
Conferences in Research and Practice in
Information Technology

Volume 63

Database Technologies 2007

Australian Computer Science Communications, Volume 29, Number 2.

Database Technologies 2007

Proceedings of the
Eighteenth Australasian Database Conference (ADC 2007),
Ballarat, Victoria, Australia,
January 30 to February 2, 2007

James Bailey and Alan Fekete, Eds.

Volume 63 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Proceedings of the Eighteenth Australasian Database Conference (ADC 2007), Ballarat,
Victoria, January 30 to February 2, 2007

Conferences in Research and Practice in Information Technology, Volume 63.

Copyright c©2007, Australian Computer Society. Reproduction for academic, not-for profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:
James Bailey
Department of Computer Science and Software Engineering
The University of Melbourne
Victoria 3010,
Australia
Email: jbailey@csse.unimelb.edu.au

Alan Fekete
School of Information Technologies
University of Sydney
NSW 2006,
Australia
Email: fekete@it.usyd.edu.au

Series Editors:
Vladimir Estivill-Castro, Griffith University, Queensland
John F. Roddick, Flinders University, South Australia
Simeon Simoff, University of Technology, Sydney, NSW
crpit@infoeng.flinders.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 63.
ISSN 1445-1336.
ISBN 1-920-68244-9.

Printed, November 2006 by Flinders Press, PO Box 2100, Bedford Park, SA 5042, South Australia.
Cover Design by Modern Planet Design, (08) 8340 1361.

The Conferences in Research and Practice in Information Technology series aims to disseminate the results of
peer-reviewed research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Proceedings of the Eighteenth Australasian Database Conference (ADC 2007),
Ballarat, Victoria, January 30 to February 2, 2007

Preface . vii

Programme Committee . viii

Organising Committee . ix

CORE - Computing Research and Education . xi

ACSW Conferences and the Australian Computer Science
Communications . xii

ACSW and ADC 2007 Sponsors . xv

Keynote

Taming the Dynamics of Distributed Data . 3
Krithi Ramamritham

Invited Paper

Continuously Maintaining Order Statistics over Data Streams . 7
Xuemin Lin

Contributed Papers

Managing Ontologies: A Comparative Study of Ontology Servers . 13
Mohammad Nazir Ahmad and Robert M. Colomb

Beyond Purpose-Based Privacy Access Control . 23
Sabah S. Al-Fedaghi

The Privacy of k-NN Retrieval for Horizontal Partitioned Data – New Methods and Applications . . . 33
Artak Amirbekyan and Vladimir Estivill-Castro

A Processing Model for the Optimal Querying of Encrypted XML Documents in XQuery 43
Tao-Ku Chang and Gwan-Hwan Hwang

Computer Assisted Assessment of SQL Query Skills . 53
Stijn Dekeyser, Michael de Raadt and Tien Yu Lee

Pruning SIFT for Scalable Near-duplicate Image Matching . 63
Jun Jie Foo and Ranjan Sinha

Optimizing XPath Queries on Streaming XML Data . 73
Keerati Jittrawong and Raymond K. Wong

Interoperability for Geospatial Analysis: a Semantics and Ontology-based Approach 83
Zarine Kemp, Lei Tan and Jacqueline Whalley

Selectivity Estimation by Batch-Query based Histogram and Parametric Method 93
Jizhou Luo, Xiaofang Zhou, Yu Zhang, Heng Tao Shen and Jianzhong Li

A Heuristic Approach to Cost-Efficient Derived Horizontal Fragmentation of Complex Value Databases 103
Hui Ma, Klaus-Dieter Schewe and Qing Wang

Condensative Stream Query Language for Data Streams . 113
Lisha Ma, Werner Nutt and Hamish Taylor

Incremental Mining for Temporal Association Rules for Crime Pattern Discoveries 123
Vincent Ng, Stephen Chan, Derek Lau and Cheung Man Ying

Opinion Search in Web Logs . 133
Deanna J. Osman and John L. Yearwood

Distributed Text Retrieval From Overlapping Collections . 141
Milad Shokouhi, Justin Zobel and Yaniv Bernstein

Building a Disordered Protein Database: A Case Study in Managing Biological Data 151
Arran D. Stewart and Xiuzhen Zhang

Efficient Similarity Search by Summarization in Large Video Database . 161
Xiangmin Zhou, Xiaofang Zhou and Heng Tao Shen

Author Index . 169

vi

Preface

The Australasian Database Conference (ADC) series is an annual forum, exploring research, development
and novel applications of databases systems. This volume contains papers presented at the Eighteenth
ADC in Ballarat, Victoria, Australia. ADC 2007 is a specialist conference in the Australasian Computer
Science Week, which ran from January 29 to February 2, 2007.

Database systems is a rich and broad research area and the call for papers reflected this diversity. Sub-
missions were requested in the areas of advanced database applications, advanced foundations of databases,
databases for bioinformatics, data mining/knowledge discovery, data warehousing, database system integra-
tion issues, database schema integration, embedded and mobile databases, federated, distributed, parallel
and grid databases, extended data type management, high dimensional and temporal data, image/video
retrieval and databases, information retrieval, filtering and dissemination, logic in databases, performance
issues of databases, privacy and secure databases, databases query languages, query processing and opti-
mization, semi-structured data, spatial data processing/management, stream data management, transac-
tion processing, Web access to databases, Web information systems, XML and databases.

In response to the call for papers, we received 35 full papers. The range of submissions was truly inter-
national, with papers submitted from Australia (14), New Zealand (2), Canada (1), Japan (3), France (1),
United Kingdom (3), China(2), Germany(1), Finland(1), South Korea(2), Kuwait(1), Taiwan(1), Italy(2),
Vietnam(1).

The international Program Committee contained experts from across all aspects of database research
and had wide representation across Australia and New Zealand, as well as integrating some highly regarded
researchers from Asia and the United States.

All papers were sent to four programme committee members for review and nearly all papers received
four reviews. Every paper received at least three reviews. Of the 35 papers submitted, 16 were selected for
presentation at the conference. Professor Krithi Ramamritham was invited to give a keynote on Taming the
Dynamics of Distributed Data. Professor Ramamritham is the Vijay and Sita Vashee Chair at the Indian
Institute of Technology, Bombay. The committee also invited Associate Professor Xuemin Lin to give a
talk on Continuously Maintaining Order Statistics over Data Streams.

We thank all authors who submitted papers and all conference participants for helping to make the
conference a success. We also thank the members of the programme committee and the external referees for
their expertise in carefully reviewing the papers. Lastly, we express our gratitude to our hosts in Ballarat.

James Bailey
University of Melbourne

Alan Fekete
University of Sydney

ADC 2007 Programme Chairs
January 2007

vii

Programme Committee

Chairs

James Bailey, University of Melbourne
Alan Fekete, University of Sydney

Members

Dave Abel, CSIRO
Stijn Dekeyser, University of Southern Queensland
Gill Dobbie, University of Auckland
David Edmond, QUT
Raj P Gopalan, Curtin University of Technology
Guido Governatori, University of Queensland
Hongfei Guo, Microsoft Research
Sven Hartmann, Massey University
David Hawking, CSIRO Canberra
Annika Hinze, University of Waikato
Patrick Hung, University Of Ontario Institute of Technology
Xue Li, University of Queensland
Xuemin Lin, University of New South Wales
Sebastian Link, Massey University
Beng Chin Ooi, National University of Singapore
John Roddick, Flinders University
Uwe Roehm, University of Sydney
John Shepherd, University of New South Wales
Markus Stumptner, University of South Australia
S. Sudarshan IIT Bombay
Saied Tahaghoghi, RMIT University
Kian-Lee Tan, National University of Singapore
Egemen Tanin, University of Melbourne
Rodney Topor, Griffith University
Andrew Turpin, RMIT University
Wei Wang, University of New South Wales
Gerald Weber, University of Auckland
Raymond Wong, University of New South Wales
Jeffrey Yu, Chinese University of Hong Kong
Yanchun Zhang, Victoria University
Xiaofang Zhou, University of Queensland

Additional Reviewers

Eunus Ali Qing Liu Ranjan Sinha
Rukshan Athauda Yi Luo Muhammed Umer
Ding-Yi Chen Jiangang Ma Florian Verhein
Muhammad Cheema Sarana Nutanong Timo Volkmer
Yueguo Chen Justin O’Sullivan Moe Wynn
Roozbeh Derakhshan Simon Puglisi Bei Yu
Mohamed Gaber Xingzhi Sun Wenjie Zhang
Yanan Hao Falk Scholer Rui Zhang
Dayang Iskandar Yanfeng Shu Emily Zhou

viii

Organising Committee

Welcome

I would like to welcome you to the University of Ballarat and ACSW 2007.
Ballarat is one of Australia’s largest inland cities with a population of 83,000, and is nestled peacefully in

the heart of Victoria just over an hour from Melbourne. Ballarat is regarded as the birthplace of democracy
in Australia and has one of the finest tourist attractions, namely Sovereign Hill.

The University of Ballarat is the third oldest tertiary institute in Australia. It is a medium-size Univer-
sity with about 22,000 students. The School of Information Technology and Mathematical Sciences of the
University of Ballarat has 80 academic and general staff and includes the research Centre for Informatics
and Applied Optimization (CIAO) and the Collaborative Centre for eHealth (CCeH).

ACSW 2007 includes the following conferences:

– Australasian Computer Science Conference (ACSC),
– Australasian Database Conference (ADC),
– Australasian Computer Education Conference (ACE),
– Computing: The Australian Theory Symposium (CATS),
– Asia-Pacific Conference of Conceptual Modelling (APCCM),
– Australasian User Interface Conference (AUIC),
– Australasian Symposium on Grid Computing and Research (AUSGRID),
– Australasian Workshop on Health Knowledge Management and Discovery (HKMD),
– Australasian Information Security Workshop:Privacy Enhancing Systems (AISW), and the
– Australasian Computing Doctoral Consortium (ACDC).

I thank all those who have worked to ensure the success of ACSW2007 including the Organizing Com-
mittee, the Conference Chairs and Programme Committees, the invited speakers and the delegates.

Professor Sid Morris
Head, School of Information Technology and Mathematical Sciences
University of Ballarat
January, 2007

General Chair

Professor Sid Morris, School of Information Technology and Mathematical Sciences, University of Ballarat

Organising Committee Members

Ms Nadine Gass
Mr Sasha Ivkovic
Ms Kathleen Keogh
Dr Liping Ma
Dr Prabhu Manyem
Mr Greg Simmons
Ms Rosemary Torney
Dr Chris Turville
Ms Belinda Wallesz
Dr David Yost

ix

x

CORE - Computing Research and Education

CORE welcomes all delegates to ACSW2007 in Ballarat.
ACSW, the Australasian Computer Science Week continues to grow with new conferences becoming

entrenched in the week. As the premier annual Computer Science event in Australia and New Zealand,
it provides an unparalleled opportunity for the wide community of Computer Science academics and re-
searchers to meet, network, promote IT research and be exposed to the latest research in other areas of
IT. The research presented at each conference is of the highest standard and essential for the growth and
future of our region, in an ever more competitive world.

2006 has been a difficult year for IT and especially CORE’s members. Falling student numbers have
meant cutbacks in many of our universities. However, despite offshoring, industry is now calling for more
graduates. We’ll continue to work with ACS and industry bodies to try to convey this message to school
leavers and their parents. We also have to continue to impress on industry the need to provide entry level
positions so that young people can work towards the more senior positions which are so understaffed.

RQF is still hovering over Australian universities. In preparation, CORE has been part of a major
exercise this year to rank ICT conferences and we’ll contribute to the work of our sister organisation,
ACPHIS in a similar journal ranking exercise.

Thank you all for your contributions in 2006 and we look forward to an exciting 2007.

Jenny Edwards
President, Computing Research and Education
January, 2007

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2009 (Proposed). Communications Volume Number 31. Host and Venue - Victoria University, Wellington, New
Zealand.

