
Conferences in Research and Practice in
Information Technology

Volume 69

Safety Critical Systems and
Software 2006

Safety Critical Systems and
Software 2006

Proceedings of the
Eleventh Australian Workshop on Safety Critical
Systems and Software (SCS2006), Melbourne,
Australia, August/September, 2006

Tony Cant, Ed.

Volume 69 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Safety Critical Systems and Software 2006. Safety Critical Systems and Software 2006.
Proceedings of the Eleventh Australian Workshop on Safety Critical Systems and Software
(SCS2006), Melbourne, Australia, August/September, 2006

Conferences in Research and Practice in Information Technology, Volume 69.

Copyright c©2006, Australian Computer Society. Reproduction for academic, not-for profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors: Tony Cant
Trusted Computer Systems Group
Information Networks Division
Defence Science and Technology Organisation
PO Box 1500
EDINBURGH SA 5111
Australia
tony.cant@dsto.defence.gov.au

Series Editors:
Vladimir Estivill-Castro, Griffith University, Queensland
John F. Roddick, Flinders University, South Australia
Simeon Simoff, University of Technology, Sydney, NSW
crpit@infoeng.flinders.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 69.
ISSN 1445-1336.
ISBN 1-920-68250-3.

Printed, May 2007 by Flinders Press, PO Box 2100, Bedford Park, SA 5042, South Australia.
Cover Design by Modern Planet Design, (08) 8340 1361.

The Conferences in Research and Practice in Information Technology series aims to disseminate the results of
peer-reviewed research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Safety Critical Systems and Software 2006. Proceedings of the Eleventh Aus-
tralian Workshop on Safety Critical Systems and Software (SCS2006),
Melbourne, Australia, August/September, 2006

Foreword . vii

The Australian Safety Critical Systems Association . viii

Sponsors . ix

Full Papers

Architecture-driven Modelling and Analysis . 3
David Garlan and Bradley Schmerl

Certified Software Factory: Open Software Toolsuites, Safe Methodologies and System Architectures . 19
J. U. Gärtner

On proof-test intervals for safety functions implemented in software . 23
Alena Griffiths

Dynamic Design and Evaluation of Software Architecture in Critical Systems Development 35
Klaus Marius Hansen and Lisa Wells

Assuring Separation of Safety and Non-safety Related Systems . 45
Bruce Hunter

Using Software Architecture Techniques to Support the Modular Certification of Safety-Critical Systems 53
Tim Kelly

Formal Modelling and Analysis of Mission-Critical Software in Military Avionics Systems 67
Zahid H. Qureshi

Certification Criteria for Emulation Technology in the Australian Defence Force Military Avionics
Context . 79

Derek Reinhardt

Safety, Software Architecture and MIL-STD-1760 . 93
Matthew John Squair

Implementation of a Triple Modular Redundant FPGA based Safety Critical Systems for Reliable
Software Execution . 113

Venkatesh Vasudevan, Peter Waldeck, Hardik Mehta and Neil Bergmann

Author Index . 121

vi

Foreword

The 2006 Australian Workshop on Safety-Related Programmable Systems was held in Melbourne on 31
August and 1 September, 2006. The workshop, sponsored by the Australian Safety Critical Systems As-
sociation, had the theme: “Safe Software Architectures” and was attended by 45 participants. Roughly
half of the workshop papers addressed safety standards, while the other half covered the use of tools and
techniques for safety assurance.

Once again, four international keynote speakers presented talks at the workshop:

– Klaus Marius Hansen, Associate Professor at the Computer Science Department, University of Aarhus,
Denmark.

– David Garlan, Professor in the School of Computer Science at Carnegie Mellon University, USA.
– Tim Kelly, Lecturer in Department of Computer Science at the University of York; also Deputy Director

of the Rolls-Royce Systems and Software Engineering University Technology Centre, UK.
– Jakob Gärtner, Technical Director of Esterel Technologies, Germany.

Full program details are available from http://www.safety-club.org.au.
The organizing committee is very grateful to the authors for the trouble they have taken in preparing

their work to be included in these workshop proceedings. The papers were peer-reviewed for relevance and
quality by the Association Committee and their colleagues. Note, however, that the views expressed in the
papers are the authors’ own, and in no way represent the views of the editor, the Association Committee, or
the ACS generally. The fact that the papers have been accepted for publication should not be interpreted
as an endorsement of the views or methods they describe, and no responsibility or liability is accepted for
the contents of the articles or their use.

The committee also wishes to thank the workshop sponsors for their support: Hyder Consulting, Airser-
vices Australia, the Centre of Excellence in Defence and Industry Systems Capability (CEDISC) and the
Defence Materiel Organisation in the Australian Government Department of Defence. These organisations
have all helped to make the workshop a success.

I wish to thank the other members of the organising committee: Chris Edwards (Treasurer), Kevin
Anderson (Secretary and Workshop Chair), and George Nikandros (Association Chair). Thanks are also
due to the paper reviewers for their constructive comments. Finally, thanks to Karl Reed and the Computer
Systems and Software Engineering Board of the ACS for their ongoing support of the Association.

Tony Cant
Workshop Chair

January 2007

vii

The Australian Safety Critical Systems Association

Computer systems and embedded computers pervade all aspects of modern daily life, and many imple-
ment functions that have the potential to cause death or injury if they do not operate correctly. Some of
these systems include emergency service dispatch, car braking, aircraft flight controls, railway control, and
telecommunications systems. These systems are not safe by accident but require safety to be designed into
them.

The Australian Computer Society launched the Australian Safety Critical Systems Club (as it was then
named) on 17 October 2002, in conjunction with its annual SCS workshop in Adelaide. Chapter launches
have been held in Perth, Melbourne, Sydney, Canberra and Brisbane.

At the AGM held in Sydney on 25 August 2005, it was agreed to change the name Australian Safety
Critical Systems Club to Australian Safety Critical Systems Association.

The Association aims to foster discussion on the design and development of safety critical systems, as
well as debate on more philosophical issues of safety standards, including questions such as How safe is
safe enough?

Specifically, the Association’s purpose is to:

– Provide a national focus and forum for its members who have an interest in safety-related systems,
particularly those systems containing software.

– Provide professional association services for all categories of its membership.
– Stimulate the active contribution and participation of its members in the development and dissemina-

tion of safety-related systems knowledge and to support the activities of the Society.
– Foster and support education and training associated with all aspects of safety-related systems.
– To provide learned society functions for individuals and industry groups and to provide practice based

opinion and advice for the Society.

Membership of the Australian Safety Critical Systems Association is open to anyone involved in design
and development of safety critical systems, or with an interest in system safety issues. The Association
is also expected to be relevant to people interested in the assurance of systems dependability, including
Reliability, Availability, Maintainability and Safety (RAMS) of systems.

The SCS Association Committee is as follows:

– Chairman: George Nikandros, Queensland Rail
– Secretary: Kevin Anderson, Function Leader - Risk and Reliability, Hyder Consulting
– Treasurer: Chris Edwards, AMW Pty Ltd
– Members: Tony Cant, Robert Worthington, Peter Hartfield, Allan Coxson, Clive Boughton

For more information about the Australian Safety Critical Systems Association, visit our web site at
http://www.safety-club.org.au.

Tony Cant
Defence Science and Technology Organisation, Australia

SCS2006 Program Chair
August/September, 2006

Sponsors

We wish to thank the following for their kind contributions towards this workshop.

ix

Full Papers

Proc. 11th Australian Workshop on Safety Critical Systems and Software

1

CRPIT Volume 69

2

Architecture-driven Modelling and Analysis*

David Garlan and Bradley Schmerl
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213 USA
{garlan,schmerl}@cs.cmu.edu

* This paper accompanies the keynote talk “Software Architec-
ture for Highly Dependable Systems” by David Garlan.

Abstract
Over the past 15 years there has been increasing recogni-
tion that careful attention to the design of a system’s
software architecture is critical to satisfying its require-
ments for quality attributes such as performance, security,
and dependability. As a consequence, during this period
the field of software architecture has matured signifi-
cantly. However, current practices of software architec-
ture rely on relatively informal methods, limiting the po-
tential for fully exploiting architectural designs to gain
insight and improve the quality of the resulting system.
In this paper we draw from a variety of research results to
illustrate how formal approaches to software architecture
can lead to enhancements in software quality, including
improved clarity of design, support for analysis, and as-
surance that implementations conform to their intended
architecture.

Keywords: Software Architecture, Architecture Analysis

1 Introduction
Software architecture is concerned with the high-level
structures of a software system, the relationships among
them, and their properties of interest. These high-level
structures represent the loci of computation, communica-
tion, and implementation. Typical properties include
emergent behaviour, such as the performance, reliability,
security, maintainability, and so on (Shaw and Garlan
1996, Perry and Wolf, 1992).

Well designed architectures typically allow one to reason
about satisfaction of key requirements and to make prin-
cipled engineering tradeoffs. They can provide clear ra-
tionale of assignment of function to components, estab-
lish principles of conceptual integrity, and lead to consid-
erable reduction in rework over the lifespan of a system
(Brookes 1975, Boehm and Turner 1993). They can also
permit reuse of architectural design idioms and patterns,
reduction of development costs through product line ap-
proaches, and guidance to future maintainers of those
systems.

Given the potential benefits of software architecture, over
the past decade and a half the field has received increas-
ing attention and consequent progress. There are now
numerous textbooks (Garlan and Shaw 1996, Bass,

Clements, and Kazman 2003, Rosanski and Woods
2005), review methods (Clements, Kazman, and Klein
2001), conferences (e.g., the Working IEEE/IFIP Confer-
ences on Software Architecture (WICSA) and the Euro-
pean Workshops on Software Architecture (EWSA)),
documentation standards (Clements et al. 2002, IEEE
2000), handbooks (Buschmann et al. 1996), and courses
covering the topic. Success stories detailing the eco-
nomic benefits and practice of product lines abound
(Bosch 2000, Clements and Northrop 2001). Software
development practices typically now incorporate architec-
ture reviews, and software architects have formal titles
and well-defined roles in many organizations.

Coupled with heightened awareness, and increasing ma-
turity of practice, a number of standards bodies are now
promoting notations and standards for software architec-
ture. UML 2.0 from the Object Management Group, for
example, now has improved capabilities to represent gen-
eral component and connector architectures. The IEEE
prescribes a meta-framework for architectural views
(IEEE 2000). Some standards aim at more specific do-
mains, such as resource constrained systems (e.g., AADL
by SAE International, 2004, or SysML by the Object
Management Group, 2006). Other standards-based ap-
proaches, like “model driven architecture” (MDA) from
the Object Management Group (2003), attempt to provide
ways to move from architectural models to architectur-
ally-consistent implementations. Finally, the presence of
middleware and their corresponding architectural frame-
works have led to considerable standardization and reuse
within certain application domains, (e.g., J2EE, Eclipse,
ADO.NET).

However, despite notable progress and concern for ways
to represent and use software architecture, specification
of architectural designs remains relatively informal, rely-
ing on graphical notations with weak or non-existent se-
mantics that are often limited to expressing only the basic
of structural properties. As a consequence, it is almost
impossible using today’s common practices to (a) express
architectural descriptions precisely and unambiguously;
(b) provide soundness criteria and tools to check consis-
tency of architectural designs; (c) analyse those designs to
determine implied system properties; (d) exploit patterns
and styles, and check whether a given architecture con-
forms to a given pattern; and (e) guarantee that the im-
plementation of a system is consistent with its architec-
tural design. Copyright © 2006 Australian Computer Society, Inc. This

paper appeared in the 11th Australian Workshop on Safety
Related Programmable Systems (SCS’06), Melbourne. Con-
ferences in Research and Practice in Information Technology,
Vol. 69. Tony Cant, Ed. Reproduction for academic, not-for-
profit purposes permitted provided this text is included.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

3

Luckily, however, research has developed techniques to
address many of these shortcomings by providing more-
formal approaches to architectural design. While these
techniques may not be completely ready for full-scale
adoption by industry, many of them are close to that level
of maturity.

In this paper we outline several such techniques and their
associated tools, drawing particularly from research car-
ried out at Carnegie Mellon University in the ABLE Pro-
ject. While not a comprehensive survey of existing work
on formal approaches to software architecture, this paper
will give a flavour for the kinds of techniques being in-
vestigated by the research community, and the kinds of
potential benefits that they can bring to the field.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes how to specify architectural structure;
in Section 3 we introduce architectural properties and
illustrate how a flexible property mechanism can facili-
tate architectural analysis; Section 4 shows how architec-
tural behaviour can be specified; Section 5 introduces the
concepts of architectural style, and shows how they can
be used to provide domain-specific architectural models
and the ability to check for conformance to a style; Sec-
tion 6 presents a summary of our approaches to address-
ing the problem of establishing implementation confor-
mance to an architecture; finally, Sections 7 and 8 present
related work and conclusions.

2 Modelling architectural structure
The starting point for any formal treatment of software
architecture is the representation of architectural struc-
ture. However, this raises the question: what kinds of
structure? Any complex software system may have many
structures of interest: modules, run-time entities, devel-
opment teams, physical devices and networks. Today we
understand that the preferred way of addressing this com-
plexity is to recognize that an architectural design must
be described in terms of a number of distinct (but related)
views. Each view represents an architectural perspective
on the system, exposing certain system structures and
their properties, to address a particular set of concerns.

Following the approach of Clements et. al. (2002), one
can categorize the kinds of structures into three general
categories. First, there are coding structures, such as
modules, packages, and classes, with relationships like
uses, depends-on, inherits, etc. Second, there are run-time
structures: databases, clients, servers, and connectors
indicating communication pathways. Third, there are al-
location structures, which map elements of the first two
views into non-software entities, such as the physical
setting (networks, CPUs, etc.) or development teams.
These mappings lead to allocation views, such as de-
ployment views or work breakdown structures.

In this paper we will focus on modelling and analysis of
run-time structures, or component and connector (C&C)
views. This is because such structures are the ones that
most directly convey critical properties related to depend-
ability, such as reliability, security, and performance.
These are also the class of views that are least well sup-
ported by existing notations and tools.

2.1 Components, connectors, and systems
We model a run-time C&C view of software architecture
as a graph of components and connectors. Specifically,
basic elements and relations of a C&C view are:
• Components model the principle computational

elements of a system’s run-time structure. They in-
clude things like databases, clients, servers, GUI’s,
etc. Each component has a set of ports, which model
the run-time interfaces of that component, through
which it interacts with other components (via con-
nectors). For example, a server might have a number
of service invocation ports, each port representing a
run-time interactions with an individual client.

• Connectors model the pathways of communication
between components. They include things like pipes
and client-server communication links. Connectors
may be binary, such as pipes and client-server inter-
actions, or N-ary, such as a publish-subscribe con-
nector, which allows publisher component to interact
with zero, one, or many subscribing components.
Each connector has a set of roles, which model the
specifications of behaviour required of the compo-
nents that use a given connector. For example, a pipe
might have a single reading and writing role, while a
publish-subscribe connector would have multiple
publish and subscribe roles.

• Systems model a graph of components and connec-
tors in which the ports of a component fill the roles
of a set of connectors to determine the interconnec-
tion topology.

Figure 1 illustrates these concepts. In addition, a compo-
nent or a connector may have substructure (not illustrated
here), called a representation that further elaborates its
internal structure.

Port

Role

System Component

Connector

Figure 1. Component and Connector View.

This vocabulary allows one to model the box-and-and-
line diagrams common to architectural descriptions, and
generally corresponds to the primitive conceptual build-
ing blocks in most architectural description languages
(ADLs). It is important to note, however, that unlike
many informal diagrammatic depictions of architecture,
the above model explicitly identifies component inter-
faces, and represents connectors as first-class model ele-
ments of the software architecture.

2.2 Acme
In order to support analysis of component and connector
architecture models it is necessary to have a machine-

CRPIT Volume 69

4

System simple-cs = {
 Component client = { port call-rpc; };
 Component server = { port rpc-request; };
 Connector rpc = {
 role client-side;
 role server-side;
 };
 Attachments = {
 client.call-rpc to rpc.client-side;
 server.rpc-request to rpc.server-side;
 }
}

Figure 2. Acme description for a simple client-
server architecture.

System simple-cs = {
 …
 Component server = {
 port rpc-request = {
 Property sync-requests : boolean

 = true;
 };
 Property max-transactions-per-sec : int = 5;
 Property max-clients-supported : int = 100;
 };
 Connector rpc = { …
 Property protocol : string = “aix-rpc”;
 }; …
};

processable representation. In this paper we use the Acme
ADL for this representation (Garlan et al. 2000).

Figure 2 shows an Acme specification of a simple client-
server system consisting of a single client and a single
server, interacting through a remote procedure-based
connector. The system, named simple-cs, is declared in
the first line of the specification. Following this are decla-
rations of the two components, client and server, each
with a single port (call-rpc and rpc-request, respectively).
The connector, rpc, is declared to have two roles (client-
side and server-side). Finally, the system is created by

attaching the appropriate ports to the respective roles of
the connector.1

The textual representation of a graphical picture does
little more than provide an alternative depiction. But there
are, nonetheless, opportunities for analysis even with
such simple models. For example, after parsing, we might
check the model to determine whether any connectors
have unattached roles, whether every port of a component
is attached to some connector. or whether the architec-
tural substructure of a component provides interfaces to

1 Although we don’t illustrate it in this simple example, at this
structural level we could also provide representations of the

Figure 3. Properties in Acme. Analysis of
architectural structure.

Figure 4. Specifying schedulabiluty properties in AcmeStudio.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

5

support its own external interfaces. We can also check
for naming conflicts (e.g., whether two ports of the same
name on the same component).

3 Modelling architectural properties
While some analyses of pure structure are possible, to
achieve significant analytic value from an architectural
model we need to represent more of the semantics of the
architecture. In Acme this is done by annotating the struc-
ture with properties.

3.1 Properties in Acme
Properties are simply typed name-value pairs that can be
associated with any architectural element.2 Types may be
primitive (integer, boolean, etc.) or composite (sets, se-
quences and records).

Figure 3 illustrates the use of properties, elaborating
Figure 2. This example illustrates properties associated
with a port (indicating whether the client request is syn-
chronous); a component (indicating the maximum num-
ber of transactions per second supported by the server),
and a connector (indicating the name of the protocol that
is expected to be used over it).

client and server, elaborating each component’s architectural
substructure. See Garlan et al. (2000) for details.
2 We use the term architectural element to refer generally to
components, connectors, ports, roles, representations, and sys-
tems.

3.2 Analysing architectural
properties

The meaning of properties is not
specified in Acme, which does
not provide native support for
their analysis. However, such
properties can be used by external
analysis tools to gain insight into
the architecture by calculating
global system properties from
local properties of components
and connectors. In many cases
calculations can take advantage
off-the-shelf theory and algo-
rithms. Such analyses can be a
powerful aid to architectural de-
sign, allowing architects to iden-
tify design errors early in the
process, helping the architect
document the expected run-time
properties of architectural ele-
ments, and facilitating tool sup-
port for providing feedback and
comparisons of analysis results.

We now illustrate these ideas with
three examples: rate-monotonic
analysis for automotive control

systems, queuing theory-based analysis for detecting
server overloads, and Monte Carlo-style security simula-
tion.

Figure 5. The results of the schedulability analysis.

Example 1: Analysis of real-time schedulability,
Figure 4 depicts a simple automotive system represented
in AcmeStudio (Schmerl and Garlan 2004), a framework
for creating architecture design environments. AcmeStu-
dio, written as a plug-in to the Eclipse framework, per-
mits one to define domain-specific architectural styles3
and link in analysis tools that may be invoked by the user
to analyse systems in those styles.

The architecture used in Figure 4 includes components
that run as periodic tasks on a set of CPUs. Tasks can
communicate directly with tasks on the same CPU, and
with tasks on other CPUs using an automotive standard
communication bus (here a CAN bus). An important
question in the design of such systems is whether certain
task scenarios (treated as paths through the architecture),
can be scheduled on the available processors.

To evaluate this system-wide property, the style associ-
ates with each component a set of properties relevant to
real-time schedulability. In the architectural style of this
example these properties are modelled as its deadline,
execution time, priority, and CPU. For example, in Figure
4 the selected component, plant-rx, has values of 200,
170, 100, and CPU1 as its respective property values.

3 We discuss architectural styles in detail in Section 5; for now,
consider a style as providing element types specifying the prop-
erties that must be defined for instances of the elements.

CRPIT Volume 69

6

 Figure 6. Performance Analysis in AcmeStudio.

When all components have been annotated with these
properties (and the connectors with similar properties),
we can invoke a tool to evaluate the CPU utilization, and
the schedulability of specific pathways. In the figure three
pathways are specified. The resulting analysis prints out
the results of applying rate monotonic analysis (Sha and
Goodenough 1991), indicating which paths are schedul-
able (Figure 5).

It is important to note that the actual analysis of sched-
ulability is carried out using completely standard, off-the-
shelf algorithms for rate-monotonic real-time analysis.
Moreover, AcmeStudio makes it relatively easy to add
such an analysis using a “plug-in” framework, which as-
sists with creating specialized property editors (e.g., to
specify pathways for evaluation), invoking analysis tools
through menus, passing the relevant data to them for
analysis, and displaying the results back in the graphical
editing environment.

Example 2: Analysis of server-load.
Of course, not all systems in need of performance analy-
sis are real-time systems. To illustrate how the same gen-
eral ideas can be supported for different application do-
mains, consider Figure 6. Here we have an example of a
system defined as a tiered system in which clients queue
requests for database service from a set of servers that

contain business logic to access a set of databases. The
system model is shown in AcmeStudio.

To analyse performance of this system we take advantage
of queuing theory to evaluate performance characteristics
of such systems (Spitznagel and Garlan 1998, Di Marco
and Inverardi 2004). To perform the analysis, we must
first supply the values of a set of properties of the com-
ponents and connectors, such as arrival rates (expressed
as probability distributions), average service time for
handing requests at a server, and degree of server replica-
tion. These properties are specified through an editing
plug-in to AcmeStudio specific to performance analysis,
as illustrated at the bottom of Figure 6.

Once these properties have been defined, as before we
can pass the model to an analysis tool, which in this case
calculates for each server a set of derived properties, in-
cluding average server utilization, queue lengths, and
response times using standard queuing-theoretic tech-
niques. From these results the tool can further indicate
whether any servers are overloaded. In Figure 6, the
analysis has determined that the circled component in the
diagram is overloaded, and has highlighted this fact by
changing its colour to red.

Example 3: Analysis of security
It is also possible to analyse the security of a system
through Monte Carlo-based architectural simulation, a

Proc. 11th Australian Workshop on Safety Critical Systems and Software

7

form of analysis that abstractly exercises an architecture
using inputs and events drawn from probability distribu-
tions. The Security Simulator plug-in to AcmeStudio en-
ables an architect to perform security simulations based
on threat scenarios that are relevant to the system under
design. The main concepts in the security analysis are
threat types, assets, and countermeasures; the simulation
is based on the approach outlined in Butler (2002).

Threat types specify the possible threats that can affect
the system (e.g., a virus or denial of service attack).
Because different systems may be subject to different
types of threats, the architect must specify each of
the threat types that may be posed to the system.

Assets are components that may be damaged by par-
ticular threats. Assets are assigned a monetary value,
and the particular threat types that may affect the as-
set are specified. For example, a database component
may not be susceptible to password sniffing attacks,
but may be vulnerable to data corruption as the result
of a virus.

Countermeasures are of three types: Preventative
components affect the frequency at which threats oc-
cur; Monitoring components and recovery compo-
nents reduce the effect of a threat. The architect
specifies each of the countermeasure’s target threat
types, and the effectiveness or reduction that the
countermeasure has on the target threat.

Once the relevant properties are specified, the architect
must then define paths (consisting of components and
connectors) through the architecture that particular threats
may take. The threat type that affects that path and the
frequency (as a stochastic function) of the threat type are
specified. After the threat is specified, the assets associ-
ated with its path can be given outcome values. The out-
come can be in terms of dollars, loss of life, loss of pro-

ductivity, etc. A weight is assigned to each
outcome factor.

Threat scenarios are composed of one or
more transactions. A scenario is used as
basis for executing the simulation, and
specifies the amount of time that will be
used in performing the simulation. The
simulation takes into account the threat
entering the transaction path, the frequency
of the threat type and the countermeasures
in the path. Monte Carlo simulation is per-
formed to determine the most probable
damage value to each of the assets in the
threat transaction. The value obtained is
multiplied by the frequency of the threat
transaction and the simulation time. This
gives the total damage for the particular
threat outcome factor. The end result of the
simulation is a report that details the threat
scenario, threat transaction, and total dam-
age to the assets in the threat transaction
path.

Consider the simple architecture illustrated
in Figure 7, where we define the database
as an asset (giving an asset value of
$100K), run a security simulation on a path

originating at the client and going through the firewall
and server to the database for a simulated virus attack.
We define the scenario so that (1) the simulation time is
two virtual months; and (2) a virus attack happens on
average 5 times per day, with a maximum of 20 attacks
per day. If the firewall is 95% effective against virus
threats then running the scenario indicates that the dam-
age is calculated as $56, 677. If we were to run the same
simulation without the firewall, the simulation will indi-
cate that the loss of revenue increases to $1,112,409.

Figure 7. Security Simulation in AcmeStudio.

Such a simulation allows the architect to evaluate differ-
ent scenarios, and to evaluate the effectiveness of differ-
ent countermeasures against different attacks. Providing
different sets of properties for an architectural model fa-
cilitates different analyses of that model. It is therefore
possible to make trade-off based on different scenarios
and quality attributes for the same architectural model,
rather than have to use different environments and archi-
tectural models in potentially different architectural lan-
guages.

4 Modelling architectural behaviour
An important aspect of modelling software architectures
is the specification of abstract behaviour. By knowing the
behaviour of architectural elements we can significantly
improve the clarity of architectural designs. We can also
analyse these specifications, for example to spot protocol
mismatches in which interactions between components
can potentially lead to deadlock (Allen and Garlan 1994
and 1997, Allen, Garlan, and Ivers 1998).

To illustrate, consider the simple system consisting of a
pipe that connects two filters, F1 and F2, illustrated in
Figure 8. The intuition behind such a pipe-filter system is
that components communicate through buffered streams,

CRPIT Volume 69

8

writing through their output ports and reading through
their input ports.

While the intuition may seem simple at first glance, un-
derstanding the real meaning of the figure (for example to
implement F1 and F2) depends on detailed understanding
of the interactions defined by the pipe. For example, from
the figure alone it is impossible to answer the following
questions:
• Which is the reading/writing end of the pipe?
• Is writing synchronous? That is, assuming F1 is the

writer, does it block after writing?
• What if F2 tries to read and the pipe is empty? Does

it block, or can it continue with other processing?
• Can F1 choose to stop writing?
• Can F2 choose to stop reading without consuming all

of the data on the pipe?
• If F1 closes the pipe, can it start writing again at

some future time?
• If F2 never reads, can F1 write indefinitely, or does

F1 eventually block?

Note that there is no correct answer to these questions,
since any set of answers could represent a possible pipe
design. Indeed, in actual systems pipe implementations
differ precisely along such dimensions of variability.

What is required is some way to specify the semantics of
a pipe at the architectural level so that such questions can
be answered easily. This would represent a marked im-
provement over existing practice in which decisions
about such behaviour require one to examine the code of
some implementation, existing examples of usage, or
consult a human expert.

There are many possible ways in which one might repre-
sent architectural behaviour (Shaw and Garlan, 1995).
Indeed, practically any behaviour specification will do,
including process algebras, state machines, relational
models, and timed automata. To illustrate the general
principles, we use the Wright specification language, one
of the first to use formal modelling to specify architec-
tural behaviour (Allen 1997, Allen and Garlan 1994).

Wright uses a subset CSP (Hoare 1985), a well-known
process algebra, which defines behaviour in terms of pat-
terns of events. Some of the constructs are listed in Figure
9. These include events (representing architecturally-
relevant actions), processes (representing patterns of
events), sequentiality (representing the ability to follow
one behaviour by another), choice (representing the abil-
ity to branch), and parallel composition (representing the
ability to compose partial descriptions). These CSP-based
specifications can be associated with various architectural
structures, including ports and roles.

Events: e, request, read?y, write!5
Processes: P, Reader, Writer, Client,
 § (successful termination)
Sequence: e → P, P ; Q
Choice: P⎟⎤ Q, P [] Q
Composition: P || Q

Figure 9. Behavior specifications in Wright.

Figure 10 illustrates the basic ideas of behaviour descrip-
tion in Wright through a partial description of a pipe con-
nector. Each role of the pipe (Reader and Writer) has an
associated protocol defined in the subset of CSP summa-
rized above. In addition, the connector has a “glue” speci-
fication (also a CSP process) that indicates how the roles
interact through the connector itself.

Connector Pipe
 Role Writer = (write!x → Writer) ⎟⎤ (close → §)
 Role Reader = Read ⎟⎤ Exit
 where Read = (read?x → Reader) [] (eof → Exit)
 Exit = close → §
 Glue = Writer.write?x → Glue []
 Reader.read!y → Glue []
 Writer.close → ReadOnly []
 Reader.close → WriteOnly
 where ...

Figure 10. Partial Wright specification of a
Pipe connector.

Such specifications, although compact, provide direct
answers to questions such as those posed above. For ex-
ample, the specification in Figure 10 immediately tells us
that a pipe writer can close at anytime, but cannot write
again once it has close. A pipe reader can also close at
any time, but if it chooses to read a value, it must be pre-
pared to recognize an “end-of-file” (eof) marker and then
immediately close.

Beyond clarification of design intent, specifications such
as these permit a variety of analyses, including:
• Consistency of connectors: that the glue-mediated

roles of a connector do not lead to a deadlocked state.
• Compatibility of component interface to connector

interaction protocol: that a port satisfies the require-
ments of a connector role that it fills.

• Consistency of a component’s behaviour with respect
to its interfaces: that a port’s specification represents
a correct projection of a component’s internal behav-
iour at that interface point.

Many of these checks can be performed semi-
automatically by model checkers. See Allen (1997) for
details.

Figure 8. A simple pipe-filter system.

Pipe
F1 F2 5 Modelling architectural styles

One notable feature of software architecture is the ability
to reuse styles and patterns. For example, many systems

Proc. 11th Australian Workshop on Safety Critical Systems and Software

9

are described in terms like “client-server system”, “N-
tiered system”, “pipe-filter system”, etc. Such terms refer
to families of systems that share a common architectural
design vocabulary (e.g., clients, servers, tiers, etc.) and a
set of constraints on how that vocabulary can be used
(e.g., that clients can’t talk directly to other clients, or that
connections don’t cross more than one tier).

Important questions for architectural modelling and
analysis are: How can we model an architectural style?
How can we check that a given system is consistent with
a given style? Can we combine several styles without
leading to logical inconsistencies?

5.1 Architectural styles in Acme
We can specify styles by augmenting our architectural
modelling notation with two things. First is the ability to
define component, connector, and property types. These
provide the basic vocabulary of design in that style. Sec-
ond is the ability to define constraints on how instances of
these types may be combined in a system description.4

For example, to define a pipe-filter style we would first
need to define one or more filter component types and a
pipe connector type. These would identify the kinds and
number of ports on filters and roles on the connector.
Additionally, we might define various property types, and
indicate which properties are associated with which ele-
ments in the style. Next we would need to define con-
straints that might, for example, specify that there should
be no dangling pipes or that a system should not have any
cycles.

4 From a tooling perspective style definition may also entail
specification of graphical conventions (shape, colour, layout)
for the style, style-specific shortcuts for improving graphical
editing (such as automatic creation of connectors based on nam-
ing conventions), and analysis tools to be included in an envi-
ronment that uses the style.

Figure 11 illustrates the basic ideas with a partial defini-
tion of a pipe-filter style, or family, as it is termed in
Acme. Here we have defined a Filter component type, and
specified that it must have at least an In and an Out port.
We have also defined a Pipe connector type, and speci-
fied that it must have a Reader and a Writer role, and that
each role must specify the datatype that is transmitted
through that role.

Family PipeFilterFam = {
 Component Type filterT = {
 Ports {In,Out} ;
…} ;
Connector Type pipeT = {
 Role Reader = {Property datatype = …} ;
 Role Writer = {Property datatype = …} ;
 Invariant self.Reader.datatype ==
 self.Writer.datatype;
 …
}
System my-PF-System : PipeFilterFam = {
 Component F1: filterT = {…} ;
 Connector P: pipeT = {…} ;
 …
}

Figure 11. Specification of a Pipe-Filter architec-
tural style in Acme.

The connector also includes a constraint, in this case an
invariant that says the type of data written to a pipe must
match the data read from it. Such specifications are writ-
ten in a first-order predicate language (similar to UML’s
OCL), augmented with some functions that make it easier
to refer to things like a component’s ports, or the roles
attached to a port.

With the pipe-filter family in hand, we can now use it to
define a specific system in that style. In Figure 11 we
illustrate the description of a system, my-PF-system.
Components and connectors may now be declared as in-
stances of the types defined in the family.

5.2 Example: Mission Data Systems
To illustrate the concepts of modelling and analysing
style-oriented architectural description in more depth, we
now describe a larger example: NASA’s Mission Data
System (MDS) (Rasmussen, 2001, Dvorak and Reinholtz
2004). MDS includes an experimental architectural style
for defining space systems. It consists of a set of compo-
nent types (e.g., sensors, actuators, state variables), and
connector types (e.g., sensor query). It also defines a
number of rules that define legal combinations of those
types. Figure 12 graphically illustrates the style, which
consists of 7 component types, 12 connector types.

Figure 13 shows a screenshot of a simple MDS system
displayed in AcmeStudio. The system represents a tem-
perature control system consisting of a temperature sen-
sor (TSEN), a temperature estimator (TEST), a heating
actuator (SACT), a temperature state variable (CTSV), a
heath state variable to indicate whether the sensor is be-
having correctly (SHSV), a temperature controller
(TCON) to issue commands to the actuator, and an execu-
tive that controls the value of the target temperature
(EXEC). Appropriate connectors (of which there are 12
types) are used to define the interconnection topology.

The rules in MDS were initially defined in English and
had to be hand translated into Acme constraints. A simple
example of such a rule is

“For any given Sensor, the number of Measurement
Notification ports must be equal to the number of
Measurement Query ports (rule R5A).”

This rule, which is a small part of a larger rule (see be-
low) indicates that for every query port that a sensor pro-
vides, it must also provide an announcement port (and
vice versa).

This rule was translated into the following constraint,
which is associated with the sensor component type:

numberOfPorts (self, MeasurementNotifReqrPortT) ==
 numberOfPorts (self, MeasurementQueryProvPortT)

CRPIT Volume 69

10

Figure 12. Definition of the MDS Architectural Style.

State Update

Measurement Query

Constraint Execution

State Notification

State Query

Command Submit

Command Notif.

Rules such as this one are continuously evaluated in
AcmeStudio as the MDS architect creates an architectural
description of an MDS System. If a rule is violated, the
environment highlights the problem. Figure 14 illustrates
how this appears to an architect. when the TSEN sensor
component violates the property specified above.

Of course, checking rule satisfaction is relatively trivial
for small systems and for such simple rules. Indeed, vis-
ual inspection could easily locate such rule violations.
But in general MDS rules are much more complex, for
example:

“Every estimator requires 0 or more Measurement
Query ports. It can be 0 if estimator does not
need/use measurements to make estimates, as in the
case of estimation based solely on commands submit-

ted and/or other states. Every sensor provides
one or more Measurement Query ports. It can
be more than one if the sensor has separate
sub-sensors and there is a desire to manage the
measurement histories separately. For each
sensor provided port there can be zero or more
estimators connected to it. It can be zero if the
measurement is simply raw data to be trans-
ported such as a science image. It can be more
than one if the measurements are informative in
the estimation of more than one state vari-
able.”

Figure 13. A simple control system in the MDS style.

This is one of 12 such rules. Moreover, MDS
architectures typically have hundreds of com-
ponents. Complete checking of rule satisfaction
in those situations becomes a significant prob-
lem for which formal style specification pro-
vides an effective solution.

5.3 Other style-based analysis
In addition to checking whether a given system conforms
to a given style, it is often useful to investigate properties
of styles themselves. For example, it is possible to define
a style in which constraints lead to inconsistencies. For
such systems it is impossible to create any system in-
stances. Moreover, we may want to investigate whether
the constraints of a style imply properties not explicitly
modelled. For example, local constraints on attachments
can be used to imply global connectedness.

To evaluate such properties we can interpret an Acme
style description as a specification of a class of models,
and use a model generator to check for the existence of
such models.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

11

Figure 14. Displaying problems to the architect.

Specifically, we can translate a style into an Alloy model
and use the Alloy Analyser (Jackson 2002) to investigate
properties of the resulting specification. Details of this
analysis are beyond the scope of this paper, but the inter-
ested reader is referred to Kim and Garlan (2006).

6 Mapping between architecture and imple-
mentation

One of the difficult problems for an architect is ensuring
that the implemented system is consistent with the in-
tended architecture. Formal modelling and analysis can
also help solve this problem

The problem for architectures is similar to the problem
for any model-based method of ensuring that an imple-
mentation meets its specification. In general, there are
two basic solutions. First, one can attempt to ensure satis-
faction by construction. This can be done through a proc-
ess of formal refinement in which a concrete model is
obtained by applying well-founded refinement rules to a
more-abstract model (or specification). Sometimes this
process can be completely automated, in which case it is
often termed generation. The second technique is to
demonstrate that a lower-level model is consistent with a

higher-level model by comparison. This is often done by
providing a mapping relation between the two models.

Both techniques can be used for software architectural
models.

6.1 Refinement and generation
Although using refinement in the most general case of
software architecture is as difficult as any other form of
model-based refinement, in many cases the problem is
greatly simplified by exploiting architectural styles. That
is to say, by limiting the problem to a specific class of
systems and a specific class of implementations, it is of-
ten possible to build automated assistance for mapping
architectures to implementations. The assistance can be in
the form of automated transformations, or in the extreme
case, code generation of all or part of the target system.

We now illustrate this concept with two examples:

Example 1: Model generation of automotive
 control systems

Some automotive companies have in place a component-
based approach to control systems. Starting with an ab-

(a) Abstract Architecture

(b) Concrete Architecture
Figure 15. Mapping abstract automotive architecture to concrete automotive architecture.

CRPIT Volume 69

12

C
reateFilter

StartR
eader

StartW
riter

R
ecordC

onn

C
onstR

ead
C

onstW
rite

A
ttachFilters

Figure 16. A DiscoTect Coloured Petri Net for Discovering Pipe-Filter Systems.

stract architectural description, pre-specified components
drawn from libraries are substituted to produce a full sys-
tem definition. In many cases the concrete components
have formal models suitable for simulation, and in some
cases code generation.

In Steppe et al. (2004) we describe a two-tiered approach
that uses Acme architectural models of the architecture of
an automotive system in two levels. At the higher (ab-
stract) level, an architecture is described in terms of ge-
neric abstract components and simple virtual connectors
(Figure 15a). In the lower (concrete) level model, con-
crete components are chosen from a repository of auto-
motive components and substituted for the abstract ones,
and detailed connections are made between them (Figure
15b). This concrete composition can then be sent to for-
mal simulation tools for analysis.

While refinement of generic architectures to concrete
architectures using component selection is a major step
forward, one of the stumbling blocks is that refinement is
done manually. In particular, the hooking up of concrete
components, which may have dozens of ports is typically
a time consuming process. Moreover, there are often de-
pendencies between different components, so that choices
of one component may affect others. Making sure that
integrity rules of component composition are respected is
a difficult, and again time-consuming, task.

However, it turns out that in many cases there are
straightforward rules that can be applied to do most of the
interconnecting. Indeed, in the case of automotive control
systems when certain naming conventions are followed,
almost all of the interconnecting can be done automati-
cally. Further integrity rules can be specified as con-
straints in the style (as illustrated earlier). Indeed, the
concrete version of the automotive software in Figure 15b
was in fact generated directly using a plug-in to a version
of AcmeStudio that had been specialized to model archi-
tectures in the two (abstract and concrete) styles.

Example 2: Code generation for MDS space
 flight systems

With certain modifications to the nature of the connectors
in the MDS style we were able to provide a prototype

code generator for MDS systems (Garlan et al. 2005). A
key feature of that generator is the ability to target the
resulting implementation to different platforms. For ex-
ample, one platform might be the space environment,
which requires power- and space-efficient code, while
another platform might be the NASA testing environment
in which resources are plentiful and there is a premium on
support for debugging and monitoring.

The ability to generate retargetable implementations re-
lies on the following:
1. There is a substantial body of reusable infrastructure

code that supports inter-component communication,
concurrency, and shared data.

2. It is possible to create a library of component imple-
mentations whose processing is not dependent on the
implementation of the communication infrastructure.
This code treats most components as input-output
transformers, where the mechanisms for transporting
code between components is irrelevant to the algo-
rithms they implement.

3. There are a small set of attributes that determine the
characteristics of the target platform. These attributes
include the threading model, the amount and nature
of debugging code, the target implementation lan-
guage, and the task scheduler implementation.

Automatic generation of implementations in this domain
allows engineers to work at a relatively high level of ab-
straction, in which the architectural principles of MDS
are a primary focus at all times. The generator guarantees
that the resulting implementation is consistent with the
architectural model, and moreover does so in a way that
is appropriate for the targeted run-time platform on which
the system will be executed.

6.2 Direct comparison
The second technique for ensuring compatibility between
architecture and implementation is to find a way to com-
pare the two. Since an implementation necessarily has
considerably more detail than the architecture, the chief
problem to solve is to abstract away the details of the
implementation that are irrelevant to the architecture.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

13

Two approaches are typically used. One is to perform
static analysis on the code to infer high-level structure.
The other is to use dynamic analysis on the running sys-
tem to capture actual run-time behaviour and relate it to
architectural models. Static analysis is particularly effec-
tive for recovering (or inferring) module-oriented struc-
tures, since, in general, determining dynamic behaviour
of a system (e.g., creating new components or connec-
tions) is undecidable. Dynamic analysis is particularly
effective for inferring run-time structures, such as C&C
views. For that reason we focus on dynamic analysis.

The basic model for dynamic analysis is a process involv-
ing a series of steps. First a system is monitored to extract
low-level behaviour, such as object and thread creation,
method invocation, and variable assignment. Next, low-
level, implementation-oriented events are processed to
produce high-level, architecturally-relevant events. An
architectural model is dynamically constructed by apply-
ing the abstract architectural events to an evolving model.
Finally, the as-observed architectural model is compared
to the as-designed architectural model (or style) to detect
inconsistencies.

The main challenge in this process is the abstraction from
low-level events to architectural events. This is difficult
to do because it may be necessary to observe many low-
level events before it is clear what architectural events
have occurred. Moreover, these implementation events
may be highly interleaved. For example, creating a pipe
might involve creating both ends of the pipe and then
joining them together. In this process it is possible that
many writing ends of a set of pipes are created before any
reading end is created.

To account for this complexity we need to define a formal
mapping engine. In our own work we have developed the
DiscoTect system to do this (Yan et al. 2004, Schmerl et
al. 2006). At its core, DiscoTect represents a mapping
engine that uses a formal mapping language to describe
the relationship between patterns of low-level and high-
level events. The output of a mapping description is a
coloured Petri net (Jensen, 1994). After some filtering,
low-level events enter the net as input tokens. Successive
events may cause those tokens to move through the net,
eventually emerging as output tokens representing archi-
tectural events.

Figure 16 shows the net that creates pipe-filter architec-
tures from Java implementations that use Java pipe librar-
ies, and represent filters as classes that adopt certain nam-
ing conventions. The tokens in the figure represent the
current state of architectural reconstruction. Specifically,
two filters have been constructed, one with a write port
and one with a read port, and the pipe connection be-
tween them is about to be formed.

7 Related work
As noted in the Introduction, over the past two decades
there has been considerable research devoted to model-
ling and analysis of software architectures (Shaw and
Garlan, 1995). This work falls into several categories.

7.1 Architecture description languages
A large number of ADLs and associated toolsets have
been proposed by researchers (e.g., Balasubramaniam et
al. 2004, Dashofy et al. 2002, Morconi and Riemen-
schneider 1997, Terry et al. 1995). Like the architectural
modelling based on Acme described in this paper, most of
these ADLs focus on component and connector structures
and their properties. Several of them are specialized to
specific architectural styles such as hierarchical publish-
subscribe (Taylor et al. 1996), real-time control (Vestal
1996 and SAE International, 2004), or dataflow (Gorlick
and Razouk 1991). Collectively they represent an impres-
sive body of evidence about the utility of architectural
modelling and analysis.

UML 2.0 by the Object Management Group (2005) pro-
vides an architectural modelling language for components
and connectors that adopts many of the principles of
Acme. However, these extensions are relatively new, and
few tools have been developed to exploit them fully.
Moreover, as a general-purpose modelling language
UML is ill-suited to the problem of supporting domain-
specific models that can take advantage of specialized
analyses (Garlan, Kompanek, and Cheng, 2002). How-
ever, several domain-specific profiles of UML have been
proposed or are in the process of being ratified by the
Object Management Group. Many of these have the bene-
fits and power of the modelling approaches sketched in
this paper.

7.2 Specification and analysis of architectural
behaviour

Wright, summarized in this paper, was one of the first
modelling notations that attempted to provide behavioural
modelling and analysis for software architecture (Garlan,
Allen, and Ockerbloom 1994). Since then numerous be-
havioural formalisms have been used to provide comple-
mentary capabilities, including Chemical Abstract Ma-
chine (Inverardi and Wolf 1995), PO-Sets (Luckham
1996), Category Theory (Wermelinger 1998), Pi Calculus
(Magee et al. 1995), Statecharts (Vieira, Dias, and
Richardson, 2001) and many others.

Most of these approaches share the goal of detecting
mismatches in component compositions. The primary
differences are the kinds of behaviour that can be mod-
elled, and hence the kinds of mismatches that can be de-
tected.

7.3 Refinement and generation
Moriconi and colleagues were among the first to recog-
nize the importance of formal mappings between archi-
tectures and implementations (Moriconi et al. 1995).
Their approach uses structural transformation patterns to
constructively create implementation-oriented models
from architectural models.

UniCon, developed by Shaw et al. (1995) supports code
generation from architectural models. Their approach
creates a set of specialized compilation techniques for the
various kinds of connectors that may go into an architec-
ture. The goal is to provide a set of tools where any

CRPIT Volume 69

14

change to the implementation of a system must take place
through the architecture. Other ADLs also have a certain
amount of code generation capability (Luckham 1996,
Taylor et al. 1997).

A number of projects have looked at reconstruction of
architectures using static analysis. For example, Dali uses
a variety of analysis techniques to create a high-level
view of a system’s implementation structures (Kazman
and Carriere 1999). Since they focus on module-oriented
views, they are complementary to the C&C-oriented ap-
proaches described in this paper.

ArchJava (Alrdich, Chambers, and Notkin 2002) aug-
ments Java with constructs for components and connec-
tors, and uses typechecking to guarantee certain kinds of
conformance between the component and connector lev-
els of the system description and the lower-level imple-
mentation structures (classes, methods, etc.). In particu-
lar, the tools can guarantee that if two components are not
connected at the architectural level, they cannot directly
interact at the code level (e.g., through shared global vari-
ables).

A large number of people have become interested in
“Model-driven Architecture”, an approach that advocates
a staged and automated approach to refinement of archi-
tectural designs to implementations. This is a natural
complement to “Architecture-driven Models” – the theme
of this paper. Much of the current work in MDA has fo-
cused on a staging in which platform dependencies are
abstracted away in the high-level model, and bound dur-
ing refinement. This is a special case of the approaches to
refinement and generation outlined in this paper.

8 Discussion and conclusions
In this paper we have illustrated a number of ways in
which formal architectural modelling and analysis can
address important issues in software architecture, includ-
ing clarifying design intent, supporting rich forms of
analysis to enable detection of design flaws and make
principled tradeoffs between quality of service goals, and
allowing tools to help guarantee that implementations are
consistent with the intent of their architectures. While the
specific techniques described here draw heavily on re-
search carried out by the Able Group at CMU over the
past 15 years, many other research efforts have produced
similar results.

There are several broad lessons that can be learned from
this body of research.
1. A little formality goes a long way. The formalisms

outlined in this paper are relatively simple. Simple
structures with types, properties, relations, and be-
havioural descriptions can go a long way toward
providing more improved capabilities for architec-
tural design. Moreover, formal specification can be
incremental: not all aspects of interest need be for-
malized or analysed.

2. Reuse of existing methods. The formal modelling
and analysis techniques described in this paper rely
on a large body of existing formal methods and tools,
including model checkers, simulators, constraint

checkers, and model generators. This is good news
for software architects since it means that existing
theory and tools can be applied with only minor
modifications to the enterprise of software architec-
ture design.

3. One size does not fit all. Architecture reveals a clas-
sic tradeoff between power and generality: the more
general-purpose a model, the fewer opportunities for
deep analysis. In our work we rely heavily on archi-
tectural style, and our ability to easily create style-
specific tools, to exploit specific forms of analysis.

Although our ability to gain insight in software architec-
tures through modelling and analysis has improved tre-
mendously over the past decade, there remain a number
of areas for which our techniques need to be improved.
These include
• Dynamic Architectures: How can we reason about

architectures whose structure changes dynamically?
How can we determine when architecture changes
can be performed safely on a system without restart-
ing it? When can architectural changes be executed
in parallel?

• Software Architectures for Emerging Systems: As
technology advances so does our need to create sys-
tems that can take advantage of it. Today, for exam-
ple, we are on the verge of ubiquitous computing
systems that must work in the presence of hundreds
of cooperating computational units, from cell phones,
to sensors, to traditional computing platforms. What
architectures are needed to handle such systems?
Similarly, we are starting to see components whose
behaviour is determined by machine learning. How
can we specify what these components do and ensure
that they are compatible with other components?

• Managing Multiple Views: So far, much tool sup-
port for architectural modelling focuses on a particu-
lar view, such as C&C views. How do we manage
the relationships among multiple views of an archi-
tecture? To what extent can we ensure consistency
between these views? How can we separate a par-
ticular architectural view into multiple views high-
lighting different concerns, to manage scalability?

Acknowledgements
The research described in this paper reflects work over
the past 15 years funded by a variety of governmental
agencies and corporations, including DARPA, NSF,
ONR, ARO, Siemens, IBM, HP, and Microsoft. We
gratefully acknowledge their support, and note that the
opinions, conclusions or recommendations expressed in
this material are those of the authors and do not necessar-
ily reflect the views of these funding agencies or corpora-
tions.

Numerous students and staff have contributed to the body
of work summarized here, including Robert Allen, Eliza-
beth Bigelow, Shang-Wen Cheng, James Ivers, Jung Soo
Kim, Andrew Kompanek, Charles Krueger, Ralph Mel-
ton, Bob Monroe, John Ockerbloom, Nicholas Sherman,
and Bridget Spitznagel. Their hard work, insight, and

Proc. 11th Australian Workshop on Safety Critical Systems and Software

15

inventiveness are largely responsible for the advances
that we have made, and we thank them for their varied
but crucial support.

References
Aldrich, J., Chambers, C., and Notkin, D. (2002):

ArchJava: Connecting Software Architecture to Im-
plementation. Proc. ICSE 24, Orlando, Florida.

Allen, R. (1997): A Formal Approach to Software Archi-
tecture. Ph.D. Thesis, Carnegie Mellon University
School of Computer Science Technical Report CMU-
CS-97-144.

Allen, R., Garlan, D. (1994): Formalizing Architectural
Connection. Proc. the 1994 International Conference
on Software Engineering.

Allen, R. and Garlan, D. (1997): A Formal Basis for Ar-
chitectural Connection. ACM Transactions on Software
Engineering and Methodology, 6(3).

Allen, R., Garlan, D., and Ivers, J. (1998): Formal model-
ing and analysis of the HLA Component Integration
Standard. Proc. the 6th International Symposium on the
Foundations of Software Engineering (FSE-6), Lake
Beuna Vista, Florida.

Balasubramaniam, D., Morrison, R., Kirby, G.N.C,
Mickan, K., and Norcross, S. (2004): ArchWare ADL
Release 1 User Reference Manual. ArchWare Project
IST-2001-32360 Report D4.3.

Bass, L., Clements, P., and Kazman, R. (2003): Software
Architecture in Practice, 2nd Edition, Addison-Wesley.

Boehm, B., and Turner, R. (2003): Balancing Agility and
Discipline: A Guide for the Perplexed. Addison Wesley
Professional.

Bosch. J. (2000): Design and Use of Software Architec-
tures: Adopting and Evolving a Product Line Ap-
proach. Addison Wesley.

Brookes, F. (1975): The Mythical Man Month: Essays on
Software Engineering. Addison Wesley Professional.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.
and Stal. M. (1996): Pattern-Oriented Software Archi-
tecture, Volume 1: A System of Patterns, Wiley.

Butler, S. (2002): Security Attribute Evaluation Method:
A Cost-Benefit Approach. Proc. 24th International
Conference on Software Engineering (ICSE2002). Or-
lando, Florida, pp. 232-240.

Clements, P., Kazman, R., and Klein, M. (2001): Evaluat-
ing Software Architectures. Addison Wesley Profes-
sional: The SEI Series in Software Engineering.

Clements, P. and Northrop, L. (2001): Software Product
Lines: Practices and Patterns. Addison Wesley SEI
Series in Software Engineering,

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers,
J., Little, R., Nord, R., and Stafford, J. (2002): Docu-
menting Software Architectures: Views and Beyond,
Addison Wesley.

Dashofy, E., van der Hoek, A., and Taylor, R.N. (2002)
An Infrastructure for the Rapid Development of XML-
based Architecture Description Languages. Proc. 24th
International Conference on Software Engineering
(ICSE2002). Orlando, Florida.

Di Marco, A. and Inverardi, P. (2004): Compositional
Generation of Software Architecture Performance QN
Models. Proc. the 4th Working IEEE/IFIP Conference
on Software Architecture (WICSA’04). Oslo, Norway.

Dvorak, D., and Reinholtz, W.K. (2004): Separating Es-
sential from Incidentals, An Execution Architecture for
Real-Time Control Systems. Proc. 7th IEEE Interna-
tional Symposium on Object-Oriented Real-Time Dis-
tributed Computing. Austria.

Garlan, D., Monroe, R., and Wile, D. (2000)“Acme: Ar-
chitectural Description of Component-Based Systems.”
In Foundations of Component-Based Systems, Cam-
bridge University Press.

Garlan, D., Allen, R.J., and Ockerbloom, J. (1994): Ex-
ploiting Style in Architectural Design, Proc. of ACM
SIGSOFT ’94 Symposium on the Foundations of Soft-
ware Engineering.

Garlan, D.; Kompanek, A. J.; & Cheng, S.-W. (2002):
Reconciling the Needs of Architectural Description
with Object Modeling Notations. Science of Computer
Programming 44, 1, pp. 23-49.

Garlan, D., Reinholtz, W.K., Schmerl, B., Sherman, N.,
and Tseng, T. (2005): Bridging the Gap between Sys-
tems Design and Space Systems Software. Proc. 29th
Annual IEEE/NASA Software Engineering Workshop
(SEW-29), Greenbelt, MD.

Gorlick, M.M. and Razouk, R.R. (1991): Using Weaves
for Software Construction and Analysis. Proc. 13th In-
ternational Conference on Software Engineering
(ICSE13). IEEE Computer Society Press.

Hoare, C.A.R. (1995): Communicating Sequential Proc-
esses. Prentice Hall.

IEEE. (2000): IEEE Recommended Practice for Architec-
tural Description of Software Intensive Systems (IEEE
Std 1471-2000).

Inverardi, P. and Wolf, A. (1995): Formal Specification
and Analysis of Software Architecture Using the
Chemical Abstract Machine Model. IEEE Transactions
on Software Engineering 21(4).

Jackson, D. (2002): Alloy: A Lightweight Object Model-
ing Notation. IEEE Transactions on Software Engi-
neering and Methodology 11(2).

Jensen, K. (1994): An Introduction to the Theoretical
Aspects of Coloured Petri Nets. In: J.W. de Bakker,
W.-P. de Roever, G. Rozenberg (eds.): A Decade of
Concurrency, Lecture Notes in Computer Science vol.
803, Springer-Verlag, pp. 230-272.

Kazman, R. and Carriere. S.J. (1999): Playing Detective:
Reconstructing Software Architecture from Available
Evidence, Journal of Automated Software Engineering
6(2), 1999.

CRPIT Volume 69

16

Kim, J.S. and Garlan, D. (2006): Analyzing Architectural
Styles with Alloy. Proc. Workshop on the Role of Soft-
ware Architecture for Testing and Analysis 2006
(ROSATEA 2006), Portland, ME.

Luckham, D.C. (1996): Rapide: A Language and Toolset
for Simulation of Distributed Systems by Partial Order-
ings of Events, Proc. of DIMACS Partial Order Meth-
ods Workshop.

Magee, J., Dulay, N., Eisenbach, S., and Kramer, J.
(1995): Specifying Distributed Software Architectures.
Proc. 5th European Software Engineering Conference
(ESEC 95).

Moriconi, M., Quian, X., and Riemenschneider, R.
(1995): Correct Architecture Refinement. IEEE Trans.
Soft. Eng. 21(4).

Moriconi, M. and Reimenschneider, R. (1997): Introduc-
tion to SADL 1.0: A Language for Specifying Software
Architecture Hierarchies. Technical Report SRI-CSL-
97-01, SRI International.

Object Management Group. MDA (2003): The Architec-
ture of Choice for a Changing World.
http://www.omg.org/mda. Accessed November 29,
2006.

Object Management Group (2005). Unified Modeling
Language (UML), Version 2.0. http://www.omg.org/
technology/documents/formal/uml.htm. Accessed No-
vember 29, 2006.

Object Management Group (2006). OMG SysML Speci-
fication. http://www.sysml.org/docs/specs/OMGSys-
ML-FAS-06-05-04.pdf. Accessed November 29, 2006.

Perry, D. and Wolf, A. (1992): Foundations for the Study
of Software Architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40-52.

Rasmussen, R. (2001): Goal-Based Fault Tolerance for
Space Systems using the Mission Data Systems. Proc.
2001 IEEE Aerospace Conference, Big Sky, MT.

Rosanski, N. and Woods, E. (2005): Software Systems
Architecture: Working with Stakeholders Using View-
points and Perspectives. Addison Wesley.

SAE International. (2004): Architecture Analysis and
Design Language (AADL). Document Number
AS5506.

Schmerl, B. and Garlan, D. (2004): Supporting Style-
Centered Architecture Development. ICSE 26, Edin-
burgh, Scotland.

Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., and
Yan. H. (2006): Discovering Architectures from Run-
ning Systems. IEEE Transactions on Software Engi-
neering 32(7).

Sha, K. and Goodenough, J. (1991): Rate Monotonic
Analysis for Real-Time Systems. Foundations of Real-
Time Computing: Scheduling and Resource Manage-
ment, pp. 129-155. Kluwer Academic Publishers.

Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young,
D.M., Zelesnik, G. (1995): Abstractions for Software
Architectures and Tools to Support Them. IEEE
Transactions on Software Engineering, 21(4):314-335.

Shaw, M. and Garlan, D. (1995): Formulations and For-
malisms in Software Architecture. In Jan Van Leeuwen
(Editor), Computer Science Today: Recent Trends and
Developments. LNCS 1000:307-323, Springer-Verlag.

Shaw, M. and Garlan, D. (1996): Software Architecture:
Perspectives on an Emerging Discipline, Prentice Hall.

Spitznagel, B. and Garlan, D. (1998): Architecture-Based
Performance Analysis. Proc. 1998 Conference on
Software Engineering and Knowledge Engineering,
San Francisco.

Steppe, K., Bylenok, G., Garlan, D., Schmerl, B., Abi-
rov, K., and Shevchenko, N. (2004): Two-tiered Ar-
chitectural Design for Automotive Control Systems:
An Experience Report. Proc. Automotive Software
Workshop on Future Generation Software Archtiecture
in the Automotive Domain, San Diego, CA.

Taylor, R.N., Medvidovic, N., Anderson, K.M., White-
head, E.J., Robbins, E.J., Nies, K.A., Oriezy, P., and
Dubrow, D. (1996): A Component- and Message-
Based Architectural Style for GUI Software. IEEE
Transactions on Software Engineering 22(6).

Terry, A., London, R., Papanogopoulos, G., Devito, M.
(1995): The ARDEC/Tecknowledge Architecture De-
scription Language (ArTek), Version 4. Technical Re-
port, Tecknowledge Federal Systems, and U.S. Army
Armament Research, Development, and Eng. Center.

Vestel, S. (1996): “MetaH Programmer’s Manual, Ver-
sion 1.09.” Technical Report, Honeywell Technology
Center.

Vieira, M., Dias, M., Richardson. D.J. (2001): Software
Architecture based on Statechart Semantics, Proc. of
the 10th International Workshop on Component Based
Software Engineering.

Wermelinger, M. and Fiadeiro, J.L. (1998): Towards and
algebra of architectural connectors: A case study on
synchronization for mobility. Proc. 9th Workshop on
Software Specification and Design.

Yan, H., Garlan, D., Schmerl, B., Aldrich, J., and
Kazman, R. (2004): DiscoTect: A System for Discov-
ering Architectures from Running Systems," Proc. of
26th International Conference on Software Engineer-
ing, Edinburgh, Scotland.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

17

CRPIT Volume 69

18

Certified Software Factory:
Open Software Toolsuites, Safe Methodologies and

System Architectures
J. U. Gärtner

Esterel Technologies GmbH
Otto-Hahn-Str. 13b

85521 Ottobrunn-Riemerling
Germany

Abstract
This paper discusses model-based design in the context
of the Safety Critical Application Development Envi-
ronment (SCADE), developed by Esterel Technolo-
gies.1

1. Introduction

The last few decades have seen the concept of model-
based design develop to the point where it is now the
state-of-the art for most embedded applications. A
large number of parallel approaches exist here. Those
tools have evolved from pure specification and docu-
mentation tools to tool suites allowing design of execu-
table specifications that, in some cases, allow the
automatic generation of application code.

These tools can be grouped into several classes, includ-
ing

• UML-based tools
• Simulation-centric proprietary tools
• Formal tools and methods
• Domain-specific software tools

Two contradictory trends can be observed. Some tool
providers follow the path to open standards (such as
UML2) or open interfaces and formats (such as Eclipse
and XML) ,and thus enable the user to build his own
environment tailored to his needs. Other tool providers
hope to be heavy-weighted enough to build their own
community based on a proprietary format (for example
Simulink, Statemate).

In safety-related systems design, the usage of software
design tools is highly recommended. However, the
industry trend to automatic code generation is facing
some difficulties in this domain, because of the follow-
ing:

• process integration;
• safety requirements: code generation only

pays off if the code generator is trusted by cer-
tification bodies; and

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the 11th Australian Workshop on Safety
Related Programmable Systems (SCS'06), Melbourne. Confe-
rences in Research and Practice in Information Technology,
Vol. 69. Tony Cant, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

• domain-specific solutions lack openness and
momentum because they are only deployed in
niche areas

There is an obvious need for a solution that combines
certified automatic code generation with truly open tool
architecture and interface.

We will discuss these topics in the context of SCADE,
the Safety Critical Application Development Environ-
ment, developed by Esterel Technologies.

SCADE provides a modelling environment from which
code can automatically be generated, while its open
and documented interfaces provide full and seamless
integration capabilities into existing development flows
and processes.

2. Layered Architecture

The prerequisite for seamless integration in existing or
new software design processes is an open, scaleable
tool architecture.

When discussing the interface architecture of a core
tool, which is intended to be able to provide a hub-like
functionality in the flows inside a tool workbench,
some requirements soon become obvious:

• Abstraction: the system needs to be layered in
a way that on each level provides abstract and
encapsulated information;

• Openness: all relevant information must be
readily accessible; and

• Standardization: the interfaces must be based
on commonly accepted industry standards

This is achieved by implementing a layered tool archi-
tecture. An open architecture outside layer provides
abstract access to all the information, which is con-
tained in the core.

The core and interface layer together provide the basis
for the Certified Software Factory.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

19

IMAGE 1. Layered architecture of the certified soft-

ware factory

2.1. Interfaces based on open software architec-
ture concept

Open software architecture interfaces rely on several
concepts:

• Standard, openly documented file formats,
equally readable by humans and machines
• SCADE relies on standards such as

XMI2, XML and ASAM-MCD2
• Standard, openly documented APIs (applica-

tion programming interfaces)
• SCADE provides TCL and C-based inter-

faces as well as an Eclipse-Plug-in.
• Models are stored as Meta-models so that they

can be transformed to and from any other
model format
• SCADE stores the information in an

UML-Metamodel

2.1.1. Example: SysML interface

When transforming models, one must take care to do
meaningful translations conforming to the semantic
properties of the underlying modelling languages.

Building such an interface requires analysis of the data
formats as well as the semantics.

SysML SCADE

• Overview
• Semi-formal
• Asynchronous
• Object-oriented

• Good for struc-

tural description

• Main construct

• Classifier & Be-
haviour

• Dynamic (Instance/
link creation)

• Explicit & implicit
flows (connectors or
object references

• Overview
• Formal
• Synchronous
• Functional with

state
• Good for be-

havioural de-
scription

• Main construct
• Node (close to

UML behaviour)
• Static (everything

pre- instantiated)
• Explicit flows only

IMAGE 2. SysML and SCADE semantic comparison

Deeper analysis shows that the SCADE and SysML
notations are very complementary. The ideal pivot
point for model transformations is the class/ node inter-
face. When concentrating on this construct, the user
gains a hybrid view on the overall model: a dynamic,
object-oriented view of the model architecture linked
with a static, instantiated and synchronous view on
behaviour.

If such a model translator is additionally based on OSA
(open software architecture) concepts and commonly
accepted standards such as XMI2 and a meta-model
approach, it can easily be built in a very generic way,
allowing adaptations for all kinds of UML2/SysML
dialects and specific profiles.

The SCADE Gateway to Rhapsody® is an instance of
such an implementation.

2.1.2. Example Requirements management inter-

face

Requirements are usually formulated in textual form
and stored either in a database or in text processing
tools.

Requirements may be further refined and result in
software or system design, CAD drawings or other
format.

An open development platform must therefore provide
a means to link requirements specifications (in what-
ever format) with designs and models, test cases or
source code (in whatever format).

The SCADE requirements management gateway en-
ables the user to link all his tools and data together and
have instant and global understanding of the interde-
pendencies and relationships.

CRPIT Volume 69

20

IMAGE 3. Requirements management gateway pro-

viding traceability throughout the entire life-
cycle

2.2. The core of the certified software factory

At the centre of the software factory, there is a reposi-
tory containing the information that describes the be-
haviour of the software.

On the one hand, this model complies with the notion
of an UML-Metamodel, meaning that the contained
information can readily be accessed through a stan-
dardized interface (script language or Eclipse).

On the other hand, the model must obey very strict
requirements in order to comply with the requirements
imposed by the standards that drive safety-related sys-
tems development: DO-178B, IEC61508-1 and –3,
EN50128.

High integrity levels imply formal models and unambi-
guous semantics that allow representing the typical
features of embedded software systems: reactive sys-
tems with data flow, discrete states and concurrency,
coupled with hard real-time constraints.

The SCADE modelling language has evolved from
LUSTRE, a formal, synchronous model description
language.

The user interface provides the developer with a very
intuitive view, based on block diagrams and state
charts, tightly integrated. Powerful constructs for vec-
torization of flows and operators tackle even the most
complex problems.

IMAGE 4. SCADE model representing a fully func-

tional automotive cruise control application

This model is immediately executable for verification
and validation purposes.

The development environment includes a powerful
software- in- the- loop simulator with model- level
debugging features.

Thanks to the formal nature of the model, it can also be
examined by formal/mathematical analysis and proof
engines, such as the integral SAT-solver Design Veri-
fier, which provides a formal proof of functional safety
properties.

The open software architecture makes this model fully
accessible through the customer’s specific tool suite
and provides transformation engines to and from this
environment.

It is also the basis for automatic generation of SDD
documents (software design descriptions) and, more
importantly, serves as direct input for certified code
generation.

IMAGE 5. Formal model as the hub of the SW design

process

Certified code generation ensures, that

• The code complies 100% with the model in
the sense that the code fully and deterministi-
cally represents the behaviour described in the
model

Proc. 11th Australian Workshop on Safety Critical Systems and Software

21

• The generated code complies with each and
every objective and requirement imposed by
the standards to which it has been qualified
(DO-178B up to Level A) and certified
(IEC61508, up to SIL 4)

For example, the generated C code does not contain
operations on pointers, no global variables, no indefi-
nite loops, no dynamic memory allocation etc.

At the same time, it fulfils very stringent requirements
related to memory usage and execution time.

It is absolutely comparable with highly optimized
hand- written code.

Moreover, it is totally target-agnostic and therefore
easily to be integrated on all platforms, from bare ma-
chine to complex distributed systems.

Certified code generation is a key to a completely de-
fined process that covers all steps from requirements
capture down to integration on target.

High quality of generated code and restriction to a very
small subset of C allow also to verify correct compila-
tion through compilation and automated verification of
a representative model containing the complete gener-
able subset of C in all its possible combinations and
nested operators, resulting in a combined testing proc-
ess which ensures and guarantees that each requirement
is correctly designed, modelled, coded, and the inte-
grated on the target hardware.

IMAGE 6. The combined testing process

3. Safe Systems Architectures

The tool suite and process outlined above ensure that
no systematic errors can be introduced into the soft-
ware design when transforming the system require-
ments relevant for software into an application.

Safe system architecture needs to also ensure that haz-
ards or spontaneous, non-systematic errors on the
hardware, sensors or from the environment will not
affect safe operation of the system.

Various approaches exist to this problem, some of
which include redundancy, dissimilarity and built- in
tests.

All of them go beyond the scope of this paper, but
share the same principle: A layered systems design that

clearly separates the application from the hardware and
usually incorporates a safe and certified operating sys-
tem.

An open software development environment must
directly support automatic integration of the generated
code onto such safe HW/SW platforms.

SCADE provides such interface to several certified/
qualifiable operating systems such as GHS Integrity,
Sysgo PikeOS or MicroC.

CRPIT Volume 69

22

On proof-test intervals for safety functions implemented in software

Alena Griffiths
System Safety & Quality Engineering Pty Ltd

11 Doris Street, Hill End. Qld. 4101
alenag@uqconnect.net

Abstract
!Given a target probability of functional failure on demand
for a system, a corresponding dangerous failure rate for the
system can be derived, provided that a proof-test interval
for the function is known. IEC 61508, and related
standards, requires that this calculation be performed, for
certain kinds of systems that are required to provide safety
functionality on demand. This paper explains why it is
necessary to consider what constitutes a proof-test interval
for a function, and then considers what this means for
software. We show that there are several problems with the
proof-test concept, as applied to software, and describe the
problems this presents to practitioners wanting to derive
safety integrity levels for system safety functions.

Keywords: SIL derivation, IEC 61508, high and low
demand mode functions, proof tests.

1 Introduction
In many industries – rail, chemical process control, oil and
gas, motor vehicle, nuclear, and to a lesser extent, defence
– the approach to safety engineering is strongly influenced
by the risk-based approach outlined in IEC61508
(1998—2000), and other standards based upon it.

These standards describe an approach to deriving safety
targets in which the safety target assigned to a function
corresponds to the risk reduction required to be achieved
by it. Depending on whether the system can initiate an
accident sequence, or is required to provide protection
against other hazards that could occur, safety targets will
be expressed as a dangerous failure rate, or as a probability
of failure on demand, respectively. Depending on the
technology used to implement the function, these targets
may then be used to infer safety integrity levels (SILs) for
the development of the function.

This paper describes the SIL derivation process with
reference to an accident sequence model. We argue that
the issue of whether a function’s safety target should be
expressed as a failure rate or as a probability of dangerous
failure on demand, should not depend on its classification
as a high or low demand mode function, but rather on its
position in the accident sequence. We also show that, if it
is desired to transform safety targets to uniform

“!Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the 11th Australian Conference on Safety
Related Programmable Systems (SCS ’06), Melbourne.
Conferences in Research and Practice in Information
Technology, Vol. 69. Tony Cant, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.”

dimensions and thus to compare them (i.e. to express all
safety targets in terms of dangerous failure frequencies, for
example), the issue of what constitutes a valid proof-test
interval for the function must be considered. To the extent
that a function is implemented in software (or
software-like technologies), this means that the concept of
proof-test intervals for software must also be considered. It
also means that safety target derivation, if it goes so far as
to assign SILs, is not a process that can be independent of
the technology used to implement the safety functions.
This is disappointing, as intuitively, we would like safety
requirements derivation, and safety requirements
implementation, to be separable concepts.

The concept of a proof-test interval, as it applies in the
field of reliability engineering, is then reviewed. We
consider what this means for functions implemented in
software. We survey various arguments that might be
offered to justify the selection of different proof-test
intervals – noting their strengths and limitations – and
conclude that there is no consensus about what is a valid
proof-test interval for software.

Although this paper uses an accident sequence model to
explain the relevance of proof-test intervals to the SIL
derivation process, in fact the proof-test issue arises in any
framework in which quantitative safety targets need to be
achieved with technology whose integrity is difficult to
quantify. This suggests that the SIL concept either needs to
be expanded to better correspond to the two types of
statistic used to express safety targets, or that assignment
of SILs should be deferred to later in the development
life-cycle. The pros and cons associated with both
approaches are briefly surveyed.

2 Accident Sequence Models
The process of determining safety requirements for a
system commences with a hazard identification and
analysis activity. There are many techniques for
performing such an activity, and it is beyond the scope of
this paper to discuss these. However, at the conclusion of
the hazard identification and analysis phase, one should
have identified all reasonably foreseeable ways that a state
or event of the system can cause or contribute to an
accident.

One way to document one’s understanding of how the
system can lead to accidents is to prepare a set of accident
sequences.

A typical accident sequence is illustrated in Figure 1.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

23

IE CE1
AccCEn..

Figure 1 Accident Sequence

As shown in Figure 1, a typical accident sequence consists
of:

1. An initiating event (IE), which is the event that
initiates the sequence of events that can lead to an
accident.

2. Zero or more contributing events (CE1 .. CEn). A
contributing event is an event that must occur, in
order for the accident to result.

3. An accident (Acc), which is an event involving
harm.

Depending on the way a safety program has been scoped,
the concept of harm may be limited to harm to humans, but
it could also be expanded to incorporate damage to
property or the environment, service outages, or mission
failures.

Accident sequences may be documented pictorially – as in
Figure 1 – however it is usually more efficient to document
them in a tabular fashion. Tables 1 and 2 illustrate how this
can be done, and also describe the accident sequences for
two working examples we will use throughout this paper.

The first example is taken from a risk analysis for a
traditional railway signalling system. The signalling
system receives (non-vital) requests to set routes. On
receipt of a request, it checks the safety of the request
against (vital) inputs from track circuits, and against any
relevant interlocking history. If it is safe to do so, it sets the
route, which may involve issuing vital outputs to points
and signals, and storing a record of this authority (i.e.
updating the interlocking history). The accident sequence
in Table 1 below examines the consequences of unsafe
failure of the interlocking system, leading to a system
allowing green signals to be displayed over a common
section of track.

Event
ID

Event Description

IE (*) Interlocking shows proceed aspects on
conflicting routes, A and B.

CE1 Driver on route A, on the strength of the
proceed aspect, moves into a section X.

CE2 Driver on route B, on the strength of the
proceed aspect, moves into section X.

CE3 Driver on route B fails to notice presence of A,
in sufficient time to slow train to avert a
collision.

Acc Train collision/derailment

Table 1 Signalling Example

In the example above, the event labelled IE is annotated
with a (*), to indicate that it is an event of the system under

analysis. This is a convention we adopt throughout the
paper.

The second example is taken from a risk analysis for a
tunnel ventilation control system (TVCS) for an
underground railway. The TVCS is responsible for, among
other things, activating powerful exhaust fans to clear air
in tunnels, in the event that it becomes contaminated by
smoke or gas. Activation of such fans is usually triggered
automatically, in response to stimuli received from a train
supervision system, and a fire alarm system. However, in
the author’s experience, it is usually the case that in the
event of failure of the automatic activation system, the fans
can be manually activated, either indirectly, via a
computer-based display on the TVCS, or directly, via a
hard-wired panel in a plant room. The latter control point
usually bypasses the control system completely. In the
following example, we assume the existence of a
hard-wired manual control location.

Event
ID

Event Description

IE Train stops in tunnel

CE1 Fire in tunnel/station

CE2 Air supply in tunnel contaminated as a result
of smoke or noxious gas

CE3 (*) Control system fails to automatically activate
exhaust fans, in response to train
stoppage/fire alarms

CE4 Delayed manual fan activation leads to period
of diminished air quality for persons in train

Acc Persons in train suffer
poisoning/asphyxiation

Table 2 Tunnel Ventilation Example

Note that in both examples given above, the accident
sequences are extreme simplifications of the analyses that
would occur for real systems, and are provided for
illustrative purposes only. Also, the accident sequences
focus on events of interest to the system under analysis.
For example, in the tunnel ventilation example, failure of
the exhaust fans is an alternative cause of the final
accident, and potentially has far more serious
consequences, since it would lead to total ventilation
failure, not just delays associated with failure to activate
the ventilation automatically. Nevertheless, fan failure
would not generally be considered in much detail in a
study aimed exclusively at deriving safety targets for the
TVCS, because the fans do not mitigate failures of the
TVCS1.

In both examples presented above, exactly one of the
events IE, CE1 .. CEn in the accident sequence corresponds
to a hazard of the system under analysis. Sometimes,

1 Note that the failure rate of the fans does, however,
constitute a practical upper bound on the reliability of the
function as a whole, and so might constitute an upper limit
on the integrity of the TVCS that should be targeted.

CRPIT Volume 69

24

however, more than one event of the accident sequence
will correspond to the system under analysis. For example,
where a system has diagnostic and back-up facilities, then
the initiating event might correspond to a critical failure of
the system, and subsequent contributing events might be
failure of the system to detect the critical failure and take
protective action.

The accident sequence can then be used to derive safety
requirements for the system under consideration, in that
any event corresponding to an action or inaction of the
system gives rise to a corresponding safety requirements
on the system – i.e. that the event ought not to occur.

So, returning to the signalling example, a safety
requirement corresponding to event IE might be:

Requirement 1: The interlocking system shall not
command a proceed aspect unless it is safe to do so
(having regard to the current state of vital inputs and the
history of the interlocking).

Similarly, for the tunnel ventilation example, the safety
requirement associated with CE3 might be:

Requirement 2: The TVCS shall, in response to signals
indicating that a train is stopped in a tunnel, and that a fire
alarm is active, automatically initiate emergency
ventilation mode.

Note that, in addition to providing information about
safety requirements for the system under analysis, accident
sequences also contain other information about the safe
deployment of that system. For example, CE4 in the tunnel
ventilation example documents an important assumption
that underpins the analysis – namely that there is an
alternative control location, and that staff are trained to
operate fans from that location. In general, accident
sequences should be comprehensively mined for other,
safety-related information, which should be encoded as
third-party requirements, assumptions,
application-specific safety conditions, etc.

Note that accident sequences are not the only way to
document how system hazards can contribute to accidents.
Event tree analysis, fault tree analysis and
cause-consequence analysis are other techniques that
achieve a similar goal. These methods, however, are ways
of more concisely presenting groups of related accident
sequences, rather than being entirely different techniques.

The accident sequence model has been criticised in work
by Leveson (2002), on the grounds that it focuses on the
(most) proximate causes to the accident, often at the
expense of underlying systems-theoretic causes (for
example – lack of a management commitment to safety in
the organisation operating the safety-critical plant). Also,
it may lead one to a mistaken belief that events are
independent, because they are associated with different
systems, when in fact there may be a common underlying
cause (e.g. if both systems are maintained by the one
organisation, which has applied aggressive cost-cutting
measures to its maintenance operations). Further, the
desire to quantify the models, an issue we explore in the
next section, may lead one to unconsciously discount
events from an accident sequence, simply because
quantifying the likelihood of occurrence is hard.

These criticisms are accepted, and, if constructing an
accident model for an operating railway as a whole, we
might well prefer to adopt the systems-theoretic approach
recommended by Leveson (2002). However, in the
author’s practical experience, safety requirements
derivation is typically performed in a much more specific
context – i.e. it usually falls to the supplier of the TVCS to
make the case for derivation of appropriate safety
requirements and targets. Persons working at that specific
context typically do not have access to detailed
information about say, the railway as a whole, and must
instead make informed judgements about what to expect of
the surrounding environment, which form caveats on the
safe use of the system they supply. It then falls to parties at
the railway level to ensure that the assumptions made by
the TVCS suppliers are appropriate in the context of their
specific railway. Also, the criticisms advanced by Leveson
(2002) are not faults exhibited by all sets of accident
sequences. They are just common traps into which
developers of accident sequences might fall. An awareness
of these issues, and subsequent review of the accident
sequences to search for these weaknesses, can help to
avoid them.

3 Safety Target Derivation
In addition to identifying the system safety requirements,
in a functional sense, accident sequences can also be
quantified and as such used to derive quantitative safety
targets.

To see how this can be done, it is first necessary to
introduce the mathematics behind accident sequences.

If F(X) denotes the frequency of event X, and P(Y) denotes
the conditional probability that Y occurs, given that
preceding events in the accident sequence have already
occurred, then the frequency of accident occurrence can be
computed using the following formula:

F(Acc) = F(IE).P(CE1). … .P(CEn) Eqn 1

To derive safety targets one then applies the following
process.

First, the severity of the accident must be assessed, and a
target rate of occurrence for the accident must be derived.
How to do this is beyond the scope of the paper, however
we note that:

1. Usually, one has regard to a risk matrix that
indicates risk tolerability as a function of accident
severity and frequency of occurrence – see for
example the matrix in Clause 4.6.3.4 of EN
50126.

2. Account must be taken of the aggregate risk
posed by the system as a whole, not simply the
risk posed this particular accident sequence.

3. Depending on the industry in which one is
working, the final arbiter of what constitutes
acceptable risk will vary, as can the risk standards
that will be imposed.

4. If it is necessary to demonstrate that risk has been
reduced as low as reasonably practicable

Proc. 11th Australian Workshop on Safety Critical Systems and Software

25

(ALARP), it will be necessary to show that the
costs associated with achieving a lower target
accident frequency are disproportionate to the
risk benefit that would be achieved. This may
require the safety target derivation process to be
iterated a number of times, with indicative
costings prepared for different derived targets.

Let us suppose that, for the signalling example, the
tolerable frequency of a rail collision arising from this
specific accident sequence (having regard to the nature of
the rail service, the volume of rail traffic, and the number
and type of other accident sequences that can give rise to a
similar result) is 1E-05/year or 1.14E-09/hr.

Further let us suppose that for the tunnel ventilation
example, a similar consideration yields a target of
3.42E-09/hr.

Next, one assigns values to the parameters of Eqn 1, for
events that are outside the system of interest. This will
require data collection and the application of engineering
judgement, and often, will require some assumptions to be
made.

Thirdly, for events that are hazards of the system under
analysis, one assigns conservative values, for the purposes
of initial assessment only, in the following way.

If the event is a contributing event, then a probability of 1
is assigned, indicating that initially, we pessimistically
assume that the contributing event will always occur when
it is dangerous for that to happen.

If the event is an initiating event, then it is usual practice to
assign a failure frequency, for the purposes of initial
assessment only, that is outside the claim limit for SIL 1.

Per IEC 61508, the failure rate range for SIL 1,
high-demand mode systems, is less than 1E-05
failures/hour, but greater than or equal to 1E-06
failures/hour. A value of 3.2E-05 failures/hour is therefore
one order of magnitude more frequent than the geometric
mean of the SIL 1 range. It is suggested to be an
appropriate value to use, for the purposes of initial risk
assessment only, however it is important to note that this
does give rise to a later validation obligation to show that
such reliance is reasonable. In particular, we note Clause
7.5.2.4 of IEC 61508-1 which allows dangerous failure
rate claims to be associated with systems that are not
designated as safety-related systems, provided that the rate
claimed is higher than the SIL 1 failure rate boundary, and
that the claim can be justified.

The process described above is applied to the signalling
example and the tunnel ventilation example, as shown in
Table 3 and Table 4 below. The resultant frequency
assessments are also illustrated there.

It is clear that for both examples, the initial accident
frequency calculation results in a frequency much higher
than the maximum allowable value, and that risk reduction
is therefore needed.

In the context of the accident sequence model, risk
reduction can occur in a number of ways, including:

1. Redesign so that the accident sequence is no
longer possible.

2. Introduce measures to reduce the severity of the
resulting accident.

Event ID Event Description Initial
Estimate Rationale

IE (*) Interlocking shows proceed aspects on
conflicting routes, A and B.

3.2E-05/hr
The initial estimate is purely a placeholder value --
for a system of lower than SIL 1 integrity.

CE1 Driver on route A, on the strength of the
proceed aspect, moves into a section X.

1

Drivers proceed on the strength of the authorities
communicated via signals. This event is a natural
consequence of the initiating event.

CE2 Driver on route B, on the strength of the
proceed aspect, moves into section X.

1

Drivers proceed on the strength of the authorities
communicated via signals. This event is a natural
consequence of the initiating event.

CE3 Driver on route B fails to notice presence of
A, in sufficient time to slow train to avert a
collision.

1/2

Drivers are expected to remain alert and to look for
hazards on the track. Depending on the conditions at
the time, the speed of the traffic, the topology of the
track, some credit may be taken for the fact that the
driver on route B may notice the presence of A and
slow his train to avoid collision (or to lessen the
impact).

Acc Train collision/derailment A train collision or derailment is always assumed to
have catastophic effects.

Accident frequency ==> 1/7 years

Table 3 Signalling Example – Initial Quantitative Risk Calculation

CRPIT Volume 69

26

3. Introduce additional mitigations, that would
prevent accident occurrence – this corresponds to
adding additional events to the accident
sequence.

4. Reduce the frequency of the initiating event, or
the conditional probability of one of the
contributing events, to reduce the accident
frequency – this usually means assigning
integrity requirements to one or more of the
systems involved, although a similar result can be
achieved by limiting hazard exposure periods.

As noted above, this paper is written from the perspective
of a supplier seeking to derive appropriate safety integrity
requirements for a system that he has been tasked to build.
In this context, the options available to the supplier are
usually limited to the last two. In relation to Option 3, a
supplier can introduce redundancy into the design of the

system he has been tasked to build (with consequent
increases in cost and complexity, and note that redundancy
offers no protection against common-cause failure modes,
particularly those arising from design error). In relation to
Option 4, the supplier can typically only alter the safety
integrity requirements of the system he is supplying.

The remainder of this paper focuses on achieving risk
reduction through the assignment of safety integrity
requirements to the system under consideration, i.e.
Option 4 above.

For the signalling example, as the initial accident
frequency is once in seven years, or 1.6E-05/hr, a failure
frequency of 2.28E-09/hr must be assigned to the initiating
event, in order to reduce the accident frequency to the
tolerable value.

Event ID Event Description Initial
Estimate Rationale

IE Train stops in tunnel, and cannot be readily
restarted

1/2 years

While short term delays are common, and any of
these might cause a train to be stopped in a
tunnel, lengthier delays requiring passenger
evacuation are far more infrequent.

CE1 Fire in tunnel/station

1/100

While very minor fires in station waste bins and
the like are common, fires large enough to give
off significant amounts of smoke are extremely
uncommon in stations, and the system is designed
so these should not occur in tunnels.

CE2 Air supply in tunnel contaminated as a result of
smoke or noxious gas

1

The estimate of conditional probability, in the
previous event, takes "credit" for the unlikelihood
of fires large enough to emit tangible quantities of
smoke. It is therefore reasonable to assume that if
such a fire did occur, the air supply in the tunnel
would be contaminated.

CE3 (*) Control system fails to automatically activate
exhaust fans, in response to train stoppage/fire
alarms 1

Initially, no credit is taken for control system
integrity, as this is the system under
consideration.

CE4 Delayed manual fan activation (5 minutes) leads
to period of diminished air quality for persons in
train

1

If the events preceding this one have all occurred,
then staff would have no option but to attempt to
action emergency mode from the plant room.
Staff are trained for this eventuality and the target
for manual activation is less than 5 minutes. A
period of diminished air quality would be
expected.

Acc Persons in train suffer poisoning/asphyxiation
It is expected that a period of diminished air
quality could result in as many as five deaths, for
passengers with pre-existing conditions, and
cause other major/minor injuries, with significant
distress to all passengers involved. This is
therefore a catastrophic event.

Accident frequency ==> 1/200 years

Table 4 TVCS Example – Initial Quantitative Risk Calculation

Proc. 11th Australian Workshop on Safety Critical Systems and Software

27

For the tunnel ventilation example, as the initial accident
frequency is once in 200 years, or 5.71E-07/hr, a
conditional probability of failure on demand 6E-03 must
be assigned to contributing event CE3 (i.e. to the
probability that the control system will fail to
automatically activate the fans when required).

As such, the safety requirements formulated earlier can be
associated with explicit safety targets, as follows:

Requirement 1 Safety Target: 2.28E-09 dangerous
failures per hour

Requirement 2 Safety Target: 6E-03 probability of a
dangerous failure on demand

4 Deriving SILs from Safety Targets
Having determined the relevant safety requirements, and
associated quantitative safety targets, the next job is to
develop a strategy for achieving these targets.

To the extent that the system is comprised of simple
hardware, the field of reliability engineering provides us
with techniques to achieve, and to prove achievement of
this goal. However, to the extent that the system is
comprised of software, it is difficult to say what the target
means, and for software of high integrity, beyond the
bounds of current technology to demonstrate that it has
been met.

In lieu of absolute demonstration of achievement of the
quantitative target, one must, to make a case that a system
is acceptably safe, fall back on an argument that one has
exercised due diligence, applying good practice
appropriate to the nature and integrity requirement of the
system under consideration.

To provide guidance here, IEC 61508 provides the safety
integrity level concept, which associates suites of
development and assurance techniques with different
quantitative target ranges. The SIL concept is well
explained in Redmill (2000).

The SIL concept, as described in IEC 61508 and related
standards, has been criticised by Lindsay & McDermid
(2000) on the grounds that the link between suites of
development and assurance practices, and target failure
rate ranges, is not supported by empirical studies. Other
criticisms relate to the fact that the overall process is
open-loop; that is, one determines the required tolerable
hazard rate, infers the corresponding SIL, and then applies
the development practices appropriate to that SIL.
However, the loop is often not closed, in the sense that no
argument is made that taken as a whole, the evidence
generated in the course of development is sufficient to
establish that the required safety has been achieved.

While these criticisms are noted, and accepted, the fact
remains that the SIL concept is prevalent in all industries
affected by IEC 61508 or related standards, and must
therefore be applied. Also, we note that many of the
criticisms of the SIL concept are not so much of the
concept itself, as of the way it is misused. Being alert to
these pitfalls is a step along the journey to avoiding them.

IEC 61508 recognises that safety-related systems can
operate in two modes, and that the unit associated with the
safety target will vary because of this. It recognises
low-demand operation, where the frequency of demands
for operation are no greater than once per year, and no
greater than twice the proof-test frequency. For low
demand mode operation, the associated target failure
measures are expressed as probability of failure to perform
the function when demanded. It also recognises high
demand or continuous mode, where the frequency of
demands for the function is greater than once per year or
greater than twice the proof-test frequency. For high
demand functions, the associated target failure measures
are expressed as dangerous failure rates.

With reference back to our accident sequence model, and
to Eqn 1, we can see that this might reflect a possible
assumption within IEC 61508 that if systems are operating
in high-demand or continuous mode of operation, their
failures will constitute initiating events in an accident
sequence. Alternatively, if systems are operating in
low-demand mode, their failures will constitute
contributing events in an accident sequence.
Unfortunately, this is not always true.

Referring back to our signalling example, the derivation of
a safety integrity level from the quantitative safety target is
in this case apparently straightforward. Most would argue
that the system, performing interlocking functionality
continuously, is operating in high demand mode. As such,
it is straightforward to take the quantitative safety target of
2.28E-09 failures/hr, note that it lies within the range for
SIL 4 functions, and hence infer that the interlocking
function must be developed using SIL 4 development and
assurance practices.

For the tunnel ventilation example, however, where the
target is expressed as a conditional probability, how do we
perform the SIL translation?

The function of activating emergency control mode, as
required for this particular accident sequence, will not be
demanded more frequently than once a year. However, in
some tunnel ventilation control systems, the modes used
for responding to fire situations are also used to respond to
some classes of standard congestion situation. Standard
congestion situations happen frequently, as a result of
traffic congestion or other more routine disturbances
(short term glitches in traction power supply, hazards on
the track that need to be cleared, etc.). As such, the actual
function may be exercised frequently, although the safety
demands related to this accident sequence may be less
frequent. Furthermore, the software on the actual TVCS is
no doubt performing many functions, some of which
would be operating continuously.

The standard also requires that, in order for a function to
qualify as a low demand function, it must be shown that
the demand is less frequent than twice the proof-test
frequency. As such, to show that a function is a low
demand mode function, it is not enough to just consider the
demand frequency, one must also consider the proof-test
frequency.

While the standard is unclear here, in the author’s
experience most people would argue that the function of

CRPIT Volume 69

28

activating emergency mode is nevertheless a high demand
function (in this hypothetical example), if the mode is
activated more frequently than once per year, albeit for
other reasons than indicated in this accident sequence.

This presents a problem, since our safety target is
expressed as a probability of failure on demand, and the
appropriate target failure measures for high-demand mode
functions are expressed as dangerous failure rates.

We can use the formula for the reliability of a system at
time t – expressed as R(t) – to relate a dangerous failure
rate f to the probability of a dangerous failure, during a
demand period t. The relevant formulae are:

P(Dangerous_failure_during_period_t) = 1 – R(t)

And,

1- R(t) = 1-e(-f.t),

And,

1- e(-f.t) ! f.t, for small f.t.

Giving,

P(Dangerous_failure_during_period_t) ! f.t, for small f.t.

In order to apply this scheme, however, it is necessary to
determine an appropriate period t.

For this accident sequence, suppose the function was
demanded at time ti, then the relevant period to use is the
time during which a failure of the TVCS would be
dangerous. Clearly, this period of time must start before ti,
since if the TVCS happened to be in a failed state when the
function was demanded, then the function would be
unavailable. As such, the period of time must extend
backwards to the last time the TVCS was tested and
proved to be working, relative to this functional demand.
That is – to the last time a proof test for this function was
conducted. Note that the period must also extend forward
until such time as we can reasonably expect the situation to
have been resolved, since a failure of the TVCS following
a successful activation of the mode might, depending on
the design of the system, cause the mode to stop with
consequent harm to passengers on the train. In summary,
the relevant period t is the length of the interval beginning
from when the function was last proof tested, through to ti,
and extending up until the time after ti at which the
situation can expect to have been resolved.

It would seem then, that to infer from the target probability
of failure on demand, a corresponding dangerous failure
rate, and hence to infer a SIL for the TVCS, we need to
consider what constitutes an appropriate proof test for this
function.

5 Proof-test Intervals and Software
A proof test is a test that proves that some function of a
component is working. If the test fails, the component is
repaired or replaced. For components subject to random
failures, with a failure rate that is constant over time,
frequent proof testing can be used to effectively reduce the
probability that a component will fail during a defined
interval.

The ideal proof test is non-invasive, and does not diminish
the reliability of the component. For example, consider a
room that is continuously illuminated by a single light
bulb. The simple act of opening a door to see if the light is
still on is a non-invasive proof test for the light bulb. In
most cases however, a proof test involves actually
demanding the function, and observing the result to be sure
that the component is able to provide the function on
demand. Examples are turning on a light to check that it is
still working, line integrity tests for telecommunications
equipment, physical point-to-point tests for control
equipment, etc. For components that are normally in an
active state, polling the device and confirming that a
response is received is also a kind of proof test.

Generally, the more complex the device, the more difficult
it is to perform a perfect proof test. Consider a
programmable logic controller, wired to physical input and
output points. A test that the controller is powered up and
responsive when polled could be considered to constitute a
proof test of sorts. Such a test, however, probably would
not reveal latent circuit failures on the output cards, and
hence would not be considered a sufficient proof test for
the function of controlling a particular output point.

Returning to the example of the TVCS, let us suppose the
architecture for the system comprises:

1. A LAN connection between the TVCS server,
and other systems. This connection delivers the
demand from the emergency ventilation mode.

2. A TVCS server, which is commercial grade
computing hardware, running software operating
on a UNIX platform. The server detects the
demand and forwards it to the PLC.

3. An optical fibre connection to one or more PLCs,
which perform the low-level plant control.

4. One or more PLCs that take care of local plant
interlocks (e.g. dampers should be opened before
exhaust fans are activated, etc.), and which are
physically wired to the plant.

Note that in the architecture just described there is
software in the TVCS server and also in the PLC(s). The
question is: what constitutes an adequate proof test for the
function of actioning an emergency mode? From a
hardware perspective, the demand to action the mode is
received over a network connection, from another system,
so a test that the connection to the other device is working
is sufficient. The connection between the server and the
PLC would be similarly proved. For the server on which
the processing is performed, a test that the server is
powered up and “healthy” would be sufficient. For the
PLC itself, as just discussed, a valid proof test would need
to exercise the circuits involved in the activation of
emergency mode.

This is, however, a software-based system, which begs the
question of what constitutes a proof test for the software?
To answer this, we need to consider the nature of the
software, and the way that it fails. Software behaves
systematically, in the sense that when a particular logical
path is exercised, with a certain set of values assigned to
the variables, the result that is produced will either

Proc. 11th Australian Workshop on Safety Critical Systems and Software

29

conform to specification, or not, and hence the software
will be considered to have succeeded, or failed. Every time
the same path through the software is exercised, with the
same value to variable assignment, the result will be
identical. Provided the underlying platform is sound, there
is no possibility that the software will “stop working”, at
some point.

This means that the concept of a proof test, as used in IEC
61508, is essentially meaningless for software. The
complexity of even simple safety-related software systems
usually renders exhaustive testing infeasible (Butler &
Finelli, 1993, and Littlewood, 2000) , meaning that for a
particular function, it will not be possible to exercise all
possible paths, with all possible variable-value
assignments. That is, for most practical purposes, it will be
impossible to construct a perfect proof test. Returning to
our example, a functional demand on the software to
action emergency mode, performed as part of a proof test
during non-traffic hours on the railway, may exercise the
software differently to a demand made “in anger”, when
there are high levels of network traffic, other software
activity, and when the value of other variables accessed by
the program may have changed.

On the other hand, if the software that implements the
function was sufficiently simple to allow a “perfect” proof
test to be constructed, then it would be enough to do it once
– subsequent tests would not add value, from the
perspective of software reliability.

In both cases above – where it is not possible, and where it
is possible, to construct a perfect proof test, the idea of
manipulating proof-test intervals is meaningless for
software, since it cannot be argued to affect the probability
of failure on demand of the software.

Nevertheless, from a practical point of view, if one is to
perform SIL derivation within the IEC 61508 framework,
some sort of proof-test interval must be postulated, in
order to perform the conversion between the failure on
demand target and a dangerous failure rate.

In the author’s experience, the following options have
been used:

1. A test that the software is operational, i.e. that it is
not currently in a failed state. Within the high
integrity systems community, there is some
support for the notion that a simple test of this
nature is sufficient to constitute a proof test (refer
discussion in the High Integrity Systems
Engineering (HISE) mailing list, in reference
list). Since polling can be performed very
frequently, however, this has the consequence of
reducing the proof-test interval to milliseconds,
which in practical terms means that even an
extremely high failure rate can yield a low
probability of failure on demand. That is, using
this as a proof-test interval can artificially deflate
the required safety integrity level. In the case of
the TVCS, this would lead to counter-intuitive
results, in that it would yield a low failure rate
requirement (to the point of requiring no integrity
level to be assigned at all), for a function which is
clearly relied on to reduce risk.

2. A demand of the relevant function. While simply
demanding the function does not constitute a
perfect proof test, for the function at large, it is a
test of the function with certain input values, and
certain environmental variables (i.e. certain
state). By performing such tests regularly, over an
extended period, and taking care to perform the
tests at different times of the day and in different
operating modes, it is reasonable to expect that
over time a certain level of coverage will be
achieved, with respect to the actual operational
profile of the function. This strategy is consistent
with the point of view that although software fails
systematically, for sufficiently complex systems,
the demands placed on those systems by the
environment in which they are embedded are
sufficiently random to be able to be viewed
stochastically (Musa, 1998, and Parnas et al.,
1990)

3. The time since the software was last reset. There
is a compelling argument that for many systems,
the value of the program’s variables (i.e. its state)
evolves over the time that the software is
operational. Accordingly, as the mission time of
the software increases, so does the likelihood that
the environment will make a demand on the
software that has not previously been made. By
frequently resetting the software therefore, one
increases the likelihood that the demands that are
made are in parts of the operational profile that
has previously been explored (and therefore is
known to work) (Parnas et al. 1990.).

4. Ignore the issue of software proof-test interval,
and use an interval that is appropriate for the
hardware used to implement the system. This
approach appears to ignore the issue altogether,
but is actually sympathetic to the general
philosophy of IEC 61508, which employs
traditional (hardware) reliability engineering
methods to derive quantitative targets, and then
switches to new ideas (the SIL concept), to
achieve them.

6 Discussion
This paper has raised a number of issues that warrant
further discussion.

6.1 Primary and Non-primary Functions
The examples in this paper have focused on the use of
software to achieve what might be termed the “primary
functions” of a system. By primary functions, we mean the
functions which are representative of the purpose for
which the system was created. Examples include the
control of vital outputs by an interlocking system.
However it is important to note that software is also used
to perform hardware integrity checks and other kinds of
diagnostic functions. For example, an interlocking system
typically also includes software that continuously checks
the electrical integrity of the input and output cards. These
functions are usually ancillary to the main purpose of the

CRPIT Volume 69

30

system, but are relied on to achieve overall safety.
Consideration of the role such functions play is in the
author’s experience typically delayed to the more detailed
system hazard analysis phase, and is not performed
quantitatively. That is, one performs quantitative analysis
on the primary functions of the system, of the kind
described in this paper, to infer that control of vital outputs
needs to be assured to (say) SIL 4. Then, during detailed
systems analysis, since failure to detect a critical hardware
error could contribute to non-achievement of the function,
one would also infer that diagnostic software to detect
such errors must also be developed to SIL 4. The existence
of such diagnostic functions – which are actually proof
tests of the underlying hardware – is usually relied on in a
detailed reliability analysis for the system hardware.

6.2 Initiating and Contributory Events
The examples in this paper illustrate safety functions
whose failures have been modelled as initiating and
contributory events. It is interesting to consider whether
such events can be classified, and if so, what
characteristics ought to be used for the classification
scheme.

In the signalling system example, the relevant event is an
error of commission (i.e. the system actively does
something dangerous), and the derived safety requirement
is phrased negatively (i.e. the system shall not …). In
contrast, in the TVCS example, the relevant event is an
error of omission (i.e. the system fails to do something
when required), and the derived safety requirement is
phrased positively (i.e. the system shall …). This suggests
a distinction based on the nature of the failure mode that
characterises the event.

The distinction, however, does not appear to apply
universally. Consider the case of a railway traction power
SCADA system, where the accident sequence of interest
involves inadvertent energisation of high-voltage
equipment while work on the line is in progress, and other
manual safe-guards have failed. In this case, most would
characterise the initiating event on the basis of time, and
say that the sequence starts with the (normal) occurrence
of maintenance, and contributing events include failure to
apply manual safe-guards, and then an act of commission
by the SCADA system, during the maintenance period, to
energise equipment spuriously.

Also, judgement must be applied in determining the
initiating event for any accident sequence. Indeed, a major
theme of the criticisms by Leveson (2002) is that accident
sequences do not trace far enough backward in the search
for causes, and rarely consider organisational causes (e.g.
an accident sequence may include operator error as the
initiating event, but most analysts would not list the
management decisions that led to operators being rostered
on for excessively long shifts an an initiating event). This
dilemma is also evident in the signalling example in this
paper. Another analyst might, for example, list the
inappropriate route request submitted by a train control
system to be the initiating event, and characterise failure of
the interlocking system to block the request as a
contributing event (interestingly, it is an error of
omission).

This is an area for further research, and would be a
necessary pre-cursor to any quantification scheme based
on accident sequence position.

6.3 Accident Sequence Inversion
Contrary to the idea explored in the previous subsection,
that hazardous events can be absolutely characterised, is
the observation that it is usually possible to invert accident
sequences.

As shown in the paper, problems of quantification usually
arise with contributing events, where it is necessary to
convert failure on demand targets to failure rate targets. If
the accident sequence can be inverted so that the
contributing event is instead re-cast as an initiating event,
an alternative view of the system can be obtained. For
example, returning to the tunnel ventilation example,
imagine instead an accident sequence where the initiating
event was failure of the TVCS in a mode that made
subsequent activation of emergency mode impossible, the
contributing events are then train stoppage and fire, during
the period in which the TVCS failure remains undetected.

This accident sequence inversion technique can provide a
useful way of “sanity checking” results that depend on a
failure on demand to failure rate conversion. It is
interesting to note, however, that in the specific example
used in this paper, the problem does not go away. To
quantify the likelihood of train stoppage and tunnel fire,
one must know the maximum likely period for the TVCS
failure to remain undetected, which is just the proof-test
interval anyway.

7 Related Work
So far as the author is aware, the issue of what constitutes a
valid proof test for software does not appear to have been
addressed in the literature. Within the safety-critical
systems community, there has been some discussion on
the High Integrity Systems Engineering mailing list (see
reference list), about proof testing in general. However the
thrust of that discussion seemed to be about determining
what constituted a valid proof test, for the purposes of
satisfying both limbs of the definition for “low-demand
function” (i.e. the requirement that the demand be less
often than once a year, and no more frequent than twice the
proof-test interval). The discussion did not seem to
confront the relevance of proof tests to the task of
transforming probability of failure on demand statistics to
dangerous failure rate statistics. Nevertheless, the
discussion in that thread is anecdotal confirmation that
there is a broad range of opinion on the topic, and little
consensus!

The accident sequence model and its use in the derivation
of safety integrity targets, and SILs, is similar to the
method described in a paper by Lindsay, McDermid and
Tombs (2000).

8 Conclusions
This paper has considered what constitutes a valid
proof-test interval for software. The following conclusions
emerge:

Proc. 11th Australian Workshop on Safety Critical Systems and Software

31

1. Currently, the IEC 61508 framework requires a
scheme for converting between targets expressed
as probability of failure on demand, and those
expressed as a dangerous failure rate, in order to
derive SILs for high-demand mode systems that
provide response-type functionality. Also,
EN50129 has completely eliminated the concept
of a low-demand function, forcing one to apply
such a scheme to any system providing
response-type functionality.

2. Such a scheme demands that the concept of a
proof test be addressed.

3. Even if the system is operating in low-demand
mode, one must still consider the proof-test
frequency, and hence what constitutes a proof
test, in order to satisfy the second limb of the
definition of “low-demand mode”.

4. For components with random failure modes,
proof testing provides an opportunity to discover
latent failures and remove them, before a
safety-related demand is made. In quantitative
terms, this reduces the probability that the
component will fail when a safety-related
demand is made.

5. However, for components in which systematic
failure modes dominate, such as software, it is
usually infeasible to design a perfect proof test.
Paradoxically, if such a test can be designed, then
it is enough to run it once! Reducing the
proof-test interval will not affect software
reliability.

6. Despite the above difficulties with the concept,
IEC 61508 forces practitioners to confront the
issue, if quantitative safety targets are to be
derived. The paper reviewed a number of
approaches to arriving at a value to use for such a
calculation. We do not recommend any specific
approach; we simply note the pros and cons
associated with each of them. It is suggested that
the decision about which approach to use will
need to have regard to the particular application
at hand.

7. This is an area where more guidance, from the
standards bodies, is badly needed!

Ancillary to the main theme of the paper, the following
observations are made:

1. In practical terms, the specification of the
requirements for a system is usually informed by
ideas about how those requirements will be
implemented. However, the systems engineering
approach suggests that these issues should, so far
as possible, be kept separate. That is, one should
determine what a system must do, without being
concerned with how it shall achieve that. This
leaves maximum freedom to designers. This
paper has shown that this will not be possible,
however, if it is desired to associate with system
requirements a safety target that is expressed as a
safety integrity level. This is because some

knowledge of system implementation is
necessary to determine what constitutes a valid
proof test, and knowing what constitutes a valid
proof test is essential to proposing a reasonable
proof-test frequency.

2. There is a move to eliminate the
low-demand/high-demand distinction, and force
all safety targets to be translated to dangerous
failure rates. This will mean the issues
considered in this paper will come to light more
frequently. An alternative approach that could be
considered by standards authors is to continue
the current scheme of having two tables,
according to the units in which the safety target
is expressed. However, the current basis for
distinction (i.e. high vs. low demand) could be
replaced with a classification scheme based on
where the system appears in the accident
sequence (i.e. whether its failures are initiating
events or contributing events).

9 Acknowledgements
The ideas in this paper have evolved based on my
experiences and observations over the last five years. I am
particularly indebted to Neil Robinson for recent
stimulating discussions about the issues, and to the
anonymous reviewers for many helpful comments. Errors
are of course my own.

10 References
IEC 61508, Functional Safety of

electrical/electronic/programmable electronic
safety-related systems, Parts 1—7, 1998—2000,
International Electro-technical Commission.

IEC 61511, Function Safety – Safety instrumented
systems for the process industry sector, Parts 1—3,
2004, International Electro-technical Commission.

EN50126, Railway applications – The specification &
demonstration of reliability, availability, maintainability
and safety (RAMS), 1999, CENELEC.

EN50128, Railway applications – Communications,
signalling and processing systems – Software for
railway control and protection systems, 2001,
CENELEC.

EN50129, Railway applications – Communications,
signalling and processing systems – Safety related
electronic systems for signalling, 2003, CENELEC.

Leveson, N.G., Safeware: System Safety and Computers,
Addison Wesley, 1995.

Leveson, N.G., System Safety Engineering: Back to the
Future, 2002. http://sunnyday.mit.edu/book2.pdf

Redmill, F. Safety Integrity Levels – Theory and
Problems, in Lessons in System Safety, Proceedings of
the Eighth Safety-Critical Systems Symposium, Springer
Verlag, 2000.

CRPIT Volume 69

32

Redmill, F. Understanding the Use, Misuse and Abuse of
SILs,
http://www.csr.ncl.ac.uk/FELIX_Web/3A.SILs.pdf

Lindsay, P.A., and McDermid J.A., A systematic approach
to software safety integrity levels, Software Verification
Research Centre Technical Report 00-17, May 2000.
http:svrc.it.uq.edu.au.

Lindsay, P.A., McDermid, J.A., and Tombs, D. A
systematic approach to software safety integrity levels,
In Proceedings of the 19th International Conference on
Computer Safety, Reliability and Security (SAFECOMP
2000), Springer Verlag, 2000.

Safety Critical Mailing List Archive 2005:
http://www.cs.york.ac.uk/hise/safety-critical-archive/20
05/0122.html

D. L. Parnas, J. v. Schouwen, and S. P. Kwan, Evaluation
of safety critical software, Communications of the ACM,
33(6):636-48, 1990.

Musa, J. Software Reliability Engineering, McGraw-Hill,
1998.

Butler, R.W., and Finelli, G.B., The infeasibility of
quantifying the reliability of life-critical real-time
software, IEEE Transactions on Software Engineering,
Vol 19, No. 1, Jan. 1993, pp3—12.

Littlewood, B. The problems of assessing software
reliability … when you really need to rely on it, Centre
for Software Reliability, City University, London, UK.
2000.
http://www.csr.city.ac.uk/people/bev.littlewood/bl_pub
lic_papers/SCSS_2000/SCSS_2000.pdf

Proc. 11th Australian Workshop on Safety Critical Systems and Software

33

CRPIT Volume 69

34

Dynamic Design and Evaluation of Software Architecture in

Critical Systems Development

Klaus Marius Hansen Lisa Wells

Computer Science Department
University of Aarhus
DK-8200 Aarhus N

Email: fklaus.m.hansen,wellsg@daimi.au.dk

Abstract

The software architecture of a computing system is
an abstracted structure of the system in terms of
elements and relationships. Such structures may
be viewed from a number of viewpoints including
static/module, dynamic/execution, and deployment
viewpoints. Software architecture fundamentally in-

uences systems from all of these viewpoints and de-
signing and implementing proper software architec-
tures is thus critical in many problem domain areas,
including the ones that pertain to safety-critical sys-
tems.

With respect to safety-critical systems, a partic-
ular problem with focusing on software architecture
is that there may be a large abstraction gap between
an architectural description and an executing system
or a formal model thereof thus potentially leading to
inconsistencies between models and implementation.
Addressing this problem, this paper presents tools
and techniques for specifying executable software ar-
chitectures and for validating these with formal mod-
els such as statecharts and Petri nets.

1 Introduction

Safety-critical systems are systems that can cause un-
desired loss or damage to life, property, or the envi-
ronment, and safety-critical software is any software
that can contribute to such loss or damage [20]. Since
safety-critical systems have the potential to cause ex-
tensive damage, there are many standards and guide-
lines describing processes, techniques, and methods
for developing such systems. For example, the IEC
61508 [14] is a standard for achieving functional
safety of programmable electronic safety-related sys-
tems, and the Australian Defence standard 5679 [9]
is concerned with the procurement of computer-based
safety critical systems. Such standards contain rec-
ommendations regarding which techniques and mea-
sures should be used when developing software.

One of the techniques that these and other stan-
dards recommend or even require is the use of semi-
formal or formal methods through various develop-
ment phases for improving the quality of the safety-

The research presented in this paper has been supported
by ISIS Katrinebjerg Competency Centre, http://www.isis.
alexandra.dk.

Copyright c
2006, Australian Computer Society, Inc. This pa-
per appeared at 11th Australian Conference on Safety-Related
Programmable Systems (SCS'06). Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 69. Tony
Cant, Ed. Reproduction for academic, not-for pro�t purposes
permitted provided this text is included.

critical software. The use of formal methods and sup-
porting tools "provide increased repeatability of ana-
lyis, increased soundness and extra assurance" [9].
The IEC 61508 standard recommends that (semi-
)formal methods should be used at various develop-
ment states, including software safety requirement
speci�cation, software architecture design, detailed
software design and development, and software safety
validation. The recommended methods include (semi-
) formal models for representing both static and dy-
namic characteristics of the software. Here we are
only interested in models for representing dynamic
behaviour of systems. Such models can be used for
either specifying desired behaviour of software and/or
for validating and verifying that modelled software
behaves has desired.

While the standards advocate the use of (semi-)
formal models, they do not necessarily make any rec-
ommendations about how to ensure consistency be-
tween models of software behaviour and the corre-
sponding executable software. It is clearly a good idea
to model software behaviour, however, the usefulness
of such models will be compromised if it is not pos-
sible to ensure some consistency between the model
of the behaviour, and the behaviour of the executable
software. This paper presents tools and techniques
for validating the behaviour of executable software
against models of the behaviour of the software, and
thereby for reducing the gap between the software and
the model.

1.1 Modelling Software Behaviour

Models of software behaviour can be used for many
di�erent purposes, such as for specifying software re-
quirements, for designing software, and for analysing
the behaviour of software. Since the majority of ac-
cidents in which software was involved can be traced
to requirements
aws [20], it is of particular impor-
tance to develop complete and unambiguous require-
ment speci�cations for safety-critical software. Sev-
eral standards recommend that requirements be spec-
i�ed as (semi-)formal models, and there is even rigor-
ous language and tool support for checking complete-
ness and consistency of software speci�cations [11].
The behaviour of software can be modelled both by
static models, such as decision tables and Uni�ed
Modeling Language (UML) sequence diagrams and
by dynamic models with executable behaviour, such
as �nite and timed automata, statecharts, and Petri
nets. One of the advantages of using dynamic mod-
els is that it is possible to investigate and, in some
cases, even verify the behaviour of the model in an
appropriate tool.

Dynamic models that represent states of a system
and transitions from one state to another can rep-
resent either discrete or continuous changes between
states. When modelling the behaviour of (safety-

Proc. 11th Australian Workshop on Safety Critical Systems and Software

35

critical) software, it is rarely interesting to have an
accurate model of continuous state changes, and in
most cases it is su�cient to consider a set of discrete
state changes. For example, when modelling software
that controls the speed of a conveyor belt, it would
not be necessary to model all possible speeds of the
conveyor belt, but it would be su�cient to consider a
number of di�erent discrete classes of speeds, such as
stopped, within range, and above acceptable range.

In this paper we consider only discrete-state mod-
els which are state-based models with discrete transi-
tions between states. Transitions between states will
also be called events. A more formal de�nition of the
kind of models that we are interested in will be pro-
vided in Sect. 3.2. As always, when using models it is
important to �nd an appropriate level of abstraction
for the models. If the models are too detailed, then
it may be too time-consuming to develop them, and
it may be di�cult, if not impossible, to do reasonable
analysis of the behaviour of the model. Discrete-state
models are well-suited for specifying fairly high-level
requirements, and for analysing the behaviour of rel-
atively small systems.

A variety of tools provide support for creating
and analysing di�erent kinds of discrete-state models
of software behaviour. For example, SPIN [13] and
Uppaal [19] support model checking of �nite and
timed automata respectively, visualSTATE [25] and
STATEMATE [10] support analysis of statecharts,
and CPN Tools [7] supports analysis of a kind of high-
level Petri nets which will be introduced in Sect. 4.
With some of these tools, it is possible to generate
executable code from the models, in which case, it is
possible to ensure that there is consistency between
the model and the code (assuming that the code is re-
generated or updated if the model is modi�ed). How-
ever, if code is not or cannot be generated from mod-
els, then there is likely to be a large gap between the
models of software behaviour and the executable code
that is modelled. And in particular, even though code
may be generated, it is not certain that it corresponds
to a required or desired software architecture. This
lets us to consider the concept of software architec-
ture.

1.2 Software Architecture

Software architecture is concerned with abstracted
structures of software systems. A generally accepted
de�nition of the term `software architecture' is

De�nition 1 (Software Architecture) The soft-
ware architecture of a program or computing system is
the structure or structures of the system, which com-
prise software elements, the externally visible proper-
ties of those elements, and the relationships among
them [4]

The de�nition implies a number of characteris-
tics of software architecture. First, a system has
many structures/views of interest (e.g., module struc-
ture, dynamic structure at runtime in terms of pro-
cesses and communication, and deployment structure
in terms of processors and components deployed) [18].
Secondly, software architecture is abstract in the
sense that it is only concerned with externally vis-
ible properties of elements and relations and thus
not concerned with the inner structure of compo-
nents. Thirdly, all systems have a software architec-
ture whether intended or not.

All of these characteristics are relevant in relation
to software safety. Software architecture highly in
u-
ences various system quality attributes such as per-
formance, modi�ability, and testability because these
are in
uenced by structures in various views [4]. A

consequence of the second characteristic is that soft-
ware architecture descriptions may be more manage-
able than the actual system (or a less abstract de-
scription thereof) making the descriptions amenable
to, e.g., analyses and communication. And a con-
sequence of the third characteristics (in combination
with the above) is that software architecture is well
worth to be concerned with in safety-critical system
development.

A large number of techniques for software archi-
tecture requirements analysis such as Quality At-
tribute Workshops [1] and Global Analysis [12];
techniques for software architecture design such as
Attribute-Driven Design [5] and architecture pattern-
base design[6]; and techniques for software architec-
ture evaluation such as the Architecture Tradeo�
Analysis Method and Architecture Level Prediction
of Software Maintenance [8] have been developed and
tested. One characteristic of these are that they are
almost all speci�cation-based in that they use and
produce descriptions of software architectures rather
than software architectures of actual systems. Some
problematic consequences of basing software archi-
tecture work solely on such descriptions can be that
the architecture-as-built di�ers from the architecture-
as-designed, that quality attributes are not properly
addressed, or that software architects tend to design
conservatively even if the conservative choice may not
be appropriate.

As a way to mitigate some of these problems, and
as a supplement to existing well-documented tech-
niques related to software architecture, we have pre-
viously introduced the concept of architectural proto-
typing [2, 3]:

De�nition 2 (Architectural Prototype) An ar-
chitectural prototype consists of a set of executables
created to investigate architectural qualities related to
concerns raised by stakeholders of a system under de-
velopment. Architectural prototyping is the process of
designing, building, and evaluating architectural pro-
totypes [2]

Architectural prototypes are characterized by having
no functionality per se and thus often being cheap
to implement. Often architectural prototypes exper-
iment with and evaluate infrastructure and middle-
ware, e.g., to decide whether a push or a pull message
passing architecture is most suitable for an embedded
control system [2]. Section 2.4 presents an architec-
tural prototype constructed in a safety-critical system
development context.

In this paper we claim that architectural proto-
types are useful in safety-critical software develop-
ment in that the technique promises a cost-e�ective
way to implement various architectural alternatives.
Further, we provide a way of validating such exe-
cutable software architectures. In doing this, we are
in line with the views of [21]: what matters more than
how or by which principles it was developed is that
the designed software architecture is safe.

1.3 Software Architectures and Discrete-
State Models

Given the above discussion, there are a number of is-
sues in combining the use of software architecture and
discrete-state model in the development of (critical)
software systems.

Most fundamental is that software architecture
is concerned with structures (of systems) whereas
discrete-state models are concerned with behaviour.
Further, discrete-state models typically provide one,
behavioural view of a system whereas software archi-
tecture provides several as discussed in Section 1.2.

CRPIT Volume 69

36

An example of why this may be an issue is that a de-
ployment decision (such as about the type of network
used in a concrete distributed system) may impact
behavioural characteristics such as performance.

This also means that discrete-state models are
mostly concerned with runtime system quality at-
tributes (e.g., logical correctness, reliability, perfor-
mance, or scalability) whereas software architecture
is also concerned with development time system qual-
ities (e.g., modi�ability, testability, or interoperabil-
ity).

Finally, discrete-state models and software archi-
tectures may also often be orthogonal abstractions
of a system. In our case study, presented in Sec-
tion 2, discrete-state models were used to model re-
quirements of the system where a software architec-
ture is used to represent the system per se.

These problems make, e.g., traceability between
software architectures and discrete-state models and
reasoning about whether software architectures ful�ll
requirements modeled by discrete-state models hard.
Section 3 introduces our approach to handling parts
of these problems.

1.4 Contributions

The main contribution of this paper is the introduc-
tion of the Heimdall1 tool. The tool enables the
validation of sequences of program execution events
against a discrete-state model. We present a real-
life case study in which Heimdall is applied by using
aspect-oriented instrumentation to an architectural
prototype of a frequency converter for safety-critical
applications for which program execution events are
then mapped to a formal model of requirements de-
scribed by a Coloured Petri Net [15].

The rest of the paper is structured as follows. Sec-
tion 2 describes the case study which emphasised the
need for tools like the Heimdall tool. Section 3 de-
scribes the architecture and functionality of the Heim-
dall tool, and it also illustrates the current implemen-
tation of the tool. Section 5 discusses ideas for future
work and concludes the paper.

2 Frequency Converter Case

Several of the problems and issues that were discussed
above were encountered in a collaborative research
project between Danfoss Drives2, Systematic Soft-
ware Engineering3, and the Computer Science De-
partment, University of Aarhus4. Danfoss Drives pro-
duces frequency converters which are used to control
the speed of motors, e.g. for elevators, cranes, and
conveyor belts. A new generation of frequency con-
verters is being developed in accordance with IEC
61508. One part of the project investigated di�erent
(semi-)formal methods for specifying software safety
requirements. Another part of the project focused
on the design of the software architecture for the fre-
quency converter. In this project we experienced the
problem of a large gap between the models specifying
the software safety requirements and the executable
prototype of the software architecture. This section
will brie
y present the case study which is described
in more detail in [26].

1Heimdall is the watchman of the Gods in Norse mythology. Us-
ing his excellent hearing and vision he watches the rainbow, Bifrost,
that leads to Asgard, the home of the gods, sounding his alarming
horn when danger approaches

2http://drives.danfoss.com
3http://www.systematic.dk
4http://www.daimi.au.dk

Motor

PWM
GeneratoruP1

uP2
Power

Electronics

Switch off 1

Switch off 2

Feedback 1

Feedback 2Speed Info 1

M
ai

ns

Digital Input 1

Digital Input 2

Speed Info 2

n

n

Frequency Converter

CHANNEL 1

CHANNEL 2

Cross
Communication

Fieldbus

Safe Board Control Board

Po
w

er
 B

oa
rd

Figure 1: Hardware structure of a frequency converter
with safety functions.

2.1 Hardware and Software

In the new generation of frequency converters, safety-
critical software runs on two microprocessors. The
hardware structure of the frequency converter is
shown in Figure 1. The two blocks PWM Genera-
tor and Power Electronics control the speed of the
attached motor, and they make up the normal, \non
safety-related" part of a frequency converter.

The safety functionality is achieved by an addi-
tional subsystem on the Safe Board composed of
Channels 1 and 2, each containing a microproces-
sor (uP), a Switch-o� path, and three Digital In-
puts. The two microprocessors can, independently
from each other, activate its own switch-o� path to
stop the motor. The two Channels cross-monitor each
other through Feedbacks 1 and 2 and through the
Cross Communication connection.

A number of so-called designated safety functions
(DSF, or safety function) are implemented in soft-
ware that runs on the two microprocessors on the
Safe Board. The simplest safety function is a so-called
'uncontrolled stop' which immediately stops power
supply to the motor. Another safety function is a
'controlled stop' or 'safe delay', where the stopping
of the power supply to the motor is delayed, allow-
ing the non-safety-related part of the frequency con-
verter to ramp the motor down in a controlled way.
A more complex example is the 'safe speed' where an
uncontrolled stop is made if the motor speed exceeds
a set limit. A frequency converter is con�gurable, and
users can determine which safety function is associ-
ated with each of the n=3 digital inputs. A speci�c
safety function is activated upon reception of signals
at the appropriate digital input at each of the Chan-
nels.

All diagnostic functionality with respect to cross
monitoring and self monitoring of the Channels is im-
plemented in software. On detection of a dangerous
failure, an appropriate fault reaction is initiated, and
the motor is stopped.

2.2 Specifying Safety Requirements

The software that runs on the two microprocessors on
the Safe Board is safety-critical since it can contribute
to loss or damage to the environment of the frequency
converter through its e�ect on the speed and con-
trol of the attached motor. System-level safety re-
quirements were already de�ned at the outset of the
project. These requirements addressed issues such as,
when output to the motor should be enabled, what
should happen when an error occurs (either in hard-
ware or software), how requests for safety functions

Proc. 11th Australian Workshop on Safety Critical Systems and Software

37

Power-up/
Self-test

Normal
operation

Fail-
safe

Safe end
state

Safe stop

No dangerous failure

1c

3

4

59a

11

12

13

2

1b

1a

14

Safe delay
activated

6aSafe delay
inactive

6b

6c

Safe
ramp down

activated

7aSafe
ramp down

inactive

7b

7c

Safe
speed limit
activated

8aSafe
speed limit

inactive

8b

8c

DSF activated

10aPower
removal
inactive

9b

10b

Figure 2: Informal statechart speci�cation of system-
level safety requirements.

should be made and handled, and what should hap-
pen after a safety function completes.

As mentioned previously, one of the recommenda-
tions of standard IEC 61508 is that semi-formal meth-
ods should be used to specify safety requirements.
In order to comply with this recommendation, Dan-
foss developed an informal statechart model (shown
in Figure 2) that was included in the initial product
proposal that was approved by the certi�cation au-
thorities. The model is informal in that it was drawn
in a generic drawing tool, and the states, transitions,
and event triggers are described separately in simple,
natural-language texts. It is not important to under-
stand the details of the behaviour speci�ed by the
statechart, but it will be brie
y explained.

The statechart speci�es that the frequency con-
verter must always be in one of three top-level states,
namely No dangerous failure, Fail-safe or the Final state

(denoted by a dot in a circle in the upper right-hand
corner of the �gure). If any kind of error is detected,
then the frequency converter must enter Fail-safe state,
and the power supply to the motor must be stopped.
The only way to leave Fail-safe state is to turn the fre-
quency converter o� (Transition 14), and thereby enter
Final state. If no errors are detected, then the frequency
converter must be in No dangerous failure state, and
more speci�cally, in one of its three composed states:
Normal operation, DSF activated or Safe stop. In Safe stop

state, output to the motor is always disabled.
One of the goals of the project was to specify soft-

ware safety requirements based on the informal stat-
echart of the system safety requirements. The soft-
ware safety requirements were a re�nement of the sys-
tem safety requirements. Again, the IEC 61508 stan-
dard highly recommended that semi-formal methods
should be used to de�ne software safety requirements.

2.3 CPN Model of Requirements

A very detailed model of software safety require-
ments was developed in the formal modelling lan-
guage Coloured Petri Nets (CPN or CP-nets) [15, 17].
This section will provide a brief overview of the CPN
model of the frequency converter, and the formal def-
inition of CPN will be introduced in Sect. 4. All
of the requirements that were speci�ed in the stat-
echart model from Figure 2 are included in the CPN
model. Those requirements have been speci�ed more
formally, and the speci�cation is much more detailed.
In addition, the CPN model speci�es requirements
that are not addressed in the statechart model, such

Application

Safe Inverter

Diagnostics2

UserIO

PowerSwitch MicroProc2_Sm

Safe Board

MicroProc1_Lg

DigitalIO

InMessages2InMessages1

ConfirmSelfStart2

ConfirmDSFStart2

ConfirmDSFStop2

Diagnostics1

ConfirmSelfStart1

ConfirmDSFStart1

ConfirmDSFStop1

Common

Fail

TimeOut

SelfTest

ReceiveMsg

SendMsg

ManageDSF

StartDSF

StopDSF

CompleteDSF

Figure 3: Module hierarchy of the CPN model.

1`DSFRequest (1,n,Low)++
1`DSFRequest (2,n,Low)

1`DSFRequest (1,n,High)++
1`DSFRequest (2,n,High)

Request
DSF

UserIO

I/O

UserIO

8

1`UserFB((1,Low))++
1`UserFB((2,Low))++
1`DSFRequest((1,1,High))++
1`DSFRequest((1,2,Low))++
1`DSFRequest((1,3,High))++
1`DSFRequest((2,1,High))++
1`DSFRequest((2,2,Low))++
1`DSFRequest((2,3,High))

Figure 4: DigitalIO module from the CPN model.

as diagnositics and synchronisation of the state of the
software on the two microprocessors.

Figure 3 provides an overview of the CPN model
which was created in CPN Tools. Each node in Fig-
ure 3 represents a module in the model, and an arc
from one node to another indicates that the source
node contains an abstract representation of some be-
haviour that is speci�ed in more detail in the module
of the destination node.

The Application module (at the top of Figure 3)
is the most abstract representation of the frequency
converter and its environment. This module has two
submodule, namely User IO and Safe Inverter, modelling
the means for user input/output, i.e. the digital in-
puts (module Digital IO) shown in Figure 1, and the
frequency converter itself, respectively. The software
for the two microprocessors is modelled by the mod-
ules MicroProc1 Lg and MicroProc2 Sm. Both of these
modules share some common functionality as speci-
�ed by the module Common and its submodules. The
two microprocessors send di�erent kinds of messages
and have di�erent diagnostic algorithms, which is why
there are separate modules for modelling these char-
acteristics.

Figure 4 shows a simpli�ed version of the Digital IO

module of the model. Requests for activating safety
functions are modelled in this module. The behaviour
of the module will be discussed in detail in Sect. 4.1.

Simulations of the model were run for three main
purposes: for debugging the model, for analysing the
behaviour of the model, and for discussing the soft-
ware requirement speci�cation with the project team.
Even though an exhaustive investigation of the be-
haviour of the model was not performed, a number
of important problems were identi�ed through the

CRPIT Volume 69

38

SafeInverter

Control

SafetyFunctions
Diagnosis

External State

Figure 5: Package diagram for the software architec-
ture.

construction and simulation of the model. Examples
of these problems were: a simple diagnostic algor-
thim could lead to deadlock, and outdated messages
in message queues could lead to hazards, such as en-
abling power supply to the motor after an error had
been detected in one of the microprocessors.

2.4 Executable Architecture Prototype

Another goal of this project was to investigate and de-
velop techniques for ensuring that safety-critical soft-
ware ful�lls the corresponding software safety require-
ments. In other words, we were interested in closing
the gap between a semi-formal requirement speci�-
cation and a software implementation. We focused
on techniques for specifying and validating a software
architecture (rather than the �nal software) for the
frequency converter. A software architecture was de-
veloped and documented using a technique similar to
Kruchten's 4+1 technique [18] in which an architec-
ture is described in di�erent views.

The architecture was de�ned largely by UML dia-
grams, including class, package, deployment, and se-
quence diagrams. Figure 5 shows the package dia-
gram for the software architecture. The Control pack-
age contains classses for ensuring strict scheduling re-
quirements for the frequency converter, including reg-
ular checks for requests on digital inputs, diagnostics,
and checking microprocessor state consistency. The
Safety Functions package contains classes for the safety
functions. The classes in the Diagnosis package initi-
ate, coordinate, and perform diagnostics. The State

package is used by software on the two microproces-
sors to regularly communicate and compare their in-
ternal states. The External package contains classes
for reading and setting digital input/output values.

An executable architecture prototype was imple-
mented as skeleton classes in Java. Figure 6 shows an
abstract class from the Safety Functions package for the
architecture prototype. Classes for each of the di�er-
ent safety functions are de�ned as specialisations of
this abstract class. A number of important use sce-
narios were described as sequence diagrams, such as
initialisation during power-up and requesting safety
functions. These use scenarios were implemented as
simple Java programs that exercised the architecture
prototype by emulating external events of the fre-
quency converter, e.g. pressing the power button or
requesting a safety function by activating a digital in-
put, by calling appropriate methods in the executable
architecture prototype. Given this architecture proto-
type, Danfoss was interested in developing techniques
for ensuring that the architecture ful�lled the software
safety requirements, including those speci�ed by the
CPN model. An early prototype of the Heimdall tool

public abstract class SafetyFunction {
State state;
boolean isrequested = false;

public SafetyFunction (State state) {
this.state = state;
selfCheck();

}
public abstract void activate();
public abstract void selfCheck();
public abstract boolean isRequested();

}

Figure 6: Java skeleton class from executable software
architecture.

was developed during this project. We introduce the
Heimdall tool next.

3 The Heimdall Tool

Informally, the intented function of the Heimdall tool
is to map a sequence of well-de�ned program execu-
tion events to a sequence of well-de�ned model events
of a discrete-state model (Figure 7).

Program
Execution

Model
Execution

Mapping

Feedback

Figure 7: Conceptual overview of the Heimdall tool

The mapping is introduced more formally in Sec-
tion 3.2 and concrete examples of the speci�cation
of mappings is given in Section 4.3. The mapping
should be done in such a way that for an implemen-
tation that violates the model, the execution should
at some point lead to a corresponding sequence of
model events that are illegal with respect to require-
ments and feedback should be given. Conversely, the
execution of a correct implementation should not lead
to violations in the corresponding sequence of model
events.

In the following sections we �rst present an
overview of the architecture of Heimdall followed by
a more precise introduction of the mapping of exe-
cution events to model events. Next, we present our
concrete instantiation of the architecture to be used
with Coloured Petri Nets and show how the Heimdall
tool has been applied to architectural prototypes in
the frequency converter case.

3.1 Heimdall Software Architecture

:Program
Executable

Heimdall
:Program
Execution
Listener

:Program
Execution
Mapper

:Model Tool
Communicator

tcp/ip :Model Tool

Figure 8: UML deployment overview of software ar-
chitecture of the Heimdall tool

An overview of the architecture of the Heimdall
tool is shown in Figure 8. A Model Tool is a tool
which can execute and analyse a discrete-state model
of the behaviour of an executable program. A set of

Proc. 11th Australian Workshop on Safety Critical Systems and Software

39

Program Executables are instrumented to send execu-
tion events to the Program Execution Listener of the
Heimdall tool. Instrumentation may be done, e.g.,
by using a debugger, by instrumenting source code
with tracing functions, or by using an aspect-oriented
approach (such as AspectC++ [24] for C/C++, As-
pectJ [16] for Java, or (eventually) AspectAda [23]
for Ada95). The instrumentation sends information
about relevant program execution events to the Heim-
dall tool instance using a TCP/IP-based protocol.

The Heimdall tool instantiates a Program Execu-
tion Mapper based on a description of the mapping
of execution events to model events. This mapping
is described in an XML format of which Figure 10
gives an example. Whenever the Program Execu-
tion Listener receives an event from a program ex-
ecution, it consults the Program Execution Mapper.
The Program Execution Mapper maintains traces of
program execution events and returns corresponding
model events as appropriate (cf. De�nition 8 in Sec-
tion 3.2). Given a match, the Model Tool Communi-
cator is used to communicate with a Model Tool in
order to examine whether the mapped model events
are legal in the model that the program execution is
validated against.

The Model Tool Communicators are tool-speci�c.
The requirements on Model Tools that are to be
used with Heimdall is provisions for tool integra-
tion, e.g., through plug-in capabilities, trace replay,
or using a tool-speci�c protocol. Our current status
is that CPN Tools can interact with the Heimdall
tool (see Section 4). Also traces of execution events
need not be replayed immediately, but may be saved
and (re)executed later, meaning that di�erent map-
ping could be tested against the same program execu-
tion trace. Correspondingly, mapped model elements
could also be saved for later transfer.

3.2 Mapping from Execution Events to
Model Events

The intent in Heimdall is to validate that a sequence
of execution events corresponds to a valid sequence of
model events. This is achieved, in part, by mapping
sequences of join points [16] in a program execution to
a sequence of valid events in a discrete-state model.
A join point is a well-de�ned point in the execution
of a program. We are primarily interested in join
points corresponding to method/procedure calls, set-
ting �eld/data values, and getting �eld/data values.

In Sect. 1.1 we informally described discrete-state
models, now we will provide a formal de�nition of
the models in which we are interested. A discrete-
state model is a model that is equivalent to a labelled
transition system:

De�nition 3 (Labelled Transition System) A
labelled transition system is a tuple LTS=(S,i,�,T)
where S is a set of states, i2S is the initial state, �
is a set of labels, and T � (S���S) is the set of
labelled transitions.

Note that both the set of states and the set of labels
may be uncountable. An LTS is said to be �nite if
its sets of states and labels are �nite. For a labelled
transition system with states s1, s2, and label l where

(s1; l; s2) 2 T , we will write s1
l
�! s2 and further, for

a set of labels, �, �� denotes the set of all sequences
of labels from �. An element of �� is legal or valid if
it is a trace:

De�nition 4 (Trace) Given a labelled transi-
tion system LTS=(S,i,�,T), a sequence of labels
l1l2 : : : ln 2 �� is a trace of LTS if 9s1; s2; : : : ; sn 2 S

so that i
l1�! s1

l2�! s2 : : :
ln�! sn.

We also consider the set of possible program exe-
cutions of a program as a labelled transition system
where the states are program states of interest (which
may be discerned by heap contents, stack contents
etc.) during execution and where the labels are join
point executions and related state, i.e., events of in-
terest in the program execution:

De�nition 5 (Program Execution System) A
program execution system is a labelled transition sys-
tem P = (SP ; iP ;�P ; TP) which is a representation
of all of the possible executions of a program in which
execution states are abstracted into SP and where
call, set, and get join point executions are abstracted
into �P .

Note that the de�ntion of a program execution sys-
tem is somewhat imprecise in that the de�nition of
the set of states and set of labels is left to the dis-
cretion of those who are interested in validating an
executable program against a discrete-state model of
the behaviour of the software. Thus a reasonable set
of \interesting" states and \interesting" join point la-
bels that will be used during the validation process
will have to be de�ned. Section 4 will discuss the
states and join point labels that were used when val-
idating the executable architecture prototype of the
frequency converter against the CPN model of the
software safety requirements.

Recall that the purpose of the Heimdall tool is
to provide support for validating an executable pro-
gram against a model of the behaviour of the pro-
gram. We have just de�ned discrete-state models and
program execution systems in terms of labelled tran-
sition systems. LTSs are quite general in that they
allow for non-deterministic behaviour and in�nitely
many states and labels. All that we need now is a
way to show that two labelled transition systems are
(more or less) equivalent. A large body of research
is concerned with this issue, and bisimulation and
weak bisimulation can be used to show equivalences
between two LTS. However, the problem with these
techniques is that they are di�cult, if not impossible,
to use for large LTSs with (in�nitely) many states and
labels.

Many systems, and in particular safety-critical sys-
tems, can be represented by �nite labelled transition
systems, which are somewhat more practical to deal
with. Furthermore, the behaviour of safety-critical
systems is generally deterministic, which means that
the set of transitions for the LTS for the system would

be deterministic, in other words, if s1
l
�! s2 and

s1
l
�! s3 then s2 = s3. Finite, deterministic labelled

transition systems are somewhat easier to deal with,
however it is rarely possible to construct and analyse
an LTS for complicated, industrial-sized systems. So
it is still necessary to develop techniques that can be
use to check and validate the behaviour of software
for non-trivial systems.

Given the de�nitions above, our primary interest is
now to de�ne mappings between program executions
and model executions that will allow us to validate
the behaviour of an executing program against the
behaviour of a discrete-state model. Program and
model executions are de�ned as traces of an LTS:

De�nition 6 (Program and Model Executions)
Given a program execution system, P =
(SP ; iP ;�P ; TP), a program execution for this
system is a trace p 2 ��

P .
Given a discrete-state model, M =

(SM ; iM ;�M ; TM), a model execution is a trace
m 2 ��

M .

In this context, a program execution is considered
to be a sequence of execution join points that form a

CRPIT Volume 69

40

trace. Similarly, a model execution is a sequence of
legal model events. For such program executions, we
are interested in mappings of these to corresponding
events in the discrete-state model that is an abstract
representation of the behaviour of the program execu-
tion system of the program execution. More precisely,
we de�ne an execution mapping as:

De�nition 7 (Execution Mapping) Given a pro-
gram execution system P = (SP ; iP ;�P ; TP) and
a discrete-state model expressed as an LTS M =
(SM ; iM ;�M ; TM), an execution mapping for P and
M is a set E � (��

P � ��

M).

In other words, an element e in an execution map-
ping speci�es how sequences of program join points
map to sequences of model events. An example of a
mapping element would be (lp1 lp2 lp3 ; lm1

lm2
) mean-

ing that lp1 lp2 lp3 2 ��

P maps to lm1
lm2

2 ��

M . The
goals of the validation process will help to determine
how detailed the execution mapping should be.

Based on program execution systems and mapping
de�nitions we are now able to de�ne when a program
execution may be considered correct:

De�nition 8 (Correctness) A program execution
p = lp1 : : : lpk of a program execution system P =
(SP ; iP ;�P ; TP) is correct with respect to a discrete-
state model M = (SM ; iM ;�M ; TM) and an execution
mapping E if

1. 9e = (lp1 : : : lpu ; lm1
: : : lmv

) 2 E; sp1 ; : : : ; spu 2

SP ; sm1
; : : : ; smv

2 SM : iP
lp1�! sp1

lp2�! : : :
lpu�!

spu ^ iM
lm1�! sm1

lm2�! : : :
lmv�! smv

where
lp1 : : : lpu is a pre�x of p and

2. p0 = lpu+1 : : : lpk of P 0 = (SP ; spu ;�P ; TP) is
correct with respect to M 0 = (SM ; smv

;�M ; TM)
and E where p0 is the remainder of p after the
pre�x lp1 : : : lpu has been removed.

Note that P 0 and M 0 are essentially the same as P
and M | the only di�erence is the initial states.

In some cases a discrete-state model may contain
events that do not correspond to any \interesting" ex-
ecution events. For example, the model may specify
behaviour that is more detailed than what is currently
implemented in the software, or there may be model
events that are used to initialise parts of the model
at the beginning of an execution. Since the de�nition
of an execution mapping allows an empty sequence of
join points to be mapped to a non-empty sequence of
model events, it is still possible for unmapped model
events to occur when checking correctness of a pro-
gram execution.

Even though a set of program executions are cor-
rect with respect to a mapping, they are not neces-
sarily \good" in the sense that they cover all states of
the discrete-state model. Ideally, we also want com-
pleteness for this set of program executions:

De�nition 9 (Completeness) A set of correct pro-
gram executions are complete with respect to an exe-
cution mapping and a discrete-state model if the set
of all states of the model execution mapped to is the
complete set of states of the discrete-state model.

Ideally we would like to do an exhaustive veri�-
cation of program executions against discrete-system
models, but this is rarely possible in practice which
is why there is a need for tools like Heimdall. In a
safety-critical system setting, we may aim for estab-
lishing that program executions should be correct and
complete with respect to a set of critical states/states
of interest in the labelled transition system.

The next section will give an example of how this
is realised in practice with the speci�c program exe-
cutions being executions of Java architectural proto-
types and where the concrete discrete-state model is
a Coloured Petri Net.

4 The Heimdall Tool for Coloured Petri Nets

This section discusses the current implementation of
the Heimdall tool that has been used to validate the
executable architecture prototype for the frequency
converter against the CPN model of the software
safety requirements.

4.1 CPN and CPN Tools

Coloured Petri Nets is a formal, graphical modelling
language with well-de�ned syntax and semantics. We
will provide a very brief and somewhat informal in-
troduction to CP-nets which is taken from [15]. An
example following the formal de�nition will be used
to illustrate several concepts from the defnition. The
structure of a non-hierarchical CP-net is formally de-
�ned as a tuple:

De�nition 10 (Coloured Petri Net) A
non-hierarchical CP-net is a tuple CPN =
(�,P,T,A,N,C,G,E,I), where � is a �nite set of
non-empty types called colour sets; P,T, and A are
non-empty �nite, disjoint sets of places, transitions,
and arcs, respectively; N is a node function de�ned
from A into (P � T) [(T � P); C is a colour func-
tion de�ned from P into �; G is a guard function
de�ned from T into boolean expressions; E is an arc
expression function de�ned from A into expressions
such that the arc expression for an arc evaluates to
a multi-set of values from C(p) where p is the place
that the arc is connected to; and I is an initialization
function de�ned from P into expressions that do
not contain variables such that the initialization
expression for place p evaluates to a multi-set of
values from C(p).

Note that arc and guard expressions may contain vari-
ables. A similar de�nition exists for hierarchical CP-
nets, in which modules are connected via well-de�ned
interfaces.

Recall that Figure 4 shows a simpli�ed version of
the DigitalIO module for the CPN model described in
Section 2.3. The ellipse UserIO is a place represent-
ing digital inputs and outputs for the two micropro-
cessors. The UserIO place acts an interface for this
particular module. The colour set for the place is
determined by the inscription UserIO to the lower
left of the place. The states of a CP-net are rep-
resented by a number of tokens distributed on the
places in the model. A token on a place carries a
data value, and the type of the data value must cor-
respond the the colour set of the place. Figure 4 shows
a state in which there are eight tokens on place Use-

rIO, as indicated by the small circle with the num-
ber next to the place, and the box next to the small
circle shows the values of the eight tokens. Two to-
kens indicate that the voltage for the digital outputs
(which are not shown in Figure 1) for the user feed-
back (UserFB) at microprocessors 1 and 2 are both
Low. The other six tokens represent the three digital
inputs that are used to request safety functions for
the two microprocessors. The format for such a data
value is DSFRequest((x,y,voltage)) where x indi-
cates the number of the microprocessor (1 or 2), y
indicates the number of the digital input (1, 2, or 3),
and voltage indicates the voltage of the digital input
where there are three possible values (High, Low, and
Error).

Proc. 11th Australian Workshop on Safety Critical Systems and Software

41

The formal semantics of CP-nets determine which
events can occur in a given state, and how the state
will change when a particular event occurs. Events
in a system are modelled by transitions. The rectan-
gle Request DSF is a transition that represents the re-
quest for the activation of a safety function. The arc
expressions on the arcs between UserIO and Request

DSF determine how the state of the model will change
when the Request DSF transition occurs. The arc ex-
pression on the arc from UserIO to Request DSF con-
tains only one variable which is n, and it determines
that two tokens will be removed from the place when
the transition occurs. A transition together with a
binding of all of its variables is known as a binding
element. This transition can only occur if the voltage
of digital input n at microprocessors 1 and 2 is High.
When the transition occurs, two tokens will be added
to the place, representing the fact that the voltage of
the digital inputs is changed to Low which indicates
that a request is being made for the safety function
that corresponds to input n. In Figure 4 the safety
function corresponding to digital inputs 2 has been
requested (and possibly activated, but this cannot be
seen in this module), but it is currently possible to re-
quest the safety functions that correspond to inputs
1 and 3.

Coloured Petri Nets have been used to specify
software safety requirements, but we have said that
the models that are used with Heimdall must be
discrete-state models that can be expressed as an
LTS. This is not a problem, because it is possible
to de�ne a labelled transition system that is equiva-
lent to a CP-net. Given a CP-net CPN , let LTSC =
(SC ; iC ;�C ; TC) where SC is the set of states of CPN
that are reachable by sequences of transition occur-
rences from the initial state of CPN, iC is the ini-
tial state of CPN , �C is the set of binding elements
of CPN , and TC is the set f(s; be; s0)g where s is a
reachable state of CPN , be is a binding element that
is enabled in s, and s0 is the state that is reached
when be occurs in s.

CPN Tools is a tool supporting the construction
and analysis of CP-nets. There is support for running
two kinds of simulations: interactive and automatic.
In interactive simulations, it is possible for the user
to select which transitions should occur. The choice
of how transition variables should be bound can ei-
ther be left to the simulator or the user can manually
pick among the legal bindings in a given state. In
automatic simulations the simulator randomly picks
among the events that are enabled in a given state.
In either case, the simulator will update the state of
the model after each event occurs.

CPN Tools can execute and analyse models that
are equivalent to labelled transition systems, and it
therefore ful�lls some the requirements that must be
met by the modelling tools that should interact with
Heimdall. In order for the Heimdall tool to work with
CPN Tools, it must be possible to run and control
simulations without (or with very minimal) manual
interaction between a user and the GUI of CPN Tools.
The simulator for CPN Tools is implemented in Stan-
dard ML [22] which means that arbitrary SML func-
tions can be written to control simulations via the
prede�ned primitives in the simulator. The simula-
tor has primitives for running automatic simulations
and for selecting which transitions should occur in
a simulation, but it lacks a primitive for selecting a
transition together with particular bindings of some
or all of the variables of the transition. The existing
primitives for selecting a particular binding required
manual interaction with the GUI by a user. The sim-
ulator has been modi�ed, and a new primitive makes
it possible to specify that a transition with a par-
ticular binding of some of its variables should occur

public aspect SafeInverterTracer extends HeimdallTracer {
pointcut calls() :

call(* safeinverter..*(..)) &&
!call(* safeinverter.Factory.*(..)) &&
!call(* safeinverter..main(..));

pointcut initializers() :
initialization(safeinverter..*.new(..));

}

Figure 9: Aspect for extracting join points from exe-
cutable software architecture.

(assuming that the corresponding event can occur in
the current state of the model). Support for com-
municating with the Heimdall tool and for running
simulations based on the information received from
Heimdall has been implemented in SML, and it will
be discussed in Section 4.3.

4.2 Aspects for the Architecture Prototype

As mentioned in Section 2.4 the executable architec-
ture prototype for the frequency converter was im-
plemented as skeleton classes in Java. The classes
re
ect the design of the software architecture, and
they are very simple. Each class contains a number
of important methods and, in some cases, some im-
portant state variables. The methods are also very
simple | they take few, if any, arguments, and the
only actions that they perform is that they may up-
date local state variables or call other methods in the
architecture prototype.

In order to validate the architecture prototype
of the frequency converter, information about join
points must be extracted from the prototype during
execution, as described in Section 3.1. AspectJ is
used for this purpose. We provide an abstract aspect,
HeimdallTracer, with functionality for communicating
with the Program Execution Listener in the Heim-
dall tool. The aspect allows for tracing of method
calls and object constructors. Object constructors
are traced in order to provide a object id to corre-
lated with method calls which is necessary in order
to distinguish between instances of classes. The de-
fault object id is simply derived from the sequence
in which objects of interest are constructed, a default
approach that may be reasonable in cases where ob-
ject creation order is deterministic.

The aspect named SafeInverterTracer (the new fre-
quency converters are also known as safe inverters),
shown in Figure 9, determines which method call join
points will be sent to the Heimdall tool. Further, it
de�nes which objects should have their ids tracked.
In this case the join points that are to be validated
are virtually all method calls in the architecture pro-
totype which is de�ned in the safeinverter pack-
age. However, join points for calls to methods in
the Factory class and calls to main methods will
not be sent to the Heimdall tool. The abstract class
SafetyFunction from Figure 6 has three method
call join points that may be validated, namely when
the selfCheck is performed during initialization of
the frequency converter, whenever a call is made to
activate the safety function, and whenever a check
is made to see if a safety function isRequested.

We will now turn our attention to the execution
mapping for the architecture prototype and the CPN
model.

4.3 Mapping Execution Events to Model
Events

In the architecture prototype for the frequency con-
verter, the only join points of interest are method call
join points. These join points (and join points for the

CRPIT Volume 69

42

<element>
<joinpointevents>
<callevent>

<id>4</id>
<call>safeinverter.external.DigitalIO.requestDSF</call>

</callevent>
</joinpointevents>
<modelevents>

<modelevent><id>DigitalIO'Request_DSF(n,3)</id></modelevent>
</modelevents>

</element>

Figure 10: An excerpt from the execution mapping.

public class DigitalIO extends IO {
private SafetyFunction safetyFunction;

public DigitalIO (State state,
SafetyFunction safetyFunction) {

super(state);
this.safetyFunction = safetyFunction;

}
public void selfCheck() {}
public void requestDSF() {

safetyFunction.activate();
}

}

Figure 11: The DigitalIO class from the executable
software architecture.

construction of objects of interest, cf. Section 4.2)
are speci�ed in the aspect in Figure 9. The architec-
ture prototype contains very few join point for getting
or setting �elds, and none of these join points need
to be validated. Currently, the XML �le specifying
the mapping must be created manually. The map-
ping was created after a careful and systematic ex-
amination of the architecture prototype and the CPN
model.

In the execution mapping for the architecture
prototype, each method call join point is mapped
to one or more events in the CPN model. Many
join points are mapped to just a single transition,
while one of the join points is mapped to ten model
events. Figure 10 shows an excerpt from the exe-
cution mapping. This example shows the XML for-
mat of the mapping of a single method call join
point to a single model event. In this case a call
to the requestDSF method to the object with id 4
from the class safeinverter.external.DigitalIO
is mapped to the model event which is the transi-
tion Request DSF (shown in Figure 4) in the module
DigitalIO, where the variable n of the transition is
bound to 3. In the CPN model, digital input number
3 is associated with the 'controlled stop' or 'safe de-
lay' safety function. In the architectural prototype,
the object with id 4 is an instance of DigitalIO that
is associated with the safe delay safety function. The
DigitialIO class is shown in Figure 11.

Let us consider what steps are taken when validat-
ing the architecture prototype and the requestDSF
method is called in a DigitalIO object. When the
method is called, the SafeInverterTracer aspect
will cause the signature for the method call as well
as the id of the target object to be sent to the Pro-
gram Execution Listener in the Heimdall tool. The
Program Execution Listener will then use the Pro-
gram Execution Mapper to locate the model events (if
any) that the program execution event is mapped to.
Given the information in Figure 10, we know that this
join point is mapped to a model event corresponding
to the transition Request DSF with the variable n bound
to 3. The textual representation of this model event
shown near the bottom of Figure 10 is sent from the
Model Tool Communicator to CPN Tools.

A library that allows CPN Tools to interact with

Heimdall has been implemented. This library con-
tains functions for sending and receiving data via a
TCP connection with a Model Tool Communicator in
Heimdall. Additional functions are used to run simu-
lations based on the commands that are received from
the Model Tool Communicator. When a speci�ca-
tion of a model event is received from the Model Tool
Communicator, there are three possible outcomes. If
the event speci�cation corresponds to an event in the
model and the corresponding event can occur, then
the event will occur in the simulator, and an appro-
priate response will be returned to the Model Tool
Communicator. If the event speci�cation corresponds
to an event but the event cannot occur in the current
state of the model, then the state of the model re-
mains unchanged, and the response to the Model Tool
Communicator indicates that the event cannot occur.
The fact that a particular event cannot occur may in-
dicate that the behaviour of the executable code is not
consistent with the behaviour speci�ed by the model.
Finally, the event speci�cation may not correspond
to any known events in the model, and this indicates
that there is an inconsistency somewhere, i.e. either in
the model, in the executable code, or in the mapping
from the code to the model. If the Model Tool Com-
municator requests that the Request DSF transition
should occur, then this is a known event in the model,
and a response will be sent back to the Model Tool
Communicator indicating either that the event has
occurred, thus validating the most recent sequence of
join points, or that the event cannot occur in the cur-
rent state of the model. If the event does not occur
in the model, then the program execution has per-
formed a sequence of execution events that cannot be
validated, and an error has been found.

5 Discussion and Conclusion

This paper has introduced the Heimdall tool and
its associated approach to mapping program execu-
tion events to events in a discrete-state model. The
tool has been integrated with CPN Tools and has
been used to validate architectural prototypes. Even
though the evaluations have been made in the context
of a real safety-critical system development project,
the Heimdall tool can still be considered experimental
in nature.

First of all, a full validation during a development
project is needed. This will stress the usability of the
actual mapping mechanism. The current mapping
mechanism is essentially simple since one of our goals
have been to support experimentation with mapping
from architectural prototype executionss and other
types of program executions. One area in which the
mapping mechanism could be improved is in consid-
ering transitions that do not correspond to method
calls. It should be possible for them to occur if they
are enabled: e.g., if a particular transition that is
mapped from a method invocation is not enabled,
then it might become enabled if one or more of the
unmapped transitions/events occur.

Also a more thorough evaluation could potentially
illustrate to which extent architectural prototyping is
actually useful and bene�cial in safety-critical system
development.

Secondly, there is a de�nite lack of proper tool sup-
port for constructing Heimdall mappings. One step
in this direction would be to be able to generate a set
of possible program execution events/model events to
base the mapping construction on. In particular if it-
erations on the software architecture and models are
considered, better tool support is of importance.

Even though the Heimdall tool can in no way prove
that a speci�c architecture will lead to safe software,

Proc. 11th Australian Workshop on Safety Critical Systems and Software

43

it may help in doing so by allowing architects to ex-
periment with and partly validate their architectural
designs thus potentially leading to better and safer
software architectures.

References

[1] M. R. Barbacci, R. Ellison, A. J. Lattanze, J. A.
Sta�ord, C. B. Weinstock, and W. G. Wood.
Quality Attribute Workshops (QAWs), Third
Edition. Technical Report CMU/SEI-2003-TR-
016, Software Engineering Institute, 2003.

[2] J. Bardram, H. B. Christensen, and K. M.
Hansen. Architectural Prototyping: An Ap-
proach for Grounding Architectural Design and
Learning. In Proceedings of the 4th Working
IEEE/IFIP Conference on Software Architec-
ture (WICSA 2004), pages 15{24, Oslo, Norway,
2004.

[3] J. Bardram, H. B. Christensen, and K. M.
Hansen. Exploring quality attributes using archi-
tectural prototyping. In Proceedings of the First
International Conference on the Quality of Soft-
ware Architectures, QoSA 2005, volume 3712 of
LNCS, pages 155{170, Erfurt, Germany, 2005.

[4] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley, 2nd
edition, 2003.

[5] L. Bass, M. Klein, and F. Bachmann. Quality at-
tribute design primitives and the attribute driven
design method. In Proceedings of the 4th Interna-
tional Workshop on Product Family Engineering,
2001.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Som-
merlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, 1996.

[7] CPN Tools. Online:
http://www.daimi.au.dk/CPNTools/.

[8] L. Dobrica and E. Niemela. A survey on software
architecture analysis methods. IEEE Transac-
tions on Software Engineering, 28(7):638{653,
2002.

[9] DEF (AUST) 5679: The Procurement of
Computer-based Safety Critical Systems, 1998.
Australian Defence Standard.

[10] D. Harel, H. Lachover, A. Naamad, A. Pnueli,
M. Politi, R. Sherman, A. Shtull-Trauring, and
M. Trakhtenbrot. STATEMATE: A working en-
vironment for the development of complex re-
active systems. IEEE Transactions on Software
Engineering, 16(4):403{414, April 1990.

[11] M. Heimdahl and N. Leveson. Completeness
and consistency checking of software require-
ments. IEEE Transactions on Software Engi-
neering, 22(6), 1996.

[12] C. Hofmeister, R. Nord, and D. Soni. Applied
Software Architecture. Addison-Wesley, 1999.

[13] G. J. Holzmann. The model checker SPIN. IEEE
Trans. on Software Engineering, 23(5):279{295,
May 1997.

[14] International Electrotechnical Commission.
Functional Safety of Electrical/ Electronic/ Pro-
grammable Electronic Safety-Related Systems,
1st edition, 1998-2000. International Standard
IEC 61508, Parts 1-7.

[15] K. Jensen. Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use. Vol. 1, Ba-
sic Concepts. Monographs in Theoretical Com-
puter Science. Springer-Verlag, 1997. 2nd cor-
rected printing.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In Proceedings of the ECOOP 2001,
volume 2072 of LNCS, pages 327{353, 2001.

[17] L. M. Kristensen, S. Christensen, and K. Jensen.
The practitioner's guide to Coloured Petri Nets.
International Journal on Software Tools for
Technology Transfer, 2:98{132, 1998.

[18] P. Kruchten. The 4+1 view model of architec-
ture. IEEE Software, 12(6):42{50, 1995.

[19] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal
in a Nutshell. International Journal on Software
Tools for Technology Transfer, 1(1{2):134{152,
Oct. 1997.

[20] N. Leveson. Safeware: System Safety and Com-
puters. Addison-Wesley, 1995.

[21] D. L. Parnas and P. C. Clements. A ra-
tional design process: How and why to fake
it. IEEE Transactions on Software Engineering,
12(2):251{256, 1986.

[22] L. C. Paulson. ML for the Working Programmer.
Cambridge University Press, 2nd edition, 1996.

[23] K. H. Pedersen and C. Constantinides. Aspec-
tada: Aspect oriented programming for Ada95.
In SigAda '05: Proceedings of the 2005 annual
ACM SIGAda international conference on Ada,
pages 79{92, New York, NY, USA, 2005. ACM
Press.

[24] O. Spinczyk, D. Lohmann, and M. Urban. As-
pectC++: an AOP extension for C++. Software
Developer's Journal, (5):68{76, 2005.

[25] visualSTATE. Online: http://www.iar.com/vs.

[26] L. Wells and T. Maier. Specifying and an-
alyzing software safety requirements of a fre-
quency converter using coloured Petri nets. In
G. Ciardo and P. Darondeau, editors, Applica-
tions and Theory of Petri Nets 2005, volume
3536 of LNCS, pages 403{422. Springer, 2005.

CRPIT Volume 69

44

Assuring Separation of Safety and Non-safety Related Systems

Bruce Hunter
Thales Training & Simulation

Thales Services Division, Building 314, Garden Island, Sydney
Locked Bag 2700, Potts Point, NSW 2011, Australia

bruce.hunter@thalesgroup.com

Abstract

Safety standards call for the separation of safety and non-
safety related systems. Although good guidance is
provided in these standards on how to achieve the
required hazard analysis, safety integrity assignment and
validation to prove a safe system, there is little available
on establishing safety boundaries around the critical
components and the proof of isolation from non-safety
functions. Delineation between safety and non-safety
systems is particularly important where it is impractical to
substantiate a Safety Integrity Level of the overall system
due to the complexity of some components. In this case it
is better to assume high failure probability of the non-
safety system and prove isolation from the safety-related
system.

This paper explores a conceptual methodology (including
the use of Fault Tree Analysis and Common Cause
Failure Analysis) for establishing and assuring separation
of systems and some examples from training simulators
that are an example of this situation drawn from real-life. .

Keywords: Functional Safety Separation, Functional
Safety Boundaries, Simulator Functional Safety.

1 Introduction

Separating safety-critical and safety-related systems from
systems where safety integrity is unable to be established
or maintained is an important aspect of system safety
design. When implementing a system safety program it is
important to suspect all components as being unsafe
unless assured otherwise and then target the few areas
where safety requirements are allocated. Coupling
between components of complex systems can be subtle
and interaction with non-safety related systems have led
to harmful outcomes in safety related systems.

An example of this coupling occurred on 19 February
1996, when a Boeing 747-433 Combi aircraft operating
as Air Canada flight 899, was on a scheduled
passenger/freight flight from Toronto/Lester B. Pearson
International Airport, Ontario, to Vancouver International
Airport, British Columbia. As the aircraft was taking off,
the underside of the tail struck the runway, and, during
the climb-out, considerable nose-down stabilizer trim was

Copyright ©2006, Australian Computer Society, Inc. This paper
appeared at the 11th Australian Workshop on Safety Related
Programmable Systems (SCS'06), Melbourne. Conferences in
Research and Practice in Information Technology, Vol. 69.
Tony Cant, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

required to trim the aircraft for flight. The Canadian
Transport Safety Board (TSB) report (A96O0030)
findings included:

• “A recently modified computer application, ALPAC,
used by load agents to plan loads and compute
aircraft weight and balance, incorrectly computed the
aircraft take-off C of G.

• The ALPAC-computed aircraft take-off C of G was
near the centre of the aircraft flight envelope, while
the actual C of G was beyond the aft limit.

• The ALPAC application produced a large error in the
aircraft C of G calculation; however, there was no
defence in place to detect such a critical error in the
application itself, at the aircraft loading stage, or in
the flight crew confirmations of load and trim setting.

• The modified computer application was not
adequately tested before it was released for
operational use.

• The modified computer application was not
monitored effectively for accuracy after it was placed
in operational use.”

In this case the software that led to the incident was not
even aboard the aircraft and was operated by a different
party. Interaction across what appears to be valid safety
boundaries can sometimes be nebulous. While this failure
may be considered as incomplete hazard analysis of the
changes to the ALPAC system and the impact on the
performance of the loaded aircraft, it also can provide a
good example of where coupling between systems may
be overlooked.

2 Setting Functional Safety Boundaries

2.1 The need for having boundaries

Taking the extreme position, very few systems are fully
independent in their operation and to be completely
assured of the absence of interaction or common-cause
failure between the safety-related and other systems
would take an inordinate amount of time and effort. This
could cause the opposite effect to delay introducing the
safety benefits of the deployment of a safety-related
system. At some point a determination must be made that
all possible influences are controlled or risks sufficiently
known so the safety analysis can be bounded.

Taking the above tail-strike incident as an example of an
indirect influence on system safety, the safety analysis
boundary could well be established around the flight

Proc. 11th Australian Workshop on Safety Critical Systems and Software

45

control systems. Further investigation of the use of the
off-board planning system would have identified its
criticality to the Centre of Gravity of the loaded aircraft
and extended the functional safety boundary to include
this and any changes made to it.

2.2 Objectives of Functional Safety Boundaries

This paper introduces a concept of Functional Safety
Boundaries, which can be used to contain areas where
specific safety integrity measures are to be employed.
Objectives of these boundaries are to:

• Minimise the interfaces across the safety boundary to
direct focus on the safety separation implemented in
these;

• Minimise likelihood of common-cause failures
across the boundary;

• Exclude non-safety related functions where these are
volatile or subject to undefined or non-safety related
controls; and

• Allow a Safety Integrity Level (SIL) to be achieved
within the boundary.

2.3 Identifying safety functions within a
boundary

A useful method to establish the functional safety
boundary between systems or subsystems is to undertake
a Fault Tree Analysis (FTA) of the contributing factors to
failure of the system, which may lead to hazardous
events identified in the preliminary hazard analysis. The
first attempt at a boundary would be around the systems
that are implicated in the FTA. This FTA needs to be
extensive and complete from all initiating situations to the
system failure that is a casual factor for the hazardous
event. Then flowing down the tree, mark off those
functions that are related to systems that should be
excluded due to:

• The possibility of common-cause failure;

• High levels of complexity and non-deterministic
failure rate; or

• Components that may not always be present or
enabled.

Failure probabilities are then assigned to the contributing
and basic events. Figure 1 shows a very simplified fault
tree for a safety-related system and its isolation from non-
safety-related and non-deterministic functions (SIL0).

In Figure 2, the boundary is set around the failure
associated with the SIL0 system (A) which then requires
the failure probability of the associated protective
isolation mechanism (B) to be made no less than the
failure probability (C) of the SIL rated system within the
boundary to achieve an end failure probability
commensurate with the SIL rated system (E).

E
2E-08
Resulting System Failure

A
1E01
Failure of System
with SIL0

D
1E-08
Non-Safety Related

I Interaction

C
1E-08
Failure of system
with SIL X

B
1E-09
Protective Isolation
Failure

Safety Boundary

Figure 1 Simple FTA of Safety System Coupling

In a similar manner, the boundary must be extended to
include common-cause failures that effectively defeat the
independence across the boundary as shown in Figure 2.

Function A

Protective Function B

Related Function C

Common-Cause Failure

OR

Figure 2 Setting boundaries outside possible
Common-Cause Failures

2.4 The problem with software
At a system level, this process looks reasonably
straightforward but the problem comes with setting
boundaries with distributed software architectures. In this
situation it is very difficult to identify boundaries that
don’t involve the possibility of common-cause failures.
Some useful work on partitioning in this context has been
done by Conmy, Nicholson, Purwantoro and McDermid
(2002), Identifying Safety Dependencies in Modular
Computer Systems.

If the layering approach from this work is extended to a
generic model, common cause failures can be seen to
involve lower layers of the architecture (hardware
failures, resource sharing failures, communication
failures, memory leakage failures etc). For this reason it
is essential that any functional safety boundary must
include all the layers that support that function, as shown
in Figure 3.

CRPIT Volume 69

46

Common System Hardware including network infrastructure

Subsystem Hardware

System interconnection protocols

Subsystem OS

Application Application

Subsystem Hardware

Subsystem OS

Application Application

User I/F User I/F User I/F User I/F

Figure 3 Distributed system acceptable boundaries

Common-cause failures and dependencies extending over
the distributed communication networks must also be
considered and the functional safety boundary set
accordingly. These may include:

• Global variables accessed by network

• Security attack and security blocking issues

• Affects of network lock-up on functional safety

The separation requirements over the functional safety
boundary must take these failures into account.

2.5 Setting boundaries in the safety lifecycle

As part of the safety lifecycle, identification of Functional
Safety Boundaries and Functional Safety Separation
should be included in setting overall safety requirements
and the allocation of these to systems and their
components. The following table identifies the lifecycle
phases from IEC 61508, Functional safety of electrical/
electronic/ programmable electronic safety-related
systems, where segmentation and separation of safety
should be undertaken.

IEC 61508 Safety
Lifecycle

Functional Safety Separation
Activities

Phase 4. Overall Safety
Requirements

Determine safety boundaries

Phase 5.Overall Safety
Requirement Allocation

Determine separation
requirements

Phase 9. System Safety
Requirements
Specification

Specify trans-boundary
information allowed and
prohibited

Phase 10. Safety-related
Systems Realisation

Establishment of separation
measures

Phase 13. Overall Safety
Validation

Proof of separation of non-safety
systems or influences

Phase 14. Overall
Operation, Maintenance
and Repair

Monitoring for compromised
separation

Phase 15. Overall
Modification and Retrofit

Re-evaluating safety boundaries
and separation

Table 1: Lifecycle Consideration of Safety Boundaries
and Separation

3 Assuring Functional Safety Separation
Safety standards do call for independence of safety-
related functions but aren’t very specific about what is
acceptable or how to dependably achieve this. Although it
is a difficult area to quantify for completeness and
repeatability, I believe it is important that standards don’t
avoid addressing this issue and should specify a generic
methodology for assuring independence or separation.

3.1 What the standards say

3.1.1 Key IEC 61508 extracts

IEC 61508 identifies qualitative requirements for
independence of safety-related functions.

• IEC 61508-2 clause 7.4.2.3 “Where an E/E/PE
safety-related system is to implement both safety and
non-safety functions, then all the hardware and
software shall be treated as safety-related unless it
can be shown that the implementation of the safety
and non-safety functions is sufficiently independent
(i.e. that the failure of any non-safety-related
functions does not cause a dangerous failure of the
safety-related functions). Wherever practicable, the
safety-related functions should be separated from the
non-safety-related functions.”

NOTE 1 Sufficient independence of implementation
is established by showing that the probability of a
dependent failure between the non-safety and safety-
related parts is sufficiently low in comparison with
the highest safety integrity level associated with the
safety functions involved.”

• IEC 61508-2 clause 7.4.2.5 “When independence
between safety functions is required (see 7.4.2.3 and
7.4.2.4) then the following shall be documented
during the design:

a) the method of achieving independence;

b) the justification of the method.”

Although not quantified, this does support the use of
safety boundary setting (in Section 2) and for identifying
the level of separation (Section 3.2). However this does
allow varying levels of rigour in establishing the required
independence.

IEC 61508-3 (Software Requirements) clause 7.4.2.7 has
requirements requiring: “Where the software is to
implement both safety and non-safety functions, then all
of the software shall be treated as safety-related, unless
adequate independence between the functions can be
demonstrated in the design.”

Clause 7.4.2.8 also requires “Where the software is to
implement safety functions of different safety integrity
levels, then all of the software shall be treated as
belonging to the highest safety integrity level, unless
adequate independence between the safety functions of
the different safety integrity levels can be shown in the
design. The justification for independence shall be
documented.”

Proc. 11th Australian Workshop on Safety Critical Systems and Software

47

The concept of Safety Separation Levels could be the
basis for demonstration of this “independence” for these
clauses.

Notes to clause 7.4.2.8, in the new committee draft,
expand the requirements that allow independence to be
shown on a single computer system by means of spatial
and temporal techniques. In my view some of these may
further erode the rigour required by the standard due to
the lack of formality in establishing this independence
unless substantiated by some form of quantification of the
independence level required.

3.1.2 DEF (AUST) 5679A extracts
DEF (AUST) 5679A, The procurement of Computer-
Based Safety-Critical Systems, still has a qualitative
approach but is more specific about the requirements of
independence and its dimensions to be considered.

• Section 15.5 Component Independence - “…. One
Component is independent of another if its operation
cannot be changed, misdirected, delayed or inhibited
by the other Component.

• Section 15.5.2 “The notion of Component
independence has several dimensions. These include:

a) physical isolation (for example with software
components this means that each Component runs on
a separate processor);

b) diversity of implementation, for example, one
Component may be implemented in software,
another implemented by hardware or operator
procedure;

c) data independence (for example, the input data for
the Components is not to be generated by the same
mechanism); and

d) control independence, meaning that one
Component cannot affect the control flow of another
Component…”

• Section 15.5.4 “If a SIL assignment depends on the
independence of components, evidence of the
independence shall be documented. The documented
evidence shall state how independence is achieved
and how independence is used as a protective
measure.”

DEF (AUST) 5679 is quite helpful in identifying some
key concepts of independence along with required
practices and evidence that components can be
considered as independent. I believe that the techniques
of functional safety boundaries and Safety Separation
Level would satisfy the evidence required.

3.2 Concept of Safety Separation Level (SSL)

A means of quantifying and comparing independence
could be achieved with the use of a Safety Separation
Level achieved by the assignment of failure of separation
probability equivalent to the SIL target failures of IEC
61508-1 7.6.2.9 as shown in Table 2

.

SSL Probability of propagating
dangerous failure for low

demand mode (<1 per year)

Probability of propagating
dangerous failure for

continuous/high-demand mode

4 =>10-5 to <10-4 =>10-9 to <10-8

3 =>10-4 to <10-3 =>10-8 to <10-7

2 =>10-3 to <10-2 =>10-7 to <10-6

1 =>10-2 to <10-1 =>10-6 to <10-5

Table 2 Proposed allocation of dangerous interaction
probability to SSL

Taking this concept further, Table 3 shows a proposed
method of assigning a Safety Separation Level (SSL) to
differences in SIL across safety boundary. This attempt to
quantify independence between safety-related systems
meets the intent of IEC 61508 parts 2 and 3 and
DEF(AUST) 5679A section 15.5.

 System 1

 Unclaimed
(SIL0) SIL1 SIL2 SIL3 SIL 4

Unclaimed
(SIL0) N/A SSL1 SSL2 SSL3 SSL4

SIL1 SSL1 N/A SSL1 SSL2 SSL3

SIL2 SSL2 SSL1 N/A SSL1 SSL2

SIL3 SSL3 SSL2 SSL1 N/A SSL1

S
ys

te
m

 2

SIL 4 SSL4 SSL3 SSL2 SSL1 N/A

Table 3: Allocation of SSL to differences in systems
SIL ratings

Relating this back to the FTA model of separation in
Figure 1, independence between SIL0 and SIL4 systems
would require an SSL of 4, equivalent to the reliability of
a SIL 4 system. Achievement of these separation levels
could use similar compliance routes identified in IEC
61508-2 section 7.4. Establishing Safety Integrity Levels
in a homogeneous system without external interfaces is
adequately although sometime controversially dealt with
in existing standards. The relationship between SIL
differences and proposed minimum requirements for SSL
would need further work to justify more than the
extremes. Simply, where the SIL requirement is the same,
this is effectively an extension of the safety system
therefore no SSL is required. Where there is an interface
to SIL0 system this requires the same rigour as the higher
integrity system.

3.3 Setting separation requirements
Establishing the level of independence could use the
effective definitions in DEF (AUST) 5679A section
15.5.2 where each of the dimensional attributes would be
assessed against separation characteristics commensurate
with the SSL required from Table 3.

These independence dimensions (physical, data
independence and control independence, and diversity of
implementation) should be assessed for ability to change,
misdirect, delay or inhibit safety functions of the safety
related system across the functional safety boundary.

CRPIT Volume 69

48

Independence
Dimension

SSL0 SSL1 SSL2 SSL3 SSL4

Diversity Common development
and design
implementation.

TBD TBD Separate subsystem
development
approaches and
system
implementation.
Strong prevention of
CCF across FSB

Independent
development and
design technologies.
Thorough prevention
of CCF across FSB

Physical Fully integrated (e.g.
single MCU)

TBD TBD In separate enclosures
with special or
physical protection.

Fully separated (e.g.
housing, environment,
power, access)

Data Dependent on data
across system (e.g.
global variables)

TBD TBD Strong checking on
out of range data and
protection against
flooding of information

No data dependencies
across FSB except
contained within
approved controls or
read-only access.

Control Many system-wide
controls without
limitation of their
impact

TBD TBD Few controls and all
verified and
authenticated for
dangerous impact.

Few controls and all
verified and
authenticated for
dangerous impact.

Table 4 Possible SSL independence attributes

Setting a common process for this assessment would
require considerable development and agreement before
inclusion in a standard could be contemplated but Table 4
proposes a possible framework (albeit incomplete in this
paper) where assignment to SSL objectives may possible.
Further work and substantiation would be required on the
assignment of separation levels, but in my view this
would be beneficial to accommodate the complexity of
emerging systems.

3.4 Separation in the Maintenance Lifecycle

One of the strengths of IEC 61508 is the full life-cycle
approach that it takes in respect of establishing and
maintaining functional safety. This is particularly
important with maintaining independence across
functional safety boundaries, as changes to maintenance,
repair and updates could defeat the isolation measures
taken.

Due to the subtlety and far reaching impact of some
safety separation issues (see Introduction), continuing
independence of these is at threat of being compromised
through the support, maintenance and upgrade phases of
the safety lifecycle. Like other safety requirements, the
implementation of functional safety separation must be
fully identified in the Safety Case and maintenance
documentation. This must be revisited on a regular basis
to ensure no unauthorised modifications have been made
when changes to the system are made to ensure effective
functional safety separation is maintained.

4 Practical Examples in Simulator Systems

4.1 Simulation domain specific safety issues

In simulator training devices, the combination of safety
and non-safety related systems is an inevitable
consequence of the systems involved and the direct
interface to trainees through the simulation cues of visual,
motion, aural and force-feedback.

One often-identified risk of training simulators is
negative training indirectly leading to bad practices on the
real platform. To mitigate this risk, full-flight simulators
are accredited to standards prior to being placed into
service and training credits being claimed. Fidelity checks
are based on many factors, including model checks with
real aircraft data and cues associated with key training
competencies.

Taking the example of the 747 aircraft tail scrape in this
paper’s introduction, one of the findings of the TSB was:
“The first officer's recent simulator training did not
include an aircraft out-of-trim or out-of-balance take-off”.
The safety functional boundary for this scenario could
have been extended beyond the operation of the aircraft
to the specific training task and cues on the simulator. If
this was considered then, so long as the simulator
faithfully represented the aircraft and controls under these
conditions, then the simulator has fulfilled its
requirements.

Physical
Flying

Envelope

Normal
Flight

Operation

Flight Data
Available

Simulator
Model

Figure 4 Simulator Modelled Space

Proc. 11th Australian Workshop on Safety Critical Systems and Software

49

The nature of general simulator architectures and the
modelling of the aircraft operation do cause real problems
in assigning an overall safety integrity level. Figure 4
graphically illustrates this limitation with the
impracticality of simulating the complete behaviour of all
platform systems in all conditions.

4.2 Generic simulator hazards

Simulators are different from real aircraft in several
important areas: they are meant to crash without injury to
the occupants; and they only simulate key areas of the
aircraft functions. The key hazards associated with
simulators are the integrated human interfaces associated
with training cues as shown in Table 5.

Hazardous Cues Dangerous failure impacts

Aural Cues Issues of occupational deafness if
sustained excessive volume

Motion Cues Issues of crushing, falling and hitting

Visual Cues No direct hazard other than motion
sickness

Control Loading
Cues

Feedback Cues – issues of entrapment,
crush and strike.

Combination Simulator motion sickness due to the
concentration and limited accuracy
possible in the simulated environment.

Table 5 Simulator Hazards and Impact Issues

4.3 Example of motion System Safety Integrity

One of the key cues associated with full-flight simulator
systems is the “feel” of motion associated with aircraft
movement and attitude. The motion system of the
simulator takes the acceleration vectors and aircraft
attitude from the simulated model and typically applies
these to a six-degrees of freedom hydraulic motion
platform.

The motion system is considered a safety related system
due to the large excursions of movement. The safety
boundary of this system encloses all the necessary
controls to ensure safe operation and shutdown of the
motion system as shown in Figure 5.

Hydraulic

Pump Unit

Hydraulic
Control
Valves

Interlocks
and

Shutdowns

SIL 3
Motion
PLC

6 DOF Motion Base

Safety Boundary

From
SIL0
Host

Figure 5 Simulator Motion System Overview

Data and control across the Functional Safety Boundary
in this case is limited to acceleration and direction
information. Local control is applied between the SIL 3
Safety PLC and the Motion hydraulic controls complete
with integrated safety interlocks and emergency
shutdowns. While ever the motion requests are within the
bounds of acceptable limits the motion system will
respond once the instructor gives consent and interlocks
remain inactive (data and control independence).

Figure 6 C2000X Full Flight Simulator Cut-away

The motion systems is physically separated from the rest
of the system and independently developed and
implemented with different technology (physical
independence and diversity). Separation across this safety
boundary can claimed to meet equivalent SSL 3
requirements as per Table 4 proposal and maintained to
meet the accepted risk profile. This would then maintain
the motion system PLC as SIL3 without degrading by
connection to the host system, which cannot be
substantiated as anything more that SIL0.

 
 T

ha
le

s,
 u

se
d

by
 p

er
m

is
si

on

 
 T

ha
le

s,
 u

se
d

by
 p

er
m

is
si

on

CRPIT Volume 69

50

5 Conclusion

This paper has proposed a technique to quantify and
implement separation of safety-related systems from
other systems by recognising safety boundaries and
interaction across those boundaries and their effect on the
separation. This technique re-uses methods from existing
standards to measure, implement and maintain separation
based on the concept of Safety Separation Level with
similar criteria to Safety Integrity Level and Functional
Safety Boundaries. This allows the safety case to be
established for complex systems by applying quantifiable
separation requirements to systems where a SIL is
difficult, if not impossible, to obtain at the overall system
level.

6 Acknowledgements
The author gratefully acknowledges the assistance and
support of Philip Swadling and Stephen Carey of Thales
Training & Simulation and the independent reviewers for

this conference whose valuable contribution has helped
me complete this paper.

7 References

IEC 61508 (1998) Parts 1 to 4
 Functional safety of electrical/ electronic/
programmable electronic safety-related systems.

DEF (AUST) 5679 (1998) Land Engineering Agency,
Department of Defence. The procurement of
Computer-Based Safety-Critical Systems.

Transport Safety Bureau of Canada Report Number
A96O0030, Control Difficulty Tail Strike, Air Canada
Boeing 747-433 Combi C-GAGL Toronto/Lester B.
Pearson, International Airport, Ontario, 19 February
1996.

Conmy, P., Nicholson, M., Purwantoro, Y.,M., and
McDermid, J. (2002) Safety Analysis and Certification of
Open Distributed Systems.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

51

CRPIT Volume 69

52

Using Software Architecture Techniques to Support the Modular
Certification of Safety-Critical Systems

Tim Kelly
Department of Computer Science

University of York
Heslington, York, YO10 5DD

United Kingdom
tim.kelly@cs.york.ac.uk

Abstract1
In software engineering the role of software architecture
as a means of managing complexity and achieving
emergent qualities such as modifiability is increasingly
well understood. In this paper we demonstrate how many
principles from the field of software architecture can be
brought across to the field of safety case management in
order to help manage complex safety cases.

Traditional approaches to certification of modular systems
as a statically defined configuration of components can
result in a large certification overhead being associated
with any module update or addition. A more promising
approach is to attempt to establish a modular,
compositional, approach to constructing safety cases that
has a correspondence with the modular structure of the
underlying architecture. This paper establishes the
mechanisms for managing and representing safety cases as
a composition of safety case ‘modules’. Having defined
the concept of a modular safety case, the paper also
describes principles for their definition and evaluation. An
example generic modular safety case architecture for
Integrated Modular Avionics (IMA) based systems is
presented as a means of illustrating the concepts defined.

Keywords: safety case, modularity, certification,
justification, composition, architecture

1 Introduction
Whilst the move towards modular systems and software
architecture offers potential benefits of improved
flexibility in function allocation, reduced development
costs and improved maintainability, it can pose significant
problems in certification. The traditional approach to
certification relies heavily upon a system being statically
defined as a complete entity and the corresponding
(bespoke) system safety case being constructed. However,
a principal motivation behind modular systems
construction is that there is through-life (and potentially
run-time) flexibility in the system configuration. For
example, an Integrated Modular Avionics (IMA) system

1 Copyright © 2006, Australian Computer Society, Inc.
This paper appeared at the 11th Australian Workshop on
Safety-Related Programmable Systems (SCS'06),
Melbourne. Conferences in Research and Practice in
Information Technology, Vol. 69. Tony Cant, Ed.
Reproduction for academic, not-for profit purposes
permitted provided this text is included

can typically support many possible mappings of the
avionics functionality required to the underlying
computing platform.

In constructing a safety case for modular systems an
attempt could be made to enumerate and justify all
possible configurations within the architecture. However,
this approach is unfeasibly expensive for all but a small
number of processing units and functions. Another
approach is to establish the safety case for a specific
configuration of the architecture. However, this nullifies
the benefit of flexibility in using a modular solution and
will necessitate the development of completely new safety
cases for future modifications or additions to the
architecture.

A more promising approach is to attempt to establish a
modular, compositional, approach to constructing safety
cases that has a correspondence with the modular structure
of the underlying architecture. As with software
architecture it would need to be possible to establish
interfaces between the modular elements of the safety
justification such that safety case elements may be safely
composed, removed and replaced. Similarly, as with
software architecture, it will be necessary to establish the
safety argument infrastructure required in order to support
such modular reasoning (e.g. an infrastructure argument
regarding partitioning being required in order to enable
independent reasoning concerning the safety of two
system elements).

By adopting a modular, compositional, approach to safety
case construction it may be possible to:

• Justifiably limit the extent of safety case
modification and revalidation required following
anticipated system changes

• Support (and justify) extensions and
modifications to a ‘baseline’ safety case

• Establish a family of safety case variants to
justify the safety of a system in different
configurations

2 Current Safety Case Development Practice
Safety case reports are often complex documents
presenting complex arguments. Very rarely is it that safety
cases are prepared by individuals. The reality is that the
activity of establishing a safety case will be divided
amongst a number of individuals, teams and, in some
cases, organisations.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

53

To manage the complexity of safety case construction,
system safety cases are often decomposed into subsystem
safety cases. Many examples of this can be observed in
current safety-critical systems: System safety cases
incorporate software safety cases (a division advocated by
Issue 2 of the U.K. Defence Standards 00-55 (MoD 1997)
and 00-56 (MoD 1996)). A safety case concerned with the
avionics of a complex military aircraft will be split into
separate safety cases for separate systems (such as the
navigation system, engine control and flight control). The
implied safety case for UK rail operations is made up of
separate safety cases for station operations, infrastructure
and rolling stock. However, it is well understood that
safety is a system property. Extreme care must therefore
be taken to ensure that safety case boundaries are drawn
correctly, that arguments don’t “fall between the gaps”,
and that formalising boundaries (e.g. through contractual
agreements between organisations) doesn’t prevent the
development of efficient safety solutions. Emergent safety
properties, not dealt with by a “Divide and Conquer”
approach to safety case construction, must also be
addressed.

Although the above examples already exist in practice, the
overall structure ‘in-the-large’ of these safety cases and the
interdependencies that exist between them are often poorly
managed. In the following sections, we show it is possible
to map across principles already established in the field of
software architecture to help address this problem.

3 Safety Case Architecture
Software architecture has been defined in the following
terms (Bass et al. 1998):

“The structure or structures of the system,
which comprise software components, the
externally visible properties of those
components, and the relationships among
them”

Safety case architecture can be defined in very similar
terms:

The high level organisation of the safety
case into components of arguments and
evidence, the externally visible properties of
these components, and the
interdependencies that exist between them

Being clear of the externally visible properties of any
safety case module allows us to appreciate its role within
the overall safety case structure. The following can be
regarded as the key ‘interface’ properties for any safety
case module:

1. Objectives addressed by the module

2. Evidence presented within the module

3. Context defined within the module

It is important to note that the definition of safety case
architecture must give equal importance to the
dependencies between safety case modules (or
‘components’) as to the components themselves. This
thinking must be at the heart of any attempt to decompose
the safety case. Safety is not a “sum of parts” property.

Dependencies must therefore also be recorded as part of
any interface definition, perhaps along the following lines:

4. Arguments requiring support from other modules

5. Reliance on objectives addressed elsewhere

6. Reliance on evidence presented elsewhere

7. Reliance on context defined elsewhere

Safety case modules can be usefully composed if their
objectives and arguments complement each other – i.e. one
or more of the objectives supported by a module match one
or more of the arguments requiring support in the other.
For example, the software safety argument is usefully
composed with the system safety argument if the software
argument supports one or more of objectives set by the
system argument. At the same time, an important
side-condition is that the collective evidence and assumed
context of one module is consistent with that presented in
the other. For example, the operational usage context
assumed within the software safety argument must be
consistent with that put forward within the system level
argument.

4 Representing Modular Safety Cases in GSN
The Goal Structuring Notation (GSN) (Kelly 1997) - a
graphical argumentation notation - explicitly represents
the individual elements of any safety argument
(requirements, claims, evidence and context) and (perhaps
more significantly) the relationships that exist between
these elements (i.e. how individual requirements are
supported by specific claims, how claims are supported by
evidence and the assumed context that is defined for the
argument). The principal symbols of the notation are
shown in Figure 1 (with example instances of each
concept).

The principal purpose of a goal structure is to show how
goals (claims about the system) are successively broken
down into sub-goals until a point is reached where claims
can be supported by direct reference to available evidence
(solutions). As part of this decomposition, using the GSN
it is also possible to make clear the argument strategies
adopted (e.g. adopting a quantitative or qualitative
approach), the rationale for the approach (assumptions,
justifications) and the context in which goals are stated
(e.g. the system scope or the assumed operational role).
For further details on GSN see (Kelly 1997).

System can
tolerate single

component
failures

Sub-systems
are independent

Argument by
elimination of all

hazards

Fault Tree
for Hazard

H1
A/J

Goal Solution Strategy Assumption /
Justification

All Identified
System Hazards

Context

Undeveloped Goal
(to be developed) Developed Goal

ChildGoal

Child Goal

ParentGoal

ChoiceUninstantiated Context

Figure 1: Principal Elements of the Goal Structuring
Notation

GSN has been widely adopted by safety-critical industries
for the presentation of safety arguments within safety

CRPIT Volume 69

54

cases. However, to date GSN has largely been used for
arguments that can be defined ‘stand-alone’ as a single
artefact rather than as a series of modularised
interconnected arguments. In order to make the GSN
support the concepts of modular safety case construction it
has been necessary to make a number of extensions to the
core notation.

The first extension to GSN is an explicit representation of
modules themselves. This is required, for example, in
order to be able to represent a module as providing the
solution for a goal. For this purpose, the package notation
from the Unified Modelling Language (UML) standard
has been adopted. The new GSN symbol for a safety case
module is shown in Figure 2 (Right Hand Side).

As has already been discussed, in presenting a
modularised argument it is necessary to be able to refer to
goals (claims) defined within other modules. Figure 2 (left
hand side) introduces a new element to the GSN for this
purpose – the “Away Goal”. An away goal is a goal that is
not defined (and supported) within the module where it is
presented but is instead defined (and supported) in another
module. The Module Identifier (shown at the bottom of
the away goal next to the module symbol) should show the
unique reference to the module where the goal can be
found.

<Module Identifier>

<Goal Statement>
<Goal Identifier>

<Module Description>

<Module Identifier>

Figure 2: GSN Elements Introduced to Handle
Modularity

Away goals can be used to provide support for the
argument within a module, e.g. supporting a goal or
supporting an argument strategy. Away goals can also be
used to provide contextual backing for goals, strategies
and solutions.

Representation of away goals and modules within a safety
argument is illustrated within Figure 3. The annotation of
the top goal within this figure “SysAccSafe” with a
module icon in the top right corner of the goal box denotes
that this is a ‘public’ goal that would be visible as part of
the published interface for the entire argument shown in
Figure 3 as one of the “objectives addressed”.

The strategy presented within Figure 3 to address the top
goal “SysAccSafe” is to argue the safety of each individual
safety-related function in turn, as shown in the
decomposed goals “FnASafe”, “FnBSafe” and “FnCSafe”.
Underlying the viability of this strategy is the assumed
claim that all the system functions are independent.
However, this argument is not expanded within this
“module” of argument. Instead, the strategy makes
reference to this claim being addressed within another
module called “IndependenceArg” – as shown at the
bottom of the away goal symbol. The claim “FnASafe” is
similarly not expanded within this module of argument.
Instead, the structure shows the goal being supported by
another argument module called “FnAArgument”. The
“FnBSafe” claim is similarly shown to be supported by

means of an Away Goal reference to the “FnBArgument”
module. The final claim, “FnCSafe”, remains
undeveloped (and therefore requiring support) – as
denoted by the diamond attached to the bottom of the goal.

In the same way that in can it be useful to represent the
aggregated dependencies between software modules in
order to gain an appreciation of how modules interrelate
“in-the-large” (e.g. as described in the “Module View” of
Software Architecture proposed by Hofmeister et al. in
(Hofmeister et al., 1999)) it can also be useful to express a
module view between safety case modules.

Argument over all identified
safety related functions of
{System X}

ArgOverFunctions

IndependenceArg

All functions are
independent

FunctionsInd

FnASafe
Function A operation
is acceptably safe

FnBArgument

Function B operation
is acceptably safe

FnBSafe

Safety Argument for
Function A

FnAArgument

Function C operation
is acceptably safe

FnCSafe

Safety Related
functions of
{System X}

SRFunctions

SysAccSafe
{System X} is
acceptably safe

Figure 3: Representing Safety Case Modules and
Module References in GSN

In the same way that in can it be useful to represent the
aggregated dependencies between software modules in
order to gain an appreciation of how modules interrelate
‘in-the-large’ (e.g. as described in the ‘Module View’ of
Software Architecture proposed by Hofmeister et al. in
(Hofmeister et al. 1999) it can also be useful to express a
module view between safety case modules.

If the argument presented within Figure 3 was packaged as
the “TopLevelArg” Module, Figure 4 represents the
module view that can be used to summarise the
dependencies that exist between modules. Because the
“FnAArgument” and “FnBArgument” modules are used to
support claims within the “TopLevelArg” module a
supporting role is communicated. Because the
“IndependenceArg” module supports a claim assumed as
context to the arguments presented in “TopLevelArg” a
contextual link between these modules is shown.

Top Level System X
Safety Argument

TopLevelArg
Functional
Independence
Argument

IndependenceArg

Function A Safety
Argument

FnAArgument
Function B Safety
Argument

FnBArgument

Figure 4 – Example Safety Argument Module View

Proc. 11th Australian Workshop on Safety Critical Systems and Software

55

In a safety case module view, such as that illustrated in
Figure 4, it is important to recognise that the presence of a
SolvedBy relationship between modules A & B implies
that there exists at least goal within module A that is
supported by an argument within module B. Similarly, the
existence of an InContextOf relationship between modules
A & B implies that there exists at least one contextual
reference within module A to an element of the argument
within module B.

Alongside the extensions to the graphical notation of GSN,
the following items of supporting documentation are
required:

Interface declaration for each safety case module –
along the lines outlined in section 3, the external visible
properties of any safety case module must be recorded –
e.g. the goals it supports, the evidence (solutions) it
presents, the cross-references (‘Away Goal’ references)
made to / dependencies upon other modules of argument.
Figure 5 depicts the items to be defined on the boundary of
a safety case module expressed using the GSN.

Safety Case
Module Context

Defined

'Away'
Goal

'Away'
Context

Goals Supported

Goal to be
Supported

Evidence
Presented 'Away'

Solution
'Away'
Goal

Context
Defined

Figure 5 – The Published Interface of a GSN Safety
Case Module

Contracts for composed modules – where co-dependent
safety case modules are used together within a system
safety case a contract must be recorded of the
dependencies resolved between the separate arguments.
This is discussed further in section 6.

5 Module Composition with GSN Modules
The following three steps must be undertaken when
attempting to usefully compose two safety case modules A
& B with interfaces as defined in the previous section:

Step 1 – Goal Matching

a, Assess whether any of the goals requiring support
in Module A (i.e. those listed under item 4 of the
declared interface for Module A) match the goals
addressed by Module B (i.e. those listed under
item 1 of the interface for Module B).

b, Conversely, assess whether any of the goals
requiring support in Module B (i.e. those listed
under item 4 of the declared interface for Module

B) match the goals addressed by Module A (i.e.
those listed under item 1 of the interface for
Module A).

Step 2 – Consistency Checks

If matched goals are found as a result of Step 1, assess
whether the context and solutions defined by Module B
(i.e. those listed under items 2 and 3 of the declared
interface for Module B) are consistent with the context and
solutions defined by Module A (i.e. those listed under
items 2 and 3 of the declared interface for Module A).

Step 3 – Handling Cross-References

a, Where cross-references are made by Module A to
Module B (i.e. Away Goal, Context and Solution
references listed under items 5-7 of the declared
interface for Module A) check that the entities
referenced do indeed exist within Module B.

b, Conversely, Where cross-references are made by
Module B to Module A (i.e. Away Goal, Context
and Solution references listed under items 5-7 of
the declared interface for Module B) check that
the entities referenced do indeed exist within
Module A.

It may seem strange to include both steps 1a and 1b – i.e.
admitting the possibility that whilst Module B supports
Module A, Module A may also support Module B.
However, circularity of ‘SupportedBy’ relationships
between modules does not automatically imply circularity
of argument (cross-references may be to separate legs of
the argument within a module).

The defined context of one module may also conflict with
the evidence presented in another. For example, implicit
within a piece of evidence within one module may be the
simplifying assumption of independence between two
system elements. This assumption may be contradicted by
the model of the system (clearly identifying dependency
between these two system elements) defined as context in
another module. There may also simply be a problem of
consistency between the system models (defined in GSN
as context) defined within multiple modules. For example,
assuming a conventional system safety argument /
software safety argument decomposition – as defined in
Issue 2 of the U.K. Defence Standards 00-56 (MoD 1996)
and 00-55 (MoD 1997) – the consistency between the state
machine model of the software (which, in addition to
modelling the internal state changes of the software will
almost inevitably model the external – system – triggers to
state changes) and the system level view of the external
stimuli. As with checking the consistency of safety
analyses, the problem of checking the consistency of
multiple, diversely represented, models is also a
significant challenge in its own right.

6 Safety Case Module ‘Contracts’
Where a successful match (composition) can be made of
two or more modules, a contract should be recorded of the
agreed relationship between the modules. This contract
aids in assessing whether the relationship continues to hold
and the (combined) argument continues to be sustained if

CRPIT Volume 69

56

at a later stage one of the argument modules is modified or
a replacement module substituted. This is a commonplace
approach in component based software engineering where
contracts are drawn up of the services a software
component requires of, and provides to, its peer
components, e.g. as in Meyer’s Smalltalk contracts (Meyer
1992) and contracts in object-oriented reuse (Helm 1990).

In software component contracts, if a component
continues to fulfil its side of the contract with its peer
components (regardless of internal component
implementation detail or change) the overall system
functionality is expected to be maintained. Similarly,
contracts between safety case modules allow the overall
argument to be sustained whilst the internal details of
module arguments (including use of evidence) are
changed or entirely substituted for alternative arguments
provided that the guarantees of the module contract
continue to be upheld.

A contract between safety case modules must record the
participants of the contract and an account of the match
achieved between the goals addressed by and required by
each module. In addition the contract must record the
collective context and evidence agreed as consistent
between the participant modules. Finally, away goal
context and solution references that have been resolved
amongst the participants of the contract should be
declared.

7 Principles of Safety Case Architecture
Definition

In this paper safety case architecture is defined as the high
level organisation of the safety case into modules of
argument and the interdependencies that exist between
them. In deciding upon the partitioning of the safety case,
many of the same principles apply as for software
architecture definition, for example:

• High Cohesion / Low Coupling – each safety case
module should address a logically cohesive set of
objectives and (to improve maintainability) should
minimise the amount of cross-referencing to, and
dependency on, other modules.

• Supporting Work Division & Contractual
Boundaries – module boundaries should be defined
to correspond with the division of labour and
organisational / contractual boundaries such that
interfaces and responsibilities are clearly identified
and documented.

• Supporting Future Expansion – module boundaries
should be drawn and interfaces described in order to
define explicit ‘connect’ points for future additions to
the overall safety case argument (e.g. additional safety
arguments for added functionality).

• Isolating Change – arguments that are expected to
change (e.g. when making anticipated additions to
system functionality) should ideally be located in
modules separate from those modules where change
to the argument is less likely (e.g. safety arguments
concerning operating system integrity).

The principal aim in attempting to adopt a modular safety
case architecture for modular systems architecture is for
the modular structure of the safety case to correspond as
far as is possible with the modular partitioning of the
hardware and software of the actual system. Arguments of
functional (application) safety would ideally be contained
in modules separate from those for the underlying
infrastructure (e.g. for specific processing nodes of the
architecture). Additionally, cross-references from
application arguments to claims regarding the underlying
infrastructure need to be expressed in non-vendor
(non-solution) specific terms as far as is possible. For
example, part of the argument with the safety case module
for an application may depend upon the provision of a
specific property (e.g. memory partitioning) by the
underlying infrastructure. It is desirable that the
cross-reference is made to the claim of the property being
achieved rather than how the property has been achieved.
In line with the principles of module interfaces and
contracts as defined in the previous two sections, this
allows alternative solutions to achieving this property to be
substituted without undermining the application level
argument. From this example, it is possible to see that in
addition to thoughtful division of the safety case into
modules, care must be taken as to the nature of the
cross-references made between modules.

8 Patterns in Safety Case Architecture?
Well-understood architectural patterns in software
architecture (such as the use of indirection and abstraction
layers) can be seen to have immediate analogues in safety
case architecture. Figure 6 illustrates this point with a
simple three-tier ‘layered’ safety case architecture. The
top tier (the Top System Level Argument module) sets out
objectives in a form (e.g. Defence Standard 00-55 (MoD
1997) System Integrity Level requirements) that cannot
immediately be satisfied by the objectives supported (e.g.
Civil Aerospace Guidance DO178B (RTCA 1992)
Development Assurance Level claims) in the bottom tier
(the Software Safety Argument module). To solve this
problem, an indirection layer (the DAL to SIL Mapping
Argument module) is inserted between the top and bottom
tiers. This module makes the read-across argument from
the DAL regime to the SIL regime. (If sufficiently well
defined, such a read-across argument may be usefully
reused in future safety cases).

Figure 7 illustrates the possible internal structure of the
read-across argument contained within the middle tier of
the safety case architecture shown in Figure 6. The
published goal of the read-across argument is the claim
expressed in the form required by the target application
context (i.e. in this case in terms of a Defence Standard
00-55 SIL Claim). This claim is then decomposed into the
specific claims regarding the key process and product
requirements required (according to 00-55) in order to
satisfy the SIL requirement (e.g. testing claims, claims
regarding coding standards, language choice etc.). At the
bottom of the argument shown in Figure 7 is an
(undeveloped) goal regarding compliance to a
Development Assurance Level that is known to be
supportable from the available evidence (i.e. from the
bottom tier of the architecture shown in Figure 6).

Proc. 11th Australian Workshop on Safety Critical Systems and Software

57

Working bottom-up, the read-across argument then infers
that in order to support this DAL claim the individual
requirements dictated by DO178B for this DAL must also
have been satisfied. The argument therefore draws out
(above the DAL claim) these individual implicated
sub-claims. The challenge in creating the read-across
argument now lies in relating the specific claims required
in order to support the SIL claim to the specific claims
required in order to support the DAL claim. This approach
attempts to read-across from one claim to another by
deconstructing each claim in to its constituent parts and
then relating these parts. It should be noted that the
interrelation of SIL and DAL subclaims depicted in Figure
7 (where claims of one type are shown to be directly
supportable by claims of the other) is a simplification. In
reality, more complex chains of argument should be
expected between the claims of each type.

Top Level System Argument
Needs support for: {DefStan 00-55 SIL
Claim}

SystemArgument

Software Safety Argument
Provides support for: {DO178B DAL Claim}

SoftwareArgument

Read across argument from DO178B DAL
claims to DS 00-55 SIL claims
Provides support for: {DefStan 00-55 SIL
Claim}
Needs support for: {DO178B DAL Claim}

DALToSILMappingArgument

Figure 6 – Safety Case Architecture employing an
abstraction layer

{DefStan 00-55 SIL Claim}

{SIL Requirement
Satisfaction Claim}

{SIL Requirement
Satisfaction Claim}

{SIL Requirement
Satisfaction Claim}

{SIL Requirement
Satisfaction Claim}

{DAL Requirement
Satisfaction Claim}

{DAL Requirement
Satisfaction Claim}

{DAL Requirement
Satisfaction Claim}

{DAL Requirement
Satisfaction Claim}

{DO178B DAL Claim}

Figure 7 – Illustration of argument structure of DAL
to SIL ‘Abstraction’ Layer Module

9 Managing Changes to a Modular Safety Case
Maintainability is one of the principle objectives in
attempting to partition a safety case into separate modules.
When change occurs that impacts traditional safety cases
(defined as total entities for a specific configuration of
system elements) reassessment of the ‘whole’ case is often
necessary in order to have confidence in a continuing
argument of safety. In such situations it will often be the
case that for certain forms of change large parts of the
safety required no reassessment. However, without
having formally partitioned these parts of the case behind
well-defined interfaces and guarantees defined by
contracts it is difficult to justify non re-examination of
their arguments.

When changes occur that impact a modular safety case it is
desirable that these changes can be isolated (as far as is
possible) to a specific set of modules whilst leaving others
undisturbed. The definition of interfaces and the
agreement of contracts mean that the impact path of
change can be halted at these boundaries (providing
interfaces are sustained and contracts continue to be
upheld).

In extremis for a modular system it is desirable that when
entire modules of the system are replaced, applications
removed or added, or when the hardware of part of the
system is substituted for that of a different vendor
correspondingly entire modules of the safety case can be
removed and replaced for those that continue to sustain the
same safety properties. However, in order to achieve this
flexibility, the following considerations need to be made
for both the definition of context and the nature of
cross-references made between modules:

• Avoid unnecessary restriction of context – It was
highlighted in section 5 that the significant
‘side-condition’ of composing two or more modules
together is that their collective context must be
consistent. Often, the more specialised or restricted
context is defined the harder it becomes to satisfy this
condition (through incompatibility between defined
contexts being more likely). For example, one
module of the safety case may assume for the
purposes of its argument that the temperature
operating range is 10-20°C (i.e. the safety argument
holds assuming the operating temperature is no less
than 10°C and not greater than 20°C) whilst another
modules may assume that the operating temperature is
20-30°C. Both ranges would form part of the defined
context for each module and would create an
inconsistency upon composition of the modules.

• There will be specific occasions when it is necessary
to restrict the assumed context of an module in order
for the module argument argument to hold. However,
narrowing of context should be avoided as far as is
possible. An analogy can be made with the operating
range of a conventional mains power adaptor. If the
adaptor is qualified over the entire operating range
110-250 volts then it may be used in wider number of
situations (e.g. for both 110-120V main supply and
230-240V mains supply). If the adaptor is qualified to

CRPIT Volume 69

58

a narrower operating range then obviously its scope of
applicability is more restricted.

• Goals to be supported within modules should state
limits rather than objectives – Borrowing
terminology from the ALARP (As Low as
Reasonably Practicable) framework (HSE 2001),
‘limits’ refer to the boundary between tolerable and
intolerable risks, whilst ‘objectives’ refer to the
boundary between tolerable and negligible risks. In
order to permit the widest range of possible solutions
of combinations with other modules, unsupported
goals within a module (i.e. goals that will have to be
supported through composition of this module with
another) should define acceptability criteria rather
than ‘desirability criteria’. (More informally, this
means stating “what you will accept” vs. “what you
want”). It is easier to for another module to exceed
(i.e. improve upon) a limit than it is to fail to meet an
objective that was too harshly defined. Wherever
possible boundary goals should ideally communicate
both of limit and objective aspects of any requirement
(by means of defining clearly the acceptance context
of any undeveloped goal).

• Goals to be supported within modules and ‘Away’
Goals should refer to ‘ends’ rather than ‘means’ –
This issue has already been briefly discussed in
section 7. In a similar vein to the previous
observation, if goals on the boundary of modules or
cross-references to goals between modules refer to
claims regarding outcomes (e.g. a claim of memory
partitioning) rather than means of achieving these
outcomes (e.g. the specific mechanisms that ensure
memory partitioning) then this leaves flexibility as to
how solutions (supporting arguments) are provided –
i.e. many possible alternative argument modules may
be composed with this reference rather than just one
specific form of argument.

A true assessment of the modifiability of any proposed
safety case architecture can only be achieved through
consideration of realistic change scenarios and
examination of their impact on the module structure of the
architecture. This form of evaluation is discussed further
in the following section.

10 Safety Case Architecture Evaluation
In the discipline of software architecture early lifecycle
assessment of any proposed architecture is encouraged to
gain an appreciation of how well the architecture supports
required architectural quality attributes such as scalability,
performance, extensibility and modifiability. To assess
software architectures (particularly with regard to
modifiability) a scenario based evaluation technique –
SAAM (Software Architecture Analysis Method)
(Kazman et al. 1996) – has been developed by Kazman et
al. The activities performed in a SAAM assessment are
discussed briefly below:

1. Develop Scenarios – Definition of scenarios that
illustrate activities and changes that the architecture
should ideally accommodate.

2. Describe candidate architecture – Definition of the
candidate architecture or architectures in a suitably
expressive architectural description language (ADL)
that can be easily understood by all parties involved in
the analysis.

3. Classify Scenarios – Classification of scenarios into
the two categories of direct and indirect scenarios.
Direct scenarios are those scenarios that an
architecture is expected to accommodate without
change. Indirect scenarios describe situations where
change to elements within the architecture is
anticipated.

4. Perform Scenario Evaluations – For each indirect
scenario, identification of the changes to the
architecture that are necessary for it to support the
scenario, together with an estimation of the effort
required to make these changes. For each direct
scenario, a walkthrough should be conducted that
shows clearly how the scenario is accommodated by
the architecture.

5. Reveal Scenario Interactions – Identification of
where two or more indirect scenarios involve change
to the same element of the architecture. The
interaction of semantically unrelated scenarios can
indicate a lack of cohesion in how architectural
elements are defined.

6. Overall Evaluation – Based upon the results of all
the scenarios analysed, evaluation of whether the
proposed architecture adequate supports the required
quality attributes.

With little modification, this method of architecture
evaluation can be read-across to the domain of safety case
architecture. One of the overriding aims in defining a
modular safety case architecture is improve
maintainability and (as a subtype of maintainability)
extensibility. However, it is difficult to determine a priori
whether a proposed safety case architecture (such as that
presented in section 11) will be maintainable. Adopting a
similar approach to SAAM but for safety case
architectures would suggest that a number of change
‘scenarios’ should be identified. These scenarios should
attempt to anticipate all credible changes that could impact
the safety case over its lifetime (e.g. a change of hardware
manufacturer, addition of functionality). For each of these
change scenarios (NB – by definition these scenarios
would be classified as indirect in the SAAM
methodology), a walkthrough should be conducted to
assess the likely impact of the change upon the individual
modules of the proposed safety case architecture.

In the SAAM method, the effects of indirect scenarios are
classified according to the following three classes of
change:

• Local Change – change isolated within a single
module of the architecture.

• Non-Local Change – change forced to a number of
modules within the architecture.

• Architectural Change – widespread change forced
to a large proportion of modules within the
architecture.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

59

These ideas can also be usefully applied to the safety case
architecture domain. Ideally, for a modular safety
partitioned and carefully cross referenced in accordance
with the principles stated in this paper the effects of all
credible scenarios would fall within the first of the
categories listed above. To illustrate how the categories of
change read-across to the concept of a modular safety case
architecture consider a simple safety case architecture as
shown in Figure 8 containing the following four modules:

SysArg Safety case module containing the top
level safety arguments for the overall
system identifying top level claims for
each application run as part of the
system and a top level claim regarding
the safety of the interactions between
applications.

AppAArg Safety case module containing the
arguments of safety for Application A.

AppBArg Safety case module containing the
arguments of safety for Application B.

InteractionArg Safety case module containing the
arguments of safety for the interactions
between Applications A and B.

The ‘SysArg’ module is supported by the ‘AppAArg’,
‘AppBArg’ and ‘InteractionArg’ modules. The
‘AppAArg’ module relies upon guarantees of safe
interaction with Application B as defined by the claims
contained within the ‘InteractionArg’ module (hence
‘AppAArg’ is shown making a contextual reference to
‘InteractionArg’). Similarly, the safety argument for
Application B (‘AppBArg’) relies upon guarantees of safe
interaction with Application A as defined in the
‘InteractionArg’ module.

SysArg

AppBArg

AppAArg InteractionArg

Figure 8 – A Simple Safety Case Architecture

The following are three possible change scenarios that
could have an impact on the outlined safety case
architecture

Scenario #1 Application A is rewritten (perhaps
including some additional functionality)
but still preserves the safety obligations
as defined in the contract between
AppAArg, SysArg and InteractionArg.

Scenario #2 Application A is rewritten and interacts
with Application B differently from
before.

Scenario #3 Change is made to the system memory
management model that enables new
means of possible (unintentional)
interaction between applications.

The effect of scenario #1 would be that the safety
argument for Application A (‘AppAArg’) would need
revision to reflect the new implementation. However,
provided that the safety obligations of the module to the
other modules (as defined by the contracts between the
module safety case interfaces) continue to be upheld no
further change to other modules would be necessary.
Figure 9 depicts the effects of this scenario (a cross over a
module indicates that the module is ‘challenged’ by the
change and revision is necessary). The effects of this
scenario could be regarded as a local change.

The effect of scenario #2 would be that not only must the
safety argument for Application A (‘AppAArg’) be
revised but in addition the safety argument for the
interaction between modules (contained in
‘InteractionArg’) would need to be rexamined in light of
the altered interaction between applications A and B. If,
however, the revised ‘InteractionArg’ could continue to
support the same assurances to the Application B
argument of the safety of interactions with Application A
then the Application B safety arguments (contained in
‘AppBArg’) would be unaffected. Figure 10 depicts the
effects of this scenario. The effects of this scenario could
be regarded as a non-local change (owing to the fact that
the change impact has spread across a number of
modules).

SysArg

AppBArg

AppAArg InteractionArg

Figure 9 – Illustration of Local Change

SysArg

AppBArg

AppAArg InteractionArg

Figure 10 – Illustration of Non-Local Change

CRPIT Volume 69

60

SysArg

AppBArg

AppAArg InteractionArg

Figure 11 – Illustration of Architectural Change

The effect of scenario #3 is that it changes the nature of
possible interactions between all applications. As such,
the safety argument for the interaction between modules
(contained in ‘InteractionArg’) would obviously need to
be revised. It is likely that the nature of the assurances
given by interaction argument to the safety arguments for
applications A and B (as defined by the contracts between
‘InteractionArg’ and ‘AppAArg’, and between
‘InteractionArg’ and ‘AppBArg’) could be altered.
Consequently both of these modules could be impacted.
The change to the memory management model may even
such that it alters the nature of the top level claim that
needs to be made in the ‘SysArg’ module regarding the
safety of application interactions (i.e. the ‘SysArg’ module
may also be affected. Figure 11 depicts the effects of this
scenario. The effects of this scenario could be regarded as
architectural (owing to the fact that the change can
potentially impact many modules). This is perhaps to be
expected as this scenario describes modifying a
fundamental services provided as part of the system
infrastructure.

11 Example Modular Safety Case Architecture
for IMA

The principles of modularising and evaluating safety case
architecture have been applied in reworking a “Generic
Avionics Safety Argument” developed by Pygott (Pygott
1999). The resultant safety case architecture is shown in
Figure 13. (Note – for clarity not all of the dependencies
between modules have been shown on this diagram). The
role of each of the modules of the safety case architecture
shown in Figure 13 is as follows:

ApplnAArg: Specific argument for the safety of
Application A (one required for each application within
the configuration)

CompilationArg: Argument of the correctness of the
compilation process. Ideally established once-for-all.

HardwareArg: Argument for the correct execution of
software on target hardware. Ideally abstract argument

established once-for-all leading to support from
SpecificHardwareArg modules for particular hardware
choices.

ResourcingArg: Overall argument concerning the
sufficiency of access to, and integrity of, resources
(including time, memory, and communications)

ApplnInteractionArg: Argument addressing the
interactions between applications, split into two legs: one
concerning intentional interactions, the second concerning
non-intentional interactions (leading to the NonInterfArg
Module)

InteractionIntArg: Argument addressing the integrity of
mechanism used for intentional interaction between
applications. Supporting module for ApplnInteractionArg.
Ideally defined once-for-all.

NonInterfArg: Argument addressing non-intentional
interactions (e.g. corruption of shared memory) between
applications. Supporting module for ApplnteractionArg.
Ideally defined once-for-all

PlatFaultMgtArg: Argument concerning the platform
fault management strategy (e.g. addressing the general
mechanisms of detecting value and timing faults, locking
out faulty resources). Ideally established once-for-all.
(NB Platform fault management can be augmented by
additional management at the application level).

ModeChangeArg: Argument concerning the ability of the
platform to dynamically reconfigure applications (e.g.
move application from one processing unit to another)
either due to a mode change or as requested as part of the
platform fault management strategy. This argument will
address state preservation and recovery.

SpecificConfigArg: Module arguing the safety of the
specific configuration of applications running on the
platform. Module supported by once-for-all argument
concerning the safety of configuration rules and specific
modules addressing application safety.

TopLevelArg: The top level (once-for-all) argument of
the safety of the platform (in any of its possible
configurations) that defines the top level safety case
architecture (use of other modules as defined above).

ConfigurationRulesArg: Module arguing the safety of a
defined set of rules governing the possible combinations
and configurations of applications on the platform. Ideally
defined once-for-all.

TransientArg: Module arguing the safety of the platform
during transient phases (e.g. start-up and shut-down).
Ideally generic arguments should be defined once-for-all
that can then be augmented with arguments specifically
addressing transient behaviour of applications.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

61

An important distinction is drawn between those
arguments that ideally can be established as ‘once-for-all’
arguments that hold regardless of the specific applications
placed on the architecture (and should therefore be
unaffected by application change) and those that are
configuration dependent. Examples of application
configuration specific modules include the ‘ApplnAArg’,
‘ApplnBArg’ and ‘ApplnInteractionsArg’ modules.
Examples of the argument models established ‘once for
all’ include the ‘NonInterfArg’ and ‘InteractionIntArg’
modules. Table 1 summarises the modules falling under
each category.

Argument Modules
Established ‘Once-for-all’

Configuration Dependent
Argument Modules

ApplnAArg
CompilationArg
HardwareArg
ResourcingArg
InteractionIntArg
NonInterfArg
PlatFaultMgtArg
ModeChangeArg
TopLevelArg
ConfigurationRulesArg
TransientArg

ApplnAArg
ApplnInteractionArg
SpecificConfigArg

Table 1 – Categorisation of Safety Case Architecture
Modules

In the same way as there is an infrastructure and backbone
to the IMA system itself the safety case modules that are
established once for all possible application configurations
form the infrastructure of this particular safety case
architecture. These modules (e.g. NonInterfArg) establish
core safety claims such as non-interference between
applications by appeal to properties of the underlying
system infrastructures. These properties can then be relied
upon by the application level arguments.

12 Minimising the Impact of Change
The intention of the partitioning of the safety case, such as
in the approach described in the example above, is to
maximise the number of arguments (modules) that are
stable in the presence of change. As explained in section
10 in order to evaluate the success of the argument in this
respect it is necessary to identify a number of credible
change scenarios for the IMA-based system. Credible
scenarios could include:

• Hardware Vendor Change

• Addition of a single application

• Removal of a single application

• Modification of existing application

• Addition of extra processing nodes

• Remove of processing nodes

• Change of Databus

Top Level System Argument for the
platform + configured applications

TopLevelArg

Specific safety
arguments
concerning the
functionality of
Application A

ApplnAArg

Specific safety
arguments
concerning the
functionality of
Application B

ApplnBArg

Argument for the
safety of interactions
between applications

ApplnInteractionArg

Arguments of the
absence of
non-intentional
interference between
applications

NonInterfArg

Arguments of the
integrity of the
compilation path

CompilationArg
(As Example)

Arguments
concerning the
integrity of intentional
mechanisms for
application interaction

InteractionIntArg

Safety argument for the
specific configuration of
the system

SpecificConfigArg

Arguments of the
correct execution of
software on target
hardware

Hardware Arg

Safety argument
based upon an
allowable set of
configurations

ConfigRulesArg
Arguments concerning the
integrity of the general
purpose platform

PlatformArg

Arguments of the safety
of the platform during
transient phases

TransientArg

Argument concerning
the platform fault
management strategy

PlatFaultMgtArg
Arguments concerning
the sufficiency of
access to, and integrity
of, resources

ResourcingArg

Figure 13 – Safety Case Architecture of Modularised IMA Safety Argument

CRPIT Volume 69

62

Some of these scenarios may be accommodated easily by
the proposed safety case architecture. For example, if the
applications in a configuration change, although
individual application arguments (e.g. “ApplnAArg”
module) and application interaction arguments (i.e. those
within the “ApplnInteractionArg” module) must be
updated, argument of interaction integrity and
non-interference (the “InteractionIntArg” and
“NonInterfArg” modules) may well be able to stay
unaltered. Other scenarios, such as change of hardware
vendor may have a wider impact across the modules of the
safety case (e.g. impacting compilation arguments as well
as the more obvious hardware arguments).

For the architecture proposed, Table 2 provides illustrative
examples of the modules affected by credible change
scenarios.

Change Scenario Impact on Safety Case Modules

Application A
modified

ApplnAArg must be updated
All other (13) modules unaffected
provided that interface of
ApplnAArg is preserved

Application C
added

ApplnCArg must be established
SpecificConfigArg must be
updated
ApplnInteractionArg must be
updated
All other (12) modules unaffected
provided that interface of
ApplnInteractionArg is preserved

Introduction of new
hardware type

HardwareArg and other
arguments that specifically address
the hardware of the system (such as
InteractionIntArg) must be
updated.
All other modules unaffected
provided that the interface of the
updated modules can be preserved
(i.e. the same ‘guarantees’ can be
made for the properties of the new
hardware as for the old).

Table 2 - Example Change Scenario Impact
Summaries

It is through the ability to leave many of the modules of the
safety case undisturbed in the presence of change (as
illustrated in Table 2) that the benefits of IMA can be
carried through to the certification process.

13 Reasoning about Partitioning and
Independence

One of the main impediments to reasoning separately
about individual applications running on an IMA based
architecture separately is the degree to which applications
interact or interfere with one another. DO178B (RTCA
1992), in discussing partitioning between software
elements developed to differing Development Assurance
Levels identifies that there are a number of possible routes
through which interference is possible:

• Hardware Resources – processors, memory,
Input Output devices, timers etc.

• Control Coupling – vulnerability to external
access

• Data Coupling – shared data, including
processor stacks and registers.

• Hardware Failure Modes

For example, partitioning must be provided to ensure that
one process cannot overwrite the memory space of another
process. Similarly, a process should not be unintentionally
allowed to overrun its allotted schedule such that it
deprives another process of processor time.

The European railway safety standard EN 50129
(CENELEC 2001) makes an interesting distinction
between those interactions between system components
that are intentional (e.g. component X is meant to
communicate with component Y) are those that are
unintentional (e.g. the impact of electromagnetic
interference generated by one component on another).

Unintentional interactions are typically the result of an
error (whether random or systematic). For example, the
unintentional interaction of one process overwriting the
memory space of another is a fault condition. A further
observation made in EN 50129 is that there are a class of
interactions that are non-intentional but created through
intentional connections. An example of this form of
interaction is the influence of a failed processing node that
is ‘babbling’ and interfering with another node through the
intentional connection of a shared databus.

The safety case architecture promotes (in the
“NonInterfArg” module) the ideal that ‘once-for-all’
arguments are established by appeal to the properties of
the IMA infrastructure to address unintentional
interactions. For example, a “non interference through
shared memory space” argument could be established by
appeal to the segregation offered by a Memory
Management Unit (MMU). An argument of
“non-interference through shared scheduler” could be
established by appeal to the priority-based scheduling
scheme offered by the scheduler. Although the particular
forms of interference between applications will need to be
drawn out (within the “ApplnInteractionArg” module) it is
expected that these specific arguments can be addressed
through the general infrastructure arguments provided by
the “NonInterfArg” module.

It is not possible to provide “once-for-all” arguments for
the intentional interactions between components – as these
can only be determined for a given configuration of
components. However, it is desirable to separate those
arguments addressing the logical intent of the interaction
from those addressing the integrity of the medium of
interaction. For example, if application A passes a data
value to application B across a data bus it would be
desirable to partition those arguments that address the
possibility of A sending to wrong value to B from the
arguments that address the possible corruption of the data
value on the data bus. Both issues must be clearly
identified and reasoned about (within the

Proc. 11th Australian Workshop on Safety Critical Systems and Software

63

“ApplnInteractionArg” module). However, the supporting
arguments concerning the integrity of the medium of
interaction can be established “once-for-all” within the
“InteractionIntArg” module.

14 Implications for Certification Processes
A modular approach to safety case construction has
implications for the acceptance process. Whereas,
traditionally certification has involved accepting, at a
single point in time, a single monolithic safety case for an
entire system for the benefits of a modular safety case
approach to be realised requires a certification process that
acknowledges the structure of a partitioned safety case that
can be extended and modified without instantly requiring
re-evaluation of the entire case. The guidance document
ARINC 651 (ARINC 1991) recognises this fact for
suggests that for IMA-based systems the certification tasks
are comprised of the following three distinct efforts:

• Confirmation of the general environment provided by
the cabinet

• Confirmation of the operational behaviour of each
function (application) intended to reside within a
cabinet

• Confirmation of the resultant composite of the
functions

ARINC 651 also recognises that conventional safety
standards (such as DO178B (RTCA 1992)) may need to be
updated to reflect these new distinct tasks. These
observations can be clearly related to the example IMA
safety case architecture presented within this paper.
Confirmation of the “general environment” involves
qualification of both the hardware and software
infrastructure (e.g. operating system) and relates to those
modules shown within the proposed architecture that
should ideally be established once for all possible
application configurations (e.g. the ‘HardwareArg’
module). Confirmation of the operational behaviour of
each function relates to the specific application argument
modules (e.g. the ‘ApplnAArg’ module) shown within the
proposed architecture. Confirmation of the composite
operation of functions relates to those arguments, specific
to a configuration of applications, that address the
interaction of applications (e.g. the ‘ApplnInteractionArg’
and ‘SpecificConfigArg’ modules).

ARINC 651 talks explicitly of the need for “building block
qualification” whereby it is possible to “separately quality
certain building blocks of an IMA architecture in order to
reduce the certification effort required for any particular
IMA-hosted function”. Example building blocks listed
include specific arguments relating to the (ARINC 629)
global data bus, the ARINC 659 backplane bus, the robust
partitioning environment and the cabinet hardware /
software environment. Again, it is easy to see a
correspondance with the IMA safety case architecture
proposed within this paper (e.g. the ‘NonInterfArg’
module addressing robust partitioning and the
‘InteractionIntArg’ module addressing the integrity of bus
communication). However, no detail regarding how these

building block arguments are to be represented and
managed is presented within ARINC 651.

In order to design and validate the various building blocks
involved in IMA, ARINC 651 identifies the need for
“rules which govern how the building blocks work
together”. It additionally describes that, “a feature of these
rules of application is that they can be used to limit the
work associated with certifying and re-certifying an IMA
function to proof of compliance with the rules, and
qualification of the function itself. Regulatory agency
discussion is encouraged to establish how certification
credit may be granted for adherence to these rules”. This
concept of defining rules between building blocks relates
strongly to the principles of establishing well-defined
module interfaces and contracts between safety case
modules put forward within this paper. As the quote above
clearly highlights, a necessary part of a new certification
process based upon modular safety cases is to clearly give
credit (i.e. limit the required re-certification) where
contracts between safety case modules are upheld in the
light of change to, or reconfiguration of, modules within
the overall safety case.

15 Summary
In order to reap the potential benefits of modular
construction of safety critical and safety related systems
(e.g. ease of later addition or replacement of functionality,
or through-life flexibility of hardware vendors) a modular
approach to safety case construction and acceptance is also
required. This paper has explained some of the key
concepts and principles of a modular safety case approach,
including safety case module interface definition,
cross-referencing between safety case modules and the
steps involved in composition of one or more safety case
modules. Specifically, the paper has described how the
Goal Structuring Notation (GSN) may be extended to
include and support these concepts. Use of these
extensions has been illustrated by means of an example
modular safety case architecture for IMA-based systems.

This paper has attempted to illustrate how concepts
established in the field of software architecture – such as
design-by-contract, scenario-based evaluation and
architectural patterns – can be seen to have obvious
analogues in the safety case architecture domain.

16 Acknowledgements
The author would like to acknowledge the financial
support given by QinetiQ for the work reported in this
paper.

17 References
Kelly, T. P. (1997) A Six-Step Method for the Development
of Goal Structures, York Software Engineering.

Jones, C. (1983) Specification and design (parallel)
programs, Proc. IFIP Information Processing 83, 1983.

Hofmeister, C., Nord, R., Soni, D. (1999) Applied
Software Architecture, Addison-Wesley

CRPIT Volume 69

64

MoD (1996) Defence Standard 00-56 Safety Management
Requirements for Defence Systems, U.K. Ministry of
Defence

MoD (1997) Defence Standard 00-55 Requirements of
Safety Related Software in Defence Equipment, U.K.
Ministry of Defence

Meyer, B. (1992) Applying Design by Contract,
Computer, 25:40-52, IEEE Press

Helm, R., Holland, I. M., Gangopadhyay, D. (1990)
Contracts: Specifying Behavioural Compositions in
Object-Oriented Systems, Proceedings of the ACM
Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), 169-180,
October 1990

RTCA (1992), DO-178B: Software Considerations in
Airborne Systems and Equipment Certification, RTCA,
Washington D.C., December 1 1992.
HSE (2001), Reducing Risk, Protecting People – HSE’s
Decision Making Process, HSE Books
Kazman, R., Abowd, G., Bass, L., Clements, P. (1996)
Scenario-based analysis of software architecture,
Software, 13:47-55, IEEE Press

CENELEC (2001), EN 50159:2001; Railway Applications
- Communication, signalling and processing systems -
Safety-related communication in closed transmission
systems, CENELEC

ARINC (1991) Design Guidance for Integrated Modular
Avionics, Aeronautical Radio, Inc., Annapolis, Maryland
Report 651, November 9

Pygott, C. (1999) Certification Analysis Techniques for an
IMA Architecture, Internal DERA report
DERA/CIS/CIS3/CR990865, December 1999

Proc. 11th Australian Workshop on Safety Critical Systems and Software

65

CRPIT Volume 69

66

Formal Modelling and Analysis of Mission-Critical Software in
Military Avionics Systems

Zahid H. Qureshi
Systems Engineering and Evaluation Centre

University of South Australia
Mawson Lakes Campus, Mawson Lakes 5095, South Australia

zahid.qureshi@unisa.edu.au

Abstract

A typical avionics mission system of a military aircraft is
a complex real-time system consisting of a mission
control computer, different kinds of sensors, navigation
and communication subsystems, and various displays and
stores; all interconnected by a number of serial data buses.
The mission capability is increasingly implemented in the
mission-critical software and the robustness of this
software is vital for mission success. The complexity and
real-time requirements of mission systems represent
major challenges to the Australian Defence Force during
new acquisitions, upgrades and maintenance. This paper
describes the experiences on a joint research project
between the University of South Australia and Australia’s
Defence Science and Technology Organisation into the
modelling and analysis of avionics mission systems. The
paper provides a summary of the key aspects of our
previous research work on the modelling of a generic
mission system using Coloured Petri Nets and the analysis
of task scheduling on the mission computer. Finally, the
paper briefly discusses the extension of the generic model
to obtain a formal model of the mission system of the AP-
3C Orion maritime surveillance aircraft..

Keywords: Avionics mission systems, formal methods,
mission-critical software.

1 Introduction

The complexity of military avionics mission systems is
continually increasing to meet the requirements of
missions and changing operational environment. The
mission capability is increasingly implemented in the
mission-critical software and the robustness of this
software is vital for mission success. The Australian
Defence Force has experienced problems in the
acquisition, upgrades and through-life support of airborne
electronic mission systems, leading to cost and schedule
overruns (CoA 2001). Major problems concern the
integration of a large number of relatively different
components and subsystems, such as radar, electronic
support measures, navigation, communication and

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the 11th Australian Workshop on Safety
Related Programmable Systems (SCS’06), Melbourne.
Conferences in Research and Practice in Information
Technology, Vol. 69. Tony Cant, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

mission data processing, and that of achieving an overall
optimised and operationally effective mission system.

The probable cause of the loss of the Mars Polar Lander
has been traced to premature shutdown of the descent
engines, resulting from a vulnerability of the software to
transient signals (CIT 2000). The F/A-22 avionics have
failed or shut down during numerous tests of the aircraft
due to software problems. The shutdown occurs when the
pilot attempts to use the radar, communication,
navigation, identification, and electronic warfare systems
concurrently (GAO 2003a); this has led to delays in the
avionics software development and flight-testing, and to
an increase in avionics development costs by over US$80
million. One of the major challenges in the F-35 Joint
Strike Fighter (JSF) program includes the integration of
highly advanced sensors with the avionics systems. This
has contributed to the increase in the 1996 estimated cost
and schedule for the JSF development phase by 56
percent and 40 per cent respectively (GAO 2003b), and
an increase of an additional US$10.3 billion since the
start of the system development and demonstration phase
(GAO 2004).

The key issue for the Australian Defence Force is to
reduce the cost of procurement and upgrades of avionics
mission systems in a way that provides sufficient
assurance of the system architecture and the behaviour
and performance of the software-intensive mission-
critical system to meet the operational requirements of the
aircraft. This has motivated research into the development
of a framework for analysing mission system
functionality and upgrade scenarios, and validating
overall system performance for future procurements and
upgrades.

The aim of this paper is to describe the experiences on a
joint research project between the University of South
Australia and Australia’s Defence Science and
Technology Organisation into the modelling and analysis
of avionics mission systems, conducted over a 3 year
period; key aspects of this research work have been
published in the public domain (Kristensen et al. 2001,
Kristensen et al. 2002, Petrucci et al. 2002, Petrucci at al.
2003).

In the following section, we describe the generic mission
system architecture, and in Section 3 we provide an
overview of formal methods for system modelling and
introduce the basic concepts of Coloured Petri Nets. In
Section 4, we describe the development of a modelling
framework for a generic mission system using Coloured
Petri Nets, and in Section 5 we present our analysis

Proc. 11th Australian Workshop on Safety Critical Systems and Software

67

approach which shows how state space methods can be
used in the framework of Coloured Petri Nets to reason
about system properties. In Section 6, we describe how
the modelling framework was used to obtain a Coloured
Petri Net model for the mission system of the AP-3C
Orion maritime surveillance aircraft. Finally, in Section 7
we provide conclusions on the modelling approach and
discuss ideas for future work.

2 Avionics Mission Systems

The mission system for a typical combat aircraft, such as
an F/A-18, is composed of many discrete avionics
subsystems including radar, navigation, and mission
computers. Each of these subsystems may contain further
subsystems and components. Since the mission system is
a very complex collection of subsystems and components,
we shall employ abstraction as a technique for managing
the complexity to enable the construction of models at
higher levels. The generic architecture of an avionics
mission system (AMS) for a combat aircraft (Locke et al.
1990) is shown in Figure 1. The AMS consists of a
number of subsystems connected via a serial data bus
(SDB). The control of devices, displays, and pilot controls
is handled by a collection of software tasks executing on
the mission control computer (MCC) which also acts as
the SDB controller. The subsystems communicate by the
exchange of data/messages across the SDB.

Figure 1: Generic Mission System Architecture

The controls and displays of the AMS consist of the head-
up display (HUD), the multi-purpose display (MPD), the
crew keyset (KEYSET), and the hands-on throttle and
stick (HOTAS). These components form the human-
machine interface of the AMS. The human-machine
interface is controlled by the Display Process subsystem.
The sensors of the AMS consist of the Air Data Computer
(ADC), the Radar, the Inertial Navigation System (INS),
the Radar Altimeter (RALT), and the Radar Warning
Receiver (RWR). The stores contain a number of
weapons such as missiles and bombs and are controlled
by the Stores Management Subsystem.

Typical tasks performed by a mission control computer
system may include data collection from various sensors,
fusion of collected data, display of information to pilots,
and controlling devices in response to inputs from the
aircraft crew. One of the critical aspects of the proper
functional and performance behaviour of the mission
system is that the tasks must be scheduled in a way that
guarantees that hard deadlines are met under all

circumstances. This real-time requirement is critical to
the operational performance of the mission system and
hence to the success of a particular mission. Thus major
concerns, when upgrading and maintaining mission
systems, are the scheduling of tasks and the impact of
delays associated with data transfer across the bus
connecting the mission control computer and the various
devices.

The key issues discussed in this paper are the scheduling
of tasks on the mission control computer, and the data
transfer across the data buses connecting the mission
control computer and the various avionics subsystems. A
typical application software task scheduling mechanism,
such as for the F/A-18 and F-111 aircraft, is based on a
cyclic executive (Rockwell 1992). The cyclic executive
executes an application that is divided into a sequence of
non pre-emptive tasks, invoking each task in a pre-
determined order throughout the execution history of the
application (Locke 1992). One can distinguish two types
of tasks, namely, rategroup and background tasks. The
rategroup tasks are periodic and have higher priority than
the background tasks, which may be considered as
aperiodic. The cyclic executive repeats its task list at a
rate that is known as a major cycle. The major cycle is
further divided into periods known as minor cycles. The
major cycles have a set of tasks scheduled that must meet
the required deadline in order to maintain the integrity of
the mission system.

3 Formal Modelling and Analysis

3.1 Formal Methods

Formal methods are mathematically based techniques,
often supported by reasoning tools, that can offer a
rigorous and effective way to model, design and analyse
computer systems (Bjorner and Druffel 1990). A formal
method has a sound mathematical basis, typically given
by a formal specification language. This basis provides
the means of precisely defining notations like consistency
and completeness and more relevantly, specification,
implementation and correctness. It provides the means of
proving that a specification is realisable, proving that a
system has been implemented correctly, and proving
properties of a system without necessarily running it to
determine its behaviour. There are comprehensive
accounts of experience on the use of formal methods in
industry and research (e.g., Hinchey and Bowen 1995).

The design and validation of complex computer-based
systems, for example, military avionics and space
missions, should ensure the correctness of a design at the
earliest stage possible. The performance of an avionics
mission system is critical during flight, thereby making it
a good candidate for more rigorous design and
verification methods. Havelund and Lowry (2001)
discuss an application of the model checker SPIN to
formally analyse a software-based multithreaded plan
execution module of a NASA space-craft control system.
The formal verification effort had a major impact:
locating errors that would probably not have been located
otherwise and identifying a major design flaw.

Display

Processor
INS

Air

Data

Computer

Stores

Management

System

KEYSET HOTAS StoresMPDHUD

Serial Data Bus

Mission

Control

Computer

Radar

Warning

Receiver
Radar

Radar

Altimeter

Display

Processor

Display

Processor
INSINS

Air

Data

Computer

Air

Data

Computer

Stores

Management

System

Stores

Management

System

KEYSETKEYSET HOTASHOTAS StoresStoresMPDMPDHUDHUD

Serial Data Bus

Mission

Control

Computer

Radar

Warning

Receiver
Radar

Radar

Altimeter

CRPIT Volume 69

68

3.2 Coloured Petri Nets

Coloured Petri Nets (Jensen 1997) are a graphically
oriented modelling language for the design, specification,
and verification of concurrent and distributed systems.
CPNs are based on Petri Nets (Desel and Reisig 1998)
and the functional programming language Standard ML
(SML) (Ullman 1998). Petri Nets provide the primitives
for modelling concurrency and synchronization, whereas
SML provides the primitives for modelling data
manipulation in systems and for creating compact and
parameterisable CPN models. A CPN model of a system
describes the states that the system may be in and the
transitions between these states. CPN models are
executable, which means that it is possible to investigate
the behaviour of the system by simulations. CPN models
can also be used for formal verification of systems based
on state space analysis and model-checking (Jensen
1997). CPNs and the Design/CPN tool (Design/CPN
Online) have been successfully applied in a wide range of
application areas and many projects have been carried out
in industry (Jensen 1997).

Scheduling of tasks in real time systems has traditionally
been conducted using a purely algorithmic approach (Liu
2000). Recently, there has been an increasing interest in
applying timed automata and model checking techniques
to scheduling problems; the basic idea is to turn the
scheduling problem into a reachability problem that can
be solved by analysis tools using a state space search
(Petrucci et al. 2002). The advantages of formal
modelling and state space methods in this setting is that
the same model of the system can be used to analyse
scheduling as well as other properties, such as functional
correctness. Hence, it represents an integrated approach
to the analysis of the system.

4 CPN Model of a Generic Mission System

In this section, we describe our modelling framework and
approach by providing an overview of the CPN model of
the generic mission system and give some representative
examples of modelling at the different levels of
abstraction in the CPN model; the reader is referred to
Kristensen et al. (2001) for details.

4.1 Modelling Framework Overview

A CPN model can be structured into a number of
hierarchically related modules (in CPN terminology
called pages) with well-defined interfaces between them.
The hierarchy page giving the overall structure of the
CPN AMS model is depicted in Figure 2. Each node in
Fig. 2 represents a page (module) of the CPN AMS
model, and is named according to the page in the CPN
model that it represents. An arc leading from one node to
another node means that the latter is a subpage
(submodule) of the former. The page AMS is the top-most
page in the CPN model.

The CPN model consists of five main parts which
correspond to the five immediate subpages of the AMS
page: the MCC page and its subpages models the Mission
Control Computer, the Sensors page and its subpages
models the sensors, the ControlsDisplays page and its
subpages models the man-machine interface, the Stores
page models the stores and the Stores Management
System, and the SerialDataBus page models the Serial
Data Bus.

Figure 3 depicts the AMS page and provides the most
abstract view of the model. This page consists of five
substitution transitions (drawn as rectangles with an HS
tag in the lower right corner) and two places (drawn as
ellipses). The substitution transitions Mission Control
Computer, Sensors, ControlsandDisplays,
StoresManagementSystem, and SerialDataBus correspond
to the five main parts of the AMS system. Each of the

Figure 2. CPN model overview - Hierarchy page

Proc. 11th Australian Workshop on Safety Critical Systems and Software

69

sesubstitution transitions (and its surrounding places) is
related to a subpage. The subpage of a substitution
transition provides a more detailed description of the
compound activity/component represented by a
substitution transition. Place SerialDataBus is used to
model the data transfer across the serial data bus. Place
CDS represents the interface between the controls and the
storage management system. Each of the places in Fig. 3
is so-called socket places used to link the subpage of the
substitution transition and the AMS page. Socket places
are assigned (linked) to port places on the subpage of the
substitution transition.

Figure 3: The AMS page

An addressing scheme has been developed to capture the
AMS architecture, identity the components of the AMS,
and to model the interaction between the components.
Components can be hardware devices (e.g., sensors) as
well as software processes/tasks (e.g., the tasks executed
by the MCC). In addition to making it possible to identify
components, the virtue of this addressing scheme is that
new components can easily be added to the CPN model
without having to make global modifications to it. This
means that new tasks on the MCC as well as new
hardware devices can be incorporated into the CPN

model with only local modifications. A sample of the
colour set definitions used to realise the addressing
scheme are shown in Figure 4. The colour set definitions
are written in the Standard ML programming language
and are similar to type definition found in programming
languages. The colour set MCCTaskName identifies the
different tasks executing on the mission control computer.
The colour set BackgroundTask contains the attributes:

• name - the name of the task;

• size - total size of the task when executed
 (measured in time units);

• left - how much of the task remains to be executed

In the colour set RategroupTask, the rate attribute
specifies the frequency of a rategroup task (as the number
of minor cycles between execution of the task), and the
next attribute keeps track of the next minor cycle in which
the task should be executed.

4.2 Mission Control Computer
Figure 5 depicts the MCC page which is the most abstract
part modelling the mission control computer. The MCC is
the subpage associated with the substitution transition
Mission Control Computer from Fig. 3. The page has two
substitution transitions: Scheduling represents the
scheduling mechanism on the mission control computer
and IOProcessor represents the IO processor of the
mission control computer.

Figure 5: Mission Control Computer (MCC) page

A marking (state) of a CP-net is represented by a
distribution of tokens on the places of the CPN model.
The kind of tokens that can reside on a place is
determined by the colour set of the place. The colour set
of a place is by convention written below the place. The
tokens initially present on a place are specified by the
initial marking of the place. The initial marking of a place
is by convention written above the place and omitted if
the place is initially empty (i.e., contains no tokens).

The input socket places Tasks and AllTasks of the
substitution transition Scheduling are used to represent
the task of the mission control computer. Place Tasks has
the colour set MCCTask, and each task on the mission

color MCCTaskName = with

 AircraftFlightData | Steering
| RadarControl | TargetDesignation
| TargetTracking | WeaponSelection
| WeaponTrajectory | WeaponRelease
| HUDDisplay | MPDHUDDisplay
| MPDTacticalDisplay | MPDStoresDisplay
| MPDStatusDisplay | KEYSET_HOTAS
| RWRControl | RWRThreatControl
| BuiltInTest ;

color BackgroundTask =
 record name : MCCTaskName *

 size : Int *
 left : Int ;

color RategroupTask =
 record name : MCCTaskName *

 rate : Int *
 next : Int *
 size : Int *
 left : Int ;

color MCCTask = union

 Background : BackgroundTask +
 Rategroup : RategroupTask ;

 Figure 4: Colour set definition for tasks

CRPIT Volume 69

70

color CPUState = union

 Idle +

 Busy : BusyState timed;

control computer is represented as a token of colour set
MCCTask on the place Tasks.

The place AllTasks contains a list of all the tasks on the
mission control computer. This list is used to access all
tasks on the mission control computer and determine
which task will be executed next. The Tasks place ensures
that if there is a choice of the next task to execute on the
mission control computer, the CPN model represents all
possible such choices.

The socket places, IOQueue and IOStatus, represent the
interface between the mission control computer and the
IO processor. The place IOQueue is used to model a
queue in which tasks can make requests for data to be
transferred across the serial data bus. The place IOStatus
keeps track of the input/output status of tasks, and to
signal (using an interrupt) that data requested by a given
task is now available. The place SDB represents the
interface between the serial data bus and the IO
processor.

4.3 Task Scheduling and Execution

The Scheduling page, shown in Figure 6, models the
general scheduling mechanism on the mission control
computer (MCC). This page is the subpage of the
substitution transition Scheduling from Fig. 6. It consists
of seven places and three substitution transitions. The
port places IOStatus, IOQueue, Tasks and AllTasks are
assigned to the identically named socket places on page
MCC.

The place MCCCPU is used to model the state of the
processor (CPU) in the mission control computer. Figure
7 shows the colour set declarations used to model the
state of the CPU. The state of the CPU is modelled by the
colour set CPUState. The CPU may either be Idle or
Busy, i.e., executing a task. The colour set BusyState is a
product where the first component is used to specify the
task that the CPU is busy executing. The second
component is used to record the time at which the task
started executing. This information is used to compute

how much of the task was completed in case the current
task is interrupted by a higher priority task. The colour set
CPUState is timed. This means that tokens of this colour
set will carry time stamps. These time stamps will be used
to specify the time at which the task has run to
completion. The initial marking of place MCCCPU is a
token with colour Idle corresponding to the CPU initially
being idle.

The place, Minorcycle, is used to keep track of the current
minor cycle. As indicated by the initial marking of this
place, the system starts in minor cycle 1. The place
MinTime represents the minimum amount of time a task
should spend on the CPU before it can be pre-empted by
a task with a higher priority.

The substitution transition InterruptTask models how a
task executing on the CPU can be interrupted by a task
with a higher priority, and the substitution transition
TaskCompleted describes the completion of a task. The
pages associated with these substitution transitions are
described in detail in Petrucci et al. (2002).

Figure 7: Colour set definitions for CPU state

4.4 Serial Data Bus

The Serial Data Bus page shown in Figure 8 comprises
three places and two transitions. There are two places Idle
and Busy describe the state of the Serial Data Bus. The
third place, SDB, represents the information transiting on
the Serial Data Bus.

The Serial Data Bus is initially in the Idle state. When a
request arrives on the SDB place from the I/O processor,
it starts transmitting the request to the appropriate device
(transition Start Transmit occurs). The serial data bus will
then change its state form idle to busy by placing a token

Figure 6: Scheduling page

Proc. 11th Australian Workshop on Safety Critical Systems and Software

71

in the place Busy. When the request has been transmitted,
the Serial Data Bus becomes Idle again and signals that
the request has been completed so that the I/O processor
handles the next request (transition Transmit Complete
fires). The places Idle and Busy ensure that a transfer on
the data bus can only start if no other transfer is already
being processed.

Figure 8: Serial Data Bus page

4.5 Sensors

The information necessary for tasks is gathered by
various sensors such as radars. The execution of tasks
causes data to be transferred between sensors, control,
displays, and stores. The interaction between the MCC
and the sensors consists of data transfers. Since we model
the mission system at a high level of abstraction, the
various sensors can be modelled as shown in the
GenericSensor page (Figure 9).

When a request arrives on the Serial Data Bus, the
relevant Sensor is activated and the data transfer starts
(transition Start Transfer occurs). Each sensor takes a
certain amount of time to operate and process
information, and thus must remain in the Transfer state
during this time. This is achieved by the time stamp given
to the token created in place Transfer when transition

Start Transition occurs. The token in place Transfer
cannot be consumed before this amount of time has
elapsed. When the sensor has terminated, i.e., transmitted

the requested information, it signals the Serial Data Bus
that the request has been completed.

Figure 9: GenericSensor page

5 Analysis of the CPN Model
The analysis of the CPN AMS model is based on the state
space method of Coloured Petri Nets as supported by the
Design/CPN tool. The primary focus of the analysis has
been to determine whether the tasks to be scheduled on
the mission control computer are completed in time, and
if this is the case, provide a schedule for the set of tasks.
In addition to this, the size of the input/output queues of
the I/O processor has been considered. The basic idea
behind state space methods is to construct a directed
graph (called the state space) with a node for each
reachable state of the CPN model and an arc for each
transition between states. Since the state space contains
all reachable states it represents all possible executions of
the CPN model. In this section, we provide a summary of
our analysis approach and results which have been
reported in detail in Petrucci et al. (2002).

The problem of finding a schedule can be formulated as
finding a path in the state space leading from the initial
state to a state where the major cycle has ended and all

tasks were completed in time. To make state space
analysis feasible, we started out by selecting a small set
of tasks and gradually introduced additional tasks. Also,
we experimented with different priority policies for tasks

Task Set Tasks RG BG
S1 Displays and Controls

HUDDisplay, MPDHUDDisplay, MPDTacticalDisplay, MPDButtonResponse,
ChangeDisplayMode, MPFStoresDisplay, MPDStatusDisplay,
KeysetResponse, HOTASDesignation, HotasBombButton

6 4

S2 S1 + Built-In Test
PeriodicBIT, BITFailureWarning, InitiatedBIT

7 6

S3 S2 + Radar Control
RadarSearch, radarTracking, RadarInitiateTracking

9 7

S4 S3 + Targeting
DesignateTarget,ConfirmDesignation, TargetTracking, TargetSweetening

10 10

S5 S2 + Threat Response
PollRWR, ThreatResponseDisplay

8 7

S6 S5 + RWR Control
RWRProgramInput, RWRProgramming

9 8

S7 S6 + Weapon Control (except WeaponRelease)
InputWeaponSelection, WeaponSelectionProc, AutoCCIPtoggle,
WeaponTrajectory, ReinitiateTrajectory

10 12

S8 S7 + Targeting
Designatetarget, ConfirmDesignation, TargetTracking, TargetSweetening

11 15

Table 1: Set of Tasks used for Analysis

CRPIT Volume 69

72

accessing the CPU and for input/output. Table 1 lists the
different sets of tasks taken from Locke et al. (1990) that
are used for the analysis. The RG column gives the
number of rategroup (periodic) tasks in a given set. The
BG column specifies the number of background tasks in
the set.

Table 2 gives the size of the state space for the different
sets of tasks listed in Table 1. The Nodes column gives
the number of nodes in the state space, and the Arcs
column gives the number of arcs in the state space. The
IOSS column gives the maximum number of requests in
the I/O requests queue at the I/O processor observed in
the state space. The IOSP column gives the maximum
number of requests in the I/O queue along a path in the
state space corresponding to a schedule for the tasks. The
considered pre-emption and queuing policy allowed
requests from rategroup tasks to overtake requests from
background tasks in the IO queue, and both rategroup and
background tasks had assigned priorities.

Set Nodes Arcs IOSS IOSP
S1 77,982 127,316 6 4
S2 78,734 128,715 7 6
S3 485,054 811,734 9 7
S5 144,780 235,769 10 10
S6 142,022 234,257 8 7
S7 409,888 702,831 9 8

Table 2: Standard State Space Generation

Various state space analysis techniques were considered,
for example, the use of depth-first state space generation
allowed the S4 and S8 task sets to be analysed, as this led
to significantly fewer states to be considered (Petrucci et
al. 2002).

Our analysis focuses on task scheduling of the mission
control computer and only considers a single major cycle.
This is sufficient because all tasks are required to be
executed at the end of a major cycle. Analysis results
showed that, for example, the rategroup task
WeaponRelease cannot execute in time i.e. it fails to meet
its deadline. We have demonstrated how analysis of
scheduling and input/output queue of an avionics mission
system can be done using state spaces.

6 AP-3C Orion Mission System Modelling

The AP-3C aircraft mission system upgrade provides
enhanced mission capabilities and extends the P-3C life-
of-type to 2015 (DMO 2002). The AP-3C aircraft is
operated by the Maritime Patrol Group of the Royal
Australian Air Force, and its mission roles include anti-
subsurface and anti-surface warfare, surveillance, search
and rescue, and maritime strike.

A high-level block diagram of the AP-3C avionics
mission system architecture is shown in Figure 10 (RAAF
1996). It consists of a Mission Equipment Bus (MEB)
that provides inter-communication channels between the
following sub-systems: Navigation, Acoustics, Magnetic
Anomaly Detection (MAD) and Radar. The Data
Management System (DMS) provides specialised

interfaces to the following sub-systems:
Armament/Ordinance (ARM/ORD), Electronic Support
Measures (ESM), and Infrared Detection System (IRDS).
The operators are provided with a high-resolution display
and entry panel directly from the DMS. The
Communication (Comm) sub-system interfaces with
these sub-systems via the Avionics Equipment Bus
(AEB), which is connected to the MEB via the
Navigation sub-system. The MEB and the AEB are dual
redundant serial data busses based on the MIL-STD-
1553B (DOD 1993). The DMS of the AP-3C plays the
same role as the mission control computer in the generic
mission system.

IRDS

ESM

Navigation Radar

Data

Management

System

MAD

Mission Equipment Bus MIL-STD-1553B

Operator

Consoles

Acoustics

ARM/ORD

Avionics Equipment Bus MIL-STD-1553B

Comm

Figure 10: AP-3C AMS Architecture

The DMS is a centralised mission control and
management sub-system. It is a complex multiprocessor
system consisting of several Enhanced General Purpose
Controllers (EGPC), custom computing devices and
supporting software. Two input/output (I/O) processor
cards provide the interface between the EGPCs and the
MEB. The DMS provides the overall AMS management
and normally acts as the MEB bus controller (RAAF,
1996).

The DMS software consists of a set of software
components, which process sensor data and input from
controls, performs necessary mission-oriented
computations and provides outputs to the displays and
other avionics equipment (RAAF 1999). Typical software
components include the executive, navigation, stores
management, display control, and data management. The
runtime executive schedules and dispatches the execution
of control tasks and services interrupts during various
operations. The runtime executive component is typically
responsible for the following functions: application
software (task) scheduling, interrupt management,
input/output scheduling and error management. The DMS
executive software is based on a commercial Ada run-
time kernel (RAAF 1999). The scheduling policy is pre-
emptive and is executed by priority in a round-robin
fashion (Rational 1995).

An EGPC sends a number of messages to the I/O
processor for transmission to the addressed remote
terminal (RT) (RAAF 1996), e.g. Navigation sub-system
or Radar subsystem, via the MEB. The MEB minor frame
rate (described in the next section) sets a real-time clock
interrupt to the I/O software. At the beginning of each
new minor frame, an interrupt occurs, and the I/O
processor starts issuing the messages for that frame.

The AP-3C CPN model has been constructed based on
the framework represented by the CPN AMS model
briefly described in Section 4. From the two architectures

Proc. 11th Australian Workshop on Safety Critical Systems and Software

73

Figure 11: Hierarchy page of the AP-3C model

depicted in Figures 1 (generic) and 10, it follows that
although the components in the two systems are basically
the same, the structure is quite different. There are two
buses in the AP-3C instead of one in the generic AMS.
This is easy to handle in our model as they are identical,
allowing us to use two instances of the same bus
representation. We just need to connect the appropriate
components to each bus instance to ensure that the model
correctly reflects the topology of the system. In this
section, we provide an overview of the model only, and
the reader is referred to Petrucci et al. (2003) for details.

Finally, we need to consider two sorts of subsystems (or
device) in the AP-3C mission system, rather than one.
Because of the level of abstraction chosen for the model,
we refer to subsystems or devices that have just a single
connection to a bus as a simple device, such as, Magnetic
Anomaly Detection, the Acoustic Subsystem, and the
Communication Subsystem. We need a more complex
model of the Navigation Subsystem because it is
connected to both busses. Therefore, the simple devices
can be modelled in the same way as the devices of the
generic mission system (the Generic Sensor), while the
navigation subsystem requires an enhancement to this
model.

The hierarchy page of the AP-3C CPN model is depicted
in Figure 11; a parallel should be drawn between this
page and the generic AMS model hierarchy in Figure 2.
The four main differences between the CPN models of
the generic AMS and the AP-3C, as reflected in the
hierarchy pages, are as follows:

• The Stores page and the ControlsDisplays page and
its subpages have been removed from the model. The
reason is that we are initially concerned with
scheduling problems associated with the DMS that
are not related to the displays and controls.

• The Sensors and Generic Sensor pages from the
generic AMS model have been combined and then
split into two: the simple devices (in the Device
page) and the navigation subsystem.

• The CPN model of the AP-3C AMS contains a
refined model of the input/output processing on the
mission control computer. In the generic CPN model,
input/output processing was modeled by page
IOProcessor. In the AP-3C model, input/output
processing is modelled by page IOProcessorCard
and its three subpages. The Scheduling page of the
generic model becomes the EGPC page for the AP-
3C.

• The timing regarding task execution has been moved
from the mission control computer level to the EGPC
level, and the page UpdateMajorCycle is now a
subpage of the EGPC page.

The differences between the AP-3C and the generic AMS
architectures are easily recognised by examining the CPN
models’ hierarchy pages. The transformation of the
generic model into the AP-3C model was greatly
facilitated by its initial hierarchical design. The
transformation mainly consists of: re-arranging the
hierarchy by moving some pages; creating new ones
when refinement is required; and deleting pages not
relevant to the specific architecture or the purpose of the
model.

One purpose of the CPN model is to formally specify the
transmission of messages between subsystems across the
mission equipment and avionics bus. As usual we model

the messages being transferred as tokens in the CPN
model. When a subsystem transmits a message across the
mission equipment bus to another subsystem, it will put a
token on place Mission Equipment Bus. The subpage of
the substitution transition Mission Equipment Bus will

CRPIT Volume 69

74

then model the details in transferring the message.
Eventually the message will be transmitted and the
destination subsystem will consume the token
representing the message from place Mission Equipment
Bus. To model this data transfer in a flexible way that
makes it easy to add/remove components, a general
addressing scheme was developed as part of the CPN
model of the generic AMS.

The top-level AMS page is shown in Figure 12 and
corresponds to the most abstract level in the AP-3C CPN
model. This page provides a high-level architectural view
of the AP-3C AMS similar to the informal block diagram
in Figure 12. All the transitions (rectangles) are
substitution transitions, indicated by the HS (hierarchical
substitution) tag in their lower right corner. The
substitution transition Data Management System
represents the main part of the system. The
Communication Subsystem, Navigation Subsystem,
Acoustic Subsystem, Magnetic Anomaly Detection and
Radar correspond to the different AMS subsystems. The
other two substitution transitions, Mission Equipment Bus
and Avionics Bus, are used to model data transfer across
the MIL-STD-1553B serial data busses. Places Mission
Equipment Bus and Avionics Bus represent the interfaces
for each bus. Finally, the other places (e.g. ACS) allow
subsystems (such as the acoustics subsystem) to be
identified.

Figure 13 depicts the DMS page which is the most
abstract part modelling the data management system. The
page has two substitution transitions: EGPC1 represents
the Enhanced General Purpose Controller on which the
tasks execute, and the 1553B I/O Processor Card handles
all the input and output related to tasks. The modelling

details of processing and messages transmission on the IO
Processor Card is described in detail in Petrucci et al,
(2003). The AP-3C aircraft uses up to 4 EGPCs. Our
model can easily cater for this by including the required
number of EGPC substitution transitions (e.g. EGPC1 to

EGPC4). Thus, several instances of the EGPC page may
be used concurrently.

Figure 13: DMS page of the AP-3C model

7 Conclusions and Way Ahead

This paper has provided an overview of the experiences
on a joint research project between the University of
South Australia and Australia’s Defence Science and
Technology Organisation into the modelling and analysis
of avionics mission systems, conducted during the period
2000-03.

We have described the development of a formal model of
a generic mission system using Coloured Petri Nets. The
main outcome is the capture of system domain
knowledge, understanding of the mission system
architecture and the interrelationships between the
various avionics subsystems. We have demonstrated how
analysis of task scheduling of an avionics mission system
can be done using state spaces. A virtue of our modelling
approach is that the CPN model is highly parametric,

which makes it easy to analyse different sets of tasks and
in this way investigate the impact of adding tasks to the
mission control computer. Another advantage of our
modelling approach is that specific scheduling
mechanisms can easily be changed and an analysis of
their impact can be conducted.

Figure 12: AMS page of the AP-3C model

Proc. 11th Australian Workshop on Safety Critical Systems and Software

75

We have shown how the hierarchical constructs of CP-
nets and Design/CPN that were successfully used to
model the generic airborne mission system could be
readily applied to model the AP-3C mission system. The
initial CPN model of AP-3C provides a basis to perform
analysis of the mission system architecture and is focused
on the Data Management System task scheduling and
data transfer across the Mission Equipment Bus. The
CPN model can serve as an unambiguous executable
specification of the DMS. Since the CPN models are
executable, the behaviour of the DMS can be observed by
simulating the CPN DMS model. This can prove to be an
efficient way of gaining and maintaining knowledge on
the operation of the DMS. The CPN DMS model can be
used to analyse what-if scenarios before the actual system
integration. These what-if scenarios could be related to
functional as well as performance aspects of the DMS.

A major problem is the state-space explosion, for
example the state space of the CPN AMS model grows
with the increase in the number of tasks. In order to
perform more efficient state space analysis, the use of
advanced methods such as the sweep-line methods
(Christensen et al. 2001) should be investigated.

Safety-critical software for aviation is typically DO-178B
(RTCA 1992) level A or B (BAE, 2004). Mission-critical
software applications must also be developed using the
guidelines of DO-178B. However, unlike safety-critical
applications, mission-critical software is typically DO-
178B level C or D (BAE, 2004). Formal methods can
play an important role in the design evaluation of
mission-critical software and systems.

Furthermore, there is a need to investigate other methods
and techniques for the modelling and analysis of avionics
mission systems, such as: Avionics Architecture
Description Language (SAE-AADL) and associated
MetaH tool (Vestal 1997), model based verification and
lightweight formal methods (Gluch and Weinstock 1998),
and formal verification techniques and tools, for example,
SPIN model checker (Holtzmann 1997), PVS theorem
prover (Crow et al. 1995), and another promising
verification tool (under development) - the Hierarchical
Verification Environment (HiVE) (Cant et al. 2005),

Finally, in addition to the research on modelling that has
been presented in this paper, we recommend a number of
critical research areas to complement the overall program
for research on avionics mission systems, namely,
advanced avionics architectures including safety,
availability, fault-tolerance and growth issues, avionics
data bus architectures and performance issues, real-time
schedulability and timing analysis, and software and
hardware design assurance.

8 Acknowledgements

This research was conducted under the Long Range
Research Task scheme, Task No. LRR 00/061, during the
author’s association, as the task manger, with the
Australian Defence Science and Technology
Organisation. The author would like to acknowledge
Professor Billington, University of South Australia on the
research collaboration and guidance with the application

of Coloured Petri Nets. The author would also like to
acknowledge Lars Kristensen, Aarhaus University for the
research on the development of the generic avionics
mission system CPN modelling framework and Laure
Petrucci, Laboratoire Spécification et Vérification, ENS
de Cachan, for the formal analysis and refinement of the
framework to the AP-3C aircraft, during their sabbatical
at the Computer Systems Engineering Centre, University
of South Australia. Finally, acknowledgements are due to
Raymond Kiefer and Scott Simmonds from Tenix/RLM
and Adacel Technologies respectively, for the technical
discussions and design information on the AP-3C Data
Management System, and to Flight Lieutenant Jon Postle,
AP-3C DMS Manager, Royal Australian Air Force.

9 References

BAE (2004): Safety-critical vs. mission-critical:
Understanding the difference, CompactPCI and
AdvancedTCA Systems, January, OpenSystems
Publishing,
http://www.compactpci-systems.com/articles/id/?263;
Accessed 19 July 2006.

Bjorner, D. and Druffel, L. (1990): Position statement:
ICSE-12 Workshop on Industrial Experience Using
Formal Methods, Proceedings of the 12th International
Conference on Software Engineering, 264-266, March
26-30, Nice, France.

Cant, T., Mahony, B., McCarthy, J., and Vu. L. (2005).
Hierarchical Verification Environment, Tenth
Australian Workshop on Safety Critical Systems and
Software, SCS 2005, Cant, T. (Ed.), Conferences in
Research and Practice in Information Technology, 55:
47-57, Australian Computer Society.

Christensen, S., Kristensen, L.M. and Mailund, T. (2001):
A Sweep-Line Method for State Space Exploration,
Proc. TASCAS’01, LNCS, 2031:450-464, Springer
Verlag.

CIT (2000): Report on the Loss of the Mars Polar Lander
and Deep Space 2 Missions, Jet Propulsion Laboratory,
California Institute of Technology.

CoA (2001): Major Capital Equipment Project Delays or
Cost Overruns, Additional Budget Estimates – Defence
Portfolio, February, Defence White Paper Projects,
Senate Foreign Affairs, Defence and Trade Legislation
Committee, Canberra, Commonwealth of Australia.

Crow, J., Owre, S., Rushby, J., Shankar, N. and Srivas.
M. (1995): A Tutorial Introduction to PVS, Proc. of the
Workshop on Industrial-Strength Formal Specification
Techniques (WIFT'95), USA, Computer Science
Laboratory, SRI International.

Desel, J. and Reisig, W. (1998): Place/Transition Petri
Nets, Lectures on Petri Nets I: Basic Models, Lecture
Notes in Computer Science, 1491:122-173, Springer-
Verlag.

Design/CPN Online: Computer Tool for Coloured Petri
Nets, University of Aarhus,
http://www.daimi.au.dk/designCPN/. Accessed 7 Mar
2000.

CRPIT Volume 69

76

DMO (2002): Projects, Air 5276 Phase 2A - P3 Update
Implementation, Defence Materiel Organisation,
http://www.defence.gov.au/dmo/asd/air5276/air5276p2
.cfm, Accessed 25 July 2002.

DOD (1993): MIL-STD-1553B Notice 3, 31 Jan 1993,
Military Standard, Digital Time Division
Command/Response Multiplex Data Bus, Department
of Defense, Washington DC.

GAO (2003a): DOD Should Reconsider Decision to
Increase F/A-22 Production Rates While Development
Riske Continue, Report to Congressional Committees,
March, GAO-03-431, General Accounting Office,
Washington, D.C.

GAO (2003b): Defense Acquisitions: Assessments of
Major Weapon Programs, Report to Congressional
Committees, May, GAO-03-476, General Accounting
Office, Washington, D.C.

GAO (2004): Status of the F/A-22 and Joint Strike
Fighter Programs, Testimony before the Subcommittee
on Tactical Air and Land Forces, Committee on Armed
Services, House of Representatives, March 25, GAO-
04-597T, General Accounting Office, Washington,
D.C.

Gluch, D.P. and Weinstock, C.B. (1998): Model-Based
Verification: A technology for Dependable System
Upgrade, Technical Report CMU/SEI-98-TR-009,
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA.

Havelund, K. and Lowry, M. (2001): Formal Analysis of
a Space-Craft using SPIN, IEEE Transactions on
Software Engineering, 27(8):749-765.

Hinchey, M,G. and Bowen, J. P. (Eds.), (1995):
Applications of Formal Methods, International Series
in Computer Science, UK, Prentice Hall.

Holtzmann, G. (1997): The Model Checker SPIN, IEEE
Transactions on Software Engineering, 23(5):279-295.

Jensen, K. (1997): Coloured Petri Nets. Basic Concepts,
Analysis Method and Practical Use (Vol. 1-3),
Monographs in Theoretical Computer Science, Second
Edition, Springer-Verlag.

Kristensen, L. M., Billington, J. and Qureshi, Z. H.
(2001): Modeling Military Airborne Mission Systems
for Functional Analysis, Proc. 20th IEEE/AIAA Digital
Avionics Systems Conference, Daytona Beach, Florida,
14-18 October.

Kristensen, L. M., Billington, J., Petrucci, L., Qureshi, Z.
H. and Kiefer, R. (2002): Formal Specification and
Analysis of Airborne Mission Systems, Proc. 21st
IEEE/AIAA Digital Avionics Systems Conference,
Irvine, California, 27-31 October.

Liu, J. (2000): Real-Time Systems, New Jersey, Prentice-
Hall.

Locke, C.D., Vogel, D.R. and. Goodenough, J. B. (1990):
Generic Avionics Software Specification, Technical
Report CMU/SEI-90-TR-8, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA.

Locke, C.D. (1992): Software Architecture for Hard Real-
Time Applications: Cyclic Executive vs. Fixed Priority
Executives, The Journal of Real-Time Systems, 4:37-
53.

Petrucci, L., Kristensen, L. M., Billington, J. and Qureshi,
Z. H. (2002): Towards Formal Specification and
Analysis of Avionics Mission Systems, In Lakos, C.,
Esser, R., Kristense, L. M., and Billington, J. (Eds.),
Proc. Workshop on Formal Methods Applied to
Defence Systems, June, Conferences in Research and
Practice in Information Technology, 12:95-104,
Australian Computer Society.

Petrucci, L., Billington, J., Kristensen, L. M. and Qureshi,
Z. H. (2003): Developing a Formal Specification for
the Mission System of a Maritime Surveillance
Aircraft, Proc. 3rd International Conference on
Application of Concurrency to System Design,
Guimaraes, Portugal, 18-20 June.

RAAF (1996): Mission Equipment Bus (MEB) Protocol
Specification. Report F6250.00.151, 11 March 1996,
(CDRL-ENG-46-ACS-ICD-0074, Rev D 10 Jan 2000).
Project Air-5276 Royal Australian Air Force,
Department of Defence, Australia.

RAAF (1999): Software Design Document for the
Operating Systems CSCI, Report 7371902, Rev B, 26
February 1999, (SDRL-ENG-65D-03-03, CDRL-ENG-
32-DMS-SDD-0423, 2 July 1999). Project Air-5276
Royal Australian Air Force, Department of Defence,
Australia.

Rational (1995): Runtime Systems Guide VADScross
M68000, ver: 6.2.3.0, June, Rational Software
Corporation, Santa Clara, California.

Rockwell (1992): F/RF-111C Avionics Update Program,
1992, Software Design Document for the Mission
Computer Operational Flight Program, Volume I,
Rockwell International Corporation.

RTCA (1992): Software Considerations in Airborne
Systems and Equipment Certification, DO-178B,
Washington DC, RTCA.

SAE-AADL: SAE AADL Information Site, A Society of
Automotive Engineering Standard,
http://www.aadl.info/. Accessed 11 April 2006.

Ullman, J. (1998): Elements of ML Programming, New
Jersey, Prentice-Hall.

Vestal, S. (1997): MetaH Support for Real-Time Multi-
Processor Avionics, Joint Workshop on Parallel and
Distributed Real-Time Systems (WPDRTS/OORTS
'97), IEEE Computer Society.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

77

CRPIT Volume 69

78

Certification Criteria for Emulation Technology

in the Australian Defence Force Military Avionics Context

Flight Lieutenant Derek Reinhardt

Systems Certification and Integrity (SCI)

Directorate General Technical Airworthiness (DGTA)

Bldg L474 (B-2-STH), RAAF Williams, Laverton 3027, Victoria, Australia

derek.reinhardt@defence.gov.au

Abstract

Emulation technology promises to provide a means of

addressing obsolescence issues in legacy computer

processors in the military avionics domains. It has also

been suggested that such technology might apply to safety

critical and safety related systems in these domains.

Numerous companies either have developed or are

developing software components that are capable of

emulating different legacy computing platforms. The

emulators permit the execution of legacy code on newer

computing platforms, without change to existing binary

executables or data. Subsequent modifications to the

legacy code in question may be made using either the

legacy development environment and/or with some

emulation technologies using a newer development

environment.

The Defence Science and Technology Organisation

(DSTO) is presently working with Northrop Grumman

Space Technology (NGST) to develop a concept

demonstrator utilising NGST's Reconfigurable Processor

for Legacy Applications Code Execution (RePLACE)

Emulation Technology for the Royal Australian Navy

(RAN) Seahawk Display Generator Unit (DGU). To

assess how the Australian Defence Force’s (ADF's)

Technical Airworthiness Authority (TAA) - the

Directorate General Technical Airworthiness (DGTA)

might accept emulation technology, DGTA has evaluated

emulation architectures and specifically RePLACE in the

context of the Seahawk DGU. The evaluation has

considered the emulation architecture, including

identification of risks largely unique to the technology; as

well as application of ADF preferred avionics software

assurance and software safety standards to this

technology.

Evaluation of emulation technology, through exploration

of emulation architectures and RePLACE as a case study,

has allowed DGTA to define certification and regulatory

guidance for the development of emulation technology

within the ADF context.

Copyright © 2006, Australian Computer Society, Inc. This

paper appeared at the 11th Australian Workshop on Safety

Related Programmable Systems (SCS’06), Melbourne.

Conferences in Research and Practice in Information

Technology, Vol. 69. Tony Cant, Ed. Reproduction for

academic, not-for profit purposes permitted provided this text is

included.

Keywords: Certification, Emulation, Legacy Systems,

Software Architecture, Software Safety, Safety Critical.

1 Introduction

The concept of emulation and emulators has been around

for many years. Emulators permit the execution of legacy

code on newer computing platforms, without changes to

existing binary executables or data.

In recent years the power of modern microprocessors has

evolved to such an extent that it is now possible to

provide real-time software emulation of many legacy

microprocessors that were widely used in the late 1970s,

1980s and early 1990s. These advances provide a

tremendous opportunity to reuse much of the software

developed for these earlier microprocessors without the

penalty of having to rehost or translate the software to

modern programming languages and microprocessor

environments. Furthermore, emulation promises to solve

the problem of hardware obsolescence among those

legacy systems that are still in use today.

Emulation has been applied to many areas of computing

already, including the emulation of older computer game

consoles (Atari, Sega, Nintendo Entertainment System,

Arcard Platforms, etc), emulation of earlier derivatives of

PC, Macintosh, Unix and VaxVMS environments to

permit execution of those old applications in a modern

environment, and emulation of embedded systems to

permit analysis, testing and simulation on development

platforms to name but a few. Given the wide application

to date of emulation, it is not surprising that emulation

technology is now being suggested in the avionics

domain, particularly the military avionics domain.

Emulation technology promises to provide a means of

addressing many obsolescence issues in legacy computer

processors in the military avionics domains, a domain

where systems can be subject to comparably longer

service lives than equipment in other domains. For

example, it is not unusual for military aerospace systems

to be in service for 30+ years, although some avionics

systems would reasonably be expected to be upgraded

over that time period. There have already been a number

of programs that have used emulation in this sense.

Numerous companies either have developed, or are

developing, software components that are capable of

emulating different legacy computing platforms for

military avionics. One such company is Northrop

Grumman Space Technology (NGST) who offer a

product called RePLACE. RePLACE has already been

Proc. 11th Australian Workshop on Safety Critical Systems and Software

79

applied to numerous avionics systems and microprocessor

instruction sets.

Furthermore, it has also been suggested that such

technology might be further applied to safety critical and

safety related systems in these domains. To date, there is a

lack of regulatory guidance and certification criteria

relating to how emulation might be applied to safety

critical and safety-related systems.

The ADF's Technical Airworthiness Regulator (TAR) –

also DGTA, is responsible for defining regulatory and

certification criteria for modifications to Australian

Military (‘State’) aircraft. This provides the ADF’s TAA

with the guidance from which to conduct design

acceptance of such technologies. Note that DGTA has a

dual responsibility, being both the TAR and TAA. Design

acceptance is largely synonymous with type certification

within the Federal Aviation Administration (FAA)

airworthiness framework.

The Defence Science and Technology Organisation

(DSTO) are presently working with NGST to develop a

concept demonstrator utilising NGST's RePLACE

Emulation Technology for the RAN Seahawk DGU. The

DGU hosts several functions that are safety-related, and

therefore warrants special consideration within the

context of emulation. This development provides DGTA

with an opportunity to develop certification criteria for

emulation technology and to assess the effectiveness

(technical, cost, schedule) of such certification criteria.

The remainder of this paper examines emulation

technology, through exploration of emulation

architectures and NGST’s RePLACE as a case study, to

allow DGTA to define certification and regulatory

guidance for the development of emulation technology

within the ADF context.

2 Examination of Emulation Architectures

In order to define certification criteria for emulation

technology, it is firstly necessary to develop an

understanding of those software architectures most

relevant to emulators. This section introduces the simplest

form of emulator architectures.

2.1 A Simple Emulation Architecture (Type 1)

A simple legacy emulation architecture (designated

Type 1 for convenience of reference throughout this

paper) is detailed in Figure 1 and Figure 2.

COTS Microprocessor

Legacy CPU Emulator

User Application, e.g. Legacy OFP

Board Support

Package
Processor Support

Figure 1: Simple Emulator Architecture (Logical

Layers)

Legacy CPU Emulator

Legacy Virtual Machine

Legacy OFP (Binary)

I/O Mapping

New COTS I/O

Interfaces

Memory Sub-system

Figure 2: Simple Emulator Architecture (Sub-

Elements)

The following paragraphs provide an overview of the

emulator components detailed in Figure 2.

The main component of the emulator architecture is the

Legacy Virtual Machine. The Legacy Virtual Machine

consists of the Legacy Instruction Set Engine, Memory

Sub-system, I/O Mapping, Legacy Operational Flight

Program (OFP) (ie. the binary) and other underlying

functionality necessary to emulate the legacy computer

environment (eg. Interrupt/exception mechanisms).

Encapsulating the Legacy Virtual Machine is the Legacy

CPU Emulator which provides the interface for the

Legacy Virtual Machine to execute in the native

processor environment. It is included as a separate

element in this architecture for consistency with some

more complex architectures considered later in this paper.

The Memory Sub-System component’s role is to model

the memory of the legacy computer environment. This

may include logical to physical address translation,

memory protection mechanisms and memory regions

(non-volatile regions, read-only regions, shared memory

regions, etc.).

The I/O Mapping component’s role is to match the data

and control structures, as well as the interfaces of the new

replacement I/O devices, to those that are representative

of the legacy computer environment.

The Legacy Instruction Set Engine is a set of native

machine code that fetches, decodes and executes the

legacy instructions on the fly. Figure 3 describes the

relevant data and information flows that might occur in

one such implementation of the Legacy Instruction Set

Engine. This example has been based on the MIPs

processor, which is generally well understood across the

computing domain, although the logical interpretation is

easily extended to any type or class of microprocessor.

Note that the MIPs processor is not used in the Seahawk

DGU, which uses the AAMP processor.

CRPIT Volume 69

80

Figure 3: Legacy Instruction Set Engine Data/Information Flow Diagram

2.1.1 Incorporating an RTOS (Type 1A)

Rather than implementing the full suite of system related

functions as part of the emulator, it is common for

embedded applications of this type to incorporate some

form of Real Time Operation System (RTOS). Figure 4

and Figure 5 show the logical layers and sub-elements

that such an architecture might consist of. Aside from the

incorporation of the RTOS between the emulator and

lower level board/processor support firmware/software

and the microprocessor and I/O interface, there is no

significant change to the components, functional structure

or relevant data and information flows within the

emulator itself.

COTS Microprocessor

Real Time Operating System (RTOS)

Legacy CPU Emulator

User Application, e.g. Legacy OFP

Board Support

Package Processor Support

Figure 4: Emulator Architecture (Logical Layers) -

Incorporating an RTOS

Of the emulators examined by DGTA, this architecture is

the most widely adopted, and will form the starting point

for analysis aimed at determining certification criteria for

emulation technology.

Real Time Operating

System (RTOS)

Legacy CPU Emulator

Legacy Virtual Machine

Legacy OFP (Binary)

L
e
g
a
c
y
 In

s
tru

c
tio

n
 S
e
t E

n
g
in
e

I/O Mapping

New COTS I/O

Interfaces

Memory Sub-system

Figure 5: Emulator Architecture (Sub-Elements) -

Incorporating an RTOS

3 Analysis of Type 1 Emulation Architecture

To provide an understanding of the software failure

modes that might be relevant to the emulation

architecture, and importantly what architectural

considerations and software assurance activities are

required to provide evidence of the absence or handling

of these identified failure conditions, it is necessary to

conduct some form of software safety analysis. There are

numerous software safety analysis techniques that could

be applied to such a system including Software

Functional Failure Analysis (FFA), Software Fault Tree

Analysis (FTA), Software FMEA (FMECA), Software

HAZOP (DefStan 00-58 Computer HAZOP), Software

Hazard Analysis and Resolution in Design (SHARD) -

refinement of Software HAZOP, Markov Analysis and

Data Flow Diagrams, Petri Net Analysis and Software

Sneak Analysis (ADF 2006, and McKinlay 2001).

Proc. 11th Australian Workshop on Safety Critical Systems and Software

81

Guide Word Deviation Cause Effect Detection / Protection

Omission Decode and execute instruction

process fails to update memory or

output

Programming error within decode

and execute instruction process

Memory not updated with new

contents

Output not updated with new

output

Memory and output post update verification

Commission Decode and execute instruction

process invalidly updates memory or

output

Programming error within decode

and execute instruction process

Memory is corrupted in specific

location

Output is corrupted

Entry point to decode and execute instruction process

limited to following fetch instruction and increments

counter process

Early Decode and execute instruction

process updates memory or output

before valid processor cycle

Programming error causes

instruction implementation to

incorrectly replicate cycle

synchronisation

Cycle synchronisation incorrect

Memory updated out of

sequence with other operations

Output transitions early

Memory and output update to explicitly check cycle

synchronisation

Mappings to be established between legacy

instruction and emulation implementation and

mappings to be verified for functional and temporal

equivalence.

Late Decode and execute instruction

process updates memory or output

after valid processor cycle

As for early Memory updated out of

sequence with other operations

Output transitions late

As for early

Value Decode and execute instruction

process updates memory or output

with invalid value or updates wrong

memory or output location

Programming error within decode

and execute instruction process

Incorrect instruction passed to

decode and execute process

As for Omission, Commission,

Early, Late

As for Omission, Commission, Early and Late.

Table 1: Extract from SHARD on Type 1 Emulator (Updated Memory and Output)

Guide Word Deviation Cause Effect Detection / Protection

Omission Decode and execute instruction

process fails to update program

counter as result of jump instruction

Programming error within decode

and execute instruction process

Program counter is not updated

with correct value. Emulated

program enters incorrect branch

of instructions - possible

program crash

Program counter is to be verified after operation.

Mappings to be established between legacy

instruction and emulation implementation and

mappings to be verified for functional and temporal

equivalence.

Commission Decode and execute instruction

process invalidly updates program

counter

Programming error within decode

and execute instruction process

Program counter is updated

with corrupted value. Emulated

program enters incorrect branch

or instructions - probable

program crash.

Mappings to be established between legacy

instruction and emulation implementation and

mappings to be verified for functional and temporal

equivalence.

Early Decode and execute instruction

process updates program counter

before valid processor cycle

Programming error causes

instruction implementation to

incorrectly replicate cycle

synchronisation

Cycle synchronisation incorrect

Program counter updated out of

sequence with other operations.

Emulated program enters

incorrect branch or instructions

- probable program crash.

Program counter update to explicitly check cycle

synchronisation

Mappings to be established between legacy

instruction and emulation implementation and

mappings to be verified for functional and temporal

equivalence.

Late Decode and execute instruction

process updates program counter

after valid processor cycle

As for early As for early As for early

Value Decode and execute instruction

process updates program counter

with invalid value

Programming error within decode

and execute instruction process

Incorrect instruction passed to

decode and execute process

As for Omission, Commission,

Early, Late

As for Omission, Commission, Early and Late.

Table 2: Extract from SHARD on Type 1 Emulator (Updated Program Counter)

While it is possible to apply aspects of each of these

techniques to analyse emulation architectures, and indeed

the measured application of a number of these techniques

would probably be necessary for the developer of such

technologies to provide sufficient evidence as part of a

safety case, it is not necessary for defining certification

criteria. For the sake of defining certification criteria it is

only necessary to develop an understanding of how

emulation technology might fail and what might be done

to either ensure it can’t or doesn’t fail; or if it can, then

verify that it is sufficiently unlikely to fail. Such

understanding should then provide insight into what

evidence is required to provide sufficient confidence in

these aforementioned properties. The SHARD technique

is particularly relevant to developing this understanding

as it considers failure modes, their causes, effects, and

potential detection or protection means.

SHARD employs a series of guidewords to classify how

the information flows and associated communication

events (and associated services) might deviate from their

intended forms. These are as follows:

• Omission - Service not delivered.

• Commission - Service delivered when not required.

• Early - Service delivered, but early.

• Late - Service delivered, but late.

• Value - Service delivered, but with incorrect value.

SHARD requires that the system be analysed

“backwards” from the outputs (ie. identify the system

level effects first) back towards the inputs. The internal

and input deviations are expressed in terms of how they

cause or contribute to deviations in downstream items

already investigated. Further information on the SHARD

technique can be found in Pumfrey (1999).

SHARD analysis was conducted using the Legacy

Instruction Set Engine Data/Information Flow Diagram

CRPIT Volume 69

82

(Figure 3) as a reference for information flows that might

exist in the emulator, and services that are required from

a functional perspective. An extract from the SHARD is

presented in Table 1 and Table 2 for the updated memory

and output, and updated program counter information

flows respectively.

Both Table 1 and Table 2 refer to the term ‘temporal

equivalence’. ‘Temporal equivalence’ is used in a general

sense here for convenience as each emulator

implementation will need to define, within high and low

level requirements, this property in the context of the

relevant instruction set; legacy CPU architecture,

including consideration for pipelining and parallel

execution paths; and the configured application set. It is

used to capture timing considerations at two levels of

abstraction. The first is at the instruction level, which

deals with the timing constraints placed on individual

instructions, or sequences of instructions for some

parallel architectures. The second is at the application

level, which deals with ensuring that assigned tasks

complete within their scheduled execution time, and that

implementation quirks, such as processor cycle based

synchronisation schemes (as opposed to interrupt timer

based schemes) and the use of No Operations (NOPs) for

timing synchronisations do not result in undesired effects

(e.g. speed up) when emulated. This second level of

abstraction is mostly applicable to those architectures

considered in Section 4, however it cannot be ruled out in

this context due to potential for synchronisation

dependencies (e.g. those resident in timing sensitive

executives and I/O). This implies that inspection and

analysis of the legacy binary will be required to

determine if these schemes are part of the

implementation.

Having developed an understanding of the types of failure

modes, their causes, effects, and detection/protection

means, it is then possible to define architectural or

verification requirements relative to those failure modes.

The ADF preferred standard for software assurance of

airborne software is RTCA/DO-178B (ADF 2005). For

the purposes of consistency and clarity, verification

requirements shall be defined based on those activities

documented in RTCA/DO-178B (RTCA 1992). Readers

should refer to DO-178B and related information (DO-

248B (RTCA 2001), Order 8110.49 (FAA 2003), CAST

5 (CAST 2000)) for further definitions of software

assurance activities described in this paper.

However, to understand the logic behind the approach

used to define those architectural and verification

requirements and associated DO-178B objectives, it is

firstly necessary understand some key aspects of the DO-

178B software assurance model. According to DO-178B,

verification of airborne software has two complementary

objectives. One objective is to demonstrate that software

satisfies its requirements. The second objective is to

demonstrate with a high degree of confidence that errors

which could lead to unacceptable failure conditions have

been removed. Noting that the prescription of activities

against these two objectives is scaled based on software

level within the standard, it is worth considering the

approach in general terms.

The first objective is largely supported through definition

of and verification against high-level requirements.

Where insufficient disclosure or ambiguities exist within

the high level requirements, then refinement and further

definition of and verification against is required in

translation to low-level requirements. Therefore, it

follows that provided the developer can adequately

disclose the requirements at the prescribed level of detail,

then this objective is relatively straight forward to satisfy.

The second objective, however, is not quite as intuitive. It

deals with eliciting properties about the software which

don’t necessarily follow from the set of already defined

high and low level requirements, with focus on those

properties that could potentially lead to unacceptable

failure conditions. Eliciting these properties permits one

of two outcomes: either the behaviour is appropriate, in

which case it should be captured in the high and/or low

level requirements; or the behaviour is inappropriate, in

which case the software design and implementation

should be changed to remove the behaviour. DO-178B

approaches this through prescribing requirements

coverage analysis and software structural coverage

analysis. Furthermore, establishing requirements

traceability from low-level requirements to source code,

and to object code, supports providing an understanding

of software properties commensurate with this second

objective. While there are arguably other ways to elicit

such properties, this paper, for the reasons previously

documented, will restrict discussion to those called out by

DO-178B.

For an emulator, the high and low level requirements

would generally need to capture the extent of the

instruction set, as well as all other supporting functional

and non-functional properties of the machine being

emulated. For most legacy CPUs, much of this

information would need to be extracted from whatever

technical documentation is still available. For CPU

manufacturers that have been out of business or have

since been subsumed into other businesses, it may no

longer be possible to elicit much documentation beyond

what is already held by the in-service support

organisation and associated technical library. Unlike the

commercial world where the internet often becomes a

repository for obsolete information, rarely does propriety

information relating to obsolete military specific

equipment find its way into the public domain. As it is

not possible to guarantee that the documentation

adequately captures all functional and non-functional

properties of the legacy CPU, then it follows that the

initial set of high and low level requirements assembled

for the emulator might well be incomplete. Therefore the

activities, and resultant outcomes of the second

aforementioned DO-178B verification objective become

especially important as one means of eliciting a complete

set of high and low level requirements, not only in the

context of the emulator itself, but also in the context of

the extant legacy application – in particular, where the

legacy application relies on undocumented legacy

processor properties. An inspection of DO-178B reveals

that activities supporting this objective only start to

become applicable at Level C or better, with Level B

providing the bulk of necessary activities.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

83

Further to ensuring a complete set of high and low level

requirements, the activities and resultant outcomes of the

second aforementioned DO-178B verification objective

are also necessary to explore properties associated with

any underlying components of the emulator that might

not directly relate to the execution of instructions, or

management of I/O and memory. For example, any

monitoring or mapping functions, or failure thereof,

should not result in any unacceptable failure conditions.

An extract from the architectural and verification

requirement assignment against identified failure modes

is presented in Table 3. Full details have not been

included on each specific assignment. However, it

follows that they are appropriate based on the argument

presented earlier in this section.

Detection/Protection Architectural or Verification

Requirement

Mappings to be established between

legacy instruction and emulation

implementation, and mappings to be

verified for functional and temporal

equivalence.

Software high level requirements comply with

system requirements

High-level requirements are accurate and

consistent

High-level requirements are compatible with

target computer

Low-level requirements comply with high-level

requirements

Low-level requirements are accurate and

consistent

Low-level requirements are compatible with

target computer

Source Code complies with low-level

requirements

Executable Object-Code complies with low-

level requirements

Test coverage of software structure (decision

coverage) is achieved

Memory and output post update

verification. Memory and output update

to explicitly check cycle synchronisation

Entry point to decode and execute

instruction process limited to following

fetch instruction and increments counter

process

Program counter is to be verified after

operation. Program counter update to

explicitly check cycle synchronisation

Registers are to be verified after

operation. Registers update to explicitly

check cycle synchronisation

Monitoring of pass instruction to decode

and execute instruction process to ensure

graceful recovery from failure mode

Program counter is to be verified after

each increment operation. Program

counter increment to be explicitly

synchronised to fetch instruction.

Fetch instruction and increment program

counter process to be synchronised with

decode and execute instruction process to

ensure one decode and execute for each

instruction fetched.

Software high level requirements comply with

system requirements

High-level requirements are accurate and

consistent

High-level requirements are compatible with

target computer

Low-level requirements comply with high-level

requirements

Low-level requirements are accurate and

consistent

Low-level requirements are compatible with

target computer

Source Code complies with low-level

requirements

Table 3: Determination of Architectural or

Verification Requirements for Type 1 Emulator

An inspection of the software assurance activities called

out in Table 3, considered in the context of the previous

discussion on the DO-178B software assurance model,

reveals that these objectives come largely from the set of

objectives core to DO-178B Level B. Therefore, it

follows that for most safety related systems, the most

appropriate software assurance level will be DO-178B

Level B. This is further addressed, later in this paper.

4 Further Examination of Emulation

Architectures

This section introduces an extension of the emulator

architecture that permits changes to be made to the

functionality of the legacy binary using a new

development environment with code hosted directly into

the native environment.

4.1 Incorporating New Functions Developed in

Native Code (Type 2)

A legacy emulation architecture that permits the

incorporation of new functions developed in native code

(designated Type 2 for convenience of reference

throughout this paper) is detailed in Figure 6 and Figure

7.

COTS Microprocessor

Real Time Operating System (RTOS)

Legacy CPU

Emulator

User Application,

e.g. Legacy OFP

Board Support

Package Processor Support

Native Virtual

Machine

Native

App

Native

App

Figure 6: Emulator Architecture (Logical Layers) -

Incorporating New Functions Developed in Native

Code

Real Time Operating

System (RTOS)

Legacy CPU Emulator

Legacy Virtual Machine

Legacy OFP (Binary)

L
e
g
a
c
y
 In

s
tru

c
tio

n
 S
e
t E

n
g
in
e

I/O Mapping

New COTS I/O Interfaces

V
ir
tu
a
l
C
o
m
p
o
n
e
n
t
E
n
v
ir
o
n
m
e
n
t

Native Virtual Machine

Native

Application

(New Code

Object)

I/O Drivers

Native

Application

(New Code

Object)

Memory Sub-system

Figure 7: Emulator Architecture (Sub-Elements) -

Incorporating New Functions Developed in Native

Code

CRPIT Volume 69

84

Figure 8: Legacy Instruction Set Engine and Virtual Component Environment Data/Information Flow Diagram

The following paragraphs provide an overview of the

emulator components detailed in Figure 7.

Many components within the Legacy Virtual Machine

that are common with the Type 1 architecture. As before,

encapsulating the Legacy Virtual Machine is the Legacy

CPU Emulator which provides the interface for the

Legacy Virtual Machine to execute in the native

processor environment.

However, in this architecture the Legacy CPU Emulator

also includes a component labelled the Virtual

Component Environment. The Virtual Component

Environment provides the mechanisms to switch between

legacy and new native code environments and share data

between them.

Figure 8 describes the relevant data and information

flows that might occur in one such implementation of this

extended emulation architecture. This example has again

been based on the MIPs processor although the logical

interpretation is easily extended to any type or class of

microprocessor. Figure 8 uses the term ‘thunk’, which is

defined as a reference mapping of code addresses from

one system specific form (i.e. legacy address space) to

another (i.e. native environment).

5 Safety Analysis of the Legacy Emulation

Architecture Incorporating New Functions

Developed in Native Code

To provide an understanding of the software failure

modes that might be relevant to the Type 2 emulation

architecture, and importantly what architectural

considerations and software assurance activities are

required to provide evidence of the absence and handling

of these identified failure conditions, it is again necessary

to conduct some form of software safety analysis.

In line with the approach adopted for the Type 1

emulation architecture, a SHARD was conducted using

the Legacy Instruction Set Engine and Virtual

Component Environment Data/Information Flow

Diagram (Figure 8) as a reference for information flows

that might exist in the emulator, and services that are

required from a functional perspective. An extract from

the SHARD is presented in Table 4.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

85

Guide Word Deviation Cause Effect Detection / Protection

Omission Failure to pause

emulation

Programming error causes a failure to

recognise thunk address or to recognise

need to pause emulation and transfer

control to native function

Wrong data in thunk table

Emulated program continues to execute

beyond thunk address – synch

problems with native functions,

possible program crash

Establishment of thunk addresses and storage of thunk

addresses within thunk table require level of integrity

to process

Verification of thunk address integrity, and relevant

context to application code segment

Commission Emulation paused when

not required

Programming error causes transfer to

native application when not required

Wrong data in thunk table

Emulated program will pause, with

transfer of control to wrong native

function, or program halt

Emulated function to be an atomic operation to ensure

interruption from thunking only between instructions.

Virtual Component Environment shall be able to

detect a native applications anticipated violation of

the emulated applications real time constraints and

deadlines, and be able to return operation to the

emulated function gracefully.

As for Omission

Early Emulation paused earlier

than required

Programmer error causes transfer to native

application earlier than required

Emulated program will pause, with

transfer of control to native function

early resulting in state synch problems

with emulated program

Emulated function to be an atomic operation to ensure

interruption from thunking only between instructions.

As for Commission

Late Emulation paused later

than required

Programmer error causes transfer to native

application later than required

Emulated program may pause, with

late transfer of control to native

function resulting in state

synchronisation problems with

emulated program

As for Early

Value Emulation pauses with

wrong state

Programmer error causes program

counter, register and memory/output state

of emulator to be incorrectly captured

Native function accessing emulated

state may perform operations on

incorrect data. Return of execution of

emulator likely to result in program

crash, or operations on invalid data

Emulated function to be an atomic operation to ensure

interruption from thunking only between instructions.

Transfer control is not permitted access to emulator

state unless otherwise justified.

Table 4: Extract from SHARD on Type 2 Emulator (Pause Emulation)

Detection/Protection Architectural or Verification

Requirement

Verification of thunk address integrity, and

relevant context to application code segment

Emulated function to be an atomic operation

to ensure interruption from thunking only

between instructions.

Emulated function to be an atomic operation

to ensure interruption from thunking only

between instructions.

Transfer control is not permitted access to

emulator state unless otherwise justified.

Virtual Component Environment must be

able to detect a native application’s

anticipated violation of the emulated

application’s real time constraints and

deadlines (to achieve temporal equivalence

as previously defined), and be able to return

operation to the emulated function

gracefully.

Software high level requirements comply

with system requirements

High-level requirements are accurate and

consistent

High-level requirements are compatible with

target computer

Low-level requirements comply with high-

level requirements

Low-level requirements are accurate and

consistent

Low-level requirements are compatible with

target computer

Source Code complies with low-level

requirements

Test coverage of software structure (decision

coverage) is achieved

Establishment of thunk addresses and

storage of thunk addresses within thunk

table require level of integrity to process

The development of native functions, their

effect on the emulated systems state, and the

integrity of the overall system are closely

linked. Therefore, it may be necessary to

apply more rigorous software assurance

activities than associated with the severity of

failure of the native function alone. Similar

software assurance activities may be required

as for emulator itself. This is dependant on

the nature of the native function. Those that

have significant effect on the state of the

emulated system are likely to require

additional assurance activities (i.e. equivalent

to those defined for the emulator). Those

functions that don’t may be conducted at a

software assurance level commensurate with

the severity of failure of that function.

Transfer control is not permitted access to

emulator state unless otherwise justified.

Protected Domain – Partitioned RTOS

Table 5: Determination of Architectural or

Verification Requirements for Type 2 Emulator

Having developed an understanding of the types of failure

modes, their causes, effects, and detection/protection

means, it is then possible to define architectural or

verification requirements relative to those failure modes.

Section 3 has already discussed the relationship of the

DO-178B software assurance model and the associated

critical properties elicited from relevant activities. The

same logic is applied in this case. An extract from the

architectural and verification requirement assignment

against identified failure modes is presented in Table 5.

Full details have not been included on each specific

assignment. However, it follows that they are appropriate

based on the argument presented earlier in this section.

An inspection of the software assurance activities called

out in Table 5 reveals that these objectives again come

largely from the set of objectives core to DO-178B Level

B. Therefore in a general sense, it follows that for most

safety related systems, the most appropriate software

assurance level will be DO-178B Level B. This is

addressed in greater detail later in this paper. It should

also be noted now that a requirement is identified relating

to the interaction between the emulator and native

environment. A robust means of addressing this

requirement is through a protected domain (partitioned)

RTOS. A broader inspection of the SHARD analysis,

beyond the extent of that presented in this paper, also

dictates a requirement for complete isolation of the

emulator from the new COTS hardware (including I/O)

by means such as the protected domain (partitioned)

RTOS.

5.1 Incorporating a Protected Domain RTOS

(Type 3)

A legacy emulation architecture that extends the Type 1

architecture to incorporate a protected domain RTOS

(designated Type 3 for convenience of reference

throughout this paper) is detailed in Figure 9 and Figure

10.

CRPIT Volume 69

86

RTOS Application Program Interface (API)

COTS Microprocessor

Legacy CPU Emulator

User Application, e.g. Legacy OFP

Board Support

Package Processor Support

Real Time Opreating System (RTOS)

Protected Domain

Figure 9: Emulator Architecture (Logical Layers) -

Incorporating a Protected Domain RTOS

Real Time Operating System (RTOS)

Protected Domain

Legacy CPU Emulator

Legacy Virtual Machine

Legacy OFP (Binary)

L
e
g
a
c
y
 In

s
tru

c
tio

n
 S
e
t E

n
g
in
e

I/O Mapping

New COTS I/O

Interfaces

RTOS Application

Program Interface (API)

Memory Sub-system

Figure 10: Emulator Architecture (Sub-Elements) -

Incorporating a Protected Domain RTOS

The significant change compared with the Type 1

architecture is the complete isolation of the emulator from

the new COTS hardware (including I/O) by the protected

domain (partitioned) RTOS.

This approach is ideally suited to those emulator

applications where there is no immediate requirement to

introduce new functionality into the legacy OFP using the

native environment (as described in the Type 2 emulator),

but for which future capability introduction may be

required. The introduction of the protected domain

(partitioned) RTOS provides a future expansion

capability that ensures it is possible to later introduce new

functionality in the native environment, without

significant rework of the emulator. For example, changes

to the emulator would likely be restricted to the addition

of a virtual component environment.

5.2 Emulation Architecture Incorporating New

Functions Developed in Native Code

(Type 4)

A legacy emulation architecture that extends the Type 2

architecture to incorporate a protected domain RTOS

(Type 3 features) that facilitates the incorporation of new

functions developed in native code (designated Type 4 for

convenience of reference throughout this paper) is

detailed in Figure 11, Figure 12, and Figure 13.

RTOS Application Program Interface (API)

COTS Microprocessor

Legacy CPU Emulator

User Application, e.g. Legacy OFP

Native Virtual Machine

Board Support Package Processor Support

Real Time Opreating System (RTOS)

Protected Domain - Partitioned

Native

Application

Native

Application

Figure 11: Emulator Architecture (Logical Layers) -

Incorporating New Functions Developed in Native

Code

RTOS Application Program Interface (API)

COTS Microprocessor

Legacy CPU

Emulator

User Application, e.g.

Legacy OFP

Native Virtual Machine

Board Support Package Processor Support

Real Time Opreating System (RTOS)

Protected Domain - Partitioned

Native

Application

Native

Application

Native Virtual

Machine

Native

Application

Figure 12: Emulator Architecture (Logical Layers) -

Incorporating New Functions Developed in Native

Code

Real Time Operating System (RTOS)

Protected Domain - Partitioned

Legacy CPU Emulator

Legacy Virtual Machine

Legacy OFP (Binary)

L
e
g
a
c
y
 In

s
tru

c
tio

n
 S
e
t E

n
g
in
e

I/O Mapping

New COTS I/O Interfaces

V
ir
tu
a
l
C
o
m
p
o
n
e
n
t
E
n
v
ir
o
n
m
e
n
t

Native Virtual Machine

Native

Application

(New Code

Object)

I/O Drivers

Native

Application

(New Code

Object)

RTOS Application Program Interface (API)

Memory Sub-system

Figure 13: Emulator Architecture (Sub-Elements) -

Incorporating New Functions Developed in Native

Code

The following paragraphs provide an overview of the

emulator components detailed in Figure 13.

The significant change compared with the Type 2

architecture is the complete isolation of the emulator and

Proc. 11th Australian Workshop on Safety Critical Systems and Software

87

native virtual machine from the new COTS hardware

(including I/O) by the protected domain (partitioned)

RTOS. Furthermore complete temporal and spatial

partitioning is now provided by the protected domain

(partitioned) RTOS of the legacy CPU emulator and the

native virtual machine to ensure adequate separation of

legacy and new native functions (represented by the gray

dashed line)

While the temporal and spatial partitioning provided by

the protected domain RTOS now ensures that the legacy

application will not crash as a result of a problem with

functions implemented in the native environment, there

are some additional architectural issues that need to be

addressed. For example, the virtual component

environment must now exhibit safety properties to allow

the legacy application to continue operating in event the

native code fails to return control to the legacy

application in a functionally appropriate or timely

manner.

6 Recommendations Relating to Emulator

Architectures

The analysis conducted in earlier sections of this paper

has provided an appreciation of the failure modes that

might be associated with the emulation architectures

considered. This permits recommendations to be formed

on the relevance of particular emulation architectures to

the severity of various safety and mission failure

conditions. Although this paper is primarily aimed at

safety critical and safety related systems, recent guidance

in AAP7001.054 Sect 2 Chap 7 (ADF 2005) has provided

a framework through which those software assurance

activities relevant to safety critical and safety related

systems can be applied commensurately to mission

systems. Table 6 details the emulation architecture types

considered in this paper, and the safety or mission failure

conditions for which they are recommended.

Failure Condition Type1 Type2 Type3 Type4

Catastrophic NR NR HR R
1

Hazardous NR NR HR R
1

Major R
1
 R

1
 HR HR

Minor R R HR HR

S
a
fe
ty

No Effect HR HR R
2
 R

2

Critical R R HR HR

Serious R R HR HR

M
is
si
o
n

Important HR HR R
2
 R

2

NR=Not Recommended, R=Recommended, HR=Highly Recommended

Note 1: Recommended only if the sub-elements have been subjected to
rigorous software safety analysis that shows the absence or handling of

all potential failure modes.

Note 2: Recommended rather than Highly Recommended based on the
cost associated with the purchase of a protected domain and partitioned

RTOS.

Table 6: Emulation Architecture Recommendations

7 Issues with the Native Code Approach

Subsequent modifications to legacy code hosted on the

emulator may be made using either the legacy

development environment or a newer development

environment.

There may be substantial risks associated with making

any more than a small number of changes to the system

using the newer development environment and native

code. This is because of the difficulty of being able to

demonstrate precise knowledge of the pre-conditions to

modifications from exit points of the legacy code

increases with each subsequent change. Similar

difficulties might also exist for the post-conditions of

modifications and entry points back into the legacy code.

These problems are particularly pronounced for legacy

software that has limited available documentation (often

the case of legacy systems), or where developer’s

knowledge of the legacy software is no longer sufficient.

The problems may be further exacerbated by poor control

over the determination of entry and exit points to and

from the legacy code, and the amount of coupling

permitted between various native code elements. A robust

Application Programming Interface (API) is therefore

required to provide tight control of the entry and exit

points.

Specific architectural considerations, including

partitioning (spatial and temporal as provided by a

partitioned RTOS), and related analysis would be

required to demonstrate finite, well defined dependencies

between subsequent new developments and legacy code.

Such analysis would require a thorough understanding of

the emulator, the legacy software and the legacy

processor. Risks associated with adding new code can be

mitigated largely by detailed analysis, as suggested

throughout this paper, and planning of new features as

part of a appropriately controlled and managed change

process. Tool support would also be desirable to assist

with providing an understanding of the legacy and native

implementations.

Some emulators provide embedded real-time, non-

intrusive monitoring and legacy code debugging services

as part of the virtual component environment or lower-

level CPU emulator. Such services may provide

developers with tools necessary to mitigate aspects of the

aforementioned problems by providing visibility into the

entry and exit points across the boundaries between the

legacy and native code elements.

One strategy that might also address aspects of this

problem is to eventually translate the executive out of the

legacy application into the native environment, with the

legacy binary being used as a library of functions. NGST

has successfully implemented this approach with some

other avionics systems, although proprietary and US State

Department restrictions prevent disclosure in the public

domain. Specific software safety analysis would be

required to provide an understanding of any risks with

this approach.

CRPIT Volume 69

88

The risks identified above must be weighed against the

potential cost and schedule benefits offered by emulation,

and the risks of alternative software approaches for

upgrading systems.

8 Software Assurance Evidence Requirements

for Emulation

The ADF preferred standard for software assurance of

airborne software is RTCA/DO-178B (ADF 2005).

Although it is acceptable to develop emulation within the

framework of other relevant software assurance and

software safety standards, this paper will restrict the

provision of certification criteria to DO-178B.

Comparisons to other standards may be developed

through consideration of the critical software assurance

activities identified in this paper.

Table 7 defines the DO-178B software levels relevant to

emulation based on those critical software assurance

activities identified in previous sections of this paper. The

levels are determined by a comparison of those critical

software assurance activities with those activities

normally prescribed by DO-178B at the respective

software levels defined in that standard.

Failure Condition DO-178B

Software

Level

Software

Level for

Emulation

Catastrophic Level A Level A

Hazardous Level B Level B

Major Level C Level B

Minor Level D Level C

S
a
fe
ty

No Effect Nil Level D

Failure Condition AAP7001.054

Guidance

Software

Level for

Emulation

Critical Level C Level B

Serious Level D Level C+

M
is
si
o
n

Important Nil Level D

Table 7: Software Levels for Emulation

Table 8 details other additional activities required for

Level C+, over those activities required for Level C.

These activities largely mirror those specific Level B

activities identified in the earlier analysis that are critical

to meeting and verifying detection/protection

requirements, and meeting the desired level of integrity

for the system. Where independence, as defined by

DO-178B, is believed to provide further assurance to the

satisfaction of the relevant DO-178B objective, then a

requirement for it has also been documented. Similarly,

where independence is not viewed as a key contributor to

the outcome of the activity, then it is documented as not

required.

DO-178 Reference Objective

A-3-1 (6.3.1a) Software high level requirements

comply with system requirements

(satisfied with independence)

A-3-2 (6.3.1b) High-level requirements are

accurate and consistent

A-3-3 (6.3.1c) High-level requirements are

compatible with target computer

(satisfied with independence)

A-4-1 (6.3.2a) Low-level requirements comply

with high-level requirements

(satisfied with independence)

A-4-2 (6.3.2b) Low-level requirements are

accurate and consistent

(satisfied with independence)

A-4-3 (6.3.2c) Low-level requirements are

compatible with target computer

A-5-1 (6.3.4a) Source Code complies with low-

level requirements

(satisfied with independence)

A-6-3 (6.4.2.1,

6.4.3)

Executable Object-Code complies

with low-level requirements

(satisfied with independence)

A-7-6 (6.4.4.2a,

6.4.4.2b)

Test coverage of software structure

(decision coverage) is achieved

(independence not required)

Table 8: Level C+ Additional Activities Over Level C

Although such prescription detailed in Table 7 departs

from the traditional hazard severity / software level

alignment of Aerospace Recommended Practice (ARP)

4754 and DO-178B, emulation technology presents

specific architectural risks that require specific assurance

activities to mitigate. Developers might argue that the

increase in software assurance level for emulation will

significantly increase the costs associated with the

introduction of emulation technology. While there is an

element of truth to this argument, there are a number of

key points that provide an appropriate tradeoff against the

cost increase. These are as follows:

• The size of the emulator (in terms of lines of code)

will generally be only a small proportion of ‘real

world’ legacy binary (lines of code) for military

avionics equipment (e.g. emulator’s lines of code is

less than 25% ‘real world’ legacy binary). A typical

‘real world’ legacy binary in currently operating

Australian military aircraft is of the order of 150,000

lines of code, although future aircraft and systems will

continue to see this figure increase. These figures are

based on the RePLACE and DGU example, and are

considered typical of such implementations.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

89

Therefore, the number of lines of code to which the

more stringent software level should apply is not

substantial, and certainly less than the legacy binary.

It is important to note that the guidance does pertain

to the emulator only, and not to the legacy OFP

(binary). This table does not imply that the legacy

binary should be redeveloped to the prescribed

software level.

• The service history of the legacy software will be

yielding a perceived software failure rate or rate of

problem occurrences. This will be interpreted by

operators both in terms of the reliability or

availability, and thus the capability integrity, of the

associated system; and also the inherent level of

safety currently provided by the system. Service

history is one important attribute as it is unlikely that

most legacy systems will have been developed with

the requirements of most current software assurance

or safety standards in mind. Reflecting on the

software failure rate, it is generally argued by the

software community that such a rate is not actually a

reliability (ie. reliability normally being a measure of

a systems susceptibility to random failure conditions,

whereas this is more synonymous as a measure of the

software’s exposure to conditions that might uncover

systematic errors). However, it does provide a

baseline to operators as to the ‘apparent reliability’,

and ‘level of safety’ of their avionics equipment.

Importantly, it also provides technical support staff

with an understanding of the software’s contribution

to any identified failure modes. Therefore, it should

be the goal of any program addressing the equipment

obsolescence to provide properties commensurate or

better than those experienced on the original legacy

systems. This places some specific integrity

requirements on the emulator. For example, the

emulator should not introduce any further failure

modes that might reduce the ‘apparent reliability’ or

‘level of safety’ of the system. Furthermore, benign

failures should remain benign, or be handled by the

emulator. One means of achieving this is to apply a

greater level of rigour, appropriately targeted, to the

emulator than for that required of the original legacy

binary, thus providing a greater level of integrity in

the emulator software. An appropriate, targeted

increase in the software level for the emulator

therefore justifies the applicable cost increase.

• The software assurance level, and associated

prescription/definition of activities for Minor, No

Safety Effect, and Mission Important categories is not

significantly greater that the level normally defined

under normal circumstances for these systems.

Therefore, these systems provide a suitable entry

point for the technology into the military avionics

domain.

9 RePLACE Dual Instruction Set Computer

(DISC)

DSTO are presently working with NGST to develop a

concept demonstrator utilising NGST's RePLACE

Emulation Technology for the RAN Seahawk DGU. The

Dual Instruction Set Computer (DISC) variant of

RePLACE, as distinct from other RePLACE variants (eg.

X-Port and hybrid), has been identified by NGST as most

applicable to emulating the DGU’s AAMP processors.

This identification is based on consideration of the

AAMP processor’s performance against a proposed

native processor (ie. PowerPC), with due consideration

for the RePLACE variant’s computational overhead. It is

therefore necessary to examine RePLACE DISC in the

context of the guidance already formulated in this paper.

9.1 Overview of RePLACE Architecture

Figure 14 details the architecture of the RePLACE DISC.

By inspection it is possible to determine that it closely

represents the Type 2 architecture already covered in this

paper.

Figure 14: RePLACE Dual Instruction Set Computer

(NGST 2005)

Figure 15: RePLACE DISC (Logical Layers)

(NGST 2005)

9.2 Assessment of RePLACE

DGTA funded a US based company, Certification

Services Inc (CSI), under a DGTA standing offer to

conduct a DO-178B audit of the RePLACE program. The

audit considered both DO-178B Level B and C, with a

specific goal to identify the practicality of applying such

objectives to the RePLACE development, and to assess

CRPIT Volume 69

90

any issues (technical, cost, schedule) that might exist in

transitioning an existing program within a framework that

would meet the objectives identified throughout this

paper. CSI are highly skilled in evaluating the application

of DO-178B to avionics developments, and specifically

Mike DeWalt, whom conducted this audit, is considered

an authority on DO-178B.

The audit (CSI 2005) found that the RePLACE

development does not yet satisfy all relevant DO-178B

objectives, and although the RePLACE program in its

current state is mostly close to satisfying both Level B

and Level C, many of those objectives that it does not yet

address are considered essential in this context. Those

objectives not presently addressed predominantly relate to

requirements traceability, verification and some software

configuration management activities. It is important to

note that RePLACE Seahawk DGU program is presently

being conducted as a concept technology demonstrator,

and therefore satisfaction of many of these objectives is

beyond the scope of funding available in such

programmes.

CSI’s assessment is that there is little technical risk of the

RePLACE program not being able to meet DGTA’s

expectations with respect to avionics software assurance.

However, cost and schedule risk were identified relating

to the generation of software assurance artefacts and the

rework necessary to ensure that RePLACE fully meets

the relevant DO-178B requirements. However, it was

assessed that through some targeted certification risk

reduction activities, it is possible to constrain cost and

schedule risks to suitable levels.

Following the audit, DGTA published a series of papers

on how the Commonwealth might accept RePLACE as

part of the design acceptance process used for

modifications to Australian State aircraft (DGTA 2005).

These papers formed the starting point of further

negotiation and development with NGST and DSTO. The

guidance in these papers was principally based on the

analysis which forms the background of the material

presented in this paper.

Post-audit work conduct between DGTA, DSTO and

NGST, which is still on-going, has recently resulted in

NGST delivering a white paper that demonstrates a

qualified understanding of cost and schedule risks.

Furthermore, DGTA assesses that the identified cost and

schedule reflect that emulation is a cost effective option

for addressing legacy obsolescence in some safety related

and mission systems. Further details relating to cost and

schedule are commercially sensitive and cannot be

discussed further in this paper.

RePLACE for the Seahawk DGU program is presently

hosted on the Wind River VxWorks OS, a non-DO-178B

compliant RTOS. VxWorks was selected for the DGU

emulator demonstrations due to the high cost of other

DO-178B compliant RTOS’s, and the limited funds

available for the Seahawk DGU emulation demonstrator.

There is some work NGST would be required to

undertake to modify any system calls and software

structure within this implementation of the RePLACE

application to accommodate a different RTOS. Other

RePLACE products have already been hosted on

protected domain RTOS’s, indicating that there is

unlikely to be any technical barriers to moving to a

protected domain RTOS (eg. Green Hills Integrity OS)

for the Seahawk DGU RePLACE application .

10 Summary

Evaluation of emulation technology, through exploration

of several emulation architectures and of RePLACE as a

case study, has allowed DGTA to define certification and

regulatory guidance for the development of emulation

technology within the ADF context. The trial application

of this certification guidance with the Seahawk DGU

RePLACE concept technology demonstrator has

permitted an evaluation of the effectiveness of the

prescribed DGTA certification criteria. At this time

DGTA is satisfied that this guidance will promote an

acceptable level of safety for emulation on legacy

military avionics while still ensuring emulation is a cost

effective option for addressing legacy obsolescence.

11 Acknowledgments

I would like to thank Systems Certification and Integrity

(SCI) – DGTA staff including Mark Wade, Squadron

Leader Ben Musial and Flight Lieutenant Wendell Fox

for their input to and review of all my work relating to

emulation.

I would also like to thank Paul Vicen, Tamy Staub,

Curt Pflasterer and other RePLACE staff at Northrop

Grumman Space Technology (NGST) for their input to

this paper relating to RePLACE and enthusiasm to

explore certification criteria with DGTA.

Finally I would like to thank Dr Rob O’Dowd, Mark

Davies and David Culpin of Air Operations Division –

Defence Science and Technology Organisation for their

coordination of RePLACE development activities with

NGST, and their on-going liaison with DGTA.

12 References

The following documents, papers and publications are

referenced throughout this paper. A number of these

documents are not available in the public domain for

propriety or confidentiality reasons. Readers wishing to

seek further information should direct their queries to the

author of this paper, or the relevant standards body.

Aerospace Recommended Practice ARP4754 (1996)

Certification Considerations for Highly Integrated or

Complex Avionics Systems, Society of Automotive

Engineers.

Australian Defence Force (2005) Australian Air

Publication (AAP) 7001.054 Airworthiness Design

Requirements Manual AM1.

Australian Defence Force (2006) Aircraft System Safety

Engineering Course – Software Safety Course Notes

developed jointly by Systems Certification and

Integrity – DGTA and Ball Solutions Group.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

91

Certification Authorities Software Team (2000) Position

Paper Cast 5 – Guidelines for Proposing Alternate

Means of Compliance to DO-178B, Federal Aviation

Authority.

Certification Services Inc (2005) Evaluation of the NGST

RePLACE Product, CSI Document 05-276-1246

Rev03.

Directorate General Technical Airworthiness (2005)

Paper on How the Commonwealth Might Accept

RePLACE – Issue 3, Australian Defence Force.

Federal Aviation Authority (FAA) Order 8110.49 (2003)

Software Approval Guidelines, USA.

McKinlay, A. (2001) Software Safety Course Notes,

Aviation Safety, School of Engineering, University of

Southern California, USA.

Northrop Grumman Space Technology (2005) RePLACE

Technology – Bringing 20
th
 Century Systems into the

21
st
 Century - Marketing Brief, Dayton Ohio, USA.

Pumfrey, D. (1999) The Principled Design of Computer

System Safety Analyses, PhD Thesis, Department of

Computer Science, University of York, UK.

RTCA Inc (1992) RTCA/DO-178B Software

Considerations In Airborne Systems and Equipment

Certification, Washington, D. C. USA.

RTCA Inc (2001) RTCA/DO-248B Final Report for

Clarification of DO-178B Software Considerations in

Airborne Systems and Equipment Certification,

Washington, D. C. USA.

CRPIT Volume 69

92

Safety, Software Architecture and MIL-STD-1760

Matthew John Squair
Senior Safety Consultant

Jacobs Australia
GPO Box 1976, Canberra, ACT 2601
Matthew.Squair@defence.gov.au

Abstract
Integrating modern aircraft stores, particularly weapons,
creates a complex system of systems challenge. The
traditional approach to such integrations was for each to
be a stand-alone program. For each program a unique
interface would usually be implemented, usually also
with a set of unique problems, such as the missile
‘ghosting’ problems experienced during the F-16 to
AMRAAM integration (Ward 1993). In response to the
problems of such an approach MIL-STD-1760 an
Interface Standard for Aircraft to Store Electrical
Interconnection System was released by the US DoD to
standardise aircraft/store interfaces. This paper discusses
the advantages and limitations of the architectural
techniques of MIL-STD-1760. A hierarchical method for
integrating the use of the standard into a safety case is
also described.

Keywords: Safety, architecture, software, MIL-STD-1760.

1 Introduction

1.1 Architecture, bus design and integration

Unfortunately no singular agreed definition of what
constitutes a software architecture exists, for example:

“From a safety viewpoint, the software architecture
is where the basic safety strategy is developed for the
software” (IEC 61508), or

“In avionics (an architecture is) a representation of
the hardware and software components of a system
and their interrelationships, considered from the
viewpoint of the whole system” (STANAG 3908)

ARP 4574 goes further to relate architectural design
patterns to measures of connectivity (Table 1-1). For this
paper architecture is defined as the large scale description
of system components, their interactions, connectivity
and the principles and guidelines that ensure a balanced
system design and evolution. Thus, although traditionally
typified as a protocol or ‘bus’ design issue, any decision
to select a bus protocol is also a decision that affects the
central architectural principles of a distributed system
(Rushby 2001).

Architecture design pattern Connectivity Concept

Partitioned design Decoupling

Dissimilar, independent designs
implementing a function

Decoupling

Independence

Redundancy

Active/monitor parallel design Hot redundancy

Backup parallel design Cold redundancy

Table 1-1 ARP 4754 Architecture Examples

1.2 Software architecture and safety

The concept of architecture is useful from a software
safety perspective as it can be used to impose a separation
of concerns between decisions about the architecture of a
software artifact versus the implementation. Partitioning
the design space in this way supports the development of
safety arguments in a modular and hierarchical fashion.
Such partitioning can also clarify organisational
interfaces between collaborating development teams;
another traditional area where safety issues can arise.

Because of their abstract nature, software architectures
can also support the re-use of well understood and proven
architectural solutions. Such re-use allows the
construction of safety arguments based upon the
continuity of design rather than solely upon the unique
attributes of a specific implementation. Thus the re-use of
architectural design patterns moves software engineering
closer to traditional engineering disciplines where safety
arguments are based in large part upon the provenance of
the design. Such arguments are similar to, but more
archetypal, than the ‘product service history’ argument of
DO-178B (RTCA/DO-178B 1992).

1.3 The MIL-STD-1760 interface standard

A modern store is intended to be highly interoperable1
with multiple aircraft. Such a store is usually also an
independent system evolving at a pace independent of the
carriage aircraft. As such, a modern store (and its carriage
aircraft) satisfies the majority of Maier’s criteria for what
constitutes a system of systems (Maier 1996) and it is for
this systems of systems domain that MIL-STD-1760 was
developed.

1 Two systems are interoperable if each can conveniently benefit from
the resources (capabilities or information) of the other.

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the 11th Australian Workshop on Safety
Related Programmable Systems (SCS’06), Melbourne.
Conferences in Research and Practice in Information
Technology, Vol. 69. Tony Cant, Ed. Reproduction for
academic not-for-profit purposes permitted provided this text
is included.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

93

MIL-STD-1760 is an open, published and non-propriety
standard intended to maximise both interoperability and
safety. While open in this sense, actual designs are
typically closed with data transfers and associated
deadlines determined during design rather than at run
time. The standard applies an architecting strategy which
is both collaborative (programs may re-use other
programs efforts) and directive (by specifying minimal
design requirements) in nature (Meyer 1998). An analogy
would be a city planner enforcing a building code rather
than an architect enforcing a particular design solution.
As a result of this strategy, safety is an emergent attribute
at both a system of systems and individual aircraft to
store integration level.

2 Military aircraft and weapon system safety

2.1 The military aircraft domain
Military aircraft may launch or jettison stores, fly at
supersonic speeds, execute high-g manoeuvres whilst
carrying out safety critical functions including:

1. Store inventory,

2. Interruptive Built In Test (BIT),

3. Store rack unlocking,

4. Selective or emergency jettison firing,

5. Fire/release/launch sequencing,

6. Arming (both immediate and preset),

7. Fuzing (both delay or mode),

8. Weapon yield selection,

9. Output stage selection (store/pylon/station), or

10. Initiating irreversible functions (pyrotechnics).

In this operational environment achieving functional
reliability is a significant technical challenge.
Unfortunately achieving high reliability in these
circumstances does not automatically equate to safety. In
fact increasing reliability can decrease safety (Leveson
1995), requiring us to balance the need for reliability
against safety. Other challenges of this domain include:

1. limited weapon operational histories,

2. hard real time requirements2,

3. irreversible safety critical processes,

4. dynamic interface and network topologies,

5. mode rich safety critical behaviour, and

6. multiple configurations of store and platforms.

To safely and reliably perform such functions aircraft and
store must coordinate their actions dictating a dependable
communication channel robust enough to withstand the
harsh operational environment.

2 In itself the requirement for hard real time behaviour can be a
challenge to the MIL-STD-1553 data bus which has traditionally been
used for soft real time system applications.

3 Stores management systems design

3.1 Architecture

3.1.1 General architecture
Most modern combat aircraft utilise a dedicated stores
management system to control stores and the support and
release equipment associated with them. Two basic
architectural patterns are presently used in aircraft stores
management systems, centralised or distributed. A
centralised architecture is generally used in situations
where the stations to be controlled are closely located and
inter-station wiring is therefore a minimal system
overhead. Distributed architectures, as Figure 3-1
illustrates, allocate stores management functions to
physically separate Store Station Interface Units (SSIU)
while minimising interconnects by multiplexing signals
over a data bus. Since it forms the basis of most modern
stores management systems, a distributed architecture
will be used as the reference design for this paper.

<<RT>>

MIL-STD-1760

Mission store

<<RT/RT & BC>>

MIL-STD-1760

Carriage store

<<RT>>

Store Station
Interface Unit

<<RT>>

MIL-STD-1760

Mission store

<<RT>>

Store Station
Interface Unit

<<RT & BC>>

Stores

Mngt System

<<BC>>

Mission

Mngt System

<<RT>>

Command &

Display System

Mechanical

interface

S&R.E

Aircraft

discretes

Mechanical

interface

S&R.E

S&R.E

MIL -STD-1553B Stores Management Bus

MIL -STD-1553A/B Mission Management Bus

Aircraft

power
Aircraft

power

Dual Standby Bus

• One Active Bus
• Superseding Cmds

• RT response to most

recent command

S&R.E = Support & Release Equipment

Mechanical

interface
Aircraft power

Stores management bus

Mission management bus

LEGEND

Figure 3-1 A distributed stores management architecture

3.1.2 Communication bus protocols
MIL-STD-1760 constrains the MIL-STD-1553B
multiplex bus communication standard to a single-master
polling protocol with only one node, the Bus Controller
(BC), in charge of communication on the stores
management bus, aw well as solving and administrating
Remote Terminals (RT) access conflicts and errors that
may arise on the bus. Due to its simplicity, this protocol
makes analysis and monitoring of communication easier
than split bus control (also supported by MIL-STD-
1553B). The command response structure of the protocol
is well suited to reactive system application and provides
a bound on latency of communications which is important
for real time systems. Disadvantages of the protocol are
that a Single Point of Failure (SPOF) is introduced,
identification of RTs during initialisation is required and
communication overhead is increased by the need for a

CRPIT Volume 69

94

command/response message pair for each set of data
(Sivencrona 2001)3.

Communication protocols can be event or time-triggered,
with event-triggered protocols usually applied when there
are a large numbers of discrete signals transmitting
messages in a pseudo-random or sparse time base form.
Since stores management is inherently reactive and task
driven in nature, event triggered protocols are obviously
well suited to this application. Another argument for the
event driven communication protocol (adopted by MIL-
STD-1760) is that time triggered protocols introduce
frame delays which in turn translate to errors in weapon
delivery. A final advantage is that unlike a time triggered
protocol there is no need to coordinate a schedule of
transmissions amongst distributed components4.

MIL-STD-1553B is a relatively slow speed interface
(1Mbps) compared to modern standards, such as FlexRay
which runs at 10Mbps (FlexRay 2005) or Time Triggered
Protocol (TTP/C), running at 25 Mbps (TTTech 1999).
However the slower bus speed does make the bus more
resistant to noise from signal reflections and ambient RF
noise.

3.2 Safety coordination issues

3.2.1 The general coordination problem

Representations of data are consumed and produced by
aircraft and store functions to perform the required
mission. However, for this representational system to
work, both the store and aircraft need a common first and
higher order set of expectations about their own behavior
as well as about the expectations and behavior of the
other (Lewis 1969). Therefore, in order to coordinate
safety critical behaviour there is a need to define and
manage a common, unambiguous set of conventions (or
protocol) about the production and consumption of safety
critical data. Such conventions can also assist in
constraining the use of error prone semantic constructs.

3.2.2 System of systems coordination
At the system of systems level, this coordination problem
traditionally expresses itself as a problem of backward
and forward compatibility across versions of particular
data formats. For example MIL-STD-1760’s definition of
the Most Significant Bit (MSB) for 2’s complement
entities was changed between Revision B and C then
subsequently changed back in Notice 1 of Revision C.
These changes led to some developers interpreting the
first bit as a ‘signed’ bit for a signed number while others
used a 2 complement number format. More generally the
options introduced in successive revisions have generated
a family tree of possible implementations of the standard.
To further complicate matters, standards invoked by
MIL-STD-1760, such as MIL-STD-1553B, have
themselves evolved over time. Other examples of

3 In MIL-STD-1553 a 2 word command and 1 word status response
sequence consist of 32 data bits and 53 overhead protocol bits. In
CANBUS a nominal message of 32 data bits has only 43 protocol bits.
4 For example by implementing a global (distributed) clock.

coordination issues at this level are the differing safety
requirements of various weapons communities, i.e.
nuclear versus non-nuclear safety.

At the system of systems level, a safety argument must
therefore demonstrate that any differences between
revisions of the standard do not introduce hazards or if
they do, these interactions are identified, excluded or
controlled.

3.2.3 Store integration coordination
At the store integration level the coordination problem
expresses itself as false assumptions about behavior on
the other side of the interface. For example in one aircraft
‘initiate battery’ commands were implemented as
irreversible because traditional batteries were one shot
thermal devices. However for the store being integrated
the batteries were NiCad and the command needed to be
reversible. Since this was an unstated assumption of the
interface it was not identified during development,
becoming evident only during integration testing. This
example illustrates the necessity to explicitly state all
behavioural expectations and consequently drives MIL-
STD-1760 to be much more than a set of data-grams.

At the store integration level, a safety argument must be
supported by a demonstrable claim that a common and
well understood set of data conventions are being used on
both sides of the interface.

3.2.4 Real time distributed control

The real time and distributed control nature of stores
management systems also introduces the problem of how
to ensure coordinated safe behaviour within such a
system. For example, launching stores from stations on
one side of an aircraft can induce highly hazardous
asymmetric loads, whilst simultaneously releasing stores
can cause hazardous g-jump effects; both of which can
lead to overstressing the aircraft. For the communications
bus, this problem devolves to how to send commands in a
timely, safe and reliable fashion when faced with
arbitrarily long communications delays5 over a
communications channel.

At the level of real time distributed control, a safety
argument must demonstrate (expressing the problem in
functional integrity terms) that individual functions are
safe and independent, or if they do interact their
coordinated behaviour is safe.

4 The MIL-STD-1760 standard

4.1 The MIL-STD-1760 interface
MIL-STD-1760 defines implementation requirements for
the Aircraft/Store Electrical Interconnection System
(AEIS) in aircraft and stores. This interconnection system
provides a common interfacing capability for stores on
aircraft, and a hierarchical depiction of the:

1. electrical (and optical) signal interfaces,

5 For example delays from internal processing or file transfer events.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

95

2. physical umbilical and connector interface, and

3. logical interface, comprising the:

a. communications architecture,

b. message content and formatting, and

c. data transfer protocols.

MIL-STD-1760 establishes the interrelationships between
aircraft and store interfaces and the interfaces at different
store stations on an aircraft. As Figure 4-1 illustrates,
there is a dynamic hierarchical relationship between
Aircraft Store Interface (ASI), carriage store Interface
(CSI), Carriage Store-Store Interface (CSSI) and mission
store (MSI) interfaces. The standard defines the
requirements for both a primary and auxiliary interface,
however this paper will only discuss the primary interface
since it is the one most often used. Several interface
classes of varying capability are also defined in MIL-
STD-1760 for the ASI, however for clarity this
distinction will be omitted because the safety critical
signals are common to all classes.

MISSION STORE

CARRIAGE STORE

AIRCRAFT PYLON

MISSION STORE
(Dual carriage)

ASI
MSI

PARENT RACK

CSSI
CSI

MSI

Umbilical

Umbilical

MISSION STORE

CARRIAGE STORE

AIRCRAFT PYLON

MISSION STORE
(Dual carriage)

ASI
MSI

PARENT RACK

CSSI
CSI

MSI

Umbilical

Umbilical

Figure 4-1 Physical interface hierarchy

4.2 The electrical interface

4.2.1 Primary signal set

The primary MIL-STD-1760 interface signal set, as
shown in Figure 4-2 comprises redundant data bus
signals, high and low bandwidth signals, dedicated
discrete signals, fibre optic signals and aircraft power.
MIL-STD-1760 nominates certain signals as safety
critical signal interfaces and these are discussed in the
following sections.

SIGNAL LINES

1553 Mux A & B
High Bandwidth 1, 2, 3 & 4

Low Bandwidth

Fibre optic (reserved)

DISCRETE LINES

Address bits A4..A0, parity

Address bit return

Release Consent

Interlock

Interlock Return

Structure Ground

POWER LINES

28 V DC 1

Power 1 Return

28 V DC 2

Power 2 Return

115 V AC A,B,C

115V AC Neutral

270 V DC (reserved)

270 V DC Return

SC

SC

SC

SC

SC

SC

SC SC

SC MIL-STD-1760 Safety critical signals

SIGNAL LINES

1553 Mux A & B
High Bandwidth 1, 2, 3 & 4

Low Bandwidth

Fibre optic (reserved)

DISCRETE LINES

Address bits A4..A0, parity

Address bit return

Release Consent

Interlock

Interlock Return

Structure Ground

POWER LINES

28 V DC 1

Power 1 Return

28 V DC 2

Power 2 Return

115 V AC A,B,C

115V AC Neutral

270 V DC (reserved)

270 V DC Return

SC

SC

SC

SC

SC

SC

SC SC

SC MIL-STD-1760 Safety critical signals

Figure 4-2 MIL-STD-1760 primary signal set

4.2.2 MIL-STD-1553B interface

The Aircraft Store Interface (ASI) MIL-STD-1553B
interface consists of Mux buses A & B transformer
coupled stubs, carrying the MIL-STD-1760 message set.

4.2.3 Store address interface

These fixed address and parity bit discrete signals are
used to indicate the RT address that a store should use to
identify itself to the BC.

4.2.4 Release consent interface

Perhaps better termed ‘safety critical consent’ this
discrete release consent signal grants consent to the store
to act on safety critical commands received over the
MIL-STD-1553B data bus.

4.2.5 Interlock interface

The ASI interlock interface is used by the aircraft to
monitor the electrically mated status of the interface
connector between stores and aircraft so as to allow (as an
example) determination whether a successful launch has
occurred.

4.2.6 28V DC No. 2 power interface
The 28V DC No.2 interface is used to power safety
critical functions, for example firing a squib or thermal
battery.

4.3 The physical interface

As Figure 4-3 illustrates, the physical 1760 interface
comprises the umbilical cable and connectors making up
the electrical interconnect between aircraft and mission
store. Harsh carriage environments and repeated

CRPIT Volume 69

96

operational sequences of mating and de-mating
connectors mean that hardware failures can be expected.

Pylon

Subsystem

Remote Terminal

MSI

ASI

SSIU

Umbilical

Parent Rack

Store

Pylon

Subsystem

Remote Terminal

MSI

ASI

SSIU

Umbilical

Parent Rack

Store

Figure 4-3 Physical MIL-STD-1760 interface

4.4 The Logical Interface

4.4.1 Message Data formats
MIL-STD-1760 invokes the MIL-STD-1553B digital
communication bus standard (Revision B Notice 4) and
for safety further constrains certain of MIL-STD-1553B’s
logical operations. MIL-STD-1760 also defines standard
message formats, called sub-addresses (S/A), for store
control and monitoring functions. Messages not specified
can be developer defined, usually in an Interface Control
Document (ICD), those currently specified are:

1. Store Description (1T),

2. Aircraft Description (1R),

3. Store Control (11R),

4. Store Monitor (11T),

5. Nuclear Stores Control (19R & 27R),

6. Nuclear Stores Monitor (19T and 27T),

7. Reserved (08) may be used for test,

8. Mass Data Transfer Control message (14R), and

9. Mass Data Transfer Monitor message (14T).

5 MIL-STD-1760 logical interface

5.1 Open System Interconnection Model
The MIL-STD-1760 logical interface can be mapped to a
means/ends hierarchical arrangement of operations and
mechanisms (SAE AS-1B3 2002) in a similar fashion to
the OSI Basic Reference Model, (ISO/IEC 7498-1). Such
a mapping provides a service layer architectural model of
the MIL-STD-1760 logical interface and a convenient
framework to assist in identifying the safety attributes of
the protocol. As Figure 5-1 illustrates, the Real System
Environment (RSE) encompasses the complete Aircraft-
Store logical interface. Within the RSE, the aircraft and
store application processes exchange data using the
services of the MIL-STD-1760 Open System
Interconnection Environment (OSIE). The resultant

layered MIL-STD-1760/1553B interfaces can be typified
as forming a bi-directional and open architecture.

Aircraft

Process

Application

Presentation

Session

Transport

Network

Datalink

Physical

Physical Interconnection media

Store

Process

Application

Presentation

Session

Transport

Network

Datalink

Physical

Logical interface

IC
D

 (
p

a
rt

ia
l)

CW, DW & SW format

Sub-address data

Mode commands

Mass Data Transfer

States & Data

- State descriptions

- I/f initialisation

States & Data

Direct interface

O
p

e
n

 S
y

s
te

m
 I

n
te

rc
o

n
n

e
c

t
E

n
v

ir
o

n
m

e
n

t
(O

S
IE

)

R
e

a
l-

ti
m

e
 S

y
s

te
m

 E
n

v
ir

o
n

m
e

n
t

(R
S

E
)

1
7
6
0
 A

n
n

e
x
 B

1
5
5
3
B

 N
2

(1
7
6
0
)

Aircraft

Process

Application

Presentation

Session

Transport

Network

Datalink

Physical

Physical Interconnection media

Store

Process

Application

Presentation

Session

Transport

Network

Datalink

Physical

Logical interface

IC
D

 (
p

a
rt

ia
l)

CW, DW & SW format

Sub-address data

Mode commands

Mass Data Transfer

States & Data

- State descriptions

- I/f initialisation

States & Data

Direct interface

O
p

e
n

 S
y

s
te

m
 I

n
te

rc
o

n
n

e
c

t
E

n
v

ir
o

n
m

e
n

t
(O

S
IE

)

R
e

a
l-

ti
m

e
 S

y
s

te
m

 E
n

v
ir

o
n

m
e

n
t

(R
S

E
)

1
7
6
0
 A

n
n

e
x
 B

1
5
5
3
B

 N
2

(1
7
6
0
)

Figure 5-1 MIL-STD-1760 OSI map (SAE AS-1B3 2002)

5.2 Application process

MIL-STD-1760 lists a set of 173 standard data entities for
use. These entities are used by the OSI application
process while their defined syntax maps to the OSI
presentation layer. While application processes are not
specifically defined in MIL-STD-1760 generic
applications can be inferred, such as those in Table 5-1.
MIL-STD-1760 does not address all aircraft-store
processes, some of which will be store unique, such as
developmental test functions, and some which are aircraft
housekeeping functions such as post launch cleanup.

Application User Process MIL-STD-1760 Clause

Power application 5.2.12.2

Identification (Aircraft/Store) B4.2.2.3, B4.2.2.6

Built In Test (BIT) Table B- XXVI

Mission data transfer/initialisation Table B- XXVI

GPS initialisation Table B- XXVI

Transfer alignment/conditioning Table B- XXVI

Release/launch/jettison sequence Table B- XXVI

Control and monitor Table B- XXVI

Table 5-1 MIL-STD-1760 Processes

5.3 MIL-STD-1760 OSI environment

5.3.1 Application layer

The application layer is normally defined by the
particular store developer and documented in the ICD.

5.3.2 Presentation layer
MIL-STD-1760 defines the following presentation layer
protocols for data transmission syntax and semantics:

Proc. 11th Australian Workshop on Safety Critical Systems and Software

97

1. standard store control, monitor and description
message data words formats,

2. application specific data word formats, and

3. data entity syntax tables referenced by the Data
Entity List.

Application specific message data word formats are
normally documented in the store to aircraft ICD and can
include time, alignment, GPS time marks, moment arm
and non-critical store control/monitor messages.

5.3.3 Session layer
MIL-STD-1760 provides a connection-mode session
layer service by exchanging Mass Data Transfer (MDT),
Transfer Control and Transfer Monitor messages. Service
can be further partitioned into classes of application
specific data such as targeting, GPS almanac/ephemeris,
weather or imagery. Lower level Protocol Control
Information (PCI) is also represented in this layer (SAE
AS-1B3 2002).

5.3.4 Transport layer
The transport layer provides a connection mode MDT
service using Transfer Data messages which implement
record and block numbering for file segmenting and
sequence control. Above this layer data can be exchanged
as files or messages; but below it data is only exchanged
in message form (SAE AS-1B3 2002).

5.3.5 Network layer
There is little provision of network-services in
MIL-STD-1760/1553B, the network layer PCI consists of
header and identifier, address confirm, message sub-
addresses, mode codes, word count, T/R flag and the RT
status word. S/A 76 is reserved by MIL-STD-1760 for
message peeling to provide a growth path to connection
or connectionless modes of message routing and relay.
However, to comply fully with OSI network-service
requirements further protocols would need to be added
for a specific integration7 (SAE AS-1B3 2002).

5.3.6 Data-link layer
The MIL-STD-1553B protocol merges the lower part of
the OSI Network Layer, the Data Link Layer and the
Physical Layer together and does not subdivide into
Network and Data Link functions (SAE AS-1B3 2002).
The datalink layer provides connectionless services, i.e.
messages are sent without establishing a dedicated
connection between RT and BC. RT addresses define the
data-link address space with RT 31 (broadcast) providing
a common data-link address. Word parity,
MIL-STD-1760 message checksum, control authority
words and synch bits also comprise the data-link layer.

6 MIL-STD-1553B terminology for a specific message.
7 For example the International Space Station (ISS) ‘boxcar’ protocol
that provide broadcast and individual asynchronous communication
using a major/minor frame based on 1553 messages (Hyman 2003).

5.3.7 Physical layer

In MIL-STD-1760, the MIL-STD-1553B frames are
represented by Manchester bi-phase waveforms with
tailored source and receiver end characteristics.

6 MIL-STD-1760 and Safety

6.1 Safety requirements

MIL-STD-1760 imposes no global safety target for a
store/aircraft interface and such requirements are usually
defined in other documents, such as an aircraft or store
system specification. For discussion purposes an example
of such requirements is given in Table 6-1.

Failure event Co-effect/Mode Probability

Launch failure
on command

Launch state (store ready
awaiting launch command)

10-4 /cmd

Inadvertent
launch

Normal (master arm switch
safe)

1 x 10-7 / hr

Inadvertent
launch

Tactical (master arm switch
armed)

1 x 10-5 / hr

Inadvertent
launch

Launch state 1 x 10-3 / hr

Table 6-1 MIL-HDB-244A safety requirements

The different inadvertent jettison probabilities of Table
6-1 reflect that safety constraints are progressively
removed as the aircraft system approaches the launch
point (MIL-HDK-244A 1990). This balances within a
mission profile the competing requirements of safety and
mission reliability.

MIL-STD-1760 also requires that the probability of
inadvertent generation of a valid critical control word
with a valid critical authority word and a data field
requesting critical action, should not exceed 1 x 10-5 per
flight hours per data field combination.

Since ideally the reliability of the communication bus
should not be a dominant source of system failure, the
reliability of the communication channel should also be
set least two orders of magnitude lower than the
probability of launch failure i.e. 1 x 10-6 per launch event.

The system integrator is responsible for developing a
design which meets the overall safety requirements whilst
ensuring that design requirements for the aircraft store
interface do not exceed the safety claim limits of MIL-
STD-1760. An integral part of this design must therefore
be to ensure that software, hardware and environmental
faults do not result in the top level events through a
mixture of fault avoidance, elimination and tolerance.

6.2 Fault avoidance/elimination
Reducing the complexity of an interface can reduce the
likelihood of unintended interactions and error
propagation. By restricting MIL-STD-1553B to a
master/slave command and response protocol
MIL-STD-1760 enforces simple and deterministic
behaviour across the interface. This also makes it easier

CRPIT Volume 69

98

to verify safe behaviour, such as whether responses are
bounded in the time domain. In comparison, a CANopen
safety protocol interface would require verification that
its safety related data can be transmitted within a specific
timeframe across a bus allowing both synchronous (time
based) and asynchronous (event based) messages. The
determinacy of the MIL-STD-1760 protocol is further
enhanced by the elimination at design time of the use of
ambiguous data.

The MIL-STD-1760 protocol also offsets, to some
degree, the disadvantages of using an event-triggered
protocol for a safety critical application. While detecting
errors and building fault-tolerant mechanisms for time-
triggered communication protocols is easier because more
‘a priori’ knowledge exists as to their behaviour, the
master/slave protocol does provide a more predictable
communication protocol than other event triggered
protocols such as bus contention or token passing.

The simplicity of the protocol also supports self test and
diagnosis functions which in other protocols can be more
problematic. For example, should an RT respond with an
incorrect address the BC will detect the error within one
command/response cycle. Should the same problem
occurs in a CANBUS network however, no inherent
method exists that allows identification of the source of a
message sent with the wrong identifier.

6.3 Fault tolerance

6.3.1 Fault tolerance strategies
To balance the competing requirements for both
reliability and safety of section 6.1 MIL-STD-1760
adopts two parallel fault tolerance strategies:

1. to assure reliable service by a redundant fault
tolerant design, and

2. to assure safe service by a ‘fail silent’ error
recovery strategy.

It is important to note that requirements for fault
tolerance may also introduce additional and complex
asynchronous behaviour which may exhibit even higher
proportions of requirements related design faults than
mission functions (Lutz 1993, Mackall 1998). Again the
simple MIL-STD-1760 protocol and MIL-STD-1553B
‘cold’ bus redundancy scheme reduces complexity and to
some degree the likelihood of introducing subtle side
effect hazards into the design.

6.3.2 The fault hypothesis

The next logical question is what assumptions can be
made about the number and type of faults that the
integrated system will be able to tolerate? This set of
assumptions is termed the fault hypothesis8 for the
system. A well formed fault hypothesis should also
identify which faults are not covered and for which
recovery strategies are needed. Developing a fault
hypothesis as part of an integration program is important,

8 A subset of the general design hypothesis stating all assumptions upon
which the design is based.

since this allows a systems integrator to evaluate existing
fault tolerance mechanisms on both side of the interface
for assumption coverage (i.e. verifying that hypothesis
accords with reality). Although MIL-STD-1760 does not
explicitly state a formal fault hypothesis its inclusion of
fault tolerance mechanisms can assist the system
integrator in developing such a hypothesis. For example,
it is possible to derive from the standard a possible
physical fault hypothesis as follows:

1. an RT forms a single Fault Containment Region
(FCR) that can fail in an arbitrary way,

2. the physical network and BC form a single FCR
that can fail to distribute messages or distribute
messages in error,

3. RT hardware timeouts will translate babbling
idiot temporal failures on the bus to fail silent,

4. Error detection is performed by both RT and
BC, but fault recovery is managed by the BC,

5. The BC will detect a possible error of the RT
within one command/response cycle and
confirm in two cycles,

6. The BC translates detected RT failures to fail
safe by powering down the station and
transitioning to another, and

7. The system can recover from a single store
failure within an application dependent time.

Another example is the fault hypothesis that can be
derived from the assumptions made by MIL-STD-1553B
as to the RF noise environment (impulsive noise) and the
tests designed to simulate this environment (a worst case
white Gaussian noise). This noise hypothesis is a key
factor in evaluating the effectiveness of low level data
redundancy, i.e. checksum and error detection codes.

6.3.3 Redundancy and independence

Fault tolerant behaviour depends in large measure upon
redundancy, although not always upon component
replication. Because of this, the independence of
redundancy becomes a critical issue for fault tolerant
design. If components are dependent in some way, then
hazards can arise where a common attribute can cause the
failure of supposedly independent components. As an
example, dependencies can be introduced by shared
hardware or data providing propagation channels for side
effect type interactions, which can then lead to cascading
failures (Jaffe 1999). Independence can also be violated
by shared environments (common cause failures) or
common component design and failure modes (common
mode failures).

A complete architectural safety argument therefore needs
to consider the direct failure of components, the
independence of redundancy structures and whether
common cause hazards are present. The difficulty is that
these common cause hazards can occur in many different
guises and the more complex the system the more
difficult it is to identify them during design.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

99

6.3.4 Error propagation and detection

A fault that propagates, either as an error in data or an
incorrect control output, will violate the assumption of
independence essential to redundancy. To protect against
this situation MIL-STD-1760 requires both time and
value error detection mechanisms. MIL-STD-1760’s
master/slave protocol ensures that a BC will detect an
error of an RT within notionally one cycle. By excluding
direct RT to RT communications the protocol also
eliminates direct RT to RT error propagation channels.
Babbling idiot style error propagation is dealt with by the
MIL-STD-1553B requirement for an RT to shut itself
down if it exceeds its maximum message length, a
primitive form of distributed bus guardian in the time
domain. The BC is independent of the RT usually also
with internal dual bus redundancy and due to its separate
development also a degree of design diversity. A layered
set of protocol checks provide a defence in depth against
message transmission corruption.

6.3.5 State restoration/error recovery

Having detected a data error there are two possible
approaches to handling such invalid data:

1. store and tag the data as being invalid, or

2. discard the data completely.

The first option requires a subsequent decision as to the
utility and safety of the data while the second option
needs to address what effects data senescence will have
upon reliability and safety. Where data that is detected as
being invalid is used, the system can become vulnerable
to propagating state erosion due to transient faults (i.e
hardware, RF noise or Heisenbugs (Gray 1985)). MIL-
STD-1760 applies the second policy, requiring that all
error data be discarded. Upon detecting an error, the RT
must then flag error by withholding the status word and
letting the BC decide what to do next. This reduces the
potential for state erosion, maintains bus timeliness and
provides a predictably safe response to abnormal
environmental events. However, a discard policy can
introduce data staleness and data loss rates proportional to
the rate of transient faults.

6.3.6 Diagnostics and fault tolerance

One of the problems introduced by fault tolerance
schemes is that they may also mask symptoms required to
identify faults. While diagnostic capabilities are
supported by the protocol via RT subsystem (optional)
and terminal (mandatory) status flags, one shortcoming of
the standard is that MIL-STD-1553B as invoked requires
RTs to ignore invalid commands9 thus preventing
multiple concurrent responses10. However this also
introduces a bus diagnostic shortcoming because the error

9 An invalid command is one containing one or more invalid words (for
example due to a parity bit failure) but with a valid address.
10 Compared to CANBUS (ISO 11898) where an error in the last-but-
one bit of a CAN frame may cause inconsistent message duplicates or
omissions.

is not fed back to the BC. Similarly illegal commands11
may be optionally detected by the RT but if that option is
not implemented the error cannot be reported to the BC.

6.4 Safety architecture design patterns

6.4.1 Inoperability design pattern
Although not explicitly stated by MIL-STD-1760 one of
the key design patterns of weapons systems safety is that
of maintaining the store in an inoperable (unarmed) state
that is incapable of carrying out the unsafe action. A store
that is neither armed nor activated a store is significantly
less hazardous, especially if it is exposed to abnormal
environments such as a lightning strike (Spray 1994).

6.4.2 System level redundancy pattern

At the highest level of system architecture, an aircraft will
usually carry redundant stores to perform a mission. This
provides system level redundancy and allows a faulted
store-station to be isolated and the task transitioned to a
stand-by station. By providing this redundancy the overall
probability of mission failure drops to 1 x 10-4N per
launch intent where N = the number of stations
(neglecting common cause failures) and the system level
effects of a store level fail silent strategy are minimised.

At the system level the response is to ensure that an
affected node is safely stopped and reconfigure the
system to provide similar or degraded service, rather than
attempting to mask the error and continue mission
functions with that particular node. However the use of
redundancy comes at the price of increased complexity of
behaviour. For example if an RT fails to respond the BC
would need to switch between buses to confirm that both
channels are silent before declaring the RT as failed.

6.4.3 Homogenous redundant design pattern

The MIL-STD-1553B bus is a dual redundant cold
standby hardware architecture intended to ensure
reliability of service in the presence of random hardware
failures. Drawbacks to this pattern are recurring cost, the
BC as a potential SPOF, vulnerability to common
cause/mode failures and the consumption of additional
system resources (such as power and cooling).

6.4.4 Dissimilar redundancy design pattern

Redundancy is implemented at each level of the MIL-
STD-1760 system design from architecture
(monitor/actuator pattern) through to the layers of the
logical interface. This approach provides an inherent
defence in depth approach with a high degree of
dissimilarity and independence. Figure 6-1 illustrates the
redundancy introduced into the logical interface by the
combined use of MIL-STD-1553B and MIL-STD-1760
protocol checks including MIL-STD-1553B synch and
parity bits, MIL-STD-1760 critical control flags, critical

11 Illegal commands are commands that have passed the validation test
but are not part of the RT’s capability.

CRPIT Volume 69

100

authority polynomial error codes and message
checksums.

Figure 6-1 MIL-STD-1760/1553B combined protocol

One question that arises when implementing
MIL-STD-1760, is how far back should redundant data
be taken? For example, should a Commit to Separation
command also be stored as a single bit in memory or
should it be stored redundantly?12. The issue of where to
stop applying redundancy (an instance of the general
stopping rule problem for modification programs) is a
significant issue in legacy system integrations where
processor and memory constraints may constrain the
representation of data.

6.4.5 Monitor/actuator control channel pattern

The deliberate separation of command and consent
signals by MIL-STD-1760 forms a diverse redundancy
safety pattern (Douglass 1999). Here the control interface
is divided into a control channel (the MIL-STD-1553B
command interface) and a monitor channel (the release
consent interface). As Figure 6-4 illustrates the control
channel provides initialisation data and a ‘launch’
command for safety critical function while the monitor
channel prevents firing except when independent consent
is achieved. This pattern supports the fail silent safety
strategy.

The monitor/actuator channel of MIL-STD-1760 offers
the advantage of a lightweight dissimilar redundancy
pattern that can protect against SPOF faults,
environmental or common cause faults. Using a
dissimilar redundancy pattern also makes safety analysis
and verification easier by reducing the level of criticality
of the control channel software from notionally safety
critical13 to safety related14, thereby reducing verification
requirements and cost (McDermid 2001).

12 For example storing data normally and in ones complement form or
utilising multi-bit representations to increase the hamming distance
between safe and unsafe values.
13 A single member of a fault tree minimum cut set.
14 A member of a fault tree minimum cut set greater than one in size

6.4.6 Control & authority independence

MIL-STD-1760 specifies two pairs of MIL-STD-1553B
words for the transfer of safety critical data, Critical
Control 1 and 2. Each word has in turn an associated
Critical Authority word. Critical Control words contain
the actual safety critical information while the Critical
Authority words contains a polynomial code check (i.e.
redundant data) on the data bits of its associated Critical
Control word.

To achieve a false software command rate of no greater
than 1 x 10-5 per flight hour required by the standard
independence must be demonstrated between control and
authority word processing, or conversely the
impossibility of a common cause failure. Figure 6-2
illustrates an architectural design pattern where critical
signals are segregated and combined as late in the
channel as possible to ensure their independence. In this
pattern the BC derives the authority from an independent
authority generator which is also interlocked to the launch
consent switch (MIL-HDBK-1760). Additional assurance
via dissimilar design could be achieved by implementing
the authority table in firmware.

<<Processor>>

<<Bus Controller>>

SMS Bus Controller

Stores

Manager

Critical

Command

Generator

<<Processor>>

Authority

Code Table

<<Switch>>

Launch

SMS Controller

Control

command

Release

Authority

Word [Interlock = Launch]

Critical

Control

word

Interlock

<<Processor>>

<<Bus Controller>>

SMS Bus Controller

Stores

Manager

Critical

Command

Generator

<<Processor>>

Authority

Code Table

<<Switch>>

Launch

SMS Controller

Control

command

Release

Authority

Word [Interlock = Launch]

Critical

Control

word

Interlock

Figure 6-2 Independent control & authority generator

In comparison the CAN open safety protocol (DSP 304
2001) uses serial redundancy where safety critical data is
transmitted in two independent messages. The data in the
second message is bit-wise inverted and is crosschecked
after re-inversion with the first message in the receiver.
However, as DSP 304 invokes no requirements for
independence of these messages it does not provide
similar protection against common mode/cause failures.

6.4.7 Firewall (segregation) design pattern

MIL-STD-1760 applies an architectural design pattern of
physically segregating critical signals from non critical
ones in order to minimise the likelihood of hazardous
interaction. Safety critical power, data and signals are
physically, functionally and temporally separated from
non critical mission power, data and signals to minimise
inadvertent interactions that may invalidate an
independence assumption. This segregation is carried out
at both the architecture and implementation levels of the
interface.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

101

The pin layout of the primary interface connector
surrounds the Release Consent pin with other pins that
are at nominal 0 V potential. This ensures that during a
fault condition where the Release Consent pin shorts to
its neighbour, the neighbouring pin will not act as an
enable signal. This physical segregation scheme should
also be adopted within the aircraft internal connectors,
which can be a significant stopping rule issue for legacy
system integration.

Ideally a common set of messages would be used across
all RTs on the bus thereby enforcing data segregation.
But if non store equipment is on the same bus as MIL-
STD-1760 stores then these equipments may use the
particular safety critical words for non-critical
information thereby degrading data segregation. In this
case the design of the BC to meet MIL-STD-1760
becomes more complex. For this reason the standard
discourages this implementation, unfortunately this can
also be a significant program coordination issue when
integrating MIL-STD-1760 stores to a legacy aircraft.

The standard also requires that release consent and safety
critical power be functionally segregated i.e. not be
generated or consumed by non safety critical functions.
The resulting procedural cohesion of these two interfaces
ensures that any interlocks or reasonableness checks
performed need only deal with a small set of use states.

Both release consent and 28V DC are also segregated
temporally from signals by strictly limiting the
availability of release consent and power to the period
immediately prior to the store receiving its safety critical
command. Such temporal cohesion also simplifies the
implementation of reasonableness checks.

6.4.8 Physical (spatial) proximity pattern

MIL-STD-1760 recommends that the supplier of safety
critical signals be as physically close to the signal
consumer as possible to minimise the potential for
hazardous EMI effects in long cable runs. This safety
pattern places the generation of critical signals as close to
the actual interface as possible thereby reducing the
likelihood of inadvertent interactions.

6.4.9 Signal complexity pattern
The MIL-STD-1553B digital communication standard
invoked by MIL-STD-1760 introduces complex digital
signals as a means of communication information. In an
environment where excluding noise could only be
achieved at prohibitive cost, the complexity of these
signals reduces the likelihood that the environment might
spontaneously generate them. By implementing such
signals in a monitor/actuator control channel the
likelihood of spontaneous generation of a critical signal
by the environment is reduced again. While this reduces
design and verification requirements it also requires that
the system be able to discriminate signals from noise,
have rejection logic immune to such environments,
provide predictably safe responses to abnormal
environments and be verifiable (Leveson 1995).

A tradeoff in this MIL-STD-1553B complex signal
design pattern is that the higher the signal rejection

threshold is set then the higher the Signal to Noise Ratio
(SNR) must also be achieve the required Bit Error Rate
(BER). To reduce this effect a relatively high threshold
can be set for non-message time to reject line noise then a
reduced threshold for Manchester bit sampling time can
be used to reduce the SNR and while achieving the
required BER.

6.5 Address interface safety attributes
Stores are required to latch address line signals upon
startup rather than continuously reading them as it is
fairly common to experience interconnect wire or pin
damage in flight; with the potential for an invalid RT
address to be used by the store with hazardous
consequences. As the store verifies terminal address
values in the Control Message (S/A 11) using this signal,
a failure of the address lines could result in the store
responding to a message addressed to another RT.
MIL-STD-1553B therefore requires that if the store
detects a failure it refuse to respond to any commands to
it or to another RT and to not set the terminals address
incorrectly.

Because MIL-STD-1553B requires protection against a
SPOF in the address interface an odd parity bit is
implemented for detection purposes. While notionally a
parity bit will only detect 50% of N>1 bit errors this is
based upon the assumption of symmetric errors (i.e. logic
1 or 0 errors are equally likely). In practice shorts to
ground or to another wire are more likely (logic 1) than
open circuit (logic 0). As this reduces the likelihood of
combined logic 1 and logic 0 errors the performance of
the single parity bit is improved.

To further protect against address faults, addresses can be
selected so that there is at least a >2 bit difference
between them to increase the hamming distance to 3. For
legacy integrations this may be difficult to achieve as
address lines may not include a full five bit plus parity set
of signals and the carriage of multiple stores may require
the use of RT addresses with closer hamming distances.
Figure 6-3 illustrates this problem by showing the growth
in address requirements across one aircraft’s life.

Fixed addresses are used in the standard rather than
variable addresses so as not to degrade the safety of the
system when transferring safety critical information on
the MIL-STD-1553B bus. One example of a hazard that
variable addressing introduces is that of sending the
message to the wrong RT because an address has been
dynamically re-assigned.

Store address signals may also be used by a store to
monitor for the aircrafts presence. However due to the
potential for SPOF in the address lines, the absence of an
address signal cannot be said to be logically equivalent to
an Aircraft Not Present signal and must be considered
ambiguous. For example a hung store could interpret the
removal of the umbilical during the subsequent download
as a separation leading to aero-surface deployment on the
ground. MIL-STD-1760 therefore requires the address
signal to be interlocked with another signal if used to
trigger a safety critical transition.

CRPIT Volume 69

102

F/A-18 Load Growth
Circa 1976
• 8 SSIU (no 1760 stores)

Circa 2005
• 8 SSIU
• 16 JCM
• 4 MPBR
• 2 AMRAAM
• 2 AIM 9X

F/A-18 Load Growth
Circa 1976
• 8 SSIU (no 1760 stores)

Circa 2005
• 8 SSIU
• 16 JCM
• 4 MPBR
• 2 AMRAAM
• 2 AIM 9X

Figure 6-3 F/A-18A/D load growth 1970's to 2005

6.6 Interlock interface safety attributes

The interlock signal is used by aircraft to verify the
presence or absence of the store. However due to the
potential for SPOF’s in the interlock lines (e.g. broken
wire, bent pin or contaminated/damaged contact) and the
inherent ambiguity15 of the signals open value it is not of
itself a safe indication of the state of the interface. MIL-
STD-1760 therefore constrains the implementation such
that an Open Interlock signal cannot be used as the sole
trigger for safety critical functions. Two examples
illustrate:

1. When an aircraft inventory function uses this
signal the inventory function must also use
another independent signal (i.e. rack pistons
extended or hooks open); or

2. When an aircraft launch function imposes dead-
facing of the connector prior to release it cannot
use this signal as loss of interlock occurs during,
not before, the de-mating sequence.

6.7 Release consent interface safety attributes
The standard recommends that when release consent is in
use its actuation should be visible to the aircrew as a
deliberate action. This constrains the design of the release
consent signal to be ‘not software generated, only
steered’ (MIL-HDBK-1760) as Figure 6-4 illustrates.

In accordance with the standard’s architectural
requirement to functionally segregate signals the store
must not use the release consent signal to activate any
internal store mode or function except those modes or
functions required to accept or reject safety critical
messages received by the store's RT. This enforces
procedural cohesion of safety critical interface functions.
Generation of the release consent will normally also be
safety interlocked to ensure that operator error does not
become a SPOF. These interlock can include manual
master arm switches, environmental checks such as
Weight Off Wheels signals or interlocks such as Bay
Door open.

15 Rail launched missiles, such as the AIM-120, where the umbilical is
retracted prior to separation are an example of this inherent ambiguity.

Critical

action

(TON- TNOW)

> 20 msec

Deliberate

crew action

Master Arm

(safe state)

Release

consent

1553 release

command

Aircraft Store

Master arm

switch

Weight

off wheels

May be

software

steered

Critical

action

(TON- TNOW)

> 20 msec

Deliberate

crew action

Master Arm

(safe state)

Release

consent

1553 release

command

Aircraft Store

Master arm

switch

Weight

off wheels

May be

software

steered

Figure 6-4 A notional release consent logic

Another architectural decision is the functional allocation
of the release consent generator function. The function is
usually distributed within the AEIS to place signal
generation as close to the ASI as possible, so as to
minimise the effects of EMI upon long cable runs.
However this introduces the need to distribute a digital
release consent signal to the SSIU and with distribution
the issue of how this is transmitted across the stores
management bus. In these circumstances a master arm
interlock signal may be added downstream of the release
consent steering scheme to provide additional assurance.

6.8 28V DC No. 2 interface safety attributes

In accordance with the standard’s architectural
requirement for functional segregation, 28 V DC No 2
must only be used for the powering of safety critical
functions. Note that when power is applied, the hazard
state of the store is increased because 28 V DC No. 2 is
used as the energy source for carrying out safety critical
functions received over the data bus not because it is used
as a safety critical command.

To avoid inadvertent actuation the standard suggests that
a store should interlock the internal use of 28V DC No. 2
power with the reception of release consent signal or
other internal state. This is not a requirement of the
standard but a recommended best practice
(MIL-HDBK-1760). Similarly on the aircraft side, the
standard recommends that 28V DC No. 2 should be
interlocked with an aircrew operated switch (i.e. Master
Arm) to prevent actuation unless there has been a positive
action by the aircrew. As an example, in one incident, a
dual rail launcher using a switched power bus was
commanded to switch from the launched missile side to
the remaining unlaunched missile side. However due to
software timing error, the bus was not de-energised in
time and the other rail mounted missile was accidentally
fired. This interlock addresses the hazard of non-
deterministic and potentially un-safe responses to an
input received at un-expected times (Jaffe 1989).

Dead-facing of the 28 V DC No. 2 interfaces during
disconnect was also initially recommended as a
requirement for MIL-STD-1760C, but was eventually
discarded because of concern that safety interlocks in
some nuclear weapons could be dependent on power at
the connector up to the instant of disconnect. This is
illustrative of the general coordination problems when

Proc. 11th Australian Workshop on Safety Critical Systems and Software

103

trying to integrate stores with varying safety requirements
at a system of systems level. Similar to the release
consent signal the allocation of 28 V DC No. 2 power
function final switching should be close to the ASI.
Likewise if a master arm power relay interlock is
implemented the interlock should also be placed as close
to the ASI as practical.

6.9 MIL-STD-1553B databus dual redundancy
The use of dual redundant bus eliminates the
MIL-STD-1553B bus as a SPOF (ignoring the BC) but as
Figure 6-5 illustrates, if implemented as a linear bus, each
bus remains vulnerable to common cause failure. For
greater failure tolerance, the nodes can be connected in a
star arrangement to a hub16. However this is still not
perfect as the star topology takes up additional space and
can still suffer common cause failures at choke points,
such as connectors or umbilical’s.

RT

RT

RT

BC

RT

RT

Common cause failure

Single point of damage

causes loss of n RTs

RT

RT

RT

BC

RT

RT

Independent failure

Single point of damage

causes loss of 1 RT

Bus topology Star topology

RT

RT

RT

BC

RT

RT

Common cause failure

Single point of damage

causes loss of n RTs

RT

RT

RT

BC

RT

RT

Independent failure

Single point of damage

causes loss of 1 RT

Bus topology Star topology

Figure 6-5 Bus versus star topology

6.10 Logical interface safety attributes

6.10.1 Application layer
Application processes are usually specified by the store
designer and documented in an ICD in the form of states,
functions and data exchanges. Integrator and store
developers must implement fault tolerance for these
application processes, typically (at this layer) for
incorrect value and timing errors. For example in
response to the detection of a failure to transition to the
launch state (indicated by a store failing to provide a
Commit to Store Separation (CTSS) signal) the aircraft
could respond by declaring a fail against that store,
removing aircrew display cuing, isolating power to the
station and transitioning to the next priority station.

16 These are not the only possible topologies, for example the IEEE
1394 Firewire protocol (used on the JSF to connect the Vehicle
Management System (VMS) to Remote Data Concentrators (RDCs))
allows signals received on one node to be propagated to all others,
allowing daisy chain and tree topologies.

Clear standardised data formats with a defined syntax
addresses the coordination hazards arising from system of
system integration. However one of the drawbacks of
MIL-STD-1760 is that these data formats are not derived
from a generic set of completeness criteria such as that
developed by Jaffe and Leveson (Jaffe 1989) as a result
individual implementations may have more (or less)
complete and consistent specifications.

Coordinate frames are a common area where data
conventions may become inconsistent; as a result
Appendix B of MIL-STD-1760 provides a standard set of
definitions. However, these definitions should then also
be applied consistently across aircraft internal interfaces.
For example on one weapon integration program, the
Mission Computer team used z-axis alignment
coordinates reversed from that of the Station Interface
Processor team. The error was not discovered until flight
test and resulted in the missile failing transfer alignment
before launch.

Another frame of reference problem arises when altitude
data must be interpreted by aircrew. Because altitude can
be referenced to either the earth geoid or ellipsoid of
revolution reference frame different frames can apply
simultaneously for target, waypoint or release altitudes
depending on their derivation. When displaying altitude
data an explicit reference frame should therefore be
identified to avoid ambiguity. The consequences of not
doing so are the potential for human operators planning a
flight path that terminates in ‘ground clobber’ or loss of
line of sight for data-linked weapons.

A traditional technique used to address the coordination
of multiple stores and SSIU behaviour is to restrict the
concurrent execution of safety critical activities. This
scheduling technique takes advantage of the fact that bus
traffic is time base sparse and tends to cluster around
store state transition events such as store initialisation or
release. To minimise inadvertent and potentially
hazardous interactions, the multiplexing of store state
changes is constrained to periods outside the safety
critical sequence. This de-confliction eliminates the
design problem of guaranteeing timing for a sequence of
commands between store and SSIU when interleaved
with other non-safety critical messages of arbitrary
length. Non critical store state changes can also be time
multiplexed to spread, and so restrict, the level of activity
and as an additional benefit, peak load increases will be
constrained as additional stores are added to the bus.

Another coordination problem arises from the differences
between various aircraft architectures. One aircraft type
may utilise the stores management bus to communicate
with SSIU’s (F-16 or F/A-18) and consume a significant
amount of bandwidth while another may only have stores
on the bus (F-15). This can be a significant issue with
legacy aircraft integrations and means that the safety of
one store integration cannot be directly inferred from the
safety of an integration onto another aircraft.

In order to carry out certain store functions safely the
store may need to know the aircraft type and/or carriage
station on which it is located. One example of this need is
when different wing unfold timelines are required for

CRPIT Volume 69

104

different store stations, i.e. bomb-bay versus external
pylon. For safety this data should be explicitly provided
rather than the store relying on assumptions or side
effects to establish the aircraft configuration. For example
in one integration a weapon originally design for carriage
on a single platform utilised that platforms RT address to
determine whether it was carried on a left or right
shoulder station and therefore what active separation
algorithm to utilise. As RT addresses do not
automatically map to specific stations across platforms
utilising this scheme on another aircraft could have led to
hazardous behaviour. Because of this potentially
hazardous ambiguity, the aircraft ID message was added
at Revision B of MIL-STD-1760.

Similarly store identity is provided to the aircraft so the
aircraft can implement appropriate flight control laws17,
perform automated inventory checks, display the stores
load-out to aircrew and appropriately control the store.
Stores must be accurately described in the Store
Description message so that an aircraft will not
misinterpret the store’s identity and therefore use
incorrect (and hazardous) parameters. This is such a
safety critical issue that an inventory confirmation
function is often implemented, usually using a
heterogeneous set of input data that may include:

1. Store description message data,

2. mission planning data,

3. ‘store aboard’ discretes, and

4. aircrew entered weapon inventory codes.

The use of such dissimilar data provides greater safety by
minimising the likelihood of common cause failures such
as human error. MIL-STD-1760 supports this
functionality through the store description message and
the provision of an interlock signal that can be mapped to
an aircraft’s ‘store aboard’ discrete. The derived need to
define a common set of weapon and country codes across
multiple programs is another example of a coordination
style safety issues.

MIL-STD-1760 also defines a set of generic weapon
states, which are illustrated in Figure 6-6. These states
provide a logical partitioning of store functions and
associate functional availability with controlled state
changes and their triggers. While the intent of this
definition is to encourage logical and deterministic
behaviour inadvertent functional interactions can be
introduced when the store state requires functions not
previously provided in a particular aircraft state, for
example providing transfer alignment data to an air to
ground store whilst the aircraft is in another mode.

Having defined such states and transitions, as a general
safety strategy, the presence of many paths to safe states
and few paths to hazardous states are preferred. Ideally
there should also be both hard and soft failure modes18 on

17 Store mass and drag properties can be extremely critical for
dynamically astable high performance aircraft.
18 A soft failure mode is where Loss of ability to receive ‘X’ could
inhibit ‘transition to Y’ output., while a hard failure mode is where loss
of ability to receive ‘X’ will always inhibit ‘transition to Y’ output

paths to hazardous states, while for a fail safe system the
paths to safe states should have no hard or soft failure
modes (Leveson 1995). MIL-STD-1760 implements such
a strategy, as Figure 6-6 illustrates, through the use of
release consent and command authority words for safety
critical commands and redundant signals when initiating
critical sequences. To satisfy this general strategy a store
designer must incorporate implementation specific safety
constraints upon transitions, for example prohibiting
transition out of the abort state if the preceding transition
was from the launch state.

Figure 6-6 MIL-STD-1760 state chart

The standard also requires that store state changes occur
only when the contents of a message command a state
change and not simply because message receipt was
detected. This rule enhances safety by outlawing reliance
on ‘shortcuts’ that could lead to non-deterministic and
potentially hazardous behaviour. While such shortcuts
may be safe within the one integrations context, the
underlying assumptions upon which they are based are
not defined in the standard and therefore may prove false
in another integration program.

The MIL-STD-1553B concept of illegal commands is
also extended in MIL-STD-1760 to include those states
where a command that the RT can implement could cause
a hazardous condition. For example certain commands
(such as the reset remote terminal or initiate self-test
mode commands) may be legal (and safe) during ground
or factory tests, but could cause hazardous effects in
flight. Stores may use a ‘weight-on-wheels’ signal or
other discrete hardware input to lockout these commands
for incompatible states.

MIL-STD-1760 finally requires the use of redundant
outputs to initiate safety critical store state transitions
thereby eliminating the possibility of a SPOF triggering a
hazardous state transition. This redundancy increases the
state transition path robustness (Leveson 1995), i.e. loss
of a Release Consent or Master Arm interlock signal will
always prevent a store transitioning to launch.
MIL-STD-1760 also specifies a 20 msecs hysteresis delay

Proc. 11th Australian Workshop on Safety Critical Systems and Software

105

to allow for the store to respond to a commanded state
change. This delay ensures that the aircraft will not
attempt an unsafe timing of a store command sequence.

6.10.2 Presentation layer

Although the standard’s accompanying handbook
dismisses data formats as having no direct effect on
safety, they do play an important role in addressing the
coordination type hazards associated with integrating
aircraft and store. To safely do so a common
understanding of each of the data variables passed is
needed. The clear definition of data formats is a
fundamental fault avoidance strategy that reduces the
likelihood of both syntactic and semantic type design
faults occurring.

MIL-STD-1760 defines the store control (11R) and Store
Monitor (11T) messages which must be used for safety
critical implementations. These messages maintain the
fire-wall design pattern of separating safety critical data
from other mission data requirements thereby minimising
the possibility of inadvertent interaction hazards. The use
of dedicated messages for safety critical data has also
been applied in other protocols, see for example the
CANopen protocol’s Safety Related Data Objects
(SRDO) concept (DSP 301 2001).

Two words (Critical Control 1 and 2) are used for the
transfer of safety critical data as one bit flags. The
segregation of safety critical data into these two words
supports the firewall design pattern by the transmission of
safety critical data in a highly cohesive form that de-
couples it from non-critical data. Each control word has
an associated Critical Authority word containing a
polynomial code check on its associated Control Word.
For single bit safety critical flags, a polynomial code
check included in the message increases the hamming
distance between correct and incorrect messages. Using
polynomial codes only for the critical control words is a
trade-off of processing overheads associated with code
calculation versus the error detection requirements for
data represented as a single bit.

The Critical Control words also contains, an Identifier
field (set to carriage or mission store type) and an
Address Confirm field (set to match the address discretes
logic) allowing BC detection of an invalid address
response by an RT. Stores discard any message found to
contain a critical control word that fails one or more of
the protocol checks and only enable safety critical
processes demanded by critical control words passing the
control check.

Invalidity flags are used to indicate that some data should
not be used temporarily. For example transfer alignment
could be temporarily disregarded because of the launch of
launcher rotation or because of a degraded navigation
system. The application process handles the generation of
the flag by the aircraft and how it is handled by the store.
Invalidity flagging forms part of the general fault
tolerance scheme of the interface allowing (for example)
a mission critical function such as transfer alignment to
be suspended and then restarted when the data is valid.
Validity flagging allows the application process to coast

through short periods of bad inputs in a roll forward error
recovery strategy. From a safety perspective invalidity
flags are a lightweight mechanism that decouples data
supplier and consumer by containing the propagation of a
hazardous but transient error. While the standard requires
the use of one bit per word, some store interfaces have
used one bit flag per data entity. This semantic drift
introduces ambiguity and the potential for hazardous
omission style design errors during integration.

The mandated use of a Rotated19 Modulo 2 (XOR) 16 bit
checksum for the standard data messages provides a
minimum and consistent level of data redundancy within
each message. The use of a checksum as an error code for
each message represents a compromise between the
ability to detect errors in the message, the vulnerability of
the data/error code to bit errors, checksum processing and
re-transmission overheads. In practice the checksum will
detect all single bit errors, 93.95% of two bit errors and
all error bursts of length 16 bits or fewer. Burst errors
greater than 16 bits in length are detectable if they result
in an odd number of actual bits being inverted or if the
inverted bits do not align in the same bit position in the
affected words. For applications where burst errors (such
as those induced by impulse noise) are the dominant
source of errors, Modulo 220 provide better error detection
than one’s complement addition, Fletcher and Adler
checksums (Maxino 2006).

As an illustrative counter example if the message
inversion technique of the CAN open safety protocol
discussed in 6.4.4 was adopted error code size would be
directly proportional to the size of data and would
become proportionally more vulnerable to bit errors while
imposing higher retransmit overheads than the fixed 16
bit checksum of MIL-STD-1760.

Another question that arises in calculating a checksum is
whether to allocate the checksum to hardware, firmware
or software. The advantage of calculating the checksum
in software is that a complete end to end check of the
logical interface, the terminals host processor, its memory
and the embedded terminal processor and firmware is
provided. This end to end check partly addresses the
vulnerability of single bit data storage. However if
checksum calculation are allocated to software Cyclic
Redundancy Checks (CRC) are much less attractive as
the implementation of modulo-2 division is less
straightforward in software than hardware21. A related
issue is how checksums are handled within a distributed
system, i.e. should the checksum be generated at the point
of data creation? This last issue can be a significant
integration issue for legacy aircraft.

19 Rotating the blocks of data randomises the checksum inputs
improving its performance against errors that are regular in nature, for
example consistent corruption of a start/end word bit.
20 Two’s complement addition, and CRC checksums also perform better
but with proportionally greater computational overhead.
21 Lookup tables and XOR calculations versus using linear feedback
shift register.

CRPIT Volume 69

106

6.10.3 Session layer

The MDT protocol elements are used by the aircraft to
initialise the store with aircraft stored data upon start-up
and to pass mass data between aircraft and store when the
store is selected. The MDT protocol allows the
implementation of bi-directional data transfers, the ability
to initiate software programs and four levels of data
integrity checking (File, Record, Block or none).
Although not identified as safety critical in the same
fashion as the store control and monitor messages MDT
can potentially transfer data (ranging from targeting to
software program) which bears directly upon the safe
behaviour of the store.

Initially three options were investigated by the
standardisation committee; separate data blocks to control
and status the transfer, integrating the protocol into the
actual data blocks or blind transfer via a dedicated sub
address. While for efficiency of bus usage the first
protocol was selected, it is interesting to note that the
third approach was eliminated due to concern from the
nuclear safety community that mass data might be
erroneously transmitted to the incorrect destination with
hazardous consequences (MIL-HDBK-1760A).

The down-load of such data therefore needs careful
consideration as to the integrity of transfer required. Any
assessment of criticality and justification for the required
data integrity checks and is normally documented in the
ICD. These decisions are driven by the requirements for
access and modification of MDT data, and are also an
area where interface incompatibilities can easily arise
because of the optional nature of the checksum
implementation. For example in one program the store
implemented checksums only at the file level (as data was
not intended to be modified after download) while the
aircraft implemented them for records (as data was
intended to be uploaded and modified) with neither
design decision being explicitly documented in their
respective ICDs. On aircraft file checksum processes
need to be coordinated with those of the mission planning
environment to ensure a valid transmission path from
planner to store.

6.10.4 Transport layer

Fixed addresses are used to identify store RTs. If a
variable addressing scheme were used it would degrade
the safety of the system by introducing complex, non-
deterministic and potentially hazardous behaviour.
Because of this potential hazard and to further enhance
nuclear safety, two S/A are set aside for exclusive use by
nuclear munitions (an additional fire wall). Each critical
control message also contains an Address Confirm field.
The Address Confirm field provides a cross check of the
MIL-STD-1553B address and reduces the likelihood of a
correct command being processed by the incorrect store
leading to a potentially hazardous state.

6.10.5 Network layer
MIL-STD-1760 outlaws the following mode commands:

1. dynamic bus control (aircraft is always BC), and

2. reserved mode codes.

The first constraint ensures that the bus architecture
remains a master/slave type and enforces a simple bus
design22, while the second ensures that developers do not
subvert the standard by use of reserved mode commands.
The potential hazard of a store failing to relinquish bus
control (as is the case in token passing protocols) is also
eliminated by this constraint.

Mission Store RTs must implement the following status
word conditional message implementations:

1. use of the MIL-STD-1553B busy bit;

2. If a subsystem has a self-test capability, the a
subsystem status flag is required;

3. Support Inhibit Terminal Flag if Terminal Flag
Bit is implemented; and

4. If Service Request is used the Transmit Vector
Data Word must be available when the bit is set.

Use of the MIL-STD-1553B RT status word’s optional
busy bit indicates to a BC that an RT/subsystem is unable
to move data in compliance with the BC’s command.
Maximum busy time allowed is 500 ms for start-up and
50 µs otherwise. The use of the busy bit reduces state
ambiguity allowing the BC to discriminate between a
failed RT and one that is still processing.

The BC must interpret the subsystem flag bit as total loss
of the store again enforcing the fail safe behaviour.
Because the flag may have been set by a transient
condition the standard recommends that a reset terminal
mode code be sent23 and the flag rechecked. This
redundant check provides a path to a safe state with a
reduced probability of transitioning due to a false alarm.

The MIL-STD-1553B terminal flag bit is used to indicate
a detected RT hardware failure and, in conjunction with
mode code commands to deactivate and activate the
terminal BIT, supports fault diagnosis by the BC.

A message error bit is required in RTs by MIL-STD-
1553B, this bit is set to Logic 1 for several error
conditions and the status word suppressed. These actions
ensure that the BC has a capability to detect faults
masked by the RT fault-tolerance mechanism. Message
errors can be related to the application, datalink, network
or physical layers, as Figure 6-7 illustrates. Should a
message error occur, MIL-STD-1553B requires the entire
message to be considered as invalid24, eliminating the
possible use of ambiguous data with hazardous
consequences.

The optional checks for illegal command messages of
MIL-STD-1553B also map to this layer. Illegal
commands (such as reserved mode codes) are those that
pass the validity checks but cannot be implemented by

22 Relative to more complex ones such as bus contention or token ring.
23 This command resets the terminal, the subsystem cannot be reset.
24 Message validation in MIL-STD-1553 strictly applies to the data
component of a message, i.e. an invalid command word without a data
word is ignored by the RT.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

107

the RT by design. The standard requires that the BC
developer ensure that no illegal commands are sent (as
part of a fault avoidance strategy) while illegal command
detection is optional for the RT. Where implemented
illegal commands are handled by an RT in the same way
as invalid commands i.e. no response and set the message
error bit in the status word.

Safety critical message types are also required by MIL-
STD-1760 to have a header word as the first data word.
This allows the RT to check if the message was in fact
intended for it and not a hazardous command generated
by a double bit error in the transmission of the command
word.

Application

APPLICATION

NETWORK

Message

error

DATA -LINK

NETWORK

NETWORKIllegal command

Invalid command

Invalid data

Control authority

Header

NETWORK

Address confirm

NETWORK

Invalid Address

Invalid Word

PHYSICAL

Contiguous

NETWORK

Word count
APPLICATION

Message checksum
DATALINK

Invalid Synch

Word parity

DATA -LINK

Bit count

PHYSICAL

Manchester code

PHYSICAL

MIL-STD -1760 protocol

NETWORK

Identifier

Application

APPLICATION

NETWORK

Message

error

DATA -LINK

NETWORK

NETWORKIllegal command

Invalid command

Invalid data

Control authority

Header

NETWORK

Address confirm

NETWORK

Invalid Address

Invalid Word

PHYSICAL

Contiguous

NETWORK

Word count
APPLICATION

Message checksum
DATALINK

Invalid Synch

Word parity

DATA -LINK

Bit count

PHYSICAL

Manchester code

PHYSICAL

MIL-STD -1760 protocol

NETWORK

Identifier

Figure 6-7 MIL-STD-1760 message error taxonomy

6.10.6 Data link layer

In addition to the constraints introduced by Notices 1 and
2 of MIL-STD-1553B25, MIL-STD-1760 further limits
the use of broadcast commands. The standard permits, but
discourages, use of broadcast address 31 and introduces
the following constraints on its use:

1. Safety critical data cannot be broadcast;

2. A store accepting broadcast messages must also
accept the same data in non-broadcast mode;

3. The BC cannot issue a broadcast command to
MIL-STD-1760 specified sub-addresses;

4. The store is required to work with an aircraft or
carriage store that does not support broadcast;

5. Error detection schemes for significant broadcast
data are required; and

6. Stores must implement the broadcast command
received bit in the status word, allowing for post
broadcast round robin polling.

These restrictions are intended to reduce the likelihood of
the following potentially hazardous states occurring:

1. undetected message loss or error;

25 The USAF believed that switching from a current BC to a backup BC
via dynamic bus control mode command was too hazardous and
prohibited this command in Notice 1 to MIL-STD-1553B.

2. earlier model RTs26 do not recognise broadcasts
and improperly interpret them; or

3. a store using broadcast messages ends up on an
aircraft where it’s broadcast S/A is used for
something else.

The fundamental problem with broadcast mode is that it
does not provide positive closed-loop control, which
denies the BC any ability to check for failures or errors
(Leveson 1995). The use of broadcast commands also
complicates fault tolerant behaviour, for example an RT
which has failed silent upon detection of an illegal
address assignment may still legally process a broadcast
command. The problems introduced by broadcast are
illustrative of real time distributed system coordination
problems. Hazards 2 and 3 are an instance of the
backwards and forwards compatibility coordination
problem discussed in 3.2.2.

S/A 08 (decimal) is reserved to avoid misinterpretation of
a status word (with service request set) as a command
word for sub-address 08. The standard does allow it to be
used for test purposes at the user's risk.

The first three bits of each 20 bit MIL-STD-1553B word
are a synchronisation field (an invalid Manchester
waveform) allowing a decode clock to re-sync at the
beginning of each new word. The advantages of a
dedicated and unique synchronisation field are that it
reduces the likelihood of a receiver missing the start of a
new message and eliminates possible confusion of a
synch field with part of a message (e.g. alialising). The
field is also used to distinguish between MIL-STD-1553B
command and data words transmitted. This is an example
of both low level data redundancy and the decoupling of
synchronisation from bit transmission functions afforded
by MIL-STD-1553B as a character oriented protocol.

An alternative synchronisation scheme (taken from CAN,
a bit oriented protocol) is to bit stuff a message with
complementary value bits after a series of N same valued
bits in order to maintain loop synchronisation. However,
using this synchonisation scheme low level multi-bit
errors can cause cascading errors in which bit errors
cause misinterpretation of stuffing bits as data and vice
versa leading to data pattern shifting, large bit error rates
and resultant CRC failure (Tran 1999).

6.10.7 Physical layer
MIL-STD-1760 has specific physical interconnection
media requirements for more stringent waveform
specification at the transmitting-end and tolerance of
more distortion and loss at the receiving-end than MIL-
STD-1553B. These additional robustness requirements
address the bus waveform distortion introduced when a
mission store separates from the parent aircraft leaving
behind a ‘stub’ of bus. Current limits are also introduced
to prevent multiple high currents on the MIL-STD-1553B
bus. The added MIL-STD-1760 margin above that of
MIL-STD-1553B also offsets the greater uncertainty of

26 Broadcast mode was introduced to MIL-STD-1553B at Notice 2 of
that standard.

CRPIT Volume 69

108

assumptions made about actual bus performance in such a
dynamic environment.

MIL-STD-1553B requires a maximum allowable word
error rate of no greater than one in 107 words in the
presence of an impulsive RF noise environment. The
standard recognises that impulse noise (such as relay
switching) are more typical of noise sources having
adverse effects but notes that because it is extremely
difficult to analyse the effects of impulse noise a worst
case white Gaussian noise model was used to define it’s
noise rejection requirements27. The specification of such
criteria form part of the complex signal design pattern
identified in section 6.4.9.

Inherent RF noise rejection is provided by the bus 1 MHZ
fundamental frequency being lower than the frequency of
most onboard noise sources. The use of a bipolar
waveform increases the signal to noise amplitude relative
mono-polar signals and provides improved EMI
immunity. EMI rejection is further enhanced by a
shielded twisted pair design for the bus and an outer
shield for the aircraft to store umbilical. However,
umbilical shielding is not necessarily implemented inside
the aircraft and shielding from the internal EME can be a
significant issue for legacy system integrations. The event
triggered master/slave protocol also provides a more
robust scheduling guarantee in the presence of EMI
because the BC can flexibly retransmit a corrupted
message to make maximum use of the bandwidth. In
comparison time triggered protocols would require
multiple duplicate transmissions to achieve the same
robustness.

Where noise does occur and zero crossings generate a
single bit error the error will notionally be detected by the
MIL-STD-1553B word parity bit. However, a single
noise event may disrupt more than one bit. Thus as the
parity bit has two possible values (0 and 1), the bit is
limited to a 50% chance of a >1 bit error detection. To
enhance error detection rotated modulo 2 checksums are
introduced by MIL-STD-1760 for messages and BCH
polynomial error code authority words for safety critical
commands.

Manchester coding is utilised by the MIL-STD-1553B
protocol and provides (amongst other advantages) high
noise immunity, RTs are then required to check that the
word bits are a valid Manchester II code before acting
upon them. While an RT could detect a ‘skewed’ bit and
recover the value, MIL-STD-1760 requires that for
critical control bits the value be discarded. Again the
discard data policy eliminates the use of ambiguous data
for safety critical operations with potentially hazardous
consequences.

The MIL-STD-1553B protocol requires at least 4 µs
between messages, with the RT required to respond to a
command within a period of 4 to 12 µs. The inter-
message gap addresses the coincidental response hazard
of a RT receiving and processing a message as valid
which has actually arrived by coincidence, while the

27 For a band limited system random impulse noise may be
approximated by Gaussian noise.

minimum response time addresses the RTs inherent
latency in processing a BC command. If there is a delay
in response of greater than 14 µs, it is assumed by the BC
that no response occurred, which then must respond to the
un-responsive (and potentially hazardous)
communications channel (Jaffe 1989).

MlL-STD-1553B also requires that terminals (RT or BC)
contain a hardware fail safe timer to prevent any
transmission on the data bus exceeding 800 µs. As no
valid transmission is longer than 660 µs only a failure in
the terminal could result in such a transmission. The fail-
safe timer prevents a ‘babbling idiot’ failure propagating
to total bus failure.

7 Using MIL-STD-1760 as part of a safety case

7.1 The need for an integration safety case

Safety cases or arguments have become an accepted part
of the development of complex safety critical systems,
reflecting a trend in away from the prescriptive
application of regulations and towards requiring a
developer to formally justify the safety of the system. By
definition, MIL-STD-1760 expresses a form of safety
argument in which the implicit definition of safety is
‘compliance with the standard’. Logically a safety case
for a stores integration program should incorporate this
argument as part of the overall safety argument.
However, there are a number of challenges that need to
be addressed when doing so.

As part of such a safety case the integrator must also
establish that the interface definitions, usually based on
different revisions of the standard, have not introduced
coordination style hazards. As illustrated by the Goal
Structure Notation (GSN) diagram of Figure 7-1 this
definition provides the essential context for the safety
argument in the same way that a hazard analysis provides
the context for arguments about hazard control. Similarly
the integrator must justify the assumption of
completeness, including where the integration program
stopping rules. For example, it might be assumed that the
design is currently safe based on (in part) the existence of
an existing safety program or service history.

M1: ARGCOMPLETE

EFFECTIVE

COMPLETENESS

ARGUMENT

M2: ARGSAFETY

INTEGRATED

STORE AND

AIRCRAFT ARE SAFE

M3: ARGSEMANTIC

COMPATIBLE &

AGREED INTERFACE

SEMANTIC ARGUMENT

System of System context

Justification
Context

Evidence of completeness

G1: SPECIFIC STORE

INTEGRATION

IS SAFE

Completeness of argument

assumption

M1: ARGCOMPLETE

EFFECTIVE

COMPLETENESS

ARGUMENT

M2: ARGSAFETY

INTEGRATED

STORE AND

AIRCRAFT ARE SAFE

M3: ARGSEMANTIC

COMPATIBLE &

AGREED INTERFACE

SEMANTIC ARGUMENT

System of System context

Justification
Context

Evidence of completeness

G1: SPECIFIC STORE

INTEGRATION

IS SAFE

Completeness of argument

assumption

Figure 7-1 Integration safety case

7.2 Safety argument patterns

High level safety arguments can vary markedly; one
program may adopt a hazard avoidance argument pattern
whilst another may adopt a functional integrity argument
pattern. Figure 7-2 illustrates how a MIL-STD-1760

Proc. 11th Australian Workshop on Safety Critical Systems and Software

109

compliance argument can be integrated into a hazard
directed or functional integrity style arguments
constructed using interface and contract extensions for
Goal Structure Notation (GSN) where element of the
MIL-STD-1760 argument (goals, evidence or solutions)
are referenced to the hazard or functional integrity
argument.

M2.1b: ARGFUNCTIONS

FUNCTIONS SAFE

AND NO HAZARDOUS

FUNCTIONAL

INTERACTION

M2.2: ARG1760SAFE

MIL -STD -1760

INTERFACE REQMTS

IMPLEMENTED

S2.2: DEVELOP

INTERFACE

TO MIL -STD-1760

S2.1a: HAZARD

IDENTIFICATION

SAFETY ARGUMENT

S2.1b: FUNCTIONAL

SAFETY ARGUMENT

M2.1a: ARGHAZARDS

HAZARDS

IDENTIFIED

& ELIMINATED OR

CONTROLED

Each leg of argument

inherits contract to justify

assumption A2.1.

Standards compliance

leg of argument

Context of hazard controls

where identified hazard control goals

map to 1760 controls

In the context of

A System of System

ARGSAFETY M2

G2.1: INTEGRATED

STORE & AIRCRAFT

ARE SAFE

In the context of

an assumption of context

A2.1: ARGUMENT IS

COMPLETE

ARGCOMPLETE

C2.1: STANDARD

REVISIONS COMPATIBLE

AND AGREED

ARGSEMANTIC

M2.1b: ARGFUNCTIONS

FUNCTIONS SAFE

AND NO HAZARDOUS

FUNCTIONAL

INTERACTION

M2.2: ARG1760SAFE

MIL -STD -1760

INTERFACE REQMTS

IMPLEMENTED

S2.2: DEVELOP

INTERFACE

TO MIL -STD-1760

S2.1a: HAZARD

IDENTIFICATION

SAFETY ARGUMENT

S2.1b: FUNCTIONAL

SAFETY ARGUMENT

M2.1a: ARGHAZARDS

HAZARDS

IDENTIFIED

& ELIMINATED OR

CONTROLED

Each leg of argument

inherits contract to justify

assumption A2.1.

Standards compliance

leg of argument

Context of hazard controls

where identified hazard control goals

map to 1760 controls

In the context of

A System of System

ARGSAFETY M2

G2.1: INTEGRATED

STORE & AIRCRAFT

ARE SAFE

In the context of

an assumption of context

A2.1: ARGUMENT IS

COMPLETE

ARGCOMPLETE

C2.1: STANDARD

REVISIONS COMPATIBLE

AND AGREED

ARGSEMANTIC

Figure 7-2 Integrated MIL-STD-1760 safety argument

7.2.1 Hazard avoidance argument

In a hazard avoidance style argument, the implicit
definition of safe is ‘hazard avoidance’. The usual style of
this argument is to argue that all identified hazards have
been either eliminated or their risk controlled. The
challenge for this argument is to provide a plausible (i.e.
comprehensive) context of identified hazards. MIL-STD-
1760 can be used in a hazard avoidance argument to
identify hazards, both directly and by inference from the
safety constraints of the standard.

7.2.2 Functional integrity argument

In an integrity style argument, the implicit definition of
safe is ‘integrity level’. The usual style of this argument
is to argue that all safety critical functions have been
identified; all identified functions meet specified integrity
levels and do not interact in a hazardous fashion. The
challenge for this argument is to demonstrate either the
independence of functions or their non hazardous
interaction.

Simplistically, having applied MIL-STD-1760, it could
be argued that the required integrity level is achieved.
However because of the distance between the premises
and conclusion of such an argument it may be more
convincing to breakout the interface into lower service
functions (as Figure 7-3 illustrates) and use MIL-STD-
1760 implementation as evidence for each layer.
Arguments as to the potential for hazardous interactions
across the logical and direct interfaces of the protocol are
also required. This approach provides more direct
‘evidence’ based assurance than the traditional process
based assurance typically associated with functional

safety arguments (Weaver 2003). It is also unlikely that
application at a high level of abstraction can be argued
because MIL-STD-1760 would rarely be implemented
uniformly on both sides of the interface.

S2.1b.3. 1553 RELEASE

COMMAND FUNCTION

IS SAFE

{MISSION PHASE Y}

C3. PROTOCOL LAYER
(N = # LAYERS)

Provides {layer B}

N

G2.1b.6. NO HAZARDOUS

INTERACTIONS

BETWEEN PROTOCOL

LAYERS

G2.1b.5. NO HAZARDOUS

INCOMPATIBILITY

BETWEEN AIRCRAFT

& STORE {LAYER B}

N

Sn2.1b.2

OTHER

EVIDENCE

{LAYER B}

G2.1b.4. 1553 RELEASE

COMMAND FUNCTION

IS SAFE {LAYER B}

G# MIL -STD-1760
SERVICE

LAYER ‘#’ REQMTS

IMPLEMENTED

A A

Sn2.1b.1

OTHER

EVIDENCE

{LAYER B}

A

ARG1760SW

M2.2.2 MIL-STD-1760

SOFTWARE

INTERFACE REQMTS

IMPLEMENTED

A

Remote goal G# contracted to satisfy the

requirement

Reliance

on external

goal

Other evidence i.e. process

compliance, formal methods etc

S2.1b.3. 1553 RELEASE

COMMAND FUNCTION

IS SAFE

{MISSION PHASE Y}

C3. PROTOCOL LAYER
(N = # LAYERS)

Provides {layer B}

N

G2.1b.6. NO HAZARDOUS

INTERACTIONS

BETWEEN PROTOCOL

LAYERS

G2.1b.5. NO HAZARDOUS

INCOMPATIBILITY

BETWEEN AIRCRAFT

& STORE {LAYER B}

N

Sn2.1b.2

OTHER

EVIDENCE

{LAYER B}

G2.1b.4. 1553 RELEASE

COMMAND FUNCTION

IS SAFE {LAYER B}

G# MIL -STD-1760
SERVICE

LAYER ‘#’ REQMTS

IMPLEMENTED

A A

Sn2.1b.1

OTHER

EVIDENCE

{LAYER B}

A

ARG1760SW

M2.2.2 MIL-STD-1760

SOFTWARE

INTERFACE REQMTS

IMPLEMENTED

ARG1760SW

M2.2.2 MIL-STD-1760

SOFTWARE

INTERFACE REQMTS

IMPLEMENTED

A

Remote goal G# contracted to satisfy the

requirement

Reliance

on external

goal

Other evidence i.e. process

compliance, formal methods etc

Figure 7-3 Functional integrity argument

7.2.3 The issue of completeness

For integration programs the completeness of a safety
argument can be compromised by:

1. originally incomplete specifications,

2. invalidated un-stated interface assumptions,

3. unidentified or unrecorded pre-existing hazards,

4. unidentified new integration related hazards, or

5. in-complete implementation of the standard.

Because it is impossible to argue that any safety argument
is complete, it is necessary to make an assumption of
completeness, and ideally this assumption should also be
both explicit and rigorously justified28. MIL-STD-1760
can assist in justifying this assumption by providing:

1. a comprehensive (not necessarily complete)
specification of AEIS inputs and outputs;

2. a reduction in assumptions about the interface;

3. broad safety criteria to control un-identified
hazards; and

4. an interface design of known provenance
reducing the likelihood of new hazards.

Implementing the latest requirements of MIL-STD-1760
to comply with a store’s ICD may also prove to be
impractical and, if implemented, may not contribute
materially to safety. Where such circumstances arise, an
argument as to why an ‘effectively’ complete
implementation is acceptable must support any general
argument for completeness. As the argument fragment of
Figure 7-4 illustrates, safety is not an absolute and is

28 Usually this is achieved through a mix of product and process
evidence (Chinneck 2004).

CRPIT Volume 69

110

often evaluated through design provenance and
experience as much as risk analysis (AC 21-101-1).

MIL-STD-1760

SERVICE

LAYER ‘N’

REQUIREMENTS

NOT IMPLEMENTED

IMPRACTICAL AND

SAFETY NOT

MATERIALLY AFFECTED

ARGUMENT

DESIGN

EVIDENCE

IMPRACTICAL

SAFETY

NOT MATERIALLY

AFFECTED

SERVICE

EXPERIENCE

EVIDENCE

SAFETY

COST/BENEFIT

ANALYSIS

FULL/PARTIAL

COMPLIANCE

EFFECTIVENESS

ANALYSIS

SAFETY RISK

& UNCERTAINTY

ANALYSIS

MIL-STD-1760

SERVICE

LAYER ‘N’

REQUIREMENTS

NOT IMPLEMENTED

IMPRACTICAL AND

SAFETY NOT

MATERIALLY AFFECTED

ARGUMENT

DESIGN

EVIDENCE

IMPRACTICAL

SAFETY

NOT MATERIALLY

AFFECTED

SERVICE

EXPERIENCE

EVIDENCE

SAFETY

COST/BENEFIT

ANALYSIS

FULL/PARTIAL

COMPLIANCE

EFFECTIVENESS

ANALYSIS

SAFETY RISK

& UNCERTAINTY

ANALYSIS

Figure 7-4 ‘Safety not materially affected’ argument

7.3 Complexity

One of the challenges in developing a safety case for a
complex system is managing the complexity of the
argument itself. Safety arguments also generally draw on
multiple sources of information which can further
complicate argument structure. Figure 7-5 illustrates the
use of a hierarchical structure to manage the complexity
of a MIL-STD-1760 compliance argument. Module 2.2 of
Figure 7-5 can be further broken into a software hierarchy
based on the OSI model allowing the argument to
separate out the specific safety concerns at each layer of
the model. Similarly Module 2.3 can be broken into a
part/whole hierarchy matching the various interfaces of
AEIS. The dashed figures of Figure 7-5 indicate where
module 2.1, 2.3 and 2.3 support the cohort safety
arguments identified in Figure 7-2.

The architecture of MIL-STD-1760 can also be used to
structure the functional and hazard directed arguments.
For example hazards identified in the hazard avoidance
argument can be grouped by functional interface or OSI
service layer for clarity (Chinneck 2004).

Finally MIL-STD-1760 provides a ‘one stop shop’ of
reference material, further simplifying the arguments
structure.

7.4 Incremental safety case development
One of the often stated goals for a safety case is that the
safety argument should influence the design. To achieve
this requires an incrementally developed safety case
starting with a high level architectural safety pattern
argument followed by the development of supporting
safety arguments for hardware and software
implementation. This dictates a means/ends hierarchy
where safety patterns selected during preliminary design
must necessarily assume that the detail design will not
subvert these patterns and, once developed, hardware and
software safety arguments must validate this assumption.
This structure, reflected in Figure 7-5, consists of three
modularised sub-arguments with the architecture module
providing goals for the software and hardware modules,

while they in turn provide validation of the architecture
through compliance evidence.

M2.2.2.1 ARG1760ARCH

MIL-STD -1760

ARCHITECTURE

REQMTS IMPLEMENTED

M2.2.2.2 ARG1760SW

MIL-STD -1760

SOFTWARE INTERFACE

REQMTS IMPLEMENTED

S2.2.2: IMPLEMENT

MIL-STD -1760

SOFTWARE INTERFACE

REQMTS

Validation of architecture

ARG1760SAFE
M2.2

‘Distant ’ hazard directed

or functional safety

goals support

Constraint on implementation

A

B

S2.2.3: IMPLEMENT

MIL-STD-1760

HARDWARE INTERFACE

REQMTS

M2.2.3: ARG1760HW

MIL -STD -1760

HARDWARE INTERFACE

REQMTS IMPLEMENTED

B

A

S2.2.1: IMPLEMENT

MIL-STD-1760

INTERFACE

ARCHITECTURE

Preliminary system design phase argument

Design & implementation phase arguments

Safety Goal from requirements Phase1

2

3

3

3

2

1

M2.2.2.1 ARG1760ARCH

MIL-STD -1760

ARCHITECTURE

REQMTS IMPLEMENTED

M2.2.2.2 ARG1760SW

MIL-STD -1760

SOFTWARE INTERFACE

REQMTS IMPLEMENTED

S2.2.2: IMPLEMENT

MIL-STD -1760

SOFTWARE INTERFACE

REQMTS

Validation of architecture

ARG1760SAFE
M2.2

ARG1760SAFE
M2.2

‘Distant ’ hazard directed

or functional safety

goals support

Constraint on implementation

A

B

S2.2.3: IMPLEMENT

MIL-STD-1760

HARDWARE INTERFACE

REQMTS

M2.2.3: ARG1760HW

MIL -STD -1760

HARDWARE INTERFACE

REQMTS IMPLEMENTED

B

A

S2.2.1: IMPLEMENT

MIL-STD-1760

INTERFACE

ARCHITECTURE

Preliminary system design phase argument

Design & implementation phase arguments

Safety Goal from requirements Phase1

2

3

3

3

2

1

Figure 7-5 Incremental safety argument development

8 Conclusions
Architectural decisions can have significant impact upon
the safety of a system and the effort required to verify its
safety. For a given stores integration program
consideration must also be given to those system of
system coordination issues forming the programs context.

As an interface standard MIL-STD-1760 specifies a
coherent set of functional interfaces that emphasise fault
tolerance to achieve the safety and reliability goals of a
specific program. As with any standard the downside is
that developers must also sacrifice design freedom to
achieve these benefits. However this reduction is offset
by enhanced interoperability and effectiveness at the
system of systems level.

Integrating MIL-STD-1760 compliance into a safety case
can strengthen the safety argument by providing an
ability to argue the reuse of successful architectural
patterns. Use of the standard can also provide evidence to
support assumption of completeness as well as an
organising principle for the arguments structure. Because
MIL-STD-1760 contains both architecture and
implementation elements it can be used in the incremental
development of safety arguments with initial architectural
strategies being levied as safety requirements for
subsequent detailed design efforts. A MIL-STD-1760
compliance argument can support both hazard and safety
integrity style arguments.

9 References

AC 21-101-1 (2003): Establishing the Certification Basis
for Changed Aeronautical Products, Advisory Circular,
Federal Aviation Administration, 28 April 2004.

ARP 4754 (1996): Certification Considerations for
Highly Integrated or Complex Avionics Systems,
Society of Automotive Engineers.

Chinneck, P., Pumfrey, D., McDermid, J. (2004): The
HEAT/ACT Preliminary Safety Case: A case study in

Proc. 11th Australian Workshop on Safety Critical Systems and Software

111

the use of Goal Structuring Notation, 9th Australian
Workshop on Safety Related Programmable Systems
(SCS'04), Vol 47.

Douglass, B.P (1999): Doing Hard Time, Developing
Real-Time Systems with UML, Objects, Frameworks
and Patterns, Addison Wesley, 1999.

DSP 304 (2001): CanOpen Safety Protocol, CAN in
Automation (CiA) GmbH, January 2001.

FlexRay (2005): Communications System Protocol
Specification Version 2.1, FlexRay Consortium, May
2005.

Gray, D. (1985): Why Do Computers Stop and What Can
Be Done About It?, Tandem Computers Technical
Report 85.7 PN87614 , June 1985

Hyman, M. (2003): Space Station Takes Unique Twist on
MIL-STD-1553B, COTS Journal, Volume 4 No. 7,
p52-71.

IEC 61508 (1998-2000): Functional Safety of
Electrical/Electronic or Programmable Electronic
Safety-Related Systems, Volumes 1 to 7, International
Electro-technical Commission (IEC).

ISO/IEC 7498-1 Information technology – Open Systems
Interconnection – Basic Reference Model: The Basic
Model.

ISO 11898 Road Vehicles - Interchange of Digital
Information- Controller Area Network (CAN) for high-
speed communication.

Jaffe, M., and Leveson, N. (1989): Completeness,
Robustness, and Safety In Real-Time Software
Requirements Specification, Proc. ACM.

Jaffe, M. (1999): Architectural Approaches To Limiting
The Criticality Of Commercial-Off-The-Shelf (Or
Other Re-Used Software), DASC.

Kelly, T. (1998): Arguing Safety – A Systematic
Approach to Managing Safety Cases, Doctoral thesis,
University of York.

Leveson, N.G. (1995): Safeware, System Safety and
Computers, Addison Wesley.

Lewis, D.K. (1969): Convention: A Philosophical Study,
Harvard University Press.

Lutz, R.R. (1993): Targeting Safety Related Errors
During Software Requirements Analysis. In
Proceedings SIGSOFT 93: Foundations of Software
Engineering.

Mackall, D.A. (1988): Development and Flight Test
Experiences with a Flight-Critical Digital Control
System. NASA Technical Paper 2857, NASA, Dryden
Flight Research Facility, California, USA.

Maier, M. (1996): Architecting Principles for Systems of
Systems. In Proc. of the Sixth Annual International
Symposium, International Council on Systems
Engineering, Boston, MA, p567- 574.

Maxino, T.C. (2006): The Effectiveness of Checksums
for Embedded Networks, Thesis, Dept. of Electrical

and Computer Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania.

Meyer, M., The Art of System Architecting, CRC, 1998.

McDermid, J. A, Pumfrey, D.J Software Safety: Why is
there no Consensus?, in Proceedings of the
International System Safety Conference (ISSC) 2001,
Huntsville, System Safety Society, 2001.

MIL-HDK-244A (1990), Guide to Aircraft/Stores
Compatibility, US Dept. of Defense, 6 April 1990.

MIL-HDBK-1553A (1998), Multiplex Applications
Handbook, US Dept. of Defense, 1 November 1988.

MIL-STD-1553B Notice 4 (1996), Digital Time Division
Command/Response Multiplex Data Bus, 15 January
1996, US Dept. of Defense.

MIL-STD-1760D (2003): Interface Standard for Aircraft-
store Electrical Interconnection System (AEIS) US
Dept. of Defense.

NATO STANAG 3908: Standardised Avionics Terms
and Abbreviations, 2nd Ed., NATO.

Rushby, J. A., (2001): Comparison of Bus Architectures
for Safety-Critical Embedded Systems, CSL Technical
Report, Computer Science Laboratory, SRI
International.

RTCA DO-178B/ED-12B (1992): Software
Considerations in Airborne Systems and Equipment
Certification. RTCA.

SAE-AS-1B3 (2002): General Aircraft Stores Interface
Framework (GASIF), draft F.

Sivencrona, H., Chalmers, Hedberg, J., Röcklinger H.
(2001): Comparative Analysis of Dependability
Properties of Communication Protocols in Distributed
Control Systems, PALBUS Task 10.2.
www.sp.se/pne/software&safety/palbus.

Spray, S.D. (1995): Principle Based Passive Safety In
Nuclear Weapon Systems, High Consequence
Operations Safety Symposium, Sandia National
Laboratories, Albuquerque, 13 July 1994, as quoted in
Leveson 1995.

Tran, E. (1999): Multi-Bit Error Vulnerabilities in the
Controller Area Network Protocol, Thesis, Dept. of
Electrical and Computer Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania.

TTTech (1999): Specification of the TTP/C Protocol,
Time-Triggered Technology (TTTech)
Computertechnik AG, Vienna, Austria.

Ward, J.R. (1993): Beyond Integrated Weapon System
Management - Acquisition in Transition, Executive
Research Project RS8, The Industrial College of the
Armed Forces National Defense University, Fort
McNair, Washington, D.C. 20319-6000.

Weaver, R., Kelly, T., Fenn, J. (2003): A Pragmatic
Approach to Reasoning about the Assurance of Safety
Arguments, In 8th Australian Workshop on Safety
Related Programmable Systems (SCS'04), Vol 33.

CRPIT Volume 69

112

Implementation of a Triple Modular Redundant FPGA basedSafety Criti
al System for reliable software exe
utionVenkatesh Vasudevan Email:venkat�itee.uq.edu.auPeter Walde
k Email:walde
k�itee.uq.edu.auHardik Mehta Email:mehta�itee.uq.edu.auNeil Bergmann Email:bergmann�itee.uq.edu.auS
hool of Information Te
hnology and Ele
tri
al EngineeringUniversity of QueenslandAbstra
tThis paper des
ribes the implementation of a TMR(Triple Modular Redundant) mi
ropro
essor systemon a FPGA. The system exhibits true redundan
yin that three instan
es of the same pro
essor system(both software and hardware) are exe
uted in par-allel. The des
ribed system uses software to
ontrolexternal peripherals and a voter is used to output
orre
t results. An error indi
ation is asserted when-ever two of the three outputs mat
h or all three out-puts disagree. The software has been implemented to
onform to a parti
ular safety
riti
al
oding guide-line/standard whi
h is popular in industry. The sys-tem was veri�ed by inje
ting various faults into it.1 Introdu
tion1.1 Ba
kgroundField Programmable Gate Arrays (FPGA's) are semi-
ondu
tor integrated
ir
uits (IC's)/
hips that fa
il-itate
ustom user logi
 to be programmed using abitstream. The devi
es
an be reprogrammed in the�eld whenever the logi

hanges thus removing theneed to remove the devi
e or design a new system.Hen
e the produ
t
an be upgraded in the �eld withnew features without any repla
ement of parts. Thewhole system (pro
essor and its peripherals)
an behoused in a single FPGA thus redu
ing board size
onsiderably. Time to market or development timeis
onsiderably redu
ed due to rapid prototyping.FPGA's allow a software-hardware
o-design method-ology whi
h is a must for safety
riti
al appli
ationsand hen
e it is
onvenient to use FPGA's for the de-velopment of the same.1.2 Obje
tiveTriple Modular Redundan
y (TMR)(B.W.Johnson1989) is a popular
on
ept being used by many design-ers of high reliability systems. The
ommon method-ology involves development of software
onforming tosafe
oding guidelines (viz one may use a languagelike Esterel (G.Berry et al 2000) to de�ne the spe
-i�
ations of the system and then implement it or if
oding in traditional programming languages like C,follow guidelines set out by subsets of the languageslike MISRA-C(MISRA 2004)) and implementation ofCopyright

2006, Australian Computer So
iety, In
. This pa-per appeared at the 11th Australian Workshop on Safety Re-lated Programmable Systems (SCS'06), Melbourne. Confer-en
es in Resear
h and Pra
ti
e in Information Te
hnology, Vol.69. Tony Cant, Ed. Reprodu
tion for a
ademi
, not-for pro�tpurposes permitted provided this text is in
luded

the same on three separate mi
ropro
essors (ea
h onits own motherboard). Our s
heme followed the samestrategy. However the three mi
ropro
essor systemswere implemented on one FPGA. The goal was toa
hieve reliability in software exe
ution by employinghardware redundan
y so that if one of the softwarefails due to a hardware fault (bitstream /
on�gu-ration errors, stu
k at faults, bit
ips due to radia-tion et
) then the other softwares running in parallel
an keep the system in operation. This is due to thefa
t that the hardware error o

urs only in a part ofthe FPGA and hen
e only a small part is a�e
ted,not the whole FPGA. The
orre
tness of the softwarewas tested by debugging it using XMD (Xilinx Mi
ro-pro
essor Debugger) whi
h allows the user to singlestep through the
ode. The software was in
luded inthe system after thorough testing. The software waswritten in C and
he
ked for MISRA-C(MISRA 2004)rules by Abraxas Software's CodeChe
k v1300 B1 tool(results in System Veri�
ation se
tion). The
ode wasfor a se
onds
ounter and instan
es of the same
odewere allowed to run on ea
h of the three mi
ropro
es-sors. The design was targeted for a Xilinx FPGA andhen
e Xilinx design
ows.1.3 Literature ReviewOther teams have worked on TMR systems onFPGA's. Bitstream faults were investigated by(L.Carro et al 2005) and results were based on numberand pla
ement of voters. (Rami Melhem et al 2002)have performed analysis of energy eÆ
ien
y of Duplexand TMR systems. (Hyunki Kim et al 2002) havedeveloped a TMR system based on MC68000 (mi
ro-pro
essor from Motorola). A number of other workswere reviewed and it was found that little work hasbeen done on implementing TMR software systemson FPGA's with a fo
us on improving software re-liability on FPGA's. Our team was and is fo
ussedon reliable software exe
ution on FPGA's for imple-menting FPGA based Safety Criti
al Systems. Hen
ewe have implemented a system whi
h
an exe
ute itssoftware reliably during various hardware faults.2 System Design2.1 The SystemAs shown in Figure 1 the system is
omposed of threeMi
roblaze pro
essor systems and the de
iding voter.Ea
h pro
essor system (Figure 2) is a whole systemin itself in that it
ontains the following essential
omponents:� Mi
roblaze or PowerPC mi
ropro
essor (in this
ase Mi
roblaze)

Proc. 11th Australian Workshop on Safety Critical Systems and Software

113

� Program Memory (in this
ase Blo
k RAM)� Data Memory (in this
ase Blo
k RAM)� Lo
al Memory Bus (LMB) for both instru
tionside and data side and asso
iated
ontrollers� OnChip Peripheral Bus (OPB)� Digital Clo
k Manager (DCM) and� Peripheral (in this
ase GPIO (general purposeI/O)For the above shown system, the voter peripheraland GPIO peripherals (Figure 2) were
reated using'Create - Import Peripheral' a tool available in XilinxEDK (Embedded Development Kit) for
reating
ustom peripherals (that are not otherwise availablein EDK) and atta
hing to the pro
essor via eitherOPB(OnChip Peripheral Bus),PLB(Peripheral Lo
alBus) or FSL(Fast Simplex Link). In this
ase theperipherals were designed to interfa
e to the OPBof Mi
roblaze. This whole system was housed in aVirtex 4 (XC4VLX25) FPGA on the ML401 Xilinxevaluation board.The whole system was developed using the EDKdesign
ow by manually
reating the MHS (Mi-
ropro
essor hardware spe
i�
ation) and MSS(Mi
ropro
essor software spe
i�
ation) �les. Thismeans that these �les were not automati
ally gen-erated by EDK whi
h is what generally happensduring development. In our
ase we had to write outthese �les using the syntax for MHS and MSS �lessin
e our system
ould not be dire
tly generated byEDK. These �les are the de
iding fa
tors in XilinxEDK that determine the hardware synthesized andthe software libraries generated.All the
ode and data resided in internal BRAM(blo
k RAM) blo
ks (3 in number)The GPIO peripherals interfa
ed to the mi
ropro
es-sor via the OPBThe voter peripheral however even though designedfor interfa
e via OPB was not interfa
ed to theCPU rather it was interfa
ed only to the GPIOoutputs (inputs to the voter) and external out-puts (the output or result itself and error output).

The external outputs were led's driven by FPGAI/O's.2.2 SoftwareThree instan
es of the same
ode were
reated asshown below (in
orporating fault inje
tion)
onform-ing to MISRA-C(MISRA 2004) rules. Due to thepresen
e of three
ode instan
es and identi
al hard-ware ar
hite
tures, true
on
urren
y of exe
ution ofoperation was obtained.The
ode in this
ase is for a simple
ounter whosetwo least signi�
ant bits are output to the voter. Thevoter in turn outputs the two bit value to LED's onthe board. The header �le 'xparameters.h'
ontainsde�nition of the base address of the GPIO (generalpurpose input output) whose output is
onne
ted tothe voter input. The header �le 'vgpio.h'
ontainsfun
tion prototypes of GPIO read/write fun
tions.It also in
ludes the 'xbasi
 types.h' header �le whi
h
ontains typedef'd data type de�nitions e.g Xuint8.The
ounter runs at a speed of 1 Hz due to the fa
tthat the external
lo
k frequen
y is 100 MHz and thenumber of
lo
k ti
ks that are
ounted are also thesame number (ledX delay where X=0,1,2).The
ode is shown to demonstrate how safe
ode waswritten and how we plan to write it in future (e.gno use of pointers, use of ma
ros, adequate fun
tionprototypes et
). The three
odes although the samewere di�erent when testing for faults namely stu
kat faults. For example (see fault inje
tion in
ode)the GPIO's were stu
k at either 0x00 or 0x� for oneof the
odes with the remaining
odes being inta
t.Mi
roblaze System #1//
ounter0.
#in
lude "xparameters.h"#in
lude "vgpio.h"#de�ne led0 base XPAR VGPIO 0 BASEADDR#de�ne led0 delay 100000000#de�ne led0 o�set 0void delay(void)int main()fXuint8 led0 data;

CRPIT Volume 69

114

led0 data = 0x00;while(1)//GPIO writef//Stu
k at fault inje
tion//VGPIO mWriteReg(led0 base,led0 o�set,0x�);//VGPIO mWriteReg(led0 base,led0 o�set,0x00);VGPIO mWriteReg(led0 base,led0 o�set,led0 data);delay();led0 data++;greturn 0;gvoid delay(void)f Xuint32 led0 delay value;led0 delay value = 0x00;while(led0 delay value < led0 delay)f led0 delay value++;ggMi
roblaze System #2//
ounter1.
#in
lude "xparameters.h"#in
lude "vgpio.h"#de�ne led1 base XPAR VGPIO 1 BASEADDR#de�ne led1 delay 100000000#de�ne led1 o�set 0void delay(void)int main()fXuint8 led1 data;led1 data = 0x00;while(1)//GPIO writef//Stu
k at fault inje
tion//VGPIO mWriteReg(led1 base,led1 o�set,0x�);//VGPIO mWriteReg(led1 base,led1 o�set,0x00);VGPIO mWriteReg(led1 base,led1 o�set,led1 data);delay();led1 data++;greturn 0;gvoid delay(void)f Xuint32 led1 delay value;led1 delay value = 0x00;while(led1 delay value < led1 delay)f led1 delay value++;ggMi
roblaze System #3//
ounter2.
#in
lude "xparameters.h"#in
lude "vgpio.h"#de�ne led2 base XPAR VGPIO 2 BASEADDR#de�ne led2 delay 100000000#de�ne led2 o�set 0void delay(void)int main()fXuint8 led2 data;led2 data = 0x00;while(1)//GPIO writef

//Stu
k at fault inje
tion//VGPIO mWriteReg(led2 base,led2 o�set,0x�);//VGPIO mWriteReg(led2 base,led2 o�set,0x00);VGPIO mWriteReg(led2 base,led2 o�set,led2 data);delay();led2 data++;greturn 0;gvoid delay(void)f Xuint32 led2 delay value;led2 delay value = 0x00;while(led2 delay value < led2 delay)f led2 delay value++;ggFor the above
ode instan
es, the libraries weregenerated by EDK after parsing MHS and MSS �les.New drivers were
reated by the tool for the user
reated peripherals viz GPIO and voter. Howeveronly driver for the GPIO peripheral is being used.2.3 PeripheralsThis se
tion explains design of peripherals and thedesign methodology employed as it impa
ts theease of development. As has already been pointedout the GPIO and voter peripherals were
reatedby the team using 'Create - Import Peripheral' autility that is shipped alongwith Xilinx EDK. Of
ourse one
an use Xilinx provided GPIO
ores aswell. Development of our own GPIO peripheralshappened as a result of issues related to the devi
edriver. The voter peripheral was
reated due to ouradopted design methodology. The design phase
ana
tually have two di�erent design
ows. One is theXilinx ISE (Integrated System Environment)
ow(Figure 3) and the other is the EDK
ow (Figure4). Looking at Figure 1, one might say that theISE
ow looks like the logi
al one sin
e the voter
an be entirely developed in ISE (VHDL RTL) andthe mi
ropro
essor �le developed in EDK
an bein
luded in the ISE proje
t and both the entities
an be instantiated within a top level entity thus
ompleting the entire system. This design
ow worksallright if only the mi
ropro
essor �le is in
ludedand synthesized in ISE. It
an be made to work withthe VHDL and uP �les instantiated together butthis involves tinkering whi
h goes very deep into theXilinx �les.Hen
e we de
ided to take the EDK design
owmethodology. Obviously sin
e this is not ISE adire
t implementation of the voter was not possible.Hen
e we had to
reate our own voter peripheralthe dis
ussion of whi
h is
arried forward in thesubse
tions. The
ase of our own GPIO peripheralsis also dis
ussed in the following subse
tion.2.3.1 VGPIOThe GPIO
ore is not the standard Xilinx GPIO
ore. Its
alled VGPIO whi
h was developed by usfor purposes des
ribed in the following.The Xilinx GPIO is a
omplex
ore with
ertainfun
tionalities that we did not require and the devi
edriver too has
omplex usage in that it has to beinitialized and
on�gured the
orre
t way so thatit be
omes suitable for our system. Our GPIO,the VGPIO has a simple devi
e driver and one
an

Proc. 11th Australian Workshop on Safety Critical Systems and Software

115

immediately write to or read from it without anyspe
ial initialization and
on�guration.

Figure 5 shows the ar
hite
ture of our GPIO.As shown it's a simple 32 bit register (for simpli
itysin
e Mi
roblaze is 32 bit) featuring big endian (asMi
roblaze follows big endian) format.� VGPIO devi
e driverEDK builds libraries
ontaining drivers for ea
hperipheral in the design after parsing the MHSand MSS �les. In
ase of the VGPIO periph-eral we used the basi
 write fun
tion whi
h wasprovided by default for writing into the VGPIOregister.Before implementing the �nal system (Figure 1)we implemented the system as shown in Figure 6.This s
heme had timing issues in that the outputsof VGPIO's (
onne
ted to inputs of voter) wouldarrive at the same time however the voter wouldhave its third input (
oming from Mi
roblaze #2)mu
h earlier thus only two inputs to the voterwould mat
h resulting in error LED turned on.

CRPIT Volume 69

116

2.3.2 VoterThe voter ar
hite
ture is basi
ally that of a
ompara-tor whi
h looks at three inputs and
he
ks for various
ombinations of inequalities. The voter too was builtusing 'Create - Import Peripheral' though it wasn'tinterfa
ed to any Mi
roblaze. It
ontained both theOPB interfa
e hardware as well as the
omparatorhardware both of them working in parallel withoutany
onne
tion whatsoever. We had to opt forthis approa
h as the solution was the EDK design
ow and hen
e we needed the voter to be availablein EDK so that we
ould in
lude it in our MHSdes
ription. The following VHDL snippet des
ribesthe voter ar
hite
ture. Note that the OPB part hasbeen omitted as it is not required to be shown.The VHDL
ode for the voter (a 2 bit module)basi
ally
ompares the three inputs with ea
h otherand passes that value whi
h appears on at least twoinputs to the output. An error is generated if eitheronly two inputs mat
h or all inputs mismat
h. In theevent where all inputs mismat
h the output is made"00". The inputs
an assume values "00","01","10"or "11" hen
e the output
an assume these samevalues. Even if only two inputs mat
h, the voter willstill output the value keeping the system in operationbut at the same time it indi
ates to the personnelthat an internal error has o

ured.library ieee;use ieee.std logi
 1164.all;use ieee.std logi
 arith.all;use ieee.std logi
 unsigned.all;library pro

ommon v2 00 a;use pro

ommon v2 00 a.pro

ommon pkg.all;entity voter isport(voter in0:std logi
 ve
tor(0 to 1);voter in1:std logi
 ve
tor(0 to 1);voter in2:std logi
 ve
tor(0 to 1);voter out:std logi
 ve
tor(0 to 1);sys error:std logi
);end entity voter;

ar
hite
ture voter ar
h of voter issignal voter in0 store:std logi
 ve
tor(0 to 1);signal voter in1 store:std logi
 ve
tor(0 to 1);signal voter in2 store:std logi
 ve
tor(0 to 1);beginvoter a
tion : pro
ess(voter in0 store,voter in1 store,voter in2 store) isbeginif(voter in0 store = voter in1 store) and(voter in0 store /= voter in2 store) thenvoter out store (voter in0 store;sys error store ('1';elsif(voter in0 store = voter in2 store)and (voter in0 store /= voter in1 store) thenvoter out store (voter in0 store;sys error store ('1';elsif(voter in1 store = voter in2 store) and(voter in1 store /= voter in0 store) thenvoter out store (voter in1 store;sys error store ('1';elsif(voter in0 store = voter in1 store) and(voter in1 store = voter in2 store) thenvoter out store (voter in0 store;sys error store ('0';elsevoter out store ("00";sys error store ('1';end if;end pro
ess voter a
tion;voter out (voter out store;sys error (sys error store;end ar
hite
ture voter ar
h;As shown in the above
ode the voter looks fordi�erent mat
h possibilities and asserts an er-ror if only two inputs mat
h or all three inputsdon't mat
h. Figure 7 shows the voter ar
hite
ture.

As shown the voter has two distin
t parts, the
om-parator whi
h performs the voting a
tion and thedummy OPB part used only to get the voter pe-ripheral in
luded in the MHS �le via the 'Add Edit
ores' option in EDK. The
omparator is purely
ombinational in nature for now and may be madesequential in future. Following is the MHS
odesnippet to illustrate how the voter was interfa
ed.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

117

BEGIN voterPARAMETER INSTANCE = voter 0PARAMETER HW VER = 1.00.aPORT voter in0 = voter sig0PORT voter in1 = voter sig1PORT voter in2 = voter sig2PORT voter out = sys out ioPORT sys error = sys err ioENDAs shown the voter is interfa
ed only to theinputs and outputs. Voter sig0, voter sig1 andvoter sig2 are internal
onne
tions
onne
ting theVGPIO outputs to the voter inputs. Similarlysys out io and sys err io are
onne
tions to theoutputs.3 System Veri�
ation3.1 MISRA-C
omplian
eMISRA-C(MISRA 2004) sets out guidelines for theuse of C language in safety
riti
al systems. Oursoftware was
he
ked for MISRA-C(MISRA 2004)rules by Abraxas Software's CodeChe
k MISRA-C(MISRA 2004) rules
he
ker. The tool basi
allyparses the user's C
ode and lists warnings
orre-sponding to ea
h MISRA-C rule that has not beensatis�ed in the
ode. Following is the results obtainedby the rules
he
ker.Abraxas Software (R) CodeChe
kWindows Version 1300 B1 DEMOCopyright (
) 1988�2006, byAbraxas Software In
.All rights reservedChe
king extended ANSI C �le
ounter0.
 with rules from misra04.

ounter0.
(9): Warning W0076:
ounter0.
(9):Rule 76 (REQUIRED) 16.5 Fun
tions with noparameters shall be de
lared with parametertype void.
ounter0.
(9): Warning W0071:
ounter0.
(9) :Rule 71 (REQUIRED) 8.1 Fun
tions shall alwayshave prototype de
larations. fDEFNg
ounter0.
(9): Warning W0074:
ounter0.
(9) :Rule 74 (REQUIRED) 16.4 identi�ers given forany of the parameters de
l and/or defn mustbe same
ounter0.
(14): Warning W0071:
ounter0.
(14) :Rule 71 (REQUIRED) 8.1 Fun
tions shall alwayshave prototype de
larations. fCALLgFile
ounter0.

he
k
omplete.As shown above the appli
able rules have beenpointed out by the
he
ker wherever required and wehave veri�ed our
ode for potential hazards at thesepoints. For example line 9 warning W0076!Thismeans that MISRA-C rule number 76 has not beensatis�ed in the
ode and so on. Similar results wereobtained for the �les
ounter1.
 and
ounter2.
The warnings with the level 'REQUIRED' havebeen taken
are of but they appear be
ause somepart of the
ode is in header �les whi
h were notin
luded (they were initially in
luded whi
h gave riseto warnings due to the presen
e of other header �leswhi
h was not an indi
ation of non safety
riti
al
ode) during CodeChe
k run. For example rule71 at line 14 says that fun
tions shall always haveprototype de
larations whi
h has been implementedin the header �les. Hen
e the warnings are notserious and the
ode
an be
onsidered to
omply

with MISRA-C guidelines.3.2 Mi
roblaze
ompiler outputThe Mi
roblaze g

ompiler output for ea
h of thesoftware �les (
ounter0.
,
ounter1.
,
ounter2.
) hasbeen shown. The fa
t that the
ompilation tookpla
e without errors is justi�ed due to the presen
e ofthe size of
ode (hex 6a
,6a
,6e
) and exe
utable.elf�le for ea
h of the three �les. The result also showsthe
ode and data memory map used viz for the �rst
ode instan
e (
ounter0.
) the program memory anddata memory start at 0x0000,for the se
ond
ode instan
e (
ounter1.
) the programmemory and data memory start at 0x4000 andfor the third
ode instan
e (
ounter2.
) the programmemory and data memory start at 0x8000.Following is the Mi
roblaze
ompiler (mb�g

)output:At Lo
al date and time: Mon Apr 24 15:55:37 2006Command xbash �q �
 "
d /
ygdrive/d/aSCSa1/;/usr/bin/make �f system.make program; exit;"Started...mb�g

 �O2 mi
roblaze 0/
ode/
ounter0.
 �o
ounter0/exe
utable.elf n�Wl,�defsym �Wl, TEXT START ADDR=0x0000�mno�xl�soft�mul �g �I./mi
roblaze 0/in
lude/-L./mi
roblaze 0/lib/ n�xl�mode�exe
utable nmb�size
ounter0/exe
utable.elftext data bss de
 hex �lename664 12 1032 1708 6a

ounter0/exe
utable.elfmb�g

 �O2 mi
roblaze 1/
ode/
ounter1.
 �o
ounter1/exe
utable.elf n�Wl,�defsym �Wl, TEXT START ADDR=0x4000�mno�xl�soft�mul �g �I./mi
roblaze 1/in
lude/�L./mi
roblaze 1/lib/ n�xl�mode�exe
utable nmi
roblaze 1/
ode/
ounter1.
:30:2: warning: nonewline at end of �lemb�size
ounter1/exe
utable.elftext data bss de
 hex �lename664 12 1032 1708 6a

ounter1/exe
utable.elfmb�g

 �O2 mi
roblaze 2/
ode/
ounter2.
 �o
ounter2/exe
utable.elf n�Wl,�defsym �Wl, TEXT START ADDR=0x8000�mno�xl�soft�mul �g �I./mi
roblaze 2/in
lude/�L./mi
roblaze 2/lib/ n�xl�mode�exe
utable nmi
roblaze 2/
ode/
ounter2.
:30:2: warning: nonewline at end of �lemb�size
ounter2/exe
utable.elftext data bss de
 hex �lename728 12 1032 1772 6e

ounter2/exe
utable.elfDone.3.3 Fault Inje
tionVarious hardware faults were emulated both in soft-ware and hardware. Stu
k at faults were emulatedby inserting fault inje
tion
ode in software (see soft-ware se
tion). Stu
k at fault means that the nodes arestu
k either at logi
 high or low due to a
on�guration/ bitstream error or fabri
ation defe
ts or hardwaredesign fault. Bit
ip faults were emulated by insert-ing 'bit
ip fault'
ode in VGPIO VHDL �le (
odehasn't been shown as �le is too large to be in
luded).3.4 Board level Veri�
ationThe system was run on ML401 Xilinx Evaluationboard by tying the outputs to LED's. Following is alisting of the user
on�guration �le (UCF)
reated in

CRPIT Volume 69

118

EDK.Net sys
lk pin LOC=AE14;Net sys
lk pin IOSTANDARD = LVCMOS33;Net sys rst pin LOC=D6;Net sys rst pin PULLUP;## System level
onstraintsNet sys
lk pin TNM NET = sys
lk pin;TIMESPEC TS sys
lk pin = PERIOD sys
lk pin10000 ps;Net sys rst pin TIG;## FPGA pin
onstraintsNet sys out pin<0> LOC=E2;Net sys out pin<0> IOSTANDARD = LVCMOS25;Net sys out pin<1> LOC=E10;Net sys out pin<1> IOSTANDARD = LVCMOS25;Net sys err pin LOC=A5;Net sys err pin IOSTANDARD = LVCMOS25;The above listing shows
onne
tions of various signals(
lk,rst,sys out pin(0),sys out pin(1),sys err pin) toFPGA pins (AE14,D6,E2,E10,A5) respe
tively. The
onstraints applied also show the I/O standards in ef-fe
t, for example the sys
lk pin has an I/O standardLVCMOS33 whi
h means Low Voltage CMOS 3.3V.Similarly the sys out pins and sys err pin have I/Ostandard LVCMOS25 (Low Voltage CMOS 2.5V).The sys rst pin has been pulled up to V

 (power vizlogi
 high) sin
e on the board the reset (sys rst pin)is a
tive low (meaning that the system is reset whensys rst pin is logi
 low). This basi
ally means thatwhen reset button is not pressed the sys rst pin willbe logi
 high and when reset button is pressed itwill be logi
 low. The system level
onstraints havethree
ommands namely TNM NET, TIMESPECand TIG whose explanation is as follows :TNM NET means that sys
lk pin is to be used in atiming spe
i�
ation.TIMESPEC de�nes the
lo
k period viz 100MHz.TIG means that sys rst pin is to be ignored for atiming spe
i�
ation.4 Con
lusionA triple modular redundant te
hnique for reli-able software exe
ution in the event of hardwarefaults adhering to MISRA-C(MISRA 2004) ruleswas implemented and veri�ed on a Virtex 4 FPGA(XC4VLX25) on the ML401 Xilinx Evaluation Board.The te
hnique exhibited true
on
urren
y in be-haviour and operated
orre
tly for long periods oftime. This TMR work is one step in our investigationof reliable FPGA based programmable
ontroller forsafety
riti
al appli
ations.5 Future WorkPresently the three
opies of
ode are identi
al to ea
hother. To guard against design faults in software itis possible that ea
h of the three
odes is di�erent inthat the fun
tionality of the
odes remain same how-ever the implementation of this fun
tionality di�ersfrom
ode to
ode. For example the simple
ounterimplemented in this
ase
an be implemented in threedi�erent ways viz1. For loop2. While loop3. Do While loopThe issue with su
h methodology is the timing di�er-en
e that may o

ur at outputs of ea
h Mi
roblazeSystem due to whi
h outputs arrive at di�erent in-stants of time thus giving an unstable operation inthat the voter would signal error every now and then

whi
h
ould
ause system malfun
tion.We propose to investigate in this dire
tion of
odediversity in TMR systems and
hallenges involved indesign of voter for su
h
ir
umstan
es.Referen
esMISRA(2004), MISRA-C : 2004, Guidelines for theuse of the C language in
riti
al systems.IEC(1998), International Standard IEC61508 - Fun
tional safety of ele
tri-
al/ele
troni
/programmable ele
troni
 safetyrelated systems.B.W.Johnson(1989), Design and Analysis of fault tol-erant digital systems.G.Berry and the Esterel team(2000), The Esterelv5 91 System Manual.F.Lima Kastensmidt, L.Sterpone, L.Carro, M.SonzaReorda(2005), On the Optimal Design of TripleModular Redundan
y Logi
 for SRAM basedFPGA's, in `IEEE Pro
eedings of the Design,Automation and Test in Europe Conferen
e andExhibition (DATE'05)', Vol. 2, pp. 1290{1295.Elmootazbellah Elnozahy, Rami Melhem, DanielMosse(2002), Energy EÆ
ient Duplex and TMRReal Time Systems, in `Pro
eedings of the23rd IEEE Real Time Systems Symposium(RTSS'02)', pp. 256{266.Hyunki Kim, Hyung Joon Jeon, Keyseo Lee, Hyun-tae Lee(2002), The Design and Evaluation of AllVoting Triple Modular Redundan
y System, in`2002 IEEE Pro
eedings Annual of Reliabilityand Maintainability Symposium', pp. 439{444.

Proc. 11th Australian Workshop on Safety Critical Systems and Software

119

CRPIT Volume 69

120

Author Index

Bergmann, Neil, 113

Cant, Tony, iii

Gärtner, J.U., 19
Garlan, David, 3
Griffiths, Alena, 23

Hansen, Klaus Marius, 35
Hunter, Bruce, 45

Kelly, Tim, 53

Mehta, Hardik, 113

Qureshi, Zahid H., 67

Reinhardt, Derek, 79

Schmerl, Bradley, 3
Squair, Matthew John, 93

Vasudevan, Venkatesh, 113

Waldeck, Peter, 113
Wells, Lisa, 35

Proc. 11th Australian Workshop on Safety Critical Systems and Software

121

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 53 - Conceptual Modelling 2006
Edited by Markus Stumptner, University of South
Australia, Sven Hartmann, Massey University, New
Zealand and Yasushi Kiyoki, Keio University, Japan.
January, 2006. 1-920-68235-X.

Contains the proceedings of the Third Asia-Pacific Conference on Conceptual Modelling
(APCCM2006), Hobart, Tasmania, Australia, January 2006.

Volume 54 - ACSW Frontiers 2006
Edited by Rajkumar Buyya, University of Mel-
bourne, Tianchi Ma, University of Melbourne,
Rei Safavi-Naini, University of Wollongong, Chris
Steketee, University of South Australia and Willy
Susilo, University of Wollongong. January, 2006. 1-
920-68236-8.

Contains the proceedings of the Fourth Australasian Symposium on Grid Computing and e-
Research (AusGrid 2006) and the Fourth Australasian Information Security Workshop (Net-
work Security) (AISW 2006), Hobart, Tasmania, Australia, January 2006.

Volume 55 - Safety Critical Systems and Software 2005
Edited by Tony Cant, University of Queensland.
April, 2006. 1-920-68237-6.

Contains the proceedings of the 10th Australian Workshop on Safety Related Programmable
Systems, August 2005, Sydney, Australia.

Volume 56 - Vision in Human-Computer Interaction
Edited by Roland Goecke, Antonio Robles-Kelly,
and Terry Caelli, NICTA. November, 2006. 1-920-
68238-4.

Contains the proceedings of the HCSNet Workshop on the Use of Vision in Human-Computer
Interaction (VisHCI 2006).

Volume 57 - Multimodal User Interaction 2005
Edited by Fang Chen and Julien Epps National
ICT Australia. April, 2006. 1-920-68239-2.

Contains the proceedings of the NICTA-HCSNet Multimodal User Interaction Workshop 2005,
Sydney, Australia, 13-14 September 2005.

Volume 58 - Advances in Ontologies 2005
Edited by Thomas Meyer, National ICT Australia,
Sydney and Mehmet Orgun Macquarie University.
December, 2005. 1-920-68240-6.

Contains the proceedings of the Australasian Ontology Workshop (AOW 2005), Sydney, Aus-
tralia, 6 December 2005.

Volume 60 - Information Visualisation 2006
Edited by Kazuo Misue, Kozo Sugiyama and Jiro
Tanaka. February, 2006. 1-920-68241-4.

Contains the proceedings of the Asia-Pacific Symposium on Information Visualization (APVIS
2006), Tokyo, Japan, February 2006.

Volume 61 - Data Mining and Analytics 2006
Edited by Peter Christen, Australian National Uni-
versity, Paul J. Kennedy, University of Technology,
Sydney, Jiuyong Li, University of Southern Queens-
land, Simeon Simoff, University of Technology, Syd-
ney and Graham Williams, Australian Taxation Of-
fice. December, 2006. 1-920-68242-2.

Contains the proceedings of the Australasian Data Mining Conference (AusDM 2006), Sydney,
Australia. December 2006.

Volume 62 - Computer Science 2007
Edited by Gillian Dobbie, University of Auckland,
New Zealand. January, 2007. 1-920-68243-0.

Contains the proceedings of the Thirtieth Australasian Computer Science Conference
(ACSC2007), Ballarat, Victoria, Australia, January 2007.

Volume 63 - Database Technologies 2007
Edited by James Bailey, University of Melbourne
and Alan Fekete, University of Sydney. January,
2007. 1-920-68244-9.

Contains the proceedings of the Eighteenth Australasian Database Conference (ADC2007),
Ballarat, Victoria, Australia, January 2007.

Volume 64 - User Interfaces 2007
Edited by Wayne Piekarski, University of South
Australia. January, 2007. 1-920-68245-7.

Contains the proceedings of the Eighth Australasian User Interface Conference (AUIC2007),
Ballarat, Victoria, Australia, January 2007.

Volume 65 - Theory of Computing 2007
Edited by Joachim Gudmundsson, NICTA, Aus-
tralia and Barry Jay UTS, Australia . January,
2007. 1-920-68246-5.

Contains the proceedings of the Thirteenth Computing: The Australasian Theory Symposium
(CATS2007), Ballarat, Victoria, Australia, January 2007.

Volume 66 - Computing Education 2007
Edited by Samuel Mann, Otago Polytechnic and
Simon Newcastle University. January, 2007. 1-920-
68247-3.

Contains the proceedings of the Ninth Australasian Computing Education Conference
(ACE2007), Ballarat, Victoria, Australia, January 2007.

Volume 67 - Conceptual Modelling 2007
Edited by John F. Roddick, Flinders University and
Annika Hinze, University of Waikato, New Zealand.
January, 2007. 1-920-68248-1.

Contains the proceedings of the Fourth Asia-Pacific Conference on Conceptual Modelling
(APCCM2007), Ballarat, Victoria, Australia, January 2007.

Volume 68 - ACSW Frontiers 2007
Edited by Ljiljana Brankovic, University of Newcas-
tle, Paul Coddington, University of Adelaide, John
F. Roddick, Flinders University, Chris Steketee,
University of South Australia, Jim Warren, the Uni-
versity of Auckland, and Andrew Wendelborn, Uni-
versity of Adelaide. January, 2006. 1-920-68249-X.

Contains the proceedings of the ACSW Workshops - The Australasian Information Security
Workshop: Privacy Enhancing Systems (AISW), the Australasian Symposium on Grid Com-
puting and Research (AUSGRID), and the Australasian Workshop on Health Knowledge Man-
agement and Discovery (HKMD), Ballarat, Victoria, Australia, January 2007.

Volume 72 - Advances in Ontologies 2006
Edited by Mehmet Orgun Macquarie University and
Thomas Meyer, National ICT Australia, Sydney. De-
cember, 2006. 1-920-68253-8.

Contains the proceedings of the Australasian Ontology Workshop (AOW 2006), Hobart, Aus-
tralia, December 2006.

Volume 73 - Intelligent Systems for Bioinformatics 2006
Edited by Mikael Boden and Timothy Bailey
University of Queensland. December, 2006. 1-920-
68254-6.

Contains the proceedings of the AI 2006 Workshop on Intelligent Systems for Bioinformatics
(WISB-2006), Hobart, Australia, December 2006.

CRPIT Volume 69

122

	AAAHeaders.pdf
	CRPITV69Garlan.pdf
	1 Introduction
	2 Modelling architectural structure
	2.1 Components, connectors, and systems
	2.2 Acme

	3 Modelling architectural properties
	3.1 Properties in Acme
	3.2 Analysing architectural properties
	Example 1: Analysis of real-time schedulability,
	Example 2: Analysis of server-load.
	Example 3: Analysis of security

	4 Modelling architectural behaviour
	5 Modelling architectural styles
	5.1 Architectural styles in Acme
	5.2 Example: Mission Data Systems
	5.3 Other style-based analysis

	Mapping between architecture and implementation
	6.1 Refinement and generation
	Example 1: Model generation of automotive control systems
	Example 2: Code generation for MDS space flight systems

	6.2 Direct comparison

	7 Related work
	7.1 Architecture description languages
	7.2 Specification and analysis of architectural behaviour
	7.3 Refinement and generation

	8 Discussion and conclusions
	Acknowledgements
	References

	CRPITV69GarlanZZZ.pdf
	CRPITV69Gartner.pdf
	CRPITV69Griffiths.pdf
	CRPITV69GriffithsZZZ.pdf
	CRPITV69Hansen.pdf
	CRPITV69Hunter.pdf
	CRPITV69HunterZZZ.pdf
	CRPITV69Kelly.pdf
	CRPITV69KellyZZZ.pdf
	CRPITV69Qureshi.pdf
	CRPITV69QureshiZZZ.pdf
	CRPITV69Reinhardt.pdf
	CRPITV69Squair.pdf
	CRPITV69Vasudevan.pdf
	CRPITV69VasudevanZZZ.pdf
	ZZZTrailers.pdf

