accuracies for a va-
riety of promoter models when applied to two sets of
known promoters in E. coli and B. subtilis. The result
for the canonical promoter (TTGACA (15,21,0.2)
TATAAT (4,13,0.2) is shown in the top left of each
table. Prediction accuracy is calculated as the per-
centage of predicted TSS locations that are at most
±5 bp from the true TSS7. Interpretation of results
can be helped by reference to Fig. 2 which illustrates
the sequence logos obtained from training data for the
most successful model in each genome.

It is immediately apparent that prediction accu-
racies are up to 50% higher for B. subtilis promoters
than for E. coli promoters. The sequence logos in
Fig. 2 illustrate that the B. subtilis promoters have
higher information content and are more highly con-
served. It must also be the case that a larger fraction
of B. subtilis TSSs are located at the highest scor-
ing location upstream of their genes than is case for
E. coli promoters. B. subtilis has 18 identified sigma
factors compared with seven known for E. coli. It is
thought that this is due to the greater regulatory de-
mands placed on B. subtilis given its more variable
soil environment. We might expect that having more
σ-factors requires B. subtilis to conserve the differ-
ences between them by keeping binding sites closer
to the consensus.

Another interesting difference between the two
species is that inclusion of the TSS-GSS distance in
the initial promoter definition improves prediction ac-
curacy significantly in E. coli but not in B. subtilis.
Again this can be explained if a larger fraction of
B. subtilis TSSs are located at the highest scoring
location upstream of their genes no matter how far
upstream.

The effect of including an UP-element in the pro-
moter definition (in the absence of an extended -10

7There is no consistent definition of a true positive TSS pre-
diction in the literature. We follow the definition of Huerta et

al (Huerta & Collado-Vides 2003).
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Figure 2: Logos of the vicinity of the -35 and -10 elements of the best performing promoter model in E. coli and
B. subtilis. Note that the y-axis scale has been truncated to 1 bit in order to highlight detail in the upstream
region. Logos created with WebLogo at weblogo.berkeley.edu.

motif) was variable. The fully defined UP-element
NNAAAWWTWTTNNAAANNN had a deleterious
effect on prediction performance while the A/T-rich
UP-element NNWWWWWWWWWWWWWWWNN and the proximal
UP-element (AAAAAARNR) both improved prediction
accuracy.

In E. coli, use of the extended -10 (TRTG) had a
deleterious effect on promoter prediction in all cases.
Interestingly, use of the TG extended -10 also had a
deleterious effect on prediction accuracy except when
used in conjunction with the A/T-rich UP-element.
This interaction between the extended -10 and A/T-
rich UP-elements is one of the novel findings of Beagle
that has not, to our knowledge, been reported in the
literature previously.

In the case of B. subtilis, the TG extended -10 motif
increases prediction accuracy only when accompanied
by an UP-element. And in contrast to E. coli, use of
the TRTG extended -10 increases prediction accuracy
more than the TG extended -10. These differences
between the species become clearer when we compare
the sequence logos in Fig 2.

The best performing E. coli promoter model
achieved 48% recall at 48% precision. In order to
compare this result with other publications it is im-
portant to ensure that the experimental protocols are
similar. In particular the prediction error tolerance
and the length of upstream sequence being searched
must be the same. We set up our experimental design
to be similar to that of Huerta et al. (2003). Table 8e
of their paper indicates a precision of 33% at a recall
of 50%. For different experimental conditions, Bur-
den et al. (2005) report 25% precision at 32% recall.
When we modify our protocol to match theirs, we

achieve 32% precision at 32% recall. The advantage
of Beagle lies in the more complex promoter defini-
tion and in the iterative refinement of the PWMs.
Different experimental conditions do not allow us to
compare results with Gordon et al. (2006).

7 Conclusion

In this paper we introduced the software, Beagle,
that enables the convenient description and explo-
ration of PWM based promoter models. Beagle is a
technically simple and fast method but nevertheless
achieves state-of-the-art accuracy for TSS prediction.

Beagle has several additional attractive features.
More complex promoter models can be constructed
easily with an arbitrary number of PWMs and spac-
ers. Training and prediction are fast, which allows
an interactive study of promoter models and their el-
ements. No negative examples are required for the
training process, which can be a serious problem when
building discriminative models such as SVMs. The
generated models are completely transparent which
is helpful for the testing of hypotheses.

We utilized Beagle to investigate a variety of mod-
els for σ70 promoters prediction in E. coli and B. sub-

tilis. The results demonstrate an interesting interac-
tion between UP-elements and extended -10 elements
that has not been reported previously. The Beagle
software, training and test data sets and extended
results are publicly available at http://eresearch.
fit.qut.edu.au/Beagle/.

Further work will examine the properties of
wrongly predicted promoters. We also intend to apply
Beagle to other transcription factors and genomes.
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E. coli B. subtilis

UP-element extended -10 - dist. GSS - dist. GSS

- 37.5 ±1.4 43.3 ±1.2 61.6 ±1.8 61.2 ±1.7

not used TG 36.1 ±1.4 41.6 ±1.3 59.4 ±1.8 62.5 ±1.8

TRTG 32.5 ±1.3 37.6 ±1.3 59.2 ±1.8 62.6 ±1.8

- 39.0 ±1.3 44.3 ±1.4 65.2 ±1.9 66.4 ±2.0

proximal TG 35.4 ±1.3 43.7 ±1.3 66.2 ±2.1 68.5 ±2.1

TRTG 31.5 ±1.2 38.6 ±1.3 67.3 ±1.9 70.3 ±1.9

- 34.8 ±1.3 41.4 ±1.2 58.8 ±1.7 62.0 ±1.7

full TG 31.4 ±1.3 39.0 ±1.4 64.8 ±1.6 66.7 ±1.8

TRTG 25.9 ±1.0 35.4 ±1.2 65.0 ±1.8 66.6 ±1.9

- 39.1 ±1.1 47.3 ±1.2 64.5 ±1.7 64.8 ±1.8

A/T-rich TG 40.8 ±1.2 48.3 ±1.5 66.7 ±1.8 68.8 ±1.6

TRTG 34.9 ±1.3 40.5 ±1.4 69.6 ±1.7 71.2 ±1.7

Table 1: Accuracies and 95% confidence intervals for TSS prediction on test data for different promoter models.
Acceptance tolerance was ±5 bp. Averages are over 10-fold cross-validation, repeated 10 times.
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Abstract

Identification of transcription-factor binding sites is
a critical first step in studying transcriptional regu-
lation of genes. The comparative genomics method
of phylogenetic footprinting is based on identifying
sequence elements that are conserved across multiple
genomes, and, thus, likely to be functional. We have
developed a systematic high throughput screening
pipeline to first search for conserved motifs using two
different phylogenetic footprinting methods (motif-
discovery and alignment-based) , and then rapid eval-
uate the motifs as potential transcription-factor bind-
ing sites. The results are displayed in an interactive
graphical user interface, FactorScan, which integrates
three separate complementary databases (conserved-
sequence motifs, transcription-factor binding site mo-
tifs, TRANSFAC). We applied this pipeline for
transcription-factor binding site analysis to the or-
thologous gene regions of prion-protein family genes
from vertebrate lineages, taking account of the gene
annotations.

Keywords: transcription factors; transcription fac-
tor binding sites; phylogenetic footprinting; TRANS-
FAC; MATCH; comparative genomics; sequence mo-
tifs.

1 Introduction

1.1 Motivation for the work

Availability of draft sequence for newly sequenced
genomes of model organisms offers huge opportunities
for characterizing functional elements using compara-
tive genomic approaches. One key class of such func-
tional elements is sites for binding proteins termed
“transcription factors” (TFs) which play a central
role in DNA polymerase II mediated transcriptional
regulation of gene expression. TFs bind to specific
short DNA sequence motifs know as TF binding sites
(TFBSs) or cis-regulatory elements (CRE). Predic-
tion of TFs which may bind to a particular gene can
rapidly provide initial insights into potential func-
tions of the target genes. This is based on known
modes of actions of the TFs in regulating other bet-
ter characterized genes. Such initial predictions can
greatly assist in designing focused confirmatory ex-
periments. As TFBSs are under greater selective
pressure than other non-protein-coding DNA, the re-
liability of predicting them is greatly improved by
comparative genomics to filter out noise from genetic
Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at The 2006 Workshop on Intelligent Systems for
Bioinformatics (WISB2006), Hobart, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 73. Mikael Bodén and Timothy L. Bailey, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

drift. Identifying such conserved sequence elements in
non-coding regions of homologous genes from phylo-
genetic comparison is called ‘phylogenetic footprint-
ing’(PF) (Tagle, Koop, Goodman, Slightom, Hess &
Jones 1988). While there are several online resources
which can perform PF, none provides the flexibility
for combining the conserved sequence-motif data with
TFBS analysis and, at the same time, allowing the
flexibility to customize the searches based on gene an-
notation information. To address this deficiency, we
developed a two-step procedure which combines PF
with TFBS analysis. This automated pipeline enables
us to carry out rapid screening and evaluation of the
phylogenetically conserved motifs for potential TF-
binding affinity. To perform the most comprehensive
searches, TRANSFAC professional database (version
9.2) was included in the pipeline. We used this strat-
egy to identify potential TFBSs in prion protein and
its paralogous gene, doppel, encoded by the PRNP
and PRND genes, respectively. We gleaned some ini-
tial insights into the functions of these genes, which
are not well understood, from the TFs predicted to
be involved in regulating their expression.

1.2 Advantages of our approach

As TFBSs are short DNA motifs of 5-15 bp, analyzing
a single sequence would lead to a very high percent-
age of false positive hits. PF offers a solution to this
problem by identifying such sequence elements that
are conserved among genes that are either orthologous
or co-expressed. Several programs implement PF but
only a few combine it with TFBS analysis, for exam-
ple, rVISTA (Loots, Ovcharenko, Pachter, Dubchak
& Rubin 2002) and ConSite (Sandelin, Wasserman &
Lenhard 2004). However, both programs allow only
pairwise comparison; there are no programs which
perform this analysis on multiple sequences. An-
other restriction with rVISTA and ConSite is that
they use different databases of position weight ma-
trices (PWMs), TRANSFAC public and JASPAR re-
spectively, neither of which is as comprehensive as
TRANSFAC professional. Finally, rVISTA and Con-
Site do not provide a facility to customize display of
the results to make the maximum use of the output,
for example, display of clusters of TFs. Our approach
overcomes these restrictions, by providing various
options for customizing searches for both pairwise
and multiple sequences, for incorporating flexibility
in visualizing the output, and for using databases of
PWMs of choice.
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2 Pipeline for Phylogenetic Footprinting
(PF) Analysis

2.1 Rationale for selecting algorithms

For alignment-based identification of conserved ele-
ments, we used AVID (Bray, Dubchak & Pachter
2003) and LAGAN (Brudno, Do, Cooper, Kim, Davy-
dov, Program, Green, Sidow & Batzoglou 2003), both
of which are sensitive and widely used for genome-
wide alignment problems. rVISTA uses both align-
ment programs and LAGAN is being incorporated in
ConSite alignment step. For identification of con-
served elements from multiple sequences, we used
FootPrinter (Blanchette & Tompa 2003) which takes
phylogeny into account and, hence, weighs the se-
quence based on the evolutionary relationship and
implements most of the concepts of PF, in contrast
to other motif-discovery methods such as MEME
(Bailey & Elkan 1994). BioProspector (Liu, Brutlag
& Liu 2001) identifies motifs that are overrepresented
in the input sequences and, hence, is a different ap-
proach to handling this problem.

2.2 Annotated gene sequence database

A database of annotated gene sequences was cre-
ated by mapping the (PRNP and PRND) cDNA
sequence obtained from either experiments or pub-
lic databases onto the genome sequence obtained
from various genome sequencing projects. The EM-
BOSS application (Rice, Longden & Bleasby 2000)
“est2genome” was used to annotate the exon-intron
boundaries, transcription start site, while “getorf”
was used for detecting the coding regions, which were
then masked. Genomic sequence covering 2 kb up-
stream to the transcription start site, the whole of
exon-intron region, and 2 kb downstream from the
transcription stop site was included in the PF anal-
ysis. To improve the signal-to-noise ratio, we se-
lected representative species for which genomic data
for PRNP and PRND was available. This comprises
several eutherian mammalian species, and all those
available for lower vertebrates; marsupial mammals
Monodelphis domestica (South American opossum)
and Tammar wallaby, chicken, and the frog Xenopus
tropicalis. Indicative sequence lengths are shown in
the scale bar of Figure 5 (b) for the complete genomic
regions of mouse and human PRNP and PRND ; there
are significant differences in the lengths of the intronic
and intergenic regions of these genes, both among eu-
therian mammals and among the vertebrate lineages
due to the high frequency of insertion of transpos-
able elements (Premzl, Gready, Jermiin, Simonic &
Graves 2004).

2.3 Conserved-sequence motif detection

Conserved sequence motifs were identified by several
PF methods which we categorize into two groups,
alignment-based and motif-discovery-based. Separate
pipelines for each, alignment-based (Fig. 1(a)) and
motif discovery-based (Fig. 1(b)), were developed.

2.3.1 Alignment-based method.

To perform end-to-end comparisons, the global
pairwise-alignment methods AVID (Bray et al. 2003)
and LAGAN (Brudno et al. 2003) were used indepen-
dently to generate pairwise alignments. The AVID
alignment method is fast, memory efficient, and prac-
tical for sequence alignments of large genomic re-
gions up to megabase. AVID performs the pairwise
alignment of two input sequences; the output com-
prises the alignment and additional information. The

alignment files were used for downstream processing.
LAGAN is a method for rapid global alignment of
two homologous sequences. The algorithm is based
on three main steps (Brudno et al. 2003): (1) gen-
eration of pairwise local alignments, (2) construction
of a rough global map, by linking a subset of local
alignments, and (3) computation of the final global
alignment. LAGAN alignments were generated using
the translate anchor option and binary output format
was selected, which enables downstream processing.
Both the AVID and LAGAN alignments for all possi-
ble pairwise combinations (Fig. 2) of sequences in the
annotated gene sequence database were performed us-
ing the Perl script “doAlign.pl”.

Figure 1: Phylogenetic footprinting pipeline using
AVID/LAGAN alignment methods and annotation
with VISTA (a). Pipeline summarizing steps in phy-
logenetic footprinting using FootPrinter (b). The end
result of both analyses is a database of the conserved
sequence motifs.

Annotation with VISTA. Global pairwise align-
ments generated by AVID and LAGAN were anno-
tated using VISTA (Frazer, Pachter, Poliakov, Ru-
bin & Dubchak 2004). VISTA can be configured by
changing several parameters (e.g. percentage iden-
tity and length), which can be defined in the input
Plotfile. To facilitate trialing of several combinations
of percent identity (range: 75% to 100%) and length
(range: 8 to 15 bp) values, a Perl script “runVista.pl”
was developed to generate corresponding Plotfiles for
percent identity and length values passed as command
line arguments. VISTA generates three output files:
VISTA plot, alignment, and region file (Fig. 1(a)).
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Figure 2: Summary of pairwise sequence comparisons
(all grey cells) performed with AVID and LAGAN
between the species on the X and Y axes. H, human;
M, mouse; R, rat; D, dog; C, cow; S, sheep; Md,
Monodelphis; Tw, Tammar wallaby; Ch, Chicken; X,
Xenopus.

VISTA plot contains graphical representation of the
conserved regions. The region file contains details of
those regions which satisfied the user-specified length
and percentage cutoffs. This file was processed us-
ing a Perl script “extractseq.pl”. Based on the start
and end numbers of the conserved regions, the sub-
sequences were extracted using the EMBOSS appli-
cation “extractseq” integrated into “extractseq.pl”.
This process was repeated for all the region files ob-
tained for the various combinations of alignments. Fi-
nally, the Perl script generates a single multi-FASTA
file of all the conserved subsequences, which are stored
in a conserved sequence database. The sequence iden-
tifier for each motif contains information about the
pair involved in the alignment, its position in both
the reference sequences and the region to which it
belongs. This enables the exact position of the con-
served sequence to be tracked for further analysis. For
those motifs which are shorter than 15 bp, continuous
stretches of five “N” were added to both the 5’ and
3’ ends of the motif to facilitate the TFBS analysis.

2.3.2 Motif-discovery approach.

FootPrinter (Blanchette & Tompa 2003) implements
motif-discovery method to identify conserved motifs
in a collection of homologous sequences. The al-
gorithm identifies each set of motifs of user-defined
size, one from each input sequence, that have a par-
simony score specified by the user. This process
uses phylogenetic tree information. The input for
FootPrinter is the file containing sequences from the
annotated gene sequence database and a tree file
(Fig. 1b). The program generates several output
files with different file formats. For programmatic
processing, html output format was selected. The
input sequences were divided into several datasets:
intra-eutherian mammals and others comprising sets
with eutherian mammals and sequences from one or
more of the other lineages (marsupial, avian, am-
phibian). The output motif file (motif.html) con-
tains the information about the motif and its po-
sition. A comprehensive search was performed us-
ing different FootPrinter options (subregion- 1000 to
3000bp; motif size- 6 to 10bp; parsimony score- 0
to 2). Using a Perl script “motifextract.pl”, the
“motif.html” output file was converted to a single
multi-FASTA file. Each analysis was performed twice
using upstream and downstream (FootPrinter: se-
quence type) option. The multi-FASTA files from
both analyses were combined using a Perl script,
“compileTFBS.pl” to produce a non-redundant single
multi-FASTA file. These multi-FASTA files relating
to different subregion sizes were stored in a conserved-

sequence database. Each sequence-motif position was
registered in the sequence identifier.

Figure 3: Pipeline showing the steps in the TFBS
analysis.

3 Pipeline for transcription-factor binding-
site (TFBS) analysis

To enable a comprehensive analysis, the commercial
version TRANSFAC (Matys, Fricke et al. 2003) pro-
fessional was used for TFBS analysis. MATCH (Kel,
Gossling et al. 2003) is a tool which uses the weight
matrices in the TRANSFAC database to search for
putative TFBSs; the advanced version, MATCH pro-
fessional, distributed with TRANSFAC professional
was used. Published TFBS information was used to
optimize the MATCH search parameters, i.e. to pre-
dict maximum true positives and minimum false pos-
itives against the TRANSFAC professional database.
A systematic pipeline was developed to assess the
specificity of TF binding to the conserved-sequence
motifs identified by phylogenetic footprinting (Fig.
3). The steps of the analysis were:

• Starting inputs were the motifs identified by
AVID/LAGAN/FootPrinter methods.

• These motifs were scored against the TRANS-
FAC database using MATCH which uses the in-
formation defined in the profile (selection of ma-
trices with defined cutoffs).

• The output file generated by MATCH was pro-
cessed to eliminate entries for motif sequences
which did not correlate with any known binding
affinity; only sequences showing putative binding
to the vertebrate TFs were retained.

• The Perl scripts, “motifExtract.pl” and “ex-
tractSeq.pl” contain modules that process the
MATCH output file.

• The final output (same format as MATCH out-
put) generated by these Perl scripts was stored
in the TFBS database.

• When conserved motifs were obtained by non-
stringent criteria, e.g. for parsimony score value
> 0 for FootPrinter or percent identity value <
100% for alignment methods, it is possible that
TFs predicted to bind to the same set of con-
served motifs in different input sequences could
differ. Such predicted TFs were eliminated. This
criterion was implemented by two Perl scripts,
“tfbsCons.pl” and “ultraTFBS.pl” which need to
be run consecutively.

• Altogether, the resultant predicted motifs were
classified as either highly conserved or less highly
conserved. Both sets were stored in the TFBS
database.
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(a)

(c)

(b)

(d)

Figure 5: (a) Web form for the user to submit information required for viewing the results. (b) Results page
for alignment method and (c) for FootPrinter method. Note the different options in the display pattern shown
in (b) and (c); TF titles are seen in (c), while conserved-sequence motifs are seen as vertical bars in (b). (d)
Report page showing the report for the search made for the TF SpZ1.
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Figure 4: The procedural flow of information, start-
ing from submitting the web form to the display of
results, and the programs involved with each task.

4 Visual front-end for data analysis

TFBSs occur in combinations of order, distance and
strand orientation which are specific for a partic-
ular gene. Analyzing this organization in relation
to the gene structure is essential for understanding
transcriptional regulation. An intuitive visual front-
end is necessary to allow the researcher to view the
TFBS organization and interpret and evaluate the
results. To achieve this, we designed an interactive
user-interface, FactorScan.

4.1 Interface development

FactorScan is a web-based application accessible
through a web browser. It links the TFBS informa-
tion, conserved-sequence motif information predicted
by AVID/LAGAN/FootPrinter and the TRANSFAC
database (Fig. 4). This interface enables access to
the data (conserved-sequence motifs and TFBS) gen-
erated by the various pipelines (Figs 1 and 3): it is
not dynamically generated during the visualisation.
The web interface has three main components, the
web form, the results page and the report page.

Input: The user input for the web form is catego-
rized into mandatory and optional parameters (Fig
5(a)). The mandatory parameters include the gene
for which the results are to be displayed and the
various options used for phylogenetic footprinting to
generate the data (subregion size, sequence type, se-
quence dataset). The optional parameters are for cus-
tomizing and controlling the display of the results.
Some important features are (i) Transcription Factor
Search, (ii) Core Similarity Score, (iii) Title, (iv) Tis-
sue Source and (v) Line. The Transcription Factor
Search is useful to display a subset of TFs of partic-
ular interest, either individually or in combinations.
The latter is particularly useful for identifying and
comparing ‘modules’ TFBS (clusters of TFBS in a
defined order)(Wasserman and Sandelin 2004). The
Core Similarity Score can be used to visualize TFs
which satisfy criteria set by the user. This value is in
the range of 0-1; by default this is set to 1 to display
the statistically most significant hits. The “Title”
option can be used to visualize the name of the TF
matrices for the displayed TFs. Tissue-specific TFs
can be searched according to tissue, such as brain
and testis. The cell-positive and cell-negative infor-
mation in the TRANSFAC database is used for this
purpose. The conserved-sequence motif distribution
can be viewed by selecting the “Line” option.

Output: The submitted web form is processed by
a CGI script “simpleImageReference.cgi” (Fig. 4)
and the results are displayed in the same window.
The results page displays a schematic of relative or-
ganization of gene annotation, TF and conserved-
sequence motif information. Genomic sequence is rep-
resented, conventionally, as a horizontal line with ex-
ons mapped on as rectangular boxes, and with coding-
and non-coding regions of exons shaded in different
colors (Fig. 5(b),( c)). The TFs predicted to bind
are represented as triangles (Fig. 5(b), (c)), inverted
and upright for the forward and reverse strands, re-
spectively. Each TF is assigned a unique color; its
name is displayed if the “Title” option is selected.
The conserved-sequence motifs, identified by any of
the methods, are represented as vertical bars (Fig.
5(b)); use of color is particularly helpful to discrim-
inate these regions when they are very close. Trian-
gles representing TFs and vertical bars representing
conserved-sequence motifs are clickable areas. Click-
ing on the triangle displays a summary of TF informa-
tion, obtained from the TRANSFAC database. Click-
ing on the vertical bar displays information about
the conserved-sequence motif, accessed from informa-
tion in the conserved-sequence motif database. This
is particularly useful as the conserved-sequence mo-
tif can be examined for other purposes. For Foot-
printer analyses the schematic is drawn to scale within
a species, but between species the scale is not nor-
malized (Fig. 5(c)). For pairwise-alignment analy-
ses, the scale (also shown; see Fig. 5(c)) is normal-
ized between the pairs, and the results can be dis-
played either between specific pairs or for one against
all others. The latter is useful to compare the con-
served TFBS distribution among various lineages. In-
formation about species, abbreviations used and the
sequence length in base pairs is provided in table form
at the bottom of the schematic. The results page
also has a link to view the report of the TFs and
their binding sites. Clicking this link pops up a win-
dow (Fig. 5(d)) displaying a detailed summary of
the TFs, the strand to which it binds, core match,
the conserved-sequence motif identifier, the position
of the TF relative to the transcription start site and
the sequence which was used for TFBS analysis.

5 Analysis of results

Our use of this combinatorial PF approach (i.e. both
alignment-based and motif-discovery-based methods)
predicted most of the known TFs for the PRNP and
PRND genes. The SP1 TF has been shown experi-
mentally to play a role in transcriptional regulation
of PRNP (Saeki, Matsumoto, Matsumoto & Onodera
1996)(Baybutt & Manson 1997)(Inoue, Tanaka, Ho-
riuchi, Ishiguro & Shinagawa 1997)(Mahal, Asante,
Antoniou & Collinge 2001). Mahal and coworkers also
found AP1 and AP2 binding sites in the human pro-
moter region. We predicted both SP1 and AP1/AP2
TFBSs using the pairwise-alignment method in most
pairs of sequences compared, but these TFs were not
identified using FootPrinter analysis (motif absence in
any sequence was not allowed). Premzl and coworkers
(Premzl, Delbridge, Gready, Wilson, Johnson, Davis,
Kuczek & Graves 2005) reported several regulatory
regions in PRNP using PF (Footprinter method) with
the then-available sequences (eutherian mammals and
one marsupial only): most of the TFs (MEF2, Oct-
1, MyT1 and NFAT) were predicted in the intra-
eutherian mammal comparison.

Nagyova and coworkers (Nagyov, Pastorek &
Kopcek 2004) experimentally validated the role of
USF and NF-Y in PRND promoter activity. We pre-
dicted the NF-Y region using both alignment-based
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and FootPrinter methods. We predicted the USF-
binding site in comparisons of some sequence pairs
using alignment-based methods but not using Foot-
Printer: this indicates either that the USF-binding
site is degenerate or short or that it is not phyloge-
netically conserved among the species compared.

Of particular interest for our genes, we predicted
several new TFBSs (PRNP : E4BP4, DBP, FAC1,
MYB; PRND : SpZ1, CDXA, LEF1) which are phylo-
genetically conserved for both genes, and which corre-
late well with physiological behaviour consistent with
operation of these TFs in regulating other genes (e.g.
tissue specificity, specific physiological role). We are
testing these predictions experimentally, and so far
have indicative confirmation for FAC1 and SpZ1.

6 Application and Conclusions

We have developed a graphical web interface to facil-
itate researcher evaluation of results from the phylo-
genetic footprinting and TFBS analysis pipelines. An
application of the pipeline and web interface is illus-
trated by an analysis on PRNP and PRND genes.
This revealed several new conserved TFBSs, in addi-
tion to detecting already published and experimen-
tally validated TFs for regulating these genes. De-
tection of the latter serves as a confidence test for
our pipeline analysis. Several of the newly predicted
TFBSs are consistent with the known functions of
these genes, providing strong starting points for follow
up experimental studies. A combinatorial approach
of predicting conserved motifs using FootPrinter and
AVID/LAGAN methods followed by TF binding anal-
ysis significantly improved the confidence in the pre-
dicted TFBSs. Our pipeline was also tested on the
newly discovered prion-protein family gene, SPRN,
coding for the protein Shadoo, providing us with valu-
able initial functional predictions of a gene whose
function is not known. Our development of a pipeline
which incorporates both alignment-based and motif-
discovery based methods with TFBS analysis is novel,
and provides a powerful new tool for high through-
put, robust analysis. The concurrent development of
the graphical-display module to this pipeline, greatly
enhances its usefulness by facilitating intuitive and
interactive analysis of the results.

7 Software and Hardware

Standalone versions of AVID (version 2.1), LAGAN
(version 1.21) and FootPrinter (version 2.1) were
used for the phylogenetic footprinting analysis. The
TRANSFAC database version 9.2 and MATCH ver-
sion 6.1 were used for TFBS analysis. The web
form was implemented using HTML running on
an Apache web server on a Linux operating sys-
tem at valera.anu.edu.au which hosts the web page
and can be accessed locally with the web address
http://valera.anu.edu.au:8080/factorScan html. The
graphical package Perl GD and Common Gateway In-
terface package Perl CGI were used for the web inter-
face development. Additional pipelining and analy-
sis modules were written in Perl. All analysis was
performed on a PC but some of the more memory-
demanding FootPrinter analyses were performed on
the Dell Linux cluster at the APAC (Australian Part-
nership for Advanced Computing) National Facility.
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Abstract

Clustering in gene expression data sets is a challeng-
ing problem. Different algorithms for clustering of
genes have been proposed. However due to the large
number of genes only a few algorithms can be applied
for the clustering of samples. k-means algorithm and
its different variations are among those algorithms.
But these algorithms in general can converge only
to local minima and these local minima are signifi-
cantly different from global solutions as the number
of clusters increases. Over the last several years differ-
ent approaches have been proposed to improve global
search properties of k-means algorithm and its perfor-
mance on large data sets. One of them is the global
k-means algorithm. In this paper we develop a new
version of the global k-means algorithm: the modified
global k-means algorithm which is effective for solv-
ing clustering problems in gene expression data sets.
We present preliminary computational results using
gene expression data sets which demonstrate that the
modified k-means algorithm improves and sometimes
significantly results by k-means and global k-means
algorithms.

1 Introduction

This paper develops an incremental algorithm for
solving sum-of-squares clustering problems in gene
expression data sets. Clustering in gene expression
data sets is a challenging problem. Different algo-
rithms for clustering of genes have been proposed (see,
for example, (Medvedovic & Sivaganesan 2002, Ye-
ung et al. 2001, Yeung et al. 2003)). However due
to the large number of genes only a few algorithms
can be applied for the clustering of samples ((Bagirov
et al. 2003)). As the number of clusters increases
the number of variables in the clustering problem in-
creases drastically and most of clustering algorithms
become inefficient for solving such problems. k-means
algorithm and its different variations are among those
algorithms which still applicable to clustering of sam-
ples in gene expression data sets. But k-means algo-
rithms in general can converge only to local minima
and these local minima may be significantly different
from global solutions as the number of clusters in-
creases. Recently the global k-means algorithm has
been proposed to improve global search properties of
k-means algorithms ((Likas et al. 2003)). In this pa-
per we develop a new version of the global k-means
algorithm: the modified global k-means algorithm

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at The 2006 Workshop on Intelligent Systems for
Bioinformatics (WISB2006), Hobart, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 73. Mikael Bodén and Timothy L. Bailey, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
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which is effective for solving clustering problems in
gene expression data sets.

The cluster analysis deals with the problems of
organization of a collection of patterns into clusters
based on similarity. It is also known as the unsuper-
vised classification of patterns and has found many
applications in different areas. In cluster analysis we
assume that we have been given a finite set of points
A in the n-dimensional space IRn, that is

A = {a1, . . . , am}, where ai ∈ IRn, i = 1, . . . ,m.

There are different types of clustering. In this paper
we consider the hard unconstrained partition cluster-
ing problem, that is the distribution of the points of
the set A into a given number k of disjoint subsets
Aj , j = 1, . . . , k with respect to predefined criteria
such that:

1) Aj 6= ∅, j = 1, . . . , k;

2) Aj
⋂
Al = ∅, j, l = 1, . . . , k, j 6= l;

3) A =
k⋃

j=1

Aj .

4) no constraints are imposed on clusters Aj , j =
1, . . . , k.

The sets Aj , j = 1, . . . , k are called clusters. We
assume that each cluster Aj can be identified by its
center (or centroid) xj ∈ IRn, j = 1, . . . , k. Then the
clustering problem can be reduced to the following
optimization problem (see (Bock 1998, Spath 1980)):

minimize ψ(x,w) =
1
m

m∑
i=1

k∑
j=1

wij‖xj − ai‖2 (1)

subject to

x = (x1, . . . , xk) ∈ IRn×k, (2)

k∑
j=1

wij = 1, i = 1, . . . ,m, (3)

and

wij = 0 or 1, i = 1, . . . ,m, j = 1, . . . , k (4)

where wij is the association weight of pattern ai with
cluster j, given by

wij =
{

1 if pattern ai is allocated to cluster j,
0 otherwise

Proc. 2006 Workshop on Intelligent Systems for Bioinformatics (WISB 2006)

23



and

xj =
∑m

i=1 wija
i∑m

i=1 wij
, j = 1, . . . , k.

Here ‖·‖ is an Euclidean norm and w is an m×k ma-
trix. The problem (1)-(4) is also known as minimum
sum-of-squares clustering problem.

Different algorithms have been proposed to solve
the clustering problem. The paper (Jain et al. 1999)
provides survey of most of existing algorithms. We
mention among them heuristics like k-means algo-
rithms and their variations (h-means, j-means etc.),
mathematical programming techniques including dy-
namic programming, branch and bound, cutting
plane, interior point methods, the variable neighbor-
hood search algorithm and metaheuristics like simu-
lated annealing, tabu search, genetic algorithms (see
(Al-Sultan 1995, Brown & Entail 1992, de Merle et
al. 2001, Diehr 1985, Dubes & Jain 1976, Hanjoul
& Peeters 1985, Hansen & Jaumard 1997, Hansen
& Mladenovic 2001a, Hansen & Mladenovic 2001b,
Koontz et al. 1975, Selim & Al-Sultan 1991, Spath
1980, Sun et al. 1994)). Since the number of genes
in gene expression data sets are very large most of
these algorithms cannot be applied for clustering of
samples in such data sets.

The problem (1)-(4) is a global optimization prob-
lem and the objective function ψ in this problem has
many local minima. However clustering algorithms
based on global optimization techniques are not ap-
plicable to even relatively large data sets. Algorithms
which are applicable to such data sets can locate only
local minima of the function ψ and these local min-
ima can differ from global solutions significantly as
the number of clusters increases. Another difficulty
is that the number of clusters, as a rule, is not known
a priori. Over the last several years different in-
cremental algorithms have been proposed to address
these difficulties. Results of numerical experiments
show that an incremental approach allows one, as a
rule, to locate a local solution close to global one.
Consequently it can produce a better cluster struc-
ture of a data set. The paper (Bagirov & Yearwood,
2006) develops an incremental algorithm based on

nonsmooth optimization approach to clustering. The
global k-means algorithm was developed in (Likas et
al. 2003). The incremental approach is also discussed
in (Hansen et al. 2004).

In this paper we propose a new version of the
global k-means algorithm for solving clustering prob-
lems in gene expression data sets. In this algorithm
a starting point for the k-th cluster center is com-
puted by minimizing so-called auxiliary cluster func-
tion. We present the results of numerical experi-
ments with 6 gene expression data sets. These results
demonstrate that the proposed algorithm improves
solutions obtained by the global k-means algorithm
and for some data sets this improvement is substan-
tial.

The rest part of the paper is organized as follows:
Section 2 gives a brief description of k-means and the
global k-means algorithms. The nonsmooth optimiza-
tion approach to clustering and an algorithm for the
computation of a starting point is described in Sec-
tion 3. Section 4 presents an algorithm for solving
clustering problems. The results of numerical experi-
ments are given in Section 5 and Section 6 concludes
the paper.

2 k-means and the global k-means algorithms

In this section we give a brief description of k-means
and the global k-means algorithms.

The k-means algorithm proceeds as follows:

1. choose a seed solution consisting of k centers (not
necessarily belonging to A);

2. allocate data points ai ∈ A to its closest center
and obtain k-partition of A;

3. recompute centers for this new partition and go
to Step 2 until no more data points change clus-
ter.

The effectiveness of this algorithm highly depends on
a starting point. It converges only to a local solution
which can significantly differ from the global solution
in many large data sets.

The global k-means algorithm proposed in (Likas
et al. 2003) computes clusters successively. At the
first iteration of this algorithm the centroid of the set
A is computed and in order to compute k-partition
at the k-th iteration this algorithm uses centers of
k− 1 clusters from the previous iteration. The global
k-means algorithm for the computation of q ≤ m clus-
ters in a data set A can be described as follows.

Algorithm 1 The global k-means algorithm.

Step 1. (Initialization) Compute the centroid x1 of
the set A:

x1 =
1
m

m∑
i=1

ai, ai ∈ A, i = 1, . . . ,m

and set k = 1.

Step 2. Set k = k + 1 and consider the centers
x1, x2, . . . , xk−1 from the previous iteration.

Step 3. Consider each point a of A as a starting point
for the k-th cluster center, thus obtainingm initial so-
lutions with k points (x1, . . . , xk−1, a); apply k-means
algorithm to each of them; keep the best k-partition
obtained and its centers x1, x2, . . . , xk.

Step 4. (Stopping criterion) If k = q then stop, oth-
erwise go to Step 2.

This version of the algorithm is not applicable for
clustering on middle sized and large data sets. Two
procedures were introduced to reduce its complexity
(see (Likas et al. 2003)). We mention here only one
of them because the second procedure is applicable
to low dimensional data sets. Let di

k−1 be a squared
distance between ai ∈ A and the closest cluster center
among the k − 1 cluster centers obtained so far. For
each ai ∈ A we calculate the following:

ri =
m∑

j=1

min{0, ‖ai − aj‖2 − dj
k−1}

and we take the data point al ∈ A for which

l = arg min i=1,...,mri

as a starting point for the k-th cluster center. Then
k-means algorithm is applied starting from the point
x1, x2, . . . , xk−1, al to find k cluster centers. In our
numerical experiments we use this procedure.

It should be noted that k-means algorithm and its
variants tend to produce only spherical clusters and
they are not always appropriate for solving cluster-
ing problems. However applying k-means algorithms
we assume that clusters in a data set can be approx-
imated by n-dimensional balls.
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3 Computation of starting points

The clustering problem (1)-(4) can be reformulated in
terms of nonsmooth, nonconvex optimization as fol-
lows (see (Bagirov et al. 2002, Bagirov et al. 2003)):

minimize f(x) (5)
subject to

x = (x1, . . . , xk) ∈ IRn×k, (6)

where

f(x1, . . . , xk) =
1
m

m∑
i=1

min
j=1,...,k

‖xj − ai‖2. (7)

We call f a cluster function. If k > 1, the function
f is nonconvex and nonsmooth. The number of vari-
ables in problem (1)-(4) is (m + n) × k whereas in
problem (5)-(6) this number is only n × k and the
number of variables does not depend on the number
of instances. It should be noted that in many real-
world data sets the number of instances m is substan-
tially greater than the number of features n. On the
other hand in the hard clustering problems the co-
efficients wij are integer, that is the problem (1)-(4)
contains both integer and continuous variables. In the
nonsmooth optimization formulation of the clustering
problem variables are continuous only. All these cir-
cumstances can be considered as advantages of the
nonsmooth optimization formulation (5)-(6) of the
clustering problem.

Let us consider the problem of finding k-th cluster
center assuming that the centers x1, . . . , xk−1 for k−1
clusters are known. Then we introduce the following
function:

f̄k(y) =
1
m

m∑
i=1

min
{
di

k−1, ‖y − ai‖2
}

(8)

where y ∈ IRn stands for k-th cluster center and

di
k−1 = min

{
‖x1 − ai‖2, . . . , ‖xk−1 − ai‖2

}
.

The function f̄k is called an auxiliary cluster func-
tion. It has only n variables.

Consider the set

D =
{
y ∈ IRn : ‖y − ai‖2 ≥ di

k−1

}
.

D̄ is the set where the distance between any its point y
and any data point ai ∈ A is no less than the distance
between this data point and its cluster center. We
also consider the following set

D0 = IRn \D ≡ {y ∈ IRn :

∃I ⊂ {1, . . . ,m}, I 6= ∅ : ‖y − ai‖ < di
k−1 ∀i ∈ I}.

The function f̄k is a constant on the set D and its
value in this set is

f̄k(y) = d0 ≡
m∑

i=1

di
k−1, ∀y ∈ D.

It is clear that xj ∈ D for all j = 1, . . . , k − 1 and
ai ∈ D0 for all ai ∈ A, ai 6= xj , j = 1, . . . , k − 1. It
is also clear that f̄k(y) < d0 for all y ∈ D0.

Any point y ∈ D0 can be taken as a starting point
for the k-th cluster center. The function f̄k is non-
convex function with many local minima and one can

assume that the global minimum of this function can
be a good candidate to be the starting point for the
k-th cluster center. However it is not always possi-
ble to find the global minimum of f̄k in a reasonable
time. Therefore we propose an algorithm for finding
a local minimum of the function f̄k.

For any y ∈ D0 we consider the following sets:

S1(y) =
{
ai ∈ A : ‖y − ai‖2 = di

k−1

}
,

S2(y) =
{
ai ∈ A : ‖y − ai‖2 < di

k−1

}
,

S3(y) =
{
ai ∈ A : ‖y − ai‖2 > di

k−1

}
.

The set S2(y) 6= ∅ for any y ∈ D0.
The the following algorithm is proposed to find a

starting point for the k-th cluster center.

Algorithm 2 An algorithm for finding the starting
point.

Step 1. For each ai ∈ D0

⋂
A compute the set S2(ai),

its center ci and the value f̄k
ai = f̄k(ci) of the function

f̄k at the point ci.

Step 2. Compute

f̄k
min = min

ai∈D0

⋂
A
f̄k

ai ,

aj = arg min ai∈D0

⋂
Af̄

k
ai ,

the corresponding center cj and the set S2(cj).

Step 3. Recompute the set S2(cj) and its center until
no more data points escape or return to this cluster.

Let x̄ be a cluster center generated by Algorithm 2.
Then the point x̄ is a local minimum of the function
f̄k.

4 An incremental clustering algorithm

In this section we describe an incremental algorithm
for solving cluster analysis problems.

Algorithm 3 An incremental algorithm for cluster-
ing problems.

Step 1. (Initialization). Select a tolerance ε > 0.
Compute the center x1∗ ∈ IRn of the set A. Let f1∗

be the corresponding value of the objective function
(7). Set k = 1.

Step 2. (Computation of the next cluster center).
Let x1∗, . . . , xk∗ be the cluster centers for k-partition
problem. Apply Algorithm 2 to find a starting point
yk+1,0 ∈ IRn for the (k + 1)-st cluster center.

Step 3. (Refinement of all cluster centers). Take
xk+1,0 = (x1∗, . . . , xk∗, yk+1,0) as a new starting
point, apply k-means algorithm to solve (k + 1)-
partition problem. Let x1∗, . . . , xk+1,∗ be a solution
to this problem and fk+1,∗ be the corresponding value
of the objective function (7).

Step 4. (Stopping criterion). If

fk∗ − fk+1,∗

f1∗ < ε

then stop, otherwise set k = k+ 1 and go to Step 2.
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It is clear that fk∗ ≥ 0 for all k ≥ 1 and the
sequence {fk∗} is decreasing, that is,

fk+1,∗ ≤ fk,∗ for all k ≥ 1.

The latter implies that after k̄ > 0 iterations the stop-
ping criterion in Step 4 will be satisfied. Thus Algo-
rithm 3 computes as many clusters as the data set A
contains with respect to the tolerance ε > 0.

The choice of the tolerance ε > 0 is crucial for
Algorithm 3. Large values of ε can result in the ap-
pearance of large clusters whereas small values can
produce small and artificial clusters.

5 Results of numerical experiments

To verify the effectiveness of the proposed algorithm
and to compare it with similar algorithms a number of
numerical experiments with six gene expression data
sets have been carried out on a Pentium-4, 2.0 GHz,
PC. We also use multi-start k-means (MSKM) and
global k-means (GKM) algorithms for comparison.
100 randomly generated starting points are used in
MSKM. In tables below MGKM stands for the mod-
ified global k-means algorithm. In tables we present
the number of clusters (N), values f of the clustering
function obtained by different algorithms and CPU
time (t). We used the following gene expression data
sets.

5.1 Data set 1

This data set is Boston Lung Cancer data set and was
generated at the Dana Farber Cancer Institute. The
data set consists of 12484 genes, 185 lung tumor sam-
ples and 17 normal lung samples. Of these, there were
138 lung adenocarcinoma, 6 small-cell lung cancer,
20 carcinoid lung cancer and 21 squamous cell. Ex-
pression profiles were generated using the Affymetrix
GeneChip HG U95Av2. This data set can be ac-
cessed from Cancer Genomics expression database at
the Broad Institute of MIT and Harvard. Results for
this data set are presented in Table 1.

Table 1: Results for Data set 1
N MSKM GKM MGKM

f × 1010 t f × 1010 t f × 1010 t

2 8.441 542.81 8.441 59.31 8.441 102.47
5 6.644 1652.08 6.769 240.39 6.712 415.58
10 5.703 2714.59 6.094 545.19 5.696 962.94
15 5.467 4086.98 5.556 862.45 5.177 1543.30
20 4.900 5016.28 5.041 1199.98 4.812 2150.46

Results presented in Table 1 demonstrate that
MSKM algorithm produces better results when the
number of clusters N ≤ 10. However MGKM outper-
forms two other algorithms as the number of clusters
increases. GKM requires less CPU time however its
solutions are not good. MGKM requires significantly
less CPU time than MSKM.

5.2 Data set 2

This is the Novartis multi-tissue data set. The
data set includes tissue samples of four can-
cer types with 26 breast,26 prostate, 28 lung,
and 23 colon samples. There are 103 sam-
ples all together and 1000 genes. This data
set is available at: http://www.broad.mit.edu/cgi-
bin/cancer/datasets.cgi. Results for this data set are
presented in Table 2.

One can see from Table 2 that algorithms repform
similar when the number of clusters N ≤ 5. However

Table 2: Results for Data set 2
N MSKM GKM MGKM

f × 1010 t f × 1010 t f × 1010 t

2 9.212 0.81 9.212 0.19 9.212 0.30
5 5.024 3.30 5.032 0.61 5.032 1.03
10 3.424 6.70 3.408 1.36 3.351 2.88
15 2.849 10.13 2.897 2.16 2.812 5.98
20 2.470 11.42 2.556 3.00 2.422 10.23

GKM requires significantly less CPU time. MGKM
produces better solutions than two other algorithms
as the number of clusters increases. Again MGKM
requires less CPU time than MSKM.

5.3 Data set 3

This is a leukemia data set with 5000 genes and
38 samples including 11 acute myeloid leukemia
(AML)and 27 acute lymphoblastic leukemia (ALL)
samples. The original data set is retrievable
from: http://www.broad.mit.edu/cgi-bin/cancer/
datasets.cgi. Results are presented in Table 3. We
calculate maximum 10 clusters because this data set
contains only 38 samples.

Table 3: Results for Data set 3
N MSKM GKM MGKM

f × 1010 t f × 1010 t f × 1010 t

2 7.880 3.06 8.137 0.58 7.880 0.67
5 5.537 8.17 5.837 2.02 5.729 2.64
10 4.104 10.47 4.399 4.59 4.271 8.19

Results from Table 3 show MSKM produces bet-
ter solutions than two other algorithms, however it
requires more computational time. MGKM produces
better solutions than the GKM algorithm.

5.4 Data set 4

This data set includes 248 samples and 985
genes. Diagnostic bone narrow samples from pe-
diatric acute leukemia patients corresponding to
6 prognostically important leukemia subtypes: 43
T-lineage ALL, 27 E2A-PBX1, 15 BCR-ABL,
79 TEL-AML1, 20 MLL rearrangements and 64
“hyperdiploid>50” chromosomes. The data set
is available at: http://www.broad.mit.edu/cgi-
bin/cancer/datasets.cgi. Computational results for
this data set are presented in Table 4.

Table 4: Results for Data set 4
N MSKM GKM MGKM

f × 1013 t f × 1013 t f × 1013 t

2 2.777 7.47 2.777 0.97 2.777 1.81
5 1.939 20.44 1.939 3.55 1.939 6.81
10 1.671 36.44 1.685 7.86 1.626 15.20
15 1.570 51.67 1.555 12.34 1.480 25.14
20 1.534 60.36 1.473 17.02 1.364 36.09

For data set 4 all three algorithms give the same
solutions when the number of clusters N ≤ 5. How-
ever, for larger number of clusters MGKM outper-
forms other two algorithms. GKM requires the least
CPU time and MGKM requires less CPU time than
MSKM.

5.5 Data set 5

This is a lung cancer data set which in-
cludes 2000 genes and 139 adenocarcinomas,
21 squamous cell carcinomas, 20 carcinoids
and 17 normal lung samples. This data set
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is available at: http://www.broad.mit.edu/cgi-
bin/cancer/datasets.cgi. Results are given in Table
5.

Table 5: Results for Data set 5
N MSKM GKM MGKM

f × 1010 t f × 1010 t f × 1010 t

2 1.588 5.28 1.589 0.70 1.589 1.23
5 1.068 24.30 1.067 2.33 1.067 4.47
10 0.870 39.94 0.880 5.27 0.862 10.05
15 0.860 50.67 0.819 8.23 0.781 15.61
20 0.824 53.45 0.766 11.23 0.726 22.47

Results presented in Table 5 demonstrate that al-
gorithms produce almost the same solutions when the
number of clustersN ≤ 5. The algorithm MGKM sig-
nificantly outperforms other algorithms as the num-
ber of clusters increases. GKM requires the least CPU
time and MGKM requires less CPU time than the al-
gorithm MSKM.

5.6 Data set 6

This data set has 90 samples and 1277 genes.
It contains 13 distinct tissue types: 5 breast
cancer, 9 prostate, 7 lung, 11 colon, 6 germi-
nal center cells, 7 bladder, 6 uterus, 5 periph-
eral blood monocytes, 12 kidney, 10 pancreas, 4
ovary, 5 whole brain and 3 cerebellum. This data
set is available at: http://www.broad.mit.edu/cgi-
bin/cancer/datasets.cgi. Computational results for
this data set are presented in Table 6.

Table 6: Results Data set 6
N MSKM GKM MGKM

f × 1011 t f × 1011 t f × 1011 t

2 1.554 2.16 1.589 0.20 1.582 0.36
5 1.040 7.06 1.064 0.69 1.065 1.23
10 0.655 14.28 0.651 1.52 0.633 2.69
15 0.526 23.58 0.461 2.44 0.453 4.86
20 0.476 29.78 0.352 3.38 0.349 8.27

Results from Table 6 demonstrate that for small
number clusters MSKM works better than other al-
gorithms, however GKM and MGKM produce better
solutions as the number of clusters increases. MGKM
is best for larger number clusters. MSKM is computa-
tionally more expensive and GKM use the least CPU
time.

5.7 Content of clusters

In this subsection we demonstrate the content of clus-
ters produced by different algorithms and we use the
notion of cluster purity to compare clusters. The no-
tion of cluster purity is defined as follows:

P (Ai) = 100
1
nAi

max
j=1,...,l

nj
Ai ,

where nAi = |Ai| is the cardinality of the cluster Ai,
nj

Ai is the number of instances in the cluster Ai that
belong to the true class j and l is the number of true
classes. Then the total purity P (A) for the data set
A can be calculated as:

P (A) =
nAiP (Ai)

m
.

We used the data set 6 and calculated 30 clusters.
Results are as follows.

• MSKM algorithm produced 13 empty, 6 mixed
and 11 pure clusters with total purity P (A) =
64.44;

• GKM algorithm produced 27 pure and 3 mixed
clusters with the total purity P (A) = 83.33. In
three mixed clusters the results were as follows:

– Cluster 1 - 17 tumors: breast(1), lung(2),
colon(2), germinal center cells (1), blad-
der(1), uterus(2), kidney(3), pancreas(5);

– Cluster 2 - 4 tumors: bladder(1), uterus(3);
– Cluster 3 - 5 tumors: whole brain(2), cere-

bellum(3).

• MGKM algorithm produced 27 pure and 3 mixed
clusters with the total purity P (A) = 85.56. In
three mixed clusters the results were as follows:

– Cluster 1 - 14 tumors: breast(1), lung(2),
colon(1), bladder(2), kidney(3), pan-
creas(5);

– Cluster 2 - 3 tumors: colon(1), germinal
center cells (1), bladder(1).

– Cluster 3 - 5 tumors: bladder(1), uterus(3),
whole brain(1);

One can see that MGKM algorithm produces better
clusters than two other algorithms.

6 Conclusions

In this paper we have developed the new version of
the global k-means algorithm, the modified global k-
means algorithm. This algorithm computes clusters
incrementally and to compute k-partition of a data
set it uses k − 1 cluster centers from the previous it-
eration. An important step in this algorithm is the
computation of a starting point for the k-th cluster
center. This starting point is computed by minimiz-
ing so-called auxiliary cluster function. The proposed
algorithm computes as many clusters as a data set
contains with respect to a given tolerance.

We have presented the results of numerical exper-
iments on 6 gene expression data sets. These results
clearly demonstrate that the modified global k-means
algorithm proposed in this paper is efficient for solv-
ing clustering problems in gene expression data sets.
It outperforms both the multi-start and global k-
means algorithms as the number of clusters increases.
However the proposed algorithm requires more com-
putational efforts than the global k-means algorithm.

Acknowledgement

This research was supported by the Australian re-
search Council.

References

Al-Sultan, K.S. (1995), A tabu search approach to the
clustering problem, Pattern Recognition, 28(9),
1443-1451.

Bagirov, A.M., Rubinov, A.M. & Yearwood, J.
(2002), A global optimisation approach to clas-
sification, Optimization and Engineering, 3(2),
129-155.

Bagirov, A.M., Rubinov, A.M, Soukhoroukova, N.V.
& Yearwood, J. (2003), Supervised and unsu-
pervised data classification via nonsmooth and
global optimisation, TOP: Spanish Operations
Research Journal, 11(1), 1-93.

Bagirov, A.M. & Yearwood, J. (2006), A new non-
smooth optimization algorithm for minimum
sum-of-squares clustering problems, European
Journal of Operational Research, 170(2), 578-
596.

Proc. 2006 Workshop on Intelligent Systems for Bioinformatics (WISB 2006)

27



Bagirov, A.M., Ferguson, B., Ivkovic, S., Saunders,
G. & Yearwood, J. (2003), New algorithms for
multi-class cancer diagnosis using tumor gene
expression signatures, Bioinformatics, 19(14),
1800-1807.

Bock, H.H. (1998), Clustering and neural networks,
In: Rizzi, A., Vichi, M. & Bock, H.H. (eds),
Advances in Data Science and Classification,
Springer-Verlag, Berlin, pp. 265-277.

Brown, D.E. & Entail, C.L. (2001), A practical ap-
plication of simulated annealing to the clustering
problem, Pattern Recognition, 25(4), 401-412.

de Merle, O., Hansen, P., Jaumard, B. & Mladen-
ovic, N. (2001), An interior point method for
minimum sum-of-squares clustering, SIAM J. on
Scientific Computing, 21, 1485-1505.

Diehr, G. (1985), Evaluation of a branch and bound
algorithm for clustering, SIAM J. Scientific and
Statistical Computing, 6, 268-284.

Dubes, R. & Jain, A.K. (1976), Clustering techniques:
the user’s dilemma, Pattern Recognition, 8, 247-
260.

Hanjoul, P. & Peeters, D. (1985), A comparison of two
dual-based procedures for solving the p-median
problem, European Journal of Operational Re-
search, 20, 387-396.

Hansen, P. & Jaumard, B. (1997), Cluster analysis
and mathematical programming, Mathematical
Programming, 79(1-3), 191-215.

Hansen, P. & Mladenovic, N. (2001a), J-means: a
new heuristic for minimum sum-of-squares clus-
tering, Pattern Recognition, 4, 405-413.

Hansen, P. & Mladenovic, N. (2001b), Variable
neighborhood decomposition search, Journal of
Heuristic, 7, 335-350.

Hansen, P., Ngai, E., Cheung, B.K. & Mladenovic,
N. (2001b), Analysis of global k-means, an in-
cremental heuristic for minimum sum-of-squares
clustering, submitted.

Houkins, D.M. , Muller, M.W. & ten Krooden, J.A.,
(2001b), Cluster analysis, In: Topics in Ap-
plied Multivariate Analysis, Cambridge Univer-
sity press, Cambridge.

Jain, A.K. , Murty, M.N. & Flynn, P.J. (1999), Data
clustering: a review, ACM Computing Surveys,
31(3), 264-323.

Jensen, R.E. (1969), A dynamic programming algo-
rithm for cluster analysis, Operations Research,
17, 1034-1057.

Koontz, W.L.G., Narendra, P.M. & Fukunaga, K.
(1975), A branch and bound clustering algo-
rithm, IEEE Transactions on Computers, 24,
908-915.

Likas, A., Vlassis, M. & Verbeek, J. (2003), The
global k-means clustering algorithm, Pattern
Recognition, 36, 451-461.

Medvedovic, M. & Sivaganesan, S. (2002), Bayesian
infinite mixture model based clustering gene ex-
pression profiles, Bioinformatics, 18, 1194-1206.

Selim, S.Z. & Al-Sultan, K.S. (1991), A simulated
annealing algorithm for the clustering, Pattern
Recognition, 24(10), 1003-1008.

Spath, H. (1991), Cluster Analysis Algorithms, Ellis
Horwood Limited, Chichester.

Sun, L.X., Xie, Y.L., Song, X.H., Wang, J.H. & Yu,
R.Q. (1994), Cluster analysis by simulated an-
nealing, Computers and Chemistry, 18, 103-108.

Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E. &
Ruzzo, W.L. (2001), Model-based clustering and
data transformations for gene expression data,
Bioinformatics, 17, 977-987.

Yeung, K.Y. , Medvedovic, M. & Bumgarner, R.E.,
(2003), Clustering gene expression data with re-
peated measurements, Genome Biol., 4, R34.

CRPIT Volume 73

28



���������
	���
�������	�����
�������	�� � 
����"!#�$�"�"��%'&(���
�*)+
��*� 
-,.�"���"	��/!#01���2����!43
516 	��7���8� !.��	9���:0;!#��<=�$��
�!#�����>!9)$�$��
��2����	*?@�
�����7�"���"	��

A7BDCEB�FHG"I;J�KHBMLNB�O/PRQ�STPVU7WXSZY�I\[ ]VJ�^HB`_aB�b�cdSZY�I\[ ]eJ�S�YgfhANB`i�_�B�FjGZk

l�m9n�oRp;qsrstun�vwr�xzy�{|p;rs}~n�t@p�rs�M�����~��vR���wn�q-����r��.x;y����~n�n�vR�s�`pzvR���~�7qs�M�s�Rp;v~nw�d����m��e�e�;�~�����R��rsq-p;�`�`p
� t@p;�`�X���w���e g¡£¢~¤�¥N¡�¦w§R¨V©z �ª�«�¥�©z¬e­���®°¯�±g®�¨e²z¯7®�©�¯

³µ´¶vR��rs��rs��r·nµy¸xzq9{�xw��n¹���~�Mp;q��7�`xw�·���`n�vR��nz�~��vR���wn�q-����r��@x;yº���~n�n�vR�s�`pzvR���~�7qs�M�s�Rp;v~nw�R����m»�e�e�;�~�����R��rsq-p;�`�`p
¼$�Zp;�½xzq-p�rsxwqs�uxzy"¾��Vv~n¹��xz�`xz¿w�`�$À�vR��xz�`xz¿z�w��m9n�oRp;qsrstun�ver�x;yºÀ��R��rsn�rsq·�`�����R¾��Vv~n¹��xz�`xz¿w�.p;vR�+Á�n�o~qsx����d�\rs�`�zn$�7�`xz�`xz¿z�w�

�7q·��¿w}Rp;t:pzvR�£ÂÃxwt4n�vTÄ ��Å�xe��o~��r·pz�X�~�7xe��r·xzvT�~{|�»�e��ÆwÆ¹Ç��V��È~�
� tupz���É���� �¢�«w¦�ÊeËV�
®°§VÌV­N®É­R©w¦eÍ�©z¦�²g®¶¨e²z¯

Î.Ï�Ð�Ñ�Ò�ÓRÔ;Ñ
���~v~��ÕRn��Öpzo~o~q·xwpw�-}Ãxzy7tu��×Vn¹�VØ°n�Ù�n��\r-�2tux���n��g}Rpz�2�dn�n�v
qsn¹��n�ver·���2oRqsxwodxe��n¹�µy¸xzq������R��rsn�qs�`v~¿µ��xwqsq·n��Mp�r·n��$¿wn�v~n¹�
y¸qsxwt
���ÚÙ�n�q·n�verEÛV�`vR�~�Üx;yÝtu�`��qsxep;q·q·p��Þn�×�o½n�q·��tun�ver-��ß Âà�Úr·}
rs}~ná�sx;Ø¶��pz���`n��8â�ã»ØÉ�Rpw��n¹�:ãáä�å@rs�Rqsn»p;vdp;�`�V�s�M�Üæçä\rs}
è p;vd��xztéâ�Ù�n���r·�Ãê � {ë{�´¶ì�Ø°Âà´�Á �gí tuxV�~n��É���dxzrs}àr·}~n¿zn�vRn�Ø¶��o½n����ÚÕd�Hp;vR�árs�M�s�s�~n�Ø°�sodn¹����Õd�îq-p;vd��xztïn�Ù�n���r·�ðp;q·n
r·p;Ûwn�v��`vwr·x.pz����xz�Rvwr��`v+rs}~n£ê¸tu�Ú×Vr·�~qsn í tux���n��`���`v~¿@xzy
tu��Ø��q·xwp;q·q-p��+�~p;r·pRß2´¶vër·}~�M�µoRp;o½n�q¹��ñgn#y¸x����R�µxwvër·}~n@p;o~oR����Ø
��p�r·��xwvR�@xzy�r·}~n � {|{�´¶ì�Ø°Âà´�Á � tux���n��9rsxÖr·}~në�����R��rsn�qp;vRpz�����s�`�#x;y9tu�M��q·xwpzqsq-p��ë�~p;r·pÃñ��Úr·}jq·n�o½n�p�r·n��jt4n¹pz�s�~q·n�Ø
t4n�ver·��ß�´¶v�oRp;qsrs�M���R�`pzq��dñgn2�`vV�zn¹��r·��¿ep�rsn$��pzqs�`xz�R��y¸xzq·tu�9x;y
��x���p;q·�`pzvR��n���rsq·�R�\r·�~qsn|��xztutuxzv~�`�Hpzo~o~�`�`��p;�~�`n+y¸xzq.q·n�oR����Ø
��p�r·n��Ãtu�`��qsxep;q·q·p����~p�r-p£pzvR�Ý��xztuoRpzqsn#rs}Rn��`q��`tuoRpz��r$xzv
rs}~n7ÕRvRpz�~���`�R��rsn�q·�`v~¿�q·n��s�~��r·���;�R�s��vR¿�p�q·n�p;�V�~p;r·pµ��n�r
xzydtu��Ø
��q·xwÁ�ò���o~qsxzÕR�`n2p;vR��puo~�~�R���M��}Rn����zn¹pz��r�¿wp;�Mpz��rsxe��n$�~p;r·p
��n�r�ñ��Úr·}+ÛVv~x�ñ�v�¾�n�vRn#À�vwr·xz�`xz¿w��êÉ¾2À í ���M��rs�`v~¿w��ß
ó4ô�õ�öº÷�ø·ù�ú�ûÞ� {|{�´¶ì9ØÉÂà´�Á � tux���n��É�#Á�pzvR��xwtan�Ù½n¹�\r-�t4x���n��`���wügx���p;q·�`pzvR��ng��r·qs�R��rs�~q·n�����Á�n�oR���M��p;rsn��2t4�M��q·xwpzqsq-p��
�~p�r-p~ß

ý ä�þ Ñ�Ò�ÿ����ZÔzÑ�� ÿ þ
� }~n pz�~�zn�ver�xzy�}R��¿w}�ØXr·}~q·xz�~¿w}~o~��r�r·n��-}~v~xw��xw¿z�`n��N}Rpw��q·n��eØxz�`��rs�`xzv~����n¹�jtuxw��n¹���~�Mp;qu�~�`xz�`xz¿w�z�ºpzvR�î�`vR��n�n��H�`�@�sn�rsrs�`v~¿
rs}~n+��r-p;¿znuy¸xwq2r·}~n.q-p;o~�M�ðn��wxz�`��rs�`xzvðx;y�r·}~n.ñNp��Ã���M�sn�pz�sn
�`�@���Mp;¿wv~xw�sn��T�g���Mpz�·�s�ÚÕRn¹���gpzvR�jrsq·n�p�r·n���ß � }~n���xztuo~�`n�×VØ�Úr��Ãx;yºr·�~tuxz�~q-�µt@p;Ûwn����Úr2�`�`Ûzn��`��r·}Rp�r p����Mp;¿wv~xw��rs�M�2r·n���r
ñ����`���½n �Rpw��n¹�+xzv�t@p;q·Ûzn�q�o~qsxzÕR�`n���q-p�r·}~n�q�r·}Rp;v��`vR���`�V�`��Ø
�Rp;�gtupzqsÛwn�q-��ß£Å�x�ñ7n��zn�q���rs}~n �`��n�vers��Õd��p;rs�`xzvðx;y�q·n��`n���p;ver
���~�d��n�r·��xzy�rs}~n9tupzqsÛwn�q-�"}Rpw�"�Úr-�g�-}dp;�`��n�v~¿zn¹���;�½n���p;�R�sn�tu��Ø
��q·xwp;q·q-p��4n�×�odn�qs�`tun�ver·��pzqsnµv~x�ñ �½n��`v~¿.��pzqsq·��n¹� xw��r�ñ���rs}
qsn�o~���M��p;rs�`xzvjy¸xzq@��pzo�rs�~q·�`v~¿Ãn��Úr·}~n�qu�~�`xz�`xz¿w�`��p;�7xzq#rsn¹�-}~v~��Ø
��p;� ��pzqs�Mp;�R���`�Úr��=��v>n�×�o~q·n��·�s��xwv=�`n��zn��`�Örsx���tuo~q·x��zn r·}~n
	 �dp;�`�Úr��Hx;yµ��v�y¸n�qsn�vR��n¹�@t@pz��n�y¸q·xzt n�×�o½n�q·��tun�ver-p;�9��rs�R��Ø��n¹� ê ��n�nw��
µ�RxR�
Âà}~�Úr·tuxzq·n
��ÈVÛV�`pzq#�;�w�z�~���"p��V�`�`�~�`���Z���
�áò�xw�~��nµ�;�w��� í ß
Á�n�o~�`�`��p�r·n��@tun�pw���Rqsn�t4n�ver·�gx;y�¿wn�v~n�n�×VØo~qsn¹�s�s�`xzv.y¸xwq�p tu�M��q·xwp;q·q-p��#n�×Vo½n�q·�`t4n�verNpzqsn�x;yDr·n�v���xzq·q·n�Ø
�`p;rsn��#p;vR�$rsn�vd�2r·x9�½ngtuxzq·ngpz���`Ûzng��v4�-}Rp;q-pz��rsn�qs�M��r·�`����rs}dp;v
t4n¹pz�s�~q·n�tun�ver·� y¸xzq+r·}~nÃtu�M��q·xwpzqsq-p��jn�×Vo½n�q·�`t4n�ver·��pz��p
ñ�}~xz�`nzß"�7r7rs}~n$�·p;tun�r·��tunz��¿wn�v~n�n�×�o~q·n��·���`xzv@�`n��wn��M�gy¸qsxwt
rs}~n@�·p;tun#n�×�odn�qs�`tun�verµpzqsn4��xwqsq·n��Mp�r·n��îêX{|���Zpz�-}~�Mp;vT��m�x

������������������ !�"��#�$�$%����&�')(+*-,/.��0 !12&�34�0��56&0��'879#���&��: !;��< !1/=>'@?
��'A !�0B:�DC���#E1�B)��;GF

CH��$-,E����.��2& BI ]�J�J�KEL 7�#��M&0�0 !;��< !1"CH��5N$�#E&�'A�>O2��B)��'@&P, L�Q 1�B�FR�������H$S T?$%')�� !$�$%'A !�0')(" T&H����' ]�J�J�K�U ������������$���1 Q 12&�');�;���.�')12&9O2,���&�')5N�V34���WH������1�3�����5� T&0��B)�YX U/Q O�W ]�J�J�K-Z@L�[ ��*S !�M& L 79#���&��: !;��< EF+CH��1E3�')��'A1EBA')�
��1�=�')�0'A !�0B0�Y !1�(�\V�: !B@&0��B)'9��1 Q 1E3�����5� T&0����1N�]')B:�E1���;���.!,8XPC�=�\ Q � Z@L^V��;GF`_ k FVaD���! !');bWH�2(Hc')1Y !1E(Y����5N�!&0�-,Nd`FEW� !��;�'@, L�e (fF`=�')$��0�2(�#�B@?&�����183����g !BA !(�')5N��B L 1��!&M?G34���h$��0�!i�&g$E#��0$%���0')�g$%')�05N� &M&0')(j$��0�AkE��(�')(&�������&0'@l2&�������1�B);�#�(E'A(fF

�»�9t �~q·xz�M��nµ�;�w�;� í ß�´°rNtun�p;vd��r·}Rp�r����`�R��rsn�q·�`v~¿ tun�r·}~x��~�ñ�}~�M�-}.pz�·�s�~tun���vR�~n�o½n�vR��n�vers�`�u�~�`��rsq·���R��rsn¹�@¿zn�v~n�o~q·x;ÕR�`n��
�s}~xz�R�`��o~q·x����R��nº��n¹�s��q·n��`�Mp;�~�`n�q·n��s�~�Úr-��rs}dp;vµrs}Rxw�sn"rs}Rp;r�n�×VØ
o~�`xz��r�xwq�p;�`��x�ñëy¸xzq
��xzq·q·n��Mp�rs�`xzv��½n�r�ñ7n�n�vµr·}~n�¿wn�v~n"o~q·x;Õd��n¹��ß
´¶vR�~n�n��T���`¿zv~xwqs�`v~¿Hrs}~nÖ��n�odn�vR��n�vR��nð�½n�r�ñ7n�n�v rs}RnÝ¿wn�v~n
o~q·x;Õd��n¹�"p;vR�4r·}~n���x���p;q·�Mp;vR��nN��rsq·�R��rs�~q·n�x;y�qsn�o~�`�`��p�rsn¹�4t4��Ø
��qsxep;q·q·p�� �Rp�r·p ��p;v qsn¹���~��rg�`v �`tuodxwq�r-p;ver7�sxz�Rq·��n���xzyT��p;q·�ÚØ
pz�~���`��r��E��v�r·}~nÖn�×�o½n�q·��tun�vwr-���½n��`v~¿àx��zn�qs�`xVxzÛzn¹�E�`v rs}~n
pzvRp;�`�����M����ñ��Úr·}ðrs}~n.��xzvR�sn 	 �~n�vwr2o½xw�·�s���~�`�`�Úr��Ãx;yNt4�M�s��n¹pz�VØ�`v~¿��`v�y¸n�q·n�vd��n��Z�½n��`v~¿9t@pz�~n�ê {ë����pw�-}~�Mp;v$n�r"p;�Éß¹�z�z�z�R��ò9¿R�
{|����pw�-}~�`pzvT�VÂÝpzv~¿R�~�7n�v�Ø � x��V��tm�=ò�¿ �z�z�fn í ß{��Ú×�n¹�VØÉn�Ù½n¹�\r-�Ztux���n��`�
}Rp��wng�½n�n�v#�R�sn�� ��v#rs}Rn7tux���n��ÚØ
�Rpw��n¹�j�����R��rsn�q@p;vRpz�����s�`�4x;y�¿zn�v~n£n�×�o~qsn¹�s�s�`xzvj�~p;r·pÃy¸q·xzt
r·��tun�Ø¶��xw�~q-��n n�×�o½n�q·��tun�ver-�Öp;vR� n�×�o½n�q·��tun�ver-�ðñ��Úr·} q·n�Ø
o½n�p;rsn��utun¹pz�s�~qsn�tun�ver·��êX�T�Rpzv����T�½�z�z�f�~�eügn���n���×��e{|pzq�Ø
r·��vo� ��p��wn�q·¿zv~n �z�z�wÇ í ßÖÅ�x�ñ7n��wn�q¹��ñ��Úr·}jr·}~n��sn£tu��×�n��VØ
n�Ù½n¹�\r·�Ãtux���n��M���uxwv~��� r·}~n ��xzq·qsn��`p;rs�`xzv��½n�r�ñ7n�n�v qsn�o~�`�ÚØ
��p�rsn¹�Ütun�pz�s�~q·n�tun�ver-�@y¸xzq+pÖ¿zn�v~n�y¸q·xztén�pw�-}àtu�`��qsxep;qsØ
q-p��@n�×�o½n�q·��tun�ver��M����xwvR���M��n�qsn¹�ëê¸�V�£t4x���n����`�`v~¿u�e�Mp4¿zn�v~n�Ø
�sodn¹����Õd�#q·pzvR��xztçn�Ù½n¹�\r·� í ß � }V�R����r·}~n��sn4t4x���n��`�µq·n 	 �~�`q·nr·}~nî�`vR��n�o½n�vd��n�vR��njpz�·�s�~tuo�rs�`xzv y¸xzq|rs}~nî¿wn�v~n¹��ñ�}~�M�-}T�
}~x�ñ7n��wn�q¹�$ñ����`�uv~x;rÝ}~xz�M�»�`v=o~q-pz��rs�M��nÖy¸xwqÝpz���4oRpz��q-�|xzy
¿wn�v~n¹��ê {|����pz�-}R�`pzvHn�r p;�Éßº�;�z�z�R�g
µ�`n��Rpzv~x����qpwxzq-�~p;vr�
s pzÛzx��V��n��E�;�z�fn í �dn¹��p;�d��nÝx;y#rs}~nî��xzq·qsn��`p;rs�`xzvà�½n�r�ñ7n�n�v¿wn�v~n4n�×�o~q·n��·���`xzvÃ��n��zn��`��y¸q·xztçrs}Rn.�spzt4n4tu�`��qsxep;q·q·p��+n�×VØ
o½n�q·��tun�vwr@êDr·�`�·�s�~n�Ø¶��o½n����ÚÕ½� n�Ù½n¹�\r·� í ß#Á�n���n�vers�`�z�Tp£�~v~��ÕRn��pzo~o~q·xwpz�-}Öxzy9tu�Ú×�n¹�VØÉn�Ù½n¹�\r-�#tux���n��7}dpz�#�dn�n�v o~qsxwodxe��n¹�
y¸xwq7�����R��rsn�qs�`v~¿u��xwqsq·n��Mp�r·n��@¿wn�v~n¹�ºy¸q·xzth�~�ÚÙ�n�q·n�verNÛe�`vR�~�7xzy
tu�M��q·xwp;q·q-p���n�×�odn�qs�`tun�ver·���zñ�}~n�qsn��½x;r·}urs}~n9¿zn�vRn�Ø¶��o½n����ÚÕd�
pzvR�Er·�`�·�s�~n�Ø¶��o½n����ÚÕ½�Ãq-p;vd��xzt n�Ù½n¹�\r-�îê ò9¿àn�rëp;�Éß9�;�w��n ípzqsnÝr·pzÛzn�v �`versxEpz����xw�~ver|��v rs}Rn1ê¸tu��×er·�~q·n í tux���n��`�`��v~¿xzy�tu�M��q·xwp;q·q-p��Ý�~p;r·pRßEÂà�Úr·}Ürs}~�M�.�sx;Ø¶��pz���`n�� â�ã»ØÉ�Rpw��n¹�
ãáä�å@rs�Rqsn pzvRp;�`�����M�Næ�ä-rs} è p;vd��xzt8â�Ù�n���r·� ê � {|{|´¶ì�ØÂà´�Á �7í pzo~o~q·xwpw�-}T�2r·}~nH�Rv~ÛVv~x�ñ�v=tux���n��uoRpzq·pztun�rsn�q·���p;v4�dnNxz�~r·p;�`v~n¹�#�V�2t@p;×V�`t �Rtá���`Ûzn����`}~xVx��£êX{|� í �V�Mp�rs}~n
� ×Vo½n���r·p;rs�`xzv�Ø¶{|p�×��`tu�4�¹p�rs�`xzv+ê � { í p;�`¿zxwqs��rs}Rt=x;y�m�n�tuo�Ø��rsn�q ô2t"uSv4w ê�Æ�xV�z� í ß9�sn�n4p;�M��x+ò�¿R�H
µq·�`�s}~vRpzvy��{|���Zpz�-}�Ø
�Mp;vðêX�z�z�;� í ß´¶v=r·}~�`�îoRp;o½n�q¹�uñgn y¸x����R�îxzv>p;o~o~�`�M��p�r·��xwvR�Ýx;y£rs}~n
� {|{�´¶ì�Ø°Âà´�Á � o~qsx���n����~q·n.r·xër·}~n����`�R��rsn�q@pzvRp;�`�����M�2xzytu�M��q·xwp;q·q-p����~p�r-p�ñ��Úr·}2q·n�o½n�p�r·n��$tun¹pz�s�~qsn�tun�ver·��ßT´¶v2oRpzq�Ø
r·�`���~�`pzq��4ñ7nj�`ve�wn���rs�`¿wp;rsnj��pzqs�`xz�R�|y¸xzq·t@�Ãxzy£��x���pzqs�Mp;vR��n
��rsq·�R�\r·�~q·nÝ��xztutuxzv~�`�à�R�sn��ày¸xwq�qsn�o~�`�`��p�rsn¹�Etu�M��q·xwp;q·q-p��
�~p;r·p.pzvR����xwtuoRp;q·nµrs}~n���q��`t4odpz�\r-��xwv�rs}~n ÕRvRpz�Z���`�R��rsn�q�Ø
�`v~¿uqsn¹���R�Úr-��ß � }~n$q·n���r�x;y
rs}~n$odp;o½n�q��M��xzq·¿wpzv~����n��£pz�7y¸xw�ÚØ�`x�ñ����"ÈVn¹�\rs�`xzv+�2�`versq·xV�~�R��n¹��r·}~n � {|{�´¶ì9ØÉÂà´�Á � tuxV�~n��y¸xwq����`�R��rsn�q·�`v~¿�tu�`��qsxep;q·q·p����Rp�r·p�ñ��Úr·}2qsn�odn¹p�r·n��µtun�pw���~q·n�Ø
tun�ver-�.p;vR�Üxw��rs�`�`v~n��ur·}~në{|�án���rs�`tup;rs�`xzvÜ�V�`pÝr·}~n � {pz��¿wxzq·�Úr·}~t�ß2´¶vðÈ�n��\r·��xwvz�R����p;q·��xw�R��y¸xzq·tu��xzy7��x���pzqs�Mp;vR��n
��rsq·�R�\r·�~q·n.y¸xzq4q·n�o~�`�`��p�r·n��Ötu�M��q·xwp;q·q-p��Ã�~p;r·pëpzqsn+��xwvR���M�VØ
n�qsn¹�@p;vR�.�~�`�·���R�·�sn���ß � }~n9�`tuoRpz��rgxzyT��pzqs�`xz�d�º��x���pzqs�Mp;vR��n��rsq·�R�\r·�~q·n��#xzvHrs}~n����`�R��rsn�q.pzvRp;�`�����M�#�`�u��rs�R���`n��H�`vÜÈVn¹�\Ø
r·��xwv �R���d���`v~¿up q·n�pz�½�~p;r·p4��n�r�x;y�tu�M��q·xwÁ�ò�� oRqsxzÕR��nµp;vd�
p�o~�~�~�`�M��}~n¹�2�wn�pz��r�¿wp;�Mpz��rsxe��nº�Rp�r·p��sn�r"ñ��Úr·}#ÛVv~x�ñ�v4¾�n�v~n
À�versxw��xw¿z��êX¾2À í �`�`��rs�`v~¿e�$ê �9�s}V�~�~q·v~n�q�n�r�p;�ÉßR�;�z�w� í ß�ÈVn¹�\Ør·��xwv�Ç#n�vd�~�Nrs}Rn$oRp;o½n�q�ñ���rs}��sxztun$���`�·���d�s�s��xwvTß

Proc. 2006 Workshop on Intelligent Systems for Bioinformatics (WISB 2006)

29



� â�ãáãáä�å��sæ�ä è â�� ÿ������
	°ÿdÒ Ô����ZÐ�Ñ��eÒ Ó þ Ó
���TÐ��XÐ
� }~n � {|{|´¶ì�Ø°Âà´�Á � o~qsx���n����~q·nðx;yuò�¿ ô2t uSv4w êÉ�;�z�fn íy¸xzq·t �~�Mp�r·n�� p �`��vRn�p;q tu�Ú×�n¹�VØÉn�Ù½n¹�\r-� tux���n��
ê ��{ë{ í ê {ë�¹üg�~�`��x��-} � È�n�p;q·�`n��z�z�~Æ í y¸xwqÜrs}~n»tu��×VØrs�~q·n@��xztuo½xzv~n�ver·����vðñ�}~�M�-}Ã��x���p;q·�`p;rsn �`v�y¸xwqst@p�r·��xwvÝ��p;v
�dnð�`vR��xwqso½xzq-p�r·n��E�`versxHrs}~nÖ�����R��rsn�qs�`v~¿ o~q·xV��n��·��ß��~xzq��
�~��xw��xw¿z�M��pz���spzt4oR��n¹�|ê¸v~xzr£p;�`��v~n¹��n¹�s�·p;q·���`�î�`vR��n�odn�vR��n�ver íñ��Úr·}��çqsn�o~�`�`��p�rsn:}e�V�~q·�M���4�¹p�r·��xwvR��y¸xzqÞn�pw�-}T�àñ7nh��n�r����� ê ��� l ����������� � �! � í � ��xwver·p;�`vàr·}~nðn�×�o~q·n��·���`xzvE�`n��wn��M�y¸xzqNrs}Rn#";r·}�¿zn�vRnz�~ñ�}~n�qsn�%$ � � ê�& $ l � ��������� & $(' � í � ê*) � Æ ��������� � í
��xzver-p;�`vR�+rs}~n+�îrsn¹�-}~v~�M��pz�2qsn�o~�`�`��p�rsn¹�+y¸xzq�r·}~n,)Dr·}��~��xzØ
��xw¿z�M��p;���·p;tuo~�`n�xzvHrs}~n-"zr·} ¿wn�v~nwß � }~n����~o½n�q-�·��q·��o�r�.p;�½x��zn ��n�v~x;r·n��#�zn¹�\rsxwq2r·q·pzvR��o½xw�snzßÃ´°r4�M�4pz�·���~tun¹�ðrs}Rp;r
rs}~n4ê¸�`xz¿z¿wn�� í n�×�o~q·n��·���`xzvu�`n��zn��`�º}Rp��zn9�dn�n�v.o~q·n�oRqsx���n¹�s�sn��ñ��Úr·} pz�0/��R��r·tun�ver£y¸xwq+pzqsq-p��jn�Ù½n¹�\r-��ß � }~nÃt4�M��q·xwpzqsq-p���~p�r-p���p;vð�½n@rs}Rn�q·n�y¸xzq·nuqsn�o~q·n��sn�versn¹�ë�V�Ãpzv21+354 tup;Ø
rsq·�Ú×���ñ�}Rn�q·n�4 � �#35�£�`�$rs}~n.���`tun�vR�s�`xzvðx;y7rs}~n@¿wn�v~n�Ø
n�×�o~q·n��·���`xzv|oRqsxzÕR��n¹��ß Âà�Úr·}Ãr·}~n � {|{|´¶ì�Ø°Âà´�Á � oRqsx���n�Ø���~q·nz�drs}~n#xz�R�sn�q·�zn¹�64£Ø¶����tun�vR���`xzvdp;�T�wn��\r·xzq-� � l ��������� ��7p;q·n pz�·���Rt4n¹�£rsx.}Rp��wn2��xwt4n2y¸qsxwt8p@tu��×Vrs�~q·n2x;y�puÕdv~�Úr·n
ve�Rt �½n�q¹�~�sp��98���x;y���xztuo½xzv~n�ver·�N�`v+�sxztunµ�~v~ÛVv~x�ñ�v£o~qsxzØ
odxwq�r·��xwvR�;: l ��������� :=<e�"ñ�}R�`�-}j�s�~t(rsxÝxzvRnzßðügxwvR����rs�`xzvRpz�xzv|��r·��tun�t �½n�q-�s}~��oëx;y"rs}Rn?>Érs}Ã��xztuo½xzv~n�ver�x;y"r·}~n tu��×VØ
rs�~q·nz�7rs}Rn��zn���rsxwq � � y¸xwqurs}~n@";r·}Ü¿zn�vRnðêA" � Æ �������B� 1 íy¸xz�`��x�ñ��7r·}~n$tuxV�~n���%�C��DFEHG=IKJML GN� IPORQ G I+S GN� � ê�Æ í
ñ�}~n�q·n�rs}~n�n���n�tun�ver·�@xzy E G ê pzvF�°Ø¶���`tun�vR�s��xwvRp;���wn���rsxzq íp;q·n@Õ~×�n��Ön�Ù½n¹�\r-�£ê �~v~ÛVv~x�ñ�vj��xzvR��r·pzvwr-� í t4x���n����`�`v~¿|r·}~n��xzvd���Úr·��xwvRp;��tun�p;vàxzy � � ��vÜr·}~n5>Ér·}E��xztuo½xzv~n�verÃêT> �Æ �������B� 8 í ßZ´¶v+ê�Æ í � L GU� ê p;v?V�W�Ø°�~��tun�vd���`xzvRpz�w�wn���rsxzq í pzvR� Q Gê p;v?V�X�Ø°�~��tun�vd���`xzvRpz�w�wn���rsxzq í q·n�o~q·n��sn�verTr·}~nº�Rv~xz�R�sn�q·��p;�~�`n¿zn�vRn�Øºp;vd�.r·�`�·���Rn�Ø¶��o½n����ÚÕd��q-p;vR�~xzt�n�Ù�n���r·���~q·n��sodn¹�\rs�`�zn����wß
� }~n��sn@q·pzvR��xwt n�Ù�n���r·�$q·n�oRqsn¹��n�vwr$r·}~n@��p;q·�`p;rs�`xzvÖ���~nur·xrs}~nu}~n�rsn�q·xz¿wn�v~n��Úr��+x;yg¿zn�vRn���p;vR�Ã�spzt4oR��n¹�#êX��xzq·q·n��sodxwvR�VØ
��v~¿ur·x L G � ê L �G l ��������� L �G 7 í � p;vR� Q G �dqsn¹��o½n���rs�`�zn���� í ß � }~nq·pzvR��xzt n�Ù½n¹�\r-� L G p;vd� Q G �gpzvR�jrs}~n+tun�pz�s�~q·n�tun�verun�qsØqsxwqg�wn��\r·xzq�ê S0�G l ��������� S0�G 7 í � p;q·n�pw�s�s�~tun��@rsx �½n�t ��r·�Rp;�`�����vR�~n�o½n�vR��n�ver��Tñ�}~n�qsn D � J ��p;vR� O pzqsn#ÛVv~x�ñ�vë��n¹���`¿zvtup;rsq·�`��n��
x;ydrs}~n���xzq·qsn¹��o½xzvR�~��v~¿9Õ~×�n��#xzq�q-p;vR��xwt»n�Ù�n���r·���
qsn¹��o½n���rs�`�zn��`�zß
Âà��rs} rs}~nð��{ë{Ö�Nrs}~nð���M��r·qs�`�~��r·��xwvR�+x;y L GN� pzvR� Q Gp;q·njr-p;Ûzn�vT�@q·n��sodn¹�\rs�`�zn����w�4rsx��dnàt#�~��rs�`��pzqs�Mp�r·nHvRxzq·tupz�Y?Z\[ ê*] �_^ W Ga` Z\[\í p;vR� Y?Z\b êa] �c^ X G*` Z\b�í ��ñ�}~n�qsn ` Z\[ p;vR� ` Z\bp;q·n �M��n�vwr·�Úr��=tup;rsq·�`��n��ðñ���rs}����`tun�vR�s��xwvR�ð�½n��`v~¿»��o½n���Ø
�ÚÕRn¹�ç�V�hrs}Rn=���R�R�s��qs�`o�r-��ß � }Rnátun�pz�s�~q·n�tun�veràn�q·q·xzq�zn���rsxwq S GU� �M�ëpz�`�sxÜr·pzÛzn�v r·xE�½njt �R�Úr·����p;q·�Mp�rsnÖvRxzq·tupz�Y;d ê*] �fe G í �eñ�}~n�qsn e G � �~�`pz¿Rê\gih G í �`�gp$���Mp;¿zxwvRp;�Rtup;Ørsq·�Ú×j��xzvR��rsq·�R�\r·n��îy¸qsxwt rs}~n��zn¹�\r·xzq�ê\gjh G í ñ��Úr·}Ph G?�ê�k�³G l �������B� k�³G Z\l í � p;vR�mg puÛevRx�ñ�v64i3@Von"��n�q·x;Ø°xzv~nµ��n�Ø
���`¿zvHtup;rsq·�Ú×�ß � }Rp�ru�`���ºñ7n�p;�`��x�ñ>r·}~n�>Xr·} ��xztuo½xzv~n�vwrsØ��pzqs�Mp;vd��n�rsxu�½n2���ÚÙ�n�q·n�ver9pzt4xwv~¿#rs}~np4 }V�V�~q·�`�~�4�¹p�rs�`xzvd��ß
ÂÝnë�`n�rRq � ê�r � l ��������� r �< � : l ��������� : <�s l í � �½n|r·}~n�zn���rsxwq.x;y$p;�`��rs}Rn|�~v~ÛVv~x�ñ�vÜoRpzq·pzt4n�rsn�q·���gñ�}Rn�q·nRr G �M�rs}~nÖ�wn��\r·xzq���xwvwr-p;�`v~�`v~¿jr·}~nð�~v~ÛVv~x�ñ�v oRp;q-p;tun�rsn�q-� EtG �^ W G � ^ X G ��p;vR��h G x;y�rs}RnR>Xr·}à��xztuo½xzv~n�ver ��n�vR�s��r�� êT> �Æ �������B� 8 í ß � }~n�n¹��r·��t@p�r·��xwvjxzyuqé��pzvj�½n�xz��r-p;�`v~n��j�e�rs}~n.{|� p;oRo~qsxepz�-}|�V�Mp£rs}~n � { p;�`¿zxwqs��rs}~t���o~q·x���n�n����`v~¿��xzvd���Úr·��xwvRp;�`�`�+xwv�rs}Rn r·�`�·���Rn�Ø¶��o½n����ÚÕd� q·pzvR��xwt/n�Ù½n¹�\r·� Q Gpz��y¸xzq·t �~�Mp�r·n��$�`v#ò9¿ ô2t9uSv�w êX�z�z�fn í ß � }~n � Ø�pzvR� {�Ø°��rsn�oR���p;v+�½n��`tuo~�`n�tun�versn¹� �`v����`xw�sn��@y¸xwqst�ß�´¶v+oRp;qsrs�M���~�Mp;q¹�Vp;v
p;o~o~q·x�×���t@p;rs�`xzv rsxÖr·}~n � Ø°��rsn�oÜ�e�Ü��pzqsq·�V��vR¿Öxz��r.r·��tun�Ø��xzvd���~tu�`v~¿�{�xzversn ü7pzqs�`x tun�r·}~x��~�µ�M��vRx;r$qsn 	 �~��q·n��Tß �o~qsxw�Rp;�R���`�`��rs�M�|xwq�p;vExw��rsq·��¿w}er+���`�R��rsn�qs�`v~¿ x;y2r·}~nÃ¿wn�v~n¹�
��versx98+��xztuo½xzv~n�ver·����p;v��dn$xw��r·pz��vRn����d�Rpz�sn��£xzv+rs}Rn2n���Ø
rs�`tup;rsn¹�Eo½xw��rsn�q·�`xzq.o~q·xz�dp;�~�`����rs�`n�� x;y ��xztuodxwv~n�ver+t4n�t4Ø
�dn�q·�s}~�`o ¿w���wn�v rs}Rn�o~qsxzÕR�`n+�wn���rsxzq-�@p;vd�jr·}~n�n���rs�`t@p�r·n��
rs�M�s�s�~n�Ø¶�sodn¹����Õd�uq·pzvR��xwt n�Ù�n���r·�-vQ G y¸xzqp> � Æ �������B� 8xw��sn�nò�¿ ô2t uSv�w êÉ�;�w��n í ß

y z ÿ�{~Ó�ÒS� Ó þ Ô��.Ð�Ñ�ÒS�
Ô;ÑE��Ò0�VÐu	ÉÿdÒ2Ò0�}| ��� ÔwÓ�Ñ��b�2�}~�|��eÒ �
� � � þ Ñ¹Ð

��n�r�� G ��n�v~x;r·n.p+q·pzvR��xzt��wn���rsxzqµxzy7�s�4��n�1 G 4 ��xwvR�s�`��r�Ø�`v~¿.xzy"pz����rs}~n#xz�R�sn�q·��p�r·��xwvR� ��� r·}Rp�r�pzqs�M�sn$y¸qsxwt:r·}~n�>Érs}��xztuodxwv~n�ver¹�Rñ�}~n�qsn�1 G �`��rs}~n#vV�~t �½n�q�x;y�¿zn�v~n����dn���xwv~¿;Ø�`v~¿+rsx+rs}Rn�>Ér·}Ý��xztuodxwv~n�ver¹ß4´°r$�M�$pz�·���Rt4n¹�|r·}Rp�r2pz��� ����`v�rs}~n?>Érs}ë��xztuodxwv~n�ver�pzqsn ��vR�~n�o½n�vR��n�ver�¿z�`�zn�v Q G ß � }~n��xzvR����rs�`xzvdp;�N���`��rsq·�`�~��rs�`xzv x;yu� G-� Q G �`�4r·}~n�v ¿z�`�zn�vj�V�Y 7�� d ê�� G E�G ��� G í �"ñ�}~n�qsn-� G � ê ý 7���� D í ßëÅ9n�q·nz� ý 7���M��p;v@1 G Ø¶���`tun�vR�s��xwvRp;���wn���rsxzqNxzyZxzvRn����Vrs}~n2�s��¿wv � �M�7rs}~n
µq·xzv~n¹�-Ûzn�qºo~q·x����R�\r�xzyZr�ñ7x4tup;rsq·�`��n����~p;vR�� G � ` 7���� ê e G I ^ W G JMJ � í �
Å9n�vR��nz��r·}~nu�~vR��xwvR����rs�`xzvRpz�����M��r·qs�`�~��r·��xwvÃxzyt� G �M�µ¿z�`�zn�v
�V� Y 7�� d ê*� G E�G ��� G I�� 7����9� G í �zñ�}~n�q·n � 7�� �`��pzv�1 G 3H1 Gt@p�r·qs��× xzyZxzvRn���p;vd� � G � ^ X G OmO � � êÉ� í
� }~n o~qsn¹��n�vR��n x;y�rs}Rn.rsn�qst*êÉ� í �`vÖr·}~n£��x���pzqs�Mp;vd��n@t@p�Ø
r·qs��×@x;y%� G �`vR���R��n��grs}~nµ��xwqsq·n��Mp�r·��xwvu�dn�r�ñgn�n�v ¿wn�v~n¹�"r·}Rp�r
�½n��`xzv~¿4r·x#r·}~n2�·p;tun$���`�R��r·n�q¹ß�~xzq rs}~nÝ��o½n����ÚÕ½��p�r·��xwvEx;y$¿wn�v~n�Ø°�sodn¹����Õd�|q-p;vd��xzt n�yDØ
y¸n¹�\r·� L GU� �"ñ7n£��xzvR�s�M��n�q r�ñgx�r��Vo~�M��pz�gtux���n��`�4p;o~oR���M��pz�~��ny¸xwqgq·n�o~�`�M��p�r·n�� t4�M��q·xwpzqsq-p��#�Rp�r·pRß � }~n�ÕRq·��rNt4x���n��½r·p;Ûwn��J���D p;vd�mVoW � �����d�-}ër·}Rp�r L GU� � ê*� G l � ��������� � G ! � í � ß� }Rp;rg�M���V��r7�M�Npz�·���Rt4n¹�urs}dp�r�p2¿zn�v~n�Ø¶�sodn¹����Õd��q-p;vR�~xztÞn�yDØy¸n¹�\r��}� G $ � �;�M�
�s}Rpzqsn¹� p;tuxwv~¿9r·}~nNqsn�odn¹p�r·n��#t4n¹pz�s�~q·n�tun�ver·�xzyVn�×�o~qsn¹�s�s�`xzvµxzvµr·}~n "zrs} ¿zn�vRn���vµr·}~n�)¸rs}$�~�`xz�`xz¿w�`��p;�z�·p;t4Ø
o~�`n�ê�) � Æ �������B� � í ß � }~nuq·n�o~�`�M��p�r·n��Ãtun�pz�s�~q·n�tun�ver-��pzqsnr·}~n�q·n�y¸xwqsn9��xzq·qsn��`p;rsn¹��ß � }~nµ�sn���xwvR�utux���n����s��tuo~�`�ÚÕdn��ºrs}~nÕRq-��ruxwv~n��V�îr·pzÛV��v~¿ J�� ý d p;vR�PV W � Æzß � }dp�r.�M�����r��M�µpz�·���Rt4n¹��rs}dp�r$p ¿wn�v~n�Ø°�sodn¹����Õd�2q-p;vd��xztçn�Ù�n���r��%� GN� ��M� �s}Rp;q·n��Öpztuxzv~¿�r·}~n tun¹pz�s�~qsn�tun�ver·�$xwvÖrs}Rn�"zrs}î¿wn�v~n
y¸q·xzt:pz����r·}~np4 � ��3@�4}e�V�~q·�M���4�¹p�r·��xwvR��ß�~xzqµr·}~n.�sodn¹����Õd��p;rs�`xzvÝx;y7rs�M�s�s�~n�Ø¶�sodn¹����Õd�uq·pzvR��xwt�n�yDØ
y¸n¹�\r·� Q G ��ñ7nî��xwvR�s�`��n�q+rs}~q·n�nðr��Vo~�M��pz�$t4x���n��`��pzo~o~�`�`��p�Ø�~�`n.y¸xwq#q·n�oR���M��p;rsn��ît4�M��q·xwpzqsq-p��ë�~p;r·pRß � }Rn.ÕRq-��r4tuxV�~n��r-p;Ûzn¹� O � ` d p;vR��V X � 4 � ��3�� �s�R�-}ár·}Rp�rQ G � ê�� G lsl ��������� � G ' l �������B� � G l ! ��������� � G ' ! í � ß � }Rp;r£�M���9�Úr�M�2pz�·�s�~tun��ërs}Rp;r#p£rs�M�s�s�~n�Ø¶�sodn¹����Õd�uq·pzvR��xwt n�Ù�n���r���� G�� $ ��M����}dp;q·n��+p;tuxzv~¿4¿zn�v~n$n�×�o~q·n��·�s��xwvR�gy¸qsxwt�rs}~n;�Vrs}�qsn�o~�`�ÚØ
��p�rsn x;y�rs}Rn6)Dr·}î�~�`xz�`xz¿w�`��p;�º�·p;tuo~�`nëê*� � Æ ��������� ��w�) �Æ ��������� � í ß�´°r�tun�pzvR��r·}Rp�r�¿zn�vRn���ñ���rs}~�`v|r·}~n#�·p;tun �����d��Ør·n�q2p;q·nu��xzq·q·n��Mp�rsn¹��ß ´¶vÖ�sxztunutu�`��qsxep;q·q·p��+n�×�o½n�q·��tun�ver-���
r·}~n��Z�~�`xz�`xz¿w�`��p;���·p;tuo~�`n����;}~x�ñ7n��zn�q���pzqsn7v~x;rºpz�����`vR��n�odn�v�Ø
��n�ver�ß��~xwqgn�×�pztuo~��nw�zr·}~n��.��xz�~�M�.��xzq·qsn¹��o½xzvR�4r·x#�·p;tuo~�`n��
y¸q·xzt��4oRp�r·��n�ver·��ñ���rs}�� l I � ³ I ����� I �a� � �\ß � }~n7��p;�`�~n��_���xzq·qsn¹��o½xzvR�R��r·x$rs}Rn�vV�~t �½n�qgx;y��~�`xz�`xz¿z�M��pz�~�spztuo~��n¹��y¸q·xzt
r·}~n���r·}#oRp;rs�`n�ver�ê*� � Æ �������B� � í ß��~xzq
n�×~pzt4oR��nw��rs}~n��_�"�R�ÚØxw��xw¿z�M��p;�~�·p;tuo~�`n���y¸xzq"r·}~n���r·}.oRp�r·��n�verºtu��¿w}wr7��xzq·q·n��sodxwvR�
r·x|�spzt4oR��n¹��r·p;Ûwn�vÖp�r�� � ����Ù½n�qsn�ver2rs�`tun@odxw��ver·�2xzq2�`v2� �
����Ù�n�q·n�ver���xzvd���Úr·��xwvR��ß��»��n¹��xzvd� tux���n��Z��p;v+�½n2pz��xwo�rsn¹�
r·x4�`vR��xzq·odxwq·p;rsnµ���R�-}�pu�~p�r-pu}~�`n�q-p;q-�-}e�u�V�@r-p;ÛV��vR¿

O �¡OM¢£�¥¤ ý !*¦ ' ] ����� ]] ý !T§ ' ����� ]
ßßß ßßß ß ß ß ßßß] ] ] ý !�¨ '6© �

pzvR�5VoX � � � ´°rµtun�pzvR��rs}Rp;r$p£oRp;rs�`n�ver�Ø¶��o½n����ÚÕ½� q-p;vR�~xztn�Ù½n¹�\r��=� G ���R�M����}dp;q·n��+p;tuxzv~¿u¿wn�v~n$n�×VoRqsn¹�s�s��xwv£�`n��wn��M�7y¸xzqr·}~n�rsn��-}Rv~�`��p;�TpzvR� �R��xw��xw¿z�M��p;�½q·n�o~�`�`��p�r·n��gy¸xzqNr·}~n;��rs}+oRp�Ø
r·��n�vwr»ê*� � Æ ��������� � í ßà´°r@rs}V�R�@�`vR���R��n��@pð��xwqsq·n��Mp�r·��xwv�½n�r�ñ7n�n�vErs}RnÖn�×�o~q·n��·���`xzvE�`n��wn��M��x;y#�~�ÚÙ�n�q·n�ver|¿zn�v~n��+xwv
r·}~në�·p;tun|oRp;rs�`n�ver£o~q·x��V�`�~n��Hrs}~nÃ¿zn�v~n�� �dn���xwv~¿Örsxîrs}~n
�·p;tun£�����d��r·n�q¹ß � }~n£rs}R��q-�îtux���n����s��tuo~�`��ÕRn��#rs}Rn+pz�dx��wnr�ñ7x@tuxV�~n��M�9�V�£r·p;ÛV�`v~¿ Oi� ]Tß � }Rp�r��`���½�Úr��`��pz�·���~tun¹�r·}Rp�r4rs}~n�qsn�p;q·n+v~xër·�`�·�s�~n�Ø¶��o½n����ÚÕ½� q-p;vR�~xzt n�Ù�n���r·�@p;vd�
¿wn�v~n¹�7pzqsnµv~xzr9��xwqsq·n��Mp�r·n��ëêXp;v+��vd��n�o½n�vR�~n�vR��n$t4x���n�� í ß

CRPIT Volume 73

30



�7�:��xwvR�s�`��n�qs�`v~¿ rs}~ná��xzt#�~��vdp�rs�`xzvd�Hxzyër·}~náp;�½x��zn
q·pzvR��xzt4Ø°n�Ù�n���r·�2tux���n��`���"ñgn£}Rp��zn£����×ðy¸xzq·tu� x;y9��x���pzqs��Ø
p;vR��nµ��rsq·�R��rs�~q·n����

ã ÿ�� �}� ý � � pzÛV��v~¿ J � D �xV�W � �\� O � ` d �=V�X � 4Ý�g � D �
pzvR� V n � �\�Zrs}Rn ��x���p;q·�Mp;vR��n4t@p;rsq·�Ú×Ãy¸xzq$r·}~n
�~vR��xwvR����rs�`xzvRpz�����M��r·qs�`�~��r·��xwv£xzy�� G �`��¿z�`�zn�v+�V�`x7 ��� êX���Mp;¿dê D h G í I ^ W G D�D � í I,� 7 ��� ^ X G ` d ` �d �
ñ�}~n�q·n�h G%� ê*k�³G l ��������� k�³G ! í � ß
ã ÿ�� �}� � � � pzÛe�`v~¿ J �¡D ��V W � �\� Oi� O ¢ �xV X � �Z�g � D �RpzvR�RV n � �\��r·}~n ��x���pzqs�Mp;vd��n�tup;rsq·�Ú×£y¸xzq#� G �M�
¿z�`�zn�v+�V�` 7 ��� ê ���Mp;¿Rê D h G í I ^ W G D�D � í I,� 7 ��� ^ X G O ¢ O ¢ � �
ñ�}~n�q·n�h G%� ê*k�³G l ��������� k�³G ! í � ß
ã ÿ�� �}� y � � p;ÛV�`v~¿ Jj� D �xV W � �\� Oj� ]��%g � D �p;vR��V n � �\��rs}~n2��x���p;q·�`pzvR��n�tup;rsq·�Ú× y¸xzq£� G �`��¿w���wn�v£�e�`x7 ��� ê �~�`pz¿dê D h G í I ^ W G D�D � í �
ñ�}~n�q·n�h G%� ê*k�³G l ��������� k�³G ! í � ß
ã ÿ�� �}��� � � pzÛe�`v~¿ J � ý d pzvR�+V W � Æw� O � ` d �V�X � 4Ý��g � ý d �dpzvR��V�n � Æz�~rs}~n ��x���p;q·�`pzvR��n�t@p�rsq·��×y¸xzq£� G �`�N¿w���wn�v+�e�` 7���� ê �~�`pz¿Rê ý d�� G í I ^ W G ý d ý �d í I+� 7���� ^ X G*` d ` �d �
ñ�}~n�q·n � G � k�³G ß
ã ÿ�� �}��� � � p;ÛV�`v~¿ J � ý d p;vR�KV�W � Æz� O �iO5¢ �V X � ����g � ý d ��pzvR�5V n � Æz�drs}~nu��x���pzqs�Mp;vR��n$t@p�rsq·��×y¸xzq£� G �`�N¿w���wn�v+�e�` 7���� ê �~�`pz¿Rê ý d�� G í I ^ W G ý d ý �d í I+� 7���� ^ X G O ¢ O ¢ � �
ñ�}~n�q·n � G � k�³G ß
ã ÿ�� �}�	� � � pzÛe�`v~¿ J � ý d � V W � Æw� O � ]��=g � ý d �p;vR��V�n � Æz�Vrs}Rn2��x���p;q·�`pzvR��n�t@p�r·qs��×.y¸xzq£� G �M�N¿z�`�zn�v+�V�` 7���� ê ���Mp;¿Rê ý d�� G í I ^ W G ý d ý �d í �
ñ�}~n�q·n � G � k�³G ß
� x@n�×�pztu��v~n�r·}~n ê¸�R��xw��xw¿z�M��p;� í tun�p;vR��v~¿uxzy � 	 �dp�rs�`xzvðê�Æ íy¸xzq#rs}~n£��pzqs�`xz�d�2tux���n��M�#pz�dx��wnz��ñ7n ��xwvR���M��n�q#{�x���n���Æwß
��vR��n�q$rs}R�`�µtux���n��É����r2�M�$pz�·���~tun¹�|r·}Rp�r$r·}~n@n�×�o~q·n��·���`xzv
��n��zn��gx;y�r·}~n?"zrs}î¿wn�v~nw�"��xzvd���Úr·��xwvRp;�ºx;y���r·�2tun�t �½n�q-��}~�`o
x;y�r·}~n;>Érs}Ý��xwt4o½xzvRn�ver�xzy"rs}~n4tu�Ú×Vrs�Rqsn�êT>Érs}Ã���`�R��r·n�q í ���M�¿z�`�zn�v£y¸xzqNr·}~n;�er·}+q·n�oR���M��p;rsnµ��v+r·}~n�)Dr·}£n�×Vo½n�q·�`t4n�ver��e�& �f� $ ��
 G $ I � G $ � I � G�� $ I
� GN�f� $
êT> � Æ ��������� 8xw�" � Æ ��������� 1�w�� � Æ ��������� ��w�) �Æ �������B� � í � � }Rp�ru�`���"r·}~n£n�×�o~qsn¹�s�s�`xzvî�`n��wn��t& �f� $ �`�4n 	 �Rpz�rsxðrs}Rn�t4n¹p;vÜn�×�o~q·n��·�s��xwvj�`n��zn��9p�rur·}~n5)Dr·}Hn�×�odn�qs�`tun�ver
y¸xzq�rs}Rn�>Ér·}(��xztuodxwv~n�verhê 
 G $ í oR���R�»p8¿wn�v~n�Ø°�sodn¹����Õd�q·pzvR��xzt n�Ù½n¹�\r � G $ � ��párs�M�s�s�~n�Ø°�sodn¹����Õd�Eq-p;vd��xzt n�Ù�n���r� GA� $ �9pzvR�àp;vàn�×Vo½n�q·�`t4n�ver·p;��q-p;vR��xwt n�qsq·xzq � GN�f� $ ß � }~n
�zn���rsxwqÖx;y+�~��tun�vd���`xzv V W � �\�ëê*� G l � �������B� � G ! � í � � qsn�o�Øqsn¹��n�vwr-�ðrs}RnE��p;q·�`p;rs�`xzvÞ�dn�r�ñgn�n�v>rs}RnE¿zn�v~nàn�×�o~q·n��·���`xzv
o~qsxzÕR�`n��îpzvR� rs}~n���qj��xztuo½xzv~n�vwrsØÉtun¹p;vR�Ýy¸xwqÖrs}~n��Ãtu��Ø
��q·xwp;q·q-p��8n�×�odn�qs�`tun�ver·��ß � }~n��wn��\r·xzq»xzyÜ���`tun�vR�s�`xzv

V X � 4Ý�ºê*� G l·l ��������� � G ' l ��������� � G l ! ��������� � G ' ! í � �Tq·n�o~q·n��sn�ver·�r·}~n|��p;q·�`p;rs�`xzvÜ�½n�r�ñ7n�n�vàn�×�o~qsn¹�s�s�`xzvÜ���`¿zvRp;rs�~q·n|p;vd� rs}~n
��xztuodxwv~n�versØÉtun�pzv �s��¿wvRp�r·�~q·nÃy¸xwq+rs}~n 4 � �93K�H}e�eØ
�~q·�M���4�¹p�r·��xwvR��ß
´°rµ��p;v|�½n4�sn�n�v�y¸q·xztçrs}Rn4��x���pzqs�Mp;vd��n$t@p�r·qs��×�y¸xzqp� G
r·}Rp�rN{�x���n��M� � p;vd��n pzqsn���vR�~n�o½n�vR��n�vR��n�tux���n��M���Vñ�}~n�qsn
r·}~n�q·n p;q·n.v~x|rs�M�s�s�~n�Ø¶�sodn¹����Õd�@q-p;vR��xwt n�Ù½n¹�\r-� �½n��`v~¿ëpw��Ø
�s�~tun�� ê O�� ] í ß#´°r2tun�pzvR��rs}Rp;r$n�×�o~q·n��·���`xzvÃ��n��zn��M��y¸xzqr·}~n2�spztun�tu�M��q·xwpzqsq-p��#n�×�odn�qs�`tun�ver�p;q·n��`vR��n�odn�vR��n�vwr¹ß

� z ÿ � |�Ó�Ò�Ó�ÑE�T{=��Ð�Ñ��������VÐ
� }~n��`tuoRpz��r.x;yµ��pzqs�`xz�d�4��x���p;q·�`pzvR��n���r·qs�d�\rs�Rqsn¹�uxzvHrs}~n�����R��rsn�qÃpzvRp;�`�����M���M�Ã��xztuoRp;q·n�� �R�s�`v~¿1pEq·n�pz� �~p;r·pE�sn�r
xzy
tu�M��q·xwÁ�ò��»o~q·x;ÕR�`n2p;vR��p@oR�~�~�`�`�s}~n����wn�pw��r�¿wpz�`pw�\r·xw�sn
�~p;r·pu�sn�r�ñ��Úr·}�ÛevRx�ñ�v�¾2Àá���M��rs�`v~¿w��ß
{��`��qsxeÁ�ò9���Tp;q·n"pNy p;tu�`����x;y~�stupz���dê��µ�z�7vV�R����n�x;r·�`��n¹� ív~xwvR��x����`v~¿ Á9ò9�Etuxw��n¹���~�`n���rs}Rp;rNpzqsn�n��zxz�`��r·��xwvRp;q·�#��xzv�Ø
�sn�q·�zn¹��pzvR�$p;q·n"n�×�o~q·n��·��n¹����v2pNr·�`�·�s�~n�Ø¶��o½n����ÚÕ½�"p;vR�$��n��zn��ÚØ
xwo~tun�ver·pz�
��r·pz¿zn�Ø¶�sodn¹����Õd�2t@p;vRv~n�quê �Np;qsrsn����;�z�z� í ß � }Rn��pzqsn#��tuo½xzqsr·p;ver�qsn�¿z�~�Mp�r·xzq-��x;yg��pzqs�`xz�d��pw��o½n���r·��x;yg��n��zn��ÚØ
xwo~tun�ver·pz�d��xwversq·xz�R�`v �½x;r·} o~�Mp;ver-�ºp;vd� p;vR��t@p;�M�"r·}~q·xz�~¿w}
�sn 	 �~n�vR��n�Ø°�sodn¹����Õd�à�`versn�q-pz��rs�`xzvR�jñ��Úr·}hr-p;q·¿zn�rHtuÁ9ò9�9��ßÁ�n¹��n�vwr
��r·�R���`n��Z}Rp��zn��s}~x�ñ�vµrs}dp�rZtu�M��q·xwÁ�ò��în�×VoRqsn¹�s�s��xwv
o~q·x;Õd��n¹�"p;q·n�t4xwqsn�pw�����~q·p;rsn7rs}dp;v@¿z�`xz�dp;�~t@Á�ò��ào~q·x;ÕR�`n��
�`v@���Mpz�·����y¸�V��v~¿�r·}~n�}~�M��r·xz�`xz¿w�`�7xzq·�`¿z�`vR�"p;vR�u����Ù�n�q·n�vers�Mp�r·��xwv
xzy�}e�Rtupzvðrs�~tuxw�~q·�+ê ���în�r@p;�Éß
�z�z�eÇ í pzvR�Ö}~�`¿z}~�`�`¿z}ersn¹�r·}~n o½x;r·n�vers�Mp;�gx;y�tu�`��qsxeÁ�ò9�:o~q·x;ÕR�`��vR¿|��vH��p;vd��n�q#���`pz¿;Ø
v~xe���M�@p;vd� ���`pw�s�s��Õd��p;rs�`xzv�ê Å�n�n�r£p;�Éßg�z�z�wÇ í ß � }~n|�Rp�r·p�sn�r2��xwvR�s�`��r·��x;ygrs}~q·n�n�ê�� � � í qsn�o~�`�`��p�rsnu}V�V�~q·�`������p;rs�`xzvR�y¸xwq�n�pw�-}�t4�M��q·xwÁ9ò9�»tu�M��q·xwp;q·q-p��.n�×�o½n�q·��tun�ver9xzy
� � Æ¹��·p;tuo~�`n���ß
Å9x�ñgn��zn�q��zrs}~n�qsn��`�Np2�Mp;q·¿zn�p;tuxz�~ver7x;yTtu�`�·�s��v~¿
�~p;r·pRßÝÂÝn£rs}~n�qsn�y¸xzq·n ñ7xzq·ÛÃñ���rs} pÃ�s�~�R�sn�r4x;y#1 � Æ�nw�tu�M��q·xwÁ�ò��9� rs}Rp;ru}dp��zn£pz�dxw��r�Æ���� xzy�rs}~n��~p;r·pÃt4�M�·��Ø
�`v~¿RßÞ���`��rs}~nÃt4�M�·���`v~¿jn�×�o~qsn¹�s�s�`xzvR� ñgn�qsn|�`tuo~��r·n��E�d��Ø
�`v~¿+rs}~n£���~oRodxwq�r2�wn��\r·xzqµq·n�¿zq·n��·�s��xwvHêXÈ���Á í �`tuo~��r-p�rs�`xzvpzvR�Üxzqsrs}~xw¿zxwvRp;����xV�~��v~¿H�s�-}~n�tunjê¸Âðp;v~¿d���T�É��pz�Mp;vR¿ ��Rn�v~¿à�;�w��n í ßhÂÝnðpzqsnÝ�`vwr·n�q·n���rsn¹�1o~q·�`tupzqs�`�`� �`v�ñ�}~�M�-}tu�M��q·xwÁ�ò��9�µp;q·n#oR��r$rsxw¿zn�r·}~n�qµ�`vër·}~n@�spztun4�����R��rsn�qµy¸xzq
o~�Mp;�d���`�~�`n£�-}~xw�`��n��2xzy�rs}~n£vV�~t �½n�q4x;y���xztuo½xzv~n�vwr-�p8ð��v
r·}~n#tu��×Vrs�~q·nut4x���n��Xß#�=¿w�~�`�~n r·x+oR�`pz�R���`�~�`n#��pz���~n¹��x;y
8
��p;vÝ�dnuxz�~r·p;�`v~n¹�ë�R�s�`v~¿+rs}~n.�Np��zn¹���Mp;vÃ��v~y¸xzq·tup;rs�`xzvÝ��q·�ÚØ
r·n�q·��xwv�êX�7´sü í x;yTÈ��-}Vñ7pzq �$ê�Æ�xe��� í ß � }~�M�º��qs��rsn�qs�`xzvT�wñ�}~�M�-}�M�.�Rpw��n¹�àxzvEpjodn�vRp;�`����n��ày¸xzq·t xzyµrs}~nÝ��xw¿î�`��Ûwn��`��}~xVx����
}Rpw��¿zq·x�ñ���vR¿µ�s�~o~o½xzqsr��`vurs}~n��`��rsn�q-p�r·�~q·ngy¸xwqº�sn��`n��\r·��vR¿µrs}~n
��p;�`�~nNx;y=82��v4r·}~n���xwvwr·n�×Vr"x;y½t4��×Vrs�~q·nNtuxV�~n���ØÉ�Rpw��n¹�#�����d��Ø
r·n�q·��v~¿Ãx;y9tu�M��q·xwpzqsq-p��Ã�~p;r·pHê �T�dp;v � �T���;�w���~� s n��~vR¿R��Rq·pz��n��z��{��Rqs�RpR�ZÁ�p;yDrsn�qs�y�8Á�� ����x|�;�w�~Æ í wZ�sn�n@pz�`�sx+rs}~n���M�·���R�·���`xzv£��v�ò9¿ ô-t uSv4w êX�z�z�fn í ß

� }~n���x���pzqs�Mp;vd��n���rsq·�R�\r·�~qsn¹�º�`v£{|xV�~n��M�9Æw�b�R�w�d��p;vR��no~q·n��sn�ver·n��+��vëÈ�n��\r·��xwv �.p;q·n$��xzvd���M��n�q·n��+v~x�ñ$ß7{�x���n��M���
pzvR�ÝÇ£ñ7n�q·nuv~x;r ��xzvR�s�`�~n�q·n��ëpw��rs}~n�qsnuñNpz�µv~x��`v�y¸xzq·t@p�Ø
r·��xwv#p���p;�`�`pz�~�`nºxzv#rs}Rngn�×Vo½n�q·�`t4n�ver·�
rsxµ�s�~¿z¿wn���r�rs}dp�r�rs}~n��
ñ7xz�~�M���½n4pzo~o~�`�`��p;�~�`nzßµ�9�µpzv|���`�`�R��r·q·p;rs�`xzv�y¸xwq�{|xV�~n��NÆz�
ñ7n9r-p;Ûwn#4 � �
3�� � �fn#pzvR� D � ý ¼ � ` l�³ ê p ��n?3�Æ¹�t@p�r·qs��× í ß � }~ng��n¹���`¿zv tup;rsq·�`��n�� J � O �;pzvR�9g p;q·n"r·pzÛzn�vr·x��dn£n 	 �Rp;��rsx D � ` ¼�� �
pzvR� D ��qsn¹��o½n���rs�`�zn����wß£ÂÝn@Õ~rr·}~�`��tux���n��Vy¸xzq"��p;q·��xw�R�
��p;�`�~n���xzyRrs}Rn7vV�~t#�dn�q"x;y���xztuo½x;Ø
v~n�ver·��8�ß
{|xV�~n��R�sn��`n���rs�`xzvu�V�`p$�7´süî��vR�~�`��p�rsn¹�#rs}Rp;r�rs}~n�qsn
pzqsn�ÕR�zn$�����R��rsn�q·��ß
�7pw��n¹�Üxzvàr·}~nÃ�sn�rsrs�`v~¿ x;yp8 � Ç��9ñgnërs}~n�vàÕ~r+rs}~ntu��×Vn¹�VØ°n�Ù�n��\r-�@tux���n��M�.ñ���rs}E��pzqs�`xz�R�@��x���p;q·�`pzvR��n���rsq·�R�\Ø
r·�~qsn¹��ß � }~n.���`�R��rsn�q·�µ�sx y¸xwqstun��Ýp;q·n#rs}~n�vð��xztuoRpzqsn¹��rsxr·}Rp�r�xz�~r·p;�`v~n¹�Ey¸q·xzt {|xV�~n��@ÆÖp;�½x��znwß � }~nÖpw� /��R��rsn��Á�pzvR�4��vd��n�×�ê Å��R�dn�q�r � ��q-p;�R��nµÆ�x��wÇ í �M��pw��xzo�r·n�� rsx2pw��Ø�sn��·��rs}~n@��n�¿zq·n�n4x;y7pz¿zq·n�n�t4n�ver��½n�r�ñ7n�n�vër�ñ7x+�����d��r·n�q·��v~¿
oRpzq�r·�Úr·��xwvR��ß7�»�Mp;q·¿zn�q�pz� /��d��r·n���Á�pzvR����vd��n�×���vd���`��p�r·n��9p
}~�`¿z}Rn�q���n��zn��
x;y7p;¿zq·n�n�tun�ver�ß�´���n�ver·�`��p;�����`�R��r·n�q·��vR¿ oRpzq�r·�ÚØ
r·��xwvR� ñ��`�`�7}dp��zn@r·}~n+pw� /��R��rsn¹�jÁ�pzvR�Ö�`vR��n�×îxzy�xzv~nwßÃ´¶v
� p;�~�`n$Æz�wrs}Rn9pz� /��d��r·n��.Á�pzvR�u�`vR���M��n���y¸xzq���pzqs�`xz�R�º��x���p;q·�ÚØpzvR��n ��rsq·�R��rs�~q·n��2��xzvR�s�M��n�q·n��Öpzqsn.oRqsn¹��n�vwr·n���ß�´°ru��pzvÖ�dn
�sn�n�vÃr·}Rp�r2��pzqs�`xz�R�$��x���p;q·�`pzvR��nu��r·qs�d�\rs�Rqsn¹�2���M�Ãq·n��s�~��r2��v
����Ù�n�q·n�ver����`�R��r·n�q·��vR¿4xzy
tu�M��q·xwÁ�ò��9��ß

� x ���`���d��r·q·p;rsnHy¸�~q�r·}~n�qÃrs}Rn q·n��Mp�r·���wnî�`t4odpz�\rðx;y rs}~n

Proc. 2006 Workshop on Intelligent Systems for Bioinformatics (WISB 2006)

31



� pz�~��n#Æz�"�9�0/��R��r·n��£Á�p;vR�.��vR�~�`��n��gñ��Úr·} q·n�y¸n�q·n�vd��n�r·x2r·}~n���`�R��r·n�q·��vR¿4xw��r·pz��vRn��£y¸qsxwt:{�x���n��"Æ.ê {��M��q·xwÁ�ò����~p�r-p í

ügx���p;q·�Mp;vR��n���rsq·�R�\r·�~qsn �9� /��R��rsn¹��Á�p;vR�+�`vR��n�×
{�x���n���Æ Æzß �
{�x���n��>� �~ß �;�%�
{�x���n��T� �~ß �%x �
{�x���n��>n �~ß �%x �

pz��xwo�rsn¹����x���p;q·�`pzvR��n$��rsq·�R�\r·�~q·n$xzv�rs}Rn ���`�R��rsn�q�p;vRpz�����s�`���
ñgn+ñgxwqsÛðxwvHpÃo~�~�~�`�`�s}~n¹�j�wn�pz��r4�Rp�r·pÝ�sn�ruñ��Úr·}HÛVv~x�ñ�v
¾2À8���M��rs�`v~¿w��ê¸´��~n�Ûzn�q#n�r.p;�Éß"�z�z�RÆz� s n��~v~¿d�º{�n��~�zn��~x��e�M�
� �7�~tu¿wpzqsvRn�q9�;�w��� í ß"Âà��rs}�rs}R�`���wn�pw��r�¿wpz�`pw�\r·xw�snµ�Rp�r·pR�rs}~n�qsn7p;q·n"y¸xz�~q7êT� � � í q·n�o~�`�M��p�r·n�}V�V�~qs�M������p;rs�`xzvR�Ty¸xzq�n¹pz�-}��m�ò9��p;q·q-p��ën�×�o½n�q·��tun�vwr¹ß � }~n�qsn�p;q·n-1 � �z�wÇ�¿wn�v~n¹�p;vR�m� � �;�£tu�`��qsxep;q·q·p��+n�×�o½n�q·��tun�ver-��ß � }~nun�×�o~q·n��·���`xzvoRp�rsrsn�q·vR��xzyRrs}Rn��sn9�;�wÇ9¿zn�v~n��
q·n � n¹�\r�y¸xz�Rq�y¸�~vR�\r·��xwvRp;�d��p�rsØ
n�¿zxwqs�`n��#�`vîrs}Rn�¾2À/�`�M��r·��v~¿e��ê s n��Rv~¿ðn�r@p;�Éß"�z�z�f� í ßðÂÝnÕRq·��r7pzo~o~�`��n¹�.{�x���n��ZÆ�¿z�`�zn�v@�`v+È�n��\r·��xwv
�µr·x#���`�R��rsn�qºr·}~n
¿zn�vRn�����versx68 � � ¿zq·xz�RoR��ß � }~nu���`�R��rsn�q-����x y¸xzq·t4n¹�|p;q·nrs}~n�vë��xwt4odp;q·n��£rsx@r·}~n$y¸xw�~q���p�rsn�¿zxwqs�`n��N�`v�rs}~n4¾2Àá�`�M��rsØ
��v~¿e��ß � }~nNpz� /��R��rsn¹� Á�pzvR�2�`vR��n�×2ñ7pw�Ty¸xw�~vR�2rsx��dnN�~ß xe���~�ñ�}~�`�-} �`��rs}~n��dn¹��rºt@p;r·�-}ëê¸rs}~n��`pzqs¿wn���r���vR�~n�× í ��xwtuoRp;q·n��ñ��Úr·}Ý�sn��wn�q-p;�
t4x���n��ÚØ°�Rpw��n¹�ëp;vd�|}~�`n�q-p;q-�-}~�M��p;�����`�R��rsn�qs�`v~¿
p;�`¿zxzq·��rs}~t@�.��xzvR�s�`�~n�q·n�� ��v s n��~v~¿ ô-t uSv4w êX�;�w��� í ß � }~npz� /��R��rsn¹�ÃÁ9p;vR�ë��vR�~�`��n���y¸xzqµtu�Ú×�n¹�VØÉn�Ù½n¹�\r-��tux���n��`��ñ���rs}
��pzqs�`xz�d�+��x���p;q·�`pzvR��në��rsq·�R��rs�~q·n���p;q·nÝ¿z�`�zn�v1��v � pz�~�`nÖ�~ß��¿wpz��v��~�Úr9��p;v+�dn2�sn�n�v+rs}Rp;r9���ÚÙ�n�q·n�ver9�����R��rsn�qs�`v~¿uq·n��s�~�Úr-�
p;q·n£xw��r·pz��v~n¹�ðy¸q·xzt rs}Rn+��pzqs�`xz�R�4��x���pzqs�Mp;vR��n ��rsq·�R�\r·�~qsn¹�
��xzvd���M��n�q·n��Tß

� �/� Ð¹Ô��
Ð¹Ð��Xÿ þ
ÂÃn�}Rp��zn��`vV�zn���rs�`¿wp;rsn¹�#��pzqs�`xz�R�º��x���p;q·�`pzvR��n���rsq·�R�\r·�~q·n����`v
� {|{�´¶ì9ØÉÂà´�Á � tux���n��Tpzo~o~�`�`��p;�~�`n�y¸xzq����`�R��rsn�q·�`v~¿#q·n�oR����Ø��p�r·n��Htu�`��qsxep;q·q·p��ð�~p�r-p~ß � }~n���o½n����ÚÕ½��p�r·��xwvHxzy���x���pzqs��Øp;vR��n ��rsq·�R�\r·�~qsn¹�jvRn�n��R�H��p;q·n�y¸�~����xwvR���M��n�q·p;rs�`xzvTß � }~n�-}~xz�M��në�s}~xw�~�`�Ü�½n�/��d��r·�ÚÕRn¹�à�V�jr·}~nÃ�Rp�r·pî}~��n�q·pzq·�-}V�j�sx
y¸xzq·t4n¹�����~n$r·x@rs}Rn ��n��s�`¿zv�x;y"tu�`��qsxep;q·q·p��@n�×�odn�qs�`tun�ver·��ß
Âà�Úr·}=q·n�o½n�p�r·n���tun�pw���Rqsn¹�|�~p�r-p~�#qsn�o~���M��p;rsn¹��t4n¹pz�s�~q·n�Ø
t4n�ver·�|xzy.������n � y¸q·xzt �£tu�M��q·xwp;q·q-p��àn�×�odn�qs�`tun�ver·�|xzv
n�pz�-}à¿wn�v~n|pzqsn�xw��r·pz��vRn���ß»´°r �M�@r·}~n�q·n�y¸xwqsnÃp;vers�M���`oRp�r·n��
rs}Rp;rgq-p;vR��xwt n�Ù½n¹�\r-�gpzqsn9�s}Rpzqsn¹�@p;tuxzv~¿$n�×�o~qsn¹�s�s�`xzv@�`n��eØ
n��M�9r·x�qsn�o~qsn¹��n�ver9rs}Rn#��p;q·�Mp�rs�`xzvÃ���~n4rsx£rs}~nu}~n�rsn�qsxw¿zn�vRn�Ø
�Úr��@xzy�¿zn�v~n��7p;vR�£�spztuo~��n¹��êX��xwqsq·n��sodxwvR���`v~¿$r·x L G p;vR� Q G �qsn¹��o½n���rs�`�zn��`� í �ºpw�u���`�·���d�s�sn��Ö�`vàÈVn���rs�`xzv �RßÖ´°r@�`�4�`vwr·n�qsØn���rs�`v~¿ÖrsxHv~x;r·n�rs}dp�r+��xzt#�~��vdp�rs�`xzvd�@x;y$q-p;vR��xwt n�Ù½n¹�\r-�
tup��H�dnÃ��xzvd���M��n�q·n�� �`vàtu�Ú×�n���ØÉn�Ù½n¹�\r·� tuxV�~n��`���`v~¿Rß¡�~xwq
n�×~p;tuo~�`nz�9pzvEp;��rsn�qsvRp;rs�`�zn|tux���n��9y¸xwq.rs}RnÝ�sodn¹����Õd��p;rs�`xzv
x;y$¿zn�v~n�Ø¶��o½n����ÚÕ½�£q-p;vd��xzt n�Ù�n��\r-� L GU� t@p��j�½nëpw��xzo�r·n���e�Ã��xzt#�~�`v~��vR¿£r·}~nur�ñ7x+tux���n��`� J � D pzvR� J�� ý drsxz¿wn�r·}~n�q$êDr·}Rp�r��M���~p#q-p;vd��xzt�n�Ù½n¹�\r�pz����xz�Rvwr·��vR¿ y¸xwq���xzqsØ
qsn��`p;rs�`xzv#pztuxzv~¿�qsn�o~�`�`��p�rsn¹�2tun�pw���Rqsn�t4n�ver·�
o~�`�R�"p;v~xzrs}~n�q
pz����xz�~ver·��v~¿uy¸xwq���xzq·qsn��`p;rs�`xzv�p;tuxzv~¿@pz���Z}e�V�~q·�M���4�¹p�r·��xwvR� í ßÅ�x�ñ7n��zn�q��w�ÚrNñNpz�º�~n�tuxzvR��rsq-p�r·n��u�`v�ügn���n���× ô-tqu%v4w êÉ�;�z�eÇ írs}Rp;r7r·}~�M�gtux���n��½oRqsx��V�M��n�� 	 �~��rsnµ�s��tu�`�`pzq7q·n��s�~��r·�ºrsx#rs}Rp;rx;y
rs}~nµÕRq-��r�t4x���n��Tñ���rs} J � D ß � }~�M��q·n��s�~��rN�`vR���M��p;rsn¹�rs}Rp;r#��xwt �~�`vRp�r·��xwvR�µx;yNq-p;vR��xwt n�Ù�n���r·�2pzqsn@�d���Rpz���`�|v~xzr
qsn 	 �R��q·n���ß� }~nH��tuoRpw�\rÃxzy@��pzqs�`xz�d�|��x���p;q·�Mp;vR��nî��r·qs�R��rs�~q·n��|xzvrs}~n+���`�R��r·n�q·��vR¿�qsn¹���~��r·� p;q·n.��xztuoRpzqsn¹�Ý��vjÈVn¹�\r·��xwvÖ�Rß�´°r
��p;v��½n �sn�n�v£r·}Rp�r�{�x���n��gÆ2xz��r·odn�q�y¸xwqst@��xzrs}~n�q·��y¸xzq�r·}~n
���`�R��r·n�q�p;vdp;�`�V�s�M� xzy2rs}~nð�wn�pz��r£¿ep;�Mpz��rsxw�snÃ�Rp�r·pRß�Âà�Úr·}
{�x���n��µÆz�º�Úru�`�upw�s�s�~tun��ðr·}Rp�r.pë¿zn�vRn�Ø¶��o½n����ÚÕd� q·pzvR��xwt
n�Ù�n��\r¹�C� G $ � ���M�£�s}Rpzqsn¹� pztuxzv~¿Ör·}~n|q·n�o½n�p;rsn��Et4n¹pz�s�~q·n�Øt4n�ver·�uxzvHrs}Rn�"zr·}H¿wn�v~n£y¸qsxwt rs}~nM)¸rs}Ht4�M��q·xwpzqsq-p��Ýn�×VØ
odn�qs�`tun�ver.ê�) � Æ �������B� � í ßu�Þrs�M�s�s�~n�Ø¶�sodn¹����Õd� q-p;vd��xzt�n�yDØy¸n��\r¹��� G�� $ �"�M�4p;�M��xÝpz�·���~tun¹�Ýrsxë�½n���}Rpzqsn¹�Öp;tuxzvR¿ë¿zn�v~nn�×�o~q·n��·���`xzvR�7y¸q·xzt:rs}~n;�Vrs}�q·n�o~�`�`��p�r·n�y¸xwq�rs}Rn;)Dr·}+n�×�odn�qs��Ø

� p;�~�`n ���7�9� /��d��r·n���q-p;vR�+�`vR���M��n¹��ñ���rs}�q·n�y¸n�q·n�vd��nµrsx.rs}~nÛVv~x�ñ�v�¾2À»�`�`��rs�`v~¿e�$ê s n�pw��r�¿ep;�Mpz��rsxw�snµ�~p�r-p í

ügx���pzqs�Mp;vR��n���rsq·�R��rs�~q·n �9� /��d��r·n���q-p;vR� ��vR�~n�×
{�x���n��"Æ �~ß xe���
{�x���n��9� �~ß �~ÆwÆ
{�x���n���� �~ß xz�fn
{�x���n��9n �~ß x~Æ¹�

tun�ver#êa� � Æ �������B� ��wc) � Æ ��������� � í ßN´°r9tun¹p;vR��rs}Rp;r9qsn�o~�`�ÚØ��p�rsn¹��tun�pw���~q·n�tun�vwr-�9pzqsn4��xzq·q·n��Mp�rsn¹��p;vR�|¿zn�vRn���ñ��Úr·}~��v
r·}~n$�spzt4nµ���`�R��rsn�q�p;q·n�pz�`�sx4��xzq·qsn��`p;rsn¹��ß � }R�`�N��xwqsq·n��Mp�r·��xwv��rsq·�R�\r·�~q·n��M��/��R��rs��ÕRn��+�V�@r·}~n2�~p�r-p4}~��n�q·pzq·�-}V�@�sx#y¸xwqstun¹�
�`v r��Vo~�M��pz��qsn�o~���M��p;rsn¹�.tu�`��qsxep;q·q·p��#n�×�o½n�q·��tun�ver-��ßgÀ�v rs}~n
xzrs}~n�qg}RpzvR���Vr·}~n��s�`t4oR����ÕRn��£tux���n��½y¸xzq7r·}~n$��o½n����ÚÕd��p�r·��xwv
xzy L GN� ñ���rs} J � ý d ��p;vj�½n+qsn�¿wp;q-��n¹�îpz�#�~v~q·n�pz���M��r·�`��`vàt@p;vV�H�s�Úr·�Rp�r·��xwvR�.xzy$qsn�o~���M��p;rsn¹�Htu�M��q·xwpzqsq-p��Ön�×�o½n�q·�ÚØ
tun�ver-�+ê°ügn��`n���×în�rupz�Xß��z�z�wÇ í ��pw� �`vR���M��p;rsn��H�`v � p;�~�`nÃÆy¸xwqNrs}~n$tu�M��q·xwÁ�ò�� �Rp�r·pRß

è �}	 �eÒ0� þ Ô �eÐ
����}V�~�~q·v~n�q���{Öß`���Npz���É��ü�ß � ß����7�`pzÛznw�`pdß � ßdn�rµpz�Xß�êX�z�z�w� í �

� ¾�n�v~nuÀ�vwr·xz�`xz¿w�½��r·xVxz�Ty¸xwq�rs}Rn2�~v~��Õd��p;rs�`xzv�xzy��R��xw�ÚØxw¿z��Ä���� uSt@w���ô��½ô2t@w � � �½�zÇ
	~�%xRß
�Np;qsrsn��X��m#ß ��ß"êX�z�z�z� í � � {��`��qsxeÁ�ò9�����9¿zn�vRxztu�`�����½�~�`xz¿wn�v�Øn¹���M���"tun¹�-}Rp;v~�M�st+�"pzvR�ðy¸�~vR��rs�`xzvTÄ`��� ô2vPv ý½ý � �
� �~Æ
	��xe�Vß
ügn���n���×��d¾4ß��½{|p;qsrs�`vT��À#ßR� �Zp��zn�qs¿wv~nz�dü�ß�êÉ�;�w�wÇ í � � {��Ú×VØr·�~qsn x;y��`��v~n¹p;q2tu��×�n��Ötux���n��M�$y¸xwq#�����R��rsn�qs�`v~¿|¿wn�v~n
n�×VoRqsn¹�s�s��xwv@o~q·x;ÕR�`n��ºy¸qsxwt�qsn�odn¹p�r·n��@tu�M��q·xwp;q·q-p�� n�×VØ
o½n�q·��tun�vwr-��Ä`��� t@uSt��Mú�t����!u%v��ë÷�ùwô-vPv������ � �d�;�f��	~�%nV�Vß

m�n�tuoR��rsn�q���� ß ��ß`���Zp;�`q·���Tò ß {îß>�:Á��R�~��v���m ß ��ßºê�ÆExe�w� í �
� {|p�×��`t �~t(�`��Ûwn��`��}~xVx��Ýy¸q·xzt(��vR��xztuo~�`n�r·n �~p�r-p��V�`pr·}~n � { pz��¿wxzq·�Úr·}~t�Ä���� w���÷�õ�w � t@uSt@w � ÷ �Ew � ô�ø2w"!y$# ��Æ
	b���~ß

Å9nz����ß`� � }~xzt@�sxzvT�bpRß {Öß`�~Å�n�tupzv~vT��{Öß � ß��Vn�rNpz�Xß�êX�z�z�eÇ í �
� �átu�M��q·xwÁ�ò��áo½xz�`�V���`��rsq·xzv|pw��p odxzrsn�vwr·�`pz�Z}V�~t@pzvxwvR��xw¿zn�vRnzÄ`�%� uSt�&�øsô � y � � �w� ��	 �f���Rß

Å9�~�dn�q�r¹����ß �(��q-p;�R��nw� ��ß9ê�Æ�x��wÇ í � � ügxztuoRpzqs�`v~¿ðoRpzq�r·�ÚØr·��xwvR��Ä`�'� w � v4u�ú-ú(� )-w � ��Æ�x��*	��~Æ �~ß
´���n�Ûzn�q�� � ß�� � }~xzq-�·��xwvT� �#ß���Á�pzv~�`�s}T�HpRß �2ß`�½n�r�pz�Xß�êX�z�z�RÆ í �

� ´¶versn�¿wq·p;rsn¹�u¿zn�vRxztu�`�9p;vR�@oRqsxzrsn�xwtu�`��pzvRp;�`����n¹�"x;y�p
�s����r·n�tu�`��p;�`���£odn�q�r·�~q·�dn¹��t4n�r·pz�dxw���M�$v~n�r�ñgxwqsÛ�Ä`��� ����+
ô��$�-ô �,#x� �]xw��x�	bxf�;�dß


µ�`n��Rpzv~x�������ß`�>pzxwq·�Rp;vT�Zü�ß�� s p;Ûzx��V�`n������2ß�êÉ�;�z�fn í � � �v~n�ñ8r��eo½n|xzy ��r·xV�-}dpz��rs�M����n�o½n�vR�~n�vR��nëq·n��zn¹p;�`n��H��v
¿wn�v~n�n�×�o~q·n��·���`xzv.�~p;r·pRÄ��$� t@uSt@w�-/.0.Hv4w/��ô
��ô-t����\ú1�ë÷Sv4w
!2� ÷Sv4w � �~ò�xdßTÆz�~�9q�r·�`����n ��ß

��n�nz�d{Öß �ºß � ß`�R
µ�~xd���7ß ü�ß`�~Âà}~��rstuxwqsnw�½¾4ß �2ßR�>ÈVÛV�`pzq��VpRßêÉ�;�z�w� í � � ´¶tuodxwq�r-p;vR��nµx;y�qsn�o~���M��p;rs�`xzv+��v�tu�M��q·xwp;q·q-p��¿wn�v~n�n�×�o~q·n��·���`xzv£��r·�R���`n�������r-p�rs�M��rs�M��p;��tun�r·}~x��~��p;vd�
n��e�M��n�vR��n@y¸q·xzt q·n�o½n�r·�Úr·���wn£��m�ò9�/}V�V�~qs�M������p;rs�`xzvR��Ä��
37ø·÷ �Ew � u%t�v4w4-5�!uzùfw � ���Mw16 � - #�7 � x ���z�*	]x �����~ß

���T� s ß��$¾�n�rT�z�2¾4ß`��{��M�sÛ�pR� � ß � ß���n�r�p;�Éß2êX�z�z�eÇ í � � {���Ø��qsxeÁ�ò9� n�×�o~q·n��·���`xzv�oRqsxzÕR��n¹�µ���Mpz�·����y¸��}e�RtupzvÃ��p;v�Ø
��n�q-��Ä`�8� u%t�&�øsô � y � � �f�;�*	������~ß

���Rp;vT� s ßH���T�É��Å2ß�êX�z�z��� í � � üg�`�R��rsn�q·�`v~¿ xzy"rs�`t4n�Ø°��xz�~q-�sn¿wn�v~ngn�×�o~q·n��·���`xzv �Rp�r·p9�R�s��v~¿µp�tu��×�n��VØ°n�Ù�n���r·�
tuxV�~n��
ñ���rs}:9$Ø¶�so~���`v~n¹��Ä`� !;� ÷<��� )�÷;ø(= u%t�����ú ý�# ���V���*	V���w�~ß

{|��üg�~�`��x��-}T��ü�ß � ß��hÈVn�pzqs�`nz�TÈ�ß Á$ß"êX�z�z�RÆ í � ��ô
��ô�øTuSv��?>¹ô-ù�@
AB���½ô!u�øC@ u<�½ùD�E�GFVô-ùH�ë÷¹ùzô2v ú �RÂà�`��n��zß

CRPIT Volume 73

32



{|���Zpz�-}~�Mp;vT��¾4ß pRß`��m�xR�g
uß �2ß��8�9t �~q·xz�M�snz�ºü�ß7êÉ�;�w�;� í �
-��`u%v õ >���� � �:����øs÷Eu�ø\ø u;õ ��ô
��ô��BF
.½ø·ô\ú-ú(� ÷*��� u%t:u �Âà���`n��wß

ò�¿R��È�ß 
uß`� 
µq·�M��}~vdp;vT� � ßq�({|���Zpz�-}~�Mp;vT��¾4ß pRß9êÉ�;�w�;� í �
� }~n � { p;�`¿zxwqs��rs}~t�� ��� pdß ¾�n�vers�`nz� Â»ß Å9pzq·���`n
� s ß�{�xwqs�É��n��R��� � Å9pzvR���½xVxzÛÜx;yuügxwtuo~��r·p;rs�`xzvRpz�Èer·p;rs�M��r·�`��� �"xz�ÉßTÆzÄ`�RÈVo~q·�`v~¿zn�q�Ø �"n�q·�`pz¿R�eo~oTßTÆE�e�
	½Æ�n��~ß

ò�¿R�9È�ß 
uß`��{|���Zpz�-}~�Mp;v��N¾4ß pRß`��Âðp;v~¿d��
uß����7n�v�Ø � x��e�`t����ß>�/ò�¿d��È�ß Ø°Â»ßºêX�z�z��n í � � ��tu��×er·�~q·n@t4x���n���ñ���rs}q·pzvR��xwt#Ø°n�Ù�n���r·�Ö��xztuodxwv~n�ver-�ðy¸xzq ���`�R��r·n�q·��vR¿á��xzqsØ
qsn��`p;rsn¹��¿zn�vRn�Ø°n�×�o~q·n��·���`xzv+o~q·x;ÕR�`n���Ä�� !;� ÷<��� )�÷;ø(= u%t�����ú�=� ��Æ����eÇ�	½Æ��zÇz�~ß

�"p��e�`�M���`���q��ß`�g���X���#ß�� ò�xw�~��nw�ºÂ»ß È�ß�êX�z�z�f� í � � � }~n�n�yDØy¸n���rgx;y�q·n�o~�`�M��p�r·��xwvuxzv.¿wn�v~n�n�×VoRqsn¹�s�s��xwvut4�M��q·xwpzqsq-p��
n�×�o½n�q·��tun�ver-��Ä`� !;� ÷<��� )�÷;ø(= u%t�����ú ý�# �TÆ�ne�;�*	½Æ�ne�w��ß

È��-}Vñ7pzq �w�"¾4ßNê�ÆExe��� í � � � ��rs�`t@p�rs�`v~¿�r·}~n�����tun�vR���`xzvjx;y9ptuxV�~n��ÉÄ�� -��,�`w � t@uSt@w � ���fnRÆ(	V�fn;�dß
ÂÝpzv~¿R�
ì ß`�
���X���2ß`��pz�Mp;v~¿d���
ß Å2ß9���Rn�v~¿d�
Å ß �#ßºêÉ�;�w��n í �

� {|�`�·���`v~¿î��pz���~nën���rs�`tup;rs�`xzvày¸xwq£m�ò9� t4�M��q·xwpzqsq-p��¿zn�v~n n�×VoRqsn¹�s�s��xwvj�~p;r·pÃ�e�î�s�~o~o½xzqsr#�wn���rsxzq4q·n�¿zq·n���Ø
���`xzv£��tuo~�~r·p�r·��xwv�p;vR�£xzqsrs}~xw¿zxwvRp;����x����`v~¿@�s�-}Rn�tunzÄ`�
! � � !2� ÷*���
)�÷�ø(= uSt����\ú 7 �R��qsrs�M���`n �w��ß

s n��~v~¿d�"
uß s ß`�£�~q-p;�`n��z��ü�ß`��{��~q·�RpR���2ß`�9Á�p�yDr·n�q·�z��� ß � ß
� Á��R�2��xd�@Â»ß �ºß.êX�z�z�~Æ í � � {�x���n���ØÉ�dpz�sn��Þ���`�R��r·n�qsØ��vR¿�pzvR�#�Rp�r·p�r·q·pzvR��y¸xwqst@p;rs�`xzvR��y¸xzq�¿zn�v~nNn�×�o~q·n��·���`xzv
�~p�r-p~Ä`� !;� ÷<��� )�÷;ø(= u%t�����ú ý%7 �Rxe�w� 	]x �e��ß

s n��~v~¿d� 
uß s ß��${�n¹���zn¹��x��V�`�z��{Öß"� �g�Rt4¿ep;q·v~n�q¹��Á2ß � ßêX�z�z��� í � � üg���R��rsn�qs�`v~¿�¿zn�v~n�Ø°n�×�o~q·n��·���`xzv#�~p�r-p9ñ���rs}4qsn�Øodn¹p�r·n���tun�pw���Rqsn�t4n�ver·��Ä�� ��ô
��÷*=@ô !;� ÷%v4w � ����qsrs�M���`nÁ��;�dß

Proc. 2006 Workshop on Intelligent Systems for Bioinformatics (WISB 2006)

33



CRPIT Volume 73

34



A Maximally Diversified Multiple Decision Tree Algorithm for
Microarray Data Classification

Hong Hu1 Jiuyong Li1 Hua Wang1 Grant Daggard2 Mingren Shi1

1Department of Mathematics and Computing
2Department of Biological and Physical Sciences

University of Southern Queensland,
Toowoomba, QLD 4350, Australia

Email: huhong@usq.edu.au

Abstract

We investigate the idea of using diversified multi-
ple trees for Microarray data classification. We pro-
pose an algorithm of Maximally Diversified Multiple
Trees (MDMT), which makes use of a set of unique
trees in the decision committee. We compare MDMT
with some well-known ensemble methods, namely Ad-
aBoost, Bagging, and Random Forests. We also
compare MDMT with a diversified decision tree al-
gorithm, Cascading and Sharing trees (CS4), which
forms the decision committee by using a set of trees
with distinct roots. Based on seven Microarray data
sets, both MDMT and CS4 are more accurate on av-
erage than AdaBoost, Bagging, and Random Forests.
Based on a sign test of 95% confidence, both MDMT
and CS4 perform better than majority traditional en-
semble methods tested. We discuss differences be-
tween MDMT and CS4.

Keywords: ensemble classifier, diversified classifiers,
decision tree, Microarray data.

1 Introduction

DNA Microarray technology provides capability to
monitor the expression levels of thousands of genes
at one time. Microarray data analysis offers the po-
tential for discovering the causes of diseases, and iden-
tifying the marker genes which might be the signature
of certain diseases.

In response to this potential, many Microarray
classification algorithms have been proposed in the
past ten years. Most of them have been adapted from
data mining and machine learning methods, such as
support vector machines (SVMs) (Brown, Grundy,
Lin, Cristianini, Sugnet, Furey, Jr & Haussler 2000,
Guyon, Weston, Barnhill & Vapnik 2002), k-nearest
neighbor classifier (Yeang, Ramaswamy, Tamayo &
et al. 2001), ensemble methods including Bagging
and Boosting (Tan & Gibert 2003, Dietterich 2000),
etc. Many researchers have focused their efforts to
the study of ensemble decision tree methods (Li &
Liu 2003, Tan & Gibert 2003, Dettling 2004, Zhang,
Yu & Singer 2003) since they have shown promise to
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achieve high classification accuracy and its results are
very easy to be interpreted.

Ensemble methods combine multiple classifiers
(models) built on a set of re-sampled training data
sets, or generated from various classification methods
on a training data set. This set of classifiers form
a decision committee, which classifies future coming
samples. The classification of the committee can be
simple vote or weighted vote of individual classifiers
in the committee. We focuss on ensemble methods
of combining multiple classifiers built on a set of re-
sampled training data sets. The essence of ensem-
ble methods is to create diversified classifiers in the
decision committee. Aggregating decisions from di-
versified classifiers is an effective way to reduce bias
existing in individual trees. However, if classifiers in
the committee are not unique, the committee has to
be very large to create certain diversity in the com-
mittee.

A quick way to create diversity in the decision
committee is to include a set of unique trees. This
is a motivation of our proposed algorithm. A con-
cern for such a split is that it might break down some
attribute combinations or remove some informative
genes that are good for classification. However, it is
workable for Microarray data. Firstly, a Microarray
data set contains a large number of genes, thousands
to tens thousands, and this large number of genes
can afford for the removal of small number of genes
in subsequent trees. Secondly, Microarray data nor-
mally contains many noise values. It is very likely
that expression levels of some genes are falsely corre-
lated to outcomes (cancer or normal) due to noises.
If those genes are repeatedly used in a decision com-
mittee, they will cause unreliable predictions in new
cases. The diversified trees can avoid such problem.
Thirdly, biologists are interested in gene interactions,
the use of top genes by information gain ratio may
lead to the discovery of trees of few genes. By remov-
ing these top genes, more gene combinations may be
discovered.

CS4–cascading-and-sharing trees (Li & Liu 2003)
is a diversified decision tree ensemble. CS4 selects n
top genes and then builds n trees from the roots of
n top genes. Apart from the root of the tree is fixed,
other level of trees are constructed by using a nor-
mal tree construction method. CS4 has been shown
achieving higher classification accuracy than Bagging
and Boosting. It was reported that CS4 is better
than other ensemble decision tree methods for Mi-
croarray data analysis. However, apart from the top
level genes, other genes in the tree are shared. A num-
ber of trees may use some genes repeatedly. Thus,
noise from one gene may affect most trees. Also, the
performance of CS4 largely replies on the selection of
top genes.

A distinction between CS4 and our proposed al-
gorithm is that there are no common genes in our
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trees in the decision committee whereas genes in trees
of CS4 are overlapping except the root genes. We
will compare these two diversified decision tree ap-
proaches in this paper, and compare them with other
traditional ensemble methods.

Complete-random classifiers (Liu, Ting & Fan
2005) also maximize the diversity of ensemble clas-
sifiers. Randomly generated trees may overlap, but a
large number of trees, for example, thousands to ten
thousands, diminish the effect of the overlaps. The re-
sults of complete random decision trees are promising
too. We do not consider this diversifying approach in
this paper based on efficiency consideration.

The rest of this paper is organized as follows. In
section 2, we describe the related work on ensemble
decision tree classification. In section 3, we introduce
our maximally diversified multiple decision tree algo-
rithm (MDMT). In section 4, we show experimental
results. In Section 5, we present discussions. In sec-
tion 6, we conclude the paper.

2 Related work

Bagging, Boosting and Random forests are some well-
known ensemble methods in the machine learning
field.

Bagging was proposed by Leo Breiman (Breiman
1996) in 1996. Bagging uses a bootstrap technique
to re-sample the training data sets. Some samples
may appear more than once in a data set whereas
some samples do not appear. A set of alternative
classifiers are generated from a set of re-sampled data
sets. Each classifier will in turn assign a predicted
class to an coming test sample. The final predicted
class for the sample is determined by the majority
vote. All classifiers have equal weights in voting.

Boosting was first developed by Freund and
Schapire (Freund & Schapire 1996) in 1996. Boosting
uses a re-sampling technique different from Bagging.
A new training data set is generated according to its
sample distribution. The first classifier is constructed
from the original data set where every sample has an
equal distribution ratio of 1. In the following training
data sets, the distribution ratios are made different
among samples. A sample distribution ratio is re-
duced if the sample has been correctly classified; Oth-
erwise the ratio is kept unchanged. Samples which
are misclassified often get duplicates in a re-sampled
training data set. In contrast, samples which are cor-
rectly classified often do not appear in a re-sampled
training data set. A weighted voting method is used
in the committee decision. A higher accuracy classi-
fier has larger weight than a lower accuracy classifier.
The final verdict goes along with the largest weighted
votes.

Tan and Gilbert (Tan & Gibert 2003) used Bag-
ging and Boosting C4.5 decision trees. For Microar-
ray data classification, the results showed that both
methods outperform C4.5 single tree on some Mi-
croarray cancer data sets. Statistik and Surich de-
veloped a new BagBoosting method (Dettling 2004).
Their experiments showed that BagBoosting outper-
forms constantly over Boosting and Bagging methods
and achieved a better accuracy result on some Mi-
croarray data sets compared with some well-known
single classification algorithms such as SVM and kNN.

Zhang and et al. (Zhang et al. 2003) proposed a
new ensemble decision tree method called determin-
istic forest which was a modified version of random
forests. Instead of re-sampling the training data set,
this method selects a specified number of the top
splits of the root node and then generates a number
of alternative trees. The accuracy of results from de-
terministic forests are comparable to random forests.

CS4–cascading-and-sharing proposed by Jinyan Li
and Huiqing Liu (Li & Liu 2003) makes use of both
in their ensemble C4.5 algorithm for Microarray data
classification. CS4 first uses the information gain ra-
tio to select top n genes from the original data set.
Then each of n genes in turn is used as the root node
of an alternative tree of ensemble trees. Root nodes
of ensemble trees are not determined by C4.5, but
the remaining parts of trees are constructed by C4.5.
CS4 diversifies roots of ensemble decision trees, but
does not diversify all trees in the committee as our
proposed algorithm.

3 Maximally diversified multiple decision
tree algorithm (MDMT)

To improve the accuracy and reliability of ensemble
decision tree methods for Microarray classification,
we propose a new maximally diversified multiple deci-
sion tree (MDMT) method. We avoid the overlapping
genes among alternative trees during the tree con-
struction stage. MDMT guarantees that constructed
trees are truly unique and maximizes the diversity of
the final classifiers. By doing this, MDMT will reduce
the instability caused by overlapping genes in current
ensemble methods. For example, if the expression
level of one gene is read wrongly, it only affects one
tree and all other trees are unaffected.

MDMT algorithm consists of the following two
steps:

1. Tree construction
The aim of this step is to construct multiple de-
cision trees by re-sampling genes. All trees are
built on all samples but with different sets of
genes. We conduct re-sampling in a systematic
way. First, all samples with all genes are used to
build the first decision tree. After the decision
tree is built, the used genes are removed from the
data. All samples with remaining genes are used
to built the second decision tree. Then the used
genes are removed. This process repeats until
the number of trees reaches the preset number.
As a result, all trees are unique and do not share
common genes.

Algorithm 1 Maximally diversified multiple decision
tree (MDMT)
train(D, T , n)

INPUT: A Microarray data set D, and the number of trees n.
OUTPUT: A set of disjointed trees T
let T = ∅
for i = 0 to n− 1 do

call c4.5 to build tree Ti on D;
remove genes used in Ti from D;
T = T ∪ Ti.

end for
Output T ;

CLASSIFY(T , x, n)

INPUT: A set of trained trees T , a test sample x, and the
number of trees n.
OUTPUT: A class label of x
let vote(i) = 0 where i = 1 to c = the number of classes.
for j = 1 to n do

let c be the class outputted by Tj ;
vote(c) = vote(c) + accuracy(Tj);

end for
Output c that maximizes vote(c);

2. Classification
Since the k-th tree can only use the genes that
have not been selected by the previously created
k-1 trees, the quality of k-th tree might be de-
creased. To avoid this problem, The final pre-
dicted class of a coming unseen sample is deter-
mined by the weighted votes from all trees. Each
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tree is given the weight of its training classifica-
tion accuracy rate. The value of each vote is
weighted by accuracy of tree making prediction.
The majority vote is endorsed as the final pre-
dicted class. When the vote is tie, the class pre-
dicted by the first tree is advantaged. Since all
trees are built on the original data set, all trees
are accountable on all samples. This avoids un-
reliability of voting caused by sampling a small
data set. Since all trees make use of different
sets of genes, trees are independent. This brings
another merit to this diversified committee. One
gene containing noise or missing values only af-
fects one tree but not multiple trees. Therefore,
it is expected to be reliable in Microarray data
classification where noise and missing values pre-
vail.

The complete list of MMDT algorithm is given in
Algorithm 1.

We give some explanations of the algorithms in the
following.

C4.5 is itself a gene selection algorithm based on
information gain ratio. Therefore, no gene selection
algorithm is required. In addition, C4.5 discretizes
continuous values by information gain ratio. No dis-
cretization pre-process is required for this algorithm.
The algorithm works on the set of the original data
set.

The input is a Microarray data set and a preset
number of trees. The first tree (T1) is constructed
based on the original training data set. The second
tree (T2) is based on a re-sampled training data set
where genes used in T1 are removed. As a result, T1
and T2 share no common genes and hence are unique.
The process repeats until the required number of trees
k is generated.

4 Experimental results

To evaluate the performance of ensemble decision tree
methods, Seven data sets from Kent Ridge Biological
Data Set Repository (Li & Liu 2002) are selected.
Table 1 shows the summary of the characters of the
seven data sets. We conduct our experiments by using
tenfold cross-validation on the merged original train-
ing and test data sets.

Table 1: Experimental data set details
Data set Genes Class Record
Breast Cancer 24481 2 97
Lung Cancer 12533 2 181
Lymphoma 4026 2 47
Leukemia 7129 2 72
Colon 2000 2 62
Ovarian 15154 2 253
Prostate 12600 2 21

Our developed MDMT algorithm is compared
with five well known single and ensemble decision
tree algorithms, namely C4.5, Random Forests, Ad-
aBoostC4.5, Baggingc4.5 and CS4. We have done
our experiments with all four algorithms apart from
CS4 using the Weka-3-5-2 package which is available
online (http://www.cs.waikato.ac.nz/ml/weka/).
We have done the experiments with CS4 using the
software tool provided by Dr Jinyan Li and Huiqing
Liu. Default settings are used for all compared en-
semble methods. We were aware that the accuracy
of some methods on some data sets can be improved
when parameters were changed. However, it was diffi-
cult to find another uniform settings good for all data
sets. Therefore, we did not change default settings

since the default produced higher accuracy on aver-
age. From our experiments, we found that a large
number of ensemble trees does not necessarily im-
prove the prediction accuracy. We use C4.5 default
settings for our MDMT algorithm and set the num-
ber of trees as 25 for the tenfold cross-validation test
since further increasing the number of ensemble trees
does not help to improve the prediction accuracy of
classification.

Table 2 shows the individual and average accu-
racy results of the six methods based on tenfold cross-
validation method.

Based on tenfold cross-validation test, our MDMT
outperforms other ensemble methods. Compared to
the single decision tree, MDMT is the best ensemble
method and outperforms C4.5 by 10.0% on average.
CS4 also performs very well and improve the accuracy
on average by 8.4%. Random Forests, Adaboostc4.5
and BaggingC4.5 improves the accuracy on average
by up to 4.3%. Among the five ensemble methods,
MDMT is the most accurate classification algorithm
and improves the accuracy of classification on all can-
cer data sets by up to 26.7%. CS4 is comparable
to MDMT in the test and improves the accuracy of
classification on all data sets by up to 17.4%. Bag-
gingc4.5 also outperforms C4.5 on all data sets by up
to 9.6%. Random Forests improves the accuracy on
lung cancer, Lymphoma, Leukemia and Prostate data
sets by up to 19.1%, but fails to improve the accu-
racy on breast cancer, Colon and Ovarian data sets.
AdaBoostc4.5 only improves the accuracy on Lung
Cancer,Lymphoma and Leukemia and decreases the
accuracy performance on Breast Cancer and Colon
data sets.

To determine whether MDMT and CS4 signifi-
cantly outperform ensemble traditional methods, we
also conducted a sign test. The results are shown in
Table 3. Based on a sign test of 95% confidence level,
MDMT performs better than C4.5, Random Forests,
AdaBoostC4.5 and BaggingC4.5. CS4 performs bet-
ter than Random Forests and AdaBoostC4.5. Not
enough evidence supports that CS4 is better than
C4.5 and BaggingC4.5. Both MDMT and CS4 do
not perform differently based on this test.

5 Discussions

Our experiments show that diversified ensemble clas-
sifiers outperform majority traditional ensemble clas-
sifiers tested. This suggests that diversity im-
proves classification accuracy of ensemble classifica-
tion. However, no evidence shows which diversi-
fied decision tree method is better between CS4 and
MDMT. In this section, we discuss their relative
strengths and weaknesses.

CS4 includes a set of decision trees in the decision
committee with a set of distinct top genes at roots.
The top genes are identified using information gain
ratio in current CS4 algorithm. Apparently, other cri-
teria can be used to find top genes too. If top genes
are biologically meaningful, this algorithm is very use-
ful for biologists. It groups genes by some informative
genes and builds classifier based on meaningful gene
groups. However, if the top genes are misidentified
due to noise, the classifier committee is misleading.
In addition, apart from the top genes, other genes in
trees overlap. One noise gene may affect a number of
trees.

In MDMT algorithm, a noise gene only affects one
tree, and hence the MDMT should tolerate more noise
than CS4 does. One concern of MDMT is that the en-
forcement of unique trees breaks up some gene com-
binations that are good for classification. However,
the experimental results do not indicate that this is
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Data set C4.5 Random Forests AdaBoostC4.5 BaggingC4.5 CS4 MDMT
Breast Cancer 62.9 61.9 61.9 66.0 68.0 64.3
Lung Cancer 95.0 98.3 96.1 97.2 98.9 98.9
Lymphoma 78.7 80.9 85.1 85.1 91.5 94.1
Leukemia 79.2 86.1 87.5 86.1 98.6 97.5
Colon 82.3 75.8 77.4 82.3 82.3 85.8
Ovarian 95.7 94.1 95.7 97.6 99.2 96.4
Prostate 33.3 52.4 33.3 42.9 47.6 60
Average 75.3 78.5 76.7 79.6 83.7 85.3

Table 2: Average accuracy of seven data sets with six classification algorithms based on tenfold cross-validation

C4.5 Random Forests AdaBoostc4.5 Baggingc4.5 CS4 MDMT
MDMT (7,0,0) (7,0,0) (7,0,0) (5,2,0) (3,3,1) –
P-value 0.008 0.008 0.008 0.031 0.313 –
CS4 (6,0,1) (6,1,0) (7,0,0) (6,0,1) – (3,3,1)
P-value 0.063 0.016 0.008 0.063 – 0.313

Table 3: Summary of sign test between MDMT and other classification methods. The second row summaries the
pairwise comparison (higher, lower, tie) between MDMT and another classification method based on Table 2.
The third rows show the P-values of the test. The same test for CS4 is listed in the next two rows.

a case. This does affect finding some combinations of
highly informative genes with less informative genes.
This is a minus. However, it finds some combinations
of less informative genes that are missed by CS4. This
is a plus. Keep in mind that many biologists believe
that many “uninformative genes” play an important
role in diseases. MDMT has potential for finding such
genes combinations missed by CS4.

In short, CS4 is capable of finding informative
genes and the combinations of informative genes with
informative genes, and of informative genes with less
informative genes. MDMT is capable of discovering
combinations of informative genes with informative
genes, and of less informative genes with less infor-
mative genes. In addition, MDMT has potential of
being less sensitive to noise data than CS4. Note that
informative or less informative genes may only make
sense to data analyzers. For biologists, two methods
use different gene sets and different combinations to
equally explain a Microarray data. Both have poten-
tial to offer biologists some interesting discovery.

6 Conclusion

In this paper, we studied using diversified multiple
decision trees to classify Microarray data. We pro-
posed an algorithm that maximally diversifies trees
in the ensemble decision tree committee. Trees in the
committee share no common genes. Genes in trees
are not randomly selected, but are chosen by C4.5
in a covering-algorithm manner. We conducted ex-
periments on seven Microarray cancer data sets. The
experimental results show that the proposed method
and another existing diversified decision tree method,
which diversifies trees by using distinct tree roots, are
more accurate on average than other well-known en-
semble methods, such as Bagging, Boosting and Ran-
dom Forests. A sign test with 95% confidence shows
that both diversified algorithms perform better than
majority ensemble methods tested. The experiments
indicate that diversity improves classification accu-
racy of ensemble classification on Microarray data.
We discussed the relative strengths and weaknesses
of both diversified ensemble classification methods.
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Abstract

Kernel-based machine learning algorithms are versa-
tile tools for biological sequence data analysis. Special
sequence kernels can endow Support Vector Machines
with biological knowledge to perform accurate classi-
fication of diverse sequence data. The kernels relative
strengths and weaknesses are difficult to evaluate on
single data sets.

We examine a range of recent kernels tailor-made
for biological sequence data (including the Spectrum,
Mismatch, Wildcard, Substitution, Local Alignment
and a new Profile-based Local Alignment kernel) on
a range of classification problems (protein localiza-
tion in bacteria, peroxisomal protein import signals
and sub-nuclear localization). The profile-based local
alignment kernel ranks highest, but its computational
cost is also higher than for any of the other kernels
in contention. The kernels that consistently perform
well and tend to produce the most distinct classifica-
tions are the Local Alignment, Substitution and Mis-
match kernels, suggesting that the exploration of new
problem sets should start with these three.

1 Introduction

Support Vector Machines (SVMs) have proved effec-
tive on a broad range of biological sequence problems.
Examples include the detection of remote protein
homologues (Jaakkola, Diekhans & Haussler 2000,
Leslie, Eskin & Grundy 2002, Saigo, Vert, Ueda &
Akutsu 2004, Rangwala & Karypis 2005), prediction
of protein subcellular localization (Hua & Sun 2001a),
prediction of promoter location and their transcrip-
tion start sites (Gordon, Towsey, Hogan, Mathews &
Timms 2006), and classification of protein secondary
structure (Hua & Sun 2001b) to mention but a few.

The power of SVMs partly stems from their abil-
ity to deal with data in high-dimensional (even in-
finite) feature spaces without compromising general-
ization to novel samples. The classification boundary
is defined in terms of support vectors, selected from a
training sample set to maximize a margin of separa-
tion between samples of opposite classes in the feature
space–a property that alleviates overfitting.

Since nucleotides and amino acids are distinct
monomers, biological sequence data is inherently
symbolic. However, many machine learning algo-
rithms require samples to be presented as numeric,
fixed-length vectors. Consequently, practitioners

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at The 2006 Workshop on Intelligent Systems for
Bioinformatics (WISB2006), Hobart, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 73. Mikael Bodén and Timothy L. Bailey, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

have come up with problem-specific ways of encod-
ing sequence data and dealing with varying sequence-
lengths.

SVMs (together with support vector regression)
are examples of so-called kernel methods (Schölkopf &
Smola 2002). Perhaps the most intriguing possibility
offered by SVMs is that the kernel–which maps sam-
ples in pairs to the feature space–is easily replaced.
The choice of kernel is essential as it directly affects
the separation of samples in the feature space.

Equation 1 illustrates the decision made by SVMs
(Schölkopf & Smola 2002).

f(x) =
n∑

i=1

yiαixi
T x + b (1)

where yi ∈ {−1, +1} is the target class for sample
i ∈ {1, ..., n}, xi is the vector describing the ith sam-
ple and αi is the ith Lagrange multiplier which is de-
termined by training the SVM. Instead of directly cal-
culating the dot product, a kernel function, κ(·, ·), is
used to evaluate it. With the kernel function in place
there is no need to explicitly define the mapping to
the feature space. This is known as “the kernel trick”
(Schölkopf & Smola 2002). Kernel methods thus sup-
ply a principal way to introduce domain-dependent
knowledge without requiring a numeric encoding of
each sample (Schölkopf & Smola 2002).

A number of sequence-based kernels have been de-
veloped recently, primarily targeted to protein classi-
fication problems. In this survey we evaluate the per-
formance of the Spectrum kernel (Leslie et al. 2002),
the Mismatch kernel (Leslie, Eskin, Cohen, Weston
& Noble 2004), the Wildcard kernel (Leslie & Kuang
2004), the Substitution kernel (Leslie & Kuang 2004),
the Local Alignment kernel (Saigo et al. 2004) and a
Profile-based Local Alignment kernel.

In this study we provide an independent bench-
mark of these kernels. They are each trained and
tested using five-fold cross-validation on three data
sets from the multi-faceted domain of protein subcel-
lular localization (outlined in Section 3). We then
perform an analysis of their individual and collective
performance. We investigate the correlation between
the predictions of the kernels to illustrate the differ-
ences in the decision boundaries enabled by each.

2 Methods

We use Platt’s Sequential Minimal Optimization
(SMO) implementation of the SVM (Platt 1999). In
the following sections the terms sequence and sample
refer to the protein sequence. Let Σ be the amino
acid alphabet. The sequence is a string of amino
acids, s ∈ Σ|s|. The term k-mer similarly refers to
k consecutive amino acids, α = α1, α2, ..., αk ∈ Σk.
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2.1 Spectrum Kernel

For a given sequence, the spectrum of a sequence in-
volves all k-mers it contains. The Spectrum feature
map is

Φspctrm
k (s) = φα(s)α∈Σk (2)

where φα(s) is the simple count of occurrences of α in
the sequence s. The Spectrum kernel then compares
any two sequences by considering the number of these
k-mers that two sequences share (Leslie et al. 2002).
More specifically, the kernel calculates the dot prod-
uct between the vectors holding all k-mer counts for
any pair of sequences.

κspctrm
k (s1, s2) = 〈Φspctrm

k (s1), Φspctrm
k (s2)〉 (3)

If two sequences share a large number of k-mers their
product is large. An important feature of the Spec-
trum kernel is that it disregards the position of the
k-mers within the sequence. Thus, for small values
of k, information about the order of the amino acids
within the sequence is lost.

2.2 Mismatch Kernel

The Mismatch kernel (Leslie et al. 2004) extends the
Spectrum kernel, still tracking the number of k length
segments shared by the sequences, but allowing a
specified number of mismatches m by which the k-
mers can differ. More specifically, the Mismatch fea-
ture map is

Φmsmtch
k,m (s) =

∑
α∈s

φβ(α)β∈Σk (4)

where all possible α k-mers in s are expanded to all
β k-mers within a certain neighborhood Nmsmtch

m (α)
(includes all k-mers differing by no more than m mis-
matches from α ignoring position). φβ(α) = 1 if β
belongs to N(α), φβ(α) = 0 otherwise.

The kernel result is the dot product between the
two k-mer count vectors (as with the Spectrum ker-
nel). If m = 0 the Mismatch kernel generates identi-
cal results to the Spectrum kernel.

2.3 Substitution Kernel

Instead of allowing residues to be replaced by any
other possible residue as in the Mismatch kernel, the
Substitution kernel uses a substitution matrix, S, to
compute the pair-wise alignment scores between the
two sequences being compared (Leslie & Kuang 2004).
Hence, we define another neighborhood Nsubst

S,k,σ (α)
that includes all β k-mers that fall above a substi-
tution score threshold σ when aligned with α. Note
that number and position of mismatches are consid-
ered only indirectly through the alignment score.

As with the Mismatch kernel, the kernel simply
counts the number of matching k-mers and returns
the dot product between the two feature vectors.

2.4 Wildcard Kernel

Unlike the Mismatch kernel and the Substitution
kernel, the Wildcard kernel only allows mismatches
at specified locations within the k-mer (Leslie &
Kuang 2004).

With the Wildcard kernel, the default alphabet is
extended with a wildcard character, Σ ∪ {∗}. The
wildcard character matches any amino acid (as ‘.’
does in a regular expression). The presence of the
wildcard character in an α k-mer is position-specific,

making the matching of β k-mers less permissive than
with the Mismatch and Substitution kernels. x is a
parameter controlling the number of wildcards that
occur in the k-mer.

It was initially thought that the performance of the
Mismatch and Wildcard kernels would be very simi-
lar. However, preliminary trials suggested otherwise
for specific values of k and x. We therefore included
both kernels in the study.

2.5 Local Alignment Kernel

The Local Alignment kernel compares two sequences
by exploring their alignments (Saigo et al. 2004). An
alignment between the two sequences is quantified us-
ing an amino acid substitution matrix, S, and a gap
penalty setting, g (involving a gap opening penalty
imposed every time a gap needs to be created in the
sequence and a gap extension penalty imposed for
each extension of the gap required to improve the
alignment). A further parameter, β, controls the con-
tribution of non-optimal alignments to the final score.
Let Π(s1, s2) be the set of all possible alignments be-
tween sequences s1 and s2. The kernel can be ex-
pressed in terms of alignment-specific scores, ςS,g (for
details of this function see Saigo et al., 2004).

κLA
β (s1, s2) =

∑

π∈Π(s1,s2)

exp(βςS,g(s1, s2, π)) (5)

The benchmark tests were conducted using a ported
version of Saigo and colleagues’ source code (Saigo
et al. 2004).1

2.6 Profile Local Alignment Kernel

Evidence is mounting that so-called position-specific
substitution matrices (PSSMs; a.k.a. “profiles”)
disclose important evolutionary information tied to
each residue of proteins (Rangwala & Karypis 2005,
Kuang, Ie, Wang, Wang, Siddiqi, Freund & Leslie
2005). We adapt the alignment-specific function, ς,
in the Local Alignment kernel to use such substitu-
tion scores generated by PSI-Blast (max three iter-
ations, E-value threshold is 0.001, using Genbank’s
non-redundant protein set) in place of the generic sub-
stitution matrix, S. Specifically, we define the substi-
tution score as the average of the PSSM-entries for the
two sequences (where the entry coordinates are deter-
mined from the sequence position of one sequence and
the symbol of the other). All other settings are as for
the Local Alignment kernel.

There are several alternative ways of exploit-
ing PSSM scores in a kernel setting (Rangwala &
Karypis 2005, Kuang et al. 2005) that we are unable
to explore here.

3 Case Problems and Materials

Each kernel is tested and evaluated on data sets that
relate to protein subcellular localization. The cell is
a decentralized but still carefully controlled device,
shuttling gene products, like proteins, to various lo-
cations where they perform their functions. Mecha-
nisms for this protein traffic control are not yet fully
understood and machine learning techniques are be-
ing utilized to assist biologists by predicting localiza-
tion on the basis of protein sequence. These in-silico
models can be used to automatically annotate the

1To eschew the documented problem of diagonal dominance in
the LA kernel matrix, we use the logarithm of each entry as pro-
posed by Saigo and colleagues.
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growing number of sequences that are yet to be exper-
imentally characterized (Nakai 2000). The problem of
subcellular localization is multi-faceted and thus rep-
resents a range of machine learning problems while
entertaining a common application theme.

3.1 Problem 1: Localization in Gram-
negative bacteria

In simple prokaryotes, there are only a few protein
destinations. Lacking a nucleus, proteins are both
encoded and translated in the cytoplasm. If they
contain an N-terminal signal peptide they will asso-
ciate with the inner membrane for further translo-
cation and possible secretion. If not, they will sim-
ply remain in the cytoplasm. Specifically, in Gram-
negative bacteria, there are five destinations. Cyto-
plasm, inner membrane, outer membrane, periplasm
(space between membranes) and extracellular are the
target classes for a classifier.

A number of models have been developed for pre-
dicting the localization of proteins in Gram-negative
bacteria (Gardy, Spencer, Wang, Ester, Tusnady, Si-
mon, Hua, deFays, Lambert, Nakai & Brinkman 2003,
Park & Kanehisa 2003, Wang, Sung, Krishnan &
Li 2005). The most recent makes use of a clev-
erly designed sequence encoding and SVMs (Wang
et al. 2005). Recent efforts have highlighted several
intricate details underpinning the dynamic process
of inserting a protein into the membrane (White &
von Heijne 2005). However, as we wish to bench-
mark a variety of kernels against one another, we re-
frain from making experimental observations explicit
in the simulation design. We use the same data set
as in these previous studies, compiled by Gardy et
al (Gardy et al. 2003) taken from Swiss Prot release
40.29. This data set contains 1572 protein sequences
separated into five subcellular localizations. Of these
we use the 1408 that have a single subcellular location
and no unknown residues (numbers per class shown
in Table 1).

3.2 Problem 2: Peroxisomal targeting

In eukaryotic cells, the complexity of protein local-
ization is much greater. Like prokaryotes, targeting
to the secretory pathway is effected by an N-terminal
signal peptide as it emerges from the ribosome. The
process occurs in tandem with translation, and thus
dominates many of the other targets, e.g. the small
peroxisome. Peroxisomal proteins are recognized and
imported after synthesis in the cytoplasm and target-
ing is believed to rely on a small number of sequence
patterns. The dominating targeting signal is known
as PTS1 and appears at the C-terminus. The PTS1
consists of a strongly conserved tri-peptide but several
dependencies and constraints range a larger region
exposed to the chaperone that play a central role in
import (Neuberger, Maurer-Stroh, Eisenhaber, Har-
tig & Eisenhaber 2003). Previous approaches have
employed intricate pre-filtering and constrained en-
codings of sequence data on basis of experimental
observations (Emanuelsson, Elofsson, von Heijne &
Cristobal 2003). Again, we refrain from including
such constraints to allow a fair comparison between
the different kernel functions.

Differentiating between PTS1 targeted peroxiso-
mal proteins and all others with a similar C-terminal
signature, constitutes test problem two. The data set
contains 124 positive examples and 182 negative ex-
amples extracted from Swiss Prot release 45 (Hawkins
& Bodén 2005).

3.3 Problem 3: Sub-nuclear Localization

A significant portion of proteins in the eukaryotic cell
are shuttled into the nucleus where they can fulfill
various regulatory roles. Within the nucleus, proteins
tend to concentrate in certain functional areas even
though such areas are not physically contained by a
membrane. Some proteins are also shuttled back to
the cytoplasm. Differentiating between sub-nuclear
locations represents yet another angle on the local-
ization problem. As test problem three, we use a
data set that distinguishes between six sub-nuclear
destinations (Lei & Dai 2005) extracted from the Nu-
clear Protein Database (NPD) (Dellaire, Farrall &
Bickmore 2003). This data set contains 598 proteins
in total, 504 separated into six localizations, and 92
with multiple localizations. Again only the singularly
localized proteins were used (numbers per class shown
in Table 3). One recent study demonstrated the ac-
curacy of an SVM on this task using a tailor-made
kernel (Lei & Dai 2005). We investigate how generic
kernels perform on this specific problem.

4 Algorithms

4.1 Performance Measures

The kernels were tested on the their ability to assist
the SVMs to correctly classify proteins. The SVM
predicts a label for each sequence sample s in the
sample space, by f(s) ∈ {+1,−1}. If f(si) = yi
the ith classification is true, otherwise it is false. If
f(si) = +1 the prediction is positive otherwise nega-
tive.

To provide a good estimate of the expected predic-
tion accuracy on novel samples, we use five-fold cross
validation. All available samples are randomly dis-
tributed into five approximately equal and mutually
exclusive sets. By training five models on different
combinations of four of the five subsets we can assess
the test accuracy of each subset exactly once. For
each class c, we determine the number of true posi-
tives, tpc, true negatives, tnc, false positives, fpc, and
false negatives, fnc.

The comparison of the kernels is based on two per-
formance measures. We use the accuracy of predic-
tion as a measure that is sensitive to differences in
the class distribution. It is defined as the percentage
of positive samples that are correctly classified.

acc(c) =
tpc

tpc + fnc
· 100 (6)

In contrast, we also report the (Matthews) corre-
lation coefficient, r(c) (Matthews 1975) as a measure
that adjusts for imbalances in the class distribution
(see Equation 7). r(c) equals +1 if the the observa-
tions and predictions of members of c are in perfect
agreement, −1 if they are in perfect disagreement and
0 if predictions are random.

r(c) =
tpctnc − fpcfnc√

(tpc + fnc)(tpc + fpc)(tnc + fpc)(tnc + fnc)
.

(7)
The overall accuracy is defined as

acc =
∑

c tpc

N
· 100 (8)

where N is the total number of samples, while the
overall correlation coefficient r is the average of class-
specific r(c).
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4.2 Architectures

SVMs are inherently binary classifiers. Thus, for
multi-class problems we use several SVMs and com-
bine them. The Gram-negative bacteria data set
was evaluated using the one-versus-all combination
strategy, where each class is allocated a SVM that is
trained with all samples from the class making up the
positive set and all samples from other classes com-
bined to make the negative set. The predicted class of
the ensemble corresponds to the SVM with the high-
est output as given by Equation 1).

The peroxisomal PTS1 targeting data consists of
only positive and negative data, making a single bi-
nary classifier possible. Following Lei and Dai (Lei
& Dai 2005), the one-versus-one strategy was used to
evaluate the sub-nuclear data. For the classification
of the six classes, we require a classifier for each dis-
tinct pair of classes within the 6, C(6, 2) = 15 (a. k.
a. ’6 choose 2’). The prediction was based on a jury
voting system, in which the sequence was classified to
be of the class with which the most classifiers identi-
fied. In the case of a tie, the sequence was classified
to belong to the class for which the sum of Equation
1 was the greatest.

4.3 Kernel Parameters

In preliminary trials with the Spectrum, Mismatch
and Wildcard kernels it was observed that the perfor-
mance deteriorates when k is greater than 5. There-
fore simulations were carried out with k-values rang-
ing from 2 to 5. For the Mismatch and Wildcard ker-
nels m (or x) was limited to 1 and 2, as it was observed
in preliminary trials that performance greatly deteri-
orates for values greater than this (for values of k in
the given range). All possible combinations (within
the aforementioned boundaries such that k ≥ m + 1)
were tested for these three kernels.

During preliminary trials of the Substitution ker-
nel it was observed that with σ = −1, using a
BLOSUM-62 matrix, and k = 3 generated the best
result. All the experiments reported herein were
done using these settings. Previous studies (Leslie &
Kuang 2004) showed that the performance of a Sub-
stitution kernel seems stable as k is varied while σ is
adjusted additively.

The tests conducted with the Local Alignment ker-
nel (and the Profile Local Alignment kernel) used the
same parameter settings used by Saigo and colleagues
(Saigo et al. 2004), namely a gap opening penalty of
12 and gap extension penalty of 2. Preliminary tri-
als found that changing the values for the gap open-
ing and extension penalties had only minor effect on
the result. Preliminary tests also agreed with Saigo
and colleagues finding a β value of 0.5 to be optimal
over the range of trials. Hence detailed exploration
into the effects of variation in these parameters was
not pursued. The use of different substitution ma-
trices was not explored for the Local Alignment ker-
nel to keep consistency across the kernels, only the
BLOSUM-62 matrix was used.

5 Results

The performance results for each of the kernels on
each of the problems are tabulated. The results for
Problem One are shown in Table 1, Problem Two in
Table 2 and Problem Three in Table 3. The results
displayed show only the best correlation coefficient
achieved for each kernel, over the range of parameters
explored.

5.1 Localization in Gram-negative bacteria

If we average the correlation coefficient across all
the classes of the Problem set 1, shown in Table 1,
the alignment-based kernels outperformed all of the
spectrum-based kernels. Of the five different local-
izations in the data set, both alignment-based kernels
had better r(c) than the spectrum-based kernels for
four of them (only inferior for the localization of the
inner membrane proteins). The Profile Local Align-
ment kernel was outstanding overall.

Of the spectrum-based kernels, the Mismatch and
Wildcard variants performed best, with almost iden-
tical correlation coefficients. The similarity in their
performance is not surprising, however the param-
eters used to get the optimal results for each are
slightly different. The Mismatch kernel performed
best with k = 4 and m = 1, whereas the Wildcard
kernel performed best with k = 4 and x = 2. These
results highlight the difference between these two ker-
nels; in the Mismatch kernel the location of the mis-
match in the k-mer is not taken into account, whereas
in the Wildcard kernel it is. There is a larger space
for error (i.e. matching two k-mers that are not re-
lated) in the Mismatch kernel, particularly for larger
values of m.

The Substitution kernel finds sequence similari-
ties by separating the sequence into all possible spec-
trums, and comparing the spectrums using a sub-
stitution matrix to allow some flexibility in amino
acid composition. In the present work the BLOSUM-
62 matrix was used with reasonable utility by the
Substitution kernel. A different substitution matrix
could potentially accommodate the problem domain
more effectively, e.g. to readily accept substitutions
between hydrophobic residues in membrane domains
and between Pro and Gly (both serving to break he-
lices).

Previous studies of Gram-negative bacteria pro-
tein localization have made use of spectrum-like ker-
nels along with techniques such as amino acid sub-
alphabets (Wang et al. 2005) to achieve very accurate
results, reporting a correlation coefficient of 0.874.
The present study found that a simple adaptation
of the standard Local Alignment kernel (r = 0.873)
performs just as well.

5.2 PTS1 Peroxisomal Targeting

On the basis of the correlation coefficient the identi-
fication of the presence of a PTS1 signal is best per-
formed using an alignment kernel. All other kernels
are significantly inferior. One possible explanation
for the inferior result of the spectrum-based kernels
is that the targeting signal of peroxisomal proteins is
known to occur at a specific position. The spectrum-
based kernels take information from the whole se-
quence, creating a spectrum of all k-mers, without
regard to position. However, the Local Alignment
kernel finds strong alignments between the sequences,
which can be at a specific part of the sequence. A high
score can thus be based on the part of the sequence
corresponding to the location of the signal.

With r = 0.783 the Local Alignment kernel is
promising. The profile-based kernel outperformed it
slightly at r = 0.797. The current best performing
model in the literature is PTS1Prowler (Hawkins &
Bodén 2005) estimated to have a correlation coeffi-
cient of 0.766 with a standard deviation of 0.02 (calcu-
lated from five training repeats). The present results
were produced from only a single cross validation run.
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Kernel Spectrum Mismatch Wildcard Substitution LA Profile LA
Class #Proteins Acc r Acc r Acc r Acc r Acc r Acc r
Cytoplasm 275 86.6 0.756 90.2 0.790 84.7 0.778 84.0 0.767 92.0 0.838 89.4 0.847
Secreted 190 65.3 0.696 68.4 0.755 71.6 0.758 66.8 0.659 75.8 0.805 84.2 0.848
Inner Membrane 292 88.0 0.884 89.0 0.914 89.4 0.908 88.7 0.870 88.7 0.890 91.1 0.908
Outer Membrane 375 89.9 0.847 92.8 0.893 93.3 0.890 89.3 0.860 94.4 0.906 95.7 0.940
Periplasm 276 76.8 0.702 82.2 0.746 82.6 0.738 74.3 0.664 84.8 0.801 87.3 0.824
Overall 1408 83.0 0.777 86.2 0.820 85.8 0.814 82.2 0.764 88.4 0.848 90.3 0.873

Table 1: Gram-negative Bacterial Protein Localization. Comparison of results of the kernels when tested
on the Gram-negative bacteria localization problem set. Accuracy and correlation coefficients are given. The
kernel parameters for the variable kernels were: Spectrum k = 3; Mismatch k = 4, m = 1; Wildcard k = 4,
x = 2 for all localizations.

Kernel Spectrum Mismatch Wildcard Substitution LA Profile LA
Class #Proteins k Acc r k m Acc r k x Acc r Acc r Acc r Acc r
PTS1 124/182 3 77.4 0.577 4 1 71.8 0.557 4 2 75.0 0.586 82.3 0.605 81.4 0.783 90.2 0.797

Table 2: PTS1 Peroxisomal Protein Localization. Comparison of results of the kernels when tested on
the Peroxisomal Targeting Signal problem set. Accuracy and correlations coefficients are given. The kernel
parameters for the first three spectrum based kernels are shown prior to the results.

5.3 Sub-nuclear Localization

The more difficult problem of sub-nuclear localization
yielded varied results for each of the kernels. Firstly,
the best performing parameters for each kernel var-
ied over the different localizations. For the Spectrum,
Wildcard and Mismatch kernels, the best k values
ranged between two and five, the entire scope of the
values explored. Again only one configuration was
trialed for both the Local Alignment and Substitu-
tion kernels. The variation in optimal parameters for
the spectrum-based kernels suggests that sub-nuclear
targeting relies on sequence features specific to each
location.

The best performing kernels for this data set were
the Mismatch kernel, and the Profile Local Alignment
kernel. On the basis of the correlation coefficient the
standard Local Alignment kernel performed worst of
all. If we look at the accuracy we note that the Local
Alignment kernel has made a strong deference to the
majority class (Nucleolus).

If we presume that this data set is representative
and reasonably clean, then it is noteworthy that none
of the kernels are able to project the sequence data
to a feature space that allows classification to occur
reliably. However, with some classes heavily under-
represented in the data set, the current problems may
dissolve as more data becomes available.

The only existing predictor of sub-nuclear localiza-
tion (Lei & Dai 2005) makes use of spectrum-based
kernels in conjunction with evolutionary information
to classify the proteins. Lei and Dai studied a number
of different encodings of different spectrum length,
with or without evolutionary information. Their best
performing predictor combined a number of encodings
of different spectrum lengths to achieve a correlation
coefficient of 0.284. Although this is higher than any
of the results achieved in this study, it is interesting
to note that the Mismatch kernel performs compa-
rably to each of the individual components used in
the composite model presented by Lei and Dai (Lei
& Dai 2005).

5.4 Kernel computation

Besides accuracy, kernels can be evaluated in terms of
their computational efficiency. We measured the av-
erage duration of computation for all kernels with the
aim of supplying further insights into the impact they
may have on model training and testing time. To eval-
uate the scaling of computational time in relation to

the length of the sequences we identified three sets of
ten non-redundant proteins, each set containing only
proteins within a particular size range. The sizes were
(1) less than 200 residues, (2) more than 200 but less
than 400 residues, and (3) more than 400 residues.
The groups had average residue counts of 106, 278,
and 478, respectively. We timed the kernel-function
calls for each possible pair within each group on a
standard PC (2GHz, 1GB RAM, Windows XP/Java)
and repeated this procedure five times, averaging the
totals, to determine a typical call-duration. Table
4 shows, for the three sub-sets, the call-duration for
each kernel with parameter settings used in our study.
Durations should be interpreted with caution as they
are dependent on implementational details. However,
our measurements provide reasonable guidance for de-
termining the extent of training and testing time re-
quired. We have excluded the profile-based kernel as
it runs PSI-Blast as a pre-processing stage, greatly
contributing to the computation time. As a guide to
its computational cost, once the PSSM has been de-
termined (which can take several minutes for a single
protein), the Profile Local Alignment kernel equals
the standard Local Alignment kernel.

As seen in Table 4, the Local Alignment kernel is
computationally more expensive than most other ker-
nels that are competitive in terms of accuracy. Other
notable offenders include the Mismatch kernel with
m > 1, and the Substitution kernel with k > 2. How-
ever, neither of these configurations achieved high ac-
curacy.

6 Analysis

The model with the highest average correlation co-
efficient across all the problems is the Profile Local
Alignment kernel. On a case by case basis this obser-
vation is somewhat deceptive. The variation in ob-
served performance indicates that choosing a kernel,
even within a mildly constrained problem area such
as subcellular localization, should be done on a case
by case basis. Nevertheless, a systematic study of the
differences between the kernels across these problems
reveals certain trends that suggest heuristics for test-
ing kernels on new problems.

The six kernels were compared pairwise to provide
further insights into their characteristics. Similar to
the calculation of the correlation coefficient between
the target and the predicted classifications in a data
set, Equation 7 is used to compute a correlation be-
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Kernel Spectrum Mismatch Wildcard Substitution LA Profile LA
Class # k Acc r k m Acc r k x Acc r Acc r Acc r Acc r
PML Body 38 2 7.9 0.021 3 1 15.8 0.137 3 1 13.2 0.134 28.9 0.120 0.0 -0.013 2.6 0.024
Nucleolus 219 3 87.2 0.240 3 1 71.7 0.312 4 2 82.6 0.326 63.0 0.361 90.4 0.260 87.1 0.346
Nucleoplasm 75 5 14.7 0.104 5 1 12.0 0.181 4 1 16.0 0.120 26.7 0.135 13.3 0.061 28.0 0.207
Speckles 56 4 17.9 0.324 4 1 44.4 0.491 4 2 30.4 0.348 18.0 0.118 11.5 0.186 23.2 0.265
Lamina 55 2 34.6 0.326 2 1 32.7 0.303 5 2 18.2 0.265 25.4 0.167 18.2 0.175 27.9 0.381
Chromatin 61 3 11.5 0.123 4 1 13.1 0.166 4 2 19.7 0.197 19.6 0.145 14.3 0.214 21.9 0.210
Overall 504 3 46.6 0.173 4 1 49.0 0.238 4 2 47.8 0.211 40.7 0.174 46.2 0.147 50.4 0.239

Table 3: Sub-nuclear Protein Localization. Comparison of results of the kernels when tested on the Sub-
nuclear localization problem set. Accuracy and correlation coefficients are given. The kernel parameters for
the different localizations are listed.

Protein length
Kernel Parameters Short Medium Long
LA β = 0.5 4.45 27.05 78.17
Spectrum k = 1 0.18 0.15 0.22
Spectrum k = 2 0.07 0.07 0.25
Spectrum k = 3 0.04 0.15 0.18
Spectrum k = 4 0.04 0.15 0.18
Spectrum k = 5 0.04 0.15 0.25
Mismatch k = 2, m = 1 0.95 2.33 3.83
Mismatch k = 3, m = 1 1.49 4.08 6.34
Mismatch k = 4, m = 1 2.73 6.34 10.52
Mismatch k = 5, m = 1 4.22 8.26 14.13
Mismatch k = 3, m = 2 47.63 118.01 201.36
Mismatch k = 4, m = 2 158.39 373.01 635.15
Mismatch k = 5, m = 2 367.51 996.97 1773.02
Wildcard k = 2, x = 1 0.15 0.18 1.17
Wildcard k = 3, x = 1 0.11 0.22 0.36
Wildcard k = 4, x = 1 0.15 0.29 0.77
Wildcard k = 5, x = 1 0.37 0.62 0.80
Wildcard k = 3, x = 2 0.19 0.40 0.73
Wildcard k = 4, x = 2 0.33 1.02 1.64
Wildcard k = 5, x = 2 0.51 1.27 2.18
Substitution k = 2, σ = −1 10.40 11.44 12.85
Substitution k = 3, σ = −1 171.44 215.27 231.47

Table 4: The average time in milliseconds for each call
to a specific kernel-function configured with specific
parameter values. Tested data sets contain proteins
with less than 200 residues (short), with more than
200, and less than 400 residues (medium) and with
more than 400 residues (long).

tween the predictions of two kernels. One kernel is
chosen as a reference point. Whenever the other ker-
nel produces the same positive predictions then these
are considered true positives, if the second kernel pro-
duces a negative prediction where the first produces
a positive, it is considered a false negative, and so
on. The resulting pairwise correlations between the
outputs of kernels can be found in Table 5.

The highest correlating kernels are the Wildcard
and Mismatch kernels, which seem to share more pre-
dictions than any of the other pairs of kernels. Al-
though the parameters used by the Wildcard and
Mismatch kernels are different, the correlation is to
be expected due to the similar tactics they employ.
The kernels whose prediction is least correlated are
the Substitution and Local Alignment kernels. Addi-
tionally, they both correlated weakly with each of the
other kernels, in particular with the Spectrum kernel.

To investigate the qualititative nature of the fea-
ture spaces, we performed Kernel Principal Com-
ponents Analysis (kernel-PCA) (Schölkopf, Smola &
Müller 1999) on Problem set 1. In Figure 1, 10 inner
membrane and 10 outer membrane proteins (arbitrar-
ily selected from those subsets) are shown. Specifi-
cally, the samples are mapped onto the two dimen-
sions with the largest eigenvalues in the Spectrum
kernel k = 3 feature space and the Local Alignment
kernel feature space, respectively. Kernel-PCA had
access to all inner and outer membrane proteins.

From Figure 1, we note that several samples
are mapped differently to the feature space, e.g.
Q51397 and Q55293 are quite distinct according to

Problem
Kernels 1 2 3 Average
Mismatch - Wildcard 0.93 0.86 0.70 0.83
Spectrum - Mismatch 0.89 0.87 0.61 0.79
LA - Profile LA 0.87 0.79 0.62 0.76
Spectrum - Wildcard 0.85 0.75 0.59 0.73
Mismatch - LA 0.84 0.67 0.59 0.70
Wildcard - Subst 0.82 0.68 0.59 0.69
Wildcard - LA 0.83 0.67 0.57 0.69
Wildcard - Profile LA 0.81 0.67 0.55 0.68
Mismatch - Profile LA 0.81 0.65 0.56 0.67
Mismatch - Subst 0.82 0.63 0.53 0.66
Spectrum - Subst 0.78 0.59 0.56 0.64
Spectrum - LA 0.78 0.61 0.53 0.64
Subst - LA 0.77 0.65 0.51 0.64
Spectrum - Profile LA 0.77 0.59 0.49 0.62
Subst - Profile LA 0.75 0.60 0.48 0.61

Table 5: Correlation coefficients of predicted classifi-
cations from pairs of kernels. A correlation of 1 in-
dicates that kernels enable the same predictions. A
correlation of 0 indicates that there is chance agree-
ment between predictions.

the Spectrum kernel but similar according to the Lo-
cal Alignment kernel. The outer membrane protein
Q51922 is misclassified by both kernels but with dif-
ferent outcomes (“cytoplasm” for the Spectrum and
“periplasm” for the Local Alignment kernel). The in-
ner membrane protein Q52788 is confused for an outer
membrane protein by both kernels (clearly occupying
a space in the wrong feature space territory).

7 Conclusion

This paper takes a range of popular sequence ker-
nels and compares their performance over a range
of protein subcellular localization problems. Where
the content of this study overlaps with previous com-
parative simulations we are in general agreement.
Leslie and colleagues (Leslie et al. 2004) found that
adding mismatches to spectrums improves the result
on spectrums alone for protein remote homology clas-
sification. Furthermore, Saigo and colleagues (Saigo
et al. 2004) found that the local alignment kernel out-
performs the Mismatch kernel, again on the remote
homology problem. Cheng and colleagues (Cheng,
Saigo & Baldi 2006) also noted that the Local Align-
ment kernels outperformed both Mismatch and the
Spectrum kernels on a protein disulphide bond de-
tection problem set. Very recent developments indi-
cate the potential of incorporating substitution pro-
files in the kernels (Rangwala & Karypis 2005, Kuang
et al. 2005). We adapt the Local Alignment kernel to
use such scores and also find that accuracy improves
considerably.

Although the overall performance of the kernels
agrees with these results, the performance of the ker-
nels was not consistent across the range of problems.
These results demonstrate that when choosing ker-
nels for specific problems, a range of kernels should
be considered to ensure the most appropriate ker-
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Figure 1: Kernel Principal Component Analysis was performed on the Spectrum kernel k = 3 features space
(above) and the Local Alignment feature space (below) using Problem set 1 (inner and outer membrane). The
same samples are shown in both feature spaces. Each sample is labelled with its Swiss Prot identifier. Inner
membrane proteins are plotted as red dots, outer membrane proteins are plotted as blue crosses. Samples that
were misclassified in the reported simulations are underlined.
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nel is chosen. The correlation between the predic-
tions indicates that the Spectrum, Local Alignment
and Substitution kernels are the most distinct meth-
ods for mapping sequences to a SVM feature space.
However, the spectrum-based Mismatch kernel con-
sistently outperforms the Spectrum kernel and can
be easily substituted in its place. Suggesting that
the ideal initial experiment should involve the Mis-
match, Local Alignment and Substitution kernels to
determine the kernel architecture to which the specific
problem is suited.

Comparing the kernels in terms of time consis-
tency and efficiency, the Mismatch, Local Alignment
and Substitution kernels perform worst. This illus-
trates that when it comes to choosing a kernel the
trade-off between accuracy, correlation of errors and
time efficiency can not be avoided with the reviewed
range of kernels.

Finally, in our benchmark on the sub-nuclear lo-
calization data set, none of the kernels performed sat-
isfactorily. If we presume that this is not due to prob-
lems with the data, then we must conclude that the
tested range of sequence kernels does not yet offer a
complete toolkit for biological sequence classification.
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Abstract

Utilizing the recently published LOCATE database,
we construct Hidden Markov Models (HMMs) of first,
second and third order for subcellular localization
prediction of transmembrane proteins. In compar-
ison with linear Support Vector Machines (SVMs),
based on overall amino acid and di-peptide composi-
tion, higher order HMMs show a significant increase
in prediction performance. The best performance was
achieved by a second order HMM with a correla-
tion coefficient of 0.46. A web-service for localiza-
tion prediction of transmembrane proteins has been
made available at http://pprowler.itee.uq.edu.
au/TMPHMMLoc.

Keywords: HMM, SVM, subcellular localization,
transmembrane protein

1 Introduction

Transmembrane proteins are inserted into the mem-
branes of organelles and perform a variety of essential
functions, such as channels, pumps, receptors and en-
ergy transducers. Current predictors for subcellular
localization however, primarily target soluble proteins
and ignore the characteristic topological domains of
transmembrane proteins. On the other hand, topol-
ogy predictors such as TMHMM (Sonnhammer, von
Heijne & Krogh 1998, Krogh, Larsson, von Hei-
jne & Sonnhammer 2001), Phobius (Käll, Krogh
& Sonnhammer 2004) or HMMTOP (Tusnády &
Simon 2001) are not designed for subcellular local-
ization prediction.

Inspired by topology prediction methods, we con-
struct a novel Hidden Markov Model (HMM) archi-
tecture for subcellular localization prediction of trans-
membrane proteins and compare it against two stan-
dard approaches for localization prediction of solu-
ble proteins. More specifically, we 1) introduce the
architecture and parameter estimation of the HMM,
2) measure the prediction accuracy and computation
times of first, second and third order HMMs, 3) and
compare the HMMs with linear Support Vector Ma-
chines (SVMs) that exploit overall amino acid and
di-peptide composition as input. We utilize the re-
cently published LOCATE database (Fink, Aturaliya,
Davis, Zhang, Hanson, Teasdale, Kai, Kawai, Carn-
inci, Hayashizaki & Teasdale 2006) and focus our
comparison on five locations along the secretory path-
way in mouse.

We thank Melissa Davis for many helpful discussions concern-
ing transmembrane protein localization. This work was sup-
ported by the Australian Research Council Centre for Complex
Systems.

2 Transmembrane proteins

Transmembrane proteins contain α-helical domains of
hydrophobic residues that anchor the protein in the
membrane. The transmembrane domains are usu-
ally flanked by cap regions that show a preference for
charged residues and influence the orientation of the
α-helix relative to the membrane (see Fig. 1). The
more positively charged cap region of the transmem-
brane domain tends to reside on the cytosolic side
(positive inside rule (von Heijne 1986)).

Figure 1: Transmembrane protein inserted into the
lipid bilayer. The transmembrane domains form α-
helices and the cap regions display a preference for
charged residues (marked with plus and minus signs).

Four different types of transmembrane proteins
can be distinguished1 (Higy, Junne & Spiess 2004).
Type-I proteins carry an N-terminal signal peptide
which is cleaved when the protein is inserted into
the membrane (von Heijne 1990). The N-terminus
of the mature protein is at the lumenal or extra-
cellular side and the C-terminus is at the cytoplas-
mic side. The orientation of Type-III is the same
as Type-I proteins, whereas Type-II proteins are re-
versed. Multi-spanning proteins (Type-IV) pass the
lipid bilayer several times with their termini on either
side of the membrane (Rapoport, Goder, Heinrich &
Matlack 2004).

Transmembrane proteins are localized to almost
all compartments in the cell. We focus our study on
organelles along the secretory pathway (see Fig. 2).
The secretory pathway is especially complex due to its
dynamic localization process that requires transmem-
brane proteins to travel through several stations until
they reach their final destination (van Vliet, Thomas,
Merino-Trigo, Teasdale & Gleeson 2003).

Entry station to the secretory pathway is the en-
doplasmic reticulum (ER). Transmembrane proteins
are cotranslationally inserted into the ER membrane

1Note that this is a simple classification scheme that ignores
important, but less frequent subtypes, such as reentrant regions in
α-helical transmembrane proteins (Viklund, Granseth & Elofsson
2006).
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Figure 2: Schema of the secretory and endocytic path-
ways. The secretory pathway is directed from the in-
terior of the cell to the exterior. The direction of the
endocytic pathway is reversed.

and N-terminal signal peptides sequences are cleaved
at this stage. Further transport occurs in vesicles
that bud from the ER membrane and fuse with the
Golgi complex (GO). At the Golgi complex, proteins
are packed into coated vesicles and transported to
the plasma membrane (PM) or the endosome (EN).
From the endosome vesicles move proteins to the lyso-
some (LY). Also an indirect route exists, where pro-
teins are exocytosed first and then internalized again,
following the endocytic pathway. Additional retrieval
pathways transport escaped proteins back to their
original target location (van Vliet et al. 2003).

3 Related work

A multitude of prediction algorithms for protein sub-
cellular localization have been developed. The vast
majority of them is limited to soluble proteins how-
ever. We will discuss only a subset of the more recent
algorithms that are related to our work.

Apart from methods that search for homologous
or similarly annotated proteins in databases, the ma-
jority of current predictors exploit the amino acid
or di-peptide composition and utilize SVMs to de-
rive subcellular localization (Hua & Sun 2001, Park
& Kanehisa 2003, Cui, Jiang, Liu & Ma 2004, Yu,
Mendrola, Audhya, Singh, Keleti, DeWald, Murray,
Emr & Lemmon 2004).

Composition based algorithms basically neglect
the residue order of the sequence. To alleviate this
weakness, autocorrelation functions (Feng & Zhang
2001), the pseudo amino acid composition (Chou
2001, Zhou & Doctor 2003) and the residue-coupling
model (Guo, Lin & Sun 2005) have been applied.

A related approach is the partitioning of the pro-
tein sequence into sections (e.g. N-terminal, mid-
dle section, C-terminal) and the evaluation of section
specific features such as amino acid composition and
physicochemical properties (Small, Peeters, Legeal &
Lurin 2004, Cui et al. 2004, Matsuda, Vert, Saigo,
Ueda, Toh & Akutsu 2006). Yuan (1999) modeled
the amino acid sequence directly with Markov chain
models.

None of the aforementioned algorithms however,
model the characteristic membrane spanning regions

or consider the orientation of transmembrane pro-
teins as topology predictors such as TMHMM (Krogh
et al. 2001), Phobius (Käll et al. 2004) or HMMTOP
(Tusnády & Simon 2001) do. The latter utilize de-
tailed first order HMMs to describe the transmem-
brane, cap and loop regions but are not designed for
subcellular localization prediction. The differences
between topology prediction methods and our ap-
proach will be discussed in more detail in Section 6.

The only predictor for eukaryotic membrane pro-
teins that we are aware of is based on amino acid com-
position and employs a least Mahalanobis distance
classifier (Chou & Elrod 1999). A data set with 2105
membrane proteins extracted from Swiss-Prot (Re-
lease 35.0) with nine different locations was used and
an overall jackknife accuracy of 65.9% was reported.

Since the data set was only weakly redundancy-
reduced and contained different types of membrane
proteins, these results are not comparable with ours.
We compiled a strictly redundancy reduced, more re-
cent data set, that contains transmembrane proteins
only.

4 Data set

All predictors were trained and tested on protein
data extracted from the LOCATE2 database (Fink
et al. 2006). LOCATE is based on the mouse tran-
scriptome of the FANTOM3 Isoform Protein Se-
quence set (IPS7), enriched by membrane organiza-
tion and subcellular localization annotation.

Membrane organization is determined by
MemO (Davis, Zhang, Yuan & Teasdale 2006), a
consensus method that employs SignalP (Bendtsen,
Nielsen, von Heijne & Brunak 2004) and five
transmembrane topology predictors (HMMTOP,
TMHMM, SVMTM, MEMSAT, DAS) to predict
signal peptides, transmembrane domains, protein ori-
entation and subsequently protein type. Subcellular
localization annotation in LOCATE is inferred from
sources of varying quality (experimental, literature,
predicted) but carefully reviewed.

We downloaded the XML version (LOCATE_whole_
db_v3-060810.xml) of the database and extracted
all transmembrane proteins with a unique subcellu-
lar localization annotation. The dataset was then
filtered for proteins targeted to locations along the
secretory pathway. Redundancy reduction was per-
formed with BlastClust (Altschul, Gish, Miller, My-
ers & Lipman 1990), which removed all entries with a
sequence similarity greater than 25%. The final data
set contained 1351 transmembrane proteins with the
following distribution: 873 plasma membrane (PM),
261 endoplasmic reticulum (ER), 141 Golgi appara-
tus (GO), 45 lysosome (LY), 31 endosome (EN).

5 Hidden Markov Models

A HMM is composed of a set of states
{S1, S2, . . . , SN} with transition probabilities
aij . In the discrete case each state emits symbols vk

from a finite symbol set V = {v1, v2, · · · , vM}. The
state transition probability distribution A = {aij}
with 1 ≤ i, j ≤ N , is defined as the probability that
the model changes to state Sj given that it was in
state Si,

aij = P (qt+1 = Sj | qt = Si), (1)

where qt describes the state the model occupies at
time step t. The symbol emission probabilities B =

2http://locate.imb.uq.edu.au
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{bj(vk)} are the probabilities that symbol vk is emit-
ted (or observed) when the model is in state Sj with

bj(vk) = P (ot = vk | qt = Sj), (2)

and ot is the observed symbol at time step t (Durbin,
Eddy, Krogh & Mitchison 1998).

Maximum likelihood estimates for state and emis-
sion probabilities can be directly calculated from la-
beled observation sequences or, for unlabeled data,
gained in an unsupervised fashion utilizing a vari-
ant of the EM-algorithm (Baum-Welch). The most
probable state sequence through the model is usually
determined with a dynamic programming approach
using the Viterbi-algorithm (Durbin et al. 1998).

In our domain, states describe sections of the pro-
tein sequence. For a first order HMM, V becomes the
amino acid alphabet and t is a specific position within
the sequence. Higher order HMMs are readily created
by redefining V as an alphabet over pairs (second or-
der) or n-tuples (n-th order) of amino acids (Durbin
et al. 1998), and a protein is then processed as a se-
quence of overlapping, consecutive pairs or tuples of
amino acids.

6 Localization predictor

The construction of the localization predictor can be
divided into three phases. The first phase is the se-
quence labeling phase. The second phase is the con-
struction of transmembrane protein models for each
subcellular location based on the labeled sequences.
In the third phase the protein models are aggregated
in a localization model. In the following the three
phases will be described in more detail.

Figure 3: Prediction system. A) Transmembrane pro-
tein model for a single location. B) Details of the
components of protein model A.

During the first phase every residue of the se-
quences in the training set is labeled with a state label

of the protein model to construct (see Fig. 3). Labels
are derived from existing sequence annotations such
as transmembrane domains or signal peptides.

The first residue of the sequence is always labeled
as Methionine (M). In the presence of a signal peptide
annotation the following residues are labeled as sig-
nal peptide states. The position downstream of the
annotated cleavage site is labeled +1 and the adja-
cent six residues upstream are labeled -1 to -6. The
remaining upstream residues are all labeled as signal
peptide residues s (See SP model in Fig. 3).

The ten amino acids following the signal pep-
tide or the Methionine state are labeled as N-
terminal (N-term). The transmembrane region is la-
beled with 15 up to 21 distinctive state labels (accord-
ing to the length of the annotated region). The emis-
sion probabilities of these states are tied (each state
uses the same emission probability distribution, See
TMD model in Fig. 3). The five residues upstream
and downstream of the transmembrane domain are
labeled as inside (icap) or outside (ocap) regions,
represented by five states (See icap/ocap model in
Fig. 3).

The last ten residues of the sequence are labeled as
C-Terminal (C-term) and all remaining amino acids
are marked as inside or outside residues. The mem-
brane orientation (N-terminus inside or outside) of
the protein, which is required to label inside and out-
side residues and cap regions, is determined accord-
ing to the presence or absence of an annotated sig-
nal peptide (a signal peptide indicates a non-cytosolic
N-terminal). We also used the orientation annota-
tion provided by the topology predictors in LOCATE
but found it to result in lower prediction performance
(data not shown). Likewise a fixed orientation (e.g.
N-terminal always outside) was found to be inferior.

In phase two the labeled sequences are grouped
according to the annotated subcellular localization.
For each group a HMM is constructed. The model
states are directly given by the used label set. Maxi-
mum likelihood estimates for emission and transition
probabilities are derived from the frequencies of state
residues and state transitions in the labeled sequences
in the same way Profile-HMMs are built (Durbin
et al. 1998). We also calculated the model param-
eters utilizing the unsupervised Baum-Welch algo-
rithm (Durbin et al. 1998) but found the resulting
prediction performance inferior to the supervised ap-
proach (data not shown).

Figure 4: Aggregation of protein models within an
overall HMM.

In phase three the transmembrane protein mod-
els, constructed in phase two, are aggregated in a sin-
gle HMM with a unique start state but multiple end
states (See part C of Fig. 4). Classification is per-
formed by determining the Viterbi-path of the query
sequence through the model and predicting the sub-
cellular localization according to the end state of the
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most probable path.
Note that the protein models are smaller (less

states and parameters) than similar models employed
for topology prediction (Krogh et al. 2001, Käll
et al. 2004, Tusnády & Simon 2001). There are three
motivations for this: 1) The annotation of transmem-
brane regions and signal peptides in the training data
is predicted, not experimentally confirmed. An overly
refined model would only predict predicted data with
high accuracy. 2) The objective is to predict subcellu-
lar localization, not topology. The exact domain bor-
ders are therefore of secondary interest. 3) The data
sets for some locations (e.g. endosome, lysosome) are
very small and parameters for more complex models
cannot be estimated reliably.

7 Results

Many algorithms for subcellular localization predic-
tion of soluble proteins are based on SVMs that ex-
ploit the overall amino acid or di-peptide composi-
tion of a protein as input (Hua & Sun 2001, Park &
Kanehisa 2003). We therefore compare the prediction
accuracy, and training and query time, for two com-
position based SVMs with HMMs of varying order.
In the following, SVM1 denotes a linear SVM that
exploits the amino acid composition and SVM2 is a
linear SVM that utilizes the di-peptide composition.
HMM1, HMM2 and HMM3 refer to first, second and
third order HMMs, respectively.3

The results in Table 1 show a significant increase
in prediction accuracy of higher order HMMs com-
pared to first order HMMs or SVMs. Notably the
correlation coefficient of SVM1 is a magnitude smaller
than that of SVM2. This suggests that the di-
peptides composition is a much better representation
of the typical sorting signals (e.g. ER retrieval signal
K(X)KXX or lysosomal/endosomal di-leucine targeting
signal) than the mono amino acid composition.

Concerning training and query time, the HMMs
are fast to train but slow to query while the situation
for the SVMs is reversed. The training time for the
third order HMM is surprisingly high. We believe
that the physical memory (1GB) was not sufficient
and memory swapping took place in this case.

Classes with small numbers of training samples,
such as the endosomal (EN) and lysosomal (LY)
classes, cause a clear drop in prediction performance
for higher order HMMs. SVM2, as a maximum mar-
gin classifier, is less effected by this difficulty, while
the performance of SVM1 is poor in general. There is
no significant difference in prediction performance be-
tween second and third order HMMs but the second
order model features lower query times and memory
requirements.

PM ER GO EN LY

834 25 11 3 0 PM

125 126 8 1 1 ER

63 22 54 0 2 GO

21 0 1 9 0 EN

28 4 1 0 12 LY

Table 2: Ten-fold cross-validation confusion matrix
for second order model (HMM2). Rows represent ob-
served locations and columns represent predicted lo-
cations.

3Note that second and third order HMMs utilize the same archi-
tecture as described above but observe amino acid pairs or triples
instead of single amino acids.

To gain a deeper insight into the prediction per-
formance of the second order HMM2, we calculated
the ten-fold cross-validation confusion matrix (see Ta-
ble 2). The confusion matrix shows that most of
the misclassified proteins are predicted as targeted
to the plasma membrane (left most column). This
is not surprising, since the plasma membrane class
is the majority class. Also the plasma membrane
is known to serve as a default location for proteins
that lack specific sorting signals (Pedrazzini, Villa
& Borgese 1996, Brandizzi, Frangne, Marc-Martin,
Hawes, Neuhaus & Paris 2002). Interestingly, there
is no confusion between endosomal and lysosomal tar-
geted proteins and in general little confusion between
proteins targeted to non-plasma membrane locations.
This indicates that the current location models seem
to miss some specific targeting signal, and that more
sensitive models can increase the prediction accu-
racy without severing the discrimination between lo-
cations.

8 Conclusion

We presented a novel architecture of an HMM based
localization predictor for transmembrane proteins. In
contrast to topology predictors, the new architecture
has less states but models the terminal regions and
is of second order. The latter is in agreement with
the observation that location predictors based on di-
peptide composition typically achieve higher perfor-
mance than classifiers that exploit the mono amino
acid composition only.

By modeling the characteristic topology of trans-
membrane proteins, the new predictor achieves a sig-
nificant increase in prediction accuracy (correlation
coefficient 0.46), compared to predictors based on
overall di-peptide composition. To our knowledge, it
is the only localization predictor specifically for trans-
membrane proteins, that is currently available online
(http://pprowler.itee.uq.edu.au/TMPHMMLoc).

We took advantage of the recently published LO-
CATE database and concentrated our efforts on lo-
cations along the secretory pathway, which are espe-
cially difficult to distinguish between.

Further work will focus on extending the range of
predicted locations, utilizing additional data sources
and comparing the new predictor against a more com-
prehensive set of alternative methods.
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Abstract

In many important bioinformatics problems the data
sets contain considerable redundancy due to the evo-
lutionary processes which generate the data and bi-
ases in the data collection procedures. The standard
practice in bioinformatics involves removing the re-
dundancy such that there is no more than at most
forty percent similarity between sequences in a data
set. For small data sets this can dilute the already
impoverished data beyond the boundary of practical-
ity. One can choose to include all available data in
the process by just ensuring that only the training
and test samples have the required redundancy gap.
However, this encourages overfitting of the model by
exposure to a highly redundant training sets. We out-
line a process of multi-stage redundancy reduction,
whereby the paucity of data can be effectively utilised
without compromising the integrity of the model or
the testing procedure.

Keywords: Redundancy Reduction, Generalisation
Estimation, Cross Validation

1 Introduction

An essential part of protein data set development
for machine learning applications in bioinformatics
involves removing redundancy so that the bias in
the data is minimised (Hobohm, Scharf, Schneider &
Sander 1992). The redundancy reduction helps pre-
vent a model over fitting to the bias in the data collec-
tion processes, and prevents predictive accuracy being
overestimated.

However, there are a number of biological prob-
lems where the data sets are comparatively small sim-
ply due to the fact that they relate to subtle aspects
of cellular life. In these instances we are faced with a
problem: ”How to train and test our models so that
we best utilise the available data and do not bias our
tests?”.

One solution that has been proposed to this prob-
lem involves giving a weighting to each of the data
points to correct for biases in the training data (Krogh
& Mitchison 1995, Eddy, Mitchison & Durbin 1995).
The prime difficulty posed by such an approach is
that not all learning algorithms are conducive to using
weighted samples. In order to employ this technique
one needs to restrict the type of model used, or mod-
ify an existing model to accommodate the weightings.
Recently the weighting of samples has been extended

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at The 2006 Workshop on Intelligent Systems for
Bioinformatics (WISB2006), Hobart, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 73. Mikael Bodén and Timothy L. Bailey, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

to the calculation of performance metrics (Budagyan
& Abagyan 2006). The authors concluded that one
need not perform an artificial reduction of the data
set if the testing is performed using a weighted met-
ric. Their results indicated that inclusion of redun-
dant data can improve the performance of the model.

We present a simple solution to the problem of
making effective use of small data sets without com-
promising testing rigour. The technique takes the
form of a regime for gradual data set reduction as
the model moves from training to testing. The re-
dundancy reduction occurs in three stages, allowing
small amounts of redundancy within the training sets,
but rigorously excluding it between training and test
sets. Furthermore, we provide a clear indication of
generalisation improvement offered by redundancy re-
duction by showing that performance is optimal when
not using all available data, but by allowing only small
amounts of redundancy within the training sets.

2 Background

The effective application of machine learning tech-
niques to problems of classification is not simply a
matter of training a model on all available data. Al-
though a model produced in this fashion will perform
very well on data with similarity to the training data
it will tend to fail on genuinely novel data. Hence, the
performance statistics produced by cross-validation
on data sets containing redundancy will not be a re-
liable guide to their ability to generalise.

The problem stems from two sources, firstly used
a data set that over represents some region of the
problem space encourages the model to over fit this
data. This is less of a problem if the bias is present
in the real world, however often these biases are due
to the collection of data. The second problem with
redundant data is that when used to estimate the per-
formance of the model it will bias those estimates due
to the fact that the test points are very close to rep-
etitions of the training points. When a model that is
trained and tested on redundant data ”the apparent
predictive performance may be overestimated, reflect-
ing the method’s ability to reproduce its own particu-
lar input rather than its generalization power” (Baldi
& Brunak 2001) (page 6).

Considerable effort has gone into developing algo-
rithms to minimise the redundancy within the data
yet maximise the amount left with which to build
models (Hobohm et al. 1992). A de facto standard
has emerged in bioinformatics to perform a redun-
dancy reduction of data sets using sequence homol-
ogy scores, such that no two sequences have greater
than 25%-40% identical residues across a specified
length. This threshold is no doubt due to the fact
that it is the so called ’twilight’ region in which se-
quence alignments become a poor indicator of homol-
ogy (Rost 1999).
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However, what remains unaddressed is whether
the two reasons for redundancy reduction require the
same level of reduction in order to mitigate their re-
spective problems. This issue forms the central ques-
tion of this study and the answer to which suggests
the technique of multi-stage redundancy reduction as
a method of effectively utilising small data sets.

3 The Method

The essence of the technique is as follows: we per-
form an initial redundancy reduction of the data in
order to remove the sequences that are most simi-
lar. The redundancy reduction is performed using
BLASTCLUST to generate clusters with a specified
level of similarity. From these clusters a single sample
is chosen as the representative of the cluster. The ini-
tial reduction threshold, Θi, is a permissive threshold,
between 40% and 90% similarity. The sequences re-
maining after the initial reduction comprise the data
set for the purposes of training the model.

In order to ensure that the testing procedure is not
compromised by the existence of some redundancy in
the data, we perform a second clustering at the final
reduction threshold, Θf , set to a low enough level as to
guarantee a rigorous testing. These clusters are then
used to generate the subsets of data for the cross-
validations. Each of the clusters is allocated to one of
the subsets. So that all the redundancy exists within
the cross validation subsets. This ensures that there
is no redundancy between the sequences that are used
for training and those used for testing, such that the
cross-validation is assured to be an adequate test of
generalisation.

The cross-validation is then performed such that
the partially redundant data is used in the training
of the models. However, in each iteration, the set
that has been allocated for testing undergoes a fur-
ther reduction at the final reduction threshold Θf , to
remove the remaining redundancy. In this way we
allow the models to utilise some redundancy in the
training data, but remove all redundancy from the
testing procedure.

The procedure is demonstrated schematically in
Figure 1.

4 Data sets

For the purposes of demonstrating the utility of the
technique we apply it to two different data sets of
proteins. Both data sets revolve around the impor-
tation of proteins into the peroxisome, which is a
small but important organelle in eukaryotic cells. The
two mechanisms are named after the sequence signals
which the proteins rely on for recognition and im-
port. Peroxisomal Targeting Signal One (PTS1) and
Peroxisomal Targeting Signal Two (PTS2), are both
subtle distinct sequences within the protein that al-
low import into the organelle through distinct pro-
tein pathways (Baker & Sparkes 2005, Michels, Moy-
ersoen, Krazy, Galland, Herman & Hannaert 2005).
The crucial aspect of these data sets for the current
paper is that the peroxisome has a small protein com-
plement, hence the data sets are small.

The PTS1 pathway relies on an C-terminal tri-
peptide and sequence of nine preceding residues that
support its recognition. We have outlined the extrac-
tion of this data set in previous studies (Wakabayashi,
Hawkins, Maetschke & Bodén 2005, Hawkins &
Bodén 2005). The data set derivation relies on a bi-
ologically informed template for the import signal.
This template fits all known positives, but due to its
generality fits a larger number of negatives.

1) Reduce Using 
    Initial Reduction Threshold

Training Set 

Θ i

Complete Data Set

2) Create Sets with Between Set
    Redundancy less than the 
    Final Reduction Threshold Θ f

3) Train Using all Data in the 
    Training Set

4) Test Using a Reduced   
    Version of the Test Set at the 

Final Reduction Threshold

Θ f

Cross-Validation

Figure 1: Schematic Representation of the Multi-
Stage Redundancy Reduction Training and Testing
Procedure.

The PTS2 pathway relies on a 9-mer with an un-
specified position, although most instances occur in
the N-terminal region. There are far fewer known in-
stances of PTS2 proteins, and to make matters worse
the template signal is less specific. Hence, the train-
ing sets for differentiating between real and fallacious
PTS2 instances are highly unbalanced. We have out-
lined the extraction of this data set in a previous
study (Bodén & Hawkins 2006). Due to the size of
the negative set we maintain the heavily reduced ver-
sion (2799 proteins reduced at a 10% threshold) and
instead focus the multi-stage redundancy reduction
on the positive set only.

The numbers of proteins that result from the vary-
ing levels of redundancy reduction are shown in Table
1.

5 Simulations

In order to demonstrate the effectiveness of the tech-
nique and identify a threshold for the initial redun-
dancy reduction we perform a range of simulations
over each of the data sets. For each data set we pro-
duce a set of versions each of which have been through
an initial redundancy reduction. For these initial re-
ductions we use a set of thresholds varying from 100
(for no reduction) down to 30. The number of pro-
teins in the data sets for each of these threshold is
shown in Table 1.

As a model to train on these problems we have
chosen a Support Vector Machine with a spectrum
kernel. The spectrum kernel is a general purpose se-
quence kernel that is efficient to run and has proven
effective on a wide range of bioinformatics problems.
The spectrum kernel takes one parameter, k which
defines the length of the sequence segments consid-
ered in the spectrum.

For a given sequence, the spectrum of the sequence
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Redundancy Reduction Threshold
Data set 100 95 90 85 80 70 60 50 40 30
PTS1 Positives 139 131 114 97 83 66 62 56 50 47

Negatives 291 256 230 208 193 180 171 165 164 163
PTS2 Positives 97 91 81 69 62 56 51 41 37 35

Table 1: Numbers of Proteins in each data set as the initial redundancy reduction threshold is varied. At the
upper limit, a threshold of 100 means no reduction is performed. At the lower end of 30% the threshold is
identical to that used to distinguish the test sets, hence the process is equivalent to the standard process of a
single redundancy reduction prior to training and testing.

is the set of all k-mers it contains. The Spectrum
kernel compares any two sequences by considering
the number of these k-mers that two sequences share
(Leslie, Eskin & Grundy 2002). More specifically, the
kernel calculates the dot product between the vectors
holding all k-mer counts for any pair of sequences. If
two sequences share a large number of k-mers they
produce a large spectrum kernel value.

For both data sets we explore k values ranging be-
tween 1 and 5. We run these on each of the data
sets, such that the initial reduction threshold ranges
from 100% (No Reduction) to 30% (Single Stage Re-
duction). We run each configuration as a ten-fold
cross-validation, ten times using a different seed to
split the data for the cross validations.

We use our own implementation of the spectrum
kernel that runs with a modified version of the LIB-
SVM package (Chang & Lin 2001). The C value of an
SVM is commonly called the regularisation constant
and indicates the penalty that is applied to samples
that are positioned on the wrong side of the decision
boundary. For the PTS1 problem we use a general
C value of 0.5, however for the PTS2 problem, due
to the massive imbalance of the data, we modified
the code such that the positive samples us C = 1000
and the negative samples use C = 0.002. These val-
ues were found through a number of trial runs as a
method of forcing the learning to give equal emphasis
to both classes.

6 Results

The results for each of the spectrum kernels on the
PTS1 problem are shown in Table 2. In each case
we shown the mean Matthews’ Correlation Coefficient
MCC over the ten independent runs. The MCC is
calculated using the formula:

r(c) =
tpctnc − fpcfnc

√
(tpc + fnc)(tpc + fpc)(tnc + fpc)(tnc + fnc)

.

(1)
The data are shown graphically in Figure 2 with

a standard error bar showing the estimated standard
deviation of the mean. This is calculated with the
formula:

stderr =
σ

√
N

. (2)

Where σ is the standard deviation of the test
statistic, in this case the MCC, and N is the num-
ber of samples, in this case 10.

For three of the four k values tried the multi-stage
redundancy reduction technique produced the best
model. The best overall model produced used an ini-
tial redundancy reduction threshold of 85% and a k
value of 2. As we can see in Figure 2, the results
are somewhat variable across the different kernels and
thresholds. In spite of the lack of a consistent trend, if
we compare the results of the best model at threshold
30 with the best overall model, the standard error bar
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Figure 2: The average MCC for the Spectrum Ker-
nel on the PTS1 problem, plotted against the ini-
tial threshold of redundancy reduction. The error
bars depict one standard error on either side of the
mean. Data generated from ten runs of ten-fold cross-
validation.

indicates that using some redundancy in the training
produces significantly better results than not. How-
ever, due to the overlap of the standard error distri-
butions it is not possible to say whether the apparent
improvement offered by the multi-stage redundancy
reduction is significant.

Similarly the results for each of the spectrum ker-
nels on the PTS2 problem are shown in Table 3.

For the PTS2 problem we see that for all four of
the spectrum values used the best performing kernel
was produced under multi-stage redundancy reduc-
tion. The best overall model produced used an ini-
tial redundancy reduction threshold of 85% and a k
value of 4. As we can see in Figure 3, the results
are much more consistent across the different kernel
settings. Three of the four performing best with an
initial threshold between 80−85%. The effect is most
pronounced with k = 4, where under the standard
practice or using all data the kernel performs very
poorly. In this case the best model performs signif-
icantly better under the multi-stage redundancy re-
duction scheme than either using all data, or single-
stage redundancy reduction.

It is interesting to note that in both case studies
the majority of the kernels perform best when allowed
to use some of the redundant data. In some cases
profoundly better than if all that data was used or it
was simply discarded. What we see clearly in both
figures is that the best model for each problem was
created using the mutli-stage redundancy reduction
procedure with an initial reduction of 85%.
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PTS1 Simulation Results
Initial Redundancy Reduction Threshold

k-value 100 95 90 85 80 70 60 50 40 30
1 0.3087 0.2861 0.3197 0.2973 0.3210 0.2817 0.3127 0.2967 0.2866 0.2697
2 0.3868 0.4158 0.3918 0.4341 0.3711 0.3401 0.3492 0.3405 0.2778 0.3163
3 0.2896 0.2669 0.2954 0.3376 0.3436 0.3357 0.3563 0.3418 0.3439 0.2892
4 0.0578 0.1384 0.1337 0.1348 0.1213 0.1449 0.1602 0.1669 0.1974 0.2031

Table 2: Average MCC values for the Spectrum Kernel run with different k-values and different thresholds for
the initial redundancy reduction. The first column with an initial threshold of 100% involves using all available
data to train the models. The final column, at 30%, involves a single redundancy reduction prior to training
and testing. Intermediate values are the result of the two stage redundancy reduction procedure.

PTS2 Simulation Results
Initial Redundancy Reduction Threshold

k-value 100 95 90 85 80 70 60 50 40 30
1 0.0823 0.0812 0.0832 0.0873 0.0842 0.0846 0.0902 0.0868 0.0973 0.0903
2 0.0886 0.0872 0.1107 0.1291 0.1281 0.1045 0.0858 0.0812 0.0533 0.0507
3 0.0797 0.0818 0.1212 0.1369 0.1444 0.0648 0.0336 0.0205 0.0116 0.0356
4 0.0271 0.0292 0.0295 0.1588 0.1419 -0.0035 -0.0040 -0.0031 -0.0030 -0.0029

Table 3: Average MCC values for the Spectrum Kernel run with different k-values and different thresholds for
the initial redundancy reduction. The first column with an initial threshold of 100% involves using all available
data to train the models. The final column, at 30%, involves a single redundancy reduction prior to training
and testing. Intermediate values are the result of the two stage redundancy reduction procedure.
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Figure 3: The average MCC for the Spectrum Ker-
nel on the PTS2 problem, plotted against the ini-
tial threshold of redundancy reduction. The error
bars depict one standard error on either side of the
mean. Data generated from ten runs of ten-fold cross-
validation.

7 Conclusion

Some key biological problems have only small
amounts of data available for the building of mod-
els. It is therefore crucial to make effective use of
the paucity of available data. Data sets typically un-
der go a process of redundancy reduction for two rea-
sons: To prevent the model from over fitting to the
bias present in the data, and to ensure that our test-
ing of the model’s generalisation ability is rigorous.
Typically the redundancy reduction is done once as
the data set is curated with the implicit assumption
that the threshold for reduction should be identical
for both of these purposes.

We have shown that by treating these two pur-
poses of redundancy reduction separately, we are able
to increase the amount of data available to train our
models. By using rigorous testing procedures we have
shown that the optimal thresholds of redundancy for
these two purposes are not identical. I.e the reduction
required in order to prevent over fitting is less than
that required to perform rigorous testing. It appears
that one can produce a superior model by allowing it
to train on data with a mild amount of redundancy.
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Abstract

Proteomics is an emerging field of modern biotech-
nology and an attractive research area in bioinfor-
matics. Protein annotation by mass spectrometry has
recently been utilized for the classification and predic-
tion of diseases. In this paper we apply the theory of
linear predictive coding and its decision logic for the
prediction of major adverse cardiac risk using mass
spectra. The new method was tested with a small set
of mass spectrometry data. The initial experimen-
tal results are found promising for the prediction and
show the implication of the potential use of the data
for biomarker discovery.

Keywords: Proteomics, mass spectrometry, major ad-
verse cardiac events, classification, prediction, theory
of linear prediction.

1 Introduction

Besides genomics, life-science researchers study pro-
teomics in order to gain insight into the functions
of cells by learning how proteins are expressed, pro-
cessed, recycled, and their localization in cells. Pro-
teomics is simply the study of proteome which refers
to the entire set of expressed protein in a cell. Pro-
teomics can be divided into two categories: expres-
sion proteomics and cell-map proteomics (Weir et
al. 2003).

Protein expression profiles or expression pro-
teomics can be used for large-scale protein charac-
terization or differential expression analysis that has
many applications such as biomarker discovery for
disease classification and prediction, new drug treat-
ment and development, virulence factors, and poly-
morphisms for genetic mapping, and species determi-
nants (Griffin et al. 2001, Aebersold & Mann 2003,
Weir et al. 2003). In comparison with transcrip-
tional profiling in functional genomics, proteomics

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Proceedings of the AI 2006 Workshop on Intel-
ligent Systems for Bioinformatics (WISB-2006), Hobart, Aus-
tralia, December 2006. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. xx. Mikael Boden
and Timothy Bailey, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

has some obvious advantages in that it provides a
more direct approach to studying cellular functions
because most gene functions are characterized by pro-
teins (Xiong 2006). Cell-map proteomics is large-scale
characterization of protein interactions and an inte-
grated view of cellular processes at the protein level.

The identities of expressed proteins in a pro-
temome can be determined by protein separation,
identification, and quantification. One of many
approaches for separating proteins involves two-
dimensional gel electrophoresis followed by gel image
processing. Once proteins are separated, protein dif-
ferential expression can be characterized using mass
spectrometry (MS), which is a high-resolution tech-
nique for determining molecular masses and provides
rapid and accurate measurement of protein profiling
in complex biological and chemical mixture. Protein
profiling of plasma and serum can be prepared with a
matrix-assisted laser desorption ionization (MALDI)
ion source or the surface-enhanced laser desorption
ionization (SELDI) ion source coupled to a time-of-
flight (TOF) mass analyzer with a chevron micochan-
nel plate detector. Detailed discription on mass spec-
trometry and its advanced developments can be found
in the review by Shin and Markey (2006).

Proteomic patterns have recently been used for
early detection of cancer progressions (Sauter et
al. 2002, Petricoin et al. 2002, Conrads et al. 2003).
Obviously, early detection of such diseases has the
potential to reduce mortality. In fact, it has been
foreseen that advances in mass-spectrometry based
diagnostics may lead to a new revolution in the field
of molecular medicine (Petricoin & Liotta 2003, Con-
rads et al. 2003, Wulfkuhle et al. 2003).

Methods for classification of normal and cancer-
ous states using mass spectrometry data have been
recently developed. Petricoin et al. (2002) applied
cluster analysis and genetic algorithms to detect early
stage ovarian cancer using proteomic spectra. Lilien
et al. (2003) applied principal component analysis
and a linear discriminant function to classify ovarian
and prostate cancers. Sorace and Zhan (2003) used
mass spectrometry serum profiles to detect early ovar-
ian cancer. Wu et al. (2003) compared the perfor-
mance of several methods for the classification of mass
spectrometry data. Tibshirani et al. (2004) proposed
a probabilistic approach for sample classification from
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protein mass spectrometry data. Morris et al. (2005)
applied wavelet transforms and peak detection for fea-
ture extraction of MS data. Yu et al. (2005) de-
veloped a method for dimensionality reduction for
high-throughput MS data. Levner (2005) used fea-
ture selection methods and then applied the nearest
centroid technique to classify MS-based ovarian and
prostate cancer datasets. Given the promising inte-
gration of machine-learning methods and mass spec-
trometry data in high-throughput proteomics (Shin
& Markey 2006), this new biotechnology still encoun-
ters several challenges in order to become a mature
platform for clinical diagnostics and protein-based
biomarker profiling. Some of major challenges include
noise filtering of MS data, selection of computational
methods for MS-based classification, feature extrac-
tion and feature reduction of MS datasets.

The motivation of this research has been ini-
tiated from the original work by Brennan et al.
(2003). The authors of this paper studied 604
patients who presented in emergency room with
chest pain. The blood samples were collected at
the presentation of the emergency room and the
protein level of MPO (myloperoxidase) and other
known cardiovascular biomarkers were measured.
The patient’s outcome (any cardiovascular event)
was monitored for 6 months. The study showed the
MPO to be a new biomarker for the prediction of
MACE (major adverse cardiac events) risk in 30 days
after the presentation of chest pain in emergency
room with accuracy about 60%. Recently, the FDA
(U.S. Food and Drug Development) approved the
CardioMPO kit for measurement of MPO level
(http://www.fda.gov/cdrh/reviews/K050029.pdf).
In this paper, we introduce an application of the
theory of linear predictive coding and its decision
logic for feature extraction and classification of
mass spectrometry signals in order to early predict
patient’s risk of major adverse cardiac events (Zhou
et al. 2006). Applications of such computational
frameworks have never been explored before for the
analysis of proteomic data. We will show that the
LPC model can provide a robust modeling of MS
signals, which can be represented by LPC coefficients.
We then show how the LPC vectors make it very
convenient for classifying MS samples.

2 Feature Extraction of MS Data

It has been pointed out that digital signal process-
ing can provide a set of novel and useful tools for
solving highly relevant problems in genomics and
proteomics (Anatassiou 2001, Vaidyanathan 2004).
Recently, the applications of signal-processing based
pattern analysis have been reported to be promis-
ing tools for the study of complex biological prob-
lems (Lazovic 1996, Wu & Castleman 2000, de Trad
et al. 2002, Pham 2006). In this paper, we apply
the principle of linear predictive coding (LPC) to ex-
tract the feature of mass spectrometry data, whose
raw forms do not convey much information for the
task of classification. The new MS feature can be
represented by the LPC coefficients. The computa-
tion is based on the principle that the estimated value
of a particular MS intensity value sm at position or
time n, denoted as ŝ(n), can be calculated as a linear
combination of the past p samples. This linear pre-
diction can be expressed as (Makhoul 1975, Rabiner
& Juang 1993)

ŝ(n) =
p∑

k=1

ak s(n− k) (1)

where the terms {ak} are called the linear prediction
coefficients (LPC), and p the number of poles.

The prediction error e(n) between the observed
sample s(n) and the predicted value ŝ(n) can be de-
fined as

e(n) = s(n)− ŝ(n) = s(n)−
p∑

k=1

ak s(n− k) (2)

From the above equation, it can be seen that
the problem of linear prediction analysis we address
herein is to optimally determine the set of predictor
coefficients {ak} directly from the MS signal. Since
the spectral properties of MS data can vary over time,
the predictor coefficients at a given time n must be
estimated from a short segment of the MS signal oc-
curing around time n. Therefore, the solution is to
find a set of predictor coefficients that minimize the
mean-squared prediction error over a short segment
of the whole MS signal.

A short-term MS signal, sn(m), and its error seg-
ment, en(m), at time n can be defined as

sn(m) = s(n + m) (3)
and

en(m) = e(n + m) (4)
The mean-squared error signal at time n to be min-

imized is defined as

En =
∑
m

e2
n(m) (5)

which can be expressed in terms of sn(m) as follows.

En =
∑
m

[
sn(m)−

p∑

k=1

aksn(m− k)

]2

(6)

Differentiating En, which is expressed in (6), with
respect to each ak and set the result to zero:

∂En

∂ak
= 0, k = 1, . . . , p (7)

giving

∑
m

sn(m− i)sn(m) =
p∑

k=1

ak

∑
m

sn(m− i)sn(m− k)

(8)
It can be noticed that the terms of the form∑
sn(m − i)sn(m − k) are those of the short-term

covariance of sn(m), that is

φn(i, k) =
∑
m

sn(m− i)sn(m− k) (9)

One possible way of defining the limits on m ex-
pressed in (9) is to assume that the segment, sn(m),
is zero outside the interval 0 ≤ m ≤ N − 1, where N
is the size of the short segment. This assumption is
equivalent to that the signal s(m + n) is multiplied
by a finite length window, w(m), which zero outside
the range 0 ≤ m ≤ N − 1. Thus the segment for
minimization can be expressed as

sn(m) =
{

s(m + n) w(m) : 0 ≤ m ≤ N − 1
0 : otherwise

(10)
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where w(m) is usually a Hamming window.
Based on using the signal expressed in (10), the

error signal en(m) is exactly zero since sn(m) = 0 for
all m < 0, and for m > N−1+p the prediction error is
also zero because again sn(m) = 0 for all m > N − 1.
Thus an optimal range of m used in defining the short
segment of the sequence and the region over which
the mean-squared error is minimized is from m = 0
to m = N − 1 + p to minimize the errors at section
boundaries. Using this range for m, the mean-squared
error becomes (Rabiner & Juang 1993)

En =
N−1+p∑

m=0

e2
n(m) (11)

and φn(i, k) can be rewritten as

φn(i, k) =
N−1+p∑

m=0

sn(m− i)sn(m− k), (12)

1 ≤ i ≤ p, 0 ≤ k ≤ p

or

φn(i, k) =
N−1−(i−k)∑

m=0

sn(m)sn(m + i− k), (13)

1 ≤ i ≤ p, 0 ≤ k ≤ p

Since (14) is a function of (i − k), the covariance
function φn(i, k) can be reduced to the simple auto-
correlation function:

φn(i, k) = rn(i− k) =
N−1−(i−k)∑

m=0

sn(m)sn(m + i− k)

(14)
Since the autocorrelation function is symmetric,

that is rn(−k) = rn(k), the system of LPC equations
can be expressed as

p∑

k=1

rn(|i− k|)ak = rn(i), 1 ≤ i ≤ p (15)

which describes a set of p equations in p unknowns,
and can be expressed in matrix form as

R a = r (16)
where R is a p × p autocorrelation matrix (Toeplitz
matrix which is symmetric with all diagonal elements
being equal), r is a p× 1 autocorrelation vector, and
a is a p× 1 vector of prediction coefficients:

R =




rn(0) rn(1) rn(2) · · · rn(p− 1)
rn(1) rn(0) rn(1) · · · rn(p− 2)
rn(2) rn(1) rn(0) · · · rn(p− 3)
· · · · · · ·

rn(p− 1) rn(p− 2) rn(p− 3) · · · rn(0)




aT = [ a1 a2 a3 · · · ap ]

and

rT = [ rn(1) rn(2) rn(3) · · · rn(p) ]

Thus, the LPC coefficients can be obtained by
solving

a = R−1r (17)

3 LPC-based Decision Logic

Let x, y, and z be the vectors defined on a vector
space V . A metric or distance d on V is defined as a
real-valued function on the Cartesian product V × V
if it has the properties of positive definiteness, sym-
metry, and triangle inequality. If a measure of dissim-
ilarity satisfies only the property of positive definite-
ness, it is referred to as a distortion measure which is
considered very common for the vectorized represen-
tations of signal spectra (Rabiner & Juang 1993).

In general, to calculate a distortion measure be-
tween two vectors x and y, denoted as D(x,y), is to
calculate a cost of reproducing any input vector x as
a reproduction of vector y. Given such a distortion
measure, the mismatch between two signals can be
quantified by an average distortion between the in-
put and the final reproduction. Intuitively, a match
of the two patterns is good if the average distortion
is small.

Consider the two spectra, magnitude-squared
Fourier transforms, S(ω) and S′(ω) of the two signals
s and s′, where ω is the normalized frequency ranging
from −π to π. The log spectral difference between the
two spectra is defined by (Rabiner & Juang 1993)

V (ω) = log S(ω)− log S′(ω) (18)

which is the basis for the distortion measure proposed
by Itakura and Saito (IS) in their formulation of lin-
ear prediction as an approximate maximum likelihood
estimation.

The Itakura-Saito distortion measure, DIS , is de-
fined as (Itakura & Saito 1970)

DIS =
∫ π

−π

[eV (ω) − V (ω)− 1]
dω

2π

=
∫ π

−π

S(ω)
S′(ω)

dω

2π
− log

σ2
∞

σ′2∞
− 1 (19)

where σ2
∞ and σ′2∞ are the one-step prediction errors

of S(ω) and S′(ω), respectively, and defined as

σ2
∞ ≈ exp

{∫ π

−π

log S(ω)
dω

2π

}
. (20)

It was pointed out that the Itakura-Saito distor-
tion measure is connected with many statistical and
information theories. A very useful distortion mea-
sure that is derived from the Itakura-Saito distortion
measure is called the likelihood ratio (LR) distor-
tion. The LR distortion measure, DLR, is defined
as (Rabiner & Juang 1993)

DLR =
a′T Rs a′

aT Rs a
− 1 (21)

where Rs is the autocorrelation matrix of sequence s
associated with its LPC coefficient vector a, and a′ is
the LPC coefficient vector of signal s′.

If the input (unknown) MS signal sm is analyzed
by the LPC which results in a set of LPC coeffi-
cients, then the spectral distortion between an un-
known sample sm and a particular known class i can
be determined using the minimum rule as follows.

Dmin(xm, ci) = min
j

D(xm, ci
j) (22)

where D is a spectral distortion measure (if using the
LR distortion then D = DLR), xm is the LPC vec-
tor of sm, ci

j is the LPC vector of the j sample that
belongs to class i.
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Table 1: Best and average sensitivity (SEN) and selectivity (SEL)

% Training % SENbest % SELbest % SENave % SELave

60 70.83 72.92 64.58 66.07
70 77.78 80.56 70.24 71.03
80 83.33 91.65 76.78 73.81
90 100 91.67 79.76 72.62

Using a simple decision logic, the unknown signal
sm is assigned to class i∗ if the minimum distortion
measure of its LPC vector xm and the corresponding
LPC vector ci is minimum, that is

sm → i∗, i∗ = arg min
i

Dmin(xm, ci) (23)

4 Experiment

We used high throughput, low resolution SELDI MS
(www.ciphergen.com) to acquire the protein profiles
from patients and controls. Figures 1 and 2 show the
typical SELDI mass spectra of the control and MACE
samples respectively. The protein profiles were ac-
quired from 2 kDa to 200kDa. The design of the
experiment originally described in (Zhou et al. 2006),
and the result are presented as follows.

Control group (Zhou et al. 2006): This group has
sixty patients who presented in emergency room with
chest pain and the patients’ troponin T test was con-
sistently negative. These patients lived in the next 5
years without any major cardiac events or death. The
total 166 plasma samples, 24 reference samples and
6 blanks were fractionated into 6 fractions using two
96-well plates containing anion exchange resin (Ci-
phergen, CA).

MACE group (Zhou et al. 2006): This group has
60 patients who presented in emergency room with
chest pain but the patients’ troponin T test was neg-
ative. However, the patients in this group had either
a heart attack, died or needed revascularization in
the subsequent 6 months. The blood samples used
in this study were same as those used in (Brennan et
al. 2003). Most new MPO data measured with FDA
approved CardioMPO kit for these two groups are
available – MPO levels for 56 (out of 60) patients in
control group and 55 (out of 60) patients in MACE
group are available. Statistical analysis shows that
MPO alone can distinguish MACE from control with
accuracy of better than 60%.

SELDI mass spectra: To increase the coverage of
proteins in SELDI protein profiles, the blood sam-
ples were fractionated with HyperD Q (strong ion ex-
change) into 6 fractions. The protein profiles of frac-
tion 1, 3, 4, 5 and 6 were acquired with two SELDI
Chips: IMAC and CM10. There are a few different
SELDI chips with different protein binding proper-
ties. General speaking, the more types of the SELDI
chips are used, the more proteins are likely to be de-
tected. However, due to the high concentration dy-
namic range of the proteins in human blood, the to-
tal number of proteins to be detected by the protocol
we are using is very limited. We estimate that the
number of the proteins we are able to detect is about
one-thousand, while the total protein number in hu-
man blood is estimated to be tens of thousands. For
example, MPO can be accurately measured with im-
munoassay (CardioMPO) but could not be detected

with SELDI MS.
Number of MS spectra: MS spectra for each sam-

ple in each fraction was acquired in duplicate, so 120
samples (60 controls and 60 MACEs) in each fraction
in one type of SELDI chip have 240 spectra. There
are 5 fractions (Fraction 1, 3, 4, 5 and 6) and two
types of SELDI chips (IMAC and CM10). Thus the
total number of SELDI MS spectra to be analyzed is
240× 5× 2 = 2400.

SELDI MS reproducibility (intensity measurement
error): The reproducibility of the mass spectra was
monitored with a pooled sample (12 samples were
combined together to form a pooled sample) and to-
tal 24 spectra with the pooled sample were acquired
at same time with all samples. The intensities of top
20 to 30 peaks in MS were compared and statistically
analyzed. The estimated measurement error on peak
intensity is about 20%-30%. The peak intensity is in
the relative scale with the highest value of 100%. The
relative peak intensity value is also dependent of the
algorithms of baseline subtraction and normalization.
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Figure 1: SELDI-MS control sample

Result: To focus our study on the prediction prob-
lem using SELDI mass spectra, we randomly selected
two fractions to carry out the experiment. Because
of the short length of the samples, we concatenated
the corresponding samples of the two fractions for the
extraction of the LPC coefficients. We estimated the
number of poles p for the LPC analysis by using the
semi-variograms of the mass spectra (see Figure 3)
which reveal the number of poles being about 40 for
the LPC analysis (Pham & Wagner 1998). The var-
iogram is a function which expresses the spatial cor-
relation of a regionalized variable (Deutsch 2002). In
probabilistic notation, the variogram, 2γ(h), is de-
fined as the expected value:

2γ(h) = E{[s(i)− s(j)]2}, hij = h (24)
where h is a lag distance that separates s(i) and s(j).
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Figure 2: SELDI-MS MACE sample
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Figure 3: Variograms of SELDI-MS samples

The semi-variogram is half of the variogram, that
is, γ(h). The experimental semi-variogram for lag
distance h is defined as the average squared difference
of values separated by h:

γ(h) =
1

2N(h)

∑

(i,j)|hij=h

[s(i)− s(j)]2 (25)

where N(h) is the number of pairs for lag h.
The term γ(h) in Figure 3 refers to the spatial vari-

ance of the MS relative intensities as the function of
the lag distance h. The non-smooth curves are con-
structed using the experimental semi-variograms de-
fined in (25); whereas the smooth curves are the the-
oretical semi-variograms generated by the spherical
model which is defined as (Isaaks & Srivastava 1989)

γ(h) =
{

1.5h
a − 0.5(h

a )3 : h ≤ a
1 : otherwise (26)

where a is called the range of the semi-variogram and
can be considered to be an optimal number of poles
p in the LPC analysis.

Using the leave-one-out method, we obtained the
classification rate of 83.34%, where 99 out of 120
MACE samples and 101 out of 120 control samples
were correctly classified. We then run different tests
for p= 20, 25, 30, 35, 40, and 50 with different ratios

of training and testing data to compute the sensi-
tivity and selectivity of the classification. Sensitiv-
ity is the percentage of the MACE (diseased) sam-
ples that are correctly identified, whereas specificity
is the percentage of the control (non-diseased) sam-
ples that are correctly identified. These results are
shown in Table 1. In particular, the results are bet-
ter when the numbers of poles are between 30 and
40, which are in agreement with the indication of the
semi-variograms. In other applications such as speech
recognition (Rabiner & Juang 1993), reasonable num-
bers of poles for the LPC analysis have been deter-
mined by experiences through training and testing of
the speech recognizers. We present herein a useful
way for selecting a good number of poles based on
the theory of geostatistics provided that the samples
are spatially correlated.

5 Conclusion

It has been predicted that the advancement of pro-
teomics pattern diagnostics might represent a rev-
olution in the field of molecular medicine, because
this technology has the potential of developing a new
model for early disease detection. The clinical im-
pact of proteomic pattern diagnostics is still in the
very early stage where the results have not been val-
idated in large trials. Furthermore, recent research
outcomes have illustrated the role of MS-based pro-
teomics as an indispensable tool for molecular and
cellular biology and for the emerging field of systems
biology (Aebersold et al. 2003).

Given these promising results, identifying
biomarkers using MS data is a challenging task,
which requires the combination of the contrast fields
of knowledge of modern biology and computational
methodology. We have presented in this paper a
novel application of a theory of linear predictive cod-
ing in signal processing for extracting robust features
of mass spectrometry data that can be effectively
utilized for the classification of MS spectra. The
initial results using a small SELDI-MS dataset show
the potential application of the proposed technique
for predicting patient’s major adverse cardiac risk
and also indicate the potential use of the data for
biomarker discovery.

References

Aebersold, R., & Mann, M. (2003), ‘Mass
spectrometry-based proteomics’, Nature 422,
198–207.

Anatassiou, D. (2001), ‘Genomic signal processing’,
IEEE Signal Processing Magazine 18, 8–20.

Anderle, M., Roy, S., Lin, H., Becker, C., & Joho,
K. (2004), ‘Quantifying reproducibility for dif-
ferential proteomics: noise analysis for protein
liquid chromatography-mass spectrometry of hu-
man serum’ , Bioinformatics 20, 3575–3582.

Ball, G., Mian, S., Holding, F., Allibone, R.O., Lowe,
J., Ali, S., Li, G., McCardle, S., Ellis, I.O.,
Creaser, C., & Rees, R.C. (2002), ‘An integrated
approach utilizing artificial neural networks and
SELDI mass spectrometry for the classification
of human tumours and rapid identification of po-
tential biomarkers’, Bioinformatics 18, 395–404.

Brennan, M.-L., Penn, M.S., Van Lente, Nambi, V.,
Shishehbor, M.H., Aviles, R.J., Goormastic, M.,
Pepoy, M.L., McErlean, E.S., Topol, E.J., Nis-
sen, S.E., & Hazen, S.L. (2003 ), ‘Prognostic
value of myeloperoxidase in patients with chest

Proc. 2006 Workshop on Intelligent Systems for Bioinformatics (WISB 2006)

65



pain’, The New England Journal of Medicine 13,
1595–1604.

Conrads, T.P., Zhou, M., Petricoin III, E.F., Liotta,
L. & Veenstra, T.D. (2003), ‘Cancer diagnosis
using proteomic patterns’, Expert Rev. Mol. Di-
agn. 3, 411–420.

Deutsch, C.V. (2002), Geostatistical Reservoir Mod-
eling. Oxford University Press, New York.

de Trad, C.H., Fang, Q. & Cosic, I. (2002), ‘Protein
sequence comparison based on the wavelet trans-
form approach’, Protein Engineering 15, 193–
203.

Gray, R.M. (1984), ‘Vector quantization’, IEEE
ASSP Mag. 1, 4–29.

Griffin, T., Goodlett, T. & Aebersold, R. (2001), ‘Ad-
vances in proteomic analysis by mass spectrom-
etry’, Curr. Opin. Biotechnol. 12, 607–612.

Isaaks, E.H. & Srivastava, R.M. (1989), An Introduc-
tion to Applied Geostatistics. Oxford University
Press, New York, 1989.

Itakura, F. & Saito, S. (1970), A statistical method
for estimation of speech spectral density and for-
mant frequencies’, Electronics and Communica-
tions in Japan 53A, 36–43.

Lazovic, J. (1996), ‘Selection of amino acid parame-
ters for Fourier transform-based analysis of pro-
teins’, CABIOS 12, 553–562.

Levner, I. (2005), ‘Feature selection and near-
est centroid classification for protein mass
spectrometry’, BMC Bioinformatics 6:68,
(http://www.biomedcentral.com/1471-
2105/6/68).

Lilien, R.H., Farid, H., & Donald, B.R. (2003),
‘Probabilistic disease classification of expression-
dependent proteomic data from mass spectrom-
etry of human serum’, J. Computational Biology
10, 925–946.

Linde, Y., Buzo, A., and Gray, R.M. (1980), ‘An Al-
gorithm for Vector Quantization’, IEEE Trans.
Communications 28, 84–95.

Makhoul, J. (1975), ‘Linear prediction: a tutorial re-
view’, Proc. IEEE 63, 561–580.

Morris, J.S., Coombes, K.R., Koomen, J., Baggerly,
K.A., & Kobayashi, R. (2005), ‘Feature extrac-
tion and quantification for mass spectrometry
in biomedical applications using the mean spec-
trum’, Bioinformatics 21, 1764–1775.

Petricoin, E.F., et al. (2002), ‘Use of proteomic pat-
terns in serum to identify ovarian cancer’, Lancet
359, 572–577.

Petricoin, E.F. & Liotta,L.A. (2003), ‘Mass
spectrometry-based diagnostics: The up-
coming revolution in disease detection’, Clinical
Chemistry 49, 533–534.

Pham, T.D. & Wagner, M. (1998 ), ‘A geostatistical
model for linear prediction analysis of speech’,
Pattern Recognition 31, 1981–1991.

Pham, T.D. (2006), ‘LPC cepstral distortion measure
for protein sequence comparison’, IEEE Trans.
NanoBioscience 5, 83–88.

Rabiner, L.R., Sondhi M.M., and Levinson, S.E.
(1984), ‘A vector quantizer incorporating both
LPC shape and energy’, Proc. Int. Conf. Acous-
tics, Speech, and Signal Processing, pp. 17.1.1–
17.1.4,.

Rabiner, L. & Juang, B.H. (1993), Fundamentals of
Speech Recognition. New Jersey, Prentice Hall.

Salmi, J., Moulder, R., Filen, J.-J., Nevalainen, O.S.,
Nyman, T.A., Lahesmaa, R. & Aittokallio, T.
(2006), ‘Quality classification of tandem mass
spectrometry data’, Bioinformatics 22, 400–406.

Sauter, E., et al. (2002), ‘Proteomic analysis of nipple
aspirate fluid to detect biologic markers of breast
cancer’, Br. J. Cancer 86, 1440–1443.

Shin, H. & Markey, M.K. (2006), ‘A machine learn-
ing perspective on the development of clinical
decision support systems utilizing mass spectra
of blood samples’, J. Biomedical Informatics 39,
227–248.

Sorace, J.M. & Zhan, M. (2003), ‘A data re-
view and re-assessment of ovarian cencer
serum proteomic profiling’, BMC Bioinformat-
ics 4:24, (http://www.biomedcentral.com/1471-
2105/4/24).

Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S.,
Shi, G., Koong, A. & Le, Q.-T. (2004), ‘Sample
classification from protein mass spectrometry, by
‘peak probability contrasts”, Bioinformatics 20,
3034–3044.

Vaidyanathan, P.P. (2004), ‘Genomics and pro-
teomics: A signal processor’s tour’, IEEE Cir-
cuits and Systems Magazine, Fourth Quarter
pp. 6–28.

Xiong, J. (2006), Essential Bioinformatics, Cam-
bridge University Press, New York.

Yu, J.S., Ongarello, S., Fiedler, R., Chen, X.W., Tof-
folo, G., Cobelli, C. & Trajanoski, Z. (2005),
‘Ovarian cancer identification based on dimen-
sionality reduction for high-throughput mass
spectrometry data’, Bioinformatics 21, 2200–
2209.

Weir, M.P., Blackstock, W.P., & Twyman, M. (2003),
Proteomics, in C.A. Orengo, D.T. Jones, and
J.M. Thornton, eds, ‘Bioinformatics: Genes,
Proteins & Computers’, BIOS Scientific Publish-
ers, pp. 245–257.

Wu, Q., & Castleman, K.R. (2000), ‘Automated chro-
mosome classification using wavelet-based band
pattern descriptors’, Proc. 13th IEEE Symp.
Computer-Based Medical Systems, pp. 189–194.

Wu, B., Abbott, T., Fishman, D., McMurray, W.,
Mor, G., Stone, K., Ward, D., Williams, K.
& Zhao, H. (2003), ‘Comparison of statistical
methods for classification of ovarian cancer us-
ing mass spectrometry data’, Bioinformatics 19,
1636–1643.

Wulfkuhle, J.D., Liotta, L.A. & Petricoin, E.F.
(2003), ‘Proteomic applications for the early de-
tection of cancer’, Nature 3, 267–275.

Zhou, X., Wang, H., Wang, J., Hoehn, G., Azok. J.,
Brennan, M.L., Hazen, S.L., Li, K., & Wong,
S.T.C., (2006), ‘Biomarker discovery for risk
stratification of cardiovascular events using an
improved genetic algorithm’, Proc. IEEE/NLM
Int. Symposium on Life Science and Multimodal-
ity, July 13-14, Washington, DC.

CRPIT Volume 73

66



Automated Sub-Cellular Phenotype Classification: An Introduction
and Recent Results

N. Hamilton1,2,3 R. Pantelic1,2 K. Hanson1,2 J.L. Fink1,2

S. Karunaratne1,2 R.D. Teasdale1,2

1Institute for Molecular Bioscience
2ARC Centre in Bioinformatics

3Advanced Computational Modelling Centre
The University of Queensland, Brisbane Qld 4072, Australia

Email: n.hamilton@imb.uq.edu.au

Abstract

The genomic sequencing revolution has led to rapid
growth in sequencing of genes and proteins, and at-
tention is now turning to the function of the encoded
proteins. In this respect, microscope imaging of a
protein’s subcellular location is proving invaluable.
High-throughput methods mean that it is now possi-
ble to capture images of hundreds of protein localisa-
tions quickly and relatively inexpensively, and hence
genome-wide protein localisation studies are becom-
ing feasible. However, to a large degree the analysis
and localisation classification are still performed by
the slow, coarse-grained and possibly biased process
of manual inspection. As a step towards dealing with
the fast growth in subcellular image data the Auto-
mated Sub-cellular Classification system (ASPiC) has
been developed: a pipeline for taking cell images, gen-
erating statistics and classifying using SVMs. Here,
the pipeline is described and correct classification
rates of 93.5% and 86.5% on two 8-class subcellu-
lar localisation datasets are reported. In addition we
present a survey of other important applications of
cell image statistics. The complete image sets are be-
ing made available with the aim of encouraging fur-
ther research into automated cell image analysis and
classification.

Keywords: Subcellular phenotype, subcellular locali-
sation, image statistics, image classification, machine
learning.

1 Introduction

The advent of fast, automated and inexpensive se-
quencing technologies led to the completion of the
human, mouse and many other genomes, and an expo-
nential growth in genomic data. Sequence-based ma-
chine learning has played a pivotal role in automated
annotation and prediction of structure and function
of novel sequences and has become an essential tool.
However, while sequence data are invaluable further
information, such as experimentally-determined sub-
cellular localisation (see Figure 1), trafficking and
interaction partners is required to fully understand
the functions of the tens of thousands of proteins
that have been identified (Fink, Aturaliya, Davis,
Zhang, Hanson, Teasdale & Teasdale 2006)(Stow &
Teasdale 2005). Sequence-based approaches have
been applied to predicting localisation (Yu, Chen, Lu

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at The 2006 Workshop on Intelligent Systems for
Bioinformatics (WISB2006), Hobart, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 73. Mikael Bodén and Timothy L. Bailey, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

& Hwang 2006) but tend to need high homology to
proteins of known localisation, and so experimental
verification is a necessity. Automated fluorescent mi-
croscope imaging technologies mean that it is now
possible to capture hundreds of images per second
including multiple fluorophores for cells under a vari-
ety of experimental conditions (Lang, Yeow, Nichols
& Scheer 2006)(Bonetta 2005). Furthermore, cells
may now be imaged in 3D, or indeed in 4D with a
3D stack captured over time to observe protein traf-
ficking in real time. The desire and the ability to
do high-throughput screenings of protein localisation
and trafficking is leading to a rapid growth in cell im-
ages in need of analysis on a scale comparable to that
of the genomic revolution. Automated image analysis
and classification is essential.

Much of the reason for the rapid growth of ma-
chine learning techniques applied to genomic data is
ubiquitousness of sequence information from publicly
available databases. Until recently, dissemination of
cell image data involved selection of a few “represen-
tative” images for publication in a paper. But a much
richer range of data is becoming available with large-
scale publicly accessible cell image databases such as
the LOCATE mouse protein subcellular localisation
database (Fink et al. 2006) (more databases are listed
in (Matthiessen 2003)). Currently, the databases are
largely human-curated, but the data becoming avail-
able offer many opportunities to train and apply ma-
chine learning techniques to experimental image clas-
sification and analysis. There is a real need to refine,
discriminate and quantify to produce annotation of
images in cell databases. Cells can exhibit a wide
range of behaviours over the cell cycle that can po-
tentially skew results, and techniques have been de-
veloped to automatically determine the phase of cell
image sequences (Pham, Tran, Zhou & Wong 2006).
Aberrant cell morphology also presents an interest-
ing challenge to image classification. Atypical mor-
phology may skew data when examining normal cells.
Alternatively, atypical morphology may be the pri-
mary attribute which assists in the discrimination be-
tween, for instance, normal cells and cancerous cells
(Thiran, Macq & Mairesse 1994). On the quantita-
tive side, methods have been developed to select and
count substructures, such as puncta (Pham, Crane,
Tran & Nguyen 2004), from cell images. These au-
tomated techniques offer the opportunity to annotate
at a much more refined level, thereby increasing the
quality of data and allowing more subtle hypotheses
to be tested.

As well as presenting the ASPiC pipeline, the aim
here is to draw attention to the large image data sets
that are now becoming available and to the great need
for, and applications of, machine learning to these
sets. In the following, we begin with an introduction
to image statistics and their potential applications to
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Figure 1: Samples of endogenously expressed proteins from our datasets

high-throughput cell imaging problems. The ASPiC
system and the image sets being made available are
then described, and we conclude with some remarks
on future directions for analysis of subcellular imag-
ing.

2 Image Statistics and their Uses

A common problem in cell biology is to determine the
subcellular localisation of a given protein: does it lo-
calise to the nucleus or the cytoplasm? Has treatment
of the cell modulated the localisation of an individual
protein? Examples of fluorescently-tagged proteins
exhibiting various subcellular localisations are shown
in Figure 1. While applying learning algorithms with
the image itself as input has proved quite successful
(Danckaert, Gonzalez-Couto, Bollondi, Thompson &
Hayes. 2002), generation of numeric image measures
has a wider range of applications. The aim is to find
measures that can differentiate between localisations
in distinct classes when localisations within a given
class can exhibit a very wide range of expression pat-
terns and morphologies. To be applicable to as wide
a range of images as possible, cell image measures
should ideally be invariant under rotation, transla-
tion and scale changes. Here, some of the measures
that have been applied to quantifying subcellular lo-
calisation images are described. More may be found
in (Conrad, Erfle, Warnat, Daigle, Lorch, Ellenberg,
Pepperkok & Eils 2004) and (Huang & Murphy 2004).

Area Intensity Measures

Typically, for subcellular localisation a pair of micro-
scope images will be taken: one of the fluorescently-
tagged protein of interest (POI); and one in which
the nucleus of the cell is fluorescently-labelled. From
these, image masks of the POI and the nucleus are
created (see Figure 2). Area and intensity measures
may then be calculated: the area of the region that
the POI is expressed in; average intensity across the
masked region; the ratio of the intensities of the POI
in the nuclear to non-nuclear regions; area and in-
tensity averages over various intersections and differ-
ences of POI and nuclear masks; and the standard
deviation of the POI image intensity in the mask re-
gion. Statistics such as these will easily differentiate
between proteins expressing in the cytoplasm and the
nucleus. Generally, area and intensity ratio measures
are better in that they are less affected by the image
resolution or exposure.

Haralick Texture Measures

A more refined set of image measures that have been
applied to a wide range of problems such as satel-
lite imaging and computerized tomography are the
Haralick texture measures (Haralick 1979). The idea
is to find the correlation (and other measures) be-
tween pixel intensities at a given distance and an-
gle. Hence, if an image contained a series of high-
intensity bands at a given separation, a Haralick cor-
relation measure (with the appropriate distance and
angular separation) will return a high value. Suppose
an image contains N gray tones, then for a given pixel
pair separation d and angle θ a N × N gray tone co-
occurrence table P is constructed. The entries Pij
are the relative frequency with which two pixels sep-
arated by distance d and angle θ have gray tone val-
ues i and j, respectively. Measures such as unifor-
mity:

∑
ij P 2

ij ; entropy:
∑

ij Pij log Pij ; and corre-
lation:

∑
ij (i − µ)(j − µ)Pij/σ2, where µ and σ are

the mean and standard deviation of the pixel intensi-
ties, are then applied to the occurrence matrix. The
Haralick statistics may be applied to the whole of the
mask region of the POI, or to subregions of it defined
by intersections and differences of the POI and nu-
clear masks. Since there are many possible choices of
d and θ, for a given d the occurrence matrix is some-
times averaged over a range of values of θ such as 0◦,
90◦, 180◦ and 270◦ degrees. This has the advantage
of reducing rotational variance, though may lead to a
reduced signal. More Haralick measures are given in
the Appendix.

Zernike Moments

Another set of measures that are computation-
ally relatively inexpensive and have proved use-
ful in cell imaging are the Zernike moments
(Khotanzad & Hong 1990)(Boland, Markey &
Murphy 1998)(Zernike 1934). These are calculated
using an orthogonal polynomial set, the Zernike Poly-
nomials, on the unit circle. Given a complete (infi-
nite) set of Zernike moments for a given image it is
in theory possible to reconstruct the image perfectly.
However, calculation of the first few moments will
often give a general sense of the morphology of the
imaged object, much as a small subset of Fourier co-
efficients will for a time series (Boland et al. 1998).
The discrete equations for the Zernike moments are
given in the Appendix.
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Applications

In general, no one statistic is a good predictor of
subcellular phenotype, and so machine learning tech-
niques such as neural networks and support vector
machines have been applied to classification based on
image statistics. As shown in the next section, clas-
sification accuracies of greater than 90% may be ob-
tained. In addition to allowing high-throughput clas-
sification of new images, an immediate application of
a phenotype classifier is to image database curation.
As the size and number of image databases expands,
quality and uniformity of human classification be-
comes an issue. Experiments by Murphy lab on a set
of images with 10 distinct known subcellular localisa-
tions (similar to those in Figure 1) found human clas-
sifiers had an accuracy of 83% compared to 92% for a
machine classifier (Huang & Murphy 2004)(Murphy,
Velliste & Porreca 2003). This may in part be ex-
plained by the inherent difficulty in providing accu-
rate classifications for hundreds of images over a long
time period, but it is worth noting that the human
eye only registers a few tens of distinct gray scale val-
ues at a time, while a 8-bit cell image file may have
close to 250, and hence there is potential for software
to “see” much more. By flagging for re-examination
the images for which the human and machine classifi-
cations disagree, there is the potential to significantly
improve database quality.

Other applications of image statistics include rep-
resentative image selection and statistical comparison
of image sets. In the former, given a set of images of a
particular protein, the aim is to select the image that
best represents the variety of distributions observed.
This may be done by finding the image that has statis-
tics closest to the mean statistics vector of all the im-
ages (Roques & Murphy 2002). In the latter, there
are two sets of experimental conditions for a protein
where it is required to ascertain whether the two dis-
tributions are statistically significantly different. Us-
ing the Hotelling T 2-test on the image statistics, it
has been shown (Roques & Murphy 2002)(Huang &
Murphy 2004) that sets with the same localisation
may be correctly identified, and that expression pat-
terns that were known to be different can be distin-
guished, even to the extent of differentiating visually-
indistinguishable images.

Finally, cell image statistics offer the possibility
of searching image databases for similar images on
the basis of image content rather than the (possibly
biased) keywords supplied by the experimenter. Ar-
guably the most powerful tool for genomic inference is
the BLAST sequence matching algorithm (Altschul,
Gish, Miller, Myers & Lipman 1990) that finds and
quantifies similarity between sequences in a database.
Once an “image BLAST” is developed for cell image
databases, the ability to deduce biological inferences
and associations will be greatly increased.

3 The ASPiC Pipeline

The Automated Subcellular Phenotype Classification
system (ASPiC) is a fully-automated pipeline from
experimental image to a subcellular classification suit-
able for direct database entry. The principle steps are
outlined in Figure 2 and are described in detail be-
low. ASPiC is currently being integrated into the
LOCATE database (Fink et al. 2006) where it is pro-
viding classification on a 3-class nuclear or cytoplasm
or nuclear and cytoplasm problem. Here, we describe
its application to two 8-class subcellular localisation
datasets. Other applications such as representative
image selections are under development. The major
parts of ASPiC are implemented in C++ using the

ImageMagick++ image libraries.

3.0.1 Image Sets

An image collection was created for each of 8 sub-
cellular organelles in two types of sets; one in which
an endogenous protein or feature of the specific or-
ganelle was detected with a fluorescent antibody
or other probe; and another in which an epitope-
or fluorescently-tagged protein was transiently ex-
pressed (transfected) in the specific organelle and sub-
sequently detected. Each set consisted of 50 images.
Each image was accompanied by an additional im-
age of the cells counterstained with the DNA spe-
cific dye 4,6-diamidino-2-phenylindole (DAPI), which
highlights the location of the nucleus of every cell in
the image. All images were of fixed HeLa cells, taken
at 60X magnification under oil immersion. More de-
tails are available with the image sets.

Automated Cropping and Cell Selection

The first step is to select regions in which proteins
are expressing in the POI and nuclear images using
an automated grayscale thresholding scheme. A va-
riety of schemes were tried, but the best was found
to be to choose a minimum intensity and a maximum
intensity, and take the average (µ) and standard de-
viation (σ) of the pixels with intensities in this range.
For the POI images, a minimum intensity of 30 and
a maximum of 250 is used, and 20 and 250 for the
nuclear images. The threshold for the image is then
set to µ− 0.9σ, and above threshold pixels define the
regions of interest. Using these minima and maxima
in the calculation of µ and σ removes pixels that are
either certainly background or overexposed, and gives
results that were generally in agreement with the re-
gions that the eye considers to be of interest. Con-
tiguous regions are then selected and cropped in the
POI image, together with the corresponding area in
the nuclear image. To remove artefacts, any selected
region that is small or faint is discarded. The circular-
ity (perimeter squared over area) of the nuclear region
mask is calculated, and nuclei with large circularity
are discarded as these usually represent multiple or
poorly imaged nuclei in a cell. In the case of mul-
tiple nuclei in the cropped region, the most central
is selected. In some cases cells are not separable by
thresholding. This is detected by multiple disjoint
nuclei (in the nuclear mask) being contained within
the POI mask, and is treated as a single cell by AS-
PiC. Using these criteria approximately 93% of source
images are found to contain one or more valid cells.

Image Statistics

For each cropped cell a total of 95 statistics are gener-
ated composed of 25 area and intensity measures, 21
Haralick statistics and 49 Zernike moments of up to
degree 12. Since Zernike moments are not rotationally
invariant, the magnitudes of the moments are taken
to minimise sensitivity to cell orientation. The area
and intensity measures arise from taking intersections
and differences of the POI and nuclear masks, and
calculating average intensities, areas, intensity ratios
and area ratios. Haralick measures were chosen from
a list of those shown to be good for distinguishing
subcellar localisation in (Conrad et al. 2004). Details
of the measures used by ASPiC may be found in the
Appendix.

Training and Testing

Support vector machine classifiers were created for
the 8-class endogenous and 8-class transfected image
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Figure 2: The Automated Subcellular Phenotype Classification System (ASPiC)

sets using the libsvm software with an RBF kernel
(Chang & Lin 2001). An ANN was also briefly trained
and tested on the same data sets, but found to give
lower performance (data not shown). Two parame-
ters are required to create and train the SVM: γ, the
coefficient of the exponent for the RBF kernel and
C, the penalty parameter of the error term. A grid
search was performed to choose the values of γ and
C that gave the best 5-fold cross validated perfor-
mance on each data set. On the endogenous data
set, the best cross validation accuracy was 94.3% us-
ing γ = 0.03716 and C = 26.91. For the tranfected
data set, an accuracy of 89.8% was obtained using
γ = 0.03284 and C = 89.84. Linear kernels were
also tested with 5-fold cross validation on each data
set, and gave 91.8% and 89.2% on the endogenous
and transfected data sets, respectively. Polynomial
kernels were also tested, but were also found not to
perform as well as the RBF kernel. Once the RBF
kernel and parameters were fixed as above, 100 ran-
dom (class-balanced) splits of the data into 4/5 train-
ing and 1/5 testing set were performed and an SVM
trained and tested. For each test set, the overall per-
centage of correct predictions was recorded, as well as
the percentage of correct predictions for each class of
the data in the test set.

Schemes for selecting subsets of the statistics
ranked by F-score were also investigated using the
fselect script available for libsvm. Selection by F-
scores has been shown to significantly improve per-
formance on some data sets (Chen & Lin 2006). The
F-scores varied widely, from 0.02 to 9.2 for the en-
dogenous data set, and from 0.04 to 6.2 on the trans-
fected data set. There was no clear bias in ranking
either subregion, Zernike or Haralick statistics highly,
with all three types represented in the top ten. For
each of the endogenous and transfected data sets, 5-
fold cross validating with the best ranked subsets of
95, 72, 47, 23, 11, 5 and 2 features showed either no
improvement or significantly degraded performance.

Post Classification Filtering

ASPiC includes a voting system for multiple classi-
fications of the same protein in distinct cells where
split votes are broken by the maximum confidence
score output by the SVM. There are a variety of
approaches to post-classification filtering (Chen, &

Murphy 2006), however, here we report raw classifi-
cation accuracies in order that the true accuracy may
be seen.

3.0.2 Classification Accuracy and Comparing
the Incomparable

Over 100 trials of splitting data sets 4/5 to 1/5
for training/testing the average correct classification
rates were 93.1% for the endogenous test sets and
87.9% for the transfected, with standard deviations
of 1.58 and 2.51, respectively. To test which classes
were accurately or poorly classified, the classification
accuracies for each image class were also recorded
and the averages are given in Table 1. Generally,
the classification accuracies are high, though certain
classes such as the cytoskeleton classes are less well-
predicted for transfected cells. Those that are poorly
predicted tend to be those that are visually similar
to other classes. ASPiC has also been tested using
only those statistics that require a POI and not a nu-
clear image, and gave cross-validation results around
2.5% lower than those above. Before comparing these
results with previous literature, it should be made
clear that each group is testing their system on dis-
tinct image sets with different numbers of subcellular
classes and varying degrees of automation, and hence
are not necessarily directly comparable. Murphy lab
have been developing and improving subcellular phe-
notype classifiers for a number of years and have con-
tributed much in the area of subcellular image statis-
tics and their uses. The most recent report (Huang
& Murphy 2004) on subcellular classification gives
88% for a pure neural network classifier on a 10-class
problem with manual cropping and curating. The
image sets were prepared using protein antibodies of
known localisation, and hence are comparable to our
endogenous image sets. Using a majority voting sys-
tem combining a number of learning algorithms, 92%
was obtained on the same set. A wide range of statis-
tics were used and various feature selection algorithms
used to select the best for training including Zernike
moments and Haralick measures, though their imple-
mentation of Haralick measures differs from ASPiC’s
in that ASPiC does not average over a range of angles.
Also of interest is the work of Conrad et al. (Conrad
et al. 2004) in which a wide variety of image statis-
tics, feature selection and learning algorithms were
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Endo. Mito-Cyto. Endosome ER Golgi Actin-Cyto. Lysosome Mitochondria PM

# 45 31 59 48 29 62 68 22
Acc. 96.7 93.5 93.9 98.9 83.6 94.9 91.3 88.8
Trans. Cytoplasm Lysosome ER Endosome Peroxisome Mito-Cyto. Actin-Cyto. Nucleus

# 43 16 59 30 34 37 27 23
Acc. 99.7 98.7 84.5 80.4 89.0 78.5 85.5 100

Table 1: Average classification percentages on Endogenous and Transfected test sets over 100 randomised splits
of the data into 4/5 training, 1/5 testing.

tested on 11 classes of subcellular phenotype images.
Of the methods tested, they found stepwise feature
selection in conjunction with a SVM offered the best
performance with an accuracy of 82.2%. While com-
parison is problematic, ASPiC is certainly competi-
tive with a 93.1% accuracy, it is simple in that it is
fully-automated and uses a single machine learning
method, and has been shown to perform well on un-
curated images.

4 Conclusions

It is clear that image statistics can differentiate sub-
cellular localisation to a high degree of accuracy,
and that automation offers many advantages in high-
throughput, time saved, consistency and quantifica-
tion.

Currently, statistics are relatively slow to com-
pute. Cells need to be selected from images of plates,
cropped, and then up to a hundred statistics calcu-
lated, all of which can take of the order of seconds
on a standard PC. When faster statistics are devel-
oped the range of applications will grow. One ap-
plication would be to flow cytometry where cells are
imaged and sorted on the fly (Bonetta 2005). With
current technology, cells are typically sorted accord-
ing to whether a cell is expressing a protein (bright) or
not (dark). A fast classifier would enable selection of,
for instance, all those cells for which a given protein is
expressing in the Golgi, and then perform further ex-
periments on those. New statistics we are developing
look promising as quick, relatively accurate measures
with no cropping.

As the flood of cell image data begins, the need
for new applications of classification and discrimina-
tion are greatly increasing. Certainly there is a need
for automated classification, but cell image databases
also need the ability to be queried by image exam-
ple in a way that understands the content of the
image rather than by matching researcher-supplied
keywords. If a researcher was looking to see if a
protein localised to the Golgi, they may not have
noted that it was in fact localising to a subregion of
the Golgi. However, an image content-based search
might provide that level of discrimination. In the fu-
ture, as biological databases become more integrated
and queryable, it should be possible, for instance,
with a few mouse clicks to start with a protein se-
quence, find images of its subcellular localisation,
“image BLAST”to find proteins that exhibit similar
expression or co-expression patterns, then read source
literature on the proteins.

Experimental images described herein are avail-
able via the LOCATE web interface (Fink et al. 2006).

5 Appendix: Features used in ASPiC

Haralick Texture Measures

Suppose an image contains N gray tones, then for a
given pixel pair separation d and angle θ a N×N gray

tone co-occurrence table P is constructed. The entries
Pij are the relative frequency with which two pixels
separated by distance d and angle θ have gray tone
values i and j, respectively. This definition of the gray
tone co-occurrence table is as in (Haralick 1979) with
the minor variation that the matrix has been nor-
malised to give relative frequencies rather than counts
of pixel pairs. The following image statistics are then
calculated in ASPiC.
Correlation:

∑
ij (i − µ)(j − µ)Pij/σ2 where µ and

σ are the mean and standard deviation of the pixel
intensities.
d = 3, θ = 0; d = 4, θ = 45; d = 3, θ = 135.
Correlation2 : Haralick’s second information measure
of correlation. See (Haralick, Shanmugam & Dinstein
1973).
d = 2, θ = 0; d = 3, θ = 45; d = 1, θ = 135.
Contrast :

∑
ij(i − j)2Pij

d = 5, θ = 0; d = 5, θ = 135.
Inverse difference moment :

∑
ij Pij/(1 + (i − j)2)

d = 1, θ = 90.
Unformity:

∑
ij P 2

ij

d = 1, θ = 0; d = 2, θ = 0; d = 4, θ = 45.
Entropy:

∑
ij Pij log Pij

d = 4, θ = 135.
Sum entropy:

∑
k((

∑
i+j=k Pij) log(

∑
i+j=k Pij))

d = 1, θ = 0; d = 4, θ = 90.
Difference entropy:

∑
k((

∑
|i−j|=k Pij) log(

∑
|i−j|=k Pij))

d = 4, θ = 0; d = 3, θ = 45; d = 1, θ = 45.
Sum variance:

∑
k(k−S)2

∑
i+j=k Pij where S is the

sum entropy.
d = 4, θ = 90.

Zernike Moments

The magnitudes of the first 12 Zernike moments are
calculated exactly as described by the equations in
(Boland et al. 1998) to give 49 features as follows.
Let I(x, y) be the pixel intensity at position (x, y).
Define

Znl =
n + 1

π

∑

x,y

V ∗
nl(x, y)I(x, y)

where x2 + y2 ≤ 1, 0 ≤ l ≤ n, n − l even, and V ∗
nl is

the complex conjugate of the Zernike polynomial of
degree n and angular dependence l, given by

Vnl(x, y) =
(n−l)/2∑

m=0

(−1)m(x2 + y2)n/2−meilθ(n − m)!
m!(n−2m+l

2 )!(n−2m−l
2 )!

where θ = tan−1(y/x).
Cell images are centered when cropped. To scale

each cell image into the unit circle, pixel coordinates
are divided by 100 before calulation of the Zernike
moments.
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Subregion Statistics

Denoting the mask selected region of the POI by P,
nuclear mask selected region by N, and the area of
a region A by |A|, the following area statistics are
calculated: |P |, |N |, |P−N |, |N−P |, |P∩N |, |N |/|P |,
|P −N |/|N |, |P −N |/|P |, |N −P |/|P |, |N ∩ P |/|P |,
|N − P |/|N | and |N ∩P |/|N |. The variance over the
POI mask region, as well as the ratio of the perimeter
squared over the area of the POI mask region, are also
calculated.

Denoting the average pixel intensity over a region
A by (A)I , the following intensity measures are cal-
culated in the POI image: (P )I , (N)I , (P − N)I ,
(N −P )I , (P ∩N)I , (P −N)I/(P )I , (N −P )I/(P )I ,
(N ∩ P )I/(P )I , (N − P )I/(P )I , (N ∩ P )I/(P )I ,
(N)I/(P )I and (P − N)I/(N)I .
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Abstract

We present new algorithms for segmenting neuron im-
ages which are taken from cells being grown in culture
with oxidative agents. Information from changing im-
ages can be used to compare changes in neurons from
the Zellweger mice to those from normal mice. Image
segmentation is the first and major step for the study
of these different types of processes in neuron cells.
It is difficult to segment it as these neuron cell im-
ages from stained fields and unimodal histograms. In
this paper we develop an innovative strategy for the
segmentation of neuronal cell images which are sub-
jected to stains and whose histograms are unimodal.
The proposed method is based on logical analysis of
grey difference. Two key parameters, window width
and logical threshold, are automatically extracted to
be used in logical thresholding method. Spurious re-
gions are detected and removed by using hierarchical
filtering window. Experiment and comparison results
show the efficiency of our algorithms.

Keywords: Neuron cell imaging, segmentation, grey
difference, distance difference, filtering window.

1 Introduction

Information taken from images of neuron cells being
grown in culture with oxidative agents allows life sci-
ence researchers to compare changes in neurons from
the Zellweger mice to those from normal mice. Neu-
ron degeneration refers to the excessive damage or
loss of neurons, or brain and spinal cord cells which
perform different functions such as controlling move-
ment, processing sensory information, and making de-
cisions. Neuron degenerative diseases can cause dev-
astating effects on an individual. It is clear that image
analysis and recognition are useful tools to help our
study of the neuron degeneration in a human disor-
der called Zellweger syndrome. In our study, the cells
are from mice that are a model of the Zellweger syn-
drome, a severe neuron degenerative disorder charac-
terised by death in the first 16 months after birth,
severe dysmorphia, hypotonia, and other widespread
tissue defects. This disorder arises because of defects
in cellular organelles called peroxisomes, that are re-
quired for a number of essential cellular metabolic
functions. We have hypothesised that the loss of per-
oxisomes in neurons results in these cells being suscep-
tible to oxidative stress, because peroxisomes contain
a number of important antioxidant enzymes, includ-
ing catalase needed to break down hydrogen perox-
ide that is made in cells. In response to oxidative

stress, we propose that these neurons will deterio-
rate. In morphological terms, we expect to see this
initial deterioration as the contraction, and eventually
loss, of processes of neurons grown in culture. Given
the above motivation, image analysis by segmenta-
tion is an efficient method that allows us to measure
the changes in cell process number and length from
images taken of cells being challenged in culture with
oxidative agents. The changes in neurons from the
Zellweger mice can be compared to those from nor-
mal mice in a quantitative manner based on image
analysis and recognition. Some neuron cell images
subjected to 350 µMH2O2 with different time (t=5,
15, 30, 60, 120 and 180 mins) are shown in Fig. 1.
So the first and most important step is extract neu-
ron images from original images which have stained
fields and unimodal histograms. Many methods are
investigated for image segmentation. Application of
each approach can be useful for solving some partic-
ular problem. However, in general, segmentation of
nontrival images is still one of the most difficult task
in image processing.

In order to segment object images from poor qual-
ity images with shadows, nonuniform illumination,
low contrast, large signal dependent noise, smear and
smudge, it is essential to threshold the image reli-
ably. Therefore, thresholding an intensity image into
two levels is the first step and also a critical part
in most image analysis systems as any error in this
stage will propagate to all later processing, analysis,
recognition etc. Although many thresholding tech-
niques, such as global (Ostu 1978) (Lee, Chung
& Park 1990) (Pham & Crane 2005) (Chi, Yan
& Pham 1996) and local thresholding (Deravi &
Pal 1983) (Nakagawa & Rosenfeld 1979) algorithms,
multi thresholding methods (Papamarkos & Gatos
1994) and unimodal threshholding (Rosin 2001) have
been developed in the past, it is still difficult to deal
with images with very low quality. Major problems
of segmenting poor quality images are variable back-
ground intensity due to nonuniform illumination, low
local contrast due to smear or smudge and shadows.
For example, one group of screening neuron cell im-
ages from stained fields and monomodal histograms
are shown in Fig. 1. In this paper, we propose inno-
vative segmentation algorithms of neuron cell images,
which are a thresholding method based on logical level
technique with difference analysis of the grey region
and filtering window with contained condition. This
thresholding method is used to binarize poor quality
greyscale neuron cell images. The thresholding pa-
rameters of this method are automatically selected
based on difference analysis of grey region. In or-
der to segment neuron cell images, binarized images
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(1) t=5 mins

(2) t=15 mins

(3) t=30 mins

(4) t=60 mins

(5) t=120 mins

(6) t=180 mins

Figure 1: One example of neuron cell screening.

are filtered by hierarchical filtering window with con-
tained condition. Our method can deal with variable
background intensity caused by nonuniform illumina-
tion, shadow, smear or smudge and low contrast with-
out obvious loss of useful information. This paper is
orgnized as follows. In Section 2, we briefly review
related works on image thresholding techniques. In
Section 3, segmentation algorithms of neuron cell im-
ages, logical level technique with difference analysis
of grey region and filtering window with contained
condition are described. In Section 4, we illustrate
the performance of the proposed methods using sev-
eral experiments, and compare several experiments of
the proposed method to some related segmentation
methods. We then conclude our analyzer in the final
section.
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Figure 2: Unimodal histogram of images in
Figs. 1(1,5,6).

2 Related work

The most commonly used global thresholding tech-
niques are based on histogram analysis (Ostu
1978)(Lee et al. 1990). Threshold is determined from
the measure that best separates the levels correspond-
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ing to the peaks of the histogram, each of which cor-
responds to image pixels of a different part like back-
ground or objects in the image. A threshold is an
intensity value which is used as the boundary be-
tween two classes of a binary segmented image. These
methods do not work well for the poor quality images
with shadows, inhomogeneous backgrounds, complex
background patterns which may have a histograms
that contains a single peak. For example, the his-
tograms of images in Figs. 1(1,5,6) are single peak
(unimodal), which are shown in Fig. 2. In this case,
a single threshold could not result in an accurate bi-
nary image. For example, if the neuron cell images
in Figs. 1(1-6) are segmented by Otsu’s method, then
binarization results are shown in Fig. 3.

Distinct from thresholding method, k-Means clus-
tering is involved to determine classes themselves,
rather than a threshold value (Zhang 2000). Fuzzy
c-Means Clustering is used to segment images, which
is called as FCM (Chi et al. 1996). However these
techniques use only intensity data of images to per-
form segmentations, and as the spatial structure of
the images is not taken into account. Therefore, the
segmentation results are similar to those by Otsu’s
method or more not efficient.

The segmentation result by Sobel edge method
(Gonzalez, Woods & Pham 2002)is not suitable for
the extraction of neuron images because only edge
information of objects is extracted and some useful
parts of neuron image are mist (see Fig. 4). Other seg-
mentation methods, background subtraction meth-
ods cannot be used to extract neuron images for the
database of neuron images used here because back-
ground subtraction methods should be used in no
more changed background for extracting changed ob-
jects (such as moving objects)(Gonzalez et al. 2002).

One unimodal thresholding is approached by
(Rosin 2001). The threshold point is selected as the
histogram index value that maximises the perpendic-
ular distance between the straight line (drawing from
the peak to the high end of the histogram) and his-
togram line. However, this method relies on several
assumptions and was unable to accurately segment
the neuron cell images in Figs. 1(1-6), and their seg-
mentation results are shown in Fig. 5.

3 Logical level technique with difference
analysis of grey region and filtering win-
dow with contained condition

3.1 Logical level technique

Logical level technique are developed to be used to
segment document images images by Kamel, Zhao
(Kamel & Zhao 1993), Yang and Yan (Yang & Yan
2000). After analyzing integrated function algorithm
(Trier & Taxt 1995), Kamel and Zhao proposed Log-
ical level technique. The basic idea is comparing the
grey level of the processed pixel or its smoothed grey
level with some local averages in the neighborhoods,
and the comparison results are regarded as deriva-
tives. Therefore, pixel labeling, detection and extrac-
tion using the derivatives, the logical bound on the
ordered sequences and the window width range can
be adopted. This technique processes each pixel by si-
multaneously comparing its grey level or its smoothed
grey level with four local averages in the selected win-
dow region. Suppose selected window is “W”. The
window region is (2W + 1)2. Let the start point of
the image be upper-left and f(i, j) be grey intensity
of coordinates (i, j), and it is eight neighboring.

Suppose each neighbour point (x, y) is the center
of region (2W + 1)2, then the average grey intensity

(1)

(2)

(3)

(4)

(5)

(6)

Figure 3: Segmentation results of images in Figs. 1(1-
6) by Otsu’s method.
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(1)

(2)

(3)

(4)

(5)

(6)

Figure 4: Segmentation results of images in Figs. 1(1-
6) by Sobel edge method.

(1)

(2)

(3)

(4)

(5)

(6)

Figure 5: Segmentation results of images in Figs. 1(1-
6) by unimodal thresholding method.
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lp(k) of region (2W + 1)2 is

lp(k) =

∑
−W≤m≤W

∑
−W≤n≤W f(x + m, y + n)

(2W + 1)
2

(1)
where if k=0, x = i and y = j +1; k=1, x = i−1 and
y = j + 1; k=2, x = i − 1 and y = j; k=3, x = i − 1
and y = j − 1; k=4, x = i and y = j − 1; k=5,
x = i + 1 and y = j − 1; k=6, x = i + 1 and y = j;
k=7, x = i + 1 and y = j + 1. Therefore grey region
difference (llp(k)) between lp(k) and f(i, j) can be
found

llp(k) = lp(k) − f(i, j) ≥ T k = 0, 1, ..., 7 (2)

where “T ” is predetermined parameter.
The logical level technique is

b(i,j)=






1 if {(llp(0)
∧

llp(4))
∨

(llp(2)
∧

llp(6))
∨

(llp(1)
∧

llp(5))
∨

(llp(3)
∧

llp(7)) } is true
0 otherwise

(3)

where “1” represents object and “0” to represent
background in the resulting binary image.

3.2 Innovative logical logical level technique
with difference analysis of grey region
and filtering window with contained con-
dition

We can find that logical level technique need two
key parameters, window “W” and threshold “T ”.
However, predetermination of these parameters is
difficult, and no efficient method can be found from
logical level technique, hence we have developed
a new method to determine parameters, window
“W” and threshold “T ” automatically based on the
analysis grey regions. Grey region can be defined as
the region between each pair of neighbour grey peak
and valley points in horizontal and vertical direction.
Mathematically, the peak and valley points of image
grey histogram are the points which make the first
order derivative of image grey function equal to zero.
For each row the peak point set, Ph, can be found as
follows.
If the point is starting point of a row and each row
has col points, the peak points in horizontal direction
can be found as follows:
(1) if f(i, 1) > f(i, 2), then the point Ph(i, 1) is a
peak point.
(2) if f(i, 1), ..., f(i, n) > f(i, n + 1) and
f(i, 1) = ... = f(i, n) (n > 1), then the point
Ph(i, 1) is a peak point.
If point is last point of a row, the peak points in
horizontal direction based on two cases:
(3) if f(i, col−1) < f(i, col), then the point Ph(i, col)
is a peak point.
(4) if f(i, col − n − 1) < f(i, col) and
f(i, col − 1) = ... = f(i, col − n) (n > 1), then
the point Ph(i, col) is a peak point.

In other cases, the peak points in horizontal direc-
tion based on two cases:
(5) if f(i, j − 1) < f(i, j) and f(i, j) > f(i, j + 1),
then the point Ph(i, j) is a peak point.
(6) if f(i, j − 1) < f(i, j), ..., f(i, j + n) and
f(i, j)...f(i, j + n) > f(i, j + n + 1) where f(i, j) =
... = f(i, j + n) (n > 1), then the point Ph(i, j) is a
peak point.
Similarly, the valley point set, Vh can be found for
each row of image. Similarly, the peak and valley

point sets, Pv and Vv, of each collum can be found.
Grey regions can be calculated based on found peak
and valley point sets, Ph, Vh, Pv and Vv. For each
grey region two parameters are calculated. The first
parameter is the grey difference between each pair
of neighbour peak and valley points, which can be
represented as Hg(m), m = 1, 2, ...k, where k is re-
gion number for all rows of an image. The second
parameter is distance difference between each pair of
peak and valley points, which can be represented as
Hd(m), m = 1, 2, ...k. Furthermore, one new data set
of grey region in which the number of points that have
same grey difference and distance difference is found.
It can be represented with Hdg(m), m = 1, 2, ...kn
(kn being the number of groups). Sort Hdg(m), m =
1, 2, ...kn based on Hdg(m) get a decreasing data set,
Hdgd(m), m = 1, 2, ...kn. Therefore Hdgd(0) is the
first number of grey regions with same grey and dis-
tance difference, and it is largest. If first tk groups
are summed

Stk =

tk∑

m=1

Hdgd(m). (4)

Parameter tk is selected to meet (Stk/k) ≥ 0.7, where
k is region number for all rows of an image. For ex-
ample, for the image in Fig. 1(6) tk=81, kn=931,
(Stk=8397 and k=11961. We can see only 81 groups
of grey region contain 8397 grey regions which is ap-
proximately equal to 70% of k=11961. Therefore,
here 81 groups of grey region represent major prop-
erty of region distribution of the image in horizon-
tal direction. Based on this idea, window parameter
“W” and threshold “T ” can be determined. “W” and
“T ” are selected as mean region distance and region
grey difference of tk groups of grey region respectively.
That is

Wh =

∑tk

m=1
Hdd(m)

tk
. (5)

Th =

∑tk

m=1
Hgd(m)

tk
. (6)

where Hdd(m) and Hgd(m) is region distance and grey
difference of each group of tk groups in horizontal di-
rection respectively.
Similarly, the peak and valley points, related analysis
parameters, Wv (window parameter in vertical direc-
tion) and Tv (thresholding parameter in vertical di-
rection) in vertical direction of images can be found.
The final window parameter is W = (Wh + Wv)/2,
and thresholding parameter is T = (Th + Tv)/2. We
can find all window parameters, “W”, and thresholds,
“T ”, for the images in Fig. 1 based the above algo-
rithm. For example, W = 5 and T = 6.95 for the
image in Fig. 1(1), and W = 4 and T = 6.5 for the
image in Fig. 1(6). Based on the found parameters,
“W”, “T ” and logical thresholding algorithm, the im-
ages in Fig. 1 can be extracted, and shown in Fig. 6.

3.3 Filtering window with contained condi-
tion

As average smoothed grey and grey difference infor-
mation of image window is used, the algorithm can
binarized poor quality greyscale image which has vari-
able background intensity, smear or smudge and low
contrast. However, if a region meets the conditions
of binarization, it can be selected as an object image.
For example, some spurious regions, which are iso-
lated with small size, are made and shown in Fig. 6.
In many scientific applications, objects of interest
(such as the neurons in Fig. 1) are large in size and
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Figure 6: Segmentation results of cell images in
Figs. 1-6 by innovative logical thresholding.

close together. Spurious regions on other hand are
usually small and isolated by comparison. For exam-
ple, neuron images belong to such a case. Therefore,
we can detect and remove some spurious region based
above idea.
The algorithm can be described as follows:

llr,uub rlr,uub

u,l
lr

u,r

ub

b,l b,r

llr,bub rlr,bub

Figure 7: Filtering window with one object region
and detection region (filtering window plus its eight
neighbouring regions of equal size).

(1) Find all regions of binarization image, which can
be represented as R(k), k = 1, ...rn, where rn is the
number of regions and R(k) is k-th region’s area size.
(2) Sort R(k), k = 1, ...rn based their area size in in-
creasing order, and it is represented as SR(k), k =
1, ...rn.
(3) For each region (starting with smallest):
(3.1) Find the minimum bounding rectangle which
covers the region (this is called filtering window).
(3.2) Determine the detection region Rd. Rd will con-
sist of the filtering window plus it’s eight neighbouring
regions of equal size. The detection region is shown
in Fig. 7, where (l, u), (r, u), (l, b) and (r, b) are the co-
ordinates of four corners of found minimum rectangle
respectively, lr = r− l and ub = b− u are sizes of the
rectangle respectively, and llr = l − lr, rlr = r + lr,
uub = u − ub and bub = b + ub.
(3.3) Detect whether there is a point in another object
region in the detection region Rd. If so, then remove
the processed region from R(k) if not, then keep the
processed region.
Based on the above algorithm, the images in Fig. 6
can be processed and shown in Fig. 8.

In above algorithm, filtering window only contains
one object region. Hierarchical processing can be
done based on new filtering window which consists of
two neighbour object regions. The processing method
can be described similar to above algorithm. Based
on the above procedure, the images in Fig. 8 can be
processed and shown in Fig. 9.

Furthermore, filtering window with big size can
be selected. However, we should consider whether
selected filtering window is reasonable based on the
prior knowledge and result of binarization image.
Such contained conditions should be considered to se-
lect the size of filtering window. For example, if the
size of valuable object image is little and the number
of object image is not large enough, little size of fil-
tering window should be selected. For our processed
neural images, only two sizes of filtering window are
used, the first filtering window with one object re-
gion and the second filtering window with two object
regions.

4 Experimental results

We have tested some neuron cell images which taken
from screenings of neuron cell images based on our
innovative algorithm. For example, six neuron cell
images subjected to 350 µMH2O2 are shown in Fig. 1
which are taken in different time (t=5, 15, 30, 60, 120
and 180 mins respectively). We can see that the poor
quality images of neuron cells are with shadows, in-
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Figure 8: The processed results of segmentation re-
sults in Fig. 6 by filtering window with one object
region.

(1)

(2)

(3)

(4)

(5)

(6)

Figure 9: The processed results of segmentation re-
sults in Fig. 8 by filtering window with two object
regions.
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homogeneous backgrounds, complex background pat-
terns which may have a histograms that contains a
single peak. Here, histograms of six neuron cell im-
ages are single peak. Based on our method, the neu-
ron cell images are processed by innovative logical
thresholding with grey difference analysis, and ex-
tracted neuron cell images are shown in Fig. 6 firstly.
We can see that cellular organelles are well extracted,
but there are some spurious regions in Fig. 6. This
is because our method is thresholding based on grey
difference analysis. If thresholding conditions (“W”
and “T ”) are meet for some regions which are not be-
long to neuron cell regions, the spurious regions are
formed. However, most spurious regions are isolated
because of thresholding with grey difference. There-
fore, extracted images in Fig. 6 can further be pro-
cessed by using hierarchical filtering window secondly.
Here two sizes of filtering windows are used to process
the neuron cell images in Fig. 6, and the extracted
neuron cell images are shown in Fig. 8 and Fig. 9
respectively. We can see that cellular organelles are
extracted, and some spurious regions are removed.
For some neuron cell images in Figs. 1(1-6), Ostu’s
method (Ostu 1978) and unimodel thresholding
(Rosin 2001) are used to extract neuron cell images,
and the processed results are shown in Figs. 3, 5 re-
spectively. Threshold of all three methods (Ostu
1978) and (Rosin 2001) is determined from the mea-
sure that best separates the levels corresponding to
the peaks of the histogram, each of which corresponds
to image pixels of a different part like background
or objects in the image. The threshold is an inten-
sity value which is used as the boundary between two
classes of a binary segmented image. If there are in-
homogeneous backgrounds and complex background
patterns in neuron cell images such as Figs. 1(1-6),
shadows may become object, and some parts of ob-
jects may become background, which are caused by
nonuniform illumination, shadow, smear or smudge
and low contrast. In these cases no good segmen-
tation results can been got by the intensity thresh-
olding. It is clear our algorithm is more efficient by
comparing the result of proposed method (see Fig. 9)
with those of other three methods (see Figs. 3 and 5).
Also, the segmentation result by Sobel edge method is
not suitable because only edge information of objects
is extracted and some useful parts of neuron image
are mist (see Fig. 4).

5 Conclusion

In this paper, we have developed a segmentation al-
gorithm for screening neuronal cell images based on
logical thresholding of grey difference. Threshold-
ing parameter can be selected automatically based on
analysis of grey difference region. Our method can ef-
fectively segment grey scale images such as screening
neuron cell images which have variable background
intensity caused by nonuniform illumination, shadow,
smear or smudge and low contrast. Proposed filter-
ing window can be used to remove spurious regions
of binarization images of neuron cell images. Exper-
iment and comparison results show the efficiency of
our algorithms.

Acknowledgement- This work is supported by
ARC-DP grant DP0665598.

References

Chi, Z., Yan, H. & Pham, T. 1996 Fuzzy Algo-
rithm: With Application to Image Processing

and Pattern Recognition, World Scientific Pub-
lishing Co., Singapore.

Deravi, F. & Pal, S.K. 1983Grey level thresholding
using second order statistics, Pattern Recogni-
tion Lett, 1, pp. 417–422.

Gonzalez, R.C. & Woods, R.E. 2002 Digital Image
Processing, 2nd edition, New Jersey, Prentice
Hall.

Kamel, M. & Zhao, A. 1993 Extraction of binary char-
acter/ graphics images from greyscale document
images, CVGIP: Graphical Models Image Pro-
cess. 55, pp. 203–217.

Lee, S.U., Chung, S.Y. & Park, R.H. 1990, A compar-
ative perfor mance study of several global thresh-
olding techniques for segmentation, CVGIP, 52,
pp 171–190.

Nakagawa, Y. & Rosenfeld, A. 1979Some experiments
on variable thresholding, Pattern Recognition,
11, pp. 191–204.

Ostu, N. 1978, A thresholding selection method from
greylevel histogram, IEEE Trans. Systems Man
Cybernet, SMC8, pp. 62–66.

Papamarkos, N. & Gatos, B. 1994 A new approach for
multilevel threshold selection, CVGIP: Graphi-
cal Models Image Process, 56, pp. 357–370.

Pham, T.D. & Crane, D.I. 2005 Segmentation of
neuronal-cell images from stained fields and
monomodal histograms, Proc. 27th Annual Int.
Conf. IEEE Engineering in Medicine and Biology
Society, 3.5, pp. 7–13.

Rosin, P.L. 2001 Unimodal thresholding, Pattern
Recognition, 34, pp. 2083–2096.

Trier, O.D. & Taxt, T. 1995 Improvement of inter-
grated function algorithm’ for binarization of
document images, Pattern Recognition Lett, 16,
pp. 277–283.

Yang, Y. & Yan H. 2000 An adaptive logical method
for binarization of degraded document images.
Pattern Recognition 33(5), pp. 787–807.

Zhang, B. 2000 Generalized k-harmonic means-
boosting unsupervised learning, Technical Reprt
HPL-2000-137, Hewlett-Packard Labs..

CRPIT Volume 73

80



Author Index

Ahsan, Nasir, 3
Azok, Joseph, 61

Bagirov, Adil M., 23
Bailey, Timothy L., iii
Bain, Michael, 3
Bean, R.W., 29
Beck, Dominik, 61
Bodén, Mikael, iii, 39, 49, 55
Brandl, Miriam, 61
Brennan, Marie-Luise, 61

Chakka, Nagesh, 15
Crane, Denis I., 73

Daggard, Grant, 35
Davis, Lynne, 39
Dawes, Ian, 3

Fink, J.L., 67
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