2008. Volume 30. Host and Venue - University of Wollongong, NSW.

2007. Volume 29. Host and Venue - University of Ballarat, VIC.

2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACE. Australian/Australasian Conference on Computing Education.
ACSAC. Asia-Pacific Computer Systems Architecture Conference (previously Australian Computer Architecture

Conference (ACAC).
ACSC. Australian/Australasian Computer Science Conference.
ACSW. Australian/Australasian Computer Science Week.
ADC. Australian/Australasian Database Conference.
AISW. Australasian Information Security Workshop.
APBC. Asia-Pacific Bioinformatics Conference.
APCCM. Asia-Pacific Conference on Conceptual Modelling.
AUIC. Australian/Australasian User Interface Conference.
AusGrid. Australasian Workshop on Grid Computing and e-Research.
CATS. Computing - The Australian/Australasian Theory Symposium.

Note that various name changes have occurred, most notably the change of the names of conferences to reflect a

wider geographical area.

xiii

xiv

ACSW and ADC 2007 Sponsors

We wish to thank the following sponsors for their contribution towards this conference. For an up-to-date
overview of sponsors of ACSW 2007 and ADC 2007, please see http://www.ballarat.edu.au/acsw/.

University of Ballarat, Australia

Australian Computer Society

CORE - Computing Research and Education

Department of Computer Science and Software Engineering

School of Information Technologies

xv

Keynote

Proc. Eighteenth Australasian Database Conference (ADC 2007)

1

CRPIT Volume 63

2

Taming the Dynamics of Distributed Data

Krithi Ramamritham
Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

krithi@iitb.ac.in

.The Internet and the web are increasingly used to
disseminate fast changing data such as sensor data,
weather information, stock prices, sports scores, and even
health monitoring information. These data items are
highly dynamic, i.e., the data changes continuously and
rapidly, streamed in real-time, i.e., new data can be
viewed as being appended to the old or historical data,
and aperiodic, i.e., the time between the updates and the
value of the updates are not known a priori. Increasingly,
more and more users are interested in monitoring such
data for on-line decision making. Traditional
dissemination methods involve a pull or a push of data
between a source of the data and a client. However,
resource limitations at the source limits the number of
users that can be served directly by it.

A natural solution to this is to have a set of repositories
which replicate the source data and serve it to
geographically closer users. Services like Akamai and
IBM's edge server technology are exemplars of such
networks of repositories, which aim to provide better
services by shifting most of the work to the edge of the
network (closer to the end users). Although such systems
scale quite well, when the data changes rapidly, the
quality of service at a repository farther from the data
source will deteriorate. In general, replication can reduce
the load on the sources, but replication of time-varying
data introduces new challenges. Unless updates to the
data are carefully disseminated from sources to
repositories (to keep them coherent with the sources), the
communication and computation overheads involved can
result in delays as well as scalability problems, further
contributing to loss of data coherence.

In situations where the data is to be used for on-line
monitoring or online decision making, users specify the
bound on the tolerable imprecision associated with each
requested data item, this can be viewed as coherence
requirement associated with the data. The coherence
requirements associated with a time-varying data item
depend on the nature of the item and user tolerances. For
example, a user involved in exploiting exchange
disparities in different markets or an on-line stock trader

Copyright © 2007, Australian Computer Society, Inc. This
paper appeared at the Eighteenth Australasian Database
Conference (ADC 2007), Ballarat, Victoria, Australia, January
2007. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 63. James Bailey and Alan Fekete,
Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

may impose stringent coherence requirements (e.g., the
stock price reported should never be out-of sync by more
than one cent from the actual value) whereas a casual
observer of currency exchange rate fluctuations or stock
prices may be content with a less stringent coherence
requirement.

What is needed is a dynamic data distribution system that
is coherence-preserving, i.e., the delivered data must
preserve associated coherence requirements, and resilient,
i.e., the system should be resilient to failures. Needless to
say, it should work effectively with the minimal
provisioning of resources.

Given such a data dissemination network, users can
execute queries over distributed data by obtaining the
data required for the query from one or more data
repositories in the network. How this mapping – between
query needs and data repositories – is done, depends on
(a) the coherency of the data available at each repository
and the precision requirements associated with the query,
(b) the dynamics of the data, etc. Solving this
optimization problem turns out to be challenging,
especially since the mapping must be revisited as data
characteristics change.

In this talk we will present work done at IIT Bombay
towards solving these problems and also relate to ongoing
work on sensor networks and stream processing systems.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

3

CRPIT Volume 63

4

Invited Paper

Proc. Eighteenth Australasian Database Conference (ADC 2007)

5

CRPIT Volume 63

6

Continuously Maintaining Order Statistics over Data Streams

(Extended Abstract)

Xuemin Lin

School of Computer Science and Engineering
University of New South Wales,

NSW 2052, Australia
Email: lxue@cse.unsw.edu.au

1 Introduction

A rank query is essentially to find a data element
with a given rank against a monotonic order speci-
fied on data elements. It has several equivalent vari-
ations [8, 17, 30]. Rank queries over data streams
have been investigated in the form of quantile com-
putation. A φ-quantile (φ ∈ (0, 1]) of a collection
of N data elements is the element with rank dφNe
against a monotonic order specified on data elements.
Rank and quantile queries have many applications
[1, 3, 6, 7, 10, 14–16, 26, 27], including monitoring high
speed networks, trends and fleeting opportunities de-
tection in the stock market, sensor data analysis, Web
ranking aggregation and log mining, etc. In these ap-
plications, they not only play very important roles
in the decision making but also have been used in
summarizing data distributions of data streams. The
following example shows a popular tool to compare
the distributions of two data sets (data streams).

Example 1 An information provider may provide
various real-time statistics of the stock market to its
clients, through the Internet or telecommunication,
for trends’ analysis. One of the most popular charts
is the quantile-quantile (Q-Q) plot [28] for comparing
two data distributions. In a stock market, price and
volume distributions are two key indexes to monitor.
Figure 1 illustrates such a Q-Q plot by using two real
datasets AOL and Technique section. In AOL, 1.3M
(millions) “tick-tick” transactions during the period
Dec/2000 - July/2001 sorted increasingly against the
volume of each transaction (deal) are collected from
NYSE (New York Stock Exchange) for the stock AOL.
In Technique section, 27M tick-tick transactions are
collected in the same period for the stocks csco, ibm,
dell, sun, ca and also sorted on volumes. The fig-
ure demonstrates that clients can view the global chart
(with very coarse information due to physical limits of
display) for a general comparison, and can also click
on such a chart graph to zoom in a particular range of
quantiles interactively for more accurate information.
Such Q-Q plots combining with other statistic display
tools greatly facilitate clients detection of trade trends
and thus make good trade decisions.

The work is partially supported by an ARC Discovery Grant
(DP0666428).

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at Eighteenth Australasian Database Conference
(ADC2007), Ballarat, Victoria, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
63. James Bailey and Alan Fekete, Ed. Reproduction for aca-
demic, not-for profit purposes permitted provided this text is
included.

In such an application, clients may require on-line
updates (processing) of Q-Q plots to monitor trading
trends and detect fleeting opportunities in real time.

It has been shown in [20] that an exact compu-
tation of rank queries requires memory size linearly
proportional to the size of a dataset by any one-scan
technique; this may be impractical in on-line data
stream computation where streams are massive in size
and fast in arrival speed. Approximately computing
rank queries over data streams, thus, has received a
great deal of attention recently. The main paradigm
is to continuously maintain a small space data struc-
ture, called summary or sketch, to summarize order
statistics. In this talk, we will introduce the space-
and time-efficient one-scan techniques of continuously
maintaining order statistics for supporting approxi-
mate rank (quantile) queries. These include deter-
ministic and randomized approximate techniques. We
also discuss open issues in the area.

2 ε-approximation

In the problem setting, an element x may be aug-
mented to (x, v) where v = f(x) (called “value”) is
to rank elements according to a monotonic order of
v, and f is a pre-defined function. Without loss of
generality, we assume v > 0 and a monotonic order
is always an increasing order. We study the following
rank queries over a data stream S.

Rank Query (RQ) : Given a rank r, find the rank
r element in S.

Suppose that r is the given rank in a RQ query,
and r′ is the rank of an approximate solution. We
could use the constant-based absolute error metric;
that is, enforce |r′ − r| ≤ ε for a given ε. It is imme-
diate that such an absolute error precision guarantee
leads to the space requirement Ω(N) even for an off-
line computation where N = |S|. Therefore, two error
metrics have been used.

Uniform Error. |r′−r|
N ≤ ε.

Relative Error. |r′−r|
r ≤ ε.

An answer to a RQ regarding r is uniform ε-
approximate if its rank r′ has the precision |r′ − r| ≤
εN ; it is relative ε-approximate if its rank r′ has the
precision |r′ − r| ≤ εr. In this talk, we present the
techniques of continuously maintaining a sketch (con-
sisting of several sub-sketches) over a data stream S
such that at any time, the sketch can be used to re-
turn a (relative or uniform) ε-approximate answer to
a RQ. The focus is to minimize the maximum mem-
ory space required in such a continuous computation
of sketch/summary.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

7

 0
 2000 2000

 1000 2200 2100

 2000
 2400 2200

 3000

 2600 2300

 4000

 2800 2400

 0

 3000 2500

 2000 2000 1000 2200 2100 2000 2400 2200 3000 2600 2300 4000

A
O

L
:

V
o

lu
m

n
 o

f
T

ra
n

s
a

c
ti
o

n
s

Technique Section: Volumn of Transactions

 2800 2400 3000 2500

[9.44x10−3, 9.86x10−3]

[9.435x10−3, 9.705x10−3]

Quantile

Quantile

Figure 1: Q-Q Plot

3 Uniform Error Techniques

It has been shown in [15,25] that a space-efficient, uni-
form ε-approximate quantile summary can be main-
tained so that, for a quantile φ, it is always possible
to find an element at rank r′ with the precision guar-
antee |dφNe − r′| ≤ εN . Greenwald and Khanna [15]
developed a one-scan technique with O(1

ε log(εN))
space bound and the deterministic error guarantee
|r − r′| ≤ εN .

Manku et al [24] provided a space efficient ran-
domized algorithm, based on an adaptive sampling
technique, to achieve the uniform precision guaran-
tee εN with confidence (probability) at least 1 − δ

and space O(1
ε log2 1

εδ). It has been shown that if the
GK-algorithm [15] is applied, the space bound can be
reduced to O(1

ε log 1
εδ).

Gilbert et al [13] proposed space-efficient random-
ized techniques for processing rank queries (quantile
queries) when elements already seen may be updated;
the uniform precision guarantee εN is also used. Cor-
mode and Muthukrishnan [5] showed that an appli-
cation of their count-min sketch technique can reduce

the space bound in [13] from O(1
ε2 log2 |U | log log |U|

δ)

to O(1
ε log2 |U | log log |U|

δ) where U is the value do-
main.

In [27], Shrivastava et al investigated the problem
of minimizing uniform errors, when a space bound is
pre-given, with the applications in sensor networks.

While quantile (order statistic) summaries over
whole data streams have their applications, such sum-
maries do not have the concept of aging, that is, quan-
tiles are computed for all N data elements seen so far,
including those seen long time ago. There are a broad
spectrum of applications where data elements seen
early could be outdated and quantile summaries for
the most recently seen data elements are more impor-
tant. For example, the top ranked Web pages among
most recently accessed N pages should produce more
accurate web page access prediction than the top
ranked pages among all pages accessed so far as users’
interests are changing. In financial market, investors
are often interested in the price quantile of the most
recent N bids. Motivated by this, in [21] we developed
space- and time- efficient sliding window techniques to
continuously maintaining order statistics over fixed-
length sliding windows and variable sliding window
techniques, respectively. Our techniques are based
on a combination of GK-algorithm [15] and the ex-
ponential histogram techniques in [11]; they provide
uniform ε-approximation. Arasu and Manku [2] re-
place the exponential histogram based data structure
by an interval-tree like data structure to improved the
space bound in our paper [21].

4 Relative Error Techniques

In many applications, it is desirable to investigate
relative errors (or biased errors); that is, enforce er-
ror precision εr (relative ε-approximation) instead of
εN . As pointed out in [7], finer error guarantees at
higher ranks are often desired in network manage-
ment.1 This is because IP traffic data often exhibits
skew towards the tail and it is exactly in the most
skewed region where one wants finer rank error guar-
antees, to get more precise information about changes
in values.

The problem of finding approximate quantiles with
relative error guarantees was first studied by Gupta
and Zane [17], who developed a one-scan randomized

technique with O(1
ε3 log2 N) space requirement for

approximately counting inversions, by maintaining
an order sketch with the relative rank error guarantee
ε. However, the technique requires advance knowl-
edge of (an upper bound on) N to do one-scan sam-
pling. This potentially limits its applications. Cor-
mode et al. [7] studied the related problem - com-
puting biased quantiles, that is, the set of quantiles
Φ = {φi = φi

0 : 1 ≤ i ≤ k}, for a fixed k and some φ0,
which are estimated with precision εφiN . [7] gives an
algorithm to approximate such biased quantiles with
deterministic error guarantees which performs very
well against many real data sets. As shown in [30], to
enforce ε-approximation of rank queries it requires a
linear space Ω(N) in the worst case.

In [30], we developed a novel, space- and time- ef-
ficient multi-layer sampling technique. It guarantees
relative ε-approximation with high confidence 1 − δ
(δ > 0) and requires space O(1

ε2 log 1
δ log ε2N) in the

worst case and O(1
ε log(1

ε log 1
δ) log2+α εN

1−1/2α
) (for α > 0)

on average.
Restricted to a fixed value domain, Cormode et

al [8] recently developed a novel deterministic algo-
rithm, by significantly extending the technique in [27],
to ensure relative ε-approximation with space bound

O(log |U|
ε log εN).

The problem of sliding windows is not well solved
though there are some discussions in [7].

5 Duplicate-insensitive

In many real applications, duplicates may occur when
data elements are observed and recorded multiple
times at different data sites. For instance, as pointed
out in [7,9] the same packet may be seen at many tap
points within an IP network depending on how the

1Note that the form of our relative error metric is biased towards
the head (i.e., finer error guarantees towards lower ranks). Clearly,
finer error guarantees towards the tail may be obtained if the data
elements are ordered in reverse.

CRPIT Volume 63

8

packet is routed; thus it is important to discount those
duplicates while summarizing data distributions by
rank queries (quantiles). Moreover, to deal with pos-
sible communication loss TCP retransmits lost pack-
ets and leads to the same packet being seen even at
a given monitor more than once. Furthermore, du-
plicates may often occur due to the projection on a
subspace if elements have multiple attributes.

In such applications, there may be many dupli-
cated elements in a data stream S. To discount the
duplicates in S, rank queries have to be issued against
DS instead of S where DS denote the set of distinct
data elements in S. Note that in DS , there are no du-
plicates but many different elements may happen to
have the same values. Consequently, all the challenges
in approximately computing rank queries remain the
same. The unique challenge is to discount duplicates
without keeping all elements in a summary/sketch.

With the recent data-intensive applications in sen-
sor/P2P networks, duplicate-insensitive techniques
are also highly desirable to achieve high commu-
nication fault-tolerance. In [23], Manjhi, Nath,
and Gibbons propose an effective adaption paradigm
for in-network aggregates computation over stream
data with the aim to minimize communication costs
and to achieve high fault-tolerance. As indicated,
a duplicate-insensitive technique for approximately
computing quantiles may be immediately obtained
by a combination of their tree-based approximation
technique and the existing distinct counting technique
in [4]. It can be immediately applied to a single site,
where a data stream has duplicated elements, with
the uniform precision guarantee |r′ − r| ≤ εn by con-
fidence 1 − δ and space O(1/ε3 log 1/δ log m) where
n = |DS |.

In [9], Cormode and Muthukkrishnan present a
DISTINCT RANGE SUMS technique by applying
the FM [12] technique on the top of the count-min
[5]. The technique can be immediately used to ap-
proximately processing RQ with the uniform pre-
cision guarantee |r′ − r| ≤ εn, confidence 1 − δ,
and space O(1

ε3 log 1
δ log2 m). Independently, Had-

jieleftheriou, Byers, and Kollios [18] also developed
two novel duplicate-insensitive techniques to approx-
imately compute quantiles in a distributed envi-
ronment. Applying their techniques to a single
site immediately leads the uniform precision guar-
antee |r′ − r| ≤ εn by confidence 1 − δ and space
O(1

ε3 log 1
δ log m).

Very recently, we developed the first space- and
time- efficient, duplicate-insensitive algorithms [31]
to continuously maintain a sketch of order statistics
over data stream to enforce relative ε-approximation.
They have been developed based on the probabilis-
tic counting techniques in [4, 12]. They not only
improve the existing precision guarantee (from uni-
form ε-approximation to relative ε-approximation)
but also reduce the space from O(1

ε3 log 1
δ log m) to

O(1
ε2 log 1

δ log m) where m is the element domain size.
The sliding window problem remains open.

6 Miscellaneous

Continuous queries are issued once and run continu-
ously to update query results along with updates of
the underlying datasets. In [6], Cormode et al provide
a novel algorithm to continuously processing a rank
query in a sensor/network environment with the aim
to minimize the communication costs. We [22] re-
cently developed novel techniques to efficiently pro-
cessing a massive set of rank queries. The objective
is to share the computation as much as possible.

Quantiles computation against multi-dimensional
datasets has been recently investigated in [19,29]. Yiu
et al [29] developed an efficient R-tree based algorithm
to provide exact solutions regarding an off-line com-
puting environment, while Hershberger et al [19] pre-
sented an effective one-scan approximation technique
to maintain a small space sketch with the uniform
precision guarantee εN . The problems of relative er-
ror guarantee and duplicate-insensitiveness over data
streams remain open.

7 Future Studies

While a number of theoretical problems still remain
open, the following two new applications in continu-
ously maintaining order statistics may be worth some
exploration.

Uncertainty. In many applications, we may need to
deal with data sets with uncertainty; that is, the value
of a data element is not fixed. In such applications,
ranks of data elements have to be specified proba-
bilistically. The challenge is to effectively build a
small space summary by one-scan techniques while
the distribution of each data element is continuously
sampled.

Graphs. Graphs are very common to model many
real applications; for instance, IP network and com-
munication network. To manage and explore such
networks, summarizing distributions of various node
degrees information is an important issue. The chal-
lenge is to maintain a small space summary by one-
scan while the underlying graph structure is continu-
ously “disclosed”.

References

[1] M. Ajtai, I. S. Jayram, R. Kumar, and D. Sivaku-
mar. Approximate counting of inversions in a
data stream. In STOC 2002.

[2] A. Arasu and G. S. Manku. Approximate counts
and quantiles over sliding windows. In PODS04.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani,
and J. Widom. Models and issues in data stream
systems. In PODS’02.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar,
D. Sivakumar, and L. Trevisan. Counting dis-
tinct elements in a data stream. In RAN-
DOM’02.

[5] C. Cormode and S. Muthukrishnan. An im-
proved data stream: The count-min sketch and
its applications. In Latin American Informatics,
2004.

[6] G. Cormode, M. Garofalakis, S. Muthukrishnan,
and R. Rastogi. Holistic aggregates in a net-
worked world: Distributed tracking of approxi-
mate quantiles. In SIGMOD’05.

[7] G. Cormode, F. Korn, S. Muthukrishnan, and
D. Srivastava. Effective computation of biased
quantiles over data streams. In ICDE’05.

[8] G. Cormode, F. Korn, S. Muthukrishnan, and
D. Srivastava. Space- and time-efficient deter-
ministic algorithms for biased quantiles over data
streams. In PODS’06, 2006.

[9] G. Cormode and S. Muthukrishnan. Space effi-
cient mining of multigraph streams. In PODS’05.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

9

[10] G. Cormode, S. Muthukrishnan, and W. Zhuang.
What’s different: Distributed, continuous mon-
itoring of duplicate-resilient aggregates on data
streams. In ICDE’06.

[11] M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding win-
dows. In SODA03.

[12] P. Flajolet and G. N. Martin. Probabilis-
tic counting algorithms for data base applica-
tions. Journal of Computer and System Sciences,
31(2):182–209, 1985.

[13] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. How to summarize the universe: Dy-
namic maintenance of quantiles. In VLDB2002.

[14] M. Greenwald and S. Khanna. Power-conserving
computation of order-statistics over sensor net-
works. In PODS’04.

[15] M. Greenwald and S. Khanna. Space-efficient
online computation of quantile summaries. In
SIGMOD’01.

[16] S. Guha, N. Koudas, and K. Shim. Data-streams
and histograms. In STOC 2001.

[17] A. Gupta and F. Zane. Counting inversions in
lists. In SODA’03.

[18] M. Hadjieleftheriou, J. W. Byers, and G. Kollios.
Robust sketching and aggregation of distributed
data streams. Technical report, Boston Univer-
sity, 2005.

[19] J. Hershberger, N. Shrivastava, S. Suri, and
C. Toth. Adaptive spatial partitioning for mul-
tidimensional data streams. In ISAAC’04.

[20] J.I.Munro and M.S.Paterson. Selection and sort-
ing with limited storage. In TCS12, 1980.

[21] X. Lin, H. Lu, J. Xu, and J. X. Yu. Continuously
maintaining quantile summaries of the most re-
cent n elements over a data stream. In ICDE’04.

[22] X. Lin, J. Xu, Q. Zhang, H. Lu, J. Yu, X. Zhou,
and Y. Yuan. Approximate processing of massive
continuous quantile queries over high speed data
streams. TKDE, 18(2):683–698, 2006.

[23] A. Manjhi, S. Nath, and P. B. Gibbons. Tribu-
taries and deltas: Efficient and robust aggrega-
tion in sensor network streams. In SIGMOD’05.

[24] G. S. Manku, S. Rajagopalan, and B. G. Lind-
say. Random sampling techniques for space ef-
ficient online computation of order statistics of
large datasets. In SIGMOD’99.

[25] G. S. Manku, S. Rajagopalan, and B. G. Lind-
say. Approximate medians and other quantiles in
one pass and with limited memory. In SIGMOD,
1998.

[26] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. An-
derson. Synopsis diffusion for robust aggregation
in sensor networks. In SenSys’04.

[27] N. Shrivastava, C. Buragohain, D. Agrawal, and
S. Suri. Medians and beyond: new aggregation
techniques for sensor networks. In SenSys’04,
pages 239–249, 2004.

[28] Version2.0. Financial analysis package mt for
gaussTM - version 2.0. In Aptech System, INC,
2003.

[29] M. Yiu, N. Marmoulis, and Y. Tao. Efficient
quantile retrieval on multi-dimensional data. In
EDBT’06.

[30] Y. Zhang, X. Lin, J. Xu, F. Korn, and W. Wang.
Space-efficient relative relative error order sketch
over data streams. In ICDE’06.

[31] Y. Zhang, X. Lin, Y. Yuan, M. Kitsuregawa,
X. Zhou, and J. Yu. Summarizing order statis-
tics over data streams with duplicates (poster).
In ICDE2007, 2007.

CRPIT Volume 63

10

Contributed Papers

Proc. Eighteenth Australasian Database Conference (ADC 2007)

11

CRPIT Volume 63

12

Managing Ontologies: A Comparative Study of Ontology Servers

Mohammad Nazir Ahmad and Robert M. Colomb
School of Information Technology and Electrical Engineering

The University of Queensland
AUSTRALIA

{nazir,colomb}@itee.uq.edu.au

Abstract
An ontology is increasingly becoming an essential tool for
solving problems in many research areas. The ontology is
a complex information object. It can contain millions of
concepts in complex relationships. When we want to
manage complex information objects, we generally turn to
information systems technology. An information system
intended to manage ontology is called an ontology server.
The ontology server technology is at the time of writing
quite immature. Therefore, this paper reviews and
compares the main ontology servers that have been
reported in the literatures. As a result, we point out
several research questions related to server technology..

Keywords: Ontology, Ontology Server, Ontology Tool.

1 Introduction
An ontology is an explicit specification of a
conceptualization (Gruber, 1993). It is a designed artefact
that formally represents agreed semantics of a domain
interest in computer resources (Gruber, 1993; Guarino,
1998). This enables the sharing and reuse of information
and allows for the interoperation of information systems
(Pretorius, 2005). Although not a new field, ontology
research has recently received renewed interest in many
fields such as semantic web (e.g., Berners-Lee, 1999;
Mika, 2004), databases (e.g., Guarino, 2002), electronic
commerce (e.g., Barley et al., 1997; Corcho et al., 2001),
knowledge management (e.g., Rothenburger et al., 2006;
Chi et al., 2006), Khosla, 2003), information retrieval
(e.g., Guarino et al., 1999; Abdelali et al., 2003),
bioinformatics (e.g., Karp et al., 2002; Bada et al., 2004),
software engineering (e.g., Welty et al., 1999; Derridder
et al., 2000), intelligent systems (e.g., Akkermans et al.,
2004) and so forth. Ontology applications have been
classified in Jasper et al. (1999), Mizoguchi (2003) and
most comprehensively survey proposed by Hart et al.
(2004).

2 Managing Ontologies and Ontology Tools
A major problem with ontologies is how to manage them.
Thus, there are related research problems in the field of

Copyright (c) 2007, Australian Computer Society, Inc. This
paper appeared at the Eighteenth Australasian Database
Conference (ADC2007), Ballarat, Victoria, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 63. James Bailey and Alan Fekete,
Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

ontologies which include: (a) creating large-scale
ontologies (e.g., Lenat et al., 1995), (b) defining
expressive languages for representing ontological
knowledge (e.g., Lopez et al., 1999; Karp et al., 1999;
Fensel et al., 2001; Bechhofer et al., 2004; Klyne et al.,
2004; Brickley et al., 2004) and (c) implementing systems
or tools that support ontology-based applications (e.g.,
Farquhar et al., 1997; Chung et al., 2000; Cui et al., 2000;
Li et al., 2003; Dameron et al., 2004; Valo et al., 2005;
Starlab, 2006).

When a new ontology is going to be developed, several
basic questions arise related to the methodologies, tools
and languages to be used in ontology development as
reported in (Corcho et al., 2003). However, the
management tasks in ontologies are not ontology
development, but it should focus on other aspects such as
how to use ontologies for example in supporting
information systems interoperation. We would say these
aspects are from two fundamental ontology engineering
challenges: reusability and usability. The former aspect is
main goal in building ontologies (Uschold et al., 1996;
Motta et al., 1999; Gomez-Perez et al., 1999; Gruber,
1995). The latter aspect is how to make use of ontologies.
This is an important goal in interoperating systems, where
an exchange can involve thousands of players. We
believe that most research focuses on the development of
single or integrated tools for supporting ontology
development. In other words, they aim to support
ontology reusability. The main ontology tools in the
mainstream literature for ontology development are well
reviewed in (Corcho et al., 2003; Duineveld et al., 2000;
Mizoguchi, 2003; Fensel, 2001).

We believe that the notion of ontology server has
originally stemmed from the research of ontology
development tools. Most works describe implicitly or
explicitly the server as a kind of isolated or integrated
tool for building ontology (e.g., Li et al., 2003; Farquhar
et al., 1997; Eklund et al., 2002; Noy et al., 2002; Sure et
al., 2002; Noy et al., 2000). The isolated tools are not
fully integrated with other activities of the ontology
lifecycle (Corcho et al., 2003). Such tools are Ontolingua
Server (Farquhar et al., 1997), Ontosaurus (Swartout et
al., 1997) and OntoRama (Eklund et al., 2002). The latter
is much more ambitious, built as robust integrated
environment or suite that provides technological support
to most of the ontology lifecycles activities. They have
extensible, component-based architectures, where
modules can easily be added to provide more
functionality to the environment. (Corcho et al., 2003).
Among these environments, we can cite Protégé-2000
(Noy et al., 2000), WebODE (Arpirez et al., 2001) and
OntoEdit (Sure et al., 2002).

Proc. Eighteenth Australasian Database Conference (ADC 2007)

13

However, the discussion of ontology server in those
ontology development tools is quite confusing and still
unclear. Some studies discuss the server as ontology
repository. In this context, the server is mainly about
database technology (e.g., Pan et al., 2003; Harrison et
al., 2005). Some other studies discuss both ontology
repository and server functionality. In this context, the
server is described as an information system (e.g.,
Farquhar et al., 1997; Li et al., 2003; Starlab, 2006;
Mauger, 2005; Dameron et al., 2004; Chung et al., 2000;
Swartout et al., 1997; Arpirez et al., 2001; Sure et al.,
2002). Therefore, we would like to highlight three
important points about the notion of ontology server
discussed in many studies as follows: (a) many studies
discuss ontology tools mainly for building ontology.
Some of these tools consist of many other modules
including the ontology server. In this context, the notion
of ontology server is mostly a database issue. For
example, Corcho et al. (2003) describe Ontosaurus
(Swartout et al., 1997) as consisting of two modules:
ontology server and ontology browser. In other words, the
notion of ontology server is only referred to ontology
repository such as in (Pan et al., 2003; Harrison et al.,
2005). (b) Some studies discuss clearly ontology servers
and use the word “ontology server” in their work. These
studies include both server ontology repository and
functionalities (e.g., Li et al., 2003; Starlab, 2006;
Mauger, 2005; Dameron et al., 2004; Oberle et al., 2002),
(c) In some other studies are similar to (b), except the
notion of ontology server is limited to ontology repository
as mentioned in (a). An example is the Ontolingua server.

Ontologies are an important part of the semantic web
(Berners-Lee, 1999). The semantic web is an extension of
the current web in which information is given well
defined meaning, better enabling computers and people to
work in cooperation (Berners-Lee, 1999). In the semantic
web, ontologies can be used to encode meaning into a
web page, so that intelligent agents (applications) can
understand what the web page is about, and therefore
provide humans with more useful cooperative services
(Berners-Lee, 1999). Driven by application needs and the
semantic web vision, the ontology server is believed to be
a key component for supporting semantic web
applications (Agrawal, 2002). Therefore, in this study, we
will only focus on the ontology servers that support
ontology-based applications in open environments such
as the web and semantic web. Furthermore, we will look
into several ontology servers: (a) are mostly cited in
literatures, (b) they explicitly use word “ontology server”
in their reports and address server development issues, (c)
we assume that several of them are still progressing and
(d) focusing on two main aspects of the ontology server:
server functionalities and ontology repository.

We draw three conclusions for research directions form
understanding in three important things: First the points
above, we argue with the notion of ontology server as
mentioned in (a) and (c). The central issues in ontology
server development should include ontology repository
and server functionalities. Further, an ontology server is a
kind of information system and we can discuss the server
from information systems perspective. Second, most of
the ontology servers in the literature are used for building
ontologies. In other words, the current studies give
emphasis more the ontology server supporting some
activities in the ontology building lifecycle. We argue
that, third, to have a clearer understanding in this area, we
would need a so-called “framework” to give a brief idea
of ontology server research.

To extend these positions, we point out several basic
questions related to the functionalities, repository, and
methodological support and so forth to be used in the
ontology server development. These questions would
include:

What are the main components of ontology server?
What kind of framework can we use to understand the
server? What methodologies can we use for building
an ontology server? Does any methodology provide
support for building the server? What general
activities should we consider when building the
server? Which is the life-cycle of an ontology that the
server can support? How are the ontologies stored in
the server? What are the main server functions? How
can applications interoperate with ontology servers

and/or use the ontologies? What sort of ontology
languages is the server supposed to support? Is the
language chosen appropriate for exchanging message
between different applications? What is the main
purpose of ontology server to be developed? What sort
of the ontology server architecture can we propose?
And so forth.

In this paper, we will present the main characteristics of
ontology servers, which can assist practitioners and
researchers in this field to gain answers to the questions
above. Since at the time of writing this field is fairly
immature, we will provide guidelines that outline several
opportunities related to ontology server research.

3 Ontologies and Semantic Web

4 An Ontology Server
Ahmad et al (2006) show that the ontology server is used
at design, commit and runtime. At design time, the
ontologist uses the server for developing ontologies. At
commit-time, players (i.e. applications) will commit to a
limited part of the ontology to enable the exchange of
messages. At runtime, players exchange messages
mediated by shared ontologies. Zachman (1987) has
proposed an information system architecture framework,
which has been well accepted (Evernden, 1996; Inmon et
al., 1997; Ells, 1998; O'Rourke et al., 2003; Jones, 2005).
There are three key concepts (knowledge, process and
communication) and related enabling technologies
described by Zachman (1985). Since the ontology server
is a kind of information system, it can be described in
terms of this framework (see details in (Ahmad, 2006)).
In the context of server development, it is firstly
important to concentrate on the process aspect (server
functionality) and knowledge aspects (ontology
repository) of ontology server design.

CRPIT Volume 63

14

4.1 Ontology Server Functionality
There is a number of different ontology server
implementation available. Their functionality focuses on
editing, browsing and storing ontologies. In some cases
the ontology server also provides an inference engine that
allows statements about the relationships between entities
in different ontologies to be tested or retrieved (Li et al.,
2003). Pan et al (2003) state a number of facilities the
server may provide such as support for creating and
editing ontologies, support for publishing and retrieving
ontologies (by humans via a graphical user interface
and/or via a network protocol), support for recording
metadata about ontologies and the relationships between
them, support for interactively browsing the structure of
ontologies and inference mechanisms to verify the
consistency of ontologies.

We would say that there are two main approaches to
implementing ontology server functionalities: (a) tool
development and (b) Application Programming Interfaces
(APIs). The former approach is about developing any
kind of application on top of the ontology repository such
as ontology browser, ontology editor, ontology translator
and so on. In this approach, those tools typically perform
a single aspect of ontology server functionality. Those
tools can make use of an ontology stored in the ontology
repository. For example, Starlab (2006) has developed an
ontology browser, ontology manager and ontology
modeller to make use ontologies stored in the server
repository. The API approach is to write a program that
provides some services to the ontology repository.
Typically, any applications or tools can use those APIs to
interface the ontology repository. For example, Starlab
(2006) has provided some basic database APIs for
accessing ontologies stored in the ontology repository.
With respect to server functionality, to avoid confusion,
we should be aware of many terms appearing in studies of
server functions such as server functionality and
functions (Starlab, 2006), ontology service (FIPA, 2001),
server process (Chung et al., 2000), server services
(Farquhar et al., 1997), server operation and ontology
operation (Dameron et al., 2004), and server facilities
(Pan et al., 2003).

4.2 Ontology Server Repository
In this paper, we use term “ontology repository” and
“server repository” interchangeably. We would say that
the discussion of ontology repository gives emphasis
more to database issues such as storing and organizing
ontologies in database. There are such studies discussing
specifically ontology repository aspects such as Pan et al.
(2003) and Harrison et al. (2005). For example, Harrison
et al. (2005) have proposed a generic representation for
ontology repository. Similar to Pan et al. (2003), they
have introduced a so-called lightweight ontology
repository for enabling shareable and maintainable
ontologies. A lightweight ontology is referred to a kind of
ontology that simple, generic form and does not include
axiom that allow deductions to be made. Repository is a
prototype implementation of a design to allow ontology
designers and agents to use open web standards to publish
and retrieve ontologies and metadata about them. Key

features of the system include the use of the HTTP
protocol following the REST (Representational State
Transfer) architectural style, the representation of
recorded information about ontologies and the repository
information schema using RDF and its schema language
RDFS, and the use of URNs to identify ontologies. The
use of web standards for communication between agents
and web-based resources such as ontology repositories
enables a more lightweight and open architecture for
agent interaction with these resources (Pan et al., 2003).
Harrison et al. (2005) discuss two methods of storing the
ontologies. The first method involves storing individual
ontology in a separate flat file. The file provides a more
straightforward view where its content can be inspected.
However, the main problem with this method is that a
search engine would need to be developed to search the
contents of the ontology files (Harrison et al., 2005). The
second method uses a database to store ontologies.
Databases have indexing and other capabilities that
enable faster searching. Therefore, to ensure scalability
and maintainable large ontologies, the database method
rather than a flat file we think would preferable for
storing ontologies. However, how the ontologies are
stored depends on how the ontology representation
should appear in the server and what types of database are
considered (i.e. relational, object-oriented or object-
relational).

4.3 A Comparison of Ontology Servers
After an extensive search on the Internet and several
journals and conferences, and with several focus as stated
in section 3, we selected the following eight ontology
servers: Ontolingua server (Farquhar et al., 1997), ACOS
(Li et al., 2003), Starlab (2006), KAON (Oberle et al.,
2002), OntoRama (Eklund et al., 2002), OWS (Dameron
et al., 2004), FIPA server (2001), and Adapted Ontology
Server (Chung et al., 2000).

The Ontolingua server has been running since 1995. It
has been developed in the Knowledge Systems
Laboratory (KSL) at Stanford University. It is a tool that
supports distributed, collaborative editing, browsing and
creation of Ontolingua ontologies with a form-based web
application (Corcho et al., 2003). Remote editors can
browse and edit ontologies, and remote or local
applications can access any of the ontologies in the
ontology repository with the OKBC protocol (Farquhar et
al., 1997). The Ontolingua ontology uses the
representation languages, Ontolingua Frame Ontology
and KIF, which are wide spectrum language capable of
representing fine features of concepts (i.e. are based on
description logics). The Ontolingua server supports
ontology inclusion and circular dependencies (Farquhar et
al., 1997). Its consistency-check capability, however, is
restricted to the functions similar to database schema
checking (Li et al., 2003). For instance, “all slots, slot
values, facets and facets values are checked to make sure
that they conform to the constraints that they apply (i.e.
domain, range, slot value type, and cardinality
constraints)” (Li et al., 2003). This means that semantic
consistency checking is done in domain experts’ heads. It
is a large project focusing on ontology development (Cui
et al., 2000). It has built sophisticated tools for

Proc. Eighteenth Australasian Database Conference (ADC 2007)

15

developing and maintaining frame-based ontologies. It
focuses on formal ontology specifications, and reuse and
translation to different ontology implementation systems
(Cui et al., 2000). However, it does not address problems
related to legacy systems and tools to merge ontologies
(Cui et al., 2000). The users interact with the single server
through a web browser to create, edit and browse
ontologies. Users have to tolerate the network delays and
server response delays. The Ontolingua server uses
Ontolingua-based repository for storing ontologies and
developing a set of tools for demonstrating server
functions.

The second server is ACOS. It has been developed in the
Intelligent System Laboratory (ISLab) at British Telecom
Research. Li et al. (2003) claim it to be a community-
oriented ontology server. It provides the way for the so-
called “community” to construct ontologies. The concept
of “community” in ontology management enables
everyone to have the opportunities of influencing
ontology construction. This depends on the users’
importance score, and such score is computed
mechanically based on how active these users are in
contributing to the knowledge base. They came up this
kind of vision because in an open environment, ontology
is the asset of all participants; every user can join,
contribute and leave such community. The opposite of
this approach is called “central”. The central-controlled
mechanism would not appear to be appropriate for this
situation (Li et al., 2003). However, most of the ontology
server implementations in many studies apply the
“central” approach to ontology development (e.g.,
Farquhar et al., 1997; Chung et al., 2000; Frehiwot et al.,
2001; Eklund et al., 2002; Starlab, 2006). The “central”
means a centralized ontology server, only a fixed group
of users have the rights to modify ontologies, which is
similar to the situation in database management (Li et al.,
2003). Similar to Ontolingua server, the ACOS has also
provided consistency checking but not limited to humans.
A wide range of software agent communities also can
share it and the server facilitates on-line ontology
construction, consistency-check and use (Li et al., 2003).
Li et al. (2003) claim that ACOS is designed to be an
online community in which a diverse group of software
agents can contribute and use ontologies at runtime. A
key enabler in this scenario is a high degree of
“shareness” of the ontologies maintained by the server.
This relates to designing an appropriate knowledge
representation, which is the first step towards building an
ontology server. In this context, Li et al. (2003) believe
that to achieve “shareness”, it is required that local
features of ontology are removed. Examples of
constructors that can bring in local features include
property in DAML-OIL or slot in Ontolingua (Farquhar
et al., 1997). Other examples of constructors that bring in
local effect are part-of in Framework (Farquhar et al.,
1997) and disjoint-with in Descriptions Logic (Borgida et
al., 1989). In other words, Li et al. (2003) accept the
shared ontologies should have minimal expressiveness,
which consist of a minimal set of axioms written in a
language of minimal expressivities. Thus, to achieve a
high degree of shareness, Li et al. (2003) believe that
constructors Class, subClassOf, SameClassAs,

SuperClassOf and InstanceOf offer more stability in the
process evolution and minimal expressivities. Compared
to Ontolingua server, the ACOS uses DAML-OIL as its
ontology representation language. The ACOS server uses
file-based repository for storing DAML-OIL ontologies
and developing a set of APIs for implementing server
functions. To facilitate collaborative ontology
development, this server implemented an import
mechanism that is similar to the inclusion model in
Ontolingua server and extension relationship in FIPA
ontology server (FIPA, 2001).

Third is the Starlab. This server is under development and
still progressing several deliverables. This research
initially falls within the DOGMA research framework
(Jarrar et al., 2002). At the time of writing, we would say
that this is a new ontology server research project, is
funded for 5 years by the Vrije Universitet Brussel. The
mission of this server is to assist the gathering and
incremental growth of ontologies (Starlab, 2006). In
terms of ontology representation, this server is in line
with the rationale of ACOS server previously discussed.
The proposed ontology model consists of five basic
elements: context, terms, concepts, roles and lexicon
(Starlab, 2006). Starlab (2006) claims that constraints and
derivation rules are intentionally left outside the ontology.
At this moment, they are still experimenting with the
ontology model and an early version of ontology server
has been implemented. In the first prototype, consistency-
check and user control are not included (Starlab, 2006).
This server uses MSQL server to store the ontology and
ontology objects are expressed in XML. Its server
functions are implemented based on developed tools and
basic database APIs (Starlab, 2006). In addition, the
server’s ontology representation also benefits from
graphical notation based on Object Role Modeling
(ORM) languages.
Fourth is the KAON server developed by AIFB in
Karlsruhe University. Similarly to Ontolingua server and
Starlab, the KAON server is a result of sophisticated tools
delivered by a large research project conducted at the
University of Karlsruhe. This server provides its
functions through a set of APIs and store RDF-based
ontologies using a relational database (Oberle et al., 2002;
Maedche et al., 2003). It is an early prototype of an
ontology-based application server. In essence, it uses
JBoss and extends by the tools of the KAON tool suite
for reasoning with software components (Oberle et al.,
2002). The goal is to support the developer in his daily
tasks with reasoning. In terms of ontology representation,
it is similar to Ontolingua server: the complexity of
ontology is not left outside the ontology, which contrasts
with Starlab and ACOS.
Fifth is the OntoRama server was developed by Eklund et
al. (2002). The main functions of OntoRama include
search, compare and modify WebKB ontologies. It does
not support consistency-check or cross-ontology queries;
as a result, its capability of supporting online
collaborative ontology construction is restricted (Li et al.,
2003). In our opinion, this server demonstrates functions
of storing and browsing RDF-based ontologies, while
supporting ontology development is not its main purpose.

CRPIT Volume 63

16

Sixth, the OWS server proposed by Dameron et al. (2004)
at the Stanford Medical Informatics (SMI), Stanford
University. This server does not generally deal with
ontology development. It is used for all other tasks,
assuming ontologies already exist. The implementation of
this server is bit tricky. In fact, the server described by
Dameron et al. (2004) does not itself serve as ontology
repository (i.e. the server itself does not store the
ontologies). The server provides services, taking
ontologies as inputs. Hence, they claim that ontology
evolution is not a problem here, because a change simply
gives the server a new ontology as inputs. In our opinion,
we would say that this server supports runtime
interoperation. Server functions are implemented using
web services assuming that ontologies naturally reside in
any player’s sites. In other words, the ontology storage is
file-based, which are held on different players’ sites.

Seventh is the FIPA ontology server. The FIPA
(Foundation for Physical Agents) is a standards body,
which has developed interaction standards for agents in
open environment. In the FIPA’s ontology server
specification, its server’s ontological representation is
divided into a fine-grained ontology, called heavyweight
ontology in (Pretorius, 2005) and a coarse ontology that
consists of a minimal set of axioms written in a language
of minimal expressivity, called lightweight ontology in
(Pretorius, 2005). However, the FIPA’s server supports
these two kinds of ontology representation but with
different scope of use and level of detail (FIPA, 2001).

Eighth is the server proposed by Chung et al. (2000) at
SungKyunKwan University, Korea. This server is
intended specifically for ontology developed for
electronic commerce applications. In terms of ontology
representation, Chung et al. (2000) define two main
criteria for ontology: (a) ontology can be translated and
(b) ontology should be practical. Its server functions
include gathering information from the web, creating a
relation, modifying and rebuilding the standard ontology
and servicing the standard ontology. This server uses a
MySQL database to store ontologies and Java APIs for
implementing its server functions (Chung et al., 2000).
We assume that this server allows medium ontological
representation. This is because the standard ontology is
built from the local terms used in sites, and then the
server provides an editor tool for making relation between
ontologies (Chung et al., 2000). In addition, they claim
that a standard ontology necessarily has the objective and
concrete property (Chung et al., 2000). In general, this
server supports ontology development but is limited to
electronic commerce and deals with the current web.

4.4 Comparison Framework
A survey of ontology servers was firstly done in (Li et al.,
2003). However, Li et al (2003) did not include several
key ontology servers such as KAON and OWS in their
survey. In addition, the proposed comparison is too
general and does not highlight other important aspects of
development issues such as a standard development
approach, methodological support and the use of
graphical modeling language. In this study, we have
compared ontology servers with respect to the similar

criteria to (Li et al, 2003), extending some of them, also
adopting several dimensions used in (Duineveld et al.,
2000; Corcho et al., 2003). Consequently, we incorporate
all these criteria into five dimensions as follows:

General: It refers to the generic aspects of the server
development such as: What is the main goal of developed
ontology server? Who are those developers? Can we
access to those servers? What is the main phase that
server can support? What are the main deliverables of
the server development? Which kinds of management
provision does the server have? Does the server support
collaborative environment? What is the status of the
server? Ontology: This dimension refers to the general
questions about ontology representation that the server
supports, such as: What the main ontology engineering
challenges that the server mostly focuses on? What types
of ontology can the server support? What does knowledge
representation in server repository look like? What
ontology language is the server based on? How
expressive is language? Does the server use all the
language features (i.e. ontological constructors) to
represent shared ontologies? Features: It represents
general features of ontology server in terms of: What are
the main server functions have been developed? What
types of repository platform the server use to store
ontologies? What is the architecture of the server? Does
the server provide extensibility? Implementation: This
dimension addresses some aspects of the server
technology including: How is the server functionality
implemented? What type of technology platform does the
server use and support? Does the server use a standard
technology? What type of technology is used to access to
the ontology repository? Methodology: This dimension
concerning the methodology that ontology server gives
support to, and also the methodology used to develop a
server such as: Is there any methodology support for
building the server? Is there any methodology support for
the ontology? To have a clearer understanding of this
study, as a result, we summarize this comparative study
in Table 1 (see appendix).

5 Conclusions and Future Works
We point out some important points based on a Table 1.
First, we see that most ontology servers available mostly
focus on design time (see main phase of ontology life
cycle). It gives supports more to ontology development
and tends assume its users to be ontologists. Its main goal
is reusability (see main ontology engineering challenges)
since it saves time and cost. From this, we argue that the
server development should be determined by what
ontology is made for. For example, the ontologies
supporting runtime interoperation, which used in business
application, are slightly different from ontologies for
supporting engineering applications (Colomb et al., 2006;
Hart et al., 2004). Therefore, we should firstly understand
the intended use of the ontology which will then lead to
how it is engineered and then how the supporting server
is going to be developed. Second, surprisingly, none of
the existing ontology servers are discussed in the context
of commit-time issue (see main phase of ontology life
cycle). Although in general we have a design and
runtime, but the issue how players can be helped to see

Proc. Eighteenth Australasian Database Conference (ADC 2007)

17

the parts of ontology before joining the exchange should
be firstly addressed. Third, a standard methodological
approach for designing ontology and ontology servers is
still missing (see a methodology dimension). Therefore,
there is no server modelling profiles that can be
referenced as useful example to guide a developer on how
to develop ontology server. However, recently, there have
been initiatives to bridge MDA (Model Driven
Architecture) and ontologies. Many researchers suggest
the use of Unified Modeling Languages (UML) in
ontology development (e.g., Cranfield et al., 1999;
Backlawski et al., 2002; Kogut et al., 2002; Colomb et al.,
2006; Gasevic et al., 2005; Djuric et al., 2005). Thus, it
would be advantageous to consider these works in the
context of ontology and ontology server development.
For example, it would be useful to benefit from the
standard graphical ontological representations like UML.
Unfortunately, most of the ontology and server developed
do not consider the use of a standard graphical language.

Fourth, there is almost no explicit discussion of servers
for supporting information systems interoperation in the
mainstream literatures. So, the use of server as a runtime
tool is not well developed. Thus, we would say, the server
functions to support many aspects of the semantic web
are still missing. Fifth, there are issues in ontological
representation that relate to ontological repository. Most
of the servers do not use database to store ontologies.
However, we believe that most of the servers are moving
towards using database and Java platforms (see
implementation). Sixth, generally, there are two types of
ontologies; lightweight and heavyweight (see types of
ontologies). The former simply sees ontology as a
description with the aim of organizing concepts. The
latter defines ontology is a complete theory consisting of
both a formal vocabulary and defined axioms that allow
further deductions or inferences to be made. Most of the
servers are influenced by lightweight ontologies. These
servers only support using minimal language
constructors, which have very minimal expressivity of
ontology precision (i.e. class, subClassof, IsA). The
resultant ontology from a knowledge representation point
of view looks simple compare to heavyweight ontology.
However, we argue that this situation is also determined
by what the ontology is made for. For example, ontology
supporting information systems interoperation needs
heavyweight ontology that can be used by software
agents.

From the perspective of a comparative study, we report
the current technologies of ontology and the semantic
web, particularly on ontology server development.
Although we do not provide complete technical details, it
is good enough to illustrate opportunities to enhance
ontology server development. We know that ontology
server is built around database issues but considering both
server functionalities and server repository lead to treat
the server is a kind of information systems that can
benefit from other field like software engineering. Our
future work is to investigate a useful methodological
approach for designing ontology and ontology server in
the context of commit-time issues. We argue that this
should importantly be addressed since in the complex and
large-scale ontologies, most of the players (i.e. software

agents) are directly interested in the portion of the
ontologies before joining some exchanges.

6 References
Ahmad, M.N., Colomb, R.M. and Cole, J. (2006): An

Ontology Server: A Knowledge Tool For Systems
Interoperability in Semantic Web Context. Malaysian
Journal of Information Technology, 18(1): 1-23, June
2006. ISSN-0128-3790

Arpirez, J.C., Corcho, O., Fernandez-Lopez, M., Gomez-
Perez, A. (2001): WebODE: a scalable ontological
engineering workbench. Proc. First International
Conference on Knowledge Capture (KCAP_01),
Victoria, pp. 6–13. ACM Press.

Agrawal, R. Making Semantic Web Real: Some Building
Blocks. (2002): Proc. International Workshop on
Semantic Web, Hawaii, USA.

Abdelali, A., Cowie, J., Farwell, D., Ogden, B.,
Helmreich, S. (2003): Cross-Language Information
Retrieval Using Ontology. Proc. TALN Batz-Sur-Mer,
France.

Akkermans, J., Baida, Z., Gordijn, J., Pe˜na, N., Altuna,
A., Laresgoiti, I. (2004): Value Webs: Using ontologies
to Bundle Real-World Services. IEEE Intelligent
Systems, 19(4): 57–66.

Baclawski, K., Kokar, M., Kogut, P., Hart, L., Smith, J.,
Holmes, W., Letkowski, J., Aronson, M., Emery, P.
(2002): Extending the UML for Ontology Development.
International Journal of Software and Systems
Modeling, 1(2): 142-156.

Barley, M., Clark, P., Williamson, K., Woods, S. The
Neutral Representation Project. (1997): Proc. AAAI’97
Spring Symposium on Ontological Engineering, AAAI
Press.

Borgida, A., Brachman, R.J., McGuiness, D.L. and
Resnick, L.A. CLASSIC: A Structural Data Model for
Objects. (1989): Proc. ACM SIGMOD International
Conference on Management of Data, Portland, 58-67.

Bada, M., Stevens, R., Goble, C., Gil, Y., Ashburner, M.,
Blake, J. A., Cherry, M., Harris, M., Lewis, S. (2004): A
Short Study on the Success of Gene Ontology. Web
Semantics: Science, Services and Agents on the World
Wide Web, 1: 235–240.

Berners-Lee, T. Weaving the Web. (1999): London, Orion
Business Books, 1999.

Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks,
I., McGuiness, D.L. Patel-Schneider, P.F. and Stein,
L.A. OWL Web Ontology Language Reference. W3C
Recommendation, http://www.w3.org/TR/2004/REC-
owl-ref-20040210/. Accessed 23 July 2006

Baclawski, K., Kokar, M., Kogut, P., Hart, L., Smith, J.,
Holmes, W., Letkowski, J., Aronson, M. (2001):
Extending UML to Support Ontology Engineering for
the Semantic Web. Proc. UML 2001, Toronto, CA.

Baclawski, K., Kokar, M., Kogut, P., Hart, L., Smith, J.,
Holmes, W., Letkowski, J., Aronson, M., Emery, P.

CRPIT Volume 63

18

http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/

(2002): Extending the UML for Ontology Development.
International Journal of Sofware and Systems Modeling
,1(2):142-156.

Brickley, D., Guha, R.V. and McBride, B. RDFS
Resource Description Framework Schema. W3C
Recommendation, http://www.w3.org/TR/2004/REC-
rdf-schema-20040210/. Accessed 23 July 2006

Cranfield, S. and Purvis, M. UML as an Ontology
Modeling Language. (1999): Proc. Workshop on
Intelligent Information Integration, 16th International
Joint Conference on Artificial Intelligence, IJCAI-99.

Chung, H., Choi, J., Yi, J., Han, J., Lee, E. (2000): A
Construction of the Adapted Ontology Server in EC,
Lecture Notes in Computer Science, 1983:355-360.

Colomb, R.M., Raymond, K., Hart, L., Emery, P., Welty,
C., Xie, G.T. and Kendall, E. (2006): Version 3.3: The
Object Management Group Ontology Definition
Metamodel. In Ontologies for Software Engineering
and Software Technology, 1-25. Calero, Coral,
Francisco and Mario, P. (eds). Springer.

Corcho, O., Gemez-Perez, A. (2001): Solving Integration
Problems of e-Commerce Standards and Initiatives
through Ontological Mappings. Proc. IJCAI’01.

Corcho, O., Fernandez-Lopez, M. and Gomez-Perez, A.
(2003): Methodologies, Tools and Languages for
Building Ontologies: Where is their meeting point?
Data & Knowledge Engineering, 46: 41–64.

Chi, Y.L., Hsu, T.Y., Yang, W.P. (2006): Ontological
Techniques for Reuse and Sharing Knowledge in
Digital Museums. Journal of Electronic Library,
24(20): 147-159.

Cui, Z. and O’Brien, P. Domain Ontology Management
Environment, In the Proceedings of the 33rd Hawaii
International Conference on System Sciences, IEEE,
2000

Derridder, D., Wouters, B. The use of an Ontology to
Support a Coupling between Software Models and
Implementation. (2000): Proc. European Conference on
Object-Oriented Programming (ECOOP’00),
International Workshop on Model Engineering.

Dameron, O., Noy, N.F., Knublauch, H. and Musen,
M.A. Accessing and Manipulating Ontologies Using
Web Services. (2004): Proc. Workshop on Semantic
Web Services: Preparing to Meet the World of Business
Applications at the Third International Conference on
the Semantic Web (ISWC-2004), Hiroshima, Japan.

Djuric, D., Gasevic, D. and Devedzic, V. Ontology
Modeling and MDA. (2005): Journal of Object
Technology, 4(1):109-128.

Devedzic, V. Understanding Ontological Engineering.
(2002): Communications of the ACM, 45(4): 136-144.

Duineveld, A.J., Stoter, R., Weiden, M.R., Kenepa, B.
and Benjamins, V.R. (2000): WonderTools? A
comparative study of ontological engineering tools.
International Journal of Human-Computer Studies,
52:1111-1133.

Eklund, P., Roberts, N., Gree, S. OntoRama: Browsing
RDF Ontologies using a Hyperbolic-style Browser.
(2002): Proc. First International Symposium on Cyber
Worlds (CW.02), IEEE Computer Society.

Ells, R. Hypermedia, Help and How-To. (1998): Proc.
16th Annual ACM SIGUCCS Conference on User
Services, California, United States, 363-368.

Evernden, R. The Information Framework. (1996): IBM
Systems Journal, 35(1): 37-68.

Fensel, D. (2001): Ontologies: A Silver Bullet for
Knowledge Management and Electronic Management.
Berlin, Springer.

Farquhar, A., Fikes, R. and Rice, J. (1997): The
Ontolingua Server: A Tool for Collaborative Ontology
Construction. International Journal of Human-
Computer Studies, 46:707-728.

Foundation for Intelligent Physical Agents (FIPA), FIPA
Ontology Service Specification 2001,
http://www.fipa.org/specs/fipa00086/index.html.
Accessed 23 July 2006.

Gruber T.R. (1993): A Translation Approach to Portable
Ontology Specifications. Knowledge Acquisition, 5(2):
199-220.

Gasevic, D.V., Djuric, D.O. and Devedzic, V.B. (2005):
Bridging MDA and OWL Ontologies. Journal of Web
Engineering, 4(2): 18-143.

Gruber, T.R. (1995): Towards principles for the design of
ontologies used for knowledge sharing. International
Journal of Human-Computer Studies, 43(5/6).

Guarino, N. (1998): Formal Ontology in Informations
Systems. Proc. 1st International Conference on Formal
Ontology in Information Systems (FOIS’98), Trento,
Italy.

Guarino, N., Masolo, C., Vetere, G. (1999): OntoSeek:
Content-Based Access to the Web. IEEE Intelligent
Systems, 70-80.

Guarino, N. (2002): Ontology-Driven Conceptual
Modelling. Tutorial at 21st International Conference on
Conceptual Modeling (ER’02), Tempere, Finland.

Gomez-Perez, A., Benjamin, R. (1999): Overview of
Knowledge Sharing and Reuse Components: Ontologies
and Problem-Solving Methods. Proc. IJCAI-99
Workshop on Ontologies and Problem-Solving Methods
(KRR5), Morgan-Kaufmann.

Hart, L., Emery, P., Colomb, R. M., Raymond, K.,
Chang, D., Ye, Y., Kendall, E. and Dutra, M. (2004):
Usage Scenarios and Goals for Ontology Definition
Metamodel. Lecture Notes in Computer Science,
3306:596. Springer.

Harrison, R and Chan, C.W. (2005). Distributed Ontology
Management System. Proc. 18th Annual Canadian
Conference on Electrical and Computer Engineering,
(CCECE’05), Saskatoon, IEEE.

Inmon, W.H., Zachman, J.A., Geiger, J.G. (1997): Data
Stores, Data Warehousing, and the Zachman

Proc. Eighteenth Australasian Database Conference (ADC 2007)

19

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.fipa.org/specs/fipa00086/index.html

Framework: Managing Enterprise Knowledge. USA,
McGraw-Hill.

Jasper, R. and Uschold, M. (1999): A Framework For
Understanding and Classifying Ontology Applications.
Proc. IJCAI-99 Workshop on Ontologies and Problem-
Solving Method (KRR5), Stockholm, Sweeden.

Jarrar, M and Meersman, R. (2002): Formal Ontology
Engineering in the DOGMA Approach. Proc.
ODBASE’02, 2519:1238-1254, LNCS.

Jones, S. (2005): Toward an Acceptable Definition of
Service, IEEE Software,22(3): 87-93.

Karp, P.D., Chaundhri, V.K and Thomere, J. (1999):
XOL: An XML-based Ontology Exchange Language.
Version 0.3.

Karp, P.D., Riley, M., Saier, M., Paulsen, I.T., Paley, S.,
Pellegrini-Toole, A. (2002): The Ecocyc Database.
Nucleic Acids Research, 30(1):56.

Klyne, G., Carroll, J.J and McBride, B. RDF Resource
Description Framework Reference. W3C
Recommendation, http://www.w3.org/RDF/. Accessed
23 July 2006

Kogut, P., Cranfield, S., Hart, L., Dutra, M., Baclawski,
K., Kokar, M. and Smith, J. (2002): UML for Ontology
Development. The Knowledge Engineering Review,
17(1): 61-64

Lenat, D.B. (1995): CYC: A Large-scale investment in
knowledge infrastructure. Communication of ACM,
38(11):33-38.

Li, Y., Thompson, S., Tan, Z., Giles, N. and Gharib, H.
(2003): Beyond Ontology Construction: Ontology
Services as Online Knowledge Sharing Communities.
Lecture Notes in Computer Science, 2870: 469 – 483,
Springer-Verlag.

Lopez, M.F., Gomez-Perez, A., Sierra, J.P. and Sierra,
A.P. (1999): Building a Chemical Ontology using
Methontology and the Ontology Design Environment.
IEEE Intelligent Systems, 14(1): 37-46.

Mika, P. Social Networks and the Semantic Web. (2004).
Proc. International Conference on Web Intelligence
(WI’04), Beijing, China, 285-291, IEEE Computer
Society.

Mizoguchi, R. (2003): Tutorial on Ontological
Engineering: Part 2: Ontology Development, Tools and
Languages. New Generation Comput. 22(1).

Mauger, B. (2005): Tools to Help an Agent Commit to an
Ontology. Undergraduate Thesis. Computer Science
Department, University of Queensland.

Motta, E., Fensel, D., Gaspari, M. and Benjamins, R.
(1996): Specifications of Knowledge Components for
Reuse. Proc. 11th International Conference on Software
Engineering and Knowledge Engineering,
Kaiserslautern, Germany, 36-43, KSI Press.

Maedche, A., Motik, B. and Stojanovic, L. (2003):
Managing Multiple and Distributed Ontologies on the
Semantic Web. The VLDB Journal, 12(4):286-302.

Noy, N.F. and Fergerson, R.W. and Musen, M.A. (2000):
The knowledge model of protege-2000: combining
interoperability and flexibility. Proc. 12th International
Conference in Knowledge Engineering and Knowledge
Management (EKAW_00), Lecture Notes in Artificial
Intelligence, 1937:17–32. Springer.

O'Rourke, C., Fishman, N., Selkow, W. (2003):
Enterprise Architecture Using the Zachman
Framework. USA, Course Technology.

Oberle, D., Volz, R., Motik, B. and Staab, S. (2002):
KAON Server Prototype. Technical Report, IST Project
2001-33052 WonderWeb, Department of Computer
Science, The Victoria University of Manchester.

Pan, J., Cranefield, S. and Carter, D. (2003): A
Lightweight Ontology Repository, Proc. AAMAS'03,
Melbourne, Australia. ACM Press.

Pretorius, A.J. (2005): Visual Analysis for Ontology
Engineering, Journal of Visual Languages and
Computing, 16:359-381.

Rothenburger, B. and Galarreta, D. (2006): Facing
Knowledge Evolution in Space Project: a Multi-
Viewpoint Approach. Journal of Knowledge
Management, 10(2): 52-65

Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R.
and Wenke, D. (2002): OntoEdit: Collaborative
Ontology Engineering for the Semantic Web. Proc. 1st
International Semantic Web Conference, Sardinia, Italy,
Lecture Notes in Computer Science (LNCS 2342),
Springer.

Swartout, B., Patil, R., Knight, K. and Russ, T. (1996).
Towards Distributed use of large-scale ontologies. Proc.
10th Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop, Banff, Canada.

Star Lab. V.U.B. Ontology Server Research.
http://www.starlab.vub.ac.be/research/dogma/Ontology
Server.htm . Accessed 23 July 2006.

Uschold, M. and Gruninger, M. (1996): Ontologies:
principles, methods and applications. The Knowledge
Engineering Review, 11(2).

Valo, A. and Hyvönen, A and Komulainen, V. (2005):
Tool for Collaborative Ontology Development for the
Semantic Web. Proc. International Conference on
Dublin Core and Metadata Applications (DC 2005)..

Welty, C. and Ferrucci, D. (1999): A Formal Ontology
for Reuse of Software Architecture Documents. Proc.
International Conference on Automated Software
Engineering, 259-262, IEEE Computer Society Press.

Zachman, J.A. (1987). A Framework for Information
Systems Architecture. IBM Systems Journal, 26(3):276-
292.

CRPIT Volume 63

20

http://www.w3.org/RDF/
http://www.starlab.vub.ac.be/research/dogma/OntologyServer.htm
http://www.starlab.vub.ac.be/research/dogma/OntologyServer.htm

(Appendix) Table 1. A Comparison of Ontology Servers
 Ontolingua ACOS Starlab KAON OntoRama OWS FIPA Ontology

Service Specification
Adapted Ontology
Server

General

Main goal Collaborative
ontology
development

Collaborative
ontology
development

Ontology
development (i.e.
gathering and
incremental growth)

Ontology
development

Storing, browsing
ontology. Limited
support to ontology
development

Accessing and
manipulating
ontologies

Ontology
development and
ontology-based agent
Communication

Ontology
development
specifically in
electronic commerce

Developers KSL ISLab STARLab AIFB ITEE and DSTC SMI FIPA SECE

Release Free web access Not mentioned Free web access Open source Free web access No Updated in 2001 No

Main phase of
ontology life cycle

Design time Design time Design time

Design time Design time Runtime

Design time,
Runtime

Design time

Main deliverables Server functions
mainly for supporting
ontology
development

Server functions
mainly for supporting
ontology
development

Server functions
mainly for supporting
ontology
development

Server functions
mainly for supporting
ontology
development

Server functions
mainly for browsing
ontology

Server functions
mainly for accessing
and manipulating
ontologies

Server functions
mainly for ontology
development and
agent communication

Server functions
mainly for supporting
ontology
development

Management provision Central Community Central Central Central Central – (Tasks) N/A Central

Collaborative (i.e.
building, access and

manipulating, use)

Yes Yes Not Mentioned Yes No Yes Not mentioned Not mentioned

Overall remarks Lack of extensibility,
strictly oriented to
research activities.

Lack of extensibility,
strictly oriented to
research activities.

Lack of extensibility,
strictly oriented to
research activities.

To support integrated
environment and
much more
ambitious.

Lack of extensibility,
strictly oriented to
research activities.

Lack of extensibility,
strictly oriented to
research activities.

Provide standards
ontology service that
used as guidance in
specifying ontology
server functions.

Strictly oriented to
research activities
and do not support
toward semantic web
vision.

Status Rolled out in 1995 Rolled out in 2002 Being Developed Rolled out in 2001 Rolled out in 2002 Being Developed Specification 2001 Rolled out in 2000

Ontology

Main ontology
engineering challenges

Reusability

Reusability Reusability Reusability Viewing Usability Reusability Extracting,
Reusability

Type of ontologies Heavyweight Lightweight Lightweight Heavyweight Lightweight Heavyweight Heavyweight,
Lightweight

Lightweight

Knowledge
representation

Complex Simple Medium Complex Medium Open (unspecified) Complex Medium

Ontology model (i.e.
expressiveness

Allow maximal
expressiveness

Allow minimal
expressiveness

Allow minimal
expressiveness

Allow maximal
expressiveness

Not mentioned Not mentioned Open (unspecified) Not mentioned

Ontology languages Ontolingua and KIF DAML+OIL XML RDF RDF Open (unspecified) Open (unspecified) Not mentioned

Proc. Eighteenth Australasian Database Conference (ADC 2007)

21

Features

Import mechanism Yes

Yes No Yes No No Yes No

Manner of consistency
checking

Human Approval,
Simple Data Type
Checking

Auto Not mentioned Yes Not mentioned Semi-auto Open (unspecified) Human

User access control Yes Yes No Yes No Yes N/A Not mentioned

Ontology repository
platform

File-Based File-based DBMS File-based + DBMS File-Based Open (unspecified) Open (unspecified) DBMS

Software architecture
(i.e. client-server, n-
tier application, etc)

Client-server Client-server Client-server Client-server Client-server Client-server Client-server Client-server

Extensibility (i.e. plug-
in features, etc)

No No No Yes No No Not Mentioned No

Implementation

Server functionality
implementation

Tool development APIs Database APIs +
Tool development

APIs + Tool
development

Tool development Semantic web
services

Tool development APIs

Server functionality
platform

Not Mentioned Java Java Java Java Java Open (unspecified) Java

User / Application
remote support to

ontologies (i.e.
protocol used)

HTTP /OKBC HTTP/ JDBC-ODBC JDBC-ODBC HTTP/JDBC-ODBC HTTP/ JDBC-ODBC HTTP/ JDBC-ODBC HTTP/ OKBC HTTP/JDBC-ODBC

Ontology repository
technology

Ontolingua-based
repository

Jena + DAML + OIL MSQL Server RDF + RDBMS Jena + RDF Open (unspecified) Open (unspecified) MySQL

Methodology

Ontology-related
methodology

No

No Ontology double
articulation and
ontology
modularization

 No No No METHONTOLOGY No

Server development
methodology

No No No

No No No No No

Benefit from graphical
language

No No Yes – ORM for
ontology modeling

No Yes – Hyperbolic
style for browsing
ontologies

No No No

Server design profiles No No No No No No No No

CRPIT Volume 63

22

Beyond Purpose-Based Privacy Access Control

Sabah S. Al-Fedaghi
Computer Engineering Department

Kuwait University
PO Box 5969 Safat 13060 Kuwait
sabah@eng.kuniv.edu.kw

Abstract
Research efforts have been directed toward the
improvement of privacy protecting technology by
incorporating privacy protection into database systems.
Purpose acts as a central concept on which access
decisions are made. A complexity of purpose and users
role hierarchies is utilized to manage the mapping
between users and purposes. In this paper, we propose a
personal information flow model that specifies a limited
number of acts on this type of information. Chains of
these acts can be used instead of the "intended/business
purposes" used in privacy access control..

Keywords: personal information, privacy, database
system.

1 Introduction
Privacy is becoming an important feature in modern
society. The rapid advances in information technology and
the emergence of privacy-invasive technologies have
made informational privacy a critical area to be protected.
Personal information is used in making decisions about an
individual’s life. Regulations and laws have been
established to allow people to control the way in which
their personal information is used. Guidelines such as the
1980 OECD guidelines, legislation such as the Health
Insurance Portability and Accountability Act (HIPAA)
and systems such as P3P are not sufficient to safeguard
privacy because "they do not address how personal data is
actually handled after it is collected … Privacy protection
can only be achieved by enforcing privacy policies within
an organization’s online and offline data processing
systems" (He et al., 2003). Also, "privacy cannot be
efficiently implemented solely by legislative means. Data
protection commissioners are therefore demanding that
legal privacy requirements should be technically enforced
and should be a design criteria for information systems."
(Fischer-Hübner and Ott, 1998)

Privacy-enhancing technology aims at making privacy
protection guidelines and laws an integrated part of the
technology. Thus, an information system is designed to
embed components that allow monitoring compliance of
the system to privacy rules.

Copyright © 2007, Australian Computer Society, Inc. This
paper appeared at the 18th Australasian Database
Conference (ADC 2007), Ballarat, Australia. Conferences
in Research and Practice in Information Technology
(CRPIT), Vol. 63. James Bailey and Alan Fekete, Eds.
Reproduction for academic, not-for profit purposes
permitted provided this text is included.

The notion of Purpose is the basic concept on which
decisions to access personal information are made. A
complexity of purpose hierarchies and users’ role
hierarchies are utilized to manage the mapping between
users and purposes. We propose a personal information
flow model that specifies acts on this type of information.
Chains of these acts can be used to control acting on
personal information instead of purposes used in privacy
access control. The method is distinguished by the limited
number of acts that form chains of acts on personal
information.

2 Related Works

The Platform for Privacy Preferences (P3P) provides
means for policy privacy specification and exchange but
"does not provide any mechanism to ensure that these
promises are consistent with the internal data processing."
(Byun et al., 2005) Hippocratic databases have been
introduced as systems that integrate privacy protection
within relational database systems (Agrawal et al., 2002).
A Hippocratic database includes privacy policies and
authorizations that associate with each attribute and each
user the usage purpose(s).

Privacy protecting access control deals with privacy
policy specification and private data management
systems. In privacy protecting access control models, "the
notion of purpose plays a central role as the purpose is the
basic concept on which access decisions are made" (Byun
et al., 2005). "Most privacy-aware technologies use
purpose as a central concept around which privacy
protection is built." (Massacci1 et al., 2005)

Example: (from Byun et al. (2005)) Sample purposes
defined on a given hierarchy of purposes are:

Allowable purposes = {Admin, Profiling, Analysis} ∪
{Direct, D-Email, D-Phone, Special-Offers, Service-
Updates}

Prohibited purposes = {D-Email, Special-Offers, Service-
Updates} U {D-Email, Direct, Marketing, General-
Purpose}

An access is granted if the access purpose (stated by user)
is entailed by the allowed purposes and not entailed by
the prohibited purposes (Byun et al., 2005).

Users role hierarchies similar to ones used in security
policies (e.g., RBAC: Role Based Access Control
mechanisms (Sandhu et al., 2000)) are used to simplify
the management of the mapping between users and
purposes. A request to access to data is accompanied by
access purpose, and accessing permission is determined

Proc. Eighteenth Australasian Database Conference (ADC 2007)

23

after comparing such a purpose with the intended
purposes of that data in privacy policies. Each user has
authorizations for a set of access purposes.

Nevertheless, the management of attributes and users
purposes is a complicated issue. Attributes and users
purposes form hierarchies of the generalization and
specialization (email marketing and telephone marketing
is generalized as marketing) that are organized according
to users’ roles. To simplify the mapping process users are
assigned roles, and access purpose permissions are
granted to roles associated with tasks or functionalities,
not directly to individual users (Byun et al., 2005). To
support dynamic changes in purposes, "role" may be
assigned attributes with hierarchy inheritance
characteristics "to assign an access purpose to a specific
subset of users in the same role" (Byun et al., 2005).

Purpose management introduces a great deal of
complexity at the access control level. In this paper we
introduce an alternative privacy access control
mechanism that is not based on purpose.

3 Purpose
The notion of purpose appears in all privacy codes and
legislations. For example, the Data Quality Principle in
the OECD guidelines specifies:

Personal data should be relevant to the purposes for
which they are to be used, and, to the extent
necessary for those purposes, should be accurate,
complete and kept up-to-date. (OECD, 1980)

Purposes are usually categorized into two types:

Consumer data purpose: This purpose expresses how
the collected data can be used. P3P (2002) specified
purposes include: Web Site and System Administration,
Research and Development, Individual Decision,
Contacting Visitors for Marketing of Services or
Products, Historical Preservation, Telephone Marketing,
and profiling.

Business purpose: This purpose is for business actions
that involve certain consumer data operations.

Customer purposes are typically mapped to the more
specific business purposes. For example, telemarketing is
mapped to direct telemarketing and third party
telemarketing and these in turn may be categorized into
email telemarketing and telephone telemarketing such
that the relationship among purposes modelled as a
purpose hierarchy.

"A purpose specifies the intended use of the data
element" and it "describes the reason(s) for data
collection and data access" (Byun et al., 2005). Privacy
policies utilize purposes in their accessing Personal
Information (PI) mechanism.

Nevertheless, purpose remains a semantic concept that is
"pasted" superficially to personal information. To utilize
it in privacy protecting access control, we identify the
relationship between purposes in order to build a
hierarchy of purposes that tells us such things as which
purpose-based access control is embedded into a more

general purpose control. This method is basically a
privacy-covered version of a security access control
mechanism. For the system, purposes could be described
as "level 1," "level 2," … instead of as Administration,
Profiling, and Analysis, and it would not make any
difference.

Instead, we propose to define the intended purpose of
personal information as a chain of acts on this type of
information. For example, the purpose could be:

Collecting (act 1) personal information, processing (act 2)
it, in order to create (act 3) new information (e.g., John is
a risk), to be used (act 4) in deciding a loan.

We claim that the number of types of acts on personal
information is limited. In this case a chain of acts are
permitted and other chains are prohibited. The chain
represents a syntactical form of controlling access (acts in
general) to personal information.

4 Personal Information

This section reviews the definition of personal
information (PI) and its flow model given in Al-Fedaghi
(2006a) and Al-Fedaghi (2006b).

4.1 Definition of personal information:
Personal information theory assumes two fundamental
types of entities: Individuals and Non-individuals (Al-
Fedaghi, 2005a and 2005b). The term Individuals
represents the set of natural persons and Non-individuals
represents the set of non-persons. Personal information
(PI) is any linguistic expression that has referent(s) in
Individuals. Assuming that p is a sentence such that X is
the set of its referents, then there are two types of PI:

(1) p is the atomic personal information if X ∩
Individuals is the singleton set {X}. That is, atomic
personal information is an assertion that has a single
human referent (e.g., John is 25 years old). “Referent,”
here, implies an identifiable (natural) person.

(2) p is the compound personal information if X ∩
Individuals is a set of more than one person (e.g., John
loves Mary). That is, compound personal information is
an expression that has more than one human referent.

The relationship between individuals and their own
atomic personal information is called proprietorship. If p
is a piece of atomic personal information of v ∈
Individuals, then p is proprietary personal information of
v, and v is its proprietor.

A single piece of atomic personal information may have
many possessors; where its proprietor may or may not be
among them. A possessor refers to any entity that knows,
stores, or owns the information. Any compound personal
statement is privacy-reducible to a set of atomic personal
statements.

Personal information privacy involves acts on personal
information in the context of creating, collecting,
processing, and disclosing this type of information.

CRPIT Volume 63

24

4.2 Personal Information Flow Model:
The personal information flow model divides
functionality into four modules or phases that include
informational privacy entities and processes, as shown in
Figure 1.

New PI is created at Points 1, 2, and 3 by proprietors or
non-proprietors (e.g., medical diagnostics by physicians),
or is deduced by someone (e.g., data mining that
generates new information from existing information).
The created information is used either at Point 4 (e.g.,
decision making), Point 5 (stored), or Point 6, where it is
immediately disclosed. Processing the personal
information phase involves acting (e.g., anonymization,
data mining, summarizing, translating) on PI. The
disclosure phase involves releasing PI to insiders or
outsiders. The “disposal” or disappearance of PI can
happen anywhere in the model, such as in the
transformation to an anonymous form in the processing
phase. "Store" in Figure 1 denotes both storing and
retrieving operations.

Example: Consider the situation where we have one
proprietor and two PI agents (e.g., companies,
departments, agencies, other individuals). Suppose that
the roles of these three actors are defined as follows:

Proprietor: Creates, stores, and discloses PI to Agent 1.

Agent 1: Collects, stores, uses, and discloses PI to Agent
2.

Agent 2: Collects and processes PI through a mining
technique that creates new PI that is stored and used in
some applications (e.g., decision making). The PI flow
model for this simple environment can be drawn based on
Figure 1, as shown in Figure 2.

For each actor in this scenario we will make a copy of the
PI flow model. However, because the proprietor does not
collect or process PI, these phases are not shown in
his/her region. The creation and processing phases are not
shown for Agent 1 because it does not create or process
PI. Similarly, the disclosure phase is not shown in the
region of Agent 2. Let t be a piece of PI of the proprietor.
It originates in the Creating box in the proprietor's region.
It is stored in Store, and moves through the Disclosing
box to the Collecting box of Agent 1’s region. It is stored
and used there, and moves through the Disclosing box to
the Collection phase of Agent 2. There, it moves to the
Processing to the Mining boxes where it generates new PI
in the Creation phase for storage and later use. We can
add details to any phase as the situation requires. For
example, Agent 2 may add Store to keep a copy of the
original PI or a Disclosure phase can be added if Agent 2
discloses the resultant new PI to a third agent.

5 The Proprietor-Others Architecture

This section and Section 6 review with some additional
materials the architecture given in Al-Fedaghi (2006a).

Using the PI flow model, we can build a system that
involves a proprietor on one side and others (other
persons, agencies, companies, etc.) who perform different
types of activities in the PI transformations among the
four phases of flow of personal information. We will refer
to any of these as PI agents. PI agents may include any
one who participates in activities over PI. The proprietor
is not accepted as agent with respect to his/her own PI.

 2

 1 2

 6 5 4 3

 7

Figure 1: Personal information flow model.

Creating Personal Information

Non-proprietor Proprietor

Use

Collecting Personal Information

Use Store

Processing Personal
Information

Uses

Mining

Disclosing Personal Information

Store

Store

Creating

Disclosing Disclosing

Collecting

Storage

Store

Use

 Store Use

Creating

Collecting

Mining

Processing

Figure 2: A proprietor and two agents model.

Proprietor Agent 1 Agent 2

Proc. Eighteenth Australasian Database Conference (ADC 2007)

25

Figure 3 illustrates this type of mode of operation on PI
with sample PI agents. The solid arrows reflect that the
proprietor is a source of PI for agents. The dotted lines
reflect that this PI of the proprietor may also be directly
shared and exchanged among agents.

The EU Privacy Directive manages this type of system:
organizing (1) the relationship between the proprietor and
agents that utilize his/her personal information and (2) the
relationship among the agents.

According to the EU Directive (1995):

(25) Whereas the principles of protection must be
reflected, on the one hand, in the obligations imposed
on persons, public authorities, enterprises, agencies or
other bodies responsible for processing, in particular
regarding data quality, