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Foreword

The 2006 Australian Workshop on Safety-Related Programmable Systems was held in Melbourne on 31
August and 1 September, 2006. The workshop, sponsored by the Australian Safety Critical Systems As-
sociation, had the theme: “Safe Software Architectures” and was attended by 45 participants. Roughly
half of the workshop papers addressed safety standards, while the other half covered the use of tools and
techniques for safety assurance.

Once again, four international keynote speakers presented talks at the workshop:

– Klaus Marius Hansen, Associate Professor at the Computer Science Department, University of Aarhus,
Denmark.

– David Garlan, Professor in the School of Computer Science at Carnegie Mellon University, USA.
– Tim Kelly, Lecturer in Department of Computer Science at the University of York; also Deputy Director

of the Rolls-Royce Systems and Software Engineering University Technology Centre, UK.
– Jakob Gärtner, Technical Director of Esterel Technologies, Germany.

Full program details are available from http://www.safety-club.org.au.
The organizing committee is very grateful to the authors for the trouble they have taken in preparing

their work to be included in these workshop proceedings. The papers were peer-reviewed for relevance and
quality by the Association Committee and their colleagues. Note, however, that the views expressed in the
papers are the authors’ own, and in no way represent the views of the editor, the Association Committee, or
the ACS generally. The fact that the papers have been accepted for publication should not be interpreted
as an endorsement of the views or methods they describe, and no responsibility or liability is accepted for
the contents of the articles or their use.

The committee also wishes to thank the workshop sponsors for their support: Hyder Consulting, Airser-
vices Australia, the Centre of Excellence in Defence and Industry Systems Capability (CEDISC) and the
Defence Materiel Organisation in the Australian Government Department of Defence. These organisations
have all helped to make the workshop a success.

I wish to thank the other members of the organising committee: Chris Edwards (Treasurer), Kevin
Anderson (Secretary and Workshop Chair), and George Nikandros (Association Chair). Thanks are also
due to the paper reviewers for their constructive comments. Finally, thanks to Karl Reed and the Computer
Systems and Software Engineering Board of the ACS for their ongoing support of the Association.

Tony Cant
Workshop Chair

January 2007
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The Australian Safety Critical Systems Association

Computer systems and embedded computers pervade all aspects of modern daily life, and many imple-
ment functions that have the potential to cause death or injury if they do not operate correctly. Some of
these systems include emergency service dispatch, car braking, aircraft flight controls, railway control, and
telecommunications systems. These systems are not safe by accident but require safety to be designed into
them.

The Australian Computer Society launched the Australian Safety Critical Systems Club (as it was then
named) on 17 October 2002, in conjunction with its annual SCS workshop in Adelaide. Chapter launches
have been held in Perth, Melbourne, Sydney, Canberra and Brisbane.

At the AGM held in Sydney on 25 August 2005, it was agreed to change the name Australian Safety
Critical Systems Club to Australian Safety Critical Systems Association.

The Association aims to foster discussion on the design and development of safety critical systems, as
well as debate on more philosophical issues of safety standards, including questions such as How safe is
safe enough?

Specifically, the Association’s purpose is to:

– Provide a national focus and forum for its members who have an interest in safety-related systems,
particularly those systems containing software.

– Provide professional association services for all categories of its membership.
– Stimulate the active contribution and participation of its members in the development and dissemina-

tion of safety-related systems knowledge and to support the activities of the Society.
– Foster and support education and training associated with all aspects of safety-related systems.
– To provide learned society functions for individuals and industry groups and to provide practice based

opinion and advice for the Society.

Membership of the Australian Safety Critical Systems Association is open to anyone involved in design
and development of safety critical systems, or with an interest in system safety issues. The Association
is also expected to be relevant to people interested in the assurance of systems dependability, including
Reliability, Availability, Maintainability and Safety (RAMS) of systems.

The SCS Association Committee is as follows:

– Chairman: George Nikandros, Queensland Rail
– Secretary: Kevin Anderson, Function Leader - Risk and Reliability, Hyder Consulting
– Treasurer: Chris Edwards, AMW Pty Ltd
– Members: Tony Cant, Robert Worthington, Peter Hartfield, Allan Coxson, Clive Boughton

For more information about the Australian Safety Critical Systems Association, visit our web site at
http://www.safety-club.org.au.

Tony Cant
Defence Science and Technology Organisation, Australia

SCS2006 Program Chair
August/September, 2006



Sponsors

We wish to thank the following for their kind contributions towards this workshop.
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Architecture-driven Modelling and Analysis*  

David Garlan and Bradley Schmerl 
School of Computer Science 
Carnegie Mellon University 

5000 Forbes Ave, Pittsburgh, PA 15213 USA 
{garlan,schmerl}@cs.cmu.edu 

 

                                                           
* This paper accompanies the keynote talk “Software Architec-
ture for Highly Dependable Systems” by David Garlan. 

Abstract 
Over the past 15 years there has been increasing recogni-
tion that careful attention to the design of a system’s 
software architecture is critical to satisfying its require-
ments for quality attributes such as performance, security, 
and dependability. As a consequence, during this period 
the field of software architecture has matured signifi-
cantly. However, current practices of software architec-
ture rely on relatively informal methods, limiting the po-
tential for fully exploiting architectural designs to gain 
insight and improve the quality of the resulting system.  
In this paper we draw from a variety of research results to 
illustrate how formal approaches to software architecture 
can lead to enhancements in software quality, including 
improved clarity of design, support for analysis, and as-
surance that implementations conform to their intended 
architecture. 

Keywords:  Software Architecture, Architecture Analysis 

1 Introduction 
Software architecture is concerned with the high-level 
structures of a software system, the relationships among 
them, and their properties of interest. These high-level 
structures represent the loci of computation, communica-
tion, and implementation. Typical properties include 
emergent behaviour, such as the performance, reliability, 
security, maintainability, and so on (Shaw and Garlan 
1996, Perry and Wolf, 1992). 

Well designed architectures typically allow one to reason 
about satisfaction of key requirements and to make prin-
cipled engineering tradeoffs.  They can provide clear ra-
tionale of assignment of function to components, estab-
lish principles of conceptual integrity, and lead to consid-
erable reduction in rework over the lifespan of a system 
(Brookes 1975, Boehm and Turner 1993). They can also 
permit reuse of architectural design idioms and patterns, 
reduction of development costs through product line ap-
proaches, and guidance to future maintainers of those 
systems. 

Given the potential benefits of software architecture, over 
the past decade and a half the field has received increas-
ing attention and consequent progress. There are now 
numerous textbooks (Garlan and Shaw 1996, Bass, 

Clements, and Kazman 2003, Rosanski and Woods 
2005), review methods (Clements, Kazman, and Klein 
2001), conferences (e.g., the Working IEEE/IFIP Confer-
ences on Software Architecture (WICSA) and the Euro-
pean Workshops on Software Architecture (EWSA)), 
documentation standards (Clements et al. 2002, IEEE 
2000), handbooks (Buschmann et al. 1996), and courses 
covering the topic.  Success stories detailing the eco-
nomic benefits and practice of product lines abound 
(Bosch 2000, Clements and Northrop 2001). Software 
development practices typically now incorporate architec-
ture reviews, and software architects have formal titles 
and well-defined roles in many organizations.  

Coupled with heightened awareness, and increasing ma-
turity of practice, a number of standards bodies are now 
promoting notations and standards for software architec-
ture. UML 2.0 from the Object Management Group, for 
example, now has improved capabilities to represent gen-
eral component and connector architectures. The IEEE 
prescribes a meta-framework for architectural views 
(IEEE 2000). Some standards aim at more specific do-
mains, such as resource constrained systems (e.g., AADL 
by SAE International, 2004, or SysML by the Object 
Management Group, 2006). Other standards-based ap-
proaches, like “model driven architecture” (MDA) from 
the Object Management Group (2003), attempt to provide 
ways to move from architectural models to architectur-
ally-consistent implementations. Finally, the presence of 
middleware and their corresponding architectural frame-
works have led to considerable standardization and reuse 
within certain application domains, (e.g., J2EE, Eclipse, 
ADO.NET). 

However, despite notable progress and concern for ways 
to represent and use software architecture, specification 
of architectural designs remains relatively informal, rely-
ing on graphical notations with weak or non-existent se-
mantics that are often limited to expressing only the basic 
of structural properties. As a consequence, it is almost 
impossible using today’s common practices to (a) express 
architectural descriptions precisely and unambiguously; 
(b) provide soundness criteria and tools to check consis-
tency of architectural designs; (c) analyse those designs to 
determine implied system properties; (d) exploit patterns 
and styles, and check whether a given architecture con-
forms to a given pattern; and (e) guarantee that the im-
plementation of a system is consistent with its architec-
tural design. Copyright © 2006 Australian Computer Society, Inc. This 

paper appeared in the 11th Australian Workshop on Safety 
Related Programmable Systems (SCS’06), Melbourne. Con-
ferences in Research and Practice in Information Technology, 
Vol. 69. Tony Cant, Ed. Reproduction for academic, not-for-
profit purposes permitted provided this text is included. 
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Luckily, however, research has developed techniques to 
address many of these shortcomings by providing more-
formal approaches to architectural design. While these 
techniques may not be completely ready for full-scale 
adoption by industry, many of them are close to that level 
of maturity.  

In this paper we outline several such techniques and their 
associated tools, drawing particularly from research car-
ried out at Carnegie Mellon University in the ABLE Pro-
ject. While not a comprehensive survey of existing work 
on formal approaches to software architecture, this paper 
will give a flavour for the kinds of techniques being in-
vestigated by the research community, and the kinds of 
potential benefits that they can bring to the field. 

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes how to specify architectural structure; 
in Section 3 we introduce architectural properties and 
illustrate how a flexible property mechanism can facili-
tate architectural analysis; Section 4 shows how architec-
tural behaviour can be specified; Section 5 introduces the 
concepts of architectural style, and shows how they can 
be used to provide domain-specific architectural models 
and the ability to check for conformance to a style; Sec-
tion 6 presents a summary of our approaches to address-
ing the problem of establishing implementation confor-
mance to an architecture; finally, Sections 7 and 8 present 
related work and conclusions. 

2 Modelling architectural structure 
The starting point for any formal treatment of software 
architecture is the representation of architectural struc-
ture. However, this raises the question: what kinds of 
structure? Any complex software system may have many 
structures of interest: modules, run-time entities, devel-
opment teams, physical devices and networks. Today we 
understand that the preferred way of addressing this com-
plexity is to recognize that an architectural design must 
be described in terms of a number of distinct (but related) 
views. Each view represents an architectural perspective 
on the system, exposing certain system structures and 
their properties, to address a particular set of concerns. 

Following the approach of Clements et. al. (2002), one 
can categorize the kinds of structures into three general 
categories. First, there are coding structures, such as 
modules, packages, and classes, with relationships like 
uses, depends-on, inherits, etc. Second, there are run-time 
structures: databases, clients, servers, and connectors 
indicating communication pathways. Third, there are al-
location structures, which map elements of the first two 
views into non-software entities, such as the physical 
setting (networks, CPUs, etc.) or development teams. 
These mappings lead to allocation views, such as de-
ployment views or work breakdown structures. 

In this paper we will focus on modelling and analysis of 
run-time structures, or component and connector (C&C) 
views. This is because such structures are the ones that 
most directly convey critical properties related to depend-
ability, such as reliability, security, and performance. 
These are also the class of views that are least well sup-
ported by existing notations and tools. 

2.1 Components, connectors, and systems 
We model a run-time C&C view of software architecture 
as a graph of components and connectors. Specifically, 
basic elements and relations of a C&C view are: 
• Components model the principle computational 

elements of a system’s run-time structure. They in-
clude things like databases, clients, servers, GUI’s, 
etc. Each component has a set of ports, which model 
the run-time interfaces of that component, through 
which it interacts with other components (via con-
nectors). For example, a server might have a number 
of service invocation ports, each port representing a 
run-time interactions with an individual client. 

• Connectors model the pathways of communication 
between components. They include things like pipes 
and client-server communication links. Connectors 
may be binary, such as pipes and client-server inter-
actions, or N-ary, such as a publish-subscribe con-
nector, which allows publisher component to interact 
with zero, one, or many subscribing components. 
Each connector has a set of roles, which model the 
specifications of behaviour required of the compo-
nents that use a given connector. For example, a pipe 
might have a single reading and writing role, while a 
publish-subscribe connector would have multiple 
publish and subscribe roles. 

• Systems model a graph of components and connec-
tors in which the ports of a component fill the roles 
of a set of connectors to determine the interconnec-
tion topology. 

Figure 1 illustrates these concepts. In addition, a compo-
nent or a connector may have substructure (not illustrated 
here), called a representation that further elaborates its 
internal structure.  

 

  
Port 

Role 

System Component 

Connector 

Figure 1. Component and Connector View. 

This vocabulary allows one to model the box-and-and-
line diagrams common to architectural descriptions, and 
generally corresponds to the primitive conceptual build-
ing blocks in most architectural description languages 
(ADLs). It is important to note, however, that unlike 
many informal diagrammatic depictions of architecture, 
the above model explicitly identifies component inter-
faces, and represents connectors as first-class model ele-
ments of the software architecture. 

2.2 Acme 
In order to support analysis of component and connector 
architecture models it is necessary to have a machine-
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System simple-cs = { 
  Component client = { port call-rpc; }; 
  Component server = { port rpc-request; }; 
  Connector rpc = {  
     role client-side;  
     role server-side;  
  }; 
  Attachments = { 
     client.call-rpc to rpc.client-side; 
     server.rpc-request to rpc.server-side; 
  } 
} 

Figure 2. Acme description for a simple client-
server architecture. 

System simple-cs = { 
  …  
  Component server = {  
   port rpc-request = {  
     Property sync-requests : boolean  

                                           = true;  
    }; 
    Property max-transactions-per-sec : int = 5; 
    Property max-clients-supported : int = 100; 
  }; 
  Connector rpc = { …  
    Property protocol : string = “aix-rpc”; 
  }; … 
}; 

processable representation. In this paper we use the Acme 
ADL for this representation (Garlan et al. 2000). 

Figure 2 shows an Acme specification of a simple client-
server system consisting of a single client and a single 
server, interacting through a remote procedure-based 
connector.  The system, named simple-cs, is declared in 
the first line of the specification. Following this are decla-
rations of the two components, client and server, each 
with a single port (call-rpc and rpc-request, respectively). 
The connector, rpc, is declared to have two roles (client-
side and server-side). Finally, the system is created by 

attaching the appropriate ports to the respective roles of 
the connector.1

The textual representation of a graphical picture does 
little more than provide an alternative depiction. But there 
are, nonetheless, opportunities for analysis even with 
such simple models. For example, after parsing, we might 
check the model to determine whether any connectors 
have unattached roles, whether every port of a component 
is attached to some connector. or whether the architec-
tural substructure of a component provides interfaces to 

                                                           
1 Although we don’t illustrate it in this simple example, at this 
structural level we could also provide representations of the 

Figure 3. Properties in Acme. Analysis of  
architectural structure. 

 

Figure 4. Specifying schedulabiluty properties in AcmeStudio. 
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support its own external  interfaces. We can also check 
for naming conflicts (e.g., whether two ports of the same 
name on the same component). 

3 Modelling architectural properties 
While some analyses of pure structure are possible, to 
achieve significant analytic value from an architectural 
model we need to represent more of the semantics of the 
architecture. In Acme this is done by annotating the struc-
ture with properties.  

3.1 Properties in Acme 
Properties are simply typed name-value pairs that can be 
associated with any architectural element.2 Types may be 
primitive (integer, boolean, etc.) or composite (sets, se-
quences and records).  

Figure 3 illustrates the use of properties, elaborating 
Figure 2. This example illustrates properties associated 
with a port (indicating whether the client request is syn-
chronous); a component (indicating the maximum num-
ber of transactions per second supported by the server), 
and a connector (indicating the name of the protocol that 
is expected to be used over it). 

                                                                                              

                                                          
client and server, elaborating each component’s architectural 
substructure. See Garlan et al. (2000) for details. 
2 We use the term architectural element to refer generally to 
components, connectors, ports, roles, representations, and sys-
tems. 

3.2 Analysing architectural 
properties 

The meaning of properties is not 
specified in Acme, which does 
not provide native support for 
their analysis. However, such 
properties can be used by external 
analysis tools to gain insight into 
the architecture by calculating 
global system properties from 
local properties of components 
and connectors. In many cases 
calculations can take advantage 
off-the-shelf theory and algo-
rithms. Such analyses can be a 
powerful aid to architectural de-
sign, allowing architects to iden-
tify design errors early in the 
process, helping the architect 
document the expected run-time 
properties of architectural ele-
ments, and facilitating tool sup-
port for providing feedback and 
comparisons of analysis results. 

We now illustrate these ideas with 
three examples: rate-monotonic 
analysis for automotive control 

systems, queuing theory-based analysis for detecting 
server overloads, and Monte Carlo-style security simula-
tion. 

Figure 5. The results of the schedulability analysis. 

Example 1: Analysis of real-time schedulability, 
Figure 4 depicts a simple automotive system represented 
in AcmeStudio (Schmerl and Garlan 2004), a framework 
for creating architecture design environments. AcmeStu-
dio, written as a plug-in to the Eclipse framework, per-
mits one to define domain-specific architectural styles3 
and link in analysis tools that may be invoked by the user 
to analyse systems in those styles. 

The architecture used in Figure 4 includes components 
that run as periodic tasks on a set of CPUs. Tasks can 
communicate directly with tasks on the same CPU, and 
with tasks on other CPUs using an automotive standard 
communication bus (here a CAN bus). An important 
question in the design of such systems is whether certain 
task scenarios (treated as paths through the architecture), 
can be scheduled on the available processors.  

To evaluate this system-wide property, the style associ-
ates with each component a set of properties relevant to 
real-time schedulability. In the architectural style of this 
example these properties are modelled as its deadline, 
execution time, priority, and CPU. For example, in Figure 
4 the selected component, plant-rx, has values of 200, 
170, 100, and CPU1 as its respective property values.  

 
3 We discuss architectural styles in detail in Section 5; for now, 
consider a style as providing element types specifying the prop-
erties that must be defined for instances of the elements. 
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 Figure 6. Performance Analysis in AcmeStudio. 

When all components have been annotated with these 
properties (and the connectors with similar properties), 
we can invoke a tool to evaluate the CPU utilization, and 
the schedulability of specific pathways. In the figure three 
pathways are specified. The resulting analysis prints out 
the results of applying rate monotonic analysis (Sha and 
Goodenough 1991), indicating which paths are schedul-
able (Figure 5).  

It is important to note that the actual analysis of sched-
ulability is carried out using completely standard, off-the-
shelf algorithms for rate-monotonic real-time analysis. 
Moreover, AcmeStudio makes it relatively easy to add 
such an analysis using a “plug-in” framework, which as-
sists with creating specialized property editors (e.g., to 
specify pathways for evaluation), invoking analysis tools 
through menus, passing the relevant data to them for 
analysis, and displaying the results back in the graphical 
editing environment. 

Example 2: Analysis of server-load. 
Of course, not all systems in need of performance analy-
sis are real-time systems. To illustrate how the same gen-
eral ideas can be supported for different application do-
mains, consider Figure 6. Here we have an example of a 
system defined as a tiered system in which clients queue 
requests for database service from a set of servers that 

contain business logic to access a set of databases. The 
system model is shown in AcmeStudio. 

To analyse performance of this system we take advantage 
of queuing theory to evaluate performance characteristics 
of such systems (Spitznagel and Garlan 1998, Di Marco 
and Inverardi 2004). To perform the analysis, we must 
first supply the values of a set of properties of the com-
ponents and connectors, such as arrival rates (expressed 
as probability distributions), average service time for 
handing requests at a server, and degree of server replica-
tion. These properties are specified through an editing 
plug-in to AcmeStudio specific to performance analysis, 
as illustrated at the bottom of Figure 6. 

Once these properties have been defined, as before we 
can pass the model to an analysis tool, which in this case 
calculates for each server a set of derived properties, in-
cluding average server utilization, queue lengths, and 
response times using standard queuing-theoretic tech-
niques. From these results the tool can further indicate 
whether any servers are overloaded. In Figure 6, the 
analysis has determined that the circled component in the 
diagram is overloaded, and has highlighted this fact by 
changing its colour to red.  

Example 3: Analysis of security 
It is also possible to analyse the security of a system 
through Monte Carlo-based architectural simulation, a 
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form of analysis that abstractly exercises an architecture 
using inputs and events drawn from probability distribu-
tions. The Security Simulator plug-in to AcmeStudio en-
ables an architect to perform security simulations based 
on threat scenarios that are relevant to the system under 
design. The main concepts in the security analysis are 
threat types, assets, and countermeasures; the simulation 
is based on the approach outlined in Butler (2002). 

Threat types specify the possible threats that can affect 
the system (e.g., a virus or denial of service attack). 
Because different systems may be subject to different 
types of threats, the architect must specify each of 
the threat types that may be posed to the system. 

Assets are components that may be damaged by par-
ticular threats. Assets are assigned a monetary value, 
and the particular threat types that may affect the as-
set are specified. For example, a database component 
may not be susceptible to password sniffing attacks, 
but may be vulnerable to data corruption as the result 
of a virus. 

Countermeasures are of three types: Preventative 
components affect the frequency at which threats oc-
cur; Monitoring components and recovery compo-
nents reduce the effect of a threat. The architect 
specifies each of the countermeasure’s target threat 
types, and the effectiveness or reduction that the 
countermeasure has on the target threat. 

Once the relevant properties are specified, the architect 
must then define paths (consisting of components and 
connectors) through the architecture that particular threats 
may take. The threat type that affects that path and the 
frequency (as a stochastic function) of the threat type are 
specified. After the threat is specified, the assets associ-
ated with its path can be given outcome values. The out-
come can be in terms of dollars, loss of life, loss of pro-

ductivity, etc. A weight is assigned to each 
outcome factor. 

Threat scenarios are composed of one or 
more transactions. A scenario is used as 
basis for executing the simulation, and 
specifies the amount of time that will be 
used in performing the simulation. The 
simulation takes into account the threat 
entering the transaction path, the frequency 
of the threat type and the countermeasures 
in the path. Monte Carlo simulation is per-
formed to determine the most probable 
damage value to each of the assets in the 
threat transaction. The value obtained is 
multiplied by the frequency of the threat 
transaction and the simulation time. This 
gives the total damage for the particular 
threat outcome factor. The end result of the 
simulation is a report that details the threat 
scenario, threat transaction, and total dam-
age to the assets in the threat transaction 
path.  

Consider the simple architecture illustrated 
in Figure 7, where we define the database 
as an asset (giving an asset value of 
$100K), run a security simulation on a path 

originating at the client and going through the firewall 
and server to the database for a simulated virus attack. 
We define the scenario so that (1) the simulation time is 
two virtual months; and (2) a virus attack happens on 
average 5 times per day, with a maximum of 20 attacks 
per day. If the firewall is 95% effective against virus 
threats then running the scenario indicates that the dam-
age is calculated as $56, 677. If we were to run the same 
simulation without the firewall, the simulation will indi-
cate that the loss of revenue increases to $1,112,409. 

 

Figure 7. Security Simulation in AcmeStudio.

Such a simulation allows the architect to evaluate differ-
ent scenarios, and to evaluate the effectiveness of differ-
ent countermeasures against different attacks. Providing 
different sets of properties for an architectural model fa-
cilitates different analyses of that model. It is therefore 
possible to make trade-off based on different scenarios 
and quality attributes for the same architectural model, 
rather than have to use different environments and archi-
tectural models in potentially different architectural lan-
guages. 

4 Modelling architectural behaviour 
An important aspect of modelling software architectures 
is the specification of abstract behaviour. By knowing the 
behaviour of architectural elements we can significantly 
improve the clarity of architectural designs. We can also 
analyse these specifications, for example to spot protocol 
mismatches in which interactions between components 
can potentially lead to deadlock (Allen and Garlan 1994 
and 1997, Allen, Garlan, and Ivers 1998). 

To illustrate, consider the simple system consisting of a 
pipe that connects two filters, F1 and F2, illustrated in 
Figure 8. The intuition behind such a pipe-filter system is 
that components communicate through buffered streams, 
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writing through their output ports and reading through 
their input ports. 

While the intuition may seem simple at first glance, un-
derstanding the real meaning of the figure (for example to 
implement F1 and F2) depends on detailed understanding 
of the interactions defined by the pipe. For example, from 
the figure alone it is impossible to answer the following 
questions:  
• Which is the reading/writing end of the pipe? 
• Is writing synchronous? That is, assuming F1 is the 

writer, does it block after writing? 
• What if F2 tries to read and the pipe is empty? Does 

it block, or can it continue with other processing? 
• Can F1 choose to stop writing? 
• Can F2 choose to stop reading without consuming all 

of the data on the pipe? 
• If F1 closes the pipe, can it start writing again at 

some future time? 
• If F2 never reads, can F1 write indefinitely, or does 

F1 eventually block? 

Note that there is no correct answer to these questions, 
since any set of answers could represent a possible pipe 
design. Indeed, in actual systems pipe implementations 
differ precisely along such dimensions of variability. 

What is required is some way to specify the semantics of 
a pipe at the architectural level so that such questions can 
be answered easily. This would represent a marked im-
provement over existing practice in which decisions 
about such behaviour require one to examine the code of 
some implementation, existing examples of usage, or 
consult a human expert. 

There are many possible ways in which one might repre-
sent architectural behaviour (Shaw and Garlan, 1995). 
Indeed, practically any behaviour specification will do, 
including process algebras, state machines, relational 
models, and timed automata. To illustrate the general 
principles, we use the Wright specification language, one 
of the first to use formal modelling to specify architec-
tural behaviour (Allen 1997, Allen and Garlan 1994). 

Wright uses a subset CSP (Hoare 1985), a well-known 
process algebra, which defines behaviour in terms of pat-
terns of events. Some of the constructs are listed in Figure 
9. These include events (representing architecturally-
relevant actions), processes (representing patterns of 
events), sequentiality (representing the ability to follow 
one behaviour by another), choice (representing the abil-
ity to branch), and parallel composition (representing the 
ability to compose partial descriptions). These CSP-based 
specifications can be associated with various architectural 
structures, including ports and roles. 

  

Events:   e, request, read?y, write!5 
Processes:  P, Reader, Writer, Client,  
                             § (successful termination) 
Sequence:  e → P,    P ; Q 
Choice:  P⎟⎤ Q,     P [] Q  
Composition:  P || Q 

Figure 9. Behavior specifications in Wright. 
 

Figure 10 illustrates the basic ideas of behaviour descrip-
tion in Wright through a partial description of a pipe con-
nector. Each role of the pipe (Reader and Writer) has an 
associated protocol defined in the subset of CSP summa-
rized above. In addition, the connector has a “glue” speci-
fication (also a CSP process) that indicates how the roles 
interact through the connector itself. 

Connector Pipe  
  Role Writer = (write!x → Writer) ⎟⎤  (close → §) 
  Role Reader = Read ⎟⎤  Exit 
  where  Read = (read?x → Reader) [] (eof → Exit) 
  Exit = close → § 
  Glue =  Writer.write?x → Glue [] 
               Reader.read!y → Glue [] 
               Writer.close → ReadOnly [] 
               Reader.close → WriteOnly   
  where ... 

Figure 10. Partial Wright specification of a  
Pipe connector.  

 

Such specifications, although compact, provide direct 
answers to questions such as those posed above. For ex-
ample, the specification in Figure 10 immediately tells us 
that a pipe writer can close at anytime, but cannot write 
again once it has close. A pipe reader can also close at 
any time, but if it chooses to read a value, it must be pre-
pared to recognize an “end-of-file” (eof) marker and then 
immediately close.  

Beyond clarification of design intent, specifications such 
as these permit a variety of analyses, including: 
• Consistency of connectors: that the glue-mediated 

roles of a connector do not lead to a deadlocked state. 
• Compatibility of component interface to connector 

interaction protocol: that a port satisfies the require-
ments of a connector role that it fills. 

• Consistency of a component’s behaviour with respect 
to its interfaces: that a port’s specification represents 
a correct projection of a component’s internal behav-
iour at that interface point. 

Many of these checks can be performed semi-
automatically by model checkers. See Allen (1997) for 
details. 

  

Figure 8. A simple pipe-filter system. 

Pipe 
F1 F2 5 Modelling architectural styles 

One notable feature of software architecture is the ability 
to reuse styles and patterns. For example, many systems 
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are described in terms like “client-server system”, “N-
tiered system”, “pipe-filter system”, etc. Such terms refer 
to families of systems that share a common architectural 
design vocabulary (e.g., clients, servers, tiers, etc.) and a 
set of constraints on how that vocabulary can be used 
(e.g., that clients can’t talk directly to other clients, or that 
connections don’t cross more than one tier). 

Important questions for architectural modelling and 
analysis are: How can we model an architectural style? 
How can we check that a given system is consistent with 
a given style? Can we combine several styles without 
leading to logical inconsistencies?  

5.1 Architectural styles in Acme 
We can specify styles by augmenting our architectural 
modelling notation with two things. First is the ability to 
define component, connector, and property types. These 
provide the basic vocabulary of design in that style. Sec-
ond is the ability to define constraints on how instances of 
these types may be combined in a system description.4

For example, to define a pipe-filter style we would first 
need to define one or more filter component types and a 
pipe connector type. These would identify the kinds and 
number of ports on filters and roles on the connector. 
Additionally, we might define various property types, and 
indicate which properties are associated with which ele-
ments in the style. Next we would need to define con-
straints that might, for example, specify that there should 
be no dangling pipes or that a system should not have any 
cycles. 

                                                           
4 From a tooling perspective style definition may also entail 
specification of graphical conventions (shape, colour, layout) 
for the style, style-specific shortcuts for improving graphical 
editing (such as automatic creation of connectors based on nam-
ing conventions), and analysis tools to be included in an envi-
ronment that uses the style. 

Figure 11 illustrates the basic ideas with a partial defini-
tion of a pipe-filter style, or family, as it is termed in 
Acme. Here we have defined a Filter component type, and 
specified that it must have at least an In and an Out port. 
We have also defined a Pipe connector type, and speci-
fied that it must have a Reader and a Writer role, and that 
each role must specify the datatype that is transmitted 
through that role.  

Family PipeFilterFam = { 
  Component Type filterT = { 
  Ports {In,Out} ;  
…} ; 
Connector Type pipeT = { 
  Role Reader = {Property datatype = …} ; 
  Role Writer = {Property datatype = …} ; 
  Invariant self.Reader.datatype == 
                self.Writer.datatype; 
  … 
} 
System my-PF-System : PipeFilterFam = { 
  Component F1: filterT = {…} ; 
  Connector P:  pipeT = {…} ; 
  … 
} 

Figure 11. Specification of a Pipe-Filter architec-
tural style in Acme. 

The connector also includes a constraint, in this case an 
invariant that says the type of data written to a pipe must 
match the data read from it. Such specifications are writ-
ten in a first-order predicate language (similar to UML’s 
OCL), augmented with some functions that make it easier 
to refer to things like a component’s ports, or the roles 
attached to a port. 

With the pipe-filter family in hand, we can now use it to 
define a specific system in that style. In  Figure 11 we 
illustrate the description of a system, my-PF-system. 
Components and connectors may now be declared as in-
stances of the types defined in the family. 

5.2 Example: Mission Data Systems 
To illustrate the concepts of modelling and analysing 
style-oriented architectural description in more depth, we 
now describe a larger example: NASA’s Mission Data 
System (MDS) (Rasmussen, 2001, Dvorak and Reinholtz 
2004). MDS includes an experimental architectural style 
for defining space systems. It consists of a set of compo-
nent types (e.g., sensors, actuators, state variables), and 
connector types (e.g., sensor query). It also defines a 
number of rules that define legal combinations of those 
types. Figure 12 graphically illustrates the style, which 
consists of 7 component types, 12 connector types. 

Figure 13 shows a screenshot of a simple MDS system 
displayed in AcmeStudio. The system represents a tem-
perature control system consisting of a temperature sen-
sor (TSEN), a temperature estimator (TEST), a heating 
actuator (SACT), a temperature state variable (CTSV), a 
heath state variable to indicate whether the sensor is be-
having correctly (SHSV), a temperature controller 
(TCON) to issue commands to the actuator, and an execu-
tive that controls the value of the target temperature 
(EXEC). Appropriate connectors (of which there are 12 
types) are used to define the interconnection topology.  

The rules in MDS were initially defined in English and 
had to be hand translated into Acme constraints. A simple 
example of such a rule is  

“For any given Sensor, the number of Measurement 
Notification ports must be equal to the number of 
Measurement Query ports (rule R5A).” 

This rule, which is a small part of a larger rule (see be-
low) indicates that for every query port that a sensor pro-
vides, it must also provide an announcement port (and 
vice versa). 

This rule was translated into the following constraint, 
which is associated with the sensor component type: 

numberOfPorts (self, MeasurementNotifReqrPortT)  == 
      numberOfPorts (self,  MeasurementQueryProvPortT) 
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Figure 12. Definition of the MDS Architectural Style.
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Rules such as this one are continuously evaluated in 
AcmeStudio as the MDS architect creates an architectural 
description of an MDS System. If a rule is violated, the 
environment highlights the problem. Figure 14 illustrates 
how this appears to an architect. when the TSEN sensor 
component violates the property specified above. 

Of course, checking rule satisfaction is relatively trivial 
for small systems and for such simple rules. Indeed, vis-
ual inspection could easily locate such rule violations. 
But in general MDS rules are much more complex, for 
example:  

“Every estimator requires 0 or more Measurement 
Query ports. It can be 0 if estimator does not 
need/use measurements to make estimates, as in the 
case of estimation based solely on commands submit-

ted and/or other states. Every sensor provides 
one or more Measurement Query ports. It can 
be more than one if the sensor has separate 
sub-sensors and there is a desire to manage the 
measurement histories separately. For each 
sensor provided port there can be zero or more 
estimators connected to it. It can be zero if the 
measurement is simply raw data to be trans-
ported such as a science image. It can be more 
than one if the measurements are informative in 
the estimation of more than one state vari-
able.” 

Figure 13. A simple control system in the MDS style. 

This is one of 12 such rules. Moreover, MDS 
architectures typically have hundreds of com-
ponents. Complete checking of rule satisfaction 
in those situations becomes a significant prob-
lem for which formal style specification pro-
vides an effective solution.  

5.3 Other style-based analysis 
In addition to checking whether a given system conforms 
to a given style, it is often useful to investigate properties 
of styles themselves. For example, it is possible to define 
a style in which constraints lead to inconsistencies. For 
such systems it is impossible to create any system in-
stances. Moreover, we may want to investigate whether 
the constraints of a style imply properties not explicitly 
modelled. For example, local constraints on attachments 
can be used to imply global connectedness. 

To evaluate such properties we can interpret an Acme 
style description as a specification of a class of models, 
and use a model generator to check for the existence of 
such models. 
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Figure 14. Displaying problems to the architect. 
 

Specifically, we can translate a style into an Alloy model 
and use the Alloy Analyser (Jackson 2002) to investigate 
properties of the resulting specification. Details of this 
analysis are beyond the scope of this paper, but the inter-
ested reader is referred to Kim and Garlan (2006). 

6 Mapping between architecture and imple-
mentation 

One of the difficult problems for an architect is ensuring 
that the implemented system is consistent with the in-
tended architecture. Formal modelling and analysis can 
also help solve this problem 

The problem for architectures is similar to the problem 
for any model-based method of ensuring that an imple-
mentation meets its specification. In general, there are 
two basic solutions. First, one can attempt to ensure satis-
faction by construction. This can be done through a proc-
ess of formal refinement in which a concrete model is 
obtained by applying well-founded refinement rules to a 
more-abstract model (or specification). Sometimes this 
process can be completely automated, in which case it is 
often termed generation. The second technique is to 
demonstrate that a lower-level model is consistent with a 

higher-level model by comparison. This is often done by 
providing a mapping relation between the two models. 

Both techniques can be used for software architectural 
models.  

6.1 Refinement and generation 
Although using refinement in the most general case of 
software architecture is as difficult as any other form of 
model-based refinement, in many cases the problem is 
greatly simplified by exploiting architectural styles. That 
is to say, by limiting the problem to a specific class of 
systems and a specific class of implementations, it is of-
ten possible to build automated assistance for mapping 
architectures to implementations. The assistance can be in 
the form of automated transformations, or in the extreme 
case, code generation of all or part of the target system. 

We now illustrate this concept with two examples: 

Example 1: Model generation of automotive             
           control systems 

Some automotive companies have in place a component-
based approach to control systems. Starting with an ab-

(a) Abstract Architecture 

(b) Concrete Architecture 
Figure 15. Mapping abstract automotive architecture to concrete automotive architecture. 
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Figure 16. A DiscoTect Coloured Petri Net for Discovering Pipe-Filter Systems. 

stract architectural description, pre-specified components 
drawn from libraries are substituted to produce a full sys-
tem definition. In many cases the concrete components 
have formal models suitable for simulation, and in some 
cases code generation. 

In Steppe et al. (2004) we describe a two-tiered approach 
that uses Acme architectural models of the architecture of 
an automotive system in two levels. At the higher (ab-
stract) level, an architecture is described in terms of ge-
neric abstract components and simple virtual connectors 
(Figure 15a). In the lower (concrete) level model, con-
crete components are chosen from a repository of auto-
motive components and substituted for the abstract ones, 
and detailed connections are made between them (Figure 
15b). This concrete composition can then be sent to for-
mal simulation tools for analysis. 

While refinement of generic architectures to concrete 
architectures using component selection is a major step 
forward, one of the stumbling blocks is that refinement is 
done manually. In particular, the hooking up of concrete 
components, which may have dozens of ports is typically 
a time consuming process. Moreover, there are often de-
pendencies between different components, so that choices 
of one component may affect others. Making sure that 
integrity rules of component composition are respected is 
a difficult, and again time-consuming, task. 

However, it turns out that in many cases there are 
straightforward rules that can be applied to do most of the 
interconnecting. Indeed, in the case of automotive control 
systems when certain naming conventions are followed, 
almost all of the interconnecting can be done automati-
cally. Further integrity rules can be specified as con-
straints in the style (as illustrated earlier). Indeed, the 
concrete version of the automotive software in Figure 15b 
was in fact generated directly using a plug-in to a version 
of AcmeStudio that had been specialized to model archi-
tectures in the two (abstract and concrete) styles. 

Example 2: Code generation for MDS space  
           flight systems 

With certain modifications to the nature of the connectors 
in the MDS style we were able to provide a prototype 

code generator for MDS systems (Garlan et al. 2005). A 
key feature of that generator is the ability to target the 
resulting implementation to different platforms. For ex-
ample, one platform might be the space environment, 
which requires power- and space-efficient code, while 
another platform might be the NASA testing environment 
in which resources are plentiful and there is a premium on 
support for debugging and monitoring. 

The ability to generate retargetable implementations re-
lies on the following: 
1. There is a substantial body of reusable infrastructure 

code that supports inter-component communication, 
concurrency, and shared data. 

2. It is possible to create a library of component imple-
mentations whose processing is not dependent on the 
implementation of the communication infrastructure. 
This code treats most components as input-output 
transformers, where the mechanisms for transporting 
code between components is irrelevant to the algo-
rithms they implement. 

3. There are a small set of attributes that determine the 
characteristics of the target platform. These attributes 
include the threading model, the amount and nature 
of debugging code, the target implementation lan-
guage, and the task scheduler implementation. 

Automatic generation of implementations in this domain 
allows engineers to work at a relatively high level of ab-
straction, in which the architectural principles of MDS 
are a primary focus at all times. The generator guarantees 
that the resulting implementation is consistent with the 
architectural model, and moreover does so in a way that 
is appropriate for the targeted run-time platform on which 
the system will be executed. 

6.2 Direct comparison  
The second technique for ensuring compatibility between 
architecture and implementation is to find a way to com-
pare the two. Since an implementation necessarily has 
considerably more detail than the architecture, the chief 
problem to solve is to abstract away the details of the 
implementation that are irrelevant to the architecture.  
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Two approaches are typically used. One is to perform 
static analysis on the code to infer high-level structure. 
The other is to use dynamic analysis on the running sys-
tem to capture actual run-time behaviour and relate it to 
architectural models. Static analysis is particularly effec-
tive for recovering (or inferring) module-oriented struc-
tures, since, in general, determining dynamic behaviour 
of a system (e.g., creating new components or connec-
tions) is undecidable. Dynamic analysis is particularly 
effective for inferring run-time structures, such as C&C 
views. For that reason we focus on dynamic analysis. 

The basic model for dynamic analysis is a process involv-
ing a series of steps. First a system is monitored to extract 
low-level behaviour, such as object and thread creation, 
method invocation, and variable assignment. Next, low-
level, implementation-oriented events are processed to 
produce high-level, architecturally-relevant events. An 
architectural model is dynamically constructed by apply-
ing the abstract architectural events to an evolving model. 
Finally, the as-observed architectural model is compared 
to the as-designed architectural model (or style) to detect 
inconsistencies. 

The main challenge in this process is the abstraction from 
low-level events to architectural events. This is difficult 
to do because it may be necessary to observe many low-
level events before it is clear what architectural events 
have occurred. Moreover, these implementation events 
may be highly interleaved. For example, creating a pipe 
might involve creating both ends of the pipe and then 
joining them together. In this process it is possible that 
many writing ends of a set of pipes are created before any 
reading end is created. 

To account for this complexity we need to define a formal 
mapping engine. In our own work we have developed the 
DiscoTect system to do this (Yan et al. 2004, Schmerl et 
al. 2006). At its core, DiscoTect represents a mapping 
engine that uses a formal mapping language to describe 
the relationship between patterns of low-level and high-
level events. The output of a mapping description is a 
coloured Petri net (Jensen, 1994). After some filtering, 
low-level events enter the net as input tokens. Successive 
events may cause those tokens to move through the net, 
eventually emerging as output tokens representing archi-
tectural events.  

Figure 16 shows the net that creates pipe-filter architec-
tures from Java implementations that use Java pipe librar-
ies, and represent filters as classes that adopt certain nam-
ing conventions. The tokens in the figure represent the 
current state of architectural reconstruction. Specifically, 
two filters have been constructed, one with a write port 
and one with a read port, and the pipe connection be-
tween them is about to be formed.  

7 Related work 
As noted in the Introduction, over the past two decades 
there has been considerable research devoted to model-
ling and analysis of software architectures (Shaw and 
Garlan, 1995). This work falls into several categories. 

7.1 Architecture description languages 
A large number of ADLs and associated toolsets have 
been proposed by researchers (e.g., Balasubramaniam et 
al. 2004, Dashofy et al. 2002, Morconi and Riemen-
schneider 1997, Terry et al. 1995). Like the architectural 
modelling based on Acme described in this paper, most of 
these ADLs focus on component and connector structures 
and their properties. Several of them are specialized to 
specific architectural styles such as hierarchical publish-
subscribe (Taylor et al. 1996), real-time control (Vestal 
1996 and SAE International, 2004), or dataflow (Gorlick 
and Razouk 1991). Collectively they represent an impres-
sive body of evidence about the utility of architectural 
modelling and analysis. 

UML 2.0 by the Object Management Group (2005) pro-
vides an architectural modelling language for components 
and connectors that adopts many of the principles of 
Acme. However, these extensions are relatively new, and 
few tools have been developed to exploit them fully. 
Moreover, as a general-purpose modelling language 
UML is ill-suited to the problem of supporting domain-
specific models that can take advantage of specialized 
analyses (Garlan, Kompanek, and Cheng, 2002). How-
ever, several domain-specific profiles of UML have been 
proposed or are in the process of being ratified by the 
Object Management Group. Many of these have the bene-
fits and power of the modelling approaches sketched in 
this paper. 

7.2 Specification and analysis of architectural 
behaviour 

Wright, summarized in this paper, was one of the first 
modelling notations that attempted to provide behavioural 
modelling and analysis for software architecture (Garlan, 
Allen, and Ockerbloom 1994). Since then numerous be-
havioural formalisms have been used to provide comple-
mentary capabilities, including Chemical Abstract Ma-
chine (Inverardi and Wolf 1995), PO-Sets (Luckham 
1996), Category Theory (Wermelinger 1998), Pi Calculus 
(Magee et al. 1995), Statecharts (Vieira, Dias, and 
Richardson, 2001) and many others. 

Most of these approaches share the goal of detecting 
mismatches in component compositions. The primary 
differences are the kinds of behaviour that can be mod-
elled, and hence the kinds of mismatches that can be de-
tected. 

7.3 Refinement and generation 
Moriconi and colleagues were among the first to recog-
nize the importance of formal mappings between archi-
tectures and implementations (Moriconi et al. 1995). 
Their approach uses structural transformation patterns to 
constructively create implementation-oriented models 
from architectural models. 

UniCon, developed by Shaw et al. (1995) supports code 
generation from architectural models. Their approach 
creates a set of specialized compilation techniques for the 
various kinds of connectors that may go into an architec-
ture. The goal is to provide a set of tools where any 
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change to the implementation of a system must take place 
through the architecture. Other ADLs also have a certain 
amount of code generation capability (Luckham 1996, 
Taylor et al. 1997). 

A number of projects have looked at reconstruction of 
architectures using static analysis. For example, Dali uses 
a variety of analysis techniques to create a high-level 
view of a system’s implementation structures (Kazman 
and Carriere 1999).  Since they focus on module-oriented 
views, they are complementary to the C&C-oriented ap-
proaches described in this paper. 

ArchJava (Alrdich, Chambers, and Notkin 2002) aug-
ments Java with constructs for components and connec-
tors, and uses typechecking to guarantee certain kinds of 
conformance between the component and connector lev-
els of the system description and the lower-level imple-
mentation structures (classes, methods, etc.). In particu-
lar, the tools can guarantee that if two components are not 
connected at the architectural level, they cannot directly 
interact at the code level (e.g., through shared global vari-
ables). 

A large number of people have become interested in 
“Model-driven Architecture”, an approach that advocates 
a staged and automated approach to refinement of archi-
tectural designs to implementations. This is a natural 
complement to “Architecture-driven Models” – the theme 
of this paper. Much of the current work in MDA has fo-
cused on a staging in which platform dependencies are 
abstracted away in the high-level model, and bound dur-
ing refinement. This is a special case of the approaches to 
refinement and generation outlined in this paper.  

8 Discussion and conclusions 
In this paper we have illustrated a number of ways in 
which formal architectural modelling and analysis can 
address important issues in software architecture, includ-
ing clarifying design intent, supporting rich forms of 
analysis to enable detection of design flaws and make 
principled tradeoffs between quality of service goals, and 
allowing tools to help guarantee that implementations are 
consistent with the intent of their architectures. While the 
specific techniques described here draw heavily on re-
search carried out by the Able Group at CMU over the 
past 15 years, many other research efforts have produced 
similar results. 

There are several broad lessons that can be learned from 
this body of research. 
1. A little formality goes a long way. The formalisms 

outlined in this paper are relatively simple. Simple 
structures with types, properties, relations, and be-
havioural descriptions can go a long way toward 
providing more improved capabilities for architec-
tural design. Moreover, formal specification can be 
incremental: not all aspects of interest need be for-
malized or analysed. 

2. Reuse of existing methods. The formal modelling 
and analysis techniques described in this paper rely 
on a large body of existing formal methods and tools, 
including model checkers, simulators, constraint 

checkers, and model generators. This is good news 
for software architects since it means that existing 
theory and tools can be applied with only minor 
modifications to the enterprise of software architec-
ture design. 

3. One size does not fit all. Architecture reveals a clas-
sic tradeoff between power and generality: the more 
general-purpose a model, the fewer opportunities for 
deep analysis. In our work we rely heavily on archi-
tectural style, and our ability to easily create style-
specific tools, to exploit specific forms of analysis.  

Although our ability to gain insight in software architec-
tures through modelling and analysis has improved tre-
mendously over the past decade, there remain a number 
of areas for which our techniques need to be improved. 
These include 
• Dynamic Architectures: How can we reason about 

architectures whose structure changes dynamically? 
How can we determine when architecture changes 
can be performed safely on a system without restart-
ing it? When can architectural changes be executed 
in parallel? 

• Software Architectures for Emerging Systems: As 
technology advances so does our need to create sys-
tems that can take advantage of it. Today, for exam-
ple, we are on the verge of ubiquitous computing 
systems that must work in the presence of hundreds 
of cooperating computational units, from cell phones, 
to sensors, to traditional computing platforms. What 
architectures are needed to handle such systems? 
Similarly, we are starting to see components whose 
behaviour is determined by machine learning. How 
can we specify what these components do and ensure 
that they are compatible with other components?  

• Managing Multiple Views: So far, much tool sup-
port for architectural modelling focuses on a particu-
lar view, such as C&C views. How do we manage 
the relationships among multiple views of an archi-
tecture? To what extent can we ensure consistency 
between these views? How can we separate a par-
ticular architectural view into multiple views high-
lighting different concerns, to manage scalability? 
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Abstract 
This paper discusses model-based design in the context 
of the Safety Critical Application Development Envi-
ronment (SCADE), developed by Esterel Technolo-
gies.1 

1. Introduction 
 
The last few decades have seen the concept of model-
based design develop to the point where it is now the 
state-of-the art for most embedded applications. A 
large number of parallel approaches exist here. Those 
tools have evolved from pure specification and docu-
mentation tools to tool suites allowing design of execu-
table specifications that, in some cases, allow the 
automatic generation of application code. 
 
These tools can be grouped into several classes, includ-
ing 

• UML-based tools 
• Simulation-centric proprietary tools  
• Formal tools and methods 
• Domain-specific software tools 

 
Two contradictory trends can be observed. Some tool 
providers follow the path to open standards (such as 
UML2) or open interfaces and formats (such as Eclipse 
and XML) ,and thus enable the user to build his own 
environment tailored to his needs. Other tool providers 
hope to be heavy-weighted enough to build their own 
community based on a proprietary format (for example 
Simulink, Statemate). 
 
In safety-related systems design, the usage of software 
design tools is highly recommended. However, the 
industry trend to automatic code generation is facing 
some difficulties in this domain, because of the follow-
ing: 

• process integration; 
• safety requirements: code generation only 

pays off if the code generator is trusted by cer-
tification bodies; and 

                                                
Copyright © 2006, Australian Computer Society, Inc. This 
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Related Programmable Systems (SCS'06), Melbourne. Confe-
rences in Research and Practice in Information Technology, 
Vol. 69. Tony Cant, Ed. Reproduction for academic, not-for 
profit purposes permitted provided this text is included. 

• domain-specific solutions lack openness and 
momentum because they are only deployed in 
niche areas 

 
There is an obvious need for a solution that combines 
certified automatic code generation with truly open tool 
architecture and interface. 
 
We will discuss these topics in the context of SCADE, 
the Safety Critical Application Development Environ-
ment, developed by Esterel Technologies. 
 
SCADE provides a modelling environment from which 
code can automatically be generated, while its open 
and documented interfaces provide full and seamless 
integration capabilities into existing development flows 
and processes. 
 

2. Layered Architecture 
 
The prerequisite for seamless integration in existing or 
new software design processes is an open, scaleable 
tool architecture. 
 
When discussing the interface architecture of a core 
tool, which is intended to be able to provide a hub-like 
functionality in the flows inside a tool workbench, 
some requirements soon become obvious: 
 

• Abstraction: the system needs to be layered in 
a way that on each level provides abstract and 
encapsulated information; 

• Openness: all relevant information must be 
readily accessible; and 

• Standardization: the interfaces must be based 
on commonly accepted industry standards 

 
This is achieved by implementing a layered tool archi-
tecture. An open architecture outside layer provides 
abstract access to all the information, which is con-
tained in the core. 
 
The core and interface layer together provide the basis 
for the Certified Software Factory. 
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IMAGE 1. Layered architecture of the certified soft-

ware factory 
 

2.1. Interfaces based on open software architec-
ture concept 

 
Open software architecture interfaces rely on several 
concepts: 
 

• Standard, openly documented file formats, 
equally readable by humans and machines 
• SCADE relies on standards such as 

XMI2, XML and ASAM-MCD2 
• Standard, openly documented APIs (applica-

tion programming interfaces) 
• SCADE provides TCL and C-based inter-

faces as well as an Eclipse-Plug-in. 
• Models are stored as Meta-models so that they 

can be transformed to and from any other 
model format 
• SCADE stores the information in an 

UML-Metamodel 
 

2.1.1. Example: SysML interface 

When transforming models, one must take care to do 
meaningful translations conforming to the semantic 
properties of the underlying modelling languages. 
 
Building such an interface requires analysis of the data 
formats as well as the semantics. 

 
SysML SCADE 

• Overview 
• Semi-formal 
• Asynchronous 
• Object-oriented 
 
• Good for struc-

tural description 
 
• Main construct 

• Classifier & Be-
haviour 

• Dynamic (Instance/ 
link creation) 

• Explicit & implicit 
flows (connectors or 
object references 

• Overview 
• Formal 
• Synchronous 
• Functional with 

state 
• Good for be-

havioural de-
scription 

• Main construct 
• Node (close to 

UML behaviour) 
• Static (everything 

pre- instantiated) 
• Explicit flows only 

IMAGE 2. SysML and SCADE semantic comparison 
 
Deeper analysis shows that the SCADE and SysML 
notations are very complementary. The ideal pivot 
point for model transformations is the class/ node inter-
face. When concentrating on this construct, the user 
gains a hybrid view on the overall model: a dynamic, 
object-oriented view of the model architecture linked 
with a static, instantiated and synchronous view on 
behaviour. 
 
If such a model translator is additionally based on OSA 
(open software architecture) concepts and commonly 
accepted standards such as XMI2 and a meta-model 
approach, it can easily be built in a very generic way, 
allowing adaptations for all kinds of UML2/SysML 
dialects and specific profiles. 
 
The SCADE Gateway to Rhapsody® is an instance of 
such an implementation.  
 
2.1.2. Example Requirements management inter-

face 

Requirements are usually formulated in textual form 
and stored either in a database or in text processing 
tools. 
 
Requirements may be further refined and result in 
software or system design, CAD drawings or other 
format. 
 
An open development platform must therefore provide 
a means to link requirements specifications (in what-
ever format) with designs and models, test cases or 
source code (in whatever format). 
 
The SCADE requirements management gateway en-
ables the user to link all his tools and data together and 
have instant and global understanding of the interde-
pendencies and relationships. 
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IMAGE 3. Requirements management gateway pro-

viding traceability throughout the entire life-
cycle 

 

2.2. The core of the certified software factory 
 
At the centre of the software factory, there is a reposi-
tory containing the information that describes the be-
haviour of the software. 
 
On the one hand, this model complies with the notion 
of an UML-Metamodel, meaning that the contained 
information can readily be accessed through a stan-
dardized interface (script language or Eclipse). 
 
On the other hand, the model must obey very strict 
requirements in order to comply with the requirements 
imposed by the standards that drive safety-related sys-
tems development: DO-178B, IEC61508-1 and –3, 
EN50128. 
 
High integrity levels imply formal models and unambi-
guous semantics that allow representing the typical 
features of embedded software systems: reactive sys-
tems with data flow, discrete states and concurrency, 
coupled with hard real-time constraints. 
 
The SCADE modelling language has evolved from 
LUSTRE, a formal, synchronous model description 
language. 
 
The user interface provides the developer with a very 
intuitive view, based on block diagrams and state 
charts, tightly integrated. Powerful constructs for vec-
torization of flows and operators tackle even the most 
complex problems. 
 

 
IMAGE 4. SCADE model representing a fully func-

tional automotive cruise control application 
 
This model is immediately executable for verification 
and validation purposes. 
 
The development environment includes a powerful 
software- in- the- loop simulator with model- level 
debugging features. 
 
Thanks to the formal nature of the model, it can also be 
examined by formal/mathematical analysis and proof 
engines, such as the integral SAT-solver Design Veri-
fier, which provides a formal proof of functional safety 
properties. 
 
The open software architecture makes this model fully 
accessible through the customer’s specific tool suite 
and provides transformation engines to and from this 
environment. 
 
It is also the basis for automatic generation of SDD 
documents (software design descriptions) and, more 
importantly, serves as direct input for certified code 
generation. 
 

 
IMAGE 5. Formal model as the hub of the SW design 

process 
 
Certified code generation ensures, that 
 

• The code complies 100% with the model in 
the sense that the code fully and deterministi-
cally represents the behaviour described in the 
model 
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• The generated code complies with each and 
every objective and requirement imposed by 
the standards to which it has been qualified 
(DO-178B up to Level A) and certified 
(IEC61508, up to SIL 4) 
 

For example, the generated C code does not contain 
operations on pointers, no global variables, no indefi-
nite loops, no dynamic memory allocation etc. 
 
At the same time, it fulfils very stringent requirements 
related to memory usage and execution time. 
 
It is absolutely comparable with highly optimized 
hand- written code. 
 
Moreover, it is totally target-agnostic and therefore 
easily to be integrated on all platforms, from bare ma-
chine to complex distributed systems. 
 
Certified code generation is a key to a completely de-
fined process that covers all steps from requirements 
capture down to integration on target. 
 
High quality of generated code and restriction to a very 
small subset of C allow also to verify correct compila-
tion through compilation and automated verification of 
a representative model containing the complete gener-
able subset of C in all its possible combinations and 
nested operators, resulting in a combined testing proc-
ess which ensures and guarantees that each requirement 
is correctly designed, modelled, coded, and the inte-
grated on the target hardware. 
 

 
IMAGE 6. The combined testing process 
 

3. Safe Systems Architectures 
 
The tool suite and process outlined above ensure that 
no systematic errors can be introduced into the soft-
ware design when transforming the system require-
ments relevant for software into an application. 
 
Safe system architecture needs to also ensure that haz-
ards or spontaneous, non-systematic errors on the 
hardware, sensors or from the environment will not 
affect safe operation of the system. 
 
Various approaches exist to this problem, some of 
which include redundancy, dissimilarity and built- in 
tests. 
 
All of them go beyond the scope of this paper, but 
share the same principle: A layered systems design that 

clearly separates the application from the hardware and 
usually incorporates a safe and certified operating sys-
tem. 
 
An open software development environment must 
directly support automatic integration of the generated 
code onto such safe HW/SW platforms. 
 
SCADE provides such interface to several certified/ 
qualifiable operating systems such as GHS Integrity, 
Sysgo PikeOS or MicroC. 
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Abstract 
!Given a target probability of functional failure on demand 
for a system, a corresponding dangerous failure rate for the 
system can be derived, provided that a proof-test interval 
for the function is known. IEC 61508, and related 
standards, requires that this calculation be performed, for 
certain kinds of systems that are required to provide safety 
functionality on demand. This paper explains why it is 
necessary to consider what constitutes a proof-test interval 
for a function, and then considers what this means for 
software. We show that there are several problems with the 
proof-test concept, as applied to software, and describe the 
problems this presents to practitioners wanting to derive 
safety integrity levels for system safety functions. 

Keywords:  SIL derivation, IEC 61508, high and low 
demand mode functions, proof tests.  

1 Introduction 
In many industries – rail, chemical process control, oil and 
gas, motor vehicle, nuclear, and to a lesser extent, defence 
– the approach to safety engineering is strongly influenced 
by the risk-based approach outlined in IEC61508 
(1998—2000), and other standards based upon it.  

These standards describe an approach to deriving safety 
targets in which the safety target assigned to a function 
corresponds to the risk reduction required to be achieved 
by it. Depending on whether the system can initiate an 
accident sequence, or is required to provide protection 
against other hazards that could occur, safety targets will 
be expressed as a dangerous failure rate, or as a probability 
of failure on demand, respectively. Depending on the 
technology used to implement the function, these targets 
may then be used to infer safety integrity levels (SILs) for 
the development of the function. 

This paper describes the SIL derivation process with 
reference to an accident sequence model. We argue that 
the issue of whether a function’s safety target should be 
expressed as a failure rate or as a probability of dangerous 
failure on demand, should not depend on its classification 
as a high or low demand mode function, but rather on its 
position in the accident sequence. We also show that, if it 
is desired to transform safety targets to uniform 
                                                           

“!Copyright © 2006, Australian Computer Society, Inc.  This 
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dimensions and thus to compare them (i.e. to express all 
safety targets in terms of dangerous failure frequencies, for 
example), the issue of what constitutes a valid proof-test 
interval for the function must be considered. To the extent 
that a function is implemented in software (or 
software-like technologies), this means that the concept of 
proof-test intervals for software must also be considered. It 
also means that safety target derivation, if it goes so far as 
to assign SILs, is not a process that can be independent of 
the technology used to implement the safety functions. 
This is disappointing, as intuitively, we would like safety 
requirements derivation, and safety requirements 
implementation, to be separable concepts. 

The concept of a proof-test interval, as it applies in the 
field of reliability engineering, is then reviewed.  We 
consider what this means for functions implemented in 
software. We survey various arguments that might be 
offered to justify the selection of different proof-test 
intervals – noting their strengths and limitations – and 
conclude that there is no consensus about what is a valid 
proof-test interval for software.  

Although this paper uses an accident sequence model to 
explain the relevance of proof-test intervals to the SIL 
derivation process, in fact the proof-test issue arises in any 
framework in which quantitative safety targets need to be 
achieved with technology whose integrity is difficult to 
quantify. This suggests that the SIL concept either needs to 
be expanded to better correspond to the two types of 
statistic used to express safety targets, or that assignment 
of SILs should be deferred to later in the development 
life-cycle. The pros and cons associated with both 
approaches are briefly surveyed. 

2 Accident Sequence Models 
The process of determining safety requirements for a 
system commences with a hazard identification and 
analysis activity. There are many techniques for 
performing such an activity, and it is beyond the scope of 
this paper to discuss these. However, at the conclusion of 
the hazard identification and analysis phase, one should 
have identified all reasonably foreseeable ways that a state 
or event of the system can cause or contribute to an 
accident.  

One way to document one’s understanding of how the 
system can lead to accidents is to prepare a set of accident 
sequences. 

A typical accident sequence is illustrated in Figure 1. 
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IE CE1
AccCEn..

 

Figure 1 Accident Sequence 

As shown in Figure 1, a typical accident sequence consists 
of: 

1. An initiating event (IE), which is the event that 
initiates the sequence of events that can lead to an 
accident. 

2. Zero or more contributing events (CE1 .. CEn). A 
contributing event is an event that must occur, in 
order for the accident to result. 

3. An accident (Acc), which is an event involving 
harm. 

Depending on the way a safety program has been scoped, 
the concept of harm may be limited to harm to humans, but 
it could also be expanded to incorporate damage to 
property or the environment, service outages, or mission 
failures.  

Accident sequences may be documented pictorially – as in 
Figure 1 – however it is usually more efficient to document 
them in a tabular fashion. Tables 1 and 2 illustrate how this 
can be done, and also describe the accident sequences for 
two working examples we will use throughout this paper. 

The first example is taken from a risk analysis for a 
traditional railway signalling system. The signalling 
system receives (non-vital) requests to set routes. On 
receipt of a request, it checks the safety of the request 
against (vital) inputs from track circuits, and against any 
relevant interlocking history. If it is safe to do so, it sets the 
route, which may involve issuing vital outputs to points 
and signals, and storing a record of this authority (i.e. 
updating the interlocking history). The accident sequence 
in Table 1 below examines the consequences of unsafe 
failure of the interlocking system, leading to a system 
allowing green signals to be displayed over a common 
section of track. 

Event 
ID 

Event Description 

IE (*) Interlocking shows proceed aspects on 
conflicting routes, A and B. 

CE1 Driver on route A, on the strength of the 
proceed aspect, moves into a section X. 

CE2 Driver on route B, on the strength of the 
proceed aspect, moves into section X. 

CE3 Driver on route B fails to notice presence of A, 
in sufficient time to slow train to avert a 
collision. 

Acc Train collision/derailment 

Table 1 Signalling Example 

In the example above, the event labelled IE is annotated 
with a (*), to indicate that it is an event of the system under 

analysis. This is a convention we adopt throughout the 
paper. 

The second example is taken from a risk analysis for a 
tunnel ventilation control system (TVCS) for an 
underground railway. The TVCS is responsible for, among 
other things, activating powerful exhaust fans to clear air 
in tunnels, in the event that it becomes contaminated by 
smoke or gas. Activation of such fans is usually triggered 
automatically, in response to stimuli received from a train 
supervision system, and a fire alarm system. However, in 
the author’s experience, it is usually the case that in the 
event of failure of the automatic activation system, the fans 
can be manually activated, either indirectly, via a 
computer-based display on the TVCS, or directly, via a 
hard-wired panel in a plant room. The latter control point 
usually bypasses the control system completely. In the 
following example, we assume the existence of a 
hard-wired manual control location. 

Event 
ID 

Event Description 

IE Train stops in tunnel 

CE1 Fire in tunnel/station 

CE2 Air supply in tunnel contaminated as a result 
of smoke or noxious gas 

CE3 (*) Control system fails to automatically activate 
exhaust fans, in response to train 
stoppage/fire alarms 

CE4 Delayed manual fan activation leads to period 
of diminished air quality for persons in train 

Acc Persons in train suffer 
poisoning/asphyxiation 

Table 2 Tunnel Ventilation Example 

Note that in both examples given above, the accident 
sequences are extreme simplifications of the analyses that 
would occur for real systems, and are provided for 
illustrative purposes only. Also, the accident sequences 
focus on events of interest to the system under analysis. 
For example, in the tunnel ventilation example, failure of 
the exhaust fans is an alternative cause of the final 
accident, and potentially has far more serious 
consequences, since it would lead to total ventilation 
failure, not just delays associated with failure to activate 
the ventilation automatically. Nevertheless, fan failure 
would not generally be considered in much detail in a 
study aimed exclusively at deriving safety targets for the 
TVCS, because the fans do not mitigate failures of the 
TVCS1.  

In both examples presented above, exactly one of the 
events IE, CE1 .. CEn in the accident sequence corresponds 
to a hazard of the system under analysis. Sometimes, 
                                                           
1  Note that the failure rate of the fans does, however, 
constitute a practical upper bound on the reliability of the 
function as a whole, and so might constitute an upper limit 
on the integrity of the TVCS that should be targeted.  
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however, more than one event of the accident sequence 
will correspond to the system under analysis. For example, 
where a system has diagnostic and back-up facilities, then 
the initiating event might correspond to a critical failure of 
the system, and subsequent contributing events might be 
failure of the system to detect the critical failure and take 
protective action. 

The accident sequence can then be used to derive safety 
requirements for the system under consideration, in that 
any event corresponding to an action or inaction of the 
system gives rise to a corresponding safety requirements 
on the system – i.e. that the event ought not to occur. 

So, returning to the signalling example, a safety 
requirement corresponding to event IE might be:  

Requirement 1: The interlocking system shall not 
command a proceed aspect unless it is safe to do so 
(having regard to the current state of vital inputs and the 
history of the interlocking).  

Similarly, for the tunnel ventilation example, the safety 
requirement associated with CE3 might be: 

Requirement 2: The TVCS shall, in response to signals 
indicating that a train is stopped in a tunnel, and that a fire 
alarm is active, automatically initiate emergency 
ventilation mode. 

Note that, in addition to providing information about 
safety requirements for the system under analysis, accident 
sequences also contain other information about the safe 
deployment of that system. For example, CE4 in the tunnel 
ventilation example documents an important assumption 
that underpins the analysis – namely that there is an 
alternative control location, and that staff are trained to 
operate fans from that location. In general, accident 
sequences should be comprehensively mined for other, 
safety-related information, which should be encoded as 
third-party requirements, assumptions, 
application-specific safety conditions, etc. 

Note that accident sequences are not the only way to 
document how system hazards can contribute to accidents. 
Event tree analysis, fault tree analysis and 
cause-consequence analysis are other techniques that 
achieve a similar goal. These methods, however, are ways 
of more concisely presenting groups of related accident 
sequences, rather than being entirely different techniques.  

The accident sequence model has been criticised in work 
by Leveson (2002), on the grounds that it focuses on the 
(most) proximate causes to the accident, often at the 
expense of underlying systems-theoretic causes (for 
example – lack of a management commitment to safety in 
the organisation operating the safety-critical plant). Also, 
it may lead one to a mistaken belief that events are 
independent, because they are associated with different 
systems, when in fact there may be a common underlying 
cause (e.g. if both systems are maintained by the one 
organisation, which has applied aggressive cost-cutting 
measures to its maintenance operations). Further, the 
desire to quantify the models, an issue we explore in the 
next section, may lead one to unconsciously discount 
events from an accident sequence, simply because 
quantifying the likelihood of occurrence is hard.  

These criticisms are accepted, and, if constructing an 
accident model for an operating railway as a whole, we 
might well prefer to adopt the systems-theoretic approach 
recommended by Leveson (2002). However, in the 
author’s practical experience, safety requirements 
derivation is typically performed in a much more specific 
context – i.e. it usually falls to the supplier of the TVCS to 
make the case for derivation of appropriate safety 
requirements and targets. Persons working at that specific 
context typically do not have access to detailed 
information about say, the railway as a whole, and must 
instead make informed judgements about what to expect of 
the surrounding environment, which form caveats on the 
safe use of the system they supply. It then falls to parties at 
the railway level to ensure that the assumptions made by 
the TVCS suppliers are appropriate in the context of their 
specific railway. Also, the criticisms advanced by Leveson 
(2002) are not faults exhibited by all sets of accident 
sequences. They are just common traps into which 
developers of accident sequences might fall. An awareness 
of these issues, and subsequent review of the accident 
sequences to search for these weaknesses, can help to 
avoid them. 

3 Safety Target Derivation  
In addition to identifying the system safety requirements, 
in a functional sense, accident sequences can also be 
quantified and as such used to derive quantitative safety 
targets.  

To see how this can be done, it is first necessary to 
introduce the mathematics behind accident sequences. 

If F(X) denotes the frequency of event X, and P(Y) denotes 
the conditional probability that Y occurs, given that 
preceding events in the accident sequence have already 
occurred, then the frequency of accident occurrence can be 
computed using the following formula: 

F(Acc) = F(IE).P(CE1). … .P(CEn) Eqn 1 

To derive safety targets one then applies the following 
process. 

First, the severity of the accident must be assessed, and a 
target rate of occurrence for the accident must be derived. 
How to do this is beyond the scope of the paper, however 
we note that: 

1. Usually, one has regard to a risk matrix that 
indicates risk tolerability as a function of accident 
severity and frequency of occurrence – see for 
example the matrix in Clause 4.6.3.4 of EN 
50126. 

2. Account must be taken of the aggregate risk 
posed by the system as a whole, not simply the 
risk posed this particular accident sequence. 

3. Depending on the industry in which one is 
working, the final arbiter of what constitutes 
acceptable risk will vary, as can the risk standards 
that will be imposed. 

4. If it is necessary to demonstrate that risk has been 
reduced as low as reasonably practicable 
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(ALARP), it will be necessary to show that the 
costs associated with achieving a lower target 
accident frequency are disproportionate to the 
risk benefit that would be achieved. This may 
require the safety target derivation process to be 
iterated a number of times, with indicative 
costings prepared for different derived targets. 

Let us suppose that, for the signalling example, the 
tolerable frequency of a rail collision arising from this 
specific accident sequence (having regard to the nature of 
the rail service, the volume of rail traffic, and the number 
and type of other accident sequences that can give rise to a 
similar result) is 1E-05/year or 1.14E-09/hr. 

Further let us suppose that for the tunnel ventilation 
example, a similar consideration yields a target of 
3.42E-09/hr. 

Next, one assigns values to the parameters of Eqn 1, for 
events that are outside the system of interest. This will 
require data collection and the application of engineering 
judgement, and often, will require some assumptions to be 
made. 

Thirdly, for events that are hazards of the system under 
analysis, one assigns conservative values, for the purposes 
of initial assessment only, in the following way. 

If the event is a contributing event, then a probability of 1 
is assigned, indicating that initially, we pessimistically 
assume that the contributing event will always occur when 
it is dangerous for that to happen. 

If the event is an initiating event, then it is usual practice to 
assign a failure frequency, for the purposes of initial 
assessment only, that is outside the claim limit for SIL 1. 

Per IEC 61508, the failure rate range for SIL 1, 
high-demand mode systems, is less than 1E-05 
failures/hour, but greater than or equal to 1E-06 
failures/hour. A value of 3.2E-05 failures/hour is therefore 
one order of magnitude more frequent than the geometric 
mean of the SIL 1 range. It is suggested to be an 
appropriate value to use, for the purposes of initial risk 
assessment only, however it is important to note that this 
does give rise to a later validation obligation to show that 
such reliance is reasonable. In particular, we note Clause 
7.5.2.4 of IEC 61508-1 which allows dangerous failure 
rate claims to be associated with systems that are not 
designated as safety-related systems, provided that the rate 
claimed is higher than the SIL 1 failure rate boundary, and 
that the claim can be justified. 

The process described above is applied to the signalling 
example and the tunnel ventilation example, as shown in 
Table 3 and Table 4 below. The resultant frequency 
assessments are also illustrated there. 

It is clear that for both examples, the initial accident 
frequency calculation results in a frequency much higher 
than the maximum allowable value, and that risk reduction 
is therefore needed.  

In the context of the accident sequence model, risk 
reduction can occur in a number of ways, including: 

1. Redesign so that the accident sequence is no 
longer possible.  

2. Introduce measures to reduce the severity of the 
resulting accident.  

 

 

Event ID Event Description Initial 
Estimate Rationale

IE (*) Interlocking shows proceed aspects on
conflicting routes, A and B.

3.2E-05/hr
The initial estimate is purely a placeholder value -- 
for a system of lower than SIL 1 integrity.

CE1 Driver on route A, on the strength of the
proceed aspect, moves into a section X.

1

Drivers proceed on the strength of the authorities 
communicated via signals. This event is a natural 
consequence of the initiating event.

CE2 Driver on route B, on the strength of the
proceed aspect, moves into section X.

1

Drivers proceed on the strength of the authorities 
communicated via signals. This event is a natural 
consequence of the initiating event.

CE3 Driver on route B fails to notice presence of
A, in sufficient time to slow train to avert a
collision.

1/2

Drivers are expected to remain alert and to look for 
hazards on the track. Depending on the conditions at 
the time, the speed of the traffic, the topology of the 
track, some credit may be taken for the fact that the 
driver on route B may notice the presence of A and 
slow his train to avoid collision (or to lessen the 
impact).

Acc Train collision/derailment A train collision or derailment is always assumed to 
have catastophic effects.

Accident frequency ==> 1/7 years  

Table 3 Signalling Example – Initial Quantitative Risk Calculation 
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3. Introduce additional mitigations, that would 
prevent accident occurrence – this corresponds to 
adding additional events to the accident 
sequence. 

4. Reduce the frequency of the initiating event, or 
the conditional probability of one of the 
contributing events, to reduce the accident 
frequency – this usually means assigning 
integrity requirements to one or more of the 
systems involved, although a similar result can be 
achieved by limiting hazard exposure periods. 

As noted above, this paper is written from the perspective 
of a supplier seeking to derive appropriate safety integrity 
requirements for a system that he has been tasked to build. 
In this context, the options available to the supplier are 
usually limited to the last two. In relation to Option 3, a 
supplier can introduce redundancy into the design of the 

system he has been tasked to build (with consequent 
increases in cost and complexity, and note that redundancy 
offers no protection against common-cause failure modes, 
particularly those arising from design error). In relation to 
Option 4, the supplier can typically only alter the safety 
integrity requirements of the system he is supplying.  

The remainder of this paper focuses on achieving risk 
reduction through the assignment of safety integrity 
requirements to the system under consideration, i.e. 
Option 4 above. 

For the signalling example, as the initial accident 
frequency is once in seven years, or 1.6E-05/hr, a failure 
frequency of 2.28E-09/hr must be assigned to the initiating 
event, in order to reduce the accident frequency to the 
tolerable value. 

 

Event ID Event Description Initial 
Estimate Rationale

IE Train stops in tunnel, and cannot be readily
restarted

1/2 years

While short term delays are common, and any of 
these might cause a train to be stopped in a 
tunnel, lengthier delays requiring passenger 
evacuation are far more infrequent.

CE1 Fire in tunnel/station

1/100

While very minor fires in station waste bins and 
the like are common, fires large enough to give 
off significant amounts of smoke are extremely 
uncommon in stations, and the system is designed 
so these should not occur in tunnels. 

CE2 Air supply in tunnel contaminated as a result of
smoke or noxious gas

1

The estimate of conditional probability, in the 
previous event, takes "credit" for the unlikelihood 
of fires large enough to emit tangible quantities of 
smoke. It is therefore reasonable to assume that if 
such a fire did occur, the air supply in the tunnel 
would be contaminated.

CE3 (*) Control system fails to automatically activate
exhaust fans, in response to train stoppage/fire
alarms 1

Initially, no credit is taken for control system 
integrity, as this is the system under 
consideration.

CE4 Delayed manual fan activation (5 minutes) leads
to period of diminished air quality for persons in
train

1

If the events preceding this one have all occurred, 
then staff would have no option but to attempt to 
action emergency mode from the plant room. 
Staff are trained for this eventuality and the target 
for manual activation is less than 5 minutes. A 
period of diminished air quality would be 
expected.

Acc Persons in train suffer poisoning/asphyxiation
It is expected that a period of diminished air 
quality could result in as many as five deaths, for 
passengers with pre-existing conditions, and 
cause other major/minor injuries, with significant 
distress to all passengers involved. This is 
therefore a catastrophic event.

Accident frequency ==> 1/200 years  

Table 4 TVCS Example – Initial Quantitative Risk Calculation 
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For the tunnel ventilation example, as the initial accident 
frequency is once in 200 years, or 5.71E-07/hr, a 
conditional probability of failure on demand 6E-03 must 
be assigned to contributing event CE3 (i.e. to the 
probability that the control system will fail to 
automatically activate the fans when required).  

As such, the safety requirements formulated earlier can be 
associated with explicit safety targets, as follows: 

Requirement 1 Safety Target: 2.28E-09 dangerous 
failures per hour 

Requirement 2 Safety Target: 6E-03 probability of a 
dangerous failure on demand 

4 Deriving SILs from Safety Targets 
Having determined the relevant safety requirements, and 
associated quantitative safety targets, the next job is to 
develop a strategy for achieving these targets. 

To the extent that the system is comprised of simple 
hardware, the field of reliability engineering provides us 
with techniques to achieve, and to prove achievement of 
this goal. However, to the extent that the system is 
comprised of software, it is difficult to say what the target 
means, and for software of high integrity, beyond the 
bounds of current technology to demonstrate that it has 
been met. 

In lieu of absolute demonstration of achievement of the 
quantitative target, one must, to make a case that a system 
is acceptably safe, fall back on an argument that one has 
exercised due diligence, applying good practice 
appropriate to the nature and integrity requirement of the 
system under consideration.  

To provide guidance here, IEC 61508 provides the safety 
integrity level concept, which associates suites of 
development and assurance techniques with different 
quantitative target ranges. The SIL concept is well 
explained in Redmill (2000). 

The SIL concept, as described in IEC 61508 and related 
standards, has been criticised by Lindsay & McDermid 
(2000) on the grounds that the link between suites of 
development and assurance practices, and target failure 
rate ranges, is not supported by empirical studies. Other 
criticisms relate to the fact that the overall process is 
open-loop; that is, one determines the required tolerable 
hazard rate, infers the corresponding SIL, and then applies 
the development practices appropriate to that SIL. 
However, the loop is often not closed, in the sense that no 
argument is made that taken as a whole, the evidence 
generated in the course of development is sufficient to 
establish that the required safety has been achieved. 

While these criticisms are noted, and accepted, the fact 
remains that the SIL concept is prevalent in all industries 
affected by IEC 61508 or related standards, and must 
therefore be applied. Also, we note that many of the 
criticisms of the SIL concept are not so much of the 
concept itself, as of the way it is misused. Being alert to 
these pitfalls is a step along the journey to avoiding them. 

IEC 61508 recognises that safety-related systems can 
operate in two modes, and that the unit associated with the 
safety target will vary because of this. It recognises 
low-demand operation, where the frequency of demands 
for operation are no greater than once per year, and no 
greater than twice the proof-test frequency. For low 
demand mode operation, the associated target failure 
measures are expressed as probability of failure to perform 
the function when demanded. It also recognises high 
demand or continuous mode, where the frequency of 
demands for the function is greater than once per year or 
greater than twice the proof-test frequency. For high 
demand functions, the associated target failure measures 
are expressed as dangerous failure rates. 

With reference back to our accident sequence model, and 
to Eqn 1, we can see that this might reflect a possible 
assumption within IEC 61508 that if systems are operating 
in high-demand or continuous mode of operation, their 
failures will constitute initiating events in an accident 
sequence. Alternatively, if systems are operating in 
low-demand mode, their failures will constitute 
contributing events in an accident sequence. 
Unfortunately, this is not always true. 

Referring back to our signalling example, the derivation of 
a safety integrity level from the quantitative safety target is 
in this case apparently straightforward. Most would argue 
that the system, performing interlocking functionality 
continuously, is operating in high demand mode. As such, 
it is straightforward to take the quantitative safety target of 
2.28E-09 failures/hr, note that it lies within the range for 
SIL 4 functions, and hence infer that the interlocking 
function must be developed using SIL 4 development and 
assurance practices.  

For the tunnel ventilation example, however, where the 
target is expressed as a conditional probability, how do we 
perform the SIL translation?  

The function of activating emergency control mode, as 
required for this particular accident sequence, will not be 
demanded more frequently than once a year. However, in 
some tunnel ventilation control systems, the modes used 
for responding to fire situations are also used to respond to 
some classes of standard congestion situation. Standard 
congestion situations happen frequently, as a result of 
traffic congestion or other more routine disturbances 
(short term glitches in traction power supply, hazards on 
the track that need to be cleared, etc.). As such, the actual 
function may be exercised frequently, although the safety 
demands related to this accident sequence may be less 
frequent. Furthermore, the software on the actual TVCS is 
no doubt performing many functions, some of which 
would be operating continuously.  

The standard also requires that, in order for a function to 
qualify as a low demand function, it must be shown that 
the demand is less frequent than twice the proof-test 
frequency. As such, to show that a function is a low 
demand mode function, it is not enough to just consider the 
demand frequency, one must also consider the proof-test 
frequency.  

While the standard is unclear here, in the author’s 
experience most people would argue that the function of 
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activating emergency mode is nevertheless a high demand 
function (in this hypothetical example), if the mode is 
activated more frequently than once per year, albeit for 
other reasons than indicated in this accident sequence.  

This presents a problem, since our safety target is 
expressed as a probability of failure on demand, and the 
appropriate target failure measures for high-demand mode 
functions are expressed as dangerous failure rates.  

We can use the formula for the reliability of a system at 
time t – expressed as R(t) – to relate a dangerous failure 
rate f to the probability of a dangerous failure, during a 
demand period t. The relevant formulae are: 

P(Dangerous_failure_during_period_t) = 1 – R(t) 

And, 

1- R(t) = 1-e(-f.t),  

And,  

1- e(-f.t) ! f.t, for small f.t.  

Giving, 

P(Dangerous_failure_during_period_t) ! f.t, for small f.t. 

In order to apply this scheme, however, it is necessary to 
determine an appropriate period t.  

For this accident sequence, suppose the function was 
demanded at time ti, then the relevant period to use is the 
time during which a failure of the TVCS would be 
dangerous. Clearly, this period of time must start before ti, 
since if the TVCS happened to be in a failed state when the 
function was demanded, then the function would be 
unavailable. As such, the period of time must extend 
backwards to the last time the TVCS was tested and 
proved to be working, relative to this functional demand. 
That is – to the last time a proof test for this function was 
conducted. Note that the period must also extend forward 
until such time as we can reasonably expect the situation to 
have been resolved, since a failure of the TVCS following 
a successful activation of the mode might, depending on 
the design of the system, cause the mode to stop with 
consequent harm to passengers on the train. In summary, 
the relevant period t is the length of the interval beginning 
from when the function was last proof tested, through to ti, 
and extending up until the time after ti at which the 
situation can expect to have been resolved. 

It would seem then, that to infer from the target probability 
of failure on demand, a corresponding dangerous failure 
rate, and hence to infer a SIL for the TVCS, we need to 
consider what constitutes an appropriate proof test for this 
function.  

5 Proof-test Intervals and Software 
A proof test is a test that proves that some function of a 
component is working. If the test fails, the component is 
repaired or replaced. For components subject to random 
failures, with a failure rate that is constant over time, 
frequent proof testing can be used to effectively reduce the 
probability that a component will fail during a defined 
interval.  

The ideal proof test is non-invasive, and does not diminish 
the reliability of the component. For example, consider a 
room that is continuously illuminated by a single light 
bulb. The simple act of opening a door to see if the light is 
still on is a non-invasive proof test for the light bulb. In 
most cases however, a proof test involves actually 
demanding the function, and observing the result to be sure 
that the component is able to provide the function on 
demand. Examples are turning on a light to check that it is 
still working, line integrity tests for telecommunications 
equipment, physical point-to-point tests for control 
equipment, etc. For components that are normally in an 
active state, polling the device and confirming that a 
response is received is also a kind of proof test. 

Generally, the more complex the device, the more difficult 
it is to perform a perfect proof test. Consider a 
programmable logic controller, wired to physical input and 
output points. A test that the controller is powered up and 
responsive when polled could be considered to constitute a 
proof test of sorts. Such a test, however, probably would 
not reveal latent circuit failures on the output cards, and 
hence would not be considered a sufficient proof test for 
the function of controlling a particular output point. 

Returning to the example of the TVCS, let us suppose the 
architecture for the system comprises: 

1. A LAN connection between the TVCS server, 
and other systems. This connection delivers the 
demand from the emergency ventilation mode. 

2. A TVCS server, which is commercial grade 
computing hardware, running software operating 
on a UNIX platform. The server detects the 
demand and forwards it to the PLC. 

3. An optical fibre connection to one or more PLCs, 
which perform the low-level plant control.  

4. One or more PLCs that take care of local plant 
interlocks (e.g. dampers should be opened before 
exhaust fans are activated, etc.), and which are 
physically wired to the plant.  

Note that in the architecture just described there is 
software in the TVCS server and also in the PLC(s). The 
question is: what constitutes an adequate proof test for the 
function of actioning an emergency mode? From a 
hardware perspective, the demand to action the mode is 
received over a network connection, from another system, 
so a test that the connection to the other device is working 
is sufficient. The connection between the server and the 
PLC would be similarly proved. For the server on which 
the processing is performed, a test that the server is 
powered up and “healthy” would be sufficient. For the 
PLC itself, as just discussed, a valid proof test would need 
to exercise the circuits involved in the activation of 
emergency mode. 

This is, however, a software-based system, which begs the 
question of what constitutes a proof test for the software? 
To answer this, we need to consider the nature of the 
software, and the way that it fails. Software behaves 
systematically, in the sense that when a particular logical 
path is exercised, with a certain set of values assigned to 
the variables, the result that is produced will either 
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conform to specification, or not, and hence the software 
will be considered to have succeeded, or failed. Every time 
the same path through the software is exercised, with the 
same value to variable assignment, the result will be 
identical. Provided the underlying platform is sound, there 
is no possibility that the software will “stop working”, at 
some point. 

This means that the concept of a proof test, as used in IEC 
61508, is essentially meaningless for software. The 
complexity of even simple safety-related software systems 
usually renders exhaustive testing infeasible (Butler & 
Finelli, 1993, and Littlewood, 2000) , meaning that for a 
particular function, it will not be possible to exercise all 
possible paths, with all possible variable-value 
assignments. That is, for most practical purposes, it will be 
impossible to construct a perfect proof test. Returning to 
our example, a functional demand on the software to 
action emergency mode, performed as part of a proof test 
during non-traffic hours on the railway, may exercise the 
software differently to a demand made “in anger”, when 
there are high levels of network traffic, other software 
activity, and when the value of other variables accessed by 
the program may have changed.  

On the other hand, if the software that implements the 
function was sufficiently simple to allow a “perfect” proof 
test to be constructed, then it would be enough to do it once 
– subsequent tests would not add value, from the 
perspective of software reliability.  

In both cases above – where it is not possible, and where it 
is possible, to construct a perfect proof test, the idea of 
manipulating proof-test intervals is meaningless for 
software, since it cannot be argued to affect the probability 
of failure on demand of the software. 

Nevertheless, from a practical point of view, if one is to 
perform SIL derivation within the IEC 61508 framework, 
some sort of proof-test interval must be postulated, in 
order to perform the conversion between the failure on 
demand target and a dangerous failure rate. 

In the author’s experience, the following options have 
been used: 

1. A test that the software is operational, i.e. that it is 
not currently in a failed state. Within the high 
integrity systems community, there is some 
support for the notion that a simple test of this 
nature is sufficient to constitute a proof test (refer 
discussion in the High Integrity Systems 
Engineering (HISE) mailing list, in reference 
list). Since polling can be performed very 
frequently, however, this has the consequence of 
reducing the proof-test interval to milliseconds, 
which in practical terms means that even an 
extremely high failure rate can yield a low 
probability of failure on demand. That is, using 
this as a proof-test interval can artificially deflate 
the required safety integrity level. In the case of 
the TVCS, this would lead to counter-intuitive 
results, in that it would yield a low failure rate 
requirement (to the point of requiring no integrity 
level to be assigned at all), for a function which is 
clearly relied on to reduce risk. 

2. A demand of the relevant function. While simply 
demanding the function does not constitute a 
perfect proof test, for the function at large, it is a 
test of the function with certain input values, and 
certain environmental variables (i.e. certain 
state). By performing such tests regularly, over an 
extended period, and taking care to perform the 
tests at different times of the day and in different 
operating modes, it is reasonable to expect that 
over time a certain level of coverage will be 
achieved, with respect to the actual operational 
profile of the function. This strategy is consistent 
with the point of view that although software fails 
systematically, for sufficiently complex systems, 
the demands placed on those systems by the 
environment in which they are embedded are 
sufficiently random to be able to be viewed 
stochastically (Musa, 1998, and Parnas et al., 
1990)  

3. The time since the software was last reset. There 
is a compelling argument that for many systems, 
the value of the program’s variables (i.e. its state) 
evolves over the time that the software is 
operational. Accordingly, as the mission time of 
the software increases, so does the likelihood that 
the environment will make a demand on the 
software that has not previously been made. By 
frequently resetting the software therefore, one 
increases the likelihood that the demands that are 
made are in parts of the operational profile that 
has previously been explored (and therefore is 
known to work) (Parnas et al. 1990.).  

4. Ignore the issue of software proof-test interval, 
and use an interval that is appropriate for the 
hardware used to implement the system. This 
approach appears to ignore the issue altogether, 
but is actually sympathetic to the general 
philosophy of IEC 61508, which employs 
traditional (hardware) reliability engineering 
methods to derive quantitative targets, and then 
switches to new ideas (the SIL concept), to 
achieve them.  

6 Discussion 
This paper has raised a number of issues that warrant 
further discussion. 

6.1 Primary and Non-primary Functions 
The examples in this paper have focused on the use of 
software to achieve what might be termed the “primary 
functions” of a system. By primary functions, we mean the 
functions which are representative of the purpose for 
which the system was created. Examples include the 
control of vital outputs by an interlocking system. 
However it is important to note that software is also used 
to perform hardware integrity checks and other kinds of 
diagnostic functions. For example, an interlocking system 
typically also includes software that continuously checks 
the electrical integrity of the input and output cards. These 
functions are usually ancillary to the main purpose of the 
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system, but are relied on to achieve overall safety. 
Consideration of the role such functions play is in the 
author’s experience typically delayed to the more detailed 
system hazard analysis phase, and is not performed 
quantitatively. That is, one performs quantitative analysis 
on the primary functions of the system, of the kind 
described in this paper, to infer that control of vital outputs 
needs to be assured to (say) SIL 4. Then, during detailed 
systems analysis, since failure to detect a critical hardware 
error could contribute to non-achievement of the function, 
one would also infer that diagnostic software to detect 
such errors must also be developed to SIL 4. The existence 
of such diagnostic functions – which are actually proof 
tests of the underlying hardware – is usually relied on in a 
detailed reliability analysis for the system hardware.  

6.2 Initiating and Contributory Events 
The examples in this paper illustrate safety functions 
whose failures have been modelled as initiating and 
contributory events. It is interesting to consider whether 
such events can be classified, and if so, what 
characteristics ought to be used for the classification 
scheme.  

In the signalling system example, the relevant event is an 
error of commission (i.e. the system actively does 
something dangerous), and the derived safety requirement 
is phrased negatively (i.e. the system shall not …). In 
contrast, in the TVCS example, the relevant event is an 
error of omission (i.e. the system fails to do something 
when required), and the derived safety requirement is 
phrased positively (i.e. the system shall …). This suggests 
a distinction based on the nature of the failure mode that 
characterises the event.  

The distinction, however, does not appear to apply 
universally. Consider the case of a railway traction power 
SCADA system, where the accident sequence of interest 
involves inadvertent energisation of high-voltage 
equipment while work on the line is in progress, and other 
manual safe-guards have failed. In this case, most would 
characterise the initiating event on the basis of time, and 
say that the sequence starts with the (normal) occurrence 
of maintenance, and contributing events include failure to 
apply manual safe-guards, and then an act of commission 
by the SCADA system, during the maintenance period, to 
energise equipment spuriously. 

Also, judgement must be applied in determining the 
initiating event for any accident sequence. Indeed, a major 
theme of the criticisms by Leveson (2002) is that accident 
sequences do not trace far enough backward in the search 
for causes, and rarely consider organisational causes (e.g. 
an accident sequence may include operator error as the 
initiating event, but most analysts would not list the 
management decisions that led to operators being rostered 
on for excessively long shifts an an initiating event). This 
dilemma is also evident in the signalling example in this 
paper. Another analyst might, for example, list the 
inappropriate route request submitted by a train control 
system to be the initiating event, and characterise failure of 
the interlocking system to block the request as a 
contributing event (interestingly, it is an error of 
omission).  

This is an area for further research, and would be a 
necessary pre-cursor to any quantification scheme based 
on accident sequence position. 

6.3 Accident Sequence Inversion 
Contrary to the idea explored in the previous subsection, 
that hazardous events can be absolutely characterised, is 
the observation that it is usually possible to invert accident 
sequences. 

As shown in the paper, problems of quantification usually 
arise with contributing events, where it is necessary to 
convert failure on demand targets to failure rate targets. If 
the accident sequence can be inverted so that the 
contributing event is instead re-cast as an initiating event, 
an alternative view of the system can be obtained. For 
example, returning to the tunnel ventilation example, 
imagine instead an accident sequence where the initiating 
event was failure of the TVCS in a mode that made 
subsequent activation of emergency mode impossible, the 
contributing events are then train stoppage and fire, during 
the period in which the TVCS failure remains undetected.  

This accident sequence inversion technique can provide a 
useful way of “sanity checking” results that depend on a 
failure on demand to failure rate conversion. It is 
interesting to note, however, that in the specific example 
used in this paper, the problem does not go away. To 
quantify the likelihood of train stoppage and tunnel fire, 
one must know the maximum likely period for the TVCS 
failure to remain undetected, which is just the proof-test 
interval anyway.  

7 Related Work 
So far as the author is aware, the issue of what constitutes a 
valid proof test for software does not appear to have been 
addressed in the literature. Within the safety-critical 
systems community, there has been some discussion on 
the High Integrity Systems Engineering mailing list (see 
reference list), about proof testing in general. However the 
thrust of that discussion seemed to be about determining 
what constituted a valid proof test, for the purposes of 
satisfying both limbs of the definition for “low-demand 
function” (i.e. the requirement that the demand be less 
often than once a year, and no more frequent than twice the 
proof-test interval). The discussion did not seem to 
confront the relevance of proof tests to the task of 
transforming probability of failure on demand statistics to 
dangerous failure rate statistics. Nevertheless, the 
discussion in that thread is anecdotal confirmation that 
there is a broad range of opinion on the topic, and little 
consensus! 

The accident sequence model and its use in the derivation 
of safety integrity targets, and SILs, is similar to the 
method described in a paper by Lindsay, McDermid and 
Tombs (2000).  

8 Conclusions 
This paper has considered what constitutes a valid 
proof-test interval for software. The following conclusions 
emerge: 
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1. Currently, the IEC 61508 framework requires a 
scheme for converting between targets expressed 
as probability of failure on demand, and those 
expressed as a dangerous failure rate, in order to 
derive SILs for high-demand mode systems that 
provide response-type functionality. Also, 
EN50129 has completely eliminated the concept 
of a low-demand function, forcing one to apply 
such a scheme to any system providing 
response-type functionality. 

2. Such a scheme demands that the concept of a 
proof test be addressed. 

3. Even if the system is operating in low-demand 
mode, one must still consider the proof-test 
frequency, and hence what constitutes a proof 
test, in order to satisfy the second limb of the 
definition of “low-demand mode”. 

4. For components with random failure modes, 
proof testing provides an opportunity to discover 
latent failures and remove them, before a 
safety-related demand is made. In quantitative 
terms, this reduces the probability that the 
component will fail when a safety-related 
demand is made.  

5. However, for components in which systematic 
failure modes dominate, such as software, it is 
usually infeasible to design a perfect proof test. 
Paradoxically, if such a test can be designed, then 
it is enough to run it once! Reducing the 
proof-test interval will not affect software 
reliability. 

6. Despite the above difficulties with the concept, 
IEC 61508 forces practitioners to confront the 
issue, if quantitative safety targets are to be 
derived. The paper reviewed a number of 
approaches to arriving at a value to use for such a 
calculation. We do not recommend any specific 
approach; we simply note the pros and cons 
associated with each of them. It is suggested that 
the decision about which approach to use will 
need to have regard to the particular application 
at hand.  

7. This is an area where more guidance, from the 
standards bodies, is badly needed! 

Ancillary to the main theme of the paper, the following 
observations are made: 

1. In practical terms, the specification of the 
requirements for a system is usually informed by 
ideas about how those requirements will be 
implemented. However, the systems engineering 
approach suggests that these issues should, so far 
as possible, be kept separate. That is, one should 
determine what a system must do, without being 
concerned with how it shall achieve that. This 
leaves maximum freedom to designers. This 
paper has shown that this will not be possible, 
however, if it is desired to associate with system 
requirements a safety target that is expressed as a 
safety integrity level. This is because some 

knowledge of system implementation is 
necessary to determine what constitutes a valid 
proof test, and knowing what constitutes a valid 
proof test is essential to proposing a reasonable 
proof-test frequency.  

2. There is a move to eliminate the 
low-demand/high-demand distinction, and force 
all safety targets to be translated to dangerous 
failure rates. This will mean the issues 
considered in this paper will come to light more 
frequently. An alternative approach that could be 
considered by standards authors is to continue 
the current scheme of having two tables, 
according to the units in which the safety target 
is expressed. However, the current basis for 
distinction (i.e. high vs. low demand) could be 
replaced with a classification scheme based on 
where the system appears in the accident 
sequence (i.e. whether its failures are initiating 
events or contributing events). 
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Abstract

The software architecture of a computing system is
an abstracted structure of the system in terms of
elements and relationships. Such structures may
be viewed from a number of viewpoints including
static/module, dynamic/execution, and deployment
viewpoints. Software architecture fundamentally in-

uences systems from all of these viewpoints and de-
signing and implementing proper software architec-
tures is thus critical in many problem domain areas,
including the ones that pertain to safety-critical sys-
tems.

With respect to safety-critical systems, a partic-
ular problem with focusing on software architecture
is that there may be a large abstraction gap between
an architectural description and an executing system
or a formal model thereof thus potentially leading to
inconsistencies between models and implementation.
Addressing this problem, this paper presents tools
and techniques for specifying executable software ar-
chitectures and for validating these with formal mod-
els such as statecharts and Petri nets.

1 Introduction

Safety-critical systems are systems that can cause un-
desired loss or damage to life, property, or the envi-
ronment, and safety-critical software is any software
that can contribute to such loss or damage [20]. Since
safety-critical systems have the potential to cause ex-
tensive damage, there are many standards and guide-
lines describing processes, techniques, and methods
for developing such systems. For example, the IEC
61508 [14] is a standard for achieving functional
safety of programmable electronic safety-related sys-
tems, and the Australian Defence standard 5679 [9]
is concerned with the procurement of computer-based
safety critical systems. Such standards contain rec-
ommendations regarding which techniques and mea-
sures should be used when developing software.

One of the techniques that these and other stan-
dards recommend or even require is the use of semi-
formal or formal methods through various develop-
ment phases for improving the quality of the safety-
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critical software. The use of formal methods and sup-
porting tools "provide increased repeatability of ana-
lyis, increased soundness and extra assurance" [9].
The IEC 61508 standard recommends that (semi-
)formal methods should be used at various develop-
ment states, including software safety requirement
speci�cation, software architecture design, detailed
software design and development, and software safety
validation. The recommended methods include (semi-
) formal models for representing both static and dy-
namic characteristics of the software. Here we are
only interested in models for representing dynamic
behaviour of systems. Such models can be used for
either specifying desired behaviour of software and/or
for validating and verifying that modelled software
behaves has desired.

While the standards advocate the use of (semi-)
formal models, they do not necessarily make any rec-
ommendations about how to ensure consistency be-
tween models of software behaviour and the corre-
sponding executable software. It is clearly a good idea
to model software behaviour, however, the usefulness
of such models will be compromised if it is not pos-
sible to ensure some consistency between the model
of the behaviour, and the behaviour of the executable
software. This paper presents tools and techniques
for validating the behaviour of executable software
against models of the behaviour of the software, and
thereby for reducing the gap between the software and
the model.

1.1 Modelling Software Behaviour

Models of software behaviour can be used for many
di�erent purposes, such as for specifying software re-
quirements, for designing software, and for analysing
the behaviour of software. Since the majority of ac-
cidents in which software was involved can be traced
to requirements 
aws [20], it is of particular impor-
tance to develop complete and unambiguous require-
ment speci�cations for safety-critical software. Sev-
eral standards recommend that requirements be spec-
i�ed as (semi-)formal models, and there is even rigor-
ous language and tool support for checking complete-
ness and consistency of software speci�cations [11].
The behaviour of software can be modelled both by
static models, such as decision tables and Uni�ed
Modeling Language (UML) sequence diagrams and
by dynamic models with executable behaviour, such
as �nite and timed automata, statecharts, and Petri
nets. One of the advantages of using dynamic mod-
els is that it is possible to investigate and, in some
cases, even verify the behaviour of the model in an
appropriate tool.

Dynamic models that represent states of a system
and transitions from one state to another can rep-
resent either discrete or continuous changes between
states. When modelling the behaviour of (safety-
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critical) software, it is rarely interesting to have an
accurate model of continuous state changes, and in
most cases it is su�cient to consider a set of discrete
state changes. For example, when modelling software
that controls the speed of a conveyor belt, it would
not be necessary to model all possible speeds of the
conveyor belt, but it would be su�cient to consider a
number of di�erent discrete classes of speeds, such as
stopped, within range, and above acceptable range.

In this paper we consider only discrete-state mod-
els which are state-based models with discrete transi-
tions between states. Transitions between states will
also be called events. A more formal de�nition of the
kind of models that we are interested in will be pro-
vided in Sect. 3.2. As always, when using models it is
important to �nd an appropriate level of abstraction
for the models. If the models are too detailed, then
it may be too time-consuming to develop them, and
it may be di�cult, if not impossible, to do reasonable
analysis of the behaviour of the model. Discrete-state
models are well-suited for specifying fairly high-level
requirements, and for analysing the behaviour of rel-
atively small systems.

A variety of tools provide support for creating
and analysing di�erent kinds of discrete-state models
of software behaviour. For example, SPIN [13] and
Uppaal [19] support model checking of �nite and
timed automata respectively, visualSTATE [25] and
STATEMATE [10] support analysis of statecharts,
and CPN Tools [7] supports analysis of a kind of high-
level Petri nets which will be introduced in Sect. 4.
With some of these tools, it is possible to generate
executable code from the models, in which case, it is
possible to ensure that there is consistency between
the model and the code (assuming that the code is re-
generated or updated if the model is modi�ed). How-
ever, if code is not or cannot be generated from mod-
els, then there is likely to be a large gap between the
models of software behaviour and the executable code
that is modelled. And in particular, even though code
may be generated, it is not certain that it corresponds
to a required or desired software architecture. This
lets us to consider the concept of software architec-
ture.

1.2 Software Architecture

Software architecture is concerned with abstracted
structures of software systems. A generally accepted
de�nition of the term `software architecture' is

De�nition 1 (Software Architecture) The soft-
ware architecture of a program or computing system is
the structure or structures of the system, which com-
prise software elements, the externally visible proper-
ties of those elements, and the relationships among
them [4]

The de�nition implies a number of characteris-
tics of software architecture. First, a system has
many structures/views of interest (e.g., module struc-
ture, dynamic structure at runtime in terms of pro-
cesses and communication, and deployment structure
in terms of processors and components deployed) [18].
Secondly, software architecture is abstract in the
sense that it is only concerned with externally vis-
ible properties of elements and relations and thus
not concerned with the inner structure of compo-
nents. Thirdly, all systems have a software architec-
ture whether intended or not.

All of these characteristics are relevant in relation
to software safety. Software architecture highly in
u-
ences various system quality attributes such as per-
formance, modi�ability, and testability because these
are in
uenced by structures in various views [4]. A

consequence of the second characteristic is that soft-
ware architecture descriptions may be more manage-
able than the actual system (or a less abstract de-
scription thereof) making the descriptions amenable
to, e.g., analyses and communication. And a con-
sequence of the third characteristics (in combination
with the above) is that software architecture is well
worth to be concerned with in safety-critical system
development.

A large number of techniques for software archi-
tecture requirements analysis such as Quality At-
tribute Workshops [1] and Global Analysis [12];
techniques for software architecture design such as
Attribute-Driven Design [5] and architecture pattern-
base design[6]; and techniques for software architec-
ture evaluation such as the Architecture Tradeo�
Analysis Method and Architecture Level Prediction
of Software Maintenance [8] have been developed and
tested. One characteristic of these are that they are
almost all speci�cation-based in that they use and
produce descriptions of software architectures rather
than software architectures of actual systems. Some
problematic consequences of basing software archi-
tecture work solely on such descriptions can be that
the architecture-as-built di�ers from the architecture-
as-designed, that quality attributes are not properly
addressed, or that software architects tend to design
conservatively even if the conservative choice may not
be appropriate.

As a way to mitigate some of these problems, and
as a supplement to existing well-documented tech-
niques related to software architecture, we have pre-
viously introduced the concept of architectural proto-
typing [2, 3]:

De�nition 2 (Architectural Prototype) An ar-
chitectural prototype consists of a set of executables
created to investigate architectural qualities related to
concerns raised by stakeholders of a system under de-
velopment. Architectural prototyping is the process of
designing, building, and evaluating architectural pro-
totypes [2]

Architectural prototypes are characterized by having
no functionality per se and thus often being cheap
to implement. Often architectural prototypes exper-
iment with and evaluate infrastructure and middle-
ware, e.g., to decide whether a push or a pull message
passing architecture is most suitable for an embedded
control system [2]. Section 2.4 presents an architec-
tural prototype constructed in a safety-critical system
development context.

In this paper we claim that architectural proto-
types are useful in safety-critical software develop-
ment in that the technique promises a cost-e�ective
way to implement various architectural alternatives.
Further, we provide a way of validating such exe-
cutable software architectures. In doing this, we are
in line with the views of [21]: what matters more than
how or by which principles it was developed is that
the designed software architecture is safe.

1.3 Software Architectures and Discrete-
State Models

Given the above discussion, there are a number of is-
sues in combining the use of software architecture and
discrete-state model in the development of (critical)
software systems.

Most fundamental is that software architecture
is concerned with structures (of systems) whereas
discrete-state models are concerned with behaviour.
Further, discrete-state models typically provide one,
behavioural view of a system whereas software archi-
tecture provides several as discussed in Section 1.2.
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An example of why this may be an issue is that a de-
ployment decision (such as about the type of network
used in a concrete distributed system) may impact
behavioural characteristics such as performance.

This also means that discrete-state models are
mostly concerned with runtime system quality at-
tributes (e.g., logical correctness, reliability, perfor-
mance, or scalability) whereas software architecture
is also concerned with development time system qual-
ities (e.g., modi�ability, testability, or interoperabil-
ity).

Finally, discrete-state models and software archi-
tectures may also often be orthogonal abstractions
of a system. In our case study, presented in Sec-
tion 2, discrete-state models were used to model re-
quirements of the system where a software architec-
ture is used to represent the system per se.

These problems make, e.g., traceability between
software architectures and discrete-state models and
reasoning about whether software architectures ful�ll
requirements modeled by discrete-state models hard.
Section 3 introduces our approach to handling parts
of these problems.

1.4 Contributions

The main contribution of this paper is the introduc-
tion of the Heimdall1 tool. The tool enables the
validation of sequences of program execution events
against a discrete-state model. We present a real-
life case study in which Heimdall is applied by using
aspect-oriented instrumentation to an architectural
prototype of a frequency converter for safety-critical
applications for which program execution events are
then mapped to a formal model of requirements de-
scribed by a Coloured Petri Net [15].

The rest of the paper is structured as follows. Sec-
tion 2 describes the case study which emphasised the
need for tools like the Heimdall tool. Section 3 de-
scribes the architecture and functionality of the Heim-
dall tool, and it also illustrates the current implemen-
tation of the tool. Section 5 discusses ideas for future
work and concludes the paper.

2 Frequency Converter Case

Several of the problems and issues that were discussed
above were encountered in a collaborative research
project between Danfoss Drives2, Systematic Soft-
ware Engineering3, and the Computer Science De-
partment, University of Aarhus4. Danfoss Drives pro-
duces frequency converters which are used to control
the speed of motors, e.g. for elevators, cranes, and
conveyor belts. A new generation of frequency con-
verters is being developed in accordance with IEC
61508. One part of the project investigated di�erent
(semi-)formal methods for specifying software safety
requirements. Another part of the project focused
on the design of the software architecture for the fre-
quency converter. In this project we experienced the
problem of a large gap between the models specifying
the software safety requirements and the executable
prototype of the software architecture. This section
will brie
y present the case study which is described
in more detail in [26].

1Heimdall is the watchman of the Gods in Norse mythology. Us-
ing his excellent hearing and vision he watches the rainbow, Bifrost,
that leads to Asgard, the home of the gods, sounding his alarming
horn when danger approaches

2http://drives.danfoss.com
3http://www.systematic.dk
4http://www.daimi.au.dk
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Figure 1: Hardware structure of a frequency converter
with safety functions.

2.1 Hardware and Software

In the new generation of frequency converters, safety-
critical software runs on two microprocessors. The
hardware structure of the frequency converter is
shown in Figure 1. The two blocks PWM Genera-
tor and Power Electronics control the speed of the
attached motor, and they make up the normal, \non
safety-related" part of a frequency converter.

The safety functionality is achieved by an addi-
tional subsystem on the Safe Board composed of
Channels 1 and 2, each containing a microproces-
sor (uP), a Switch-o� path, and three Digital In-
puts. The two microprocessors can, independently
from each other, activate its own switch-o� path to
stop the motor. The two Channels cross-monitor each
other through Feedbacks 1 and 2 and through the
Cross Communication connection.

A number of so-called designated safety functions
(DSF, or safety function) are implemented in soft-
ware that runs on the two microprocessors on the
Safe Board. The simplest safety function is a so-called
'uncontrolled stop' which immediately stops power
supply to the motor. Another safety function is a
'controlled stop' or 'safe delay', where the stopping
of the power supply to the motor is delayed, allow-
ing the non-safety-related part of the frequency con-
verter to ramp the motor down in a controlled way.
A more complex example is the 'safe speed' where an
uncontrolled stop is made if the motor speed exceeds
a set limit. A frequency converter is con�gurable, and
users can determine which safety function is associ-
ated with each of the n=3 digital inputs. A speci�c
safety function is activated upon reception of signals
at the appropriate digital input at each of the Chan-
nels.

All diagnostic functionality with respect to cross
monitoring and self monitoring of the Channels is im-
plemented in software. On detection of a dangerous
failure, an appropriate fault reaction is initiated, and
the motor is stopped.

2.2 Specifying Safety Requirements

The software that runs on the two microprocessors on
the Safe Board is safety-critical since it can contribute
to loss or damage to the environment of the frequency
converter through its e�ect on the speed and con-
trol of the attached motor. System-level safety re-
quirements were already de�ned at the outset of the
project. These requirements addressed issues such as,
when output to the motor should be enabled, what
should happen when an error occurs (either in hard-
ware or software), how requests for safety functions
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Figure 2: Informal statechart speci�cation of system-
level safety requirements.

should be made and handled, and what should hap-
pen after a safety function completes.

As mentioned previously, one of the recommenda-
tions of standard IEC 61508 is that semi-formal meth-
ods should be used to specify safety requirements.
In order to comply with this recommendation, Dan-
foss developed an informal statechart model (shown
in Figure 2) that was included in the initial product
proposal that was approved by the certi�cation au-
thorities. The model is informal in that it was drawn
in a generic drawing tool, and the states, transitions,
and event triggers are described separately in simple,
natural-language texts. It is not important to under-
stand the details of the behaviour speci�ed by the
statechart, but it will be brie
y explained.

The statechart speci�es that the frequency con-
verter must always be in one of three top-level states,
namely No dangerous failure, Fail-safe or the Final state

(denoted by a dot in a circle in the upper right-hand
corner of the �gure). If any kind of error is detected,
then the frequency converter must enter Fail-safe state,
and the power supply to the motor must be stopped.
The only way to leave Fail-safe state is to turn the fre-
quency converter o� ( Transition 14), and thereby enter
Final state. If no errors are detected, then the frequency
converter must be in No dangerous failure state, and
more speci�cally, in one of its three composed states:
Normal operation, DSF activated or Safe stop. In Safe stop

state, output to the motor is always disabled.
One of the goals of the project was to specify soft-

ware safety requirements based on the informal stat-
echart of the system safety requirements. The soft-
ware safety requirements were a re�nement of the sys-
tem safety requirements. Again, the IEC 61508 stan-
dard highly recommended that semi-formal methods
should be used to de�ne software safety requirements.

2.3 CPN Model of Requirements

A very detailed model of software safety require-
ments was developed in the formal modelling lan-
guage Coloured Petri Nets (CPN or CP-nets) [15, 17].
This section will provide a brief overview of the CPN
model of the frequency converter, and the formal def-
inition of CPN will be introduced in Sect. 4. All
of the requirements that were speci�ed in the stat-
echart model from Figure 2 are included in the CPN
model. Those requirements have been speci�ed more
formally, and the speci�cation is much more detailed.
In addition, the CPN model speci�es requirements
that are not addressed in the statechart model, such

Application
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Figure 3: Module hierarchy of the CPN model.

1`DSFRequest (1,n,Low)++
1`DSFRequest (2,n,Low)

1`DSFRequest (1,n,High)++
1`DSFRequest (2,n,High)

Request
DSF

UserIO

I/O

UserIO
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1`UserFB((1,Low))++
1`UserFB((2,Low))++
1`DSFRequest((1,1,High))++
1`DSFRequest((1,2,Low))++
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1`DSFRequest((2,1,High))++
1`DSFRequest((2,2,Low))++
1`DSFRequest((2,3,High))

Figure 4: DigitalIO module from the CPN model.

as diagnositics and synchronisation of the state of the
software on the two microprocessors.

Figure 3 provides an overview of the CPN model
which was created in CPN Tools. Each node in Fig-
ure 3 represents a module in the model, and an arc
from one node to another indicates that the source
node contains an abstract representation of some be-
haviour that is speci�ed in more detail in the module
of the destination node.

The Application module (at the top of Figure 3)
is the most abstract representation of the frequency
converter and its environment. This module has two
submodule, namely User IO and Safe Inverter, modelling
the means for user input/output, i.e. the digital in-
puts (module Digital IO) shown in Figure 1, and the
frequency converter itself, respectively. The software
for the two microprocessors is modelled by the mod-
ules MicroProc1 Lg and MicroProc2 Sm. Both of these
modules share some common functionality as speci-
�ed by the module Common and its submodules. The
two microprocessors send di�erent kinds of messages
and have di�erent diagnostic algorithms, which is why
there are separate modules for modelling these char-
acteristics.

Figure 4 shows a simpli�ed version of the Digital IO

module of the model. Requests for activating safety
functions are modelled in this module. The behaviour
of the module will be discussed in detail in Sect. 4.1.

Simulations of the model were run for three main
purposes: for debugging the model, for analysing the
behaviour of the model, and for discussing the soft-
ware requirement speci�cation with the project team.
Even though an exhaustive investigation of the be-
haviour of the model was not performed, a number
of important problems were identi�ed through the
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Figure 5: Package diagram for the software architec-
ture.

construction and simulation of the model. Examples
of these problems were: a simple diagnostic algor-
thim could lead to deadlock, and outdated messages
in message queues could lead to hazards, such as en-
abling power supply to the motor after an error had
been detected in one of the microprocessors.

2.4 Executable Architecture Prototype

Another goal of this project was to investigate and de-
velop techniques for ensuring that safety-critical soft-
ware ful�lls the corresponding software safety require-
ments. In other words, we were interested in closing
the gap between a semi-formal requirement speci�-
cation and a software implementation. We focused
on techniques for specifying and validating a software
architecture (rather than the �nal software) for the
frequency converter. A software architecture was de-
veloped and documented using a technique similar to
Kruchten's 4+1 technique [18] in which an architec-
ture is described in di�erent views.

The architecture was de�ned largely by UML dia-
grams, including class, package, deployment, and se-
quence diagrams. Figure 5 shows the package dia-
gram for the software architecture. The Control pack-
age contains classses for ensuring strict scheduling re-
quirements for the frequency converter, including reg-
ular checks for requests on digital inputs, diagnostics,
and checking microprocessor state consistency. The
Safety Functions package contains classes for the safety
functions. The classes in the Diagnosis package initi-
ate, coordinate, and perform diagnostics. The State

package is used by software on the two microproces-
sors to regularly communicate and compare their in-
ternal states. The External package contains classes
for reading and setting digital input/output values.

An executable architecture prototype was imple-
mented as skeleton classes in Java. Figure 6 shows an
abstract class from the Safety Functions package for the
architecture prototype. Classes for each of the di�er-
ent safety functions are de�ned as specialisations of
this abstract class. A number of important use sce-
narios were described as sequence diagrams, such as
initialisation during power-up and requesting safety
functions. These use scenarios were implemented as
simple Java programs that exercised the architecture
prototype by emulating external events of the fre-
quency converter, e.g. pressing the power button or
requesting a safety function by activating a digital in-
put, by calling appropriate methods in the executable
architecture prototype. Given this architecture proto-
type, Danfoss was interested in developing techniques
for ensuring that the architecture ful�lled the software
safety requirements, including those speci�ed by the
CPN model. An early prototype of the Heimdall tool

public abstract class SafetyFunction {
State state;
boolean isrequested = false;

public SafetyFunction (State state) {
this.state = state;
selfCheck();

}
public abstract void activate();
public abstract void selfCheck();
public abstract boolean isRequested();

}

Figure 6: Java skeleton class from executable software
architecture.

was developed during this project. We introduce the
Heimdall tool next.

3 The Heimdall Tool

Informally, the intented function of the Heimdall tool
is to map a sequence of well-de�ned program execu-
tion events to a sequence of well-de�ned model events
of a discrete-state model (Figure 7).

Program
Execution

Model
Execution

Mapping

Feedback

Figure 7: Conceptual overview of the Heimdall tool

The mapping is introduced more formally in Sec-
tion 3.2 and concrete examples of the speci�cation
of mappings is given in Section 4.3. The mapping
should be done in such a way that for an implemen-
tation that violates the model, the execution should
at some point lead to a corresponding sequence of
model events that are illegal with respect to require-
ments and feedback should be given. Conversely, the
execution of a correct implementation should not lead
to violations in the corresponding sequence of model
events.

In the following sections we �rst present an
overview of the architecture of Heimdall followed by
a more precise introduction of the mapping of exe-
cution events to model events. Next, we present our
concrete instantiation of the architecture to be used
with Coloured Petri Nets and show how the Heimdall
tool has been applied to architectural prototypes in
the frequency converter case.

3.1 Heimdall Software Architecture

:Program 
Executable

Heimdall
:Program 
Execution 
Listener

:Program 
Execution 
Mapper

:Model Tool 
Communicator

tcp/ip :Model Tool

Figure 8: UML deployment overview of software ar-
chitecture of the Heimdall tool

An overview of the architecture of the Heimdall
tool is shown in Figure 8. A Model Tool is a tool
which can execute and analyse a discrete-state model
of the behaviour of an executable program. A set of
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Program Executables are instrumented to send execu-
tion events to the Program Execution Listener of the
Heimdall tool. Instrumentation may be done, e.g.,
by using a debugger, by instrumenting source code
with tracing functions, or by using an aspect-oriented
approach (such as AspectC++ [24] for C/C++, As-
pectJ [16] for Java, or (eventually) AspectAda [23]
for Ada95). The instrumentation sends information
about relevant program execution events to the Heim-
dall tool instance using a TCP/IP-based protocol.

The Heimdall tool instantiates a Program Execu-
tion Mapper based on a description of the mapping
of execution events to model events. This mapping
is described in an XML format of which Figure 10
gives an example. Whenever the Program Execu-
tion Listener receives an event from a program ex-
ecution, it consults the Program Execution Mapper.
The Program Execution Mapper maintains traces of
program execution events and returns corresponding
model events as appropriate (cf. De�nition 8 in Sec-
tion 3.2). Given a match, the Model Tool Communi-
cator is used to communicate with a Model Tool in
order to examine whether the mapped model events
are legal in the model that the program execution is
validated against.

The Model Tool Communicators are tool-speci�c.
The requirements on Model Tools that are to be
used with Heimdall is provisions for tool integra-
tion, e.g., through plug-in capabilities, trace replay,
or using a tool-speci�c protocol. Our current status
is that CPN Tools can interact with the Heimdall
tool (see Section 4). Also traces of execution events
need not be replayed immediately, but may be saved
and (re)executed later, meaning that di�erent map-
ping could be tested against the same program execu-
tion trace. Correspondingly, mapped model elements
could also be saved for later transfer.

3.2 Mapping from Execution Events to
Model Events

The intent in Heimdall is to validate that a sequence
of execution events corresponds to a valid sequence of
model events. This is achieved, in part, by mapping
sequences of join points [16] in a program execution to
a sequence of valid events in a discrete-state model.
A join point is a well-de�ned point in the execution
of a program. We are primarily interested in join
points corresponding to method/procedure calls, set-
ting �eld/data values, and getting �eld/data values.

In Sect. 1.1 we informally described discrete-state
models, now we will provide a formal de�nition of
the models in which we are interested. A discrete-
state model is a model that is equivalent to a labelled
transition system:

De�nition 3 (Labelled Transition System) A
labelled transition system is a tuple LTS=(S,i,�,T)
where S is a set of states, i2S is the initial state, �
is a set of labels, and T � (S���S) is the set of
labelled transitions.

Note that both the set of states and the set of labels
may be uncountable. An LTS is said to be �nite if
its sets of states and labels are �nite. For a labelled
transition system with states s1, s2, and label l where

(s1; l; s2) 2 T , we will write s1
l
�! s2 and further, for

a set of labels, �, �� denotes the set of all sequences
of labels from �. An element of �� is legal or valid if
it is a trace:

De�nition 4 (Trace) Given a labelled transi-
tion system LTS=(S,i,�,T), a sequence of labels
l1l2 : : : ln 2 �� is a trace of LTS if 9s1; s2; : : : ; sn 2 S

so that i
l1�! s1

l2�! s2 : : :
ln�! sn.

We also consider the set of possible program exe-
cutions of a program as a labelled transition system
where the states are program states of interest (which
may be discerned by heap contents, stack contents
etc.) during execution and where the labels are join
point executions and related state, i.e., events of in-
terest in the program execution:

De�nition 5 (Program Execution System) A
program execution system is a labelled transition sys-
tem P = (SP ; iP ;�P ; TP ) which is a representation
of all of the possible executions of a program in which
execution states are abstracted into SP and where
call, set, and get join point executions are abstracted
into �P .

Note that the de�ntion of a program execution sys-
tem is somewhat imprecise in that the de�nition of
the set of states and set of labels is left to the dis-
cretion of those who are interested in validating an
executable program against a discrete-state model of
the behaviour of the software. Thus a reasonable set
of \interesting" states and \interesting" join point la-
bels that will be used during the validation process
will have to be de�ned. Section 4 will discuss the
states and join point labels that were used when val-
idating the executable architecture prototype of the
frequency converter against the CPN model of the
software safety requirements.

Recall that the purpose of the Heimdall tool is
to provide support for validating an executable pro-
gram against a model of the behaviour of the pro-
gram. We have just de�ned discrete-state models and
program execution systems in terms of labelled tran-
sition systems. LTSs are quite general in that they
allow for non-deterministic behaviour and in�nitely
many states and labels. All that we need now is a
way to show that two labelled transition systems are
(more or less) equivalent. A large body of research
is concerned with this issue, and bisimulation and
weak bisimulation can be used to show equivalences
between two LTS. However, the problem with these
techniques is that they are di�cult, if not impossible,
to use for large LTSs with (in�nitely) many states and
labels.

Many systems, and in particular safety-critical sys-
tems, can be represented by �nite labelled transition
systems, which are somewhat more practical to deal
with. Furthermore, the behaviour of safety-critical
systems is generally deterministic, which means that
the set of transitions for the LTS for the system would

be deterministic, in other words, if s1
l
�! s2 and

s1
l
�! s3 then s2 = s3. Finite, deterministic labelled

transition systems are somewhat easier to deal with,
however it is rarely possible to construct and analyse
an LTS for complicated, industrial-sized systems. So
it is still necessary to develop techniques that can be
use to check and validate the behaviour of software
for non-trivial systems.

Given the de�nitions above, our primary interest is
now to de�ne mappings between program executions
and model executions that will allow us to validate
the behaviour of an executing program against the
behaviour of a discrete-state model. Program and
model executions are de�ned as traces of an LTS:

De�nition 6 (Program and Model Executions)
Given a program execution system, P =
(SP ; iP ;�P ; TP ), a program execution for this
system is a trace p 2 ��

P .
Given a discrete-state model, M =

(SM ; iM ;�M ; TM ), a model execution is a trace
m 2 ��

M .

In this context, a program execution is considered
to be a sequence of execution join points that form a
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trace. Similarly, a model execution is a sequence of
legal model events. For such program executions, we
are interested in mappings of these to corresponding
events in the discrete-state model that is an abstract
representation of the behaviour of the program execu-
tion system of the program execution. More precisely,
we de�ne an execution mapping as:

De�nition 7 (Execution Mapping) Given a pro-
gram execution system P = (SP ; iP ;�P ; TP ) and
a discrete-state model expressed as an LTS M =
(SM ; iM ;�M ; TM ), an execution mapping for P and
M is a set E � (��

P � ��

M ).

In other words, an element e in an execution map-
ping speci�es how sequences of program join points
map to sequences of model events. An example of a
mapping element would be (lp1 lp2 lp3 ; lm1

lm2
) mean-

ing that lp1 lp2 lp3 2 ��

P maps to lm1
lm2

2 ��

M . The
goals of the validation process will help to determine
how detailed the execution mapping should be.

Based on program execution systems and mapping
de�nitions we are now able to de�ne when a program
execution may be considered correct:

De�nition 8 (Correctness) A program execution
p = lp1 : : : lpk of a program execution system P =
(SP ; iP ;�P ; TP ) is correct with respect to a discrete-
state model M = (SM ; iM ;�M ; TM ) and an execution
mapping E if

1. 9e = (lp1 : : : lpu ; lm1
: : : lmv

) 2 E; sp1 ; : : : ; spu 2

SP ; sm1
; : : : ; smv

2 SM : iP
lp1�! sp1

lp2�! : : :
lpu�!

spu ^ iM
lm1�! sm1

lm2�! : : :
lmv�! smv

where
lp1 : : : lpu is a pre�x of p and

2. p0 = lpu+1 : : : lpk of P 0 = (SP ; spu ;�P ; TP ) is
correct with respect to M 0 = (SM ; smv

;�M ; TM )
and E where p0 is the remainder of p after the
pre�x lp1 : : : lpu has been removed.

Note that P 0 and M 0 are essentially the same as P
and M | the only di�erence is the initial states.

In some cases a discrete-state model may contain
events that do not correspond to any \interesting" ex-
ecution events. For example, the model may specify
behaviour that is more detailed than what is currently
implemented in the software, or there may be model
events that are used to initialise parts of the model
at the beginning of an execution. Since the de�nition
of an execution mapping allows an empty sequence of
join points to be mapped to a non-empty sequence of
model events, it is still possible for unmapped model
events to occur when checking correctness of a pro-
gram execution.

Even though a set of program executions are cor-
rect with respect to a mapping, they are not neces-
sarily \good" in the sense that they cover all states of
the discrete-state model. Ideally, we also want com-
pleteness for this set of program executions:

De�nition 9 (Completeness) A set of correct pro-
gram executions are complete with respect to an exe-
cution mapping and a discrete-state model if the set
of all states of the model execution mapped to is the
complete set of states of the discrete-state model.

Ideally we would like to do an exhaustive veri�-
cation of program executions against discrete-system
models, but this is rarely possible in practice which
is why there is a need for tools like Heimdall. In a
safety-critical system setting, we may aim for estab-
lishing that program executions should be correct and
complete with respect to a set of critical states/states
of interest in the labelled transition system.

The next section will give an example of how this
is realised in practice with the speci�c program exe-
cutions being executions of Java architectural proto-
types and where the concrete discrete-state model is
a Coloured Petri Net.

4 The Heimdall Tool for Coloured Petri Nets

This section discusses the current implementation of
the Heimdall tool that has been used to validate the
executable architecture prototype for the frequency
converter against the CPN model of the software
safety requirements.

4.1 CPN and CPN Tools

Coloured Petri Nets is a formal, graphical modelling
language with well-de�ned syntax and semantics. We
will provide a very brief and somewhat informal in-
troduction to CP-nets which is taken from [15]. An
example following the formal de�nition will be used
to illustrate several concepts from the defnition. The
structure of a non-hierarchical CP-net is formally de-
�ned as a tuple:

De�nition 10 (Coloured Petri Net) A
non-hierarchical CP-net is a tuple CPN =
(�,P,T,A,N,C,G,E,I), where � is a �nite set of
non-empty types called colour sets; P,T, and A are
non-empty �nite, disjoint sets of places, transitions,
and arcs, respectively; N is a node function de�ned
from A into (P � T ) [ (T � P ); C is a colour func-
tion de�ned from P into �; G is a guard function
de�ned from T into boolean expressions; E is an arc
expression function de�ned from A into expressions
such that the arc expression for an arc evaluates to
a multi-set of values from C(p) where p is the place
that the arc is connected to; and I is an initialization
function de�ned from P into expressions that do
not contain variables such that the initialization
expression for place p evaluates to a multi-set of
values from C(p).

Note that arc and guard expressions may contain vari-
ables. A similar de�nition exists for hierarchical CP-
nets, in which modules are connected via well-de�ned
interfaces.

Recall that Figure 4 shows a simpli�ed version of
the DigitalIO module for the CPN model described in
Section 2.3. The ellipse UserIO is a place represent-
ing digital inputs and outputs for the two micropro-
cessors. The UserIO place acts an interface for this
particular module. The colour set for the place is
determined by the inscription UserIO to the lower
left of the place. The states of a CP-net are rep-
resented by a number of tokens distributed on the
places in the model. A token on a place carries a
data value, and the type of the data value must cor-
respond the the colour set of the place. Figure 4 shows
a state in which there are eight tokens on place Use-

rIO, as indicated by the small circle with the num-
ber next to the place, and the box next to the small
circle shows the values of the eight tokens. Two to-
kens indicate that the voltage for the digital outputs
(which are not shown in Figure 1) for the user feed-
back (UserFB) at microprocessors 1 and 2 are both
Low. The other six tokens represent the three digital
inputs that are used to request safety functions for
the two microprocessors. The format for such a data
value is DSFRequest((x,y,voltage)) where x indi-
cates the number of the microprocessor (1 or 2), y
indicates the number of the digital input (1, 2, or 3),
and voltage indicates the voltage of the digital input
where there are three possible values (High, Low, and
Error).
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The formal semantics of CP-nets determine which
events can occur in a given state, and how the state
will change when a particular event occurs. Events
in a system are modelled by transitions. The rectan-
gle Request DSF is a transition that represents the re-
quest for the activation of a safety function. The arc
expressions on the arcs between UserIO and Request

DSF determine how the state of the model will change
when the Request DSF transition occurs. The arc ex-
pression on the arc from UserIO to Request DSF con-
tains only one variable which is n, and it determines
that two tokens will be removed from the place when
the transition occurs. A transition together with a
binding of all of its variables is known as a binding
element. This transition can only occur if the voltage
of digital input n at microprocessors 1 and 2 is High.
When the transition occurs, two tokens will be added
to the place, representing the fact that the voltage of
the digital inputs is changed to Low which indicates
that a request is being made for the safety function
that corresponds to input n. In Figure 4 the safety
function corresponding to digital inputs 2 has been
requested (and possibly activated, but this cannot be
seen in this module), but it is currently possible to re-
quest the safety functions that correspond to inputs
1 and 3.

Coloured Petri Nets have been used to specify
software safety requirements, but we have said that
the models that are used with Heimdall must be
discrete-state models that can be expressed as an
LTS. This is not a problem, because it is possible
to de�ne a labelled transition system that is equiva-
lent to a CP-net. Given a CP-net CPN , let LTSC =
(SC ; iC ;�C ; TC) where SC is the set of states of CPN
that are reachable by sequences of transition occur-
rences from the initial state of CPN, iC is the ini-
tial state of CPN , �C is the set of binding elements
of CPN , and TC is the set f(s; be; s0)g where s is a
reachable state of CPN , be is a binding element that
is enabled in s, and s0 is the state that is reached
when be occurs in s.

CPN Tools is a tool supporting the construction
and analysis of CP-nets. There is support for running
two kinds of simulations: interactive and automatic.
In interactive simulations, it is possible for the user
to select which transitions should occur. The choice
of how transition variables should be bound can ei-
ther be left to the simulator or the user can manually
pick among the legal bindings in a given state. In
automatic simulations the simulator randomly picks
among the events that are enabled in a given state.
In either case, the simulator will update the state of
the model after each event occurs.

CPN Tools can execute and analyse models that
are equivalent to labelled transition systems, and it
therefore ful�lls some the requirements that must be
met by the modelling tools that should interact with
Heimdall. In order for the Heimdall tool to work with
CPN Tools, it must be possible to run and control
simulations without (or with very minimal) manual
interaction between a user and the GUI of CPN Tools.
The simulator for CPN Tools is implemented in Stan-
dard ML [22] which means that arbitrary SML func-
tions can be written to control simulations via the
prede�ned primitives in the simulator. The simula-
tor has primitives for running automatic simulations
and for selecting which transitions should occur in
a simulation, but it lacks a primitive for selecting a
transition together with particular bindings of some
or all of the variables of the transition. The existing
primitives for selecting a particular binding required
manual interaction with the GUI by a user. The sim-
ulator has been modi�ed, and a new primitive makes
it possible to specify that a transition with a par-
ticular binding of some of its variables should occur

public aspect SafeInverterTracer extends HeimdallTracer {
pointcut calls() :

call(* safeinverter..*(..)) &&
!call(* safeinverter.Factory.*(..)) &&
!call(* safeinverter..main(..));

pointcut initializers() :
initialization(safeinverter..*.new(..));

}

Figure 9: Aspect for extracting join points from exe-
cutable software architecture.

(assuming that the corresponding event can occur in
the current state of the model). Support for com-
municating with the Heimdall tool and for running
simulations based on the information received from
Heimdall has been implemented in SML, and it will
be discussed in Section 4.3.

4.2 Aspects for the Architecture Prototype

As mentioned in Section 2.4 the executable architec-
ture prototype for the frequency converter was im-
plemented as skeleton classes in Java. The classes
re
ect the design of the software architecture, and
they are very simple. Each class contains a number
of important methods and, in some cases, some im-
portant state variables. The methods are also very
simple | they take few, if any, arguments, and the
only actions that they perform is that they may up-
date local state variables or call other methods in the
architecture prototype.

In order to validate the architecture prototype
of the frequency converter, information about join
points must be extracted from the prototype during
execution, as described in Section 3.1. AspectJ is
used for this purpose. We provide an abstract aspect,
HeimdallTracer, with functionality for communicating
with the Program Execution Listener in the Heim-
dall tool. The aspect allows for tracing of method
calls and object constructors. Object constructors
are traced in order to provide a object id to corre-
lated with method calls which is necessary in order
to distinguish between instances of classes. The de-
fault object id is simply derived from the sequence
in which objects of interest are constructed, a default
approach that may be reasonable in cases where ob-
ject creation order is deterministic.

The aspect named SafeInverterTracer (the new fre-
quency converters are also known as safe inverters),
shown in Figure 9, determines which method call join
points will be sent to the Heimdall tool. Further, it
de�nes which objects should have their ids tracked.
In this case the join points that are to be validated
are virtually all method calls in the architecture pro-
totype which is de�ned in the safeinverter pack-
age. However, join points for calls to methods in
the Factory class and calls to main methods will
not be sent to the Heimdall tool. The abstract class
SafetyFunction from Figure 6 has three method
call join points that may be validated, namely when
the selfCheck is performed during initialization of
the frequency converter, whenever a call is made to
activate the safety function, and whenever a check
is made to see if a safety function isRequested.

We will now turn our attention to the execution
mapping for the architecture prototype and the CPN
model.

4.3 Mapping Execution Events to Model
Events

In the architecture prototype for the frequency con-
verter, the only join points of interest are method call
join points. These join points (and join points for the
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<element>
<joinpointevents>
<callevent>

<id>4</id>
<call>safeinverter.external.DigitalIO.requestDSF</call>

</callevent>
</joinpointevents>
<modelevents>

<modelevent><id>DigitalIO'Request_DSF(n,3)</id></modelevent>
</modelevents>

</element>

Figure 10: An excerpt from the execution mapping.

public class DigitalIO extends IO {
private SafetyFunction safetyFunction;

public DigitalIO (State state,
SafetyFunction safetyFunction) {

super(state);
this.safetyFunction = safetyFunction;

}
public void selfCheck() {}
public void requestDSF() {

safetyFunction.activate();
}

}

Figure 11: The DigitalIO class from the executable
software architecture.

construction of objects of interest, cf. Section 4.2)
are speci�ed in the aspect in Figure 9. The architec-
ture prototype contains very few join point for getting
or setting �elds, and none of these join points need
to be validated. Currently, the XML �le specifying
the mapping must be created manually. The map-
ping was created after a careful and systematic ex-
amination of the architecture prototype and the CPN
model.

In the execution mapping for the architecture
prototype, each method call join point is mapped
to one or more events in the CPN model. Many
join points are mapped to just a single transition,
while one of the join points is mapped to ten model
events. Figure 10 shows an excerpt from the exe-
cution mapping. This example shows the XML for-
mat of the mapping of a single method call join
point to a single model event. In this case a call
to the requestDSF method to the object with id 4
from the class safeinverter.external.DigitalIO
is mapped to the model event which is the transi-
tion Request DSF (shown in Figure 4) in the module
DigitalIO, where the variable n of the transition is
bound to 3. In the CPN model, digital input number
3 is associated with the 'controlled stop' or 'safe de-
lay' safety function. In the architectural prototype,
the object with id 4 is an instance of DigitalIO that
is associated with the safe delay safety function. The
DigitialIO class is shown in Figure 11.

Let us consider what steps are taken when validat-
ing the architecture prototype and the requestDSF
method is called in a DigitalIO object. When the
method is called, the SafeInverterTracer aspect
will cause the signature for the method call as well
as the id of the target object to be sent to the Pro-
gram Execution Listener in the Heimdall tool. The
Program Execution Listener will then use the Pro-
gram Execution Mapper to locate the model events (if
any) that the program execution event is mapped to.
Given the information in Figure 10, we know that this
join point is mapped to a model event corresponding
to the transition Request DSF with the variable n bound
to 3. The textual representation of this model event
shown near the bottom of Figure 10 is sent from the
Model Tool Communicator to CPN Tools.

A library that allows CPN Tools to interact with

Heimdall has been implemented. This library con-
tains functions for sending and receiving data via a
TCP connection with a Model Tool Communicator in
Heimdall. Additional functions are used to run simu-
lations based on the commands that are received from
the Model Tool Communicator. When a speci�ca-
tion of a model event is received from the Model Tool
Communicator, there are three possible outcomes. If
the event speci�cation corresponds to an event in the
model and the corresponding event can occur, then
the event will occur in the simulator, and an appro-
priate response will be returned to the Model Tool
Communicator. If the event speci�cation corresponds
to an event but the event cannot occur in the current
state of the model, then the state of the model re-
mains unchanged, and the response to the Model Tool
Communicator indicates that the event cannot occur.
The fact that a particular event cannot occur may in-
dicate that the behaviour of the executable code is not
consistent with the behaviour speci�ed by the model.
Finally, the event speci�cation may not correspond
to any known events in the model, and this indicates
that there is an inconsistency somewhere, i.e. either in
the model, in the executable code, or in the mapping
from the code to the model. If the Model Tool Com-
municator requests that the Request DSF transition
should occur, then this is a known event in the model,
and a response will be sent back to the Model Tool
Communicator indicating either that the event has
occurred, thus validating the most recent sequence of
join points, or that the event cannot occur in the cur-
rent state of the model. If the event does not occur
in the model, then the program execution has per-
formed a sequence of execution events that cannot be
validated, and an error has been found.

5 Discussion and Conclusion

This paper has introduced the Heimdall tool and
its associated approach to mapping program execu-
tion events to events in a discrete-state model. The
tool has been integrated with CPN Tools and has
been used to validate architectural prototypes. Even
though the evaluations have been made in the context
of a real safety-critical system development project,
the Heimdall tool can still be considered experimental
in nature.

First of all, a full validation during a development
project is needed. This will stress the usability of the
actual mapping mechanism. The current mapping
mechanism is essentially simple since one of our goals
have been to support experimentation with mapping
from architectural prototype executionss and other
types of program executions. One area in which the
mapping mechanism could be improved is in consid-
ering transitions that do not correspond to method
calls. It should be possible for them to occur if they
are enabled: e.g., if a particular transition that is
mapped from a method invocation is not enabled,
then it might become enabled if one or more of the
unmapped transitions/events occur.

Also a more thorough evaluation could potentially
illustrate to which extent architectural prototyping is
actually useful and bene�cial in safety-critical system
development.

Secondly, there is a de�nite lack of proper tool sup-
port for constructing Heimdall mappings. One step
in this direction would be to be able to generate a set
of possible program execution events/model events to
base the mapping construction on. In particular if it-
erations on the software architecture and models are
considered, better tool support is of importance.

Even though the Heimdall tool can in no way prove
that a speci�c architecture will lead to safe software,
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it may help in doing so by allowing architects to ex-
periment with and partly validate their architectural
designs thus potentially leading to better and safer
software architectures.
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Abstract 

Safety standards call for the separation of safety and non-
safety related systems. Although good guidance is 
provided in these standards on how to achieve the 
required hazard analysis, safety integrity assignment and 
validation to prove a safe system, there is little available 
on establishing safety boundaries around the critical 
components and the proof of isolation from non-safety 
functions. Delineation between safety and non-safety 
systems is particularly important where it is impractical to 
substantiate a Safety Integrity Level of the overall system 
due to the complexity of some components. In this case it 
is better to assume high failure probability of the non-
safety system and prove isolation from the safety-related 
system. 

This paper explores a conceptual methodology (including 
the use of Fault Tree Analysis and Common Cause 
Failure Analysis) for establishing and assuring separation 
of systems and some examples from training simulators 
that are an example of this situation drawn from real-life. . 

Keywords:  Functional Safety Separation, Functional 
Safety Boundaries, Simulator Functional Safety. 

1 Introduction 

Separating safety-critical and safety-related systems from 
systems where safety integrity is unable to be established 
or maintained is an important aspect of system safety 
design. When implementing a system safety program it is 
important to suspect all components as being unsafe 
unless assured otherwise and then target the few areas 
where safety requirements are allocated. Coupling 
between components of complex systems can be subtle 
and interaction with non-safety related systems have led 
to harmful outcomes in safety related systems. 

An example of this coupling occurred on 19 February 
1996, when a Boeing 747-433 Combi aircraft operating 
as Air Canada flight 899, was on a scheduled 
passenger/freight flight from Toronto/Lester B. Pearson 
International Airport, Ontario, to Vancouver International 
Airport, British Columbia. As the aircraft was taking off, 
the underside of the tail struck the runway, and, during 
the climb-out, considerable nose-down stabilizer trim was 
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required to trim the aircraft for flight. The Canadian 
Transport Safety Board (TSB) report (A96O0030) 
findings included:  

• “A recently modified computer application, ALPAC, 
used by load agents to plan loads and compute 
aircraft weight and balance, incorrectly computed the 
aircraft take-off C of G. 

• The ALPAC-computed aircraft take-off C of G was 
near the centre of the aircraft flight envelope, while 
the actual C of G was beyond the aft limit. 

• The ALPAC application produced a large error in the 
aircraft C of G calculation; however, there was no 
defence in place to detect such a critical error in the 
application itself, at the aircraft loading stage, or in 
the flight crew confirmations of load and trim setting. 

• The modified computer application was not 
adequately tested before it was released for 
operational use. 

• The modified computer application was not 
monitored effectively for accuracy after it was placed 
in operational use.” 

In this case the software that led to the incident was not 
even aboard the aircraft and was operated by a different 
party. Interaction across what appears to be valid safety 
boundaries can sometimes be nebulous. While this failure 
may be considered as incomplete hazard analysis of the 
changes to the ALPAC system and the impact on the 
performance of the loaded aircraft, it also can provide a 
good example of where coupling between systems may 
be overlooked.  

2 Setting Functional Safety Boundaries 

2.1 The need for having boundaries 

Taking the extreme position, very few systems are fully 
independent in their operation and to be completely 
assured of the absence of interaction or common-cause 
failure between the safety-related and other systems 
would take an inordinate amount of time and effort.  This 
could cause the opposite effect to delay introducing the 
safety benefits of the deployment of a safety-related 
system. At some point a determination must be made that 
all possible influences are controlled or risks sufficiently 
known so the safety analysis can be bounded. 

Taking the above tail-strike incident as an example of an 
indirect influence on system safety, the safety analysis 
boundary could well be established around the flight 
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control systems. Further investigation of the use of the 
off-board planning system would have identified its 
criticality to the Centre of Gravity of the loaded aircraft 
and extended the functional safety boundary to include 
this and any changes made to it. 

2.2 Objectives of Functional Safety Boundaries 

This paper introduces a concept of Functional Safety 
Boundaries, which can be used to contain areas where 
specific safety integrity measures are to be employed. 
Objectives of these boundaries are to: 

• Minimise the interfaces across the safety boundary to 
direct focus on the safety separation implemented in 
these; 

• Minimise likelihood of common-cause failures 
across the boundary; 

• Exclude non-safety related functions where these are 
volatile or subject to undefined or non-safety related 
controls; and 

• Allow a Safety Integrity Level (SIL) to be achieved 
within the boundary. 

2.3 Identifying safety functions within a 
boundary 

A useful method to establish the functional safety 
boundary between systems or subsystems is to undertake 
a Fault Tree Analysis (FTA) of the contributing factors to 
failure of the system, which may lead  to hazardous 
events identified in the preliminary hazard analysis. The 
first attempt at a boundary would be around the systems 
that are implicated in the FTA. This FTA needs to be 
extensive and complete from all initiating situations to the 
system failure that is a casual factor for the hazardous 
event. Then flowing down the tree, mark off those 
functions that are related to systems that should be 
excluded due to: 

• The possibility of common-cause failure; 

• High levels of complexity and non-deterministic 
failure rate; or 

• Components that may not always be present or 
enabled. 

Failure probabilities are then assigned to the contributing 
and basic events. Figure 1 shows a very simplified fault 
tree for a safety-related system and its isolation from non-
safety-related and non-deterministic functions (SIL0). 

In Figure 2, the boundary is set around the failure 
associated with the SIL0 system (A) which then requires 
the failure probability of the associated protective 
isolation mechanism (B) to be made no less than the 
failure probability (C) of the SIL rated system within the 
boundary to achieve an end failure probability 
commensurate with the SIL rated system (E). 

 

 

E 
2E-08 
Resulting System Failure 
 

A 
1E01  
Failure of System 
with SIL0 

D 
1E-08 
Non-Safety Related  

I Interaction 

C 
1E-08 
Failure of system 
with SIL X 

B 
1E-09 
Protective Isolation 
Failure 

Safety Boundary 

 

Figure 1 Simple FTA of Safety System Coupling 

In a similar manner, the boundary must be extended to 
include common-cause failures that effectively defeat the 
independence across the boundary as shown in Figure 2. 

 

Function A 

Protective Function B 

Related Function C 

Common-Cause Failure 

OR 

 

Figure 2 Setting boundaries outside possible 
Common-Cause Failures 

 

2.4 The problem with software 
At a system level, this process looks reasonably 
straightforward but the problem comes with setting 
boundaries with distributed software architectures. In this 
situation it is very difficult to identify boundaries that 
don’t involve the possibility of common-cause failures. 
Some useful work on partitioning in this context has been 
done by Conmy, Nicholson, Purwantoro and McDermid 
(2002), Identifying Safety Dependencies in Modular 
Computer Systems. 

If the layering approach from this work is extended to a 
generic model, common cause failures can be seen to 
involve lower layers of the architecture (hardware 
failures, resource sharing failures, communication 
failures, memory leakage failures etc). For this reason it 
is essential that any functional safety boundary must 
include all the layers that support that function, as shown 
in Figure 3. 
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Figure 3 Distributed system acceptable boundaries 

Common-cause failures and dependencies extending over 
the distributed communication networks must also be 
considered and the functional safety boundary set 
accordingly. These may include: 

• Global variables accessed by network  

• Security attack and security blocking issues 

• Affects of network lock-up on functional safety 

The separation requirements over the functional safety 
boundary must take these failures into account. 

2.5 Setting boundaries in the safety lifecycle 

As part of the safety lifecycle, identification of Functional 
Safety Boundaries and Functional Safety Separation 
should be included in setting overall safety requirements 
and the allocation of these to systems and their 
components. The following table identifies the lifecycle 
phases from IEC 61508, Functional safety of electrical/ 
electronic/ programmable electronic safety-related 
systems, where segmentation and separation of safety 
should be undertaken. 

IEC 61508 Safety 
Lifecycle 

Functional Safety Separation 
Activities 

Phase 4. Overall Safety 
Requirements 

Determine safety boundaries 

Phase 5.Overall Safety 
Requirement Allocation 

Determine separation 
requirements 

Phase 9. System Safety 
Requirements 
Specification 

Specify trans-boundary 
information allowed and 
prohibited 

Phase 10. Safety-related 
Systems Realisation 

Establishment of separation 
measures 

Phase 13. Overall Safety 
Validation 

Proof of separation of non-safety 
systems or influences 

Phase 14. Overall 
Operation, Maintenance 
and Repair 

Monitoring for compromised 
separation  

Phase 15. Overall 
Modification and Retrofit 

Re-evaluating safety boundaries 
and separation 

Table 1: Lifecycle Consideration of Safety Boundaries 
and Separation 

3 Assuring Functional Safety Separation 
Safety standards do call for independence of safety-
related functions but aren’t very specific about what is 
acceptable or how to dependably achieve this. Although it 
is a difficult area to quantify for completeness and 
repeatability, I believe it is important that standards don’t 
avoid addressing this issue and should specify a generic 
methodology for assuring independence or separation. 

3.1 What the standards say 

3.1.1 Key IEC 61508 extracts 

IEC 61508 identifies qualitative requirements for 
independence of safety-related functions. 

• IEC 61508-2 clause 7.4.2.3 “Where an E/E/PE 
safety-related system is to implement both safety and 
non-safety functions, then all the hardware and 
software shall be treated as safety-related unless it 
can be shown that the implementation of the safety 
and non-safety functions is sufficiently independent 
(i.e. that the failure of any non-safety-related 
functions does not cause a dangerous failure of the 
safety-related functions). Wherever practicable, the 
safety-related functions should be separated from the 
non-safety-related functions.”  

NOTE 1 Sufficient independence of implementation 
is established by showing that the probability of a 
dependent failure between the non-safety and safety-
related parts is sufficiently low in comparison with 
the highest safety integrity level associated with the 
safety functions involved.” 

• IEC 61508-2 clause 7.4.2.5 “When independence 
between safety functions is required (see 7.4.2.3 and 
7.4.2.4) then the following shall be documented 
during the design: 

a) the method of achieving independence; 

b) the justification of the method.” 

Although not quantified, this does support the use of 
safety boundary setting (in Section 2) and for identifying 
the level of separation (Section 3.2). However this does 
allow varying levels of rigour in establishing the required 
independence. 

IEC 61508-3 (Software Requirements) clause 7.4.2.7 has 
requirements requiring: “Where the software is to 
implement both safety and non-safety functions, then all 
of the software shall be treated as safety-related, unless 
adequate independence between the functions can be 
demonstrated in the design.” 

Clause 7.4.2.8 also requires “Where the software is to 
implement safety functions of different safety integrity 
levels, then all of the software shall be treated as 
belonging to the highest safety integrity level, unless 
adequate independence between the safety functions of 
the different safety integrity levels can be shown in the 
design. The justification for independence shall be 
documented.” 
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The concept of Safety Separation Levels could be the 
basis for demonstration of this “independence” for these 
clauses.  

Notes to clause 7.4.2.8, in the new committee draft, 
expand the requirements that allow independence to be 
shown on a single computer system by means of spatial 
and temporal techniques. In my view some of these may 
further erode the rigour required by the standard due to 
the lack of formality in establishing this independence 
unless substantiated by some form of quantification of the 
independence level required. 

3.1.2 DEF (AUST) 5679A extracts 
DEF (AUST) 5679A, The procurement of Computer-
Based Safety-Critical Systems, still has a qualitative 
approach but is more specific about the requirements of 
independence and its dimensions to be considered.  

• Section 15.5 Component Independence - “…. One 
Component is independent of another if its operation 
cannot be changed, misdirected, delayed or inhibited 
by the other Component. 

• Section 15.5.2 “The notion of Component 
independence has several dimensions. These include: 

a) physical isolation (for example with software 
components this means that each Component runs on 
a separate processor); 

b) diversity of implementation, for example, one 
Component may be implemented in software, 
another implemented by hardware or operator 
procedure; 

c) data independence (for example, the input data for 
the Components is not to be generated by the same 
mechanism); and 

d) control independence, meaning that one 
Component cannot affect the control flow of another 
Component…” 

• Section 15.5.4 “If a SIL assignment depends on the 
independence of components, evidence of the 
independence shall be documented. The documented 
evidence shall state how independence is achieved 
and how independence is used as a protective 
measure.” 

DEF (AUST) 5679 is quite helpful in identifying some 
key concepts of independence along with required 
practices and evidence that components can be 
considered as independent. I believe that the techniques 
of functional safety boundaries and Safety Separation 
Level would satisfy the evidence required. 

3.2 Concept of Safety Separation Level (SSL) 

A means of quantifying and comparing independence 
could be achieved with the use of a Safety Separation 
Level achieved by the assignment of failure of separation 
probability equivalent to the SIL target failures of IEC 
61508-1 7.6.2.9 as shown in Table 2 

.  

SSL Probability of propagating 
dangerous failure for low 

demand mode (<1 per year) 

Probability of propagating 
dangerous failure for 

continuous/high-demand mode 

4 =>10-5 to <10-4 =>10-9 to <10-8 

3 =>10-4 to <10-3 =>10-8 to <10-7 

2 =>10-3 to <10-2 =>10-7 to <10-6 

1 =>10-2 to <10-1 =>10-6 to <10-5 

Table 2 Proposed allocation of dangerous interaction 
probability to SSL 

Taking this concept further, Table 3 shows a proposed 
method of assigning a Safety Separation Level (SSL) to 
differences in SIL across safety boundary. This attempt to 
quantify independence between safety-related systems 
meets the intent of IEC 61508 parts 2 and 3 and 
DEF(AUST) 5679A section 15.5. 

  System 1 

  Unclaimed 
(SIL0) SIL1 SIL2 SIL3 SIL 4 

Unclaimed 
(SIL0) N/A SSL1 SSL2 SSL3 SSL4 

SIL1 SSL1 N/A SSL1 SSL2 SSL3 

SIL2 SSL2 SSL1 N/A SSL1 SSL2 

SIL3 SSL3 SSL2 SSL1 N/A SSL1 

S
ys

te
m

 2
 

SIL 4 SSL4 SSL3 SSL2 SSL1 N/A 

Table 3: Allocation of SSL to differences in systems 
SIL ratings 

Relating this back to the FTA model of separation in 
Figure 1, independence between SIL0 and SIL4 systems 
would require an SSL of 4, equivalent to the reliability of 
a SIL 4 system. Achievement of these separation levels 
could use similar compliance routes identified in IEC 
61508-2 section 7.4. Establishing Safety Integrity Levels 
in a homogeneous system without external interfaces is 
adequately although sometime controversially dealt with 
in existing standards. The relationship between SIL 
differences and proposed minimum requirements for SSL 
would need further work to justify more than the 
extremes. Simply, where the SIL requirement is the same, 
this is effectively an extension of the safety system 
therefore no SSL is required. Where there is an interface 
to SIL0 system this requires the same rigour as the higher 
integrity system.   

3.3 Setting separation requirements 
Establishing the level of independence could use the 
effective definitions in DEF (AUST) 5679A section 
15.5.2 where each of the dimensional attributes would be 
assessed against separation characteristics commensurate 
with the SSL required from Table 3.  

These independence dimensions (physical, data 
independence and control independence, and diversity of 
implementation) should be assessed for ability to change, 
misdirect, delay or inhibit safety functions of the safety 
related system across the functional safety boundary. 
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Independence 
Dimension 

SSL0 SSL1 SSL2 SSL3 SSL4 

Diversity Common development 
and design 
implementation. 

TBD TBD Separate subsystem 
development 
approaches and 
system 
implementation. 
Strong prevention of 
CCF across FSB 

Independent 
development and 
design technologies. 
Thorough prevention 
of CCF across FSB 

Physical Fully integrated (e.g. 
single MCU) 

TBD TBD In separate enclosures 
with special or 
physical protection.  

Fully separated (e.g. 
housing, environment, 
power, access) 

Data Dependent on data 
across system (e.g. 
global variables) 

TBD TBD Strong checking on 
out of range data and 
protection against 
flooding of information 

No data dependencies 
across FSB except 
contained within 
approved controls or 
read-only access. 

Control Many system-wide 
controls without 
limitation of their 
impact 

TBD TBD Few controls and all 
verified and 
authenticated for 
dangerous impact. 

Few controls and all 
verified and 
authenticated for 
dangerous impact. 

Table 4 Possible SSL independence attributes

Setting a common process for this assessment would 
require considerable development and agreement before 
inclusion in a standard could be contemplated but Table 4 
proposes a possible framework (albeit incomplete in this 
paper) where assignment to SSL objectives may possible. 
Further work and substantiation would be required on the 
assignment of separation levels, but in my view this 
would be beneficial to accommodate the complexity of 
emerging systems. 

3.4 Separation in the Maintenance Lifecycle 

One of the strengths of IEC 61508 is the full life-cycle 
approach that it takes in respect of establishing and 
maintaining functional safety.  This is particularly 
important with maintaining independence across 
functional safety boundaries, as changes to maintenance, 
repair and updates could defeat the isolation measures 
taken. 

Due to the subtlety and far reaching impact of some 
safety separation issues (see Introduction), continuing 
independence of these is at threat of being compromised 
through the support, maintenance and upgrade phases of 
the safety lifecycle. Like other safety requirements, the 
implementation of functional safety separation must be 
fully identified in the Safety Case and maintenance 
documentation. This must be revisited on a regular basis 
to ensure no unauthorised modifications have been made 
when changes to the system are made to ensure effective 
functional safety separation is maintained. 

4 Practical Examples in Simulator Systems 

4.1 Simulation domain specific safety issues 

In simulator training devices, the combination of safety 
and non-safety related systems is an inevitable 
consequence of the systems involved and the direct 
interface to trainees through the simulation cues of visual, 
motion, aural and force-feedback. 

One often-identified risk of training simulators is 
negative training indirectly leading to bad practices on the 
real platform. To mitigate this risk, full-flight simulators 
are accredited to standards prior to being placed into 
service and training credits being claimed. Fidelity checks 
are based on many factors, including model checks with 
real aircraft data and cues associated with key training 
competencies. 

Taking the example of the 747 aircraft tail scrape in this 
paper’s introduction, one of the findings of the TSB was: 
“The first officer's recent simulator training did not 
include an aircraft out-of-trim or out-of-balance take-off”. 
The safety functional boundary for this scenario could 
have been extended beyond the operation of the aircraft 
to the specific training task and cues on the simulator. If 
this was considered then, so long as the simulator 
faithfully represented the aircraft and controls under these 
conditions, then the simulator has fulfilled its 
requirements. 

 

Physical 
Flying 

Envelope 

Normal 
Flight 

Operation 

Flight Data 
Available 

Simulator 
Model 

 

Figure 4 Simulator Modelled Space 
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The nature of general simulator architectures and the 
modelling of the aircraft operation do cause real problems 
in assigning an overall safety integrity level.  Figure 4 
graphically illustrates this limitation with the 
impracticality of simulating the complete behaviour of all 
platform systems in all conditions. 

4.2 Generic simulator hazards 

 
 

Simulators are different from real aircraft in several 
important areas: they are meant to crash without injury to 
the occupants; and they only simulate key areas of the 
aircraft functions. The key hazards associated with 
simulators are the integrated human interfaces associated 
with training cues as shown in Table 5. 

 

Hazardous Cues Dangerous failure impacts 

Aural Cues Issues of occupational deafness if 
sustained excessive volume 

Motion Cues Issues of crushing, falling and hitting 

Visual Cues No direct hazard other than motion 
sickness 

Control Loading 
Cues 

Feedback Cues – issues of entrapment, 
crush and strike. 

Combination  Simulator motion sickness due to the 
concentration and limited accuracy 
possible in the simulated environment. 

Table 5 Simulator Hazards and Impact Issues 

4.3 Example of motion System Safety Integrity 

One of the key cues associated with full-flight simulator 
systems is the “feel” of motion associated with aircraft 
movement and attitude. The motion system of the 
simulator takes the acceleration vectors and aircraft 
attitude from the simulated model and typically applies 
these to a six-degrees of freedom hydraulic motion 
platform. 

The motion system is considered a safety related system 
due to the large excursions of movement. The safety 
boundary of this system encloses all the necessary 
controls to ensure safe operation and shutdown of the 
motion system as shown in Figure 5. 

 

Hydraulic 

Pump Unit 

Hydraulic 
Control 
Valves 

Interlocks 
and 

Shutdowns 

SIL 3 
Motion 
PLC 

6 DOF Motion Base 

Safety Boundary 

From 
SIL0 
Host 

 

Figure 5 Simulator Motion System Overview 

Data and control across the Functional Safety Boundary 
in this case is limited to acceleration and direction 
information. Local control is applied between the SIL 3 
Safety PLC and the Motion hydraulic controls complete 
with integrated safety interlocks and emergency 
shutdowns. While ever the motion requests are within the 
bounds of acceptable limits the motion system will 
respond once the instructor gives consent and interlocks 
remain inactive (data and control independence). 

 

Figure 6 C2000X Full Flight Simulator Cut-away 

The motion systems is physically separated from the rest 
of the system and independently developed and 
implemented with different technology (physical 
independence and diversity). Separation across this safety 
boundary can claimed to meet equivalent SSL 3 
requirements as per Table 4 proposal and maintained to 
meet the accepted risk profile. This would then maintain 
the motion system PLC as SIL3 without degrading by 
connection to the host system, which cannot be 
substantiated as anything more that SIL0. 
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5 Conclusion 

This paper has proposed a technique to quantify and 
implement separation of safety-related systems from 
other systems by recognising safety boundaries and 
interaction across those boundaries and their effect on the 
separation. This technique re-uses methods from existing 
standards to measure, implement and maintain separation 
based on the concept of Safety Separation Level with 
similar criteria to Safety Integrity Level and Functional 
Safety Boundaries. This allows the safety case to be 
established for complex systems by applying quantifiable 
separation requirements to systems where a SIL is 
difficult, if not impossible, to obtain at the overall system 
level. 
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Abstract1 
In software engineering the role of software architecture 
as a means of managing complexity and achieving 
emergent qualities such as modifiability is increasingly 
well understood.  In this paper we demonstrate how many 
principles from the field of software architecture can be 
brought across to the field of safety case management in 
order to help manage complex safety cases. 

Traditional approaches to certification of modular systems 
as a statically defined configuration of components can 
result in a large certification overhead being associated 
with any module update or addition.  A more promising 
approach is to attempt to establish a modular, 
compositional, approach to constructing safety cases that 
has a correspondence with the modular structure of the 
underlying architecture.  This paper establishes the 
mechanisms for managing and representing safety cases as 
a composition of safety case ‘modules’.  Having defined 
the concept of a modular safety case, the paper also 
describes principles for their definition and evaluation.  An 
example generic modular safety case architecture for 
Integrated Modular Avionics (IMA) based systems is 
presented as a means of illustrating the concepts defined. 

Keywords:  safety case, modularity, certification, 
justification, composition, architecture 

1 Introduction 
Whilst the move towards modular systems and software 
architecture offers potential benefits of improved 
flexibility in function allocation, reduced development 
costs and improved maintainability, it can pose significant 
problems in certification.  The traditional approach to 
certification relies heavily upon a system being statically 
defined as a complete entity and the corresponding 
(bespoke) system safety case being constructed.  However, 
a principal motivation behind modular systems 
construction is that there is through-life (and potentially 
run-time) flexibility in the system configuration.  For 
example, an Integrated Modular Avionics (IMA) system 

                                                           
1 Copyright © 2006, Australian Computer Society, Inc. 
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Safety-Related Programmable Systems (SCS'06), 
Melbourne. Conferences in Research and Practice in 
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can typically support many possible mappings of the 
avionics functionality required to the underlying 
computing platform. 

In constructing a safety case for modular systems an 
attempt could be made to enumerate and justify all 
possible configurations within the architecture.  However, 
this approach is unfeasibly expensive for all but a small 
number of processing units and functions.  Another 
approach is to establish the safety case for a specific 
configuration of the architecture.  However, this nullifies 
the benefit of flexibility in using a modular solution and 
will necessitate the development of completely new safety 
cases for future modifications or additions to the 
architecture. 

A more promising approach is to attempt to establish a 
modular, compositional, approach to constructing safety 
cases that has a correspondence with the modular structure 
of the underlying architecture.  As with software 
architecture it would need to be possible to establish 
interfaces between the modular elements of the safety 
justification such that safety case elements may be safely 
composed, removed and replaced.  Similarly, as with 
software architecture, it will be necessary to establish the 
safety argument infrastructure required in order to support 
such modular reasoning (e.g. an infrastructure argument 
regarding partitioning being required in order to enable 
independent reasoning concerning the safety of two 
system elements). 

By adopting a modular, compositional, approach to safety 
case construction it may be possible to: 

• Justifiably limit the extent of safety case 
modification and revalidation required following 
anticipated system changes 

• Support (and justify) extensions and 
modifications to a ‘baseline’ safety case 

• Establish a family of safety case variants to 
justify the safety of a system in different 
configurations 

2 Current Safety Case Development Practice 
Safety case reports are often complex documents 
presenting complex arguments.  Very rarely is it that safety 
cases are prepared by individuals.  The reality is that the 
activity of establishing a safety case will be divided 
amongst a number of individuals, teams and, in some 
cases, organisations. 
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To manage the complexity of safety case construction, 
system safety cases are often decomposed into subsystem 
safety cases.  Many examples of this can be observed in 
current safety-critical systems:  System safety cases 
incorporate software safety cases (a division advocated by 
Issue 2 of the U.K. Defence Standards 00-55 (MoD 1997) 
and 00-56 (MoD 1996)).  A safety case concerned with the 
avionics of a complex military aircraft will be split into 
separate safety cases for separate systems (such as the 
navigation system, engine control and flight control).  The 
implied safety case for UK rail operations is made up of 
separate safety cases for station operations, infrastructure 
and rolling stock.  However, it is well understood that 
safety is a system property.  Extreme care must therefore 
be taken to ensure that safety case boundaries are drawn 
correctly, that arguments don’t “fall between the gaps”, 
and that formalising boundaries (e.g. through contractual 
agreements between organisations) doesn’t prevent the 
development of efficient safety solutions.  Emergent safety 
properties, not dealt with by a “Divide and Conquer” 
approach to safety case construction, must also be 
addressed. 

Although the above examples already exist in practice, the 
overall structure ‘in-the-large’ of these safety cases and the 
interdependencies that exist between them are often poorly 
managed.  In the following sections, we show it is possible 
to map across principles already established in the field of 
software architecture to help address this problem. 

3 Safety Case Architecture 
Software architecture has been defined in the following 
terms (Bass et al. 1998): 

“The structure or structures of the system, 
which comprise software components, the 
externally visible properties of those 
components, and the relationships among 
them” 
 

Safety case architecture can be defined in very similar 
terms: 

The high level organisation of the safety 
case into components of arguments and 
evidence, the externally visible properties of 
these components, and the 
interdependencies that exist between them 

Being clear of the externally visible properties of any 
safety case module allows us to appreciate its role within 
the overall safety case structure.  The following can be 
regarded as the key ‘interface’ properties for any safety 
case module: 

1. Objectives addressed by the module 

2. Evidence presented within the module 

3. Context defined within the module 

It is important to note that the definition of safety case 
architecture must give equal importance to the 
dependencies between safety case modules (or 
‘components’) as to the components themselves.  This 
thinking must be at the heart of any attempt to decompose 
the safety case.  Safety is not a “sum of parts” property.  

Dependencies must therefore also be recorded as part of 
any interface definition, perhaps along the following lines: 

4. Arguments requiring support from other modules 

5. Reliance on objectives addressed elsewhere 

6. Reliance on evidence presented elsewhere 

7. Reliance on context defined elsewhere 

Safety case modules can be usefully composed if their 
objectives and arguments complement each other – i.e. one 
or more of the objectives supported by a module match one 
or more of the arguments requiring support in the other.  
For example, the software safety argument is usefully 
composed with the system safety argument if the software 
argument supports one or more of objectives set by the 
system argument. At the same time, an important 
side-condition is that the collective evidence and assumed 
context of one module is consistent with that presented in 
the other.  For example, the operational usage context 
assumed within the software safety argument must be 
consistent with that put forward within the system level 
argument. 

4 Representing Modular Safety Cases in GSN 
The Goal Structuring Notation (GSN) (Kelly 1997) - a 
graphical argumentation notation - explicitly represents 
the individual elements of any safety argument 
(requirements, claims, evidence and context) and (perhaps 
more significantly) the relationships that exist between 
these elements (i.e. how individual requirements are 
supported by specific claims, how claims are supported by 
evidence and the assumed context that is defined for the 
argument).  The principal symbols of the notation are 
shown in Figure 1 (with example instances of each 
concept). 

The principal purpose of a goal structure is to show how 
goals (claims about the system) are successively broken 
down into sub-goals until a point is reached where claims 
can be supported by direct reference to available evidence 
(solutions). As part of this decomposition, using the GSN 
it is also possible to make clear the argument strategies 
adopted (e.g. adopting a quantitative or qualitative 
approach), the rationale for the approach (assumptions, 
justifications) and the context in which goals are stated 
(e.g. the system scope or the assumed operational role). 
For further details on GSN see (Kelly 1997). 
 

System can
tolerate single

component
failures

Sub-systems
are independent

Argument by
elimination of all

hazards

Fault Tree
for Hazard

H1
A/J

Goal Solution Strategy Assumption /
Justification

All Identified
System Hazards

Context

Undeveloped Goal
(to be developed) Developed Goal

ChildGoal

Child Goal

ParentGoal

ChoiceUninstantiated Context

 

Figure 1: Principal Elements of the Goal Structuring 
Notation 

 

GSN has been widely adopted by safety-critical industries 
for the presentation of safety arguments within safety 
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cases.  However, to date GSN has largely been used for 
arguments that can be defined ‘stand-alone’ as a single 
artefact rather than as a series of modularised 
interconnected arguments.  In order to make the GSN 
support the concepts of modular safety case construction it 
has been necessary to make a number of extensions to the 
core notation. 

The first extension to GSN is an explicit representation of 
modules themselves.  This is required, for example, in 
order to be able to represent a module as providing the 
solution for a goal.  For this purpose, the package notation 
from the Unified Modelling Language (UML) standard 
has been adopted.  The new GSN symbol for a safety case 
module is shown in Figure 2 (Right Hand Side). 

As has already been discussed, in presenting a 
modularised argument it is necessary to be able to refer to 
goals (claims) defined within other modules.  Figure 2 (left 
hand side) introduces a new element to the GSN for this 
purpose – the “Away Goal”.  An away goal is a goal that is 
not defined (and supported) within the module where it is 
presented but is instead defined (and supported) in another 
module.  The Module Identifier (shown at the bottom of 
the away goal next to the module symbol) should show the 
unique reference to the module where the goal can be 
found.  

<Module Identifier>

<Goal Statement>
<Goal Identifier>

<Module Description>

<Module Identifier>

 

Figure 2: GSN Elements Introduced to Handle 
Modularity 

Away goals can be used to provide support for the 
argument within a module, e.g. supporting a goal or 
supporting an argument strategy.  Away goals can also be 
used to provide contextual backing for goals, strategies 
and solutions. 

Representation of away goals and modules within a safety 
argument is illustrated within Figure 3.  The annotation of 
the top goal within this figure “SysAccSafe” with a 
module icon in the top right corner of the goal box denotes 
that this is a ‘public’ goal that would be visible as part of 
the published interface for the entire argument shown in 
Figure 3 as one of the “objectives addressed”.  

The strategy presented within Figure 3 to address the top 
goal “SysAccSafe” is to argue the safety of each individual 
safety-related function in turn, as shown in the 
decomposed goals “FnASafe”, “FnBSafe” and “FnCSafe”.   
Underlying the viability of this strategy is the assumed 
claim that all the system functions are independent.  
However, this argument is not expanded within this 
“module” of argument.  Instead, the strategy makes 
reference to this claim being addressed within another 
module called “IndependenceArg” – as shown at the 
bottom of the away goal symbol.  The claim “FnASafe” is 
similarly not expanded within this module of argument.  
Instead, the structure shows the goal being supported by 
another argument module called “FnAArgument”.  The 
“FnBSafe” claim is similarly shown to be supported by 

means of an Away Goal reference to the “FnBArgument” 
module.  The final claim, “FnCSafe”, remains 
undeveloped (and therefore requiring support) – as 
denoted by the diamond attached to the bottom of the goal. 

In the same way that in can it be useful to represent the 
aggregated dependencies between software modules in 
order to gain an appreciation of how modules interrelate 
“in-the-large” (e.g. as described in the “Module View” of 
Software Architecture proposed by Hofmeister et al. in 
(Hofmeister et al., 1999)) it can also be useful to express a 
module view between safety case modules. 

Argument over all identified
safety related functions of
{System X}

ArgOverFunctions

IndependenceArg

All functions are
independent

FunctionsInd

FnASafe
Function A operation
is acceptably safe

FnBArgument

Function B operation
is acceptably safe

FnBSafe

Safety Argument for
Function A

FnAArgument

Function C operation
is acceptably safe

FnCSafe

Safety Related
functions of 
{System X}

SRFunctions

SysAccSafe
{System X} is
acceptably safe

 

Figure 3: Representing Safety Case Modules and 
Module References in GSN 

 

In the same way that in can it be useful to represent the 
aggregated dependencies between software modules in 
order to gain an appreciation of how modules interrelate 
‘in-the-large’ (e.g. as described in the ‘Module View’ of 
Software Architecture proposed by Hofmeister et al. in 
(Hofmeister et al. 1999) it can also be useful to express a 
module view between safety case modules. 

If the argument presented within Figure 3 was packaged as 
the “TopLevelArg” Module, Figure 4 represents the 
module view that can be used to summarise the 
dependencies that exist between modules.  Because the 
“FnAArgument” and “FnBArgument” modules are used to 
support claims within the “TopLevelArg” module a 
supporting role is communicated.  Because the 
“IndependenceArg” module supports a claim assumed as 
context to the arguments presented in “TopLevelArg” a 
contextual link between these modules is shown. 

Top Level System X
Safety Argument

TopLevelArg
Functional
Independence
Argument

IndependenceArg

Function A Safety
Argument

FnAArgument
Function B Safety
Argument

FnBArgument

 
Figure 4 – Example Safety Argument Module View 
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In a safety case module view, such as that illustrated in 
Figure 4, it is important to recognise that the presence of a 
SolvedBy relationship between modules A & B implies 
that there exists at least goal within module A that is 
supported by an argument within module B.  Similarly, the 
existence of an InContextOf relationship between modules 
A & B implies that there exists at least one contextual 
reference within module A to an element of the argument 
within module B. 

Alongside the extensions to the graphical notation of GSN, 
the following items of supporting documentation are 
required: 

Interface declaration for each safety case module – 
along the lines outlined in section 3, the external visible 
properties of any safety case module must be recorded – 
e.g. the goals it supports, the evidence (solutions) it 
presents, the cross-references (‘Away Goal’ references) 
made to / dependencies upon other modules of argument. 
Figure 5 depicts the items to be defined on the boundary of 
a safety case module expressed using the GSN. 

Safety Case
Module Context

Defined

'Away'
Goal

'Away'
Context

Goals Supported

Goal to be
Supported

Evidence
Presented 'Away'

Solution
'Away'
Goal

Context
Defined

 

Figure 5 – The Published Interface of a GSN Safety 
Case Module 

Contracts for composed modules – where co-dependent 
safety case modules are used together within a system 
safety case a contract must be recorded of the 
dependencies resolved between the separate arguments. 
This is discussed further in section 6. 

5 Module Composition with GSN Modules 
The following three steps must be undertaken when 
attempting to usefully compose two safety case modules A 
& B with interfaces as defined in the previous section: 

Step 1 – Goal Matching 

a, Assess whether any of the goals requiring support 
in Module A (i.e. those listed under item 4 of the 
declared interface for Module A) match the goals 
addressed by Module B (i.e. those listed under 
item 1 of the interface for Module B). 

b, Conversely, assess whether any of the goals 
requiring support in Module B (i.e. those listed 
under item 4 of the declared interface for Module 

B) match the goals addressed by Module A (i.e. 
those listed under item 1 of the interface for 
Module A). 

Step 2 – Consistency Checks 

If matched goals are found as a result of Step 1, assess 
whether the context and solutions defined by Module B 
(i.e. those listed under items 2 and 3 of the declared 
interface for Module B) are consistent with the context and 
solutions defined by Module A (i.e. those listed under 
items 2 and 3 of the declared interface for Module A). 

Step 3 – Handling Cross-References 

a, Where cross-references are made by Module A to 
Module B (i.e. Away Goal, Context and Solution 
references listed under items 5-7 of the declared 
interface for Module A) check that the entities 
referenced do indeed exist within Module B. 

b, Conversely, Where cross-references are made by 
Module B to Module A (i.e. Away Goal, Context 
and Solution references listed under items 5-7 of 
the declared interface for Module B) check that 
the entities referenced do indeed exist within 
Module A. 

It may seem strange to include both steps 1a and 1b – i.e. 
admitting the possibility that whilst Module B supports 
Module A, Module A may also support Module B.  
However, circularity of ‘SupportedBy’ relationships 
between modules does not automatically imply circularity 
of argument (cross-references may be to separate legs of 
the argument within a module). 

The defined context of one module may also conflict with 
the evidence presented in another.  For example, implicit 
within a piece of evidence within one module may be the 
simplifying assumption of independence between two 
system elements.  This assumption may be contradicted by 
the model of the system (clearly identifying dependency 
between these two system elements) defined as context in 
another module.  There may also simply be a problem of 
consistency between the system models (defined in GSN 
as context) defined within multiple modules.  For example, 
assuming a conventional system safety argument / 
software safety argument decomposition – as defined in 
Issue 2 of the U.K. Defence Standards 00-56 (MoD 1996) 
and 00-55 (MoD 1997) – the consistency between the state 
machine model of the software (which, in addition to 
modelling the internal state changes of the software will 
almost inevitably model the external – system – triggers to 
state changes) and the system level view of the external 
stimuli.  As with checking the consistency of safety 
analyses, the problem of checking the consistency of 
multiple, diversely represented, models is also a 
significant challenge in its own right. 

6 Safety Case Module ‘Contracts’ 
Where a successful match (composition) can be made of 
two or more modules, a contract should be recorded of the 
agreed relationship between the modules.  This contract 
aids in assessing whether the relationship continues to hold 
and the (combined) argument continues to be sustained if 
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at a later stage one of the argument modules is modified or 
a replacement module substituted.  This is a commonplace 
approach in component based software engineering where 
contracts are drawn up of the services a software 
component requires of, and provides to, its peer 
components, e.g. as in Meyer’s Smalltalk contracts (Meyer 
1992) and contracts in object-oriented reuse (Helm 1990).  

In software component contracts, if a component 
continues to fulfil its side of the contract with its peer 
components (regardless of internal component 
implementation detail or change) the overall system 
functionality is expected to be maintained.   Similarly, 
contracts between safety case modules allow the overall 
argument to be sustained whilst the internal details of 
module arguments (including use of evidence) are 
changed or entirely substituted for alternative arguments 
provided that the guarantees of the module contract 
continue to be upheld.   

A contract between safety case modules must record the 
participants of the contract and an account of the match 
achieved between the goals addressed by and required by 
each module. In addition the contract must record the 
collective context and evidence agreed as consistent 
between the participant modules.  Finally, away goal 
context and solution references that have been resolved 
amongst the participants of the contract should be 
declared.   

7 Principles of Safety Case Architecture 
Definition 

In this paper safety case architecture is defined as the high 
level organisation of the safety case into modules of 
argument and the interdependencies that exist between 
them.  In deciding upon the partitioning of the safety case, 
many of the same principles apply as for software 
architecture definition, for example: 

• High Cohesion / Low Coupling – each safety case 
module should address a logically cohesive set of 
objectives and (to improve maintainability) should 
minimise the amount of cross-referencing to, and 
dependency on, other modules. 

• Supporting Work Division & Contractual 
Boundaries – module boundaries should be defined 
to correspond with the division of labour and 
organisational / contractual boundaries such that 
interfaces and responsibilities are clearly identified 
and documented. 

• Supporting Future Expansion – module boundaries 
should be drawn and interfaces described in order to 
define explicit ‘connect’ points for future additions to 
the overall safety case argument (e.g. additional safety 
arguments for added functionality). 

• Isolating Change – arguments that are expected to 
change (e.g. when making anticipated additions to 
system functionality) should ideally be located in 
modules separate from those modules where change 
to the argument is less likely (e.g. safety arguments 
concerning operating system integrity). 

The principal aim in attempting to adopt a modular safety 
case architecture for modular systems architecture is for 
the modular structure of the safety case to correspond as 
far as is possible with the modular partitioning of the 
hardware and software of the actual system.  Arguments of 
functional (application) safety would ideally be contained 
in modules separate from those for the underlying 
infrastructure (e.g. for specific processing nodes of the 
architecture).  Additionally, cross-references from 
application arguments to claims regarding the underlying 
infrastructure need to be expressed in non-vendor 
(non-solution) specific terms as far as is possible.  For 
example, part of the argument with the safety case module 
for an application may depend upon the provision of a 
specific property (e.g. memory partitioning) by the 
underlying infrastructure.  It is desirable that the 
cross-reference is made to the claim of the property being 
achieved rather than how the property has been achieved.  
In line with the principles of module interfaces and 
contracts as defined in the previous two sections, this 
allows alternative solutions to achieving this property to be 
substituted without undermining the application level 
argument.  From this example, it is possible to see that in 
addition to thoughtful division of the safety case into 
modules, care must be taken as to the nature of the 
cross-references made between modules.  

8 Patterns in Safety Case Architecture? 
Well-understood architectural patterns in software 
architecture (such as the use of indirection and abstraction 
layers) can be seen to have immediate analogues in safety 
case architecture.  Figure 6 illustrates this point with a 
simple three-tier ‘layered’ safety case architecture.  The 
top tier (the Top System Level Argument module) sets out 
objectives in a form (e.g. Defence Standard 00-55 (MoD 
1997) System Integrity Level requirements) that cannot 
immediately be satisfied by the objectives supported (e.g. 
Civil Aerospace Guidance DO178B (RTCA 1992) 
Development Assurance Level claims) in the bottom tier 
(the Software Safety Argument module).  To solve this 
problem, an indirection layer (the DAL to SIL Mapping 
Argument module) is inserted between the top and bottom 
tiers.  This module makes the read-across argument from 
the DAL regime to the SIL regime.   (If sufficiently well 
defined, such a read-across argument may be usefully 
reused in future safety cases). 

Figure 7 illustrates the possible internal structure of the 
read-across argument contained within the middle tier of 
the safety case architecture shown in Figure 6.  The 
published goal of the read-across argument is the claim 
expressed in the form required by the target application 
context (i.e. in this case in terms of a Defence Standard 
00-55 SIL Claim).  This claim is then decomposed into the 
specific claims regarding the key process and product 
requirements required (according to 00-55) in order to 
satisfy the SIL requirement (e.g. testing claims, claims 
regarding coding standards, language choice etc.). At the 
bottom of the argument shown in Figure 7 is an 
(undeveloped) goal regarding compliance to a 
Development Assurance Level that is known to be 
supportable from the available evidence (i.e. from the 
bottom tier of the architecture shown in Figure 6).  
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Working bottom-up, the read-across argument then infers 
that in order to support this DAL claim the individual 
requirements dictated by DO178B for this DAL must also 
have been satisfied. The argument therefore draws out 
(above the DAL claim) these individual implicated 
sub-claims.  The challenge in creating the read-across 
argument now lies in relating the specific claims required 
in order to support the SIL claim to the specific claims 
required in order to support the DAL claim.  This approach 
attempts to read-across from one claim to another by 
deconstructing each claim in to its constituent parts and 
then relating these parts.  It should be noted that the 
interrelation of SIL and DAL subclaims depicted in Figure 
7 (where claims of one type are shown to be directly 
supportable by claims of the other) is a simplification.  In 
reality, more complex chains of argument should be 
expected between the claims of each type. 

Top Level System Argument 
Needs support for: {DefStan 00-55 SIL
Claim}

SystemArgument

Software Safety Argument 
Provides support for: {DO178B DAL Claim}

SoftwareArgument

Read across argument from DO178B DAL
claims to DS 00-55 SIL claims 
Provides support for: {DefStan 00-55 SIL
Claim} 
Needs support for: {DO178B DAL Claim}

DALToSILMappingArgument

 

Figure 6 – Safety Case Architecture employing an 
abstraction layer 

{DefStan 00-55 SIL Claim}

{SIL Requirement
Satisfaction Claim}

{SIL Requirement
Satisfaction Claim}

{SIL Requirement
Satisfaction Claim}

{SIL Requirement
Satisfaction Claim}

{DAL Requirement
Satisfaction Claim}

{DAL Requirement
Satisfaction Claim}

{DAL Requirement
Satisfaction Claim}

{DAL Requirement
Satisfaction Claim}

{DO178B DAL Claim}

 

Figure 7 – Illustration of argument structure of DAL 
to SIL ‘Abstraction’ Layer Module 

9 Managing Changes to a Modular Safety Case 
Maintainability is one of the principle objectives in 
attempting to partition a safety case into separate modules.  
When change occurs that impacts traditional safety cases 
(defined as total entities for a specific configuration of 
system elements) reassessment of the ‘whole’ case is often 
necessary in order to have confidence in a continuing 
argument of safety.   In such situations it will often be the 
case that for certain forms of change large parts of the 
safety required no reassessment.  However, without 
having formally partitioned these parts of the case behind 
well-defined interfaces and guarantees defined by 
contracts it is difficult to justify non re-examination of 
their arguments. 

When changes occur that impact a modular safety case it is 
desirable that these changes can be isolated (as far as is 
possible) to a specific set of modules whilst leaving others 
undisturbed.  The definition of interfaces and the 
agreement of contracts mean that the impact path of 
change can be halted at these boundaries (providing 
interfaces are sustained and contracts continue to be 
upheld). 

In extremis for a modular system it is desirable that when 
entire modules of the system are replaced, applications 
removed or added, or when the hardware of part of the 
system is substituted for that of a different vendor 
correspondingly entire modules of the safety case can be 
removed and replaced for those that continue to sustain the 
same safety properties.  However, in order to achieve this 
flexibility, the following considerations need to be made 
for both the definition of context and the nature of 
cross-references made between modules: 

• Avoid unnecessary restriction of context – It was 
highlighted in section 5 that the significant 
‘side-condition’ of composing two or more modules 
together is that their collective context must be 
consistent.  Often, the more specialised or restricted 
context is defined the harder it becomes to satisfy this 
condition (through incompatibility between defined 
contexts being more likely).  For example, one 
module of the safety case may assume for the 
purposes of its argument that the temperature 
operating range is 10-20°C (i.e. the safety argument 
holds assuming the operating temperature is no less 
than 10°C and not greater than 20°C) whilst another 
modules may assume that the operating temperature is 
20-30°C.  Both ranges would form part of the defined 
context for each module and would create an 
inconsistency upon composition of the modules. 

• There will be specific occasions when it is necessary 
to restrict the assumed context of an module in order 
for the module argument argument to hold.  However, 
narrowing of context should be avoided as far as is 
possible.  An analogy can be made with the operating 
range of a conventional mains power adaptor. If the 
adaptor is qualified over the entire operating range 
110-250 volts then it may be used in wider number of 
situations (e.g. for both 110-120V main supply and 
230-240V mains supply).  If the adaptor is qualified to 
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a narrower operating range then obviously its scope of 
applicability is more restricted. 

• Goals to be supported within modules should state 
limits rather than objectives – Borrowing 
terminology from the ALARP (As Low as 
Reasonably Practicable) framework (HSE 2001), 
‘limits’ refer to the boundary between tolerable and 
intolerable risks, whilst ‘objectives’ refer to the 
boundary between tolerable and negligible risks.  In 
order to permit the widest range of possible solutions 
of combinations with other modules, unsupported 
goals within a module (i.e. goals that will have to be 
supported through composition of this module with 
another) should define acceptability criteria rather 
than ‘desirability criteria’.  (More informally, this 
means stating “what you will accept” vs. “what you 
want”).   It is easier to for another module to exceed 
(i.e. improve upon) a limit than it is to fail to meet an 
objective that was too harshly defined.   Wherever 
possible boundary goals should ideally communicate 
both of limit and objective aspects of any requirement 
(by means of defining clearly the acceptance context 
of any undeveloped goal).  

• Goals to be supported within modules and ‘Away’ 
Goals should refer to ‘ends’ rather than ‘means’ – 
This issue has already been briefly discussed in 
section 7. In a similar vein to the previous 
observation, if goals on the boundary of modules or 
cross-references to goals between modules refer to 
claims regarding outcomes (e.g. a claim of memory 
partitioning) rather than means of achieving these 
outcomes (e.g. the specific mechanisms that ensure 
memory partitioning) then this leaves flexibility as to 
how solutions (supporting arguments) are provided – 
i.e. many possible alternative argument modules may 
be composed with this reference rather than just one 
specific form of argument.  

A true assessment of the modifiability of any proposed 
safety case architecture can only be achieved through 
consideration of realistic change scenarios and 
examination of their impact on the module structure of the 
architecture.  This form of evaluation is discussed further 
in the following section. 

10 Safety Case Architecture Evaluation 
In the discipline of software architecture early lifecycle 
assessment of any proposed architecture is encouraged to 
gain an appreciation of how well the architecture supports 
required architectural quality attributes such as scalability, 
performance, extensibility and modifiability.  To assess 
software architectures (particularly with regard to 
modifiability) a scenario based evaluation technique – 
SAAM (Software Architecture Analysis Method) 
(Kazman et al. 1996) – has been developed by Kazman et 
al.  The activities performed in a SAAM assessment are 
discussed briefly below: 

1. Develop Scenarios – Definition of scenarios that 
illustrate activities and changes that the architecture 
should ideally accommodate. 

2. Describe candidate architecture – Definition of the 
candidate architecture or architectures in a suitably 
expressive architectural description language (ADL) 
that can be easily understood by all parties involved in 
the analysis. 

3. Classify Scenarios – Classification of scenarios into 
the two categories of direct and indirect scenarios.  
Direct scenarios are those scenarios that an 
architecture is expected to accommodate without 
change.  Indirect scenarios describe situations where 
change to elements within the architecture is 
anticipated. 

4. Perform Scenario Evaluations – For each indirect 
scenario, identification of the changes to the 
architecture that are necessary for it to support the 
scenario, together with an estimation of the effort 
required to make these changes.  For each direct 
scenario, a walkthrough should be conducted that 
shows clearly how the scenario is accommodated by 
the architecture. 

5. Reveal Scenario Interactions – Identification of 
where two or more indirect scenarios involve change 
to the same element of the architecture.  The 
interaction of semantically unrelated scenarios can 
indicate a lack of cohesion in how architectural 
elements are defined. 

6. Overall Evaluation – Based upon the results of all 
the scenarios analysed, evaluation of whether the 
proposed architecture adequate supports the required 
quality attributes. 

With little modification, this method of architecture 
evaluation can be read-across to the domain of safety case 
architecture.  One of the overriding aims in defining a 
modular safety case architecture is improve 
maintainability and (as a subtype of maintainability) 
extensibility.  However, it is difficult to determine a priori 
whether a proposed safety case architecture (such as that 
presented in section 11) will be maintainable.  Adopting a 
similar approach to SAAM but for safety case 
architectures would suggest that a number of change 
‘scenarios’ should be identified.  These scenarios should 
attempt to anticipate all credible changes that could impact 
the safety case over its lifetime (e.g. a change of hardware 
manufacturer, addition of functionality).  For each of these 
change scenarios (NB – by definition these scenarios 
would be classified as indirect in the SAAM 
methodology), a walkthrough should be conducted to 
assess the likely impact of the change upon the individual 
modules of the proposed safety case architecture. 

In the SAAM method, the effects of indirect scenarios are 
classified according to the following three classes of 
change: 

• Local Change – change isolated within a single 
module of the architecture. 

• Non-Local Change – change forced to a number of 
modules within the architecture. 

• Architectural Change – widespread change forced 
to a large proportion of modules within the 
architecture. 
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These ideas can also be usefully applied to the safety case 
architecture domain.  Ideally, for a modular safety 
partitioned and carefully cross referenced in accordance 
with the principles stated in this paper the effects of all 
credible scenarios would fall within the first of the 
categories listed above.  To illustrate how the categories of 
change read-across to the concept of a modular safety case 
architecture consider a simple safety case architecture as 
shown in Figure 8 containing the following four modules: 

SysArg Safety case module containing the top 
level safety arguments for the overall 
system identifying top level claims for 
each application run as part of the 
system and a top level claim regarding 
the safety of the interactions between 
applications. 

AppAArg Safety case module containing the 
arguments of safety for Application A. 

AppBArg Safety case module containing the 
arguments of safety for Application B. 

InteractionArg Safety case module containing the 
arguments of safety for the interactions 
between Applications A and B. 

The ‘SysArg’ module is supported by the ‘AppAArg’, 
‘AppBArg’ and ‘InteractionArg’ modules.  The 
‘AppAArg’ module relies upon guarantees of safe 
interaction with Application B as defined by the claims 
contained within the ‘InteractionArg’ module (hence 
‘AppAArg’ is shown making a contextual reference to 
‘InteractionArg’).  Similarly, the safety argument for 
Application B (‘AppBArg’) relies upon guarantees of safe 
interaction with Application A as defined in the 
‘InteractionArg’ module. 

SysArg

AppBArg

AppAArg InteractionArg

 

Figure 8 – A Simple Safety Case Architecture 

The following are three possible change scenarios that 
could have an impact on the outlined safety case 
architecture 

Scenario #1 Application A is rewritten (perhaps 
including some additional functionality) 
but still preserves the safety obligations 
as defined in the contract between 
AppAArg, SysArg and InteractionArg. 

Scenario #2 Application A is rewritten and interacts 
with Application B differently from 
before. 

Scenario #3 Change is made to the system memory 
management model that enables new 
means of possible (unintentional) 
interaction between applications. 

The effect of scenario #1 would be that the safety 
argument for Application A (‘AppAArg’) would need 
revision to reflect the new implementation. However, 
provided that the safety obligations of the module to the 
other modules (as defined by the contracts between the 
module safety case interfaces) continue to be upheld no 
further change to other modules would be necessary.  
Figure 9 depicts the effects of this scenario (a cross over a 
module indicates that the module is ‘challenged’ by the 
change and revision is necessary).  The effects of this 
scenario could be regarded as a local change. 

The effect of scenario #2 would be that not only must the 
safety argument for Application A (‘AppAArg’) be 
revised but in addition the safety argument for the 
interaction between modules (contained in 
‘InteractionArg’) would need to be rexamined in light of 
the altered interaction between applications A and B.  If, 
however, the revised ‘InteractionArg’ could continue to 
support the same assurances to the Application B 
argument of the safety of interactions with Application A 
then the Application B safety arguments (contained in 
‘AppBArg’) would be unaffected.  Figure 10 depicts the 
effects of this scenario.  The effects of this scenario could 
be regarded as a non-local change (owing to the fact that 
the change impact has spread across a number of 
modules). 

SysArg

AppBArg

AppAArg InteractionArg

 

Figure 9 – Illustration of Local Change 

SysArg

AppBArg

AppAArg InteractionArg

 

Figure 10 – Illustration of Non-Local Change 
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SysArg

AppBArg

AppAArg InteractionArg

 

Figure 11 – Illustration of Architectural Change 

The effect of scenario #3 is that it changes the nature of 
possible interactions between all applications.  As such, 
the safety argument for the interaction between modules 
(contained in ‘InteractionArg’) would obviously need to 
be revised.  It is likely that the nature of the assurances 
given by interaction argument to the safety arguments for 
applications A and B (as defined by the contracts between 
‘InteractionArg’ and ‘AppAArg’, and between 
‘InteractionArg’ and ‘AppBArg’) could be altered.  
Consequently both of these modules could be impacted.  
The change to the memory management model may even 
such that it alters the nature of the top level claim that 
needs to be made in the ‘SysArg’ module regarding the 
safety of application interactions (i.e. the ‘SysArg’ module 
may also be affected.  Figure 11 depicts the effects of this 
scenario.  The effects of this scenario could be regarded as 
architectural (owing to the fact that the change can 
potentially impact many modules).  This is perhaps to be 
expected as this scenario describes modifying a 
fundamental services provided as part of the system 
infrastructure. 

11 Example Modular Safety Case Architecture 
for IMA  

The principles of modularising and evaluating safety case 
architecture have been applied in reworking a “Generic 
Avionics Safety Argument” developed by Pygott (Pygott 
1999). The resultant safety case architecture is shown in 
Figure 13.  (Note – for clarity not all of the dependencies 
between modules have been shown on this diagram).  The 
role of each of the modules of the safety case architecture 
shown in Figure 13 is as follows:  

ApplnAArg: Specific argument for the safety of 
Application A (one required for each application within 
the configuration) 

CompilationArg: Argument of the correctness of the 
compilation process. Ideally established once-for-all. 

HardwareArg: Argument for the correct execution of 
software on target hardware.  Ideally abstract argument 

established once-for-all leading to support from 
SpecificHardwareArg modules for particular hardware 
choices. 

ResourcingArg: Overall argument concerning the 
sufficiency of access to, and integrity of, resources 
(including time, memory, and communications) 

ApplnInteractionArg: Argument addressing the 
interactions between applications, split into two legs:  one 
concerning intentional interactions, the second concerning 
non-intentional interactions (leading to the NonInterfArg 
Module) 

InteractionIntArg: Argument addressing the integrity of 
mechanism used for intentional interaction between 
applications. Supporting module for ApplnInteractionArg.  
Ideally defined once-for-all. 

NonInterfArg: Argument addressing non-intentional 
interactions (e.g. corruption of shared memory) between 
applications. Supporting module for ApplnteractionArg.  
Ideally defined once-for-all 

PlatFaultMgtArg: Argument concerning the platform 
fault management strategy (e.g. addressing the general 
mechanisms of detecting value and timing faults, locking 
out faulty resources).  Ideally established once-for-all.  
(NB Platform fault management can be augmented by 
additional management at the application level). 

ModeChangeArg: Argument concerning the ability of the 
platform to dynamically reconfigure applications (e.g. 
move application from one processing unit to another) 
either due to a mode change or as requested as part of the 
platform fault management strategy.  This argument will 
address state preservation and recovery. 

SpecificConfigArg: Module arguing the safety of the 
specific configuration of applications running on the 
platform.  Module supported by once-for-all argument 
concerning the safety of configuration rules and specific 
modules addressing application safety. 

TopLevelArg: The top level (once-for-all) argument of 
the safety of the platform (in any of its possible 
configurations) that defines the top level safety case 
architecture (use of other modules as defined above). 

ConfigurationRulesArg: Module arguing the safety of a 
defined set of rules governing the possible combinations 
and configurations of applications on the platform.  Ideally 
defined once-for-all. 

TransientArg: Module arguing the safety of the platform 
during transient phases (e.g. start-up and shut-down).  
Ideally generic arguments should be defined once-for-all 
that can then be augmented with arguments specifically 
addressing transient behaviour of applications. 

Proc. 11th Australian Workshop on Safety Critical Systems and Software

61



An important distinction is drawn between those 
arguments that ideally can be established as ‘once-for-all’ 
arguments that hold regardless of the specific applications 
placed on the architecture (and should therefore be 
unaffected by application change) and those that are 
configuration dependent.  Examples of application 
configuration specific modules include the ‘ApplnAArg’, 
‘ApplnBArg’ and ‘ApplnInteractionsArg’ modules.  
Examples of the argument models established ‘once for 
all’ include the ‘NonInterfArg’ and ‘InteractionIntArg’ 
modules.  Table 1 summarises the modules falling under 
each category.  

Argument Modules 
Established ‘Once-for-all’ 

Configuration Dependent 
Argument Modules 

ApplnAArg 
CompilationArg  
HardwareArg  
ResourcingArg 
InteractionIntArg 
NonInterfArg  
PlatFaultMgtArg 
ModeChangeArg  
TopLevelArg  
ConfigurationRulesArg 
TransientArg 

ApplnAArg  
ApplnInteractionArg 
SpecificConfigArg 

Table 1 – Categorisation of Safety Case Architecture 
Modules 

In the same way as there is an infrastructure and backbone 
to the IMA system itself the safety case modules that are 
established once for all possible application configurations 
form the infrastructure of this particular safety case 
architecture.  These modules (e.g. NonInterfArg) establish 
core safety claims such as non-interference between 
applications by appeal to properties of the underlying 
system infrastructures.  These properties can then be relied 
upon by the application level arguments. 

12 Minimising the Impact of Change 
The intention of the partitioning of the safety case, such as 
in the approach described in the example above, is to 
maximise the number of arguments (modules) that are 
stable in the presence of change.  As explained in section 
10 in order to evaluate the success of the argument in this 
respect it is necessary to identify a number of credible 
change scenarios for the IMA-based system.  Credible 
scenarios could include: 

• Hardware Vendor Change 

• Addition of a single application 

• Removal of a single application 

• Modification of existing application 

• Addition of extra processing nodes 

• Remove of processing nodes 

• Change of Databus 

Top Level System Argument for the
platform + configured applications

TopLevelArg

Specific safety
arguments
concerning the
functionality of
Application A

ApplnAArg

Specific safety
arguments
concerning the
functionality of
Application B

ApplnBArg

Argument for the
safety of interactions
between applications

ApplnInteractionArg

Arguments of the
absence of
non-intentional
interference between
applications

NonInterfArg

Arguments of the
integrity of the
compilation path

CompilationArg 
(As Example)

Arguments
concerning the
integrity of intentional
mechanisms for
application interaction

InteractionIntArg

Safety argument for the
specific configuration of
the system

SpecificConfigArg

Arguments of the
correct execution of
software on target
hardware  

Hardware Arg

Safety argument
based upon an
allowable set of
configurations

ConfigRulesArg
Arguments concerning the
integrity of the general
purpose platform 

PlatformArg

Arguments of the safety
of the platform during
transient phases

TransientArg

Argument concerning
the platform fault
management strategy

PlatFaultMgtArg
Arguments concerning
the sufficiency of
access to, and integrity
of, resources

ResourcingArg

 

Figure 13 – Safety Case Architecture of Modularised IMA Safety Argument 
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Some of these scenarios may be accommodated easily by 
the proposed safety case architecture. For example, if the 
applications in a configuration change, although 
individual application arguments (e.g. “ApplnAArg” 
module) and application interaction arguments (i.e. those 
within the “ApplnInteractionArg” module) must be 
updated, argument of interaction integrity and 
non-interference (the “InteractionIntArg” and 
“NonInterfArg” modules) may well be able to stay 
unaltered.  Other scenarios, such as change of hardware 
vendor may have a wider impact across the modules of the 
safety case (e.g. impacting compilation arguments as well 
as the more obvious hardware arguments). 

For the architecture proposed, Table 2 provides illustrative 
examples of the modules affected by credible change 
scenarios. 

Change Scenario Impact on Safety Case Modules 

Application A 
modified 

ApplnAArg must be updated 
All other (13) modules unaffected 
provided that interface of 
ApplnAArg is preserved 

Application C 
added 

ApplnCArg must be established 
SpecificConfigArg must be 
updated 
ApplnInteractionArg must be 
updated 
All other (12) modules unaffected 
provided that interface of 
ApplnInteractionArg is preserved 

Introduction of new 
hardware type 

HardwareArg and other 
arguments that specifically address 
the hardware of the system (such as 
InteractionIntArg) must be 
updated. 
All other modules unaffected 
provided that the interface of the 
updated modules can be preserved 
(i.e. the same ‘guarantees’ can be 
made for the properties of the new 
hardware as for the old). 

Table 2 - Example Change Scenario Impact 
Summaries 

It is through the ability to leave many of the modules of the 
safety case undisturbed in the presence of change (as 
illustrated in Table 2) that the benefits of IMA can be 
carried through to the certification process. 

13 Reasoning about Partitioning and 
Independence 

One of the main impediments to reasoning separately 
about individual applications running on an IMA based 
architecture separately is the degree to which applications 
interact or interfere with one another.  DO178B (RTCA 
1992), in discussing partitioning between software 
elements developed to differing Development Assurance 
Levels identifies that there are a number of possible routes 
through which interference is possible: 

• Hardware Resources – processors, memory, 
Input Output devices, timers etc. 

• Control Coupling – vulnerability to external 
access 

• Data Coupling – shared data, including 
processor stacks and registers. 

• Hardware Failure Modes 

For example, partitioning must be provided to ensure that 
one process cannot overwrite the memory space of another 
process.  Similarly, a process should not be unintentionally 
allowed to overrun its allotted schedule such that it 
deprives another process of processor time. 

The European railway safety standard EN 50129 
(CENELEC 2001) makes an interesting distinction 
between those interactions between system components 
that are intentional (e.g. component X is meant to 
communicate with component Y) are those that are 
unintentional (e.g. the impact of electromagnetic 
interference generated by one component on another). 

Unintentional interactions are typically the result of an 
error (whether random or systematic).  For example, the 
unintentional interaction of one process overwriting the 
memory space of another is a fault condition.  A further 
observation made in EN 50129 is that there are a class of 
interactions that are non-intentional but created through 
intentional connections.   An example of this form of 
interaction is the influence of a failed processing node that 
is ‘babbling’ and interfering with another node through the 
intentional connection of a shared databus. 

The safety case architecture promotes (in the 
“NonInterfArg” module) the ideal that  ‘once-for-all’ 
arguments are established by appeal to the properties of 
the IMA infrastructure to address unintentional 
interactions.  For example, a “non interference through 
shared memory space” argument could be established by 
appeal to the segregation offered by a Memory 
Management Unit (MMU).   An argument of 
“non-interference through shared scheduler” could be 
established by appeal to the priority-based scheduling 
scheme offered by the scheduler.  Although the particular 
forms of interference between applications will need to be 
drawn out (within the “ApplnInteractionArg” module) it is 
expected that these specific arguments can be addressed 
through the general infrastructure arguments provided by 
the “NonInterfArg” module. 

It is not possible to provide “once-for-all” arguments for 
the intentional interactions between components – as these 
can only be determined for a given configuration of 
components.   However, it is desirable to separate those 
arguments addressing the logical intent of the interaction 
from those addressing the integrity of the medium of 
interaction.  For example, if application A passes a data 
value to application B across a data bus it would be 
desirable to partition those arguments that address the 
possibility of A sending to wrong value to B from the 
arguments that address the possible corruption of the data 
value on the data bus.  Both issues must be clearly 
identified and reasoned about (within the 
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“ApplnInteractionArg” module).  However, the supporting 
arguments concerning the integrity of the medium of 
interaction can be established “once-for-all” within the 
“InteractionIntArg” module. 

14 Implications for Certification Processes 
A modular approach to safety case construction has 
implications for the acceptance process.  Whereas, 
traditionally certification has involved accepting, at a 
single point in time, a single monolithic safety case for an 
entire system for the benefits of a modular safety case 
approach to be realised requires a certification process that 
acknowledges the structure of a partitioned safety case that 
can be extended and modified without instantly requiring 
re-evaluation of the entire case.  The guidance document 
ARINC 651 (ARINC 1991) recognises this fact for 
suggests that for IMA-based systems the certification tasks 
are comprised of the following three distinct efforts: 

• Confirmation of the general environment provided by 
the cabinet 

• Confirmation of the operational behaviour of each 
function (application) intended to reside within a 
cabinet 

• Confirmation of the resultant composite of the 
functions 

ARINC 651 also recognises that conventional safety 
standards (such as DO178B (RTCA 1992)) may need to be 
updated to reflect these new distinct tasks.  These 
observations can be clearly related to the example IMA 
safety case architecture presented within this paper.  
Confirmation of the “general environment” involves 
qualification of both the hardware and software 
infrastructure (e.g. operating system) and relates to those 
modules shown within the proposed architecture that 
should ideally be established once for all possible 
application configurations (e.g. the ‘HardwareArg’ 
module).  Confirmation of the operational behaviour of 
each function relates to the specific application argument 
modules (e.g. the ‘ApplnAArg’ module) shown within the 
proposed architecture.   Confirmation of the composite 
operation of functions relates to those arguments, specific 
to a configuration of applications, that address the 
interaction of applications (e.g. the ‘ApplnInteractionArg’ 
and ‘SpecificConfigArg’ modules). 

ARINC 651 talks explicitly of the need for “building block 
qualification” whereby it is possible to “separately quality 
certain building blocks of an IMA architecture in order to 
reduce the certification effort required for any particular 
IMA-hosted function”.  Example building blocks listed 
include specific arguments relating to the (ARINC 629) 
global data bus, the ARINC 659 backplane bus, the robust 
partitioning environment and the cabinet hardware / 
software environment.  Again, it is easy to see a 
correspondance with the IMA safety case architecture 
proposed within this paper (e.g. the ‘NonInterfArg’ 
module addressing robust partitioning and the 
‘InteractionIntArg’ module addressing the integrity of bus 
communication).  However, no detail regarding how these 

building block arguments are to be represented and 
managed is presented within ARINC 651. 

In order to design and validate the various building blocks 
involved in IMA, ARINC 651 identifies the need for 
“rules which govern how the building blocks work 
together”.  It additionally describes that, “a feature of these 
rules of application is that they can be used to limit the 
work associated with certifying and re-certifying an IMA 
function to proof of compliance with the rules, and 
qualification of the function itself.  Regulatory agency 
discussion is encouraged to establish how certification 
credit may be granted for adherence to these rules”.   This 
concept of defining rules between building blocks relates 
strongly to the principles of establishing well-defined 
module interfaces and contracts between safety case 
modules put forward within this paper.  As the quote above 
clearly highlights, a necessary part of a new certification 
process based upon modular safety cases is to clearly give 
credit (i.e. limit the required re-certification) where 
contracts between safety case modules are upheld in the 
light of change to, or reconfiguration of, modules within 
the overall safety case. 

15 Summary 
In order to reap the potential benefits of modular 
construction of safety critical and safety related systems 
(e.g. ease of later addition or replacement of functionality, 
or through-life flexibility of hardware vendors) a modular 
approach to safety case construction and acceptance is also 
required.  This paper has explained some of the key 
concepts and principles of a modular safety case approach, 
including safety case module interface definition, 
cross-referencing between safety case modules and the 
steps involved in composition of one or more safety case 
modules.  Specifically, the paper has described how the 
Goal Structuring Notation (GSN) may be extended to 
include and support these concepts.  Use of these 
extensions has been illustrated by means of an example 
modular safety case architecture for IMA-based systems. 

This paper has attempted to illustrate how concepts 
established in the field of software architecture – such as 
design-by-contract, scenario-based evaluation and 
architectural patterns – can be seen to have obvious 
analogues in the safety case architecture domain.  
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Abstract 

A typical avionics mission system of a military aircraft is 
a complex real-time system consisting of a mission 
control computer, different kinds of sensors, navigation 
and communication subsystems, and various displays and 
stores; all interconnected by a number of serial data buses. 
The mission capability is increasingly implemented in the 
mission-critical software and the robustness of this 
software is vital for mission success. The complexity and 
real-time requirements of mission systems represent 
major challenges to the Australian Defence Force during 
new acquisitions, upgrades and maintenance. This paper 
describes the experiences on a joint research project 
between the University of South Australia and Australia’s 
Defence Science and Technology Organisation into the 
modelling and analysis of avionics mission systems. The 
paper provides a summary of the key aspects of our 
previous research work on the modelling of a generic 
mission system using Coloured Petri Nets and the analysis 
of task scheduling on the mission computer. Finally, the 
paper briefly discusses the extension of the generic model 
to obtain a formal model of the mission system of the AP-
3C Orion maritime surveillance aircraft.. 

Keywords:  Avionics mission systems, formal methods, 
mission-critical software. 

1 Introduction 

The complexity of military avionics mission systems is 
continually increasing to meet the requirements of 
missions and changing operational environment. The 
mission capability is increasingly implemented in the 
mission-critical software and the robustness of this 
software is vital for mission success. The Australian 
Defence Force has experienced problems in the 
acquisition, upgrades and through-life support of airborne 
electronic mission systems, leading to cost and schedule 
overruns (CoA 2001).  Major problems concern the 
integration of a large number of relatively different 
components and subsystems, such as radar, electronic 
support measures, navigation, communication and 
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mission data processing, and that of achieving an overall 
optimised and operationally effective mission system.   

The probable cause of the loss of the Mars Polar Lander 
has been traced to premature shutdown of the descent 
engines, resulting from a vulnerability of the software to 
transient signals (CIT 2000). The F/A-22 avionics have 
failed or shut down during numerous tests of the aircraft 
due to software problems. The shutdown occurs when the 
pilot attempts to use the radar, communication, 
navigation, identification, and electronic warfare systems 
concurrently (GAO 2003a); this has led to delays in the 
avionics software development and flight-testing, and to 
an increase in avionics development costs by over US$80 
million. One of the major challenges in the F-35 Joint 
Strike Fighter (JSF) program includes the integration of 
highly advanced sensors with the avionics systems. This 
has contributed to the increase in the 1996 estimated cost 
and schedule for the JSF development phase by 56 
percent and 40 per cent respectively (GAO 2003b), and 
an increase of an additional US$10.3 billion since the 
start of the system development and demonstration phase 
(GAO 2004). 

The key issue for the Australian Defence Force is to 
reduce the cost of procurement and upgrades of avionics 
mission systems in a way that provides sufficient 
assurance of the system architecture and the behaviour 
and performance of the software-intensive mission-
critical system to meet the operational requirements of the 
aircraft. This has motivated research into the development 
of a framework for analysing mission system 
functionality and upgrade scenarios, and validating 
overall system performance for future procurements and 
upgrades.  

The aim of this paper is to describe the experiences on a 
joint research project between the University of South 
Australia and Australia’s Defence Science and 
Technology Organisation into the modelling and analysis 
of avionics mission systems, conducted over a 3 year 
period; key aspects of this research work have been 
published in the public domain (Kristensen et al. 2001, 
Kristensen et al. 2002, Petrucci et al. 2002, Petrucci at al. 
2003). 

In the following section, we describe the generic mission 
system architecture, and in Section 3 we provide an 
overview of formal methods for system modelling and 
introduce the basic concepts of Coloured Petri Nets. In 
Section 4, we describe the development of a modelling 
framework for a generic mission system using Coloured 
Petri Nets, and in Section 5 we present our analysis 

Proc. 11th Australian Workshop on Safety Critical Systems and Software

67



approach which shows how state space methods can be 
used in the framework of Coloured Petri Nets to reason 
about system properties. In Section 6, we describe how 
the modelling framework was used to obtain a Coloured 
Petri Net model for the mission system of the AP-3C 
Orion maritime surveillance aircraft. Finally, in Section 7 
we provide conclusions on the modelling approach and 
discuss ideas for future work. 

2 Avionics Mission Systems 

The mission system for a typical combat aircraft, such as 
an F/A-18, is composed of many discrete avionics 
subsystems including radar, navigation, and mission 
computers. Each of these subsystems may contain further 
subsystems and components. Since the mission system is 
a very complex collection of subsystems and components, 
we shall employ abstraction as a technique for managing 
the complexity to enable the construction of models at 
higher levels. The generic architecture of an avionics 
mission system (AMS) for a combat aircraft (Locke et al.  
1990) is shown in Figure 1. The AMS consists of a 
number of subsystems connected via a serial data bus 
(SDB). The control of devices, displays, and pilot controls 
is handled by a collection of software tasks executing on 
the mission control computer (MCC) which also acts as 
the SDB controller. The subsystems communicate by the 
exchange of data/messages across the SDB. 

Figure 1: Generic Mission System Architecture 

The controls and displays of the AMS consist of the head-
up display (HUD), the multi-purpose display (MPD), the 
crew keyset (KEYSET), and the hands-on throttle and 
stick (HOTAS). These components form the human-
machine interface of the AMS. The human-machine 
interface is controlled by the Display Process subsystem. 
The sensors of the AMS consist of the Air Data Computer 
(ADC), the Radar, the Inertial Navigation System (INS), 
the Radar Altimeter (RALT), and the Radar Warning 
Receiver (RWR). The stores contain a number of 
weapons such as missiles and bombs and are controlled 
by the Stores Management Subsystem. 

Typical tasks performed by a mission control computer 
system may include data collection from various sensors, 
fusion of collected data, display of information to pilots, 
and controlling devices in response to inputs from the 
aircraft crew. One of the critical aspects of the proper 
functional and performance behaviour of the mission 
system is that the tasks must be scheduled in a way that 
guarantees that hard deadlines are met under all 

circumstances. This real-time requirement is critical to 
the operational performance of the mission system and 
hence to the success of a particular mission. Thus major 
concerns, when upgrading and maintaining mission 
systems, are the scheduling of tasks and the impact of 
delays associated with data transfer across the bus 
connecting the mission control computer and the various 
devices. 

The key issues discussed in this paper are the scheduling 
of tasks on the mission control computer, and the data 
transfer across the data buses connecting the mission 
control computer and the various avionics subsystems. A 
typical application software task scheduling mechanism, 
such as for the F/A-18 and F-111 aircraft, is based on a 
cyclic executive (Rockwell 1992). The cyclic executive 
executes an application that is divided into a sequence of 
non pre-emptive tasks, invoking each task in a pre-
determined order throughout the execution history of the 
application (Locke 1992). One can distinguish two types 
of tasks, namely, rategroup and background tasks. The 
rategroup tasks are periodic and have higher priority than 
the background tasks, which may be considered as 
aperiodic. The cyclic executive repeats its task list at a 
rate that is known as a major cycle. The major cycle is 
further divided into periods known as minor cycles.  The 
major cycles have a set of tasks scheduled that must meet 
the required deadline in order to maintain the integrity of 
the mission system. 

3 Formal Modelling and Analysis 

3.1 Formal Methods 

Formal methods are mathematically based techniques, 
often supported by reasoning tools, that can offer a 
rigorous and effective way to model, design and analyse 
computer systems (Bjorner and Druffel 1990). A formal 
method has a sound mathematical basis, typically given 
by a formal specification language. This basis provides 
the means of precisely defining notations like consistency 
and completeness and more relevantly, specification, 
implementation and correctness. It provides the means of 
proving that a specification is realisable, proving that a 
system has been implemented correctly, and proving 
properties of a system without necessarily running it to 
determine its behaviour. There are comprehensive 
accounts of experience on the use of formal methods in 
industry and research (e.g., Hinchey and Bowen 1995). 

The design and validation of complex computer-based 
systems, for example, military avionics and space 
missions, should ensure the correctness of a design at the 
earliest stage possible. The performance of an avionics 
mission system is critical during flight, thereby making it 
a good candidate for more rigorous design and 
verification methods. Havelund and Lowry (2001) 
discuss an application of the model checker SPIN to 
formally analyse a software-based multithreaded plan 
execution module of a NASA space-craft control system. 
The formal verification effort had a major impact: 
locating errors that would probably not have been located 
otherwise and identifying a major design flaw.  
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3.2 Coloured Petri Nets 

Coloured Petri Nets (Jensen 1997) are a graphically 
oriented modelling language for the design, specification, 
and verification of concurrent and distributed systems. 
CPNs are based on Petri Nets (Desel and Reisig 1998) 
and the functional programming language Standard ML 
(SML) (Ullman 1998). Petri Nets provide the primitives 
for modelling concurrency and synchronization, whereas 
SML provides the primitives for modelling data 
manipulation in systems and for creating compact and 
parameterisable CPN models. A CPN model of a system 
describes the states that the system may be in and the 
transitions between these states. CPN models are 
executable, which means that it is possible to investigate 
the behaviour of the system by simulations. CPN models 
can also be used for formal verification of systems based 
on state space analysis and model-checking (Jensen 
1997). CPNs and the Design/CPN tool (Design/CPN 
Online) have been successfully applied in a wide range of 
application areas and many projects have been carried out 
in industry (Jensen 1997). 

Scheduling of tasks in real time systems has traditionally 
been conducted using a purely algorithmic approach (Liu 
2000). Recently, there has been an increasing interest in 
applying timed automata and model checking techniques 
to scheduling problems; the basic idea is to turn the 
scheduling problem into a reachability problem that can 
be solved by analysis tools using a state space search 
(Petrucci et al. 2002). The advantages of formal 
modelling and state space methods in this setting is that 
the same model of the system can be used to analyse 
scheduling as well as other properties, such as functional 
correctness. Hence, it represents an integrated approach 
to the analysis of the system. 

4 CPN Model of a Generic Mission System 

In this section, we describe our modelling framework and 
approach by providing an overview of the CPN model of 
the generic mission system and give some representative 
examples of modelling at the different levels of 
abstraction in the CPN model; the reader is referred to 
Kristensen et al. (2001) for details. 

4.1 Modelling Framework Overview 

A CPN model can be structured into a number of 
hierarchically related modules (in CPN terminology 
called pages) with well-defined interfaces between them. 
The hierarchy page giving the overall structure of the 
CPN AMS model is depicted in Figure 2. Each node in 
Fig. 2 represents a page (module) of the CPN AMS 
model, and is named according to the page in the CPN 
model that it represents. An arc leading from one node to 
another node means that the latter is a subpage 
(submodule) of the former. The page AMS is the top-most 
page in the CPN model. 

The CPN model consists of five main parts which 
correspond to the five immediate subpages of the AMS 
page: the MCC page and its subpages models the Mission 
Control Computer, the Sensors page and its subpages 
models the sensors, the ControlsDisplays page and its 
subpages models the man-machine interface, the Stores 
page models the stores and the Stores Management 
System, and the SerialDataBus page models the Serial 
Data Bus. 

Figure 3 depicts the AMS page and provides the most 
abstract view of the model. This page consists of five 
substitution transitions (drawn as rectangles with an HS 
tag in the lower right corner) and two places (drawn as 
ellipses). The substitution transitions Mission Control 
Computer, Sensors, ControlsandDisplays, 
StoresManagementSystem, and SerialDataBus correspond 
to the five main parts of the AMS system. Each of the 

 

Figure 2. CPN model overview - Hierarchy page 
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sesubstitution transitions (and its surrounding places) is 
related to a subpage. The subpage of a substitution 
transition provides a more detailed description of the 
compound activity/component represented by a 
substitution transition. Place SerialDataBus is used to 
model the data transfer across the serial data bus. Place 
CDS represents the interface between the controls and the 
storage management system. Each of the places in Fig. 3 
is so-called socket places used to link the subpage of the 
substitution transition and the AMS page. Socket places 
are assigned (linked) to port places on the subpage of the 
substitution transition. 

Figure 3: The AMS page 

An addressing scheme has been developed to capture the 
AMS architecture, identity the components of the AMS, 
and to model the interaction between the components. 
Components can be hardware devices (e.g., sensors) as 
well as software processes/tasks (e.g., the tasks executed 
by the MCC). In addition to making it possible to identify 
components, the virtue of this addressing scheme is that 
new components can easily be added to the CPN model 
without having to make global modifications to it. This 
means that new tasks on the MCC as well as new 
hardware devices can be incorporated into the CPN 

model with only local modifications. A sample of the 
colour set definitions used to realise the addressing 
scheme are shown in Figure 4. The colour set definitions 
are written in the Standard ML programming language 
and are similar to type definition found in programming 
languages. The colour set MCCTaskName identifies the 
different tasks executing on the mission control computer. 
The colour set BackgroundTask contains the attributes: 

• name - the name of the task; 

• size - total size of the task when executed  
             (measured in time units); 

• left - how much of the task remains to be executed 

In the colour set RategroupTask, the rate attribute 
specifies the frequency of a rategroup task (as the number 
of minor cycles between execution of the task), and the 
next attribute keeps track of the next minor cycle in which 
the task should be executed. 

4.2 Mission Control Computer 
Figure 5 depicts the MCC page which is the most abstract 
part modelling the mission control computer. The MCC is 
the subpage associated with the substitution transition 
Mission Control Computer from Fig. 3. The page has two 
substitution transitions: Scheduling represents the 
scheduling mechanism on the mission control computer 
and IOProcessor represents the IO processor of the 
mission control computer. 

 

Figure 5: Mission Control Computer (MCC) page 

A marking (state) of a CP-net is represented by a 
distribution of tokens on the places of the CPN model. 
The kind of tokens that can reside on a place is 
determined by the colour set of the place. The colour set 
of a place is by convention written below the place. The 
tokens initially present on a place are specified by the 
initial marking of the place. The initial marking of a place 
is by convention written above the place and omitted if 
the place is initially empty (i.e., contains no tokens). 

The input socket places Tasks and AllTasks of the 
substitution transition Scheduling are used to represent 
the task of the mission control computer. Place Tasks has 
the colour set MCCTask, and each task on the mission 

 
color MCCTaskName = with  

  AircraftFlightData | Steering            
| RadarControl       | TargetDesignation   
| TargetTracking     | WeaponSelection  
| WeaponTrajectory   | WeaponRelease       
| HUDDisplay         | MPDHUDDisplay       
| MPDTacticalDisplay | MPDStoresDisplay  
| MPDStatusDisplay   | KEYSET_HOTAS        
| RWRControl         | RWRThreatControl    
| BuiltInTest ; 
 
color BackgroundTask =  
      record name : MCCTaskName * 

             size : Int *  
             left : Int ;  
 
color RategroupTask =  
      record name : MCCTaskName * 

             rate : Int *   
             next : Int *   
             size : Int *   
             left : Int ;   
 
color MCCTask = union  

   Background : BackgroundTask +  
   Rategroup : RategroupTask ; 

 Figure 4: Colour set definition for tasks 

CRPIT Volume 69

70



 

color CPUState = union  

       Idle +  

       Busy : BusyState timed; 

 

control computer is represented as a token of colour set 
MCCTask on the place Tasks.  

The place AllTasks contains a list of all the tasks on the 
mission control computer. This list is used to access all 
tasks on the mission control computer and determine 
which task will be executed next. The Tasks place ensures 
that if there is a choice of the next task to execute on the 
mission control computer, the CPN model represents all 
possible such choices. 

The socket places, IOQueue and IOStatus, represent the 
interface between the mission control computer and the 
IO processor. The place IOQueue is used to model a 
queue in which tasks can make requests for data to be 
transferred across the serial data bus. The place IOStatus 
keeps track of the input/output status of tasks, and to 
signal (using an interrupt) that data requested by a given 
task is now available. The place SDB represents the 
interface between the serial data bus and the IO 
processor. 

4.3 Task Scheduling and Execution 

The Scheduling page, shown in Figure 6, models the 
general scheduling mechanism on the mission control 
computer (MCC). This page is the subpage of the 
substitution transition Scheduling from Fig. 6. It consists 
of seven places and three substitution transitions. The 
port places IOStatus, IOQueue, Tasks and AllTasks are 
assigned to the identically named socket places on page 
MCC. 

The place MCCCPU is used to model the state of the 
processor (CPU) in the mission control computer. Figure 
7 shows the colour set declarations used to model the 
state of the CPU. The state of the CPU is modelled by the 
colour set CPUState. The CPU may either be Idle or 
Busy, i.e., executing a task. The colour set BusyState is a 
product where the first component is used to specify the 
task that the CPU is busy executing. The second 
component is used to record the time at which the task 
started executing. This information is used to compute 

how much of the task was completed in case the current 
task is interrupted by a higher priority task. The colour set 
CPUState is timed. This means that tokens of this colour 
set will carry time stamps. These time stamps will be used 
to specify the time at which the task has run to 
completion. The initial marking of place MCCCPU is a 
token with colour Idle corresponding to the CPU initially 
being idle. 

The place, Minorcycle, is used to keep track of the current 
minor cycle. As indicated by the initial marking of this 
place, the system starts in minor cycle 1. The place 
MinTime represents the minimum amount of time a task 
should spend on the CPU before it can be pre-empted by 
a task with a higher priority. 

The substitution transition InterruptTask models how a 
task executing on the CPU can be interrupted by a task 
with a higher priority, and the substitution transition 
TaskCompleted describes the completion of a task. The 
pages associated with these substitution transitions are 
described in detail in Petrucci et al. (2002). 

Figure 7: Colour set definitions for CPU state 

4.4 Serial Data Bus 

The Serial Data Bus page shown in Figure 8 comprises 
three places and two transitions. There are two places Idle 
and Busy describe the state of the Serial Data Bus. The 
third place, SDB, represents the information transiting on 
the Serial Data Bus. 

The Serial Data Bus is initially in the Idle state.  When a 
request arrives on the SDB place from the I/O processor, 
it starts transmitting the request to the appropriate device 
(transition Start Transmit occurs). The serial data bus will 
then change its state form idle to busy by placing a token 

 

Figure 6: Scheduling page 
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in the place Busy. When the request has been transmitted, 
the Serial Data Bus becomes Idle again and signals that 
the request has been completed so that the I/O processor 
handles the next request (transition Transmit Complete 
fires). The places Idle and Busy ensure that a transfer on 
the data bus can only start if no other transfer is already 
being processed. 

 
Figure 8: Serial Data Bus page 

4.5 Sensors 

The information necessary for tasks is gathered by 
various sensors such as radars. The execution of tasks 
causes data to be transferred between sensors, control, 
displays, and stores. The interaction between the MCC 
and the sensors consists of data transfers. Since we model 
the mission system at a high level of abstraction, the 
various sensors can be modelled as shown in the 
GenericSensor page (Figure 9). 

When a request arrives on the Serial Data Bus, the 
relevant Sensor is activated and the data transfer starts 
(transition Start Transfer occurs). Each sensor takes a 
certain amount of time to operate and process 
information, and thus must remain in the Transfer state 
during this time. This is achieved by the time stamp given 
to the token created in place Transfer when transition 

Start Transition occurs. The token in place Transfer 
cannot be consumed before this amount of time has 
elapsed. When the sensor has terminated, i.e., transmitted 

the requested information, it signals the Serial Data Bus 
that the request has been completed. 

 

Figure 9: GenericSensor page 

5 Analysis of the CPN Model 
The analysis of the CPN AMS model is based on the state 
space method of Coloured Petri Nets as supported by the 
Design/CPN tool. The primary focus of the analysis has 
been to determine whether the tasks to be scheduled on 
the mission control computer are completed in time, and 
if this is the case, provide a schedule for the set of tasks. 
In addition to this, the size of the input/output queues of 
the I/O processor has been considered. The basic idea 
behind state space methods is to construct a directed 
graph (called the state space) with a node for each 
reachable state of the CPN model and an arc for each 
transition between states. Since the state space contains 
all reachable states it represents all possible executions of 
the CPN model. In this section, we provide a summary of 
our analysis approach and results which have been 
reported in detail in Petrucci et al. (2002). 

The problem of finding a schedule can be formulated as 
finding a path in the state space leading from the initial 
state to a state where the major cycle has ended and all 

tasks were completed in time. To make state space 
analysis feasible, we started out by selecting a small set 
of tasks and gradually introduced additional tasks. Also, 
we experimented with different priority policies for tasks 

Task Set Tasks  RG BG 
S1 Displays and Controls 

HUDDisplay, MPDHUDDisplay, MPDTacticalDisplay, MPDButtonResponse, 
ChangeDisplayMode, MPFStoresDisplay, MPDStatusDisplay, 
KeysetResponse, HOTASDesignation, HotasBombButton 

6 4 

S2 S1 + Built-In Test 
PeriodicBIT, BITFailureWarning, InitiatedBIT 

7 6 

S3 S2 + Radar Control 
RadarSearch, radarTracking, RadarInitiateTracking 

9 7 

S4 S3 + Targeting 
DesignateTarget,ConfirmDesignation, TargetTracking, TargetSweetening 

10 10 

S5 S2 + Threat Response 
PollRWR, ThreatResponseDisplay 

8 7 

S6 S5 + RWR Control 
RWRProgramInput, RWRProgramming 

9 8 

S7 S6 + Weapon Control (except WeaponRelease) 
InputWeaponSelection, WeaponSelectionProc, AutoCCIPtoggle, 
WeaponTrajectory, ReinitiateTrajectory 

10 12 

S8 S7 + Targeting 
Designatetarget, ConfirmDesignation, TargetTracking, TargetSweetening 

11 15 

Table 1: Set of Tasks used for Analysis 
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accessing the CPU and for input/output. Table 1 lists the 
different sets of tasks taken from Locke et al. (1990) that 
are used for the analysis. The RG column gives the 
number of rategroup (periodic) tasks in a given set. The 
BG column specifies the number of background tasks in 
the set. 

Table 2 gives the size of the state space for the different 
sets of tasks listed in Table 1. The Nodes column gives 
the number of nodes in the state space, and the Arcs 
column gives the number of arcs in the state space. The 
IOSS column gives the maximum number of requests in 
the I/O requests queue at the I/O processor observed in 
the state space. The IOSP column gives the maximum 
number of requests in the I/O queue along a path in the 
state space corresponding to a schedule for the tasks. The 
considered pre-emption and queuing policy allowed 
requests from rategroup tasks to overtake requests from 
background tasks in the IO queue, and both rategroup and 
background tasks had assigned priorities. 
 

Set Nodes Arcs IOSS IOSP 
S1 77,982 127,316 6 4 
S2 78,734 128,715 7 6 
S3 485,054 811,734 9 7 
S5 144,780 235,769 10 10 
S6 142,022 234,257 8 7 
S7 409,888 702,831 9 8 

Table 2:  Standard State Space Generation 

Various state space analysis techniques were considered, 
for example, the use of depth-first state space generation 
allowed the S4 and S8 task sets to be analysed, as this led 
to significantly fewer states to be considered (Petrucci et 
al. 2002). 

Our analysis focuses on task scheduling of the mission 
control computer and only considers a single major cycle. 
This is sufficient because all tasks are required to be 
executed at the end of a major cycle. Analysis results 
showed that, for example, the rategroup task 
WeaponRelease cannot execute in time i.e. it fails to meet 
its deadline. We have demonstrated how analysis of 
scheduling and input/output queue of an avionics mission 
system can be done using state spaces. 

6 AP-3C Orion Mission System Modelling 

The AP-3C aircraft mission system upgrade provides 
enhanced mission capabilities and extends the P-3C life-
of-type to 2015 (DMO 2002). The AP-3C aircraft is 
operated by the Maritime Patrol Group of the Royal 
Australian Air Force, and its mission roles include anti-
subsurface and anti-surface warfare, surveillance, search 
and rescue, and maritime strike. 

A high-level block diagram of the AP-3C avionics 
mission system architecture is shown in Figure 10 (RAAF 
1996). It consists of a Mission Equipment Bus (MEB) 
that provides inter-communication channels between the 
following sub-systems: Navigation, Acoustics, Magnetic 
Anomaly Detection (MAD) and Radar. The Data 
Management System (DMS) provides specialised 

interfaces to the following sub-systems: 
Armament/Ordinance (ARM/ORD), Electronic Support 
Measures (ESM), and Infrared Detection System (IRDS). 
The operators are provided with a high-resolution display 
and entry panel directly from the DMS. The 
Communication (Comm) sub-system interfaces with 
these sub-systems via the Avionics Equipment Bus 
(AEB), which is connected to the MEB via the 
Navigation sub-system. The MEB and the AEB are dual 
redundant serial data busses based on the MIL-STD-
1553B (DOD 1993). The DMS of the AP-3C plays the 
same role as the mission control computer in the generic 
mission system. 
 

IRDS 

ESM 

Navigation Radar 

Data  

Management  

System 

MAD 

Mission Equipment Bus MIL-STD-1553B 

Operator  

Consoles 

Acoustics 

ARM/ORD 

Avionics Equipment Bus MIL-STD-1553B 

Comm 

 

 

Figure 10:  AP-3C AMS Architecture 

The DMS is a centralised mission control and 
management sub-system. It is a complex multiprocessor 
system consisting of several Enhanced General Purpose 
Controllers (EGPC), custom computing devices and 
supporting software. Two input/output (I/O) processor 
cards provide the interface between the EGPCs and the 
MEB. The DMS provides the overall AMS management 
and normally acts as the MEB bus controller (RAAF, 
1996). 

The DMS software consists of a set of software 
components, which process sensor data and input from 
controls, performs necessary mission-oriented 
computations and provides outputs to the displays and 
other avionics equipment (RAAF 1999). Typical software 
components include the executive, navigation, stores 
management, display control, and data management. The 
runtime executive schedules and dispatches the execution 
of control tasks and services interrupts during various 
operations. The runtime executive component is typically 
responsible for the following functions: application 
software (task) scheduling, interrupt management, 
input/output scheduling and error management. The DMS 
executive software is based on a commercial Ada run-
time kernel (RAAF 1999). The scheduling policy is pre-
emptive and is executed by priority in a round-robin 
fashion (Rational 1995).  

An EGPC sends a number of messages to the I/O 
processor for transmission to the addressed remote 
terminal (RT) (RAAF 1996), e.g. Navigation sub-system 
or Radar subsystem, via the MEB. The MEB minor frame 
rate (described in the next section) sets a real-time clock 
interrupt to the I/O software. At the beginning of each 
new minor frame, an interrupt occurs, and the I/O 
processor starts issuing the messages for that frame. 

The AP-3C CPN model has been constructed based on 
the framework represented by the CPN AMS model 
briefly described in Section 4. From the two architectures 
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Figure 11: Hierarchy page of the AP-3C model 

depicted in Figures 1 (generic) and 10, it follows that 
although the components in the two systems are basically 
the same, the structure is quite different. There are two 
buses in the AP-3C instead of one in the generic AMS. 
This is easy to handle in our model as they are identical, 
allowing us to use two instances of the same bus 
representation. We just need to connect the appropriate 
components to each bus instance to ensure that the model 
correctly reflects the topology of the system. In this 
section, we provide an overview of the model only, and 
the reader is referred to Petrucci et al. (2003) for details. 

Finally, we need to consider two sorts of subsystems (or 
device) in the AP-3C mission system, rather than one. 
Because of the level of abstraction chosen for the model, 
we refer to subsystems or devices that have just a single 
connection to a bus as a simple device, such as, Magnetic 
Anomaly Detection, the Acoustic Subsystem, and the 
Communication Subsystem. We need a more complex 
model of the Navigation Subsystem because it is 
connected to both busses. Therefore, the simple devices 
can be modelled in the same way as the devices of the 
generic mission system (the Generic Sensor), while the 
navigation subsystem requires an enhancement to this 
model. 

The hierarchy page of the AP-3C CPN model is depicted 
in Figure 11; a parallel should be drawn between this 
page and the generic AMS model hierarchy in Figure 2. 
The four main differences between the CPN models of 
the generic AMS and the AP-3C, as reflected in the 
hierarchy pages, are as follows: 

• The Stores page and the ControlsDisplays page and 
its subpages have been removed from the model. The 
reason is that we are initially concerned with 
scheduling problems associated with the DMS that 
are not related to the displays and controls. 

• The Sensors and Generic Sensor pages from the 
generic AMS model have been combined and then 
split into two: the simple devices (in the Device 
page) and the navigation subsystem. 

• The CPN model of the AP-3C AMS contains a 
refined model of the input/output processing on the 
mission control computer. In the generic CPN model, 
input/output processing was modeled by page 
IOProcessor. In the AP-3C model, input/output 
processing is modelled by page IOProcessorCard 
and its three subpages. The Scheduling page of the 
generic model becomes the EGPC page for the AP-
3C. 

• The timing regarding task execution has been moved 
from the mission control computer level to the EGPC 
level, and the page UpdateMajorCycle is now a 
subpage of the EGPC page. 

The differences between the AP-3C and the generic AMS 
architectures are easily recognised by examining the CPN 
models’ hierarchy pages. The transformation of the 
generic model into the AP-3C model was greatly 
facilitated by its initial hierarchical design. The 
transformation mainly consists of: re-arranging the 
hierarchy by moving some pages; creating new ones 
when refinement is required; and deleting pages not 
relevant to the specific architecture or the purpose of the 
model. 

One purpose of the CPN model is to formally specify the 
transmission of messages between subsystems across the 
mission equipment and avionics bus. As usual we model 

the messages being transferred as tokens in the CPN 
model. When a subsystem transmits a message across the 
mission equipment bus to another subsystem, it will put a 
token on place Mission Equipment Bus. The subpage of 
the substitution transition Mission Equipment Bus will 
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then model the details in transferring the message.  
Eventually the message will be transmitted and the 
destination subsystem will consume the token 
representing the message from place Mission Equipment 
Bus. To model this data transfer in a flexible way that 
makes it easy to add/remove components, a general 
addressing scheme was developed as part of the CPN 
model of the generic AMS. 

The top-level AMS page is shown in Figure 12 and 
corresponds to the most abstract level in the AP-3C CPN 
model. This page provides a high-level architectural view 
of the AP-3C AMS similar to the informal block diagram 
in Figure 12. All the transitions (rectangles) are 
substitution transitions, indicated by the HS (hierarchical 
substitution) tag in their lower right corner. The 
substitution transition Data Management System 
represents the main part of the system. The 
Communication Subsystem, Navigation Subsystem, 
Acoustic Subsystem, Magnetic Anomaly Detection and 
Radar correspond to the different AMS subsystems. The 
other two substitution transitions, Mission Equipment Bus 
and Avionics Bus, are used to model data transfer across 
the MIL-STD-1553B serial data busses. Places Mission 
Equipment Bus and Avionics Bus represent the interfaces 
for each bus. Finally, the other places (e.g. ACS) allow 
subsystems (such as the acoustics subsystem) to be 
identified. 

Figure 13 depicts the DMS page which is the most 
abstract part modelling the data management system. The 
page has two substitution transitions: EGPC1 represents 
the Enhanced General Purpose Controller on which the 
tasks execute, and the 1553B I/O Processor Card handles 
all the input and output related to tasks. The modelling 

details of processing and messages transmission on the IO 
Processor Card is described in detail in Petrucci et al, 
(2003). The AP-3C aircraft uses up to 4 EGPCs. Our 
model can easily cater for this by including the required 
number of EGPC substitution transitions (e.g. EGPC1 to 

EGPC4). Thus, several instances of the EGPC page may 
be used concurrently. 

 

Figure 13: DMS page of the AP-3C model 

7 Conclusions and Way Ahead 

This paper has provided an overview of the experiences 
on a joint research project between the University of 
South Australia and Australia’s Defence Science and 
Technology Organisation into the modelling and analysis 
of avionics mission systems, conducted during the period 
2000-03.  

We have described the development of a formal model of 
a generic mission system using Coloured Petri Nets. The 
main outcome is the capture of system domain 
knowledge, understanding of the mission system 
architecture and the interrelationships between the 
various avionics subsystems. We have demonstrated how 
analysis of task scheduling of an avionics mission system 
can be done using state spaces. A virtue of our modelling 
approach is that the CPN model is highly parametric, 

which makes it easy to analyse different sets of tasks and 
in this way investigate the impact of adding tasks to the 
mission control computer. Another advantage of our 
modelling approach is that specific scheduling 
mechanisms can easily be changed and an analysis of 
their impact can be conducted.  

 

Figure 12: AMS page of the AP-3C model 
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We have shown how the hierarchical constructs of CP-
nets and Design/CPN that were successfully used to 
model the generic airborne mission system could be 
readily applied to model the AP-3C mission system. The 
initial CPN model of AP-3C provides a basis to perform 
analysis of the mission system architecture and is focused 
on the Data Management System task scheduling and 
data transfer across the Mission Equipment Bus. The 
CPN model can serve as an unambiguous executable 
specification of the DMS. Since the CPN models are 
executable, the behaviour of the DMS can be observed by 
simulating the CPN DMS model. This can prove to be an 
efficient way of gaining and maintaining knowledge on 
the operation of the DMS. The CPN DMS model can be 
used to analyse what-if scenarios before the actual system 
integration. These what-if scenarios could be related to 
functional as well as performance aspects of the DMS. 

A major problem is the state-space explosion, for 
example the state space of the CPN AMS model grows 
with the increase in the number of tasks. In order to 
perform more efficient state space analysis, the use of 
advanced methods such as the sweep-line methods 
(Christensen et al. 2001) should be investigated. 

Safety-critical software for aviation is typically DO-178B 
(RTCA 1992) level A or B (BAE, 2004). Mission-critical 
software applications must also be developed using the 
guidelines of DO-178B. However, unlike safety-critical 
applications, mission-critical software is typically DO-
178B level C or D (BAE, 2004). Formal methods can 
play an important role in the design evaluation of 
mission-critical software and systems.  

Furthermore, there is a need to investigate other methods 
and techniques for the modelling and analysis of avionics 
mission systems, such as: Avionics Architecture 
Description Language (SAE-AADL) and associated 
MetaH tool (Vestal 1997), model based verification and 
lightweight formal methods (Gluch and Weinstock 1998), 
and formal verification techniques and tools, for example, 
SPIN model checker (Holtzmann 1997), PVS theorem 
prover (Crow et al. 1995), and another promising 
verification tool (under development) - the Hierarchical 
Verification Environment (HiVE) (Cant et al. 2005),  

Finally, in addition to the research on modelling that has 
been presented in this paper, we recommend a number of 
critical research areas to complement the overall program 
for research on avionics mission systems, namely, 
advanced avionics architectures including safety, 
availability, fault-tolerance and growth issues, avionics 
data bus architectures and performance issues, real-time 
schedulability and timing analysis, and software and 
hardware design assurance.  
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Abstract 

Emulation technology promises to provide a means of 

addressing obsolescence issues in legacy computer 

processors in the military avionics domains. It has also 

been suggested that such technology might apply to safety 

critical and safety related systems in these domains. 

Numerous companies either have developed or are 

developing software components that are capable of 

emulating different legacy computing platforms. The 

emulators permit the execution of legacy code on newer 

computing platforms, without change to existing binary 

executables or data. Subsequent modifications to the 

legacy code in question may be made using either the 

legacy development environment and/or with some 

emulation technologies using a newer development 

environment.
 
 

The Defence Science and Technology Organisation 

(DSTO) is presently working with Northrop Grumman 

Space Technology (NGST) to develop a concept 

demonstrator utilising NGST's Reconfigurable Processor 

for Legacy Applications Code Execution (RePLACE) 

Emulation Technology for the Royal Australian Navy 

(RAN) Seahawk Display Generator Unit (DGU). To 

assess how the Australian Defence Force’s (ADF's) 

Technical Airworthiness Authority (TAA) - the 

Directorate General Technical Airworthiness (DGTA) 

might accept emulation technology, DGTA has evaluated 

emulation architectures and specifically RePLACE in the 

context of the Seahawk DGU. The evaluation has 

considered the emulation architecture, including 

identification of risks largely unique to the technology; as 

well as application of ADF preferred avionics software 

assurance and software safety standards to this 

technology. 

Evaluation of emulation technology, through exploration 

of emulation architectures and RePLACE as a case study, 

has allowed DGTA to define certification and regulatory 

guidance for the development of emulation technology 

within the ADF context. 
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1 Introduction 

The concept of emulation and emulators has been around 

for many years. Emulators permit the execution of legacy 

code on newer computing platforms, without changes to 

existing binary executables or data.  

In recent years the power of modern microprocessors has 

evolved to such an extent that it is now possible to 

provide real-time software emulation of many legacy 

microprocessors that were widely used in the late 1970s, 

1980s and early 1990s. These advances provide a 

tremendous opportunity to reuse much of the software 

developed for these earlier microprocessors without the 

penalty of having to rehost or translate the software to 

modern programming languages and microprocessor 

environments. Furthermore, emulation promises to solve 

the problem of hardware obsolescence among those 

legacy systems that are still in use today. 

Emulation has been applied to many areas of computing 

already, including the emulation of older computer game 

consoles (Atari, Sega, Nintendo Entertainment System, 

Arcard Platforms, etc), emulation of earlier derivatives of 

PC, Macintosh, Unix and VaxVMS environments to 

permit execution of those old applications in a modern 

environment, and emulation of embedded systems to 

permit analysis, testing and simulation on development 

platforms to name but a few. Given the wide application 

to date of emulation, it is not surprising that emulation 

technology is now being suggested in the avionics 

domain, particularly the military avionics domain. 

Emulation technology promises to provide a means of 

addressing many obsolescence issues in legacy computer 

processors in the military avionics domains, a domain 

where systems can be subject to comparably longer 

service lives than equipment in other domains. For 

example, it is not unusual for military aerospace systems 

to be in service for 30+ years, although some avionics 

systems would reasonably be expected to be upgraded 

over that time period. There have already been a number 

of programs that have used emulation in this sense. 

Numerous companies either have developed, or are 

developing, software components that are capable of 

emulating different legacy computing platforms for 

military avionics. One such company is Northrop 

Grumman Space Technology (NGST) who offer a 

product called RePLACE. RePLACE has already been 
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applied to numerous avionics systems and microprocessor 

instruction sets. 

Furthermore, it has also been suggested that such 

technology might be further applied to safety critical and 

safety related systems in these domains. To date, there is a 

lack of regulatory guidance and certification criteria 

relating to how emulation might be applied to safety 

critical and safety-related systems.  

The ADF's Technical Airworthiness Regulator (TAR) – 

also DGTA, is responsible for defining regulatory and 

certification criteria for modifications to Australian 

Military (‘State’) aircraft. This provides the ADF’s TAA 

with the guidance from which to conduct design 

acceptance of such technologies. Note that DGTA has a 

dual responsibility, being both the TAR and TAA. Design 

acceptance is largely synonymous with type certification 

within the Federal Aviation Administration (FAA) 

airworthiness framework. 

The Defence Science and Technology Organisation 

(DSTO) are presently working with NGST to develop a 

concept demonstrator utilising NGST's RePLACE 

Emulation Technology for the RAN Seahawk DGU. The 

DGU hosts several functions that are safety-related, and 

therefore warrants special consideration within the 

context of emulation. This development provides DGTA 

with an opportunity to develop certification criteria for 

emulation technology and to assess the effectiveness 

(technical, cost, schedule) of such certification criteria. 

The remainder of this paper examines emulation 

technology, through exploration of emulation 

architectures and NGST’s RePLACE as a case study, to 

allow DGTA to define certification and regulatory 

guidance for the development of emulation technology 

within the ADF context. 

2 Examination of Emulation Architectures 

In order to define certification criteria for emulation 

technology, it is firstly necessary to develop an 

understanding of those software architectures most 

relevant to emulators. This section introduces the simplest 

form of emulator architectures. 

2.1 A Simple Emulation Architecture (Type 1) 

A simple legacy emulation architecture (designated 

Type 1 for convenience of reference throughout this 

paper) is detailed in Figure 1 and Figure 2.  

COTS Microprocessor

Legacy CPU Emulator

User Application, e.g. Legacy OFP

Board Support

Package
Processor Support

 

Figure 1: Simple Emulator Architecture (Logical 

Layers) 

Legacy CPU Emulator

Legacy Virtual Machine

Legacy OFP (Binary)

I/O Mapping

New COTS I/O

Interfaces

Memory Sub-system

 

Figure 2: Simple Emulator Architecture (Sub-

Elements) 

The following paragraphs provide an overview of the 

emulator components detailed in Figure 2. 

The main component of the emulator architecture is the 

Legacy Virtual Machine. The Legacy Virtual Machine 

consists of the Legacy Instruction Set Engine, Memory 

Sub-system, I/O Mapping, Legacy Operational Flight 

Program (OFP) (ie. the binary) and other underlying 

functionality necessary to emulate the legacy computer 

environment (eg. Interrupt/exception mechanisms). 

Encapsulating the Legacy Virtual Machine is the Legacy 

CPU Emulator which provides the interface for the 

Legacy Virtual Machine to execute in the native 

processor environment. It is included as a separate 

element in this architecture for consistency with some 

more complex architectures considered later in this paper. 

The Memory Sub-System component’s role is to model 

the memory of the legacy computer environment. This 

may include logical to physical address translation, 

memory protection mechanisms and memory regions 

(non-volatile regions, read-only regions, shared memory 

regions, etc.). 

The I/O Mapping component’s role is to match the data 

and control structures, as well as the interfaces of the new 

replacement I/O devices, to those that are representative 

of the legacy computer environment. 

The Legacy Instruction Set Engine is a set of native 

machine code that fetches, decodes and executes the 

legacy instructions on the fly. Figure 3 describes the 

relevant data and information flows that might occur in 

one such implementation of the Legacy Instruction Set 

Engine. This example has been based on the MIPs 

processor, which is generally well understood across the 

computing domain, although the logical interpretation is 

easily extended to any type or class of microprocessor. 

Note that the MIPs processor is not used in the Seahawk 

DGU, which uses the AAMP processor. 
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Figure 3: Legacy Instruction Set Engine Data/Information Flow Diagram 

2.1.1 Incorporating an RTOS (Type 1A) 

Rather than implementing the full suite of system related 

functions as part of the emulator, it is common for 

embedded applications of this type to incorporate some 

form of Real Time Operation System (RTOS). Figure 4 

and Figure 5 show the logical layers and sub-elements 

that such an architecture might consist of. Aside from the 

incorporation of the RTOS between the emulator and 

lower level board/processor support firmware/software 

and the microprocessor and I/O interface, there is no 

significant change to the components, functional structure 

or relevant data and information flows within the 

emulator itself. 
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Real Time Operating System (RTOS)

Legacy CPU Emulator

User Application, e.g. Legacy OFP

Board Support

Package Processor Support

 

Figure 4: Emulator Architecture (Logical Layers) - 

Incorporating an RTOS 

 

Of the emulators examined by DGTA, this architecture is 

the most widely adopted, and will form the starting point 

for analysis aimed at determining certification criteria for 

emulation technology. 
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Figure 5: Emulator Architecture (Sub-Elements) - 

Incorporating an RTOS 

3 Analysis of Type 1 Emulation Architecture 

To provide an understanding of the software failure 

modes that might be relevant to the emulation 

architecture, and importantly what architectural 

considerations and software assurance activities are 

required to provide evidence of the absence or handling 

of these identified failure conditions, it is necessary to 

conduct some form of software safety analysis. There are 

numerous software safety analysis techniques that could 

be applied to such a system including Software 

Functional Failure Analysis (FFA), Software Fault Tree 

Analysis (FTA), Software FMEA (FMECA), Software 

HAZOP (DefStan 00-58 Computer HAZOP), Software 

Hazard Analysis and Resolution in Design (SHARD) - 

refinement of Software HAZOP, Markov Analysis and 

Data Flow Diagrams, Petri Net Analysis and Software 

Sneak Analysis (ADF 2006, and McKinlay 2001). 
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Guide Word Deviation Cause Effect Detection / Protection 

Omission Decode and execute instruction 

process fails to update memory or 

output 

Programming error within decode 

and execute instruction process 

Memory not updated with new 

contents 

Output not updated with new 

output 

Memory and output post update verification 

Commission Decode and execute instruction 

process invalidly updates memory or 

output 

Programming error within decode 

and execute instruction process 

Memory is corrupted in specific 

location 

Output is corrupted 

Entry point to decode and execute instruction process 

limited to following fetch instruction and increments 

counter process 

Early Decode and execute instruction 

process updates memory or output 

before valid processor cycle 

 

Programming error causes 

instruction implementation to 

incorrectly replicate cycle 

synchronisation 

Cycle synchronisation incorrect 

Memory updated out of 

sequence with other operations 

Output transitions early 

Memory and output update to explicitly check cycle 

synchronisation 

Mappings to be established between legacy 

instruction and emulation implementation and 

mappings to be verified for functional and temporal 

equivalence. 

Late Decode and execute instruction 

process updates memory or output 

after valid processor cycle 

As for early Memory updated out of 

sequence with other operations 

Output transitions late 

As for early 

Value Decode and execute instruction 

process updates memory or output 

with invalid value or updates wrong 

memory or output location 

Programming error within decode 

and execute instruction process 

Incorrect instruction passed to 

decode and execute process 

As for Omission, Commission, 

Early, Late 

As for Omission, Commission, Early and Late. 

Table 1: Extract from SHARD on Type 1 Emulator (Updated Memory and Output) 

Guide Word Deviation Cause Effect Detection / Protection 

Omission Decode and execute instruction 

process fails to update program 

counter as result of jump instruction 

Programming error within decode 

and execute instruction process 

Program counter is not updated 

with correct value. Emulated 

program enters incorrect branch 

of instructions - possible 

program crash 

Program counter is to be verified after operation.  

Mappings to be established between legacy 

instruction and emulation implementation and 

mappings to be verified for functional and temporal 

equivalence. 

Commission Decode and execute instruction 

process invalidly updates program 

counter 

Programming error within decode 

and execute instruction process 

Program counter is updated 

with corrupted value. Emulated 

program enters incorrect branch 

or instructions - probable 

program crash. 

Mappings to be established between legacy 

instruction and emulation implementation and 

mappings to be verified for functional and temporal 

equivalence. 

Early Decode and execute instruction 

process updates program counter 

before valid processor cycle 

Programming error causes 

instruction implementation to 

incorrectly replicate cycle 

synchronisation 

Cycle synchronisation incorrect 

Program counter updated out of 

sequence with other operations. 

Emulated program enters 

incorrect branch or instructions 

- probable program crash. 

Program counter update to explicitly check cycle 

synchronisation 

Mappings to be established between legacy 

instruction and emulation implementation and 

mappings to be verified for functional and temporal 

equivalence. 

Late Decode and execute instruction 

process updates program counter 

after valid processor cycle 

As for early As for early As for early 

Value Decode and execute instruction 

process updates program counter 

with invalid value 

Programming error within decode 

and execute instruction process 

Incorrect instruction passed to 

decode and execute process 

As for Omission, Commission, 

Early, Late 

As for Omission, Commission, Early and Late. 

Table 2: Extract from SHARD on Type 1 Emulator (Updated Program Counter) 

While it is possible to apply aspects of each of these 

techniques to analyse emulation architectures, and indeed 

the measured application of a number of these techniques 

would probably be necessary for the developer of such 

technologies to provide sufficient evidence as part of a 

safety case, it is not necessary for defining certification 

criteria. For the sake of defining certification criteria it is 

only necessary to develop an understanding of how 

emulation technology might fail and what might be done 

to either ensure it can’t or doesn’t fail; or if it can, then 

verify that it is sufficiently unlikely to fail. Such 

understanding should then provide insight into what 

evidence is required to provide sufficient confidence in 

these aforementioned properties. The SHARD technique 

is particularly relevant to developing this understanding 

as it considers failure modes, their causes, effects, and 

potential detection or protection means. 

SHARD employs a series of guidewords to classify how 

the information flows and associated communication 

events (and associated services) might deviate from their 

intended forms. These are as follows: 

• Omission - Service not delivered. 

• Commission - Service delivered when not required. 

• Early - Service delivered, but early. 

• Late - Service delivered, but late. 

• Value - Service delivered, but with incorrect value. 

SHARD requires that the system be analysed 

“backwards” from the outputs (ie. identify the system 

level effects first) back towards the inputs. The internal 

and input deviations are expressed in terms of how they 

cause or contribute to deviations in downstream items 

already investigated. Further information on the SHARD 

technique can be found in Pumfrey (1999). 

SHARD analysis was conducted using the Legacy 

Instruction Set Engine Data/Information Flow Diagram 
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(Figure 3) as a reference for information flows that might 

exist in the emulator, and services that are required from 

a functional perspective. An extract from the SHARD is 

presented in Table 1 and Table 2 for the updated memory 

and output, and updated program counter information 

flows respectively. 

Both Table 1 and Table 2 refer to the term ‘temporal 

equivalence’. ‘Temporal equivalence’ is used in a general 

sense here for convenience as each emulator 

implementation will need to define, within high and low 

level requirements, this property in the context of the 

relevant instruction set; legacy CPU architecture, 

including consideration for pipelining and parallel 

execution paths; and the configured application set. It is 

used to capture timing considerations at two levels of 

abstraction. The first is at the instruction level, which 

deals with the timing constraints placed on individual 

instructions, or sequences of instructions for some 

parallel architectures. The second is at the application 

level, which deals with ensuring that assigned tasks 

complete within their scheduled execution time, and that 

implementation quirks, such as processor cycle based 

synchronisation schemes (as opposed to interrupt timer 

based schemes) and the use of No Operations (NOPs) for 

timing synchronisations do not result in undesired effects 

(e.g. speed up) when emulated. This second level of 

abstraction is mostly applicable to those architectures 

considered in Section 4, however it cannot be ruled out in 

this context due to potential for synchronisation 

dependencies (e.g. those resident in timing sensitive 

executives and I/O). This implies that inspection and 

analysis of the legacy binary will be required to 

determine if these schemes are part of the 

implementation. 

Having developed an understanding of the types of failure 

modes, their causes, effects, and detection/protection 

means, it is then possible to define architectural or 

verification requirements relative to those failure modes. 

The ADF preferred standard for software assurance of 

airborne software is RTCA/DO-178B (ADF 2005). For 

the purposes of consistency and clarity, verification 

requirements shall be defined based on those activities 

documented in RTCA/DO-178B (RTCA 1992). Readers 

should refer to DO-178B and related information (DO-

248B (RTCA 2001), Order 8110.49 (FAA 2003), CAST 

5 (CAST 2000)) for further definitions of software 

assurance activities described in this paper.  

However, to understand the logic behind the approach 

used to define those architectural and verification 

requirements and associated DO-178B objectives, it is 

firstly necessary understand some key aspects of the DO-

178B software assurance model. According to DO-178B, 

verification of airborne software has two complementary 

objectives. One objective is to demonstrate that software 

satisfies its requirements. The second objective is to 

demonstrate with a high degree of confidence that errors 

which could lead to unacceptable failure conditions have 

been removed. Noting that the prescription of activities 

against these two objectives is scaled based on software 

level within the standard, it is worth considering the 

approach in general terms. 

The first objective is largely supported through definition 

of and verification against high-level requirements. 

Where insufficient disclosure or ambiguities exist within 

the high level requirements, then refinement and further 

definition of and verification against is required in 

translation to low-level requirements. Therefore, it 

follows that provided the developer can adequately 

disclose the requirements at the prescribed level of detail, 

then this objective is relatively straight forward to satisfy.  

The second objective, however, is not quite as intuitive. It 

deals with eliciting properties about the software which 

don’t necessarily follow from the set of already defined 

high and low level requirements, with focus on those 

properties that could potentially lead to unacceptable 

failure conditions. Eliciting these properties permits one 

of two outcomes: either the behaviour is appropriate, in 

which case it should be captured in the high and/or low 

level requirements; or the behaviour is inappropriate, in 

which case the software design and implementation 

should be changed to remove the behaviour. DO-178B 

approaches this through prescribing requirements 

coverage analysis and software structural coverage 

analysis. Furthermore, establishing requirements 

traceability from low-level requirements to source code, 

and to object code, supports providing an understanding 

of software properties commensurate with this second 

objective. While there are arguably other ways to elicit 

such properties, this paper, for the reasons previously 

documented, will restrict discussion to those called out by 

DO-178B. 

For an emulator, the high and low level requirements 

would generally need to capture the extent of the 

instruction set, as well as all other supporting functional 

and non-functional properties of the machine being 

emulated. For most legacy CPUs, much of this 

information would need to be extracted from whatever 

technical documentation is still available. For CPU 

manufacturers that have been out of business or have 

since been subsumed into other businesses, it may no 

longer be possible to elicit much documentation beyond 

what is already held by the in-service support 

organisation and associated technical library. Unlike the 

commercial world where the internet often becomes a 

repository for obsolete information, rarely does propriety 

information relating to obsolete military specific 

equipment find its way into the public domain. As it is 

not possible to guarantee that the documentation 

adequately captures all functional and non-functional 

properties of the legacy CPU, then it follows that the 

initial set of high and low level requirements assembled 

for the emulator might well be incomplete. Therefore the 

activities, and resultant outcomes of the second 

aforementioned DO-178B verification objective become 

especially important as one means of eliciting a complete 

set of high and low level requirements, not only in the 

context of the emulator itself, but also in the context of 

the extant legacy application – in particular, where the 

legacy application relies on undocumented legacy 

processor properties. An inspection of DO-178B reveals 

that activities supporting this objective only start to 

become applicable at Level C or better, with Level B 

providing the bulk of necessary activities. 
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Further to ensuring a complete set of high and low level 

requirements, the activities and resultant outcomes of the 

second aforementioned DO-178B verification objective 

are also necessary to explore properties associated with 

any underlying components of the emulator that might 

not directly relate to the execution of instructions, or 

management of I/O and memory. For example, any 

monitoring or mapping functions, or failure thereof, 

should not result in any unacceptable failure conditions. 

An extract from the architectural and verification 

requirement assignment against identified failure modes 

is presented in Table 3. Full details have not been 

included on each specific assignment. However, it 

follows that they are appropriate based on the argument 

presented earlier in this section. 

Detection/Protection Architectural or Verification 

Requirement 

Mappings to be established between 

legacy instruction and emulation 

implementation, and mappings to be 

verified for functional and temporal 

equivalence. 

 

Software high level requirements comply with 

system requirements 

High-level requirements are accurate and 

consistent 

High-level requirements are compatible with 

target computer 

Low-level requirements comply with high-level 

requirements 

Low-level requirements are accurate and 

consistent 

Low-level requirements are compatible with 

target computer 

Source Code complies with low-level 

requirements 

Executable Object-Code complies with low-

level requirements 

Test coverage of software structure (decision 

coverage) is achieved 

Memory and output post update 

verification. Memory and output update 

to explicitly check cycle synchronisation 

Entry point to decode and execute 

instruction process limited to following 

fetch instruction and increments counter 

process 

Program counter is to be verified after 

operation. Program counter update to 

explicitly check cycle synchronisation 

Registers are to be verified after 

operation. Registers update to explicitly 

check cycle synchronisation 

Monitoring of pass instruction to decode 

and execute instruction process to ensure 

graceful recovery from failure mode 

Program counter is to be verified after 

each increment operation. Program 

counter increment to be explicitly 

synchronised to fetch instruction. 

Fetch instruction and increment program 

counter process to be synchronised with 

decode and execute instruction process to 

ensure one decode and execute for each 

instruction fetched. 

Software high level requirements comply with 

system requirements 

High-level requirements are accurate and 

consistent 

High-level requirements are compatible with 

target computer 

Low-level requirements comply with high-level 

requirements 

Low-level requirements are accurate and 

consistent 

Low-level requirements are compatible with 

target computer 

Source Code complies with low-level 

requirements 

Table 3: Determination of Architectural or 

Verification Requirements for Type 1 Emulator 

An inspection of the software assurance activities called 

out in Table 3, considered in the context of the previous 

discussion on the DO-178B software assurance model, 

reveals that these objectives come largely from the set of 

objectives core to DO-178B Level B. Therefore, it 

follows that for most safety related systems, the most 

appropriate software assurance level will be DO-178B 

Level B. This is further addressed, later in this paper. 

4 Further Examination of Emulation 

Architectures 

This section introduces an extension of the emulator 

architecture that permits changes to be made to the 

functionality of the legacy binary using a new 

development environment with code hosted directly into 

the native environment. 

4.1 Incorporating New Functions Developed in 

Native Code (Type 2) 

A legacy emulation architecture that permits the 

incorporation of new functions developed in native code 

(designated Type 2 for convenience of reference 

throughout this paper) is detailed in Figure 6 and Figure 

7.  
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Figure 6: Emulator Architecture (Logical Layers) - 

Incorporating New Functions Developed in Native 

Code 
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Figure 7: Emulator Architecture (Sub-Elements) - 

Incorporating New Functions Developed in Native 

Code 
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Figure 8: Legacy Instruction Set Engine and Virtual Component Environment Data/Information Flow Diagram 

The following paragraphs provide an overview of the 

emulator components detailed in Figure 7. 

Many components within the Legacy Virtual Machine 

that are common with the Type 1 architecture. As before, 

encapsulating the Legacy Virtual Machine is the Legacy 

CPU Emulator which provides the interface for the 

Legacy Virtual Machine to execute in the native 

processor environment. 

However, in this architecture the Legacy CPU Emulator 

also includes a component labelled the Virtual 

Component Environment. The Virtual Component 

Environment provides the mechanisms to switch between 

legacy and new native code environments and share data 

between them. 

Figure 8 describes the relevant data and information 

flows that might occur in one such implementation of this 

extended emulation architecture. This example has again 

been based on the MIPs processor although the logical 

interpretation is easily extended to any type or class of 

microprocessor. Figure 8 uses the term ‘thunk’, which is 

defined as a reference mapping of code addresses from 

one system specific form (i.e. legacy address space) to 

another (i.e. native environment). 

5 Safety Analysis of the Legacy Emulation 

Architecture Incorporating New Functions 

Developed in Native Code 

To provide an understanding of the software failure 

modes that might be relevant to the Type 2 emulation 

architecture, and importantly what architectural 

considerations and software assurance activities are 

required to provide evidence of the absence and handling 

of these identified failure conditions, it is again necessary 

to conduct some form of software safety analysis. 

In line with the approach adopted for the Type 1 

emulation architecture, a SHARD was conducted using 

the Legacy Instruction Set Engine and Virtual 

Component Environment Data/Information Flow 

Diagram (Figure 8) as a reference for information flows 

that might exist in the emulator, and services that are 

required from a functional perspective. An extract from 

the SHARD is presented in Table 4. 
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Guide Word Deviation Cause Effect Detection / Protection 

Omission Failure to pause 

emulation 

Programming error causes a failure to 

recognise thunk address or to recognise 

need to pause emulation and transfer 

control to native function 

Wrong data in thunk table 

Emulated program continues to execute 

beyond thunk address – synch 

problems with native functions, 

possible program crash 

Establishment of thunk addresses and storage of thunk 

addresses within thunk table require level of integrity 

to process 

Verification of thunk address integrity, and relevant 

context to application code segment 

Commission Emulation paused when 

not required 

Programming error causes transfer to 

native application when not required 

Wrong data in thunk table 

Emulated program will pause, with 

transfer of control to wrong native 

function, or program halt 

Emulated function to be an atomic operation to ensure 

interruption from thunking only between instructions. 

Virtual Component Environment shall be able to 

detect a native applications anticipated violation of 

the emulated applications real time constraints and 

deadlines, and be able to return operation to the 

emulated function gracefully. 

As for Omission 

Early Emulation paused earlier 

than required 

Programmer error causes transfer to native 

application earlier than required 

Emulated program will pause, with 

transfer of control to native function 

early resulting in state synch problems 

with emulated program 

Emulated function to be an atomic operation to ensure 

interruption from thunking only between instructions. 

As for Commission 

Late Emulation paused later 

than required 

Programmer error causes transfer to native 

application later than required 

Emulated program may pause, with 

late transfer of control to native 

function resulting in state 

synchronisation problems with 

emulated program 

As for Early 

Value Emulation pauses with 

wrong state 

Programmer error causes program 

counter, register and memory/output state 

of emulator to be incorrectly captured 

Native function accessing emulated 

state may perform operations on 

incorrect data. Return of execution of 

emulator likely to result in program 

crash, or operations on invalid data  

Emulated function to be an atomic operation to ensure 

interruption from thunking only between instructions. 

Transfer control is not permitted access to emulator 

state unless otherwise justified. 

Table 4: Extract from SHARD on Type 2 Emulator (Pause Emulation) 

Detection/Protection Architectural or Verification 

Requirement 

Verification of thunk address integrity, and 

relevant context to application code segment 

Emulated function to be an atomic operation 

to ensure interruption from thunking only 

between instructions. 

Emulated function to be an atomic operation 

to ensure interruption from thunking only 

between instructions. 

Transfer control is not permitted access to 

emulator state unless otherwise justified. 

Virtual Component Environment must be 

able to detect a native application’s 

anticipated violation of the emulated 

application’s real time constraints and 

deadlines (to achieve temporal equivalence 

as previously defined), and be able to return 

operation to the emulated function 

gracefully. 

Software high level requirements comply 

with system requirements 

High-level requirements are accurate and 

consistent 

High-level requirements are compatible with 

target computer 

Low-level requirements comply with high-

level requirements 

Low-level requirements are accurate and 

consistent 

Low-level requirements are compatible with 

target computer 

Source Code complies with low-level 

requirements 

Test coverage of software structure (decision 

coverage) is achieved 

Establishment of thunk addresses and 

storage of thunk addresses within thunk 

table require level of integrity to process 

 

The development of native functions, their 

effect on the emulated systems state, and the 

integrity of the overall system are closely 

linked. Therefore, it may be necessary to 

apply more rigorous software assurance 

activities than associated with the severity of 

failure of the native function alone. Similar 

software assurance activities may be required 

as for emulator itself. This is dependant on 

the nature of the native function. Those that 

have significant effect on the state of the 

emulated system are likely to require 

additional assurance activities (i.e. equivalent 

to those defined for the emulator). Those 

functions that don’t may be conducted at a 

software assurance level commensurate with 

the severity of failure of that function. 

Transfer control is not permitted access to 

emulator state unless otherwise justified. 

Protected Domain – Partitioned RTOS 

Table 5: Determination of Architectural or 

Verification Requirements for Type 2 Emulator 

Having developed an understanding of the types of failure 

modes, their causes, effects, and detection/protection 

means, it is then possible to define architectural or 

verification requirements relative to those failure modes. 

Section 3 has already discussed the relationship of the 

DO-178B software assurance model and the associated 

critical properties elicited from relevant activities. The 

same logic is applied in this case. An extract from the 

architectural and verification requirement assignment 

against identified failure modes is presented in Table 5. 

Full details have not been included on each specific 

assignment. However, it follows that they are appropriate 

based on the argument presented earlier in this section. 

An inspection of the software assurance activities called 

out in Table 5 reveals that these objectives again come 

largely from the set of objectives core to DO-178B Level 

B. Therefore in a general sense, it follows that for most 

safety related systems, the most appropriate software 

assurance level will be DO-178B Level B. This is 

addressed in greater detail later in this paper. It should 

also be noted now that a requirement is identified relating 

to the interaction between the emulator and native 

environment. A robust means of addressing this 

requirement is through a protected domain (partitioned) 

RTOS. A broader inspection of the SHARD analysis, 

beyond the extent of that presented in this paper, also 

dictates a requirement for complete isolation of the 

emulator from the new COTS hardware (including I/O) 

by means such as the protected domain (partitioned) 

RTOS. 

5.1 Incorporating a Protected Domain RTOS 

(Type 3) 

A legacy emulation architecture that extends the Type 1 

architecture to incorporate a protected domain RTOS 

(designated Type 3 for convenience of reference 

throughout this paper) is detailed in Figure 9 and Figure 

10.  
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Figure 9: Emulator Architecture (Logical Layers) - 

Incorporating a Protected Domain RTOS 
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Figure 10: Emulator Architecture (Sub-Elements) - 

Incorporating a Protected Domain RTOS 

The significant change compared with the Type 1 

architecture is the complete isolation of the emulator from 

the new COTS hardware (including I/O) by the protected 

domain (partitioned) RTOS. 

This approach is ideally suited to those emulator 

applications where there is no immediate requirement to 

introduce new functionality into the legacy OFP using the 

native environment (as described in the Type 2 emulator), 

but for which future capability introduction may be 

required. The introduction of the protected domain 

(partitioned) RTOS provides a future expansion 

capability that ensures it is possible to later introduce new 

functionality in the native environment, without 

significant rework of the emulator. For example, changes 

to the emulator would likely be restricted to the addition 

of a virtual component environment. 

5.2 Emulation Architecture Incorporating New 

Functions Developed in Native Code 

(Type 4) 

A legacy emulation architecture that extends the Type 2 

architecture to incorporate a protected domain RTOS 

(Type 3 features) that facilitates the incorporation of new 

functions developed in native code (designated Type 4 for 

convenience of reference throughout this paper) is 

detailed in Figure 11, Figure 12, and Figure 13.  
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Figure 11: Emulator Architecture (Logical Layers) - 

Incorporating New Functions Developed in Native 

Code 
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Figure 12: Emulator Architecture (Logical Layers) - 

Incorporating New Functions Developed in Native 

Code 
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Figure 13: Emulator Architecture (Sub-Elements) - 

Incorporating New Functions Developed in Native 

Code 

The following paragraphs provide an overview of the 

emulator components detailed in Figure 13. 

The significant change compared with the Type 2 

architecture is the complete isolation of the emulator and 
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native virtual machine from the new COTS hardware 

(including I/O) by the protected domain (partitioned) 

RTOS. Furthermore complete temporal and spatial 

partitioning is now provided by the protected domain 

(partitioned) RTOS of the legacy CPU emulator and the 

native virtual machine to ensure adequate separation of 

legacy and new native functions (represented by the gray 

dashed line) 

While the temporal and spatial partitioning provided by 

the protected domain RTOS now ensures that the legacy 

application will not crash as a result of a problem with 

functions implemented in the native environment, there 

are some additional architectural issues that need to be 

addressed. For example, the virtual component 

environment must now exhibit safety properties to allow 

the legacy application to continue operating in event the 

native code fails to return control to the legacy 

application in a functionally appropriate or timely 

manner.  

6 Recommendations Relating to Emulator 

Architectures 

The analysis conducted in earlier sections of this paper 

has provided an appreciation of the failure modes that 

might be associated with the emulation architectures 

considered. This permits recommendations to be formed 

on the relevance of particular emulation architectures to 

the severity of various safety and mission failure 

conditions. Although this paper is primarily aimed at 

safety critical and safety related systems, recent guidance 

in AAP7001.054 Sect 2 Chap 7 (ADF 2005) has provided 

a framework through which those software assurance 

activities relevant to safety critical and safety related 

systems can be applied commensurately to mission 

systems. Table 6 details the emulation architecture types 

considered in this paper, and the safety or mission failure 

conditions for which they are recommended. 

Failure Condition Type1 Type2 Type3 Type4 

Catastrophic NR NR HR R
1
 

Hazardous NR NR HR R
1
 

Major R
1
 R

1
 HR HR 

Minor R R HR HR 

S
a
fe
ty
 

No Effect HR HR R
2
 R

2
 

Critical R R HR HR 

Serious R R HR HR 

M
is
si
o
n
 

Important HR HR R
2
 R

2
 

NR=Not Recommended, R=Recommended, HR=Highly Recommended 

Note 1: Recommended only if the sub-elements have been subjected to 
rigorous software safety analysis that shows the absence or handling of 

all potential failure modes. 

Note 2: Recommended rather than Highly Recommended based on the 
cost associated with the purchase of a protected domain and partitioned 

RTOS. 

Table 6: Emulation Architecture Recommendations 

7 Issues with the Native Code Approach 

Subsequent modifications to legacy code hosted on the 

emulator may be made using either the legacy 

development environment or a newer development 

environment.  

There may be substantial risks associated with making 

any more than a small number of changes to the system 

using the newer development environment and native 

code. This is because of the difficulty of being able to 

demonstrate precise knowledge of the pre-conditions to 

modifications from exit points of the legacy code 

increases with each subsequent change. Similar 

difficulties might also exist for the post-conditions of 

modifications and entry points back into the legacy code. 

These problems are particularly pronounced for legacy 

software that has limited available documentation (often 

the case of legacy systems), or where developer’s 

knowledge of the legacy software is no longer sufficient. 

The problems may be further exacerbated by poor control 

over the determination of entry and exit points to and 

from the legacy code, and the amount of coupling 

permitted between various native code elements. A robust 

Application Programming Interface (API) is therefore 

required to provide tight control of the entry and exit 

points. 

Specific architectural considerations, including 

partitioning (spatial and temporal as provided by a 

partitioned RTOS), and related analysis would be 

required to demonstrate finite, well defined dependencies 

between subsequent new developments and legacy code. 

Such analysis would require a thorough understanding of 

the emulator, the legacy software and the legacy 

processor. Risks associated with adding new code can be 

mitigated largely by detailed analysis, as suggested 

throughout this paper, and planning of new features as 

part of a appropriately controlled and managed change 

process. Tool support would also be desirable to assist 

with providing an understanding of the legacy and native 

implementations. 

Some emulators provide embedded real-time, non-

intrusive monitoring and legacy code debugging services 

as part of the virtual component environment or lower-

level CPU emulator. Such services may provide 

developers with tools necessary to mitigate aspects of the 

aforementioned problems by providing visibility into the 

entry and exit points across the boundaries between the 

legacy and native code elements. 

One strategy that might also address aspects of this 

problem is to eventually translate the executive out of the 

legacy application into the native environment, with the 

legacy binary being used as a library of functions. NGST 

has successfully implemented this approach with some 

other avionics systems, although proprietary and US State 

Department restrictions prevent disclosure in the public 

domain. Specific software safety analysis would be 

required to provide an understanding of any risks with 

this approach. 
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The risks identified above must be weighed against the 

potential cost and schedule benefits offered by emulation, 

and the risks of alternative software approaches for 

upgrading systems. 

8 Software Assurance Evidence Requirements 

for Emulation 

The ADF preferred standard for software assurance of 

airborne software is RTCA/DO-178B (ADF 2005). 

Although it is acceptable to develop emulation within the 

framework of other relevant software assurance and 

software safety standards, this paper will restrict the 

provision of certification criteria to DO-178B. 

Comparisons to other standards may be developed 

through consideration of the critical software assurance 

activities identified in this paper. 

Table 7 defines the DO-178B software levels relevant to 

emulation based on those critical software assurance 

activities identified in previous sections of this paper. The 

levels are determined by a comparison of those critical 

software assurance activities with those activities 

normally prescribed by DO-178B at the respective 

software levels defined in that standard. 

Failure Condition DO-178B 

Software 

Level 

Software 

Level for 

Emulation 

Catastrophic Level A Level A 

Hazardous Level B Level B 

Major Level C Level B 

Minor Level D Level C 

S
a
fe
ty
 

No Effect Nil Level D 

Failure Condition AAP7001.054 

Guidance 

Software 

Level for 

Emulation 

Critical Level C Level B 

Serious Level D Level C+ 

M
is
si
o
n
 

Important Nil Level D 

Table 7: Software Levels for Emulation 

Table 8 details other additional activities required for 

Level C+, over those activities required for Level C. 

These activities largely mirror those specific Level B 

activities identified in the earlier analysis that are critical 

to meeting and verifying detection/protection 

requirements, and meeting the desired level of integrity 

for the system. Where independence, as defined by 

DO-178B, is believed to provide further assurance to the 

satisfaction of the relevant DO-178B objective, then a 

requirement for it has also been documented. Similarly, 

where independence is not viewed as a key contributor to 

the outcome of the activity, then it is documented as not 

required. 

 

 

DO-178 Reference Objective 

A-3-1 (6.3.1a) Software high level requirements 

comply with system requirements 

(satisfied with independence) 

A-3-2 (6.3.1b) High-level requirements are 

accurate and consistent 

 

A-3-3 (6.3.1c) High-level requirements are 

compatible with target computer 

(satisfied with independence) 

A-4-1 (6.3.2a) Low-level requirements comply 

with high-level requirements 

(satisfied with independence) 

A-4-2 (6.3.2b) Low-level requirements are 

accurate and consistent 

(satisfied with independence) 

A-4-3 (6.3.2c) Low-level requirements are 

compatible with target computer 

A-5-1 (6.3.4a) Source Code complies with low-

level requirements 

(satisfied with independence) 

A-6-3 (6.4.2.1, 

6.4.3) 

Executable Object-Code complies 

with low-level requirements 

(satisfied with independence) 

A-7-6 (6.4.4.2a, 

6.4.4.2b) 

Test coverage of software structure 

(decision coverage) is achieved 

(independence not required) 

Table 8: Level C+ Additional Activities Over Level C 

Although such prescription detailed in Table 7 departs 

from the traditional hazard severity / software level 

alignment of Aerospace Recommended Practice (ARP) 

4754 and DO-178B, emulation technology presents 

specific architectural risks that require specific assurance 

activities to mitigate. Developers might argue that the 

increase in software assurance level for emulation will 

significantly increase the costs associated with the 

introduction of emulation technology. While there is an 

element of truth to this argument, there are a number of 

key points that provide an appropriate tradeoff against the 

cost increase. These are as follows:  

• The size of the emulator (in terms of lines of code) 

will generally be only a small proportion of ‘real 

world’ legacy binary (lines of code) for military 

avionics equipment (e.g. emulator’s lines of code is 

less than 25% ‘real world’ legacy binary). A typical 

‘real world’ legacy binary in currently operating 

Australian military aircraft is of the order of 150,000 

lines of code, although future aircraft and systems will 

continue to see this figure increase. These figures are 

based on the RePLACE and DGU example, and are 

considered typical of such implementations. 
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Therefore, the number of lines of code to which the 

more stringent software level should apply is not 

substantial, and certainly less than the legacy binary. 

It is important to note that the guidance does pertain 

to the emulator only, and not to the legacy OFP 

(binary). This table does not imply that the legacy 

binary should be redeveloped to the prescribed 

software level. 

• The service history of the legacy software will be 

yielding a perceived software failure rate or rate of 

problem occurrences. This will be interpreted by 

operators both in terms of the reliability or 

availability, and thus the capability integrity, of the 

associated system; and also the inherent level of 

safety currently provided by the system. Service 

history is one important attribute as it is unlikely that 

most legacy systems will have been developed with 

the requirements of most current software assurance 

or safety standards in mind. Reflecting on the 

software failure rate, it is generally argued by the 

software community that such a rate is not actually a 

reliability (ie. reliability normally being a measure of 

a systems susceptibility to random failure conditions, 

whereas this is more synonymous as a measure of the 

software’s exposure to conditions that might uncover 

systematic errors). However, it does provide a 

baseline to operators as to the ‘apparent reliability’, 

and ‘level of safety’ of their avionics equipment. 

Importantly, it also provides technical support staff 

with an understanding of the software’s contribution 

to any identified failure modes. Therefore, it should 

be the goal of any program addressing the equipment 

obsolescence to provide properties commensurate or 

better than those experienced on the original legacy 

systems. This places some specific integrity 

requirements on the emulator. For example, the 

emulator should not introduce any further failure 

modes that might reduce the ‘apparent reliability’ or 

‘level of safety’ of the system. Furthermore, benign 

failures should remain benign, or be handled by the 

emulator. One means of achieving this is to apply a 

greater level of rigour, appropriately targeted, to the 

emulator than for that required of the original legacy 

binary, thus providing a greater level of integrity in 

the emulator software. An appropriate, targeted 

increase in the software level for the emulator 

therefore justifies the applicable cost increase. 

• The software assurance level, and associated 

prescription/definition of activities for Minor, No 

Safety Effect, and Mission Important categories is not 

significantly greater that the level normally defined 

under normal circumstances for these systems. 

Therefore, these systems provide a suitable entry 

point for the technology into the military avionics 

domain. 

9 RePLACE Dual Instruction Set Computer 

(DISC) 

DSTO are presently working with NGST to develop a 

concept demonstrator utilising NGST's RePLACE 

Emulation Technology for the RAN Seahawk DGU. The 

Dual Instruction Set Computer (DISC) variant of 

RePLACE, as distinct from other RePLACE variants (eg. 

X-Port and hybrid), has been identified by NGST as most 

applicable to emulating the DGU’s AAMP processors. 

This identification is based on consideration of the 

AAMP processor’s performance against a proposed 

native processor (ie. PowerPC), with due consideration 

for the RePLACE variant’s computational overhead. It is 

therefore necessary to examine RePLACE DISC in the 

context of the guidance already formulated in this paper. 

9.1 Overview of RePLACE Architecture 

Figure 14 details the architecture of the RePLACE DISC. 

By inspection it is possible to determine that it closely 

represents the Type 2 architecture already covered in this 

paper. 

 

Figure 14: RePLACE Dual Instruction Set Computer 

(NGST 2005) 

 

Figure 15: RePLACE DISC (Logical Layers) 

(NGST 2005) 

9.2 Assessment of RePLACE 

DGTA funded a US based company, Certification 

Services Inc (CSI), under a DGTA standing offer to 

conduct a DO-178B audit of the RePLACE program. The 

audit considered both DO-178B Level B and C, with a 

specific goal to identify the practicality of applying such 

objectives to the RePLACE development, and to assess 
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any issues (technical, cost, schedule) that might exist in 

transitioning an existing program within a framework that 

would meet the objectives identified throughout this 

paper. CSI are highly skilled in evaluating the application 

of DO-178B to avionics developments, and specifically 

Mike DeWalt, whom conducted this audit, is considered 

an authority on DO-178B. 

The audit (CSI 2005) found that the RePLACE 

development does not yet satisfy all relevant DO-178B 

objectives, and although the RePLACE program in its 

current state is mostly close to satisfying both Level B 

and Level C, many of those objectives that it does not yet 

address are considered essential in this context. Those 

objectives not presently addressed predominantly relate to 

requirements traceability, verification and some software 

configuration management activities. It is important to 

note that RePLACE Seahawk DGU program is presently 

being conducted as a concept technology demonstrator, 

and therefore satisfaction of many of these objectives is 

beyond the scope of funding available in such 

programmes. 

CSI’s assessment is that there is little technical risk of the 

RePLACE program not being able to meet DGTA’s 

expectations with respect to avionics software assurance. 

However, cost and schedule risk were identified relating 

to the generation of software assurance artefacts and the 

rework necessary to ensure that RePLACE fully meets 

the relevant DO-178B requirements. However, it was 

assessed that through some targeted certification risk 

reduction activities, it is possible to constrain cost and 

schedule risks to suitable levels. 

Following the audit, DGTA published a series of papers 

on how the Commonwealth might accept RePLACE as 

part of the design acceptance process used for 

modifications to Australian State aircraft (DGTA 2005). 

These papers formed the starting point of further 

negotiation and development with NGST and DSTO. The 

guidance in these papers was principally based on the 

analysis which forms the background of the material 

presented in this paper. 

Post-audit work conduct between DGTA, DSTO and 

NGST, which is still on-going, has recently resulted in 

NGST delivering a white paper that demonstrates a 

qualified understanding of cost and schedule risks. 

Furthermore, DGTA assesses that the identified cost and 

schedule reflect that emulation is a cost effective option 

for addressing legacy obsolescence in some safety related 

and mission systems. Further details relating to cost and 

schedule are commercially sensitive and cannot be 

discussed further in this paper. 

RePLACE for the Seahawk DGU program is presently 

hosted on the Wind River VxWorks OS, a non-DO-178B 

compliant RTOS. VxWorks was selected for the DGU 

emulator demonstrations due to the high cost of other 

DO-178B compliant RTOS’s, and the limited funds 

available for the Seahawk DGU emulation demonstrator. 

There is some work NGST would be required to 

undertake to modify any system calls and software 

structure within this implementation of the RePLACE 

application to accommodate a different RTOS. Other 

RePLACE products have already been hosted on 

protected domain RTOS’s, indicating that there is 

unlikely to be any technical barriers to moving to a 

protected domain RTOS (eg. Green Hills Integrity OS) 

for the Seahawk DGU RePLACE application . 

10 Summary 

Evaluation of emulation technology, through exploration 

of several emulation architectures and of RePLACE as a 

case study, has allowed DGTA to define certification and 

regulatory guidance for the development of emulation 

technology within the ADF context. The trial application 

of this certification guidance with the Seahawk DGU 

RePLACE concept technology demonstrator has 

permitted an evaluation of the effectiveness of the 

prescribed DGTA certification criteria. At this time 

DGTA is satisfied that this guidance will promote an 

acceptable level of safety for emulation on legacy 

military avionics while still ensuring emulation is a cost 

effective option for addressing legacy obsolescence. 

11 Acknowledgments 

I would like to thank Systems Certification and Integrity 

(SCI) – DGTA staff including Mark Wade, Squadron 

Leader Ben Musial and Flight Lieutenant Wendell Fox 

for their input to and review of all my work relating to 

emulation. 

I would also like to thank Paul Vicen, Tamy Staub, 

Curt Pflasterer and other RePLACE staff at Northrop 

Grumman Space Technology (NGST) for their input to 

this paper relating to RePLACE and enthusiasm to 

explore certification criteria with DGTA. 

Finally I would like to thank Dr Rob O’Dowd, Mark 

Davies and David Culpin of Air Operations Division – 

Defence Science and Technology Organisation for their 

coordination of RePLACE development activities with 

NGST, and their on-going liaison with DGTA. 

12 References 

The following documents, papers and publications are 

referenced throughout this paper. A number of these 

documents are not available in the public domain for 

propriety or confidentiality reasons. Readers wishing to 

seek further information should direct their queries to the 

author of this paper, or the relevant standards body. 

Aerospace Recommended Practice ARP4754 (1996) 

Certification Considerations for Highly Integrated or 

Complex Avionics Systems, Society of Automotive 

Engineers. 

Australian Defence Force (2005) Australian Air 

Publication (AAP) 7001.054 Airworthiness Design 

Requirements Manual AM1. 

Australian Defence Force (2006) Aircraft System Safety 

Engineering Course – Software Safety Course Notes 

developed jointly by Systems Certification and 

Integrity – DGTA and Ball Solutions Group. 

 

Proc. 11th Australian Workshop on Safety Critical Systems and Software

91



Certification Authorities Software Team (2000) Position 

Paper Cast 5 – Guidelines for Proposing Alternate 

Means of Compliance to DO-178B, Federal Aviation 

Authority. 

Certification Services Inc (2005) Evaluation of the NGST 

RePLACE Product, CSI Document 05-276-1246 

Rev03. 

Directorate General Technical Airworthiness (2005) 

Paper on How the Commonwealth Might Accept 

RePLACE – Issue 3, Australian Defence Force. 

Federal Aviation Authority (FAA) Order 8110.49 (2003) 

Software Approval Guidelines, USA. 

McKinlay, A. (2001) Software Safety Course Notes, 

Aviation Safety, School of Engineering, University of 

Southern California, USA. 

Northrop Grumman Space Technology (2005) RePLACE 

Technology – Bringing 20
th
 Century Systems into the 

21
st
 Century - Marketing Brief, Dayton Ohio, USA.  

Pumfrey, D. (1999) The Principled Design of Computer 

System Safety Analyses, PhD Thesis, Department of 

Computer Science, University of York, UK. 

RTCA Inc (1992) RTCA/DO-178B Software 

Considerations In Airborne Systems and Equipment 

Certification, Washington, D. C. USA. 

RTCA Inc (2001) RTCA/DO-248B Final Report for 

Clarification of DO-178B Software Considerations in 

Airborne Systems and Equipment Certification, 

Washington, D. C. USA. 

  

CRPIT Volume 69

92



Safety, Software Architecture and MIL-STD-1760 

Matthew John Squair 
Senior Safety Consultant 

Jacobs Australia 
GPO Box 1976, Canberra, ACT 2601 
Matthew.Squair@defence.gov.au 

 

Abstract 
Integrating modern aircraft stores, particularly weapons, 
creates a complex system of systems challenge. The 
traditional approach to such integrations was for each to 
be a stand-alone program. For each program a unique 
interface would usually be implemented, usually also 
with a set of unique problems, such as the missile 
‘ghosting’ problems experienced during the F-16 to 
AMRAAM integration (Ward 1993). In response to the 
problems of such an approach MIL-STD-1760 an 
Interface Standard for Aircraft to Store Electrical 
Interconnection System was released by the US DoD to 
standardise aircraft/store interfaces. This paper discusses 
the advantages and limitations of the architectural 
techniques of MIL-STD-1760. A hierarchical method for 
integrating the use of the standard into a safety case is 
also described. 

Keywords: Safety, architecture, software, MIL-STD-1760. 

1 Introduction 

1.1 Architecture, bus design and integration 

Unfortunately no singular agreed definition of what 
constitutes a software architecture exists, for example:  

“From a safety viewpoint, the software architecture 
is where the basic safety strategy is developed for the 
software” (IEC 61508), or 

“In avionics (an architecture is) a representation of 
the hardware and software components of a system 
and their interrelationships, considered from the 
viewpoint of the whole system” (STANAG 3908) 

ARP 4574 goes further to relate architectural design 
patterns to measures of connectivity (Table 1-1). For this 
paper architecture is defined as the large scale description 
of system components, their interactions, connectivity 
and the principles and guidelines that ensure a balanced 
system design and evolution. Thus, although traditionally 
typified as a protocol or ‘bus’ design issue, any decision 
to select a bus protocol is also a decision that affects the 
central architectural principles of a distributed system 
(Rushby 2001). 

 

Architecture design pattern Connectivity Concept 

Partitioned design Decoupling 

Dissimilar, independent designs 
implementing a function 

Decoupling 

Independence 

Redundancy 

Active/monitor parallel design Hot redundancy 

Backup parallel design Cold redundancy 

Table 1-1 ARP 4754 Architecture Examples 

1.2 Software architecture and safety 

The concept of architecture is useful from a software 
safety perspective as it can be used to impose a separation 
of concerns between decisions about the architecture of a 
software artifact versus the implementation. Partitioning 
the design space in this way supports the development of 
safety arguments in a modular and hierarchical fashion. 
Such partitioning can also clarify organisational 
interfaces between collaborating development teams; 
another traditional area where safety issues can arise. 

Because of their abstract nature, software architectures 
can also support the re-use of well understood and proven 
architectural solutions. Such re-use allows the 
construction of safety arguments based upon the 
continuity of design rather than solely upon the unique 
attributes of a specific implementation. Thus the re-use of 
architectural design patterns moves software engineering 
closer to traditional engineering disciplines where safety 
arguments are based in large part upon the provenance of 
the design. Such arguments are similar to, but more 
archetypal, than the ‘product service history’ argument of 
DO-178B (RTCA/DO-178B 1992). 

1.3 The MIL-STD-1760 interface standard 

A modern store is intended to be highly interoperable1 
with multiple aircraft. Such a store is usually also an 
independent system evolving at a pace independent of the 
carriage aircraft. As such, a modern store (and its carriage 
aircraft) satisfies the majority of Maier’s criteria for what 
constitutes a system of systems (Maier 1996) and it is for 
this systems of systems domain that MIL-STD-1760 was 
developed. 

                                                             
1 Two systems are interoperable if each can conveniently benefit from 
the resources (capabilities or information) of the other. 

Copyright © 2006, Australian Computer Society, Inc. This 
paper appeared at the 11th Australian Workshop on Safety 
Related Programmable Systems (SCS’06), Melbourne. 
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academic not-for-profit purposes permitted provided this text 
is included. 
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MIL-STD-1760 is an open, published and non-propriety 
standard intended to maximise both interoperability and 
safety. While open in this sense, actual designs are 
typically closed with data transfers and associated 
deadlines determined during design rather than at run 
time. The standard applies an architecting strategy which 
is both collaborative (programs may re-use other 
programs efforts) and directive (by specifying minimal 
design requirements) in nature (Meyer 1998). An analogy 
would be a city planner enforcing a building code rather 
than an architect enforcing a particular design solution. 
As a result of this strategy, safety is an emergent attribute 
at both a system of systems and individual aircraft to 
store integration level. 

2 Military aircraft and weapon system safety 

2.1 The military aircraft domain 
Military aircraft may launch or jettison stores, fly at 
supersonic speeds, execute high-g manoeuvres whilst 
carrying out safety critical functions including: 

1. Store inventory, 

2. Interruptive Built In Test (BIT), 

3. Store rack unlocking, 

4. Selective or emergency jettison firing, 

5. Fire/release/launch sequencing, 

6. Arming (both immediate and preset), 

7. Fuzing (both delay or mode), 

8. Weapon yield selection, 

9. Output stage selection (store/pylon/station), or 

10. Initiating irreversible functions (pyrotechnics). 

In this operational environment achieving functional 
reliability is a significant technical challenge. 
Unfortunately achieving high reliability in these 
circumstances does not automatically equate to safety. In 
fact increasing reliability can decrease safety (Leveson 
1995), requiring us to balance the need for reliability 
against safety. Other challenges of this domain include: 

1. limited weapon operational histories, 

2. hard real time requirements2, 

3. irreversible safety critical processes, 

4. dynamic interface and network topologies, 

5. mode rich safety critical behaviour, and 

6. multiple configurations of store and platforms. 

To safely and reliably perform such functions aircraft and 
store must coordinate their actions dictating a dependable 
communication channel robust enough to withstand the 
harsh operational environment. 

                                                             
2 In itself the requirement for hard real time behaviour can be a 
challenge to the MIL-STD-1553 data bus which has traditionally been 
used for soft real time system applications. 

3 Stores management systems design 

3.1 Architecture 

3.1.1 General architecture 
Most modern combat aircraft utilise a dedicated stores 
management system to control stores and the support and 
release equipment associated with them. Two basic 
architectural patterns are presently used in aircraft stores 
management systems, centralised or distributed.  A 
centralised architecture is generally used in situations 
where the stations to be controlled are closely located and 
inter-station wiring is therefore a minimal system 
overhead. Distributed architectures, as Figure 3-1 
illustrates, allocate stores management functions to 
physically separate Store Station Interface Units (SSIU) 
while minimising interconnects by multiplexing signals 
over a data bus. Since it forms the basis of most modern 
stores management systems, a distributed architecture 
will be used as the reference design for this paper. 
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Figure 3-1 A distributed stores management architecture 

3.1.2 Communication bus protocols 
MIL-STD-1760 constrains the MIL-STD-1553B 
multiplex bus communication standard to a single-master 
polling protocol with only one node, the Bus Controller 
(BC), in charge of  communication on the stores 
management bus, aw well as solving and administrating 
Remote Terminals (RT) access conflicts and errors that 
may arise on the bus. Due to its simplicity, this protocol 
makes analysis and monitoring of communication easier 
than split bus control (also supported by MIL-STD-
1553B). The command response structure of the protocol 
is well suited to reactive system application and provides 
a bound on latency of communications which is important 
for real time systems. Disadvantages of the protocol are 
that a Single Point of Failure (SPOF) is introduced, 
identification of RTs during initialisation is required and 
communication overhead is increased by the need for a 
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command/response message pair for each set of data 
(Sivencrona 2001)3. 

Communication protocols can be event or time-triggered, 
with event-triggered protocols usually applied when there 
are a large numbers of discrete signals transmitting 
messages in a pseudo-random or sparse time base form. 
Since stores management is inherently reactive and task 
driven in nature, event triggered protocols are obviously 
well suited to this application. Another argument for the 
event driven communication protocol (adopted by MIL-
STD-1760) is that time triggered protocols introduce 
frame delays which in turn translate to errors in weapon 
delivery. A final advantage is that unlike a time triggered 
protocol there is no need to coordinate a schedule of 
transmissions amongst distributed components4. 

MIL-STD-1553B is a relatively slow speed interface 
(1Mbps) compared to modern standards, such as FlexRay 
which runs at 10Mbps (FlexRay 2005) or Time Triggered 
Protocol (TTP/C), running at 25 Mbps (TTTech 1999). 
However the slower bus speed does make the bus more 
resistant to noise from signal reflections and ambient RF 
noise. 

3.2 Safety coordination issues 

3.2.1 The general coordination problem 

Representations of data are consumed and produced by 
aircraft and store functions to perform the required 
mission. However, for this representational system to 
work, both the store and aircraft need a common first and 
higher order set of expectations about their own behavior 
as well as about the expectations and behavior of the 
other (Lewis 1969). Therefore, in order to coordinate 
safety critical behaviour there is a need to define and 
manage a common, unambiguous set of conventions (or 
protocol) about the production and consumption of safety 
critical data. Such conventions can also assist in 
constraining the use of error prone semantic constructs. 

3.2.2 System of systems coordination 
At the system of systems level, this coordination problem 
traditionally expresses itself as a problem of backward 
and forward compatibility across versions of particular 
data formats. For example MIL-STD-1760’s definition of 
the Most Significant Bit (MSB) for 2’s complement 
entities was changed between Revision B and C then 
subsequently changed back in Notice 1 of Revision C. 
These changes led to some developers interpreting the 
first bit as a ‘signed’ bit for a signed number while others 
used a 2 complement number format. More generally the 
options introduced in successive revisions have generated 
a family tree of possible implementations of the standard. 
To further complicate matters, standards invoked by 
MIL-STD-1760, such as MIL-STD-1553B, have 
themselves evolved over time. Other examples of 

                                                             
3 In MIL-STD-1553 a 2 word command and 1 word status response 
sequence consist of 32 data bits and 53 overhead protocol bits. In 
CANBUS a nominal  message of 32 data bits has only 43 protocol bits. 
4 For example by implementing a global (distributed) clock. 

coordination issues at this level are the differing safety 
requirements of various weapons communities, i.e. 
nuclear versus non-nuclear safety. 

At the system of systems level, a safety argument must 
therefore demonstrate that any differences between 
revisions of the standard do not introduce hazards or if 
they do, these interactions are identified, excluded or 
controlled. 

3.2.3 Store integration coordination 
At the store integration level the coordination problem 
expresses itself as false assumptions about behavior on 
the other side of the interface. For example in one aircraft 
‘initiate battery’ commands were implemented as 
irreversible because traditional batteries were one shot 
thermal devices. However for the store being integrated 
the batteries were NiCad and the command needed to be 
reversible. Since this was an unstated assumption of the 
interface it was not identified during development, 
becoming evident only during integration testing. This 
example illustrates the necessity to explicitly state all 
behavioural expectations and consequently drives MIL-
STD-1760 to be much more than a set of data-grams. 

At the store integration level, a safety argument must be 
supported by a demonstrable claim that a common and 
well understood set of data conventions are being used on 
both sides of the interface. 

3.2.4 Real time distributed control 

The real time and distributed control nature of stores 
management systems also introduces the problem of how 
to ensure coordinated safe behaviour within such a 
system. For example, launching stores from stations on 
one side of an aircraft can induce highly hazardous 
asymmetric loads, whilst simultaneously releasing stores 
can cause hazardous g-jump effects; both of which can 
lead to overstressing the aircraft. For the communications 
bus, this problem devolves to how to send commands in a 
timely, safe and reliable fashion when faced with 
arbitrarily long communications delays5 over a 
communications channel. 

At the level of real time distributed control, a safety 
argument must demonstrate (expressing the problem in 
functional integrity terms) that individual functions are 
safe and independent, or if they do interact their 
coordinated behaviour is safe. 

4 The MIL-STD-1760 standard 

4.1 The MIL-STD-1760 interface 
MIL-STD-1760 defines implementation requirements for 
the Aircraft/Store Electrical Interconnection System 
(AEIS) in aircraft and stores. This interconnection system 
provides a common interfacing capability for stores on 
aircraft, and a hierarchical depiction of the: 

1. electrical (and optical) signal interfaces, 

                                                             
5 For example delays from internal processing or file transfer events. 
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2. physical umbilical and connector interface, and 

3. logical interface, comprising the: 

a. communications architecture, 

b. message content and formatting, and 

c. data transfer protocols. 

MIL-STD-1760 establishes the interrelationships between 
aircraft and store interfaces and the interfaces at different 
store stations on an aircraft. As Figure 4-1 illustrates, 
there is a dynamic hierarchical relationship between 
Aircraft Store Interface (ASI), carriage store Interface 
(CSI), Carriage Store-Store Interface (CSSI) and mission 
store (MSI) interfaces. The standard defines the 
requirements for both a primary and auxiliary interface, 
however this paper will only discuss the primary interface 
since it is the one most often used. Several interface 
classes of varying capability are also defined in MIL-
STD-1760 for the ASI, however for clarity this 
distinction will be omitted because the safety critical 
signals are common to all classes. 
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Figure 4-1 Physical interface hierarchy 

4.2 The electrical interface 

4.2.1 Primary signal set 

The primary MIL-STD-1760 interface signal set, as 
shown in Figure 4-2 comprises redundant data bus 
signals, high and low bandwidth signals, dedicated 
discrete signals, fibre optic signals and aircraft power. 
MIL-STD-1760 nominates certain signals as safety 
critical signal interfaces and these are discussed in the 
following sections. 
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Figure 4-2 MIL-STD-1760 primary signal set 

4.2.2 MIL-STD-1553B interface 

The Aircraft Store Interface (ASI) MIL-STD-1553B 
interface consists of Mux buses A & B transformer 
coupled stubs, carrying the MIL-STD-1760 message set. 

4.2.3 Store address interface 

These fixed address and parity bit discrete signals are 
used to indicate the RT address that a store should use to 
identify itself to the BC. 

4.2.4 Release consent interface 

Perhaps better termed ‘safety critical consent’ this 
discrete release consent signal grants consent to the store 
to act on safety critical commands received over the 
MIL-STD-1553B data bus. 

4.2.5 Interlock interface 

The ASI interlock interface is used by the aircraft to 
monitor the electrically mated status of the interface 
connector between stores and aircraft so as to allow (as an 
example) determination whether a successful launch has 
occurred. 

4.2.6 28V DC No. 2 power interface 
The 28V DC No.2 interface is used to power safety 
critical functions, for example firing a squib or thermal 
battery. 

4.3 The physical interface 

As Figure 4-3 illustrates, the physical 1760 interface 
comprises the umbilical cable and connectors making up 
the electrical interconnect between aircraft and mission 
store. Harsh carriage environments and repeated 
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operational sequences of mating and de-mating 
connectors mean that hardware failures can be expected. 
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Figure 4-3 Physical MIL-STD-1760 interface 

4.4 The Logical Interface 

4.4.1 Message Data formats 
MIL-STD-1760 invokes the MIL-STD-1553B digital 
communication bus standard (Revision B Notice 4) and 
for safety further constrains certain of MIL-STD-1553B’s 
logical operations. MIL-STD-1760 also defines standard 
message formats, called sub-addresses (S/A), for store 
control and monitoring functions. Messages not specified 
can be developer defined, usually in an Interface Control 
Document (ICD), those currently specified are: 

1. Store Description (1T), 

2. Aircraft Description (1R), 

3. Store Control (11R), 

4. Store Monitor (11T), 

5. Nuclear Stores Control (19R & 27R),  

6. Nuclear Stores Monitor (19T and 27T), 

7. Reserved (08) may be used for test, 

8. Mass Data Transfer Control message (14R), and 

9. Mass Data Transfer Monitor message (14T). 

5 MIL-STD-1760 logical interface 

5.1 Open System Interconnection Model 
The MIL-STD-1760 logical interface can be mapped to a 
means/ends hierarchical arrangement of operations and 
mechanisms (SAE AS-1B3 2002) in a similar fashion to 
the OSI Basic Reference Model, (ISO/IEC 7498-1). Such 
a mapping provides a service layer architectural model of 
the MIL-STD-1760 logical interface and a convenient 
framework to assist in identifying the safety attributes of 
the protocol. As Figure 5-1 illustrates, the Real System 
Environment (RSE) encompasses the complete Aircraft-
Store logical interface. Within the RSE, the aircraft and 
store application processes exchange data using the 
services of the MIL-STD-1760 Open System 
Interconnection Environment (OSIE). The resultant 

layered MIL-STD-1760/1553B interfaces can be typified 
as forming a bi-directional and open architecture. 
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Figure 5-1 MIL-STD-1760 OSI map (SAE AS-1B3 2002) 

5.2 Application process 

MIL-STD-1760 lists a set of 173 standard data entities for 
use. These entities are used by the OSI application 
process while their defined syntax maps to the OSI 
presentation layer. While application processes are not 
specifically defined in MIL-STD-1760 generic 
applications can be inferred, such as those in Table 5-1. 
MIL-STD-1760 does not address all aircraft-store 
processes, some of which will be store unique, such as 
developmental test functions, and some which are aircraft 
housekeeping functions such as post launch cleanup. 
 

Application User Process MIL-STD-1760 Clause 

Power application 5.2.12.2 

Identification (Aircraft/Store) B4.2.2.3, B4.2.2.6 

Built In Test (BIT) Table B- XXVI 

Mission data transfer/initialisation Table B- XXVI 

GPS initialisation Table B- XXVI 

Transfer alignment/conditioning Table B- XXVI 

Release/launch/jettison sequence Table B- XXVI 

Control and monitor Table B- XXVI 

Table 5-1 MIL-STD-1760 Processes 

5.3 MIL-STD-1760 OSI environment 

5.3.1 Application layer 

The application layer is normally defined by the 
particular store developer and documented in the ICD. 

5.3.2 Presentation layer 
MIL-STD-1760 defines the following presentation layer 
protocols for data transmission syntax and semantics:  
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1. standard store control, monitor and description 
message data words formats,  

2. application specific data word formats, and 

3. data entity syntax tables referenced by the Data 
Entity List. 

Application specific message data word formats are 
normally documented in the store to aircraft ICD and can 
include time, alignment, GPS time marks, moment arm 
and non-critical store control/monitor messages. 

5.3.3 Session layer 
MIL-STD-1760 provides a connection-mode session 
layer service by exchanging Mass Data Transfer (MDT), 
Transfer Control and Transfer Monitor messages. Service 
can be further partitioned into classes of application 
specific data such as targeting, GPS almanac/ephemeris, 
weather or imagery. Lower level Protocol Control 
Information (PCI) is also represented in this layer (SAE 
AS-1B3 2002). 

5.3.4 Transport layer 
The transport layer provides a connection mode MDT 
service using Transfer Data messages which implement 
record and block numbering for file segmenting and 
sequence control. Above this layer data can be exchanged 
as files or messages; but below it data is only exchanged 
in message form (SAE AS-1B3 2002). 

5.3.5 Network layer 
There is little provision of network-services in 
MIL-STD-1760/1553B, the network layer PCI consists of 
header and identifier, address confirm, message sub-
addresses, mode codes, word count, T/R flag and the RT 
status word. S/A 76 is reserved by MIL-STD-1760 for 
message peeling to provide a growth path to connection 
or connectionless modes of message routing and relay. 
However, to comply fully with OSI network-service 
requirements further protocols would need to be added 
for a specific integration7 (SAE AS-1B3 2002). 

5.3.6 Data-link layer 
The MIL-STD-1553B protocol merges the lower part of 
the OSI Network Layer, the Data Link Layer and the 
Physical Layer together and does not subdivide into 
Network and Data Link functions (SAE AS-1B3 2002). 
The datalink layer provides connectionless services, i.e. 
messages are sent without establishing a dedicated 
connection between RT and BC. RT addresses define the 
data-link address space with RT 31 (broadcast) providing 
a common data-link address. Word parity, 
MIL-STD-1760 message checksum, control authority 
words and synch bits also comprise the data-link layer. 

                                                             
6 MIL-STD-1553B terminology for a specific message. 
7 For example the International Space Station (ISS) ‘boxcar’ protocol 
that provide broadcast and individual asynchronous communication 
using a major/minor frame based on 1553 messages (Hyman 2003). 

5.3.7 Physical layer 

In MIL-STD-1760, the MIL-STD-1553B frames are 
represented by Manchester bi-phase waveforms with 
tailored source and receiver end characteristics. 

6 MIL-STD-1760 and Safety 

6.1 Safety requirements 

MIL-STD-1760 imposes no global safety target for a 
store/aircraft interface and such requirements are usually 
defined in other documents, such as an aircraft or store 
system specification. For discussion purposes an example 
of such requirements is given in Table 6-1. 
 

Failure event Co-effect/Mode Probability 

Launch failure 
on command 

Launch state (store ready 
awaiting launch command) 

10-4 /cmd 

Inadvertent 
launch 

Normal (master arm switch 
safe) 

1 x 10-7 / hr 

Inadvertent 
launch 

Tactical (master arm switch 
armed) 

1 x 10-5 / hr 

Inadvertent 
launch 

Launch state 1 x 10-3 / hr 

Table 6-1 MIL-HDB-244A safety requirements 

The different inadvertent jettison probabilities of Table 
6-1 reflect that safety constraints are progressively 
removed as the aircraft system approaches the launch 
point (MIL-HDK-244A 1990). This balances within a 
mission profile the competing requirements of safety and 
mission reliability. 

MIL-STD-1760 also requires that the probability of 
inadvertent generation of a valid critical control word 
with a valid critical authority word and a data field 
requesting critical action, should not exceed 1 x 10-5 per 
flight hours per data field combination.  

Since ideally the reliability of the communication bus 
should not be a dominant source of system failure, the 
reliability of the communication channel should also be 
set least two orders of magnitude lower than the 
probability of launch failure i.e. 1 x 10-6 per launch event. 

The system integrator is responsible for developing a 
design which meets the overall safety requirements whilst 
ensuring that design requirements for the aircraft store 
interface do not exceed the safety claim limits of MIL-
STD-1760. An integral part of this design must therefore 
be to ensure that software, hardware and environmental 
faults do not result in the top level events through a 
mixture of fault avoidance, elimination and tolerance.  

6.2 Fault avoidance/elimination 
Reducing the complexity of an interface can reduce the 
likelihood of unintended interactions and error 
propagation. By restricting MIL-STD-1553B to a 
master/slave command and response protocol 
MIL-STD-1760 enforces simple and deterministic 
behaviour across the interface. This also makes it easier 
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to verify safe behaviour, such as whether responses are 
bounded in the time domain. In comparison, a CANopen 
safety protocol interface would require verification that 
its safety related data can be transmitted within a specific 
timeframe across a bus allowing both synchronous (time 
based) and asynchronous (event based) messages. The 
determinacy of the MIL-STD-1760 protocol is further 
enhanced by the elimination at design time of the use of 
ambiguous data. 

The MIL-STD-1760 protocol also offsets, to some 
degree, the disadvantages of using an event-triggered 
protocol for a safety critical application. While detecting 
errors and building fault-tolerant mechanisms for time-
triggered communication protocols is easier because more 
‘a priori’ knowledge exists as to their behaviour, the 
master/slave protocol does provide a more predictable 
communication protocol than other event triggered 
protocols such as bus contention or token passing. 

The simplicity of the protocol also supports self test and 
diagnosis functions which in other protocols can be more 
problematic. For example, should an RT respond with an 
incorrect address the BC will detect the error within one 
command/response cycle. Should the same problem 
occurs in a CANBUS network however, no inherent 
method exists that allows identification of the source of a 
message sent with the wrong identifier. 

6.3 Fault tolerance 

6.3.1 Fault tolerance strategies 
To balance the competing requirements for both 
reliability and safety of section 6.1 MIL-STD-1760 
adopts two parallel fault tolerance strategies: 

1. to assure reliable service by a redundant fault 
tolerant design,  and 

2. to assure safe service by a ‘fail silent’ error 
recovery strategy. 

It is important to note that requirements for fault 
tolerance may also introduce additional and complex 
asynchronous behaviour which may exhibit even higher 
proportions of requirements related design faults than 
mission functions (Lutz 1993, Mackall 1998). Again the 
simple MIL-STD-1760 protocol and MIL-STD-1553B 
‘cold’ bus redundancy scheme reduces complexity and to 
some degree the likelihood of introducing subtle side 
effect hazards into the design. 

6.3.2 The fault hypothesis 

The next logical question is what assumptions can be 
made about the number and type of faults that the 
integrated system will be able to tolerate? This set of 
assumptions is termed the fault hypothesis8 for the 
system. A well formed fault hypothesis should also 
identify which faults are not covered and for which 
recovery strategies are needed. Developing a fault 
hypothesis as part of an integration program is important, 
                                                             
8 A subset of the general design hypothesis stating all assumptions upon 
which the design is based. 

since this allows a systems integrator to evaluate existing 
fault tolerance mechanisms on both side of the interface 
for assumption coverage (i.e. verifying that hypothesis 
accords with reality). Although MIL-STD-1760 does not 
explicitly state a formal fault hypothesis its inclusion of 
fault tolerance mechanisms can assist the system 
integrator in developing such a hypothesis. For example, 
it is possible to derive from the standard a possible 
physical fault hypothesis as follows: 

1. an RT forms a single Fault Containment Region 
(FCR) that can fail in an arbitrary way, 

2. the physical network and BC form a single FCR 
that can fail to distribute messages or distribute 
messages in error, 

3. RT hardware timeouts will translate babbling 
idiot temporal failures on the bus to fail silent, 

4. Error detection is performed by both RT and 
BC, but fault recovery is managed by the BC, 

5. The BC will detect a possible error of the RT 
within one command/response cycle and 
confirm in two cycles, 

6. The BC translates detected RT failures to fail 
safe by powering down the station and 
transitioning to another, and 

7. The system can recover from a single store 
failure within an application dependent time. 

Another example is the fault hypothesis that can be 
derived from the assumptions made by MIL-STD-1553B 
as to the RF noise environment (impulsive noise) and the 
tests designed to simulate this environment (a worst case 
white Gaussian noise). This noise hypothesis is a key 
factor in evaluating the effectiveness of low level data 
redundancy, i.e. checksum and error detection codes. 

6.3.3 Redundancy and independence 

Fault tolerant behaviour depends in large measure upon 
redundancy, although not always upon component 
replication. Because of this, the independence of 
redundancy becomes a critical issue for fault tolerant 
design. If components are dependent in some way, then 
hazards can arise where a common attribute can cause the 
failure of supposedly independent components. As an 
example, dependencies can be introduced by shared 
hardware or data providing propagation channels for side 
effect type interactions, which can then lead to cascading 
failures (Jaffe 1999). Independence can also be violated 
by shared environments (common cause failures) or 
common component design and failure modes (common 
mode failures). 

A complete architectural safety argument therefore needs 
to consider the direct failure of components, the 
independence of redundancy structures and whether 
common cause hazards are present. The difficulty is that 
these common cause hazards can occur in many different 
guises and the more complex the system the more 
difficult it is to identify them during design. 
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6.3.4 Error propagation and detection 

A fault that propagates, either as an error in data or an 
incorrect control output, will violate the assumption of 
independence essential to redundancy. To protect against 
this situation MIL-STD-1760 requires both time and 
value error detection mechanisms. MIL-STD-1760’s 
master/slave protocol ensures that a BC will detect an 
error of an RT within notionally one cycle. By excluding 
direct RT to RT communications the protocol also 
eliminates direct RT to RT error propagation channels. 
Babbling idiot style error propagation is dealt with by the 
MIL-STD-1553B requirement for an RT to shut itself 
down if it exceeds its maximum message length, a 
primitive form of distributed bus guardian in the time 
domain.  The BC is independent of the RT usually also 
with internal dual bus redundancy and due to its separate 
development also a degree of design diversity. A layered 
set of protocol checks provide a defence in depth against 
message transmission corruption. 

6.3.5 State restoration/error recovery 

Having detected a data error there are two possible 
approaches to handling such invalid data: 

1. store and tag the data as being invalid, or 

2. discard the data completely. 

The first option requires a subsequent decision as to the 
utility and safety of the data while the second option 
needs to address what effects data senescence will have 
upon reliability and safety. Where data that is detected as 
being invalid is used, the system can become vulnerable 
to propagating state erosion due to transient faults (i.e 
hardware, RF noise or Heisenbugs (Gray 1985)). MIL-
STD-1760 applies the second policy, requiring that all 
error data be discarded. Upon detecting an error, the RT 
must then flag error by withholding the status word and 
letting the BC decide what to do next. This reduces the 
potential for state erosion, maintains bus timeliness and 
provides a predictably safe response to abnormal 
environmental events. However, a discard policy can 
introduce data staleness and data loss rates proportional to 
the rate of transient faults. 

6.3.6 Diagnostics and fault tolerance 

One of the problems introduced by fault tolerance 
schemes is that they may also mask symptoms required to 
identify faults. While diagnostic capabilities are 
supported by the protocol via RT subsystem (optional) 
and terminal (mandatory) status flags, one shortcoming of 
the standard is that MIL-STD-1553B as invoked requires 
RTs to ignore invalid commands9 thus preventing 
multiple concurrent responses10. However this also 
introduces a bus diagnostic shortcoming because the error 

                                                             
9 An invalid command is one containing one or more invalid words (for 
example due to a parity bit failure) but with a valid address. 
10 Compared to CANBUS (ISO 11898) where an error in the last-but-
one bit of a CAN frame may cause inconsistent message duplicates or 
omissions. 

is not fed back to the BC. Similarly illegal commands11 
may be optionally detected by the RT but if that option is 
not implemented the error cannot be reported to the BC. 

6.4 Safety architecture design patterns 

6.4.1 Inoperability design pattern 
Although not explicitly stated by MIL-STD-1760 one of 
the key design patterns of weapons systems safety is that 
of maintaining the store in an inoperable (unarmed) state 
that is incapable of carrying out the unsafe action. A store 
that is neither armed nor activated a store is significantly 
less hazardous, especially if it is exposed to abnormal 
environments such as a lightning strike (Spray 1994). 

6.4.2 System level redundancy pattern 

At the highest level of system architecture, an aircraft will 
usually carry redundant stores to perform a mission. This 
provides system level redundancy and allows a faulted 
store-station to be isolated and the task transitioned to a 
stand-by station. By providing this redundancy the overall 
probability of mission failure drops to 1 x 10-4N per 
launch intent where N = the number of stations 
(neglecting common cause failures) and the system level 
effects of a store level fail silent strategy are minimised. 

At the system level the response is to ensure that an 
affected node is safely stopped and reconfigure the 
system to provide similar or degraded service, rather than 
attempting to mask the error and continue mission 
functions with that particular node. However the use of 
redundancy comes at the price of increased complexity of 
behaviour. For example if an RT fails to respond the BC 
would need to switch between buses to confirm that both 
channels are silent before declaring the RT as failed. 

6.4.3 Homogenous redundant design pattern 

The MIL-STD-1553B bus is a dual redundant cold 
standby hardware architecture intended to ensure 
reliability of service in the presence of random hardware 
failures. Drawbacks to this pattern are recurring cost, the 
BC as a potential SPOF, vulnerability to common 
cause/mode failures and the consumption of additional 
system resources (such as power and cooling). 

6.4.4 Dissimilar redundancy design pattern 

Redundancy is implemented at each level of the MIL-
STD-1760 system design from architecture 
(monitor/actuator pattern) through to the layers of the 
logical interface. This approach provides an inherent 
defence in depth approach with a high degree of 
dissimilarity and independence. Figure 6-1 illustrates the 
redundancy introduced into the logical interface by the 
combined use of MIL-STD-1553B and MIL-STD-1760 
protocol checks including MIL-STD-1553B synch and 
parity bits, MIL-STD-1760 critical control flags, critical 

                                                             
11 Illegal commands are commands that have passed the validation test 
but are not part of the RT’s capability. 
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authority polynomial error codes and message 
checksums. 

 

Figure 6-1 MIL-STD-1760/1553B combined protocol 

One question that arises when implementing 
MIL-STD-1760, is how far back should redundant data 
be taken? For example, should a Commit to Separation 
command also be stored as a single bit in memory or 
should it be stored redundantly?12. The issue of where to 
stop applying redundancy (an instance of the general 
stopping rule problem for modification programs) is a 
significant issue in legacy system integrations where 
processor and memory constraints may constrain the 
representation of data. 

6.4.5 Monitor/actuator control channel pattern 

The deliberate separation of command and consent 
signals by MIL-STD-1760 forms a diverse redundancy 
safety pattern (Douglass 1999). Here the control interface 
is divided into a control channel (the MIL-STD-1553B 
command interface) and a monitor channel (the release 
consent interface). As Figure 6-4 illustrates the control 
channel provides initialisation data and a ‘launch’ 
command for safety critical function while the monitor 
channel prevents firing except when independent consent 
is achieved. This pattern supports the fail silent safety 
strategy. 

The monitor/actuator channel of MIL-STD-1760 offers 
the advantage of a lightweight dissimilar redundancy 
pattern that can protect against SPOF faults, 
environmental or common cause faults. Using a 
dissimilar redundancy pattern also makes safety analysis 
and verification easier by reducing the level of criticality 
of the control channel software from notionally safety 
critical13 to safety related14, thereby reducing verification 
requirements and cost (McDermid 2001). 

                                                             
12 For example storing data normally and in ones complement form or 
utilising multi-bit representations to increase the hamming distance 
between safe and unsafe values. 
13 A single member of a fault tree minimum cut set. 
14 A member of a fault tree minimum cut set greater than one in size 

6.4.6 Control & authority independence 

MIL-STD-1760 specifies two pairs of MIL-STD-1553B 
words for the transfer of safety critical data, Critical 
Control 1 and 2. Each word has in turn an associated 
Critical Authority word. Critical Control words contain 
the actual safety critical information while the Critical 
Authority words contains a polynomial code check (i.e. 
redundant data) on the data bits of its associated Critical 
Control word.  

To achieve a false software command rate of no greater 
than 1 x 10-5 per flight hour required by the standard 
independence must be demonstrated between control and 
authority word processing, or conversely the 
impossibility of a common cause failure. Figure 6-2 
illustrates an architectural design pattern where critical 
signals are segregated and combined as late in the 
channel as possible to ensure their independence. In this 
pattern the BC derives the authority from an independent 
authority generator which is also interlocked to the launch 
consent switch (MIL-HDBK-1760). Additional assurance 
via dissimilar design could be achieved by implementing 
the authority table in firmware. 
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Figure 6-2 Independent control & authority generator 

In comparison the CAN open safety protocol (DSP 304 
2001) uses serial redundancy where safety critical data is 
transmitted in two independent messages. The data in the 
second message is bit-wise inverted and is crosschecked 
after re-inversion with the first message in the receiver. 
However, as DSP 304 invokes no requirements for 
independence of these messages it does not provide 
similar protection against common mode/cause failures. 

6.4.7 Firewall (segregation) design pattern 

MIL-STD-1760 applies an architectural design pattern of 
physically segregating critical signals from non critical 
ones in order to minimise the likelihood of hazardous 
interaction. Safety critical power, data and signals are 
physically, functionally and temporally separated from 
non critical mission power, data and signals to minimise 
inadvertent interactions that may invalidate an 
independence assumption. This segregation is carried out 
at both the architecture and implementation levels of the 
interface. 
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The pin layout of the primary interface connector 
surrounds the Release Consent pin with other pins that 
are at nominal 0 V potential. This ensures that during a 
fault condition where the Release Consent pin shorts to 
its neighbour, the neighbouring pin will not act as an 
enable signal. This physical segregation scheme should 
also be adopted within the aircraft internal connectors, 
which can be a significant stopping rule issue for legacy 
system integration. 

Ideally a common set of messages would be used across 
all RTs on the bus thereby enforcing data segregation. 
But if non store equipment is on the same bus as MIL-
STD-1760 stores then these equipments may use the 
particular safety critical words for non-critical 
information thereby degrading data segregation. In this 
case the design of the BC to meet MIL-STD-1760 
becomes more complex. For this reason the standard 
discourages this implementation, unfortunately this can 
also be a significant program coordination issue when 
integrating MIL-STD-1760 stores to a legacy aircraft. 

The standard also requires that release consent and safety 
critical power be functionally segregated i.e. not be 
generated or consumed by non safety critical functions. 
The resulting procedural cohesion of these two interfaces 
ensures that any interlocks or reasonableness checks 
performed need only deal with a small set of use states. 

Both release consent and 28V DC are also segregated 
temporally from signals by strictly limiting the 
availability of release consent and power to the period 
immediately prior to the store receiving its safety critical 
command. Such temporal cohesion also simplifies the 
implementation of reasonableness checks. 

6.4.8 Physical (spatial) proximity pattern 

MIL-STD-1760 recommends that the supplier of safety 
critical signals be as physically close to the signal 
consumer as possible to minimise the potential for 
hazardous EMI effects in long cable runs. This safety 
pattern places the generation of critical signals as close to 
the actual interface as possible thereby reducing the 
likelihood of inadvertent interactions. 

6.4.9 Signal complexity pattern 
The MIL-STD-1553B digital communication standard 
invoked by MIL-STD-1760 introduces complex digital 
signals as a means of communication information. In an 
environment where excluding noise could only be 
achieved at prohibitive cost, the complexity of these 
signals reduces the likelihood that the environment might 
spontaneously generate them. By implementing such 
signals in a monitor/actuator control channel the 
likelihood of spontaneous generation of a critical signal 
by the environment is reduced again. While this reduces 
design and verification requirements it also requires that 
the system be able to discriminate signals from noise, 
have rejection logic immune to such environments, 
provide predictably safe responses to abnormal 
environments and be verifiable (Leveson 1995).  

A tradeoff in this MIL-STD-1553B complex signal 
design pattern is that the higher the signal rejection 

threshold is set then the higher the Signal to Noise Ratio 
(SNR) must also be achieve the required Bit Error Rate 
(BER). To reduce this effect a relatively high threshold 
can be set for non-message time to reject line noise then a 
reduced threshold for Manchester bit sampling time can 
be used to reduce the SNR and while achieving the 
required BER. 

6.5 Address interface safety attributes 
Stores are required to latch address line signals upon 
startup rather than continuously reading them as it is 
fairly common to experience interconnect wire or pin 
damage in flight; with the potential for an invalid RT 
address to be used by the store with hazardous 
consequences. As the store verifies terminal address 
values in the Control Message (S/A 11) using this signal, 
a failure of the address lines could result in the store 
responding to a message addressed to another RT. 
MIL-STD-1553B therefore requires that if the store 
detects a failure it refuse to respond to any commands to 
it or to another RT and to not set the terminals address 
incorrectly.  

Because MIL-STD-1553B requires protection against a 
SPOF in the address interface an odd parity bit is 
implemented for detection purposes. While notionally a 
parity bit will only detect 50% of N>1 bit errors this is 
based upon the assumption of symmetric errors (i.e. logic 
1 or 0 errors are equally likely). In practice shorts to 
ground or to another wire are more likely (logic 1) than 
open circuit (logic 0). As this reduces the likelihood of 
combined logic 1 and logic 0 errors the performance of 
the single parity bit is improved. 

To further protect against address faults, addresses can be 
selected so that there is at least a >2 bit difference 
between them to increase the hamming distance to 3. For 
legacy integrations this may be difficult to achieve as 
address lines may not include a full five bit plus parity set 
of signals and the carriage of multiple stores may require 
the use of RT addresses with closer hamming distances. 
Figure 6-3 illustrates this problem by showing the growth 
in address requirements across one aircraft’s life. 

Fixed addresses are used in the standard rather than 
variable addresses so as not to degrade the safety of the 
system when transferring safety critical information on 
the MIL-STD-1553B bus. One example of a hazard that 
variable addressing introduces is that of sending the 
message to the wrong RT because an address has been 
dynamically re-assigned. 

Store address signals may also be used by a store to 
monitor for the aircrafts presence. However due to the 
potential for SPOF in the address lines, the absence of an 
address signal cannot be said to be logically equivalent to 
an Aircraft Not Present signal and must be considered 
ambiguous. For example a hung store could interpret the 
removal of the umbilical during the subsequent download 
as a separation leading to aero-surface deployment on the 
ground. MIL-STD-1760 therefore requires the address 
signal to be interlocked with another signal if used to 
trigger a safety critical transition.  
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F/A-18 Load Growth
Circa 1976
• 8 SSIU (no 1760 stores)

Circa 2005 
• 8 SSIU
• 16 JCM 
• 4 MPBR
• 2 AMRAAM
• 2 AIM 9X

F/A-18 Load Growth
Circa 1976
• 8 SSIU (no 1760 stores)

Circa 2005 
• 8 SSIU
• 16 JCM 
• 4 MPBR
• 2 AMRAAM
• 2 AIM 9X

 

Figure 6-3 F/A-18A/D load growth 1970's to 2005 

6.6 Interlock interface safety attributes 

The interlock signal is used by aircraft to verify the 
presence or absence of the store. However due to the 
potential for SPOF’s in the interlock lines (e.g. broken 
wire, bent pin or contaminated/damaged contact) and  the 
inherent ambiguity15 of the signals open value it is not of 
itself a safe indication of the state of the interface. MIL-
STD-1760 therefore constrains the implementation such 
that an Open Interlock signal cannot be used as the sole 
trigger for safety critical functions. Two examples 
illustrate: 

1. When an aircraft inventory function uses this 
signal the inventory function must also use 
another independent signal (i.e. rack pistons 
extended or hooks open); or 

2. When an aircraft launch function imposes dead-
facing of the connector prior to release it cannot 
use this signal as loss of interlock occurs during, 
not before, the de-mating sequence. 

6.7 Release consent interface safety attributes 
The standard recommends that when release consent is in 
use its actuation should be visible to the aircrew as a 
deliberate action. This constrains the design of the release 
consent signal to be ‘not software generated, only 
steered’ (MIL-HDBK-1760) as Figure 6-4 illustrates.  

In accordance with the standard’s architectural 
requirement to functionally segregate signals the store 
must not use the release consent signal to activate any 
internal store mode or function except those modes or 
functions required to accept or reject safety critical 
messages received by the store's RT. This enforces 
procedural cohesion of safety critical interface functions. 
Generation of the release consent will normally also be 
safety interlocked to ensure that operator error does not 
become a SPOF. These interlock can include manual 
master arm switches, environmental checks such as 
Weight Off Wheels signals or interlocks such as Bay 
Door open. 

                                                             
15 Rail launched missiles, such as the AIM-120, where the umbilical is 
retracted prior to separation are an example of this inherent ambiguity. 

Critical

action

(TON- TNOW)

> 20 msec

Deliberate

crew action

Master Arm

(safe state)

Release

consent

1553 release

command

Aircraft Store

Master arm

switch

Weight

off wheels

May be

software

steered

Critical

action

(TON- TNOW)

> 20 msec

Deliberate

crew action

Master Arm

(safe state)

Release

consent

1553 release

command

Aircraft Store

Master arm

switch

Weight

off wheels

May be

software

steered

 

Figure 6-4 A notional release consent logic 

Another architectural decision is the functional allocation 
of the release consent generator function. The function is 
usually distributed within the AEIS to place signal 
generation as close to the ASI as possible, so as to 
minimise the effects of EMI upon long cable runs. 
However this introduces the need to distribute a digital 
release consent signal to the SSIU and with distribution 
the issue of how this is transmitted across the stores 
management bus. In these circumstances a master arm 
interlock signal may be added downstream of the release 
consent steering scheme to provide additional assurance. 

6.8 28V DC No. 2 interface safety attributes 

In accordance with the standard’s architectural 
requirement for functional segregation, 28 V DC No 2 
must only be used for the powering of safety critical 
functions. Note that when power is applied, the hazard 
state of the store is increased because 28 V DC No. 2 is 
used as the energy source for carrying out safety critical 
functions received over the data bus not because it is used 
as a safety critical command. 

To avoid inadvertent actuation the standard suggests that 
a store should interlock the internal use of 28V DC No. 2 
power with the reception of release consent signal or 
other internal state. This is not a requirement of the 
standard but a recommended best practice 
(MIL-HDBK-1760). Similarly on the aircraft side, the 
standard recommends that 28V DC No. 2 should be 
interlocked with an aircrew operated switch (i.e. Master 
Arm) to prevent actuation unless there has been a positive 
action by the aircrew. As an example, in one incident, a 
dual rail launcher using a switched power bus was 
commanded to switch from the launched missile side to 
the remaining unlaunched missile side. However due to 
software timing error, the bus was not de-energised in 
time and the other rail mounted missile was accidentally 
fired. This interlock addresses the hazard of non-
deterministic and potentially un-safe responses to an 
input received at un-expected times (Jaffe 1989). 

Dead-facing of the 28 V DC No. 2 interfaces during 
disconnect was also initially  recommended as a 
requirement for MIL-STD-1760C, but was eventually 
discarded because of concern that safety interlocks in 
some nuclear weapons could be dependent on power at 
the connector up to the instant of disconnect. This is 
illustrative of the general coordination problems when 
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trying to integrate stores with varying safety requirements 
at a system of systems level. Similar to the release 
consent signal the allocation of 28 V DC No. 2 power 
function final switching should be close to the ASI. 
Likewise if a master arm power relay interlock is 
implemented the interlock should also be placed as close 
to the ASI as practical. 

6.9 MIL-STD-1553B databus dual redundancy 
The use of dual redundant bus eliminates the 
MIL-STD-1553B bus as a SPOF (ignoring the BC) but as 
Figure 6-5 illustrates, if implemented as a linear bus, each 
bus remains vulnerable to common cause failure. For 
greater failure tolerance, the nodes can be connected in a 
star arrangement to a hub16. However this is still not 
perfect as the star topology takes up additional space and 
can still suffer common cause failures at choke points, 
such as connectors or umbilical’s. 
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Figure 6-5 Bus versus star topology 

6.10 Logical interface safety attributes 

6.10.1 Application layer 
Application processes are usually specified by the store 
designer and documented in an ICD in the form of states, 
functions and data exchanges. Integrator and store 
developers must implement fault tolerance for these 
application processes, typically (at this layer) for 
incorrect value and timing errors. For example in 
response to the detection of a failure to transition to the 
launch state (indicated by a store failing to provide a 
Commit to Store Separation (CTSS) signal) the aircraft 
could respond by declaring a fail against that store, 
removing aircrew display cuing, isolating power to the 
station and transitioning to the next priority station. 

                                                             
16 These are not the only possible topologies, for example the IEEE 
1394 Firewire protocol (used on the JSF to connect the Vehicle 
Management System (VMS) to Remote Data Concentrators (RDCs)) 
allows signals received on one node to be propagated to all others, 
allowing daisy chain and tree topologies. 

Clear standardised data formats with a defined syntax 
addresses the coordination hazards arising from system of 
system integration. However one of the drawbacks of 
MIL-STD-1760 is that these data formats are not derived 
from a generic set of completeness criteria such as that 
developed by Jaffe and Leveson (Jaffe 1989) as a result 
individual implementations may have more (or less) 
complete and consistent specifications.  

Coordinate frames are a common area where data 
conventions may become inconsistent; as a result 
Appendix B of MIL-STD-1760 provides a standard set of 
definitions. However, these definitions should then also 
be applied consistently across aircraft internal interfaces. 
For example on one weapon integration program, the 
Mission Computer team used z-axis alignment 
coordinates reversed from that of the Station Interface 
Processor team. The error was not discovered until flight 
test and resulted in the missile failing transfer alignment 
before launch.  

Another frame of reference problem arises when altitude 
data must be interpreted by aircrew. Because altitude can 
be referenced to either the earth geoid or ellipsoid of 
revolution reference frame different frames can apply 
simultaneously for target, waypoint or release altitudes 
depending on their derivation. When displaying altitude 
data an explicit reference frame should therefore be 
identified to avoid ambiguity. The consequences of not 
doing so are the potential for human operators planning a 
flight path that terminates in ‘ground clobber’ or loss of 
line of sight for data-linked weapons. 

A traditional technique used to address the coordination 
of multiple stores and SSIU behaviour is to restrict the 
concurrent execution of safety critical activities. This 
scheduling technique takes advantage of the fact that bus 
traffic is time base sparse and tends to cluster around 
store state transition events such as store initialisation or 
release. To minimise inadvertent and potentially 
hazardous interactions, the multiplexing of store state 
changes is constrained to periods outside the safety 
critical sequence. This de-confliction eliminates the 
design problem of guaranteeing timing for a sequence of 
commands between store and SSIU when interleaved 
with other non-safety critical messages of arbitrary 
length. Non critical store state changes can also be time 
multiplexed to spread, and so restrict, the level of activity 
and as an additional benefit, peak load increases will be 
constrained as additional stores are added to the bus. 

Another coordination problem arises from the differences 
between various aircraft architectures. One aircraft type 
may utilise the stores management bus to communicate 
with SSIU’s (F-16 or F/A-18) and consume a significant 
amount of bandwidth while another may only have stores 
on the bus (F-15). This can be a significant issue with 
legacy aircraft integrations and means that the safety of 
one store integration cannot be directly inferred from the 
safety of an integration onto another aircraft. 

In order to carry out certain store functions safely the 
store may need to know the aircraft type and/or carriage 
station on which it is located. One example of this need is 
when different wing unfold timelines are required for 
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different store stations, i.e. bomb-bay versus external 
pylon. For safety this data should be explicitly provided 
rather than the store relying on assumptions or side 
effects to establish the aircraft configuration. For example 
in one integration a weapon originally design for carriage 
on a single platform utilised that platforms RT address to 
determine whether it was carried on a left or right 
shoulder station and therefore what active separation 
algorithm to utilise. As RT addresses do not 
automatically map to specific stations across platforms 
utilising this scheme on another aircraft could have led to 
hazardous behaviour. Because of this potentially 
hazardous ambiguity, the aircraft ID message was added 
at Revision B of MIL-STD-1760. 

Similarly store identity is provided to the aircraft so the 
aircraft can implement appropriate flight control laws17, 
perform automated inventory checks, display the stores 
load-out to aircrew and appropriately control the store. 
Stores must be accurately described in the Store 
Description message so that an aircraft will not 
misinterpret the store’s identity and therefore use 
incorrect (and hazardous) parameters. This is such a 
safety critical issue that an inventory confirmation 
function is often implemented, usually using a 
heterogeneous set of input data that may include: 

1. Store description message data, 

2. mission planning data, 

3. ‘store aboard’ discretes, and 

4. aircrew entered weapon inventory codes. 

The use of such dissimilar data provides greater safety by 
minimising the likelihood of common cause failures such 
as human error. MIL-STD-1760 supports this 
functionality through the store description message and 
the provision of an interlock signal that can be mapped to 
an aircraft’s ‘store aboard’ discrete. The derived need to 
define a common set of weapon and country codes across 
multiple programs is another example of a coordination 
style safety issues. 

MIL-STD-1760 also defines a set of generic weapon 
states, which are illustrated in Figure 6-6. These states 
provide a logical partitioning of store functions and 
associate functional availability with controlled state 
changes and their triggers. While the intent of this 
definition is to encourage logical and deterministic 
behaviour inadvertent functional interactions can be 
introduced when the store state requires functions not 
previously provided in a particular aircraft state, for 
example providing transfer alignment data to an air to 
ground store whilst the aircraft is in another mode. 

Having defined such states and transitions, as a general 
safety strategy, the presence of many paths to safe states 
and few paths to hazardous states are preferred. Ideally 
there should also be both hard and soft failure modes18 on 
                                                             
17 Store mass and drag properties can be extremely critical for 
dynamically astable high performance aircraft. 
18 A soft failure mode is where Loss of ability to receive ‘X’ could 
inhibit ‘transition to Y’ output., while a hard failure mode is where loss 
of ability to receive ‘X’ will always inhibit ‘transition to Y’ output  

paths to hazardous states, while for a fail safe system the 
paths to safe states should have no hard or soft failure 
modes (Leveson 1995). MIL-STD-1760 implements such 
a strategy, as Figure 6-6 illustrates, through the use of 
release consent and command authority words for safety 
critical commands and redundant signals when initiating 
critical sequences. To satisfy this general strategy a store 
designer must incorporate implementation specific safety 
constraints upon transitions, for example prohibiting 
transition out of the abort state if the preceding transition 
was from the launch state. 
 

 

Figure 6-6 MIL-STD-1760 state chart 

The standard also requires that store state changes occur 
only when the contents of a message command a state 
change and not simply because message receipt was 
detected. This rule enhances safety by outlawing reliance 
on ‘shortcuts’ that could lead to non-deterministic and 
potentially hazardous behaviour. While such shortcuts 
may be safe within the one integrations context, the 
underlying assumptions upon which they are based are 
not defined in the standard and therefore may prove false 
in another integration program. 

The MIL-STD-1553B concept of illegal commands is 
also extended in MIL-STD-1760 to include those states 
where a command that the RT can implement could cause 
a hazardous condition. For example certain commands 
(such as the reset remote terminal or initiate self-test 
mode commands) may be legal (and safe) during ground 
or factory tests, but could cause hazardous effects in 
flight. Stores may use a ‘weight-on-wheels’ signal or 
other discrete hardware input to lockout these commands 
for incompatible states. 

MIL-STD-1760 finally requires the use of redundant 
outputs to initiate safety critical store state transitions 
thereby eliminating the possibility of a SPOF triggering a 
hazardous state transition. This redundancy increases the 
state transition path robustness (Leveson 1995), i.e. loss 
of a Release Consent or Master Arm interlock signal will 
always prevent a store transitioning to launch. 
MIL-STD-1760 also specifies a 20 msecs hysteresis delay 
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to allow for the store to respond to a commanded state 
change. This delay ensures that the aircraft will not 
attempt an unsafe timing of a store command sequence. 

6.10.2 Presentation layer  

Although the standard’s accompanying handbook 
dismisses data formats as having no direct effect on 
safety, they do play an important role in addressing the 
coordination type hazards associated with integrating 
aircraft and store. To safely do so a common 
understanding of each of the data variables passed is 
needed. The clear definition of data formats is a 
fundamental fault avoidance strategy that reduces the 
likelihood of both syntactic and semantic type design 
faults occurring. 

MIL-STD-1760 defines the store control (11R) and Store 
Monitor (11T) messages which must be used for safety 
critical implementations. These messages maintain the 
fire-wall design pattern of separating safety critical data 
from other mission data requirements thereby minimising 
the possibility of inadvertent interaction hazards. The use 
of dedicated messages for safety critical data has also 
been applied in other protocols, see for example the 
CANopen protocol’s Safety Related Data Objects 
(SRDO) concept (DSP 301 2001). 

Two words (Critical Control 1 and 2) are used for the 
transfer of safety critical data as one bit flags. The 
segregation of safety critical data into these two words 
supports the firewall design pattern by the transmission of 
safety critical data in a highly cohesive form that de-
couples it from non-critical data. Each control word has 
an associated Critical Authority word containing a 
polynomial code check on its associated Control Word. 
For single bit safety critical flags, a polynomial code 
check included in the message increases the hamming 
distance between correct and incorrect messages. Using 
polynomial codes only for the critical control words is a 
trade-off of processing overheads associated with code 
calculation versus the error detection requirements for 
data represented as a single bit. 

The Critical Control words also contains, an Identifier 
field (set to carriage or mission store type) and an 
Address Confirm field (set to match the address discretes 
logic) allowing BC detection of an invalid address 
response by an RT. Stores discard any message found to 
contain a critical control word that fails one or more of 
the protocol checks and only enable safety critical 
processes demanded by critical control words passing the 
control check. 

Invalidity flags are used to indicate that some data should 
not be used temporarily. For example transfer alignment 
could be temporarily disregarded because of the launch of 
launcher rotation or because of a degraded navigation 
system. The application process handles the generation of 
the flag by the aircraft and how it is handled by the store. 
Invalidity flagging forms part of the general fault 
tolerance scheme of the interface allowing (for example) 
a mission critical function such as transfer alignment to 
be suspended and then restarted when the data is valid. 
Validity flagging allows the application process to coast 

through short periods of bad inputs in a roll forward error 
recovery strategy. From a safety perspective invalidity 
flags are a lightweight mechanism that decouples data 
supplier and consumer by containing the propagation of a 
hazardous but transient error. While the standard requires 
the use of one bit per word, some store interfaces have 
used one bit flag per data entity. This semantic drift 
introduces ambiguity and the potential for hazardous 
omission style design errors during integration. 

The mandated use of a Rotated19 Modulo 2 (XOR) 16 bit 
checksum for the standard data messages provides a 
minimum and consistent level of data redundancy within 
each message. The use of a checksum as an error code for 
each message represents a compromise between the 
ability to detect errors in the message, the vulnerability of 
the data/error code to bit errors, checksum processing and 
re-transmission overheads. In practice the checksum will 
detect all single bit errors, 93.95% of two bit errors and 
all error bursts of length 16 bits or fewer. Burst errors 
greater than 16 bits in length are detectable if they result 
in an odd number of actual bits being inverted or if the 
inverted bits do not align in the same bit position in the 
affected words. For applications where burst errors (such 
as those induced by impulse noise) are the dominant 
source of errors, Modulo 220 provide better error detection 
than one’s complement addition, Fletcher and Adler 
checksums (Maxino 2006). 

As an illustrative counter example if the message 
inversion technique of the CAN open safety protocol 
discussed in 6.4.4 was adopted error code size would be 
directly proportional to the size of data and would 
become proportionally more vulnerable to bit errors while 
imposing higher retransmit overheads than the fixed 16 
bit checksum of MIL-STD-1760. 

Another question that arises in calculating a checksum is 
whether to allocate the checksum to hardware, firmware 
or software. The advantage of calculating the checksum 
in software is that a complete end to end check of the 
logical interface, the terminals host processor, its memory 
and the embedded terminal processor and firmware is 
provided. This end to end check partly addresses the 
vulnerability of single bit data storage. However if 
checksum calculation are allocated to software Cyclic 
Redundancy Checks (CRC) are much less attractive as 
the implementation of modulo-2 division is less 
straightforward in software than hardware21. A related 
issue is how checksums are handled within a distributed 
system, i.e. should the checksum be generated at the point 
of data creation? This last issue can be a significant 
integration issue for legacy aircraft. 

                                                             
19 Rotating the blocks of data randomises the checksum inputs 
improving its performance against errors that are regular in nature, for 
example consistent corruption of a start/end word bit. 
20 Two’s complement addition, and CRC checksums also perform better 
but with proportionally greater computational overhead. 
21 Lookup tables and XOR calculations versus using linear feedback 
shift register. 
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6.10.3 Session layer 

The MDT protocol elements are used by the aircraft to 
initialise the store with aircraft stored data upon start-up 
and to pass mass data between aircraft and store when the 
store is selected. The MDT protocol allows the 
implementation of bi-directional data transfers, the ability 
to initiate software programs and four levels of data 
integrity checking (File, Record, Block or none). 
Although not identified as safety critical in the same 
fashion as the store control and monitor messages MDT 
can potentially transfer data (ranging from targeting to 
software program) which bears directly upon the safe 
behaviour of the store. 

Initially three options were investigated by the 
standardisation committee; separate data blocks to control 
and status the transfer, integrating the protocol into the 
actual data blocks or blind transfer via a dedicated sub 
address. While for efficiency of bus usage the first 
protocol was selected, it is interesting to note that the 
third approach was eliminated due to concern from the 
nuclear safety community that mass data might be 
erroneously transmitted to the incorrect destination with 
hazardous consequences (MIL-HDBK-1760A). 

The down-load of such data therefore needs careful 
consideration as to the integrity of transfer required. Any 
assessment of criticality and justification for the required 
data integrity checks and is normally documented in the 
ICD. These decisions are driven by the requirements for 
access and modification of MDT data, and are also an 
area where interface incompatibilities can easily arise 
because of the optional nature of the checksum 
implementation. For example in one program the store 
implemented checksums only at the file level (as data was 
not intended to be modified after download) while the 
aircraft implemented them for records (as data was 
intended to be uploaded and modified) with neither 
design decision being explicitly documented in their 
respective ICDs. On aircraft file checksum processes 
need to be coordinated with those of the mission planning 
environment to ensure a valid transmission path from 
planner to store. 

6.10.4 Transport layer 

Fixed addresses are used to identify store RTs. If a 
variable addressing scheme were used it would degrade 
the safety of the system by introducing complex, non-
deterministic and potentially hazardous behaviour. 
Because of this potential hazard and to further enhance 
nuclear safety, two S/A are set aside for exclusive use by 
nuclear munitions (an additional fire wall). Each critical 
control message also contains an Address Confirm field. 
The Address Confirm field provides a cross check of the 
MIL-STD-1553B address and reduces the likelihood of a 
correct command being processed by the incorrect store 
leading to a potentially hazardous state. 

6.10.5 Network layer 
MIL-STD-1760 outlaws the following mode commands: 

1. dynamic bus control (aircraft is always BC), and 

2. reserved mode codes. 

The first constraint ensures that the bus architecture 
remains a master/slave type and enforces a simple bus 
design22, while the second ensures that developers do not 
subvert the standard by use of reserved mode commands. 
The potential hazard of a store failing to relinquish bus 
control (as is the case in token passing protocols) is also 
eliminated by this constraint. 

Mission Store RTs must implement the following status 
word conditional message implementations: 

1. use of the MIL-STD-1553B busy bit; 

2. If a subsystem has a self-test capability, the a 
subsystem status flag is required; 

3. Support Inhibit Terminal Flag if Terminal Flag 
Bit is implemented; and 

4. If Service Request is used the Transmit Vector 
Data Word must be available when the bit is set. 

Use of the MIL-STD-1553B RT status word’s optional 
busy bit indicates to a BC that an RT/subsystem is unable 
to move data in compliance with the BC’s command. 
Maximum busy time allowed is 500 ms for start-up and 
50 µs otherwise. The use of the busy bit reduces state 
ambiguity allowing the BC to discriminate between a 
failed RT and one that is still processing. 

The BC must interpret the subsystem flag bit as total loss 
of the store again enforcing the fail safe behaviour. 
Because the flag may have been set by a transient 
condition the standard recommends that a reset terminal 
mode code be sent23 and the flag rechecked. This 
redundant check provides a path to a safe state with a 
reduced probability of transitioning due to a false alarm.  

The MIL-STD-1553B terminal flag bit is used to indicate 
a detected RT hardware failure and, in conjunction with 
mode code commands to deactivate and activate the 
terminal BIT, supports fault diagnosis by the BC. 

A message error bit is required in RTs by MIL-STD-
1553B, this bit is set to Logic 1 for several error 
conditions and the status word suppressed. These actions 
ensure that the BC has a capability to detect faults 
masked by the RT fault-tolerance mechanism. Message 
errors can be related to the application, datalink, network 
or physical layers, as Figure 6-7 illustrates. Should a 
message error occur, MIL-STD-1553B requires the entire 
message to be considered as invalid24, eliminating the 
possible use of ambiguous data with hazardous 
consequences. 

The optional checks for illegal command messages of 
MIL-STD-1553B also map to this layer. Illegal 
commands (such as reserved mode codes) are those that 
pass the validity checks but cannot be implemented by 

                                                             
22 Relative to more complex ones such as bus contention or token ring. 
23 This command resets the terminal, the subsystem cannot be reset. 
24 Message validation in MIL-STD-1553 strictly applies to the data 
component of a message, i.e. an invalid command word without a data 
word is ignored by the RT. 
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the RT by design. The standard requires that the BC 
developer ensure that no illegal commands are sent (as 
part of a fault avoidance strategy) while illegal command 
detection is optional for the RT. Where implemented 
illegal commands are handled by an RT in the same way 
as invalid commands i.e. no response and set the message 
error bit in the status word.  

Safety critical message types are also required by MIL-
STD-1760 to have a header word as the first data word. 
This allows the RT to check if the message was in fact 
intended for it and not a hazardous command generated 
by a double bit error in the transmission of the command 
word. 
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Figure 6-7 MIL-STD-1760 message error taxonomy 

6.10.6 Data link layer 

In addition to the constraints introduced by Notices 1 and 
2 of MIL-STD-1553B25, MIL-STD-1760 further limits 
the use of broadcast commands. The standard permits, but 
discourages, use of broadcast address 31 and introduces 
the following constraints on its use: 

1. Safety critical data cannot be broadcast; 

2. A store accepting broadcast messages must also 
accept the same data in non-broadcast mode; 

3. The BC cannot issue a broadcast command to 
MIL-STD-1760 specified sub-addresses; 

4. The store is required to work with an aircraft or 
carriage store that does not support broadcast; 

5. Error detection schemes for significant broadcast 
data are required; and 

6. Stores must implement the broadcast command 
received bit in the status word, allowing for post 
broadcast round robin polling. 

These restrictions are intended to reduce the likelihood of 
the following potentially hazardous states occurring: 

1. undetected message loss or error; 

                                                             
25 The USAF believed that switching from a current BC to a backup BC 
via dynamic bus control mode command was too hazardous and 
prohibited this command in Notice 1 to MIL-STD-1553B. 

2. earlier model RTs26 do not recognise broadcasts 
and improperly interpret them; or 

3. a store using broadcast messages ends up on an 
aircraft where it’s broadcast S/A is used for 
something else. 

The fundamental problem with broadcast mode is that it 
does not provide positive closed-loop control, which 
denies the BC any ability to check for failures or errors 
(Leveson 1995). The use of broadcast commands also 
complicates fault tolerant behaviour, for example an RT 
which has failed silent upon detection of an illegal 
address assignment may still legally process a broadcast 
command. The problems introduced by broadcast are 
illustrative of real time distributed system coordination 
problems. Hazards 2 and 3 are an instance of the 
backwards and forwards compatibility coordination 
problem discussed in 3.2.2. 

S/A 08 (decimal) is reserved to avoid misinterpretation of 
a status word (with service request set) as a command 
word for sub-address 08. The standard does allow it to be 
used for test purposes at the user's risk. 

The first three bits of each 20 bit MIL-STD-1553B word 
are a synchronisation field (an invalid Manchester 
waveform) allowing a decode clock to re-sync at the 
beginning of each new word. The advantages of a 
dedicated and unique synchronisation field are that it 
reduces the likelihood of a receiver missing the start of a 
new message and eliminates possible confusion of a 
synch field with part of a message (e.g. alialising). The 
field is also used to distinguish between MIL-STD-1553B 
command and data words transmitted. This is an example 
of both low level data redundancy and the decoupling of 
synchronisation from bit transmission functions afforded 
by MIL-STD-1553B as a character oriented protocol. 

An alternative synchronisation scheme (taken from CAN, 
a bit oriented protocol) is to bit stuff a message with 
complementary value bits after a series of N same valued 
bits in order to maintain loop synchronisation. However, 
using this synchonisation scheme low level multi-bit 
errors can cause cascading errors in which bit errors 
cause misinterpretation of stuffing bits as data and vice 
versa leading to data pattern shifting, large bit error rates 
and resultant CRC failure (Tran 1999). 

6.10.7 Physical layer 
MIL-STD-1760 has specific physical interconnection 
media requirements for more stringent waveform 
specification at the transmitting-end and tolerance of 
more distortion and loss at the receiving-end than MIL-
STD-1553B. These additional robustness requirements 
address the bus waveform distortion introduced when a 
mission store separates from the parent aircraft leaving 
behind a ‘stub’ of bus. Current limits are also introduced 
to prevent multiple high currents on the MIL-STD-1553B 
bus. The added MIL-STD-1760 margin above that of 
MIL-STD-1553B also offsets the greater uncertainty of 

                                                             
26 Broadcast mode was introduced to MIL-STD-1553B at Notice 2 of 
that standard. 
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assumptions made about actual bus performance in such a 
dynamic environment. 

MIL-STD-1553B requires a maximum allowable word 
error rate of no greater than one in 107 words in the 
presence of an impulsive RF noise environment. The 
standard recognises that impulse noise (such as relay 
switching) are more typical of noise sources having  
adverse effects but notes that because it is extremely 
difficult to analyse the effects of impulse noise a worst 
case white Gaussian noise model was used to define it’s 
noise rejection requirements27. The specification of such 
criteria form part of the complex signal design pattern 
identified in section 6.4.9. 

Inherent RF noise rejection is provided by the bus 1 MHZ 
fundamental frequency being lower than the frequency of 
most onboard noise sources. The use of a bipolar 
waveform increases the signal to noise amplitude relative 
mono-polar signals and provides improved EMI 
immunity. EMI rejection is further enhanced by a 
shielded twisted pair design for the bus and an outer 
shield for the aircraft to store umbilical. However, 
umbilical shielding is not necessarily implemented inside 
the aircraft and shielding from the internal EME can be a 
significant issue for legacy system integrations. The event 
triggered master/slave protocol also provides a more 
robust scheduling guarantee in the presence of EMI 
because the BC can flexibly retransmit a corrupted 
message to make maximum use of the bandwidth. In 
comparison time triggered protocols would require 
multiple duplicate transmissions to achieve the same 
robustness. 

Where noise does occur and zero crossings generate a 
single bit error the error will notionally be detected by the 
MIL-STD-1553B word parity bit. However, a single 
noise event may disrupt more than one bit. Thus as the 
parity bit has two possible values (0 and 1), the bit is 
limited to a 50% chance of a >1 bit error detection. To 
enhance error detection rotated modulo 2 checksums are 
introduced by MIL-STD-1760 for messages and BCH 
polynomial error code authority words for safety critical 
commands. 

Manchester coding is utilised by the MIL-STD-1553B 
protocol and provides (amongst other advantages) high 
noise immunity, RTs are then required to check that the 
word bits are a valid Manchester II code before acting 
upon them. While an RT could detect a ‘skewed’ bit and 
recover the value, MIL-STD-1760 requires that for 
critical control bits the value be discarded. Again the 
discard data policy eliminates the use of ambiguous data 
for safety critical operations with potentially hazardous 
consequences. 

The MIL-STD-1553B protocol requires at least 4 µs 
between messages, with the RT required to respond to a 
command within a period of 4 to 12 µs. The inter-
message gap addresses the coincidental response hazard 
of a RT receiving and processing a message as valid 
which has actually arrived by coincidence, while the 

                                                             
27 For a band limited system random impulse noise may be 
approximated by Gaussian noise. 

minimum response time addresses the RTs inherent 
latency in processing a BC command. If there is a delay 
in response of greater than 14 µs, it is assumed by the BC 
that no response occurred, which then must respond to the 
un-responsive (and potentially hazardous) 
communications channel (Jaffe 1989). 

MlL-STD-1553B also requires that terminals (RT or BC) 
contain a hardware fail safe timer to prevent any 
transmission on the data bus exceeding 800 µs. As no 
valid transmission is longer than 660 µs only a failure in 
the terminal could result in such a transmission. The fail-
safe timer prevents a ‘babbling idiot’ failure propagating 
to total bus failure. 

7 Using MIL-STD-1760 as part of a safety case 

7.1 The need for an integration safety case 

Safety cases or arguments have become an accepted part 
of the development of complex safety critical systems, 
reflecting a trend in away from the prescriptive 
application of regulations and towards requiring a 
developer to formally justify the safety of the system. By 
definition, MIL-STD-1760 expresses a form of safety 
argument in which the implicit definition of safety is 
‘compliance with the standard’. Logically a safety case 
for a stores integration program should incorporate this 
argument as part of the overall safety argument. 
However, there are a number of challenges that need to 
be addressed when doing so. 

As part of such a safety case the integrator must also 
establish that the interface definitions, usually based on 
different revisions of the standard, have not introduced 
coordination style hazards. As illustrated by the Goal 
Structure Notation (GSN) diagram of Figure 7-1 this 
definition provides the essential context for the safety 
argument in the same way that a hazard analysis provides 
the context for arguments about hazard control. Similarly 
the integrator must justify the assumption of 
completeness, including where the integration program 
stopping rules. For example, it might be assumed that the 
design is currently safe based on (in part) the existence of 
an existing safety program or service history. 
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Figure 7-1 Integration safety case 

7.2 Safety argument patterns 

High level safety arguments can vary markedly; one 
program may adopt a hazard avoidance argument pattern 
whilst another may adopt a functional integrity argument 
pattern. Figure 7-2 illustrates how a MIL-STD-1760 
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compliance argument can be integrated into a hazard 
directed or functional integrity style arguments 
constructed using interface and contract extensions for 
Goal Structure Notation (GSN) where element of the 
MIL-STD-1760 argument (goals, evidence or solutions) 
are referenced to the hazard or functional integrity 
argument. 
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Figure 7-2 Integrated MIL-STD-1760 safety argument 

7.2.1 Hazard avoidance argument 

In a hazard avoidance style argument, the implicit 
definition of safe is ‘hazard avoidance’. The usual style of 
this argument is to argue that all identified hazards have 
been either eliminated or their risk controlled. The 
challenge for this argument is to provide a plausible (i.e. 
comprehensive) context of identified hazards. MIL-STD-
1760 can be used in a hazard avoidance argument to 
identify hazards, both directly and by inference from the 
safety constraints of the standard. 

7.2.2 Functional integrity argument 

In an integrity style argument, the implicit definition of 
safe is ‘integrity level’. The usual style of this argument 
is to argue that all safety critical functions have been 
identified; all identified functions meet specified integrity 
levels and do not interact in a hazardous fashion. The 
challenge for this argument is to demonstrate either the 
independence of functions or their non hazardous 
interaction. 

Simplistically, having applied MIL-STD-1760, it could 
be argued that the required integrity level is achieved. 
However because of the distance between the premises 
and conclusion of such an argument it may be more 
convincing to breakout the interface into lower service 
functions (as Figure 7-3  illustrates) and use MIL-STD-
1760 implementation as evidence for each layer. 
Arguments as to the potential for hazardous interactions 
across the logical and direct interfaces of the protocol are 
also required. This approach provides more direct 
‘evidence’ based assurance than the traditional process 
based assurance typically associated with functional 

safety arguments (Weaver 2003). It is also unlikely that 
application at a high level of abstraction can be argued 
because MIL-STD-1760 would rarely be implemented 
uniformly on both sides of the interface. 
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Figure 7-3 Functional integrity argument 

7.2.3 The issue of completeness 

For integration programs the completeness of a safety 
argument can be compromised by: 

1. originally incomplete specifications, 

2. invalidated un-stated interface assumptions, 

3. unidentified or unrecorded pre-existing hazards, 

4. unidentified new integration related hazards, or 

5. in-complete implementation of the standard. 

Because it is impossible to argue that any safety argument 
is complete, it is necessary to make an assumption of 
completeness, and ideally this assumption should also be 
both explicit and rigorously justified28. MIL-STD-1760 
can assist in justifying this assumption by providing: 

1. a comprehensive (not necessarily complete) 
specification of AEIS inputs and outputs; 

2. a reduction in assumptions about the interface; 

3. broad safety criteria to control un-identified 
hazards; and 

4. an interface design of known provenance 
reducing the likelihood of new hazards. 

Implementing the latest requirements of MIL-STD-1760 
to comply with a store’s ICD may also prove to be 
impractical and, if implemented, may not contribute 
materially to safety. Where such circumstances arise, an 
argument as to why an ‘effectively’ complete 
implementation is acceptable must support any general 
argument for completeness. As the argument fragment of 
Figure 7-4 illustrates, safety is not an absolute and is 

                                                             
28 Usually this is achieved through a mix of product and process 
evidence (Chinneck 2004). 
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often evaluated through design provenance and 
experience as much as risk analysis (AC 21-101-1). 
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Figure 7-4 ‘Safety not materially affected’ argument 

7.3 Complexity 

One of the challenges in developing a safety case for a 
complex system is managing the complexity of the 
argument itself. Safety arguments also generally draw on 
multiple sources of information which can further 
complicate argument structure. Figure 7-5 illustrates the 
use of a hierarchical structure to manage the complexity 
of a MIL-STD-1760 compliance argument. Module 2.2 of 
Figure 7-5 can be further broken into a software hierarchy 
based on the OSI model allowing the argument to 
separate out the specific safety concerns at each layer of 
the model. Similarly Module 2.3 can be broken into a 
part/whole hierarchy matching the various interfaces of 
AEIS. The dashed figures of Figure 7-5 indicate where 
module 2.1, 2.3 and 2.3 support the cohort safety 
arguments identified in Figure 7-2. 

The architecture of MIL-STD-1760 can also be used to 
structure the functional and hazard directed arguments. 
For example hazards identified in the hazard avoidance 
argument can be grouped by functional interface or OSI 
service layer for clarity (Chinneck 2004). 

Finally MIL-STD-1760 provides a ‘one stop shop’ of 
reference material, further simplifying the arguments 
structure. 

7.4 Incremental safety case development 
One of the often stated goals for a safety case is that the 
safety argument should influence the design. To achieve 
this requires an incrementally developed safety case 
starting with a high level architectural safety pattern 
argument followed by the development of supporting 
safety arguments for hardware and software 
implementation. This dictates a means/ends hierarchy 
where safety patterns selected during preliminary design 
must necessarily assume that the detail design will not 
subvert these patterns and, once developed, hardware and 
software safety arguments must validate this assumption. 
This structure, reflected in Figure 7-5, consists of three 
modularised sub-arguments with the architecture module 
providing goals for the software and hardware modules, 

while they in turn provide validation of the architecture 
through compliance evidence. 
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Figure 7-5 Incremental safety argument development 

8 Conclusions 
Architectural decisions can have significant impact upon 
the safety of a system and the effort required to verify its 
safety. For a given stores integration program 
consideration must also be given to those system of 
system coordination issues forming the programs context. 

As an interface standard MIL-STD-1760 specifies a 
coherent set of functional interfaces that emphasise fault 
tolerance to achieve the safety and reliability goals of a 
specific program. As with any standard the downside is 
that developers must also sacrifice design freedom to 
achieve these benefits. However this reduction is offset 
by enhanced interoperability and effectiveness at the 
system of systems level. 

Integrating MIL-STD-1760 compliance into a safety case 
can strengthen the safety argument by providing an 
ability to argue the reuse of successful architectural 
patterns. Use of the standard can also provide evidence to 
support assumption of completeness as well as an 
organising principle for the arguments structure. Because 
MIL-STD-1760 contains both architecture and 
implementation elements it can be used in the incremental 
development of safety arguments with initial architectural 
strategies being levied as safety requirements for 
subsequent detailed design efforts. A MIL-STD-1760 
compliance argument can support both hazard and safety 
integrity style arguments. 
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Implementation of a Triple Modular Redundant FPGA basedSafety Criti
al System for reliable software exe
utionVenkatesh Vasudevan Email:venkat�itee.uq.edu.auPeter Walde
k Email:walde
k�itee.uq.edu.auHardik Mehta Email:mehta�itee.uq.edu.auNeil Bergmann Email:bergmann�itee.uq.edu.auS
hool of Information Te
hnology and Ele
tri
al EngineeringUniversity of QueenslandAbstra
tThis paper des
ribes the implementation of a TMR(Triple Modular Redundant) mi
ropro
essor systemon a FPGA. The system exhibits true redundan
yin that three instan
es of the same pro
essor system(both software and hardware) are exe
uted in par-allel. The des
ribed system uses software to 
ontrolexternal peripherals and a voter is used to output
orre
t results. An error indi
ation is asserted when-ever two of the three outputs mat
h or all three out-puts disagree. The software has been implemented to
onform to a parti
ular safety 
riti
al 
oding guide-line/standard whi
h is popular in industry. The sys-tem was veri�ed by inje
ting various faults into it.1 Introdu
tion1.1 Ba
kgroundField Programmable Gate Arrays (FPGA's) are semi-
ondu
tor integrated 
ir
uits (IC's)/
hips that fa
il-itate 
ustom user logi
 to be programmed using abitstream. The devi
es 
an be reprogrammed in the�eld whenever the logi
 
hanges thus removing theneed to remove the devi
e or design a new system.Hen
e the produ
t 
an be upgraded in the �eld withnew features without any repla
ement of parts. Thewhole system (pro
essor and its peripherals) 
an behoused in a single FPGA thus redu
ing board size
onsiderably. Time to market or development timeis 
onsiderably redu
ed due to rapid prototyping.FPGA's allow a software-hardware 
o-design method-ology whi
h is a must for safety 
riti
al appli
ationsand hen
e it is 
onvenient to use FPGA's for the de-velopment of the same.1.2 Obje
tiveTriple Modular Redundan
y (TMR)(B.W.Johnson1989) is a popular 
on
ept being used by many design-ers of high reliability systems. The 
ommon method-ology involves development of software 
onforming tosafe 
oding guidelines (viz one may use a languagelike Esterel (G.Berry et al 2000) to de�ne the spe
-i�
ations of the system and then implement it or if
oding in traditional programming languages like C,follow guidelines set out by subsets of the languageslike MISRA-C(MISRA 2004)) and implementation ofCopyright 

2006, Australian Computer So
iety, In
. This pa-per appeared at the 11th Australian Workshop on Safety Re-lated Programmable Systems (SCS'06), Melbourne. Confer-en
es in Resear
h and Pra
ti
e in Information Te
hnology, Vol.69. Tony Cant, Ed. Reprodu
tion for a
ademi
, not-for pro�tpurposes permitted provided this text is in
luded

the same on three separate mi
ropro
essors (ea
h onits own motherboard). Our s
heme followed the samestrategy. However the three mi
ropro
essor systemswere implemented on one FPGA. The goal was toa
hieve reliability in software exe
ution by employinghardware redundan
y so that if one of the softwarefails due to a hardware fault (bitstream / 
on�gu-ration errors, stu
k at faults, bit 
ips due to radia-tion et
) then the other softwares running in parallel
an keep the system in operation. This is due to thefa
t that the hardware error o

urs only in a part ofthe FPGA and hen
e only a small part is a�e
ted,not the whole FPGA. The 
orre
tness of the softwarewas tested by debugging it using XMD (Xilinx Mi
ro-pro
essor Debugger) whi
h allows the user to singlestep through the 
ode. The software was in
luded inthe system after thorough testing. The software waswritten in C and 
he
ked for MISRA-C(MISRA 2004)rules by Abraxas Software's CodeChe
k v1300 B1 tool(results in System Veri�
ation se
tion). The 
ode wasfor a se
onds 
ounter and instan
es of the same 
odewere allowed to run on ea
h of the three mi
ropro
es-sors. The design was targeted for a Xilinx FPGA andhen
e Xilinx design 
ows.1.3 Literature ReviewOther teams have worked on TMR systems onFPGA's. Bitstream faults were investigated by(L.Carro et al 2005) and results were based on numberand pla
ement of voters. (Rami Melhem et al 2002)have performed analysis of energy eÆ
ien
y of Duplexand TMR systems. (Hyunki Kim et al 2002) havedeveloped a TMR system based on MC68000 (mi
ro-pro
essor from Motorola). A number of other workswere reviewed and it was found that little work hasbeen done on implementing TMR software systemson FPGA's with a fo
us on improving software re-liability on FPGA's. Our team was and is fo
ussedon reliable software exe
ution on FPGA's for imple-menting FPGA based Safety Criti
al Systems. Hen
ewe have implemented a system whi
h 
an exe
ute itssoftware reliably during various hardware faults.2 System Design2.1 The SystemAs shown in Figure 1 the system is 
omposed of threeMi
roblaze pro
essor systems and the de
iding voter.Ea
h pro
essor system (Figure 2) is a whole systemin itself in that it 
ontains the following essential
omponents:� Mi
roblaze or PowerPC mi
ropro
essor (in this
ase Mi
roblaze)
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� Program Memory (in this 
ase Blo
k RAM)� Data Memory (in this 
ase Blo
k RAM)� Lo
al Memory Bus (LMB) for both instru
tionside and data side and asso
iated 
ontrollers� OnChip Peripheral Bus (OPB)� Digital Clo
k Manager (DCM) and� Peripheral (in this 
ase GPIO (general purposeI/O)For the above shown system, the voter peripheraland GPIO peripherals (Figure 2) were 
reated using'Create - Import Peripheral' a tool available in XilinxEDK (Embedded Development Kit) for 
reating
ustom peripherals (that are not otherwise availablein EDK) and atta
hing to the pro
essor via eitherOPB(OnChip Peripheral Bus),PLB(Peripheral Lo
alBus) or FSL(Fast Simplex Link). In this 
ase theperipherals were designed to interfa
e to the OPBof Mi
roblaze. This whole system was housed in aVirtex 4 (XC4VLX25) FPGA on the ML401 Xilinxevaluation board.The whole system was developed using the EDKdesign 
ow by manually 
reating the MHS (Mi-
ropro
essor hardware spe
i�
ation) and MSS(Mi
ropro
essor software spe
i�
ation) �les. Thismeans that these �les were not automati
ally gen-erated by EDK whi
h is what generally happensduring development. In our 
ase we had to write outthese �les using the syntax for MHS and MSS �lessin
e our system 
ould not be dire
tly generated byEDK. These �les are the de
iding fa
tors in XilinxEDK that determine the hardware synthesized andthe software libraries generated.All the 
ode and data resided in internal BRAM(blo
k RAM) blo
ks (3 in number)The GPIO peripherals interfa
ed to the mi
ropro
es-sor via the OPBThe voter peripheral however even though designedfor interfa
e via OPB was not interfa
ed to theCPU rather it was interfa
ed only to the GPIOoutputs (inputs to the voter) and external out-puts (the output or result itself and error output).

The external outputs were led's driven by FPGAI/O's.2.2 SoftwareThree instan
es of the same 
ode were 
reated asshown below (in
orporating fault inje
tion) 
onform-ing to MISRA-C(MISRA 2004) rules. Due to thepresen
e of three 
ode instan
es and identi
al hard-ware ar
hite
tures, true 
on
urren
y of exe
ution ofoperation was obtained.The 
ode in this 
ase is for a simple 
ounter whosetwo least signi�
ant bits are output to the voter. Thevoter in turn outputs the two bit value to LED's onthe board. The header �le 'xparameters.h' 
ontainsde�nition of the base address of the GPIO (generalpurpose input output) whose output is 
onne
ted tothe voter input. The header �le 'vgpio.h' 
ontainsfun
tion prototypes of GPIO read/write fun
tions.It also in
ludes the 'xbasi
 types.h' header �le whi
h
ontains typedef'd data type de�nitions e.g Xuint8.The 
ounter runs at a speed of 1 Hz due to the fa
tthat the external 
lo
k frequen
y is 100 MHz and thenumber of 
lo
k ti
ks that are 
ounted are also thesame number (ledX delay where X=0,1,2).The 
ode is shown to demonstrate how safe 
ode waswritten and how we plan to write it in future (e.gno use of pointers, use of ma
ros, adequate fun
tionprototypes et
). The three 
odes although the samewere di�erent when testing for faults namely stu
kat faults. For example (see fault inje
tion in 
ode)the GPIO's were stu
k at either 0x00 or 0x� for oneof the 
odes with the remaining 
odes being inta
t.Mi
roblaze System #1//
ounter0.
#in
lude "xparameters.h"#in
lude "vgpio.h"#de�ne led0 base XPAR VGPIO 0 BASEADDR#de�ne led0 delay 100000000#de�ne led0 o�set 0void delay(void)int main()fXuint8 led0 data;
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led0 data = 0x00;while(1)//GPIO writef//Stu
k at fault inje
tion//VGPIO mWriteReg(led0 base,led0 o�set,0x�);//VGPIO mWriteReg(led0 base,led0 o�set,0x00);VGPIO mWriteReg(led0 base,led0 o�set,led0 data);delay();led0 data++;greturn 0;gvoid delay(void)f Xuint32 led0 delay value;led0 delay value = 0x00;while(led0 delay value < led0 delay)f led0 delay value++;ggMi
roblaze System #2//
ounter1.
#in
lude "xparameters.h"#in
lude "vgpio.h"#de�ne led1 base XPAR VGPIO 1 BASEADDR#de�ne led1 delay 100000000#de�ne led1 o�set 0void delay(void)int main()fXuint8 led1 data;led1 data = 0x00;while(1)//GPIO writef//Stu
k at fault inje
tion//VGPIO mWriteReg(led1 base,led1 o�set,0x�);//VGPIO mWriteReg(led1 base,led1 o�set,0x00);VGPIO mWriteReg(led1 base,led1 o�set,led1 data);delay();led1 data++;greturn 0;gvoid delay(void)f Xuint32 led1 delay value;led1 delay value = 0x00;while(led1 delay value < led1 delay)f led1 delay value++;ggMi
roblaze System #3//
ounter2.
#in
lude "xparameters.h"#in
lude "vgpio.h"#de�ne led2 base XPAR VGPIO 2 BASEADDR#de�ne led2 delay 100000000#de�ne led2 o�set 0void delay(void)int main()fXuint8 led2 data;led2 data = 0x00;while(1)//GPIO writef

//Stu
k at fault inje
tion//VGPIO mWriteReg(led2 base,led2 o�set,0x�);//VGPIO mWriteReg(led2 base,led2 o�set,0x00);VGPIO mWriteReg(led2 base,led2 o�set,led2 data);delay();led2 data++;greturn 0;gvoid delay(void)f Xuint32 led2 delay value;led2 delay value = 0x00;while(led2 delay value < led2 delay)f led2 delay value++;ggFor the above 
ode instan
es, the libraries weregenerated by EDK after parsing MHS and MSS �les.New drivers were 
reated by the tool for the user
reated peripherals viz GPIO and voter. Howeveronly driver for the GPIO peripheral is being used.2.3 PeripheralsThis se
tion explains design of peripherals and thedesign methodology employed as it impa
ts theease of development. As has already been pointedout the GPIO and voter peripherals were 
reatedby the team using 'Create - Import Peripheral' autility that is shipped alongwith Xilinx EDK. Of
ourse one 
an use Xilinx provided GPIO 
ores aswell. Development of our own GPIO peripheralshappened as a result of issues related to the devi
edriver. The voter peripheral was 
reated due to ouradopted design methodology. The design phase 
ana
tually have two di�erent design 
ows. One is theXilinx ISE (Integrated System Environment) 
ow(Figure 3) and the other is the EDK 
ow (Figure4). Looking at Figure 1, one might say that theISE 
ow looks like the logi
al one sin
e the voter
an be entirely developed in ISE (VHDL RTL) andthe mi
ropro
essor �le developed in EDK 
an bein
luded in the ISE proje
t and both the entities
an be instantiated within a top level entity thus
ompleting the entire system. This design 
ow worksallright if only the mi
ropro
essor �le is in
ludedand synthesized in ISE. It 
an be made to work withthe VHDL and uP �les instantiated together butthis involves tinkering whi
h goes very deep into theXilinx �les.Hen
e we de
ided to take the EDK design 
owmethodology. Obviously sin
e this is not ISE adire
t implementation of the voter was not possible.Hen
e we had to 
reate our own voter peripheralthe dis
ussion of whi
h is 
arried forward in thesubse
tions. The 
ase of our own GPIO peripheralsis also dis
ussed in the following subse
tion.2.3.1 VGPIOThe GPIO 
ore is not the standard Xilinx GPIO
ore. Its 
alled VGPIO whi
h was developed by usfor purposes des
ribed in the following.The Xilinx GPIO is a 
omplex 
ore with 
ertainfun
tionalities that we did not require and the devi
edriver too has 
omplex usage in that it has to beinitialized and 
on�gured the 
orre
t way so thatit be
omes suitable for our system. Our GPIO,the VGPIO has a simple devi
e driver and one 
an
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immediately write to or read from it without anyspe
ial initialization and 
on�guration.

Figure 5 shows the ar
hite
ture of our GPIO.As shown it's a simple 32 bit register (for simpli
itysin
e Mi
roblaze is 32 bit) featuring big endian (asMi
roblaze follows big endian) format.� VGPIO devi
e driverEDK builds libraries 
ontaining drivers for ea
hperipheral in the design after parsing the MHSand MSS �les. In 
ase of the VGPIO periph-eral we used the basi
 write fun
tion whi
h wasprovided by default for writing into the VGPIOregister.Before implementing the �nal system (Figure 1)we implemented the system as shown in Figure 6.This s
heme had timing issues in that the outputsof VGPIO's (
onne
ted to inputs of voter) wouldarrive at the same time however the voter wouldhave its third input (
oming from Mi
roblaze #2)mu
h earlier thus only two inputs to the voterwould mat
h resulting in error LED turned on.

CRPIT Volume 69

116



2.3.2 VoterThe voter ar
hite
ture is basi
ally that of a 
ompara-tor whi
h looks at three inputs and 
he
ks for various
ombinations of inequalities. The voter too was builtusing 'Create - Import Peripheral' though it wasn'tinterfa
ed to any Mi
roblaze. It 
ontained both theOPB interfa
e hardware as well as the 
omparatorhardware both of them working in parallel withoutany 
onne
tion whatsoever. We had to opt forthis approa
h as the solution was the EDK design
ow and hen
e we needed the voter to be availablein EDK so that we 
ould in
lude it in our MHSdes
ription. The following VHDL snippet des
ribesthe voter ar
hite
ture. Note that the OPB part hasbeen omitted as it is not required to be shown.The VHDL 
ode for the voter (a 2 bit module)basi
ally 
ompares the three inputs with ea
h otherand passes that value whi
h appears on at least twoinputs to the output. An error is generated if eitheronly two inputs mat
h or all inputs mismat
h. In theevent where all inputs mismat
h the output is made"00". The inputs 
an assume values "00","01","10"or "11" hen
e the output 
an assume these samevalues. Even if only two inputs mat
h, the voter willstill output the value keeping the system in operationbut at the same time it indi
ates to the personnelthat an internal error has o

ured.library ieee;use ieee.std logi
 1164.all;use ieee.std logi
 arith.all;use ieee.std logi
 unsigned.all;library pro
 
ommon v2 00 a;use pro
 
ommon v2 00 a.pro
 
ommon pkg.all;entity voter isport(voter in0:std logi
 ve
tor(0 to 1);voter in1:std logi
 ve
tor(0 to 1);voter in2:std logi
 ve
tor(0 to 1);voter out:std logi
 ve
tor(0 to 1);sys error:std logi
);end entity voter;

ar
hite
ture voter ar
h of voter issignal voter in0 store:std logi
 ve
tor(0 to 1);signal voter in1 store:std logi
 ve
tor(0 to 1);signal voter in2 store:std logi
 ve
tor(0 to 1);beginvoter a
tion : pro
ess( voter in0 store,voter in1 store,voter in2 store ) isbeginif(voter in0 store = voter in1 store) and(voter in0 store /= voter in2 store) thenvoter out store ( voter in0 store;sys error store ( '1';elsif(voter in0 store = voter in2 store )and (voter in0 store /= voter in1 store) thenvoter out store ( voter in0 store;sys error store ( '1';elsif(voter in1 store = voter in2 store ) and(voter in1 store /= voter in0 store) thenvoter out store ( voter in1 store;sys error store ( '1';elsif(voter in0 store = voter in1 store) and(voter in1 store = voter in2 store ) thenvoter out store ( voter in0 store;sys error store ( '0';elsevoter out store ( "00";sys error store ( '1';end if;end pro
ess voter a
tion;voter out ( voter out store;sys error ( sys error store;end ar
hite
ture voter ar
h;As shown in the above 
ode the voter looks fordi�erent mat
h possibilities and asserts an er-ror if only two inputs mat
h or all three inputsdon't mat
h. Figure 7 shows the voter ar
hite
ture.

As shown the voter has two distin
t parts, the 
om-parator whi
h performs the voting a
tion and thedummy OPB part used only to get the voter pe-ripheral in
luded in the MHS �le via the 'Add Edit
ores' option in EDK. The 
omparator is purely
ombinational in nature for now and may be madesequential in future. Following is the MHS 
odesnippet to illustrate how the voter was interfa
ed.
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BEGIN voterPARAMETER INSTANCE = voter 0PARAMETER HW VER = 1.00.aPORT voter in0 = voter sig0PORT voter in1 = voter sig1PORT voter in2 = voter sig2PORT voter out = sys out ioPORT sys error = sys err ioENDAs shown the voter is interfa
ed only to theinputs and outputs. Voter sig0, voter sig1 andvoter sig2 are internal 
onne
tions 
onne
ting theVGPIO outputs to the voter inputs. Similarlysys out io and sys err io are 
onne
tions to theoutputs.3 System Veri�
ation3.1 MISRA-C 
omplian
eMISRA-C(MISRA 2004) sets out guidelines for theuse of C language in safety 
riti
al systems. Oursoftware was 
he
ked for MISRA-C(MISRA 2004)rules by Abraxas Software's CodeChe
k MISRA-C(MISRA 2004) rules 
he
ker. The tool basi
allyparses the user's C 
ode and lists warnings 
orre-sponding to ea
h MISRA-C rule that has not beensatis�ed in the 
ode. Following is the results obtainedby the rules 
he
ker.Abraxas Software (R) CodeChe
kWindows Version 1300 B1 DEMOCopyright (
) 1988�2006, byAbraxas Software In
.All rights reservedChe
king extended ANSI C �le
ounter0.
 with rules from misra04.


ounter0.
(9): Warning W0076: 
ounter0.
(9):Rule 76 (REQUIRED) 16.5 Fun
tions with noparameters shall be de
lared with parametertype void.
ounter0.
(9): Warning W0071: 
ounter0.
(9) :Rule 71 (REQUIRED) 8.1 Fun
tions shall alwayshave prototype de
larations. fDEFNg
ounter0.
(9): Warning W0074: 
ounter0.
(9) :Rule 74 (REQUIRED) 16.4 identi�ers given forany of the parameters de
l and/or defn mustbe same
ounter0.
(14): Warning W0071: 
ounter0.
(14) :Rule 71 (REQUIRED) 8.1 Fun
tions shall alwayshave prototype de
larations. fCALLgFile 
ounter0.
 
he
k 
omplete.As shown above the appli
able rules have beenpointed out by the 
he
ker wherever required and wehave veri�ed our 
ode for potential hazards at thesepoints. For example line 9 warning W0076!Thismeans that MISRA-C rule number 76 has not beensatis�ed in the 
ode and so on. Similar results wereobtained for the �les 
ounter1.
 and 
ounter2.
The warnings with the level 'REQUIRED' havebeen taken 
are of but they appear be
ause somepart of the 
ode is in header �les whi
h were notin
luded (they were initially in
luded whi
h gave riseto warnings due to the presen
e of other header �leswhi
h was not an indi
ation of non safety 
riti
al
ode) during CodeChe
k run. For example rule71 at line 14 says that fun
tions shall always haveprototype de
larations whi
h has been implementedin the header �les. Hen
e the warnings are notserious and the 
ode 
an be 
onsidered to 
omply

with MISRA-C guidelines.3.2 Mi
roblaze 
ompiler outputThe Mi
roblaze g

 
ompiler output for ea
h of thesoftware �les (
ounter0.
,
ounter1.
,
ounter2.
) hasbeen shown. The fa
t that the 
ompilation tookpla
e without errors is justi�ed due to the presen
e ofthe size of 
ode (hex 6a
,6a
,6e
) and exe
utable.elf�le for ea
h of the three �les. The result also showsthe 
ode and data memory map used viz for the �rst
ode instan
e (
ounter0.
) the program memory anddata memory start at 0x0000,for the se
ond 
ode instan
e (
ounter1.
) the programmemory and data memory start at 0x4000 andfor the third 
ode instan
e (
ounter2.
) the programmemory and data memory start at 0x8000.Following is the Mi
roblaze 
ompiler (mb�g

)output:At Lo
al date and time: Mon Apr 24 15:55:37 2006Command xbash �q �
 "
d /
ygdrive/d/aSCSa1/;/usr/bin/make �f system.make program; exit;"Started...mb�g

 �O2 mi
roblaze 0/
ode/
ounter0.
 �o
ounter0/exe
utable.elf n�Wl,�defsym �Wl, TEXT START ADDR=0x0000�mno�xl�soft�mul �g �I./mi
roblaze 0/in
lude/-L./mi
roblaze 0/lib/ n�xl�mode�exe
utable nmb�size 
ounter0/exe
utable.elftext data bss de
 hex �lename664 12 1032 1708 6a
 
ounter0/exe
utable.elfmb�g

 �O2 mi
roblaze 1/
ode/
ounter1.
 �o
ounter1/exe
utable.elf n�Wl,�defsym �Wl, TEXT START ADDR=0x4000�mno�xl�soft�mul �g �I./mi
roblaze 1/in
lude/�L./mi
roblaze 1/lib/ n�xl�mode�exe
utable nmi
roblaze 1/
ode/
ounter1.
:30:2: warning: nonewline at end of �lemb�size 
ounter1/exe
utable.elftext data bss de
 hex �lename664 12 1032 1708 6a
 
ounter1/exe
utable.elfmb�g

 �O2 mi
roblaze 2/
ode/
ounter2.
 �o
ounter2/exe
utable.elf n�Wl,�defsym �Wl, TEXT START ADDR=0x8000�mno�xl�soft�mul �g �I./mi
roblaze 2/in
lude/�L./mi
roblaze 2/lib/ n�xl�mode�exe
utable nmi
roblaze 2/
ode/
ounter2.
:30:2: warning: nonewline at end of �lemb�size 
ounter2/exe
utable.elftext data bss de
 hex �lename728 12 1032 1772 6e
 
ounter2/exe
utable.elfDone.3.3 Fault Inje
tionVarious hardware faults were emulated both in soft-ware and hardware. Stu
k at faults were emulatedby inserting fault inje
tion 
ode in software (see soft-ware se
tion). Stu
k at fault means that the nodes arestu
k either at logi
 high or low due to a 
on�guration/ bitstream error or fabri
ation defe
ts or hardwaredesign fault. Bit 
ip faults were emulated by insert-ing 'bit 
ip fault' 
ode in VGPIO VHDL �le (
odehasn't been shown as �le is too large to be in
luded).3.4 Board level Veri�
ationThe system was run on ML401 Xilinx Evaluationboard by tying the outputs to LED's. Following is alisting of the user 
on�guration �le (UCF) 
reated in
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EDK.Net sys 
lk pin LOC=AE14;Net sys 
lk pin IOSTANDARD = LVCMOS33;Net sys rst pin LOC=D6;Net sys rst pin PULLUP;## System level 
onstraintsNet sys 
lk pin TNM NET = sys 
lk pin;TIMESPEC TS sys 
lk pin = PERIOD sys 
lk pin10000 ps;Net sys rst pin TIG;## FPGA pin 
onstraintsNet sys out pin<0> LOC=E2;Net sys out pin<0> IOSTANDARD = LVCMOS25;Net sys out pin<1> LOC=E10;Net sys out pin<1> IOSTANDARD = LVCMOS25;Net sys err pin LOC=A5;Net sys err pin IOSTANDARD = LVCMOS25;The above listing shows 
onne
tions of various signals(
lk,rst,sys out pin(0),sys out pin(1),sys err pin) toFPGA pins (AE14,D6,E2,E10,A5) respe
tively. The
onstraints applied also show the I/O standards in ef-fe
t, for example the sys 
lk pin has an I/O standardLVCMOS33 whi
h means Low Voltage CMOS 3.3V.Similarly the sys out pins and sys err pin have I/Ostandard LVCMOS25 (Low Voltage CMOS 2.5V).The sys rst pin has been pulled up to V

 (power vizlogi
 high) sin
e on the board the reset (sys rst pin)is a
tive low (meaning that the system is reset whensys rst pin is logi
 low). This basi
ally means thatwhen reset button is not pressed the sys rst pin willbe logi
 high and when reset button is pressed itwill be logi
 low. The system level 
onstraints havethree 
ommands namely TNM NET, TIMESPECand TIG whose explanation is as follows :TNM NET means that sys 
lk pin is to be used in atiming spe
i�
ation.TIMESPEC de�nes the 
lo
k period viz 100MHz.TIG means that sys rst pin is to be ignored for atiming spe
i�
ation.4 Con
lusionA triple modular redundant te
hnique for reli-able software exe
ution in the event of hardwarefaults adhering to MISRA-C(MISRA 2004) ruleswas implemented and veri�ed on a Virtex 4 FPGA(XC4VLX25) on the ML401 Xilinx Evaluation Board.The te
hnique exhibited true 
on
urren
y in be-haviour and operated 
orre
tly for long periods oftime. This TMR work is one step in our investigationof reliable FPGA based programmable 
ontroller forsafety 
riti
al appli
ations.5 Future WorkPresently the three 
opies of 
ode are identi
al to ea
hother. To guard against design faults in software itis possible that ea
h of the three 
odes is di�erent inthat the fun
tionality of the 
odes remain same how-ever the implementation of this fun
tionality di�ersfrom 
ode to 
ode. For example the simple 
ounterimplemented in this 
ase 
an be implemented in threedi�erent ways viz1. For loop2. While loop3. Do While loopThe issue with su
h methodology is the timing di�er-en
e that may o

ur at outputs of ea
h Mi
roblazeSystem due to whi
h outputs arrive at di�erent in-stants of time thus giving an unstable operation inthat the voter would signal error every now and then

whi
h 
ould 
ause system malfun
tion.We propose to investigate in this dire
tion of 
odediversity in TMR systems and 
hallenges involved indesign of voter for su
h 
ir
umstan
es.Referen
esMISRA(2004), MISRA-C : 2004, Guidelines for theuse of the C language in 
riti
al systems.IEC(1998), International Standard IEC61508 - Fun
tional safety of ele
tri-
al/ele
troni
/programmable ele
troni
 safetyrelated systems.B.W.Johnson(1989), Design and Analysis of fault tol-erant digital systems.G.Berry and the Esterel team(2000), The Esterelv5 91 System Manual.F.Lima Kastensmidt, L.Sterpone, L.Carro, M.SonzaReorda(2005), On the Optimal Design of TripleModular Redundan
y Logi
 for SRAM basedFPGA's, in `IEEE Pro
eedings of the Design,Automation and Test in Europe Conferen
e andExhibition (DATE'05)', Vol. 2, pp. 1290{1295.Elmootazbellah Elnozahy, Rami Melhem, DanielMosse(2002), Energy EÆ
ient Duplex and TMRReal Time Systems, in `Pro
eedings of the23rd IEEE Real Time Systems Symposium(RTSS'02)', pp. 256{266.Hyunki Kim, Hyung Joon Jeon, Keyseo Lee, Hyun-tae Lee(2002), The Design and Evaluation of AllVoting Triple Modular Redundan
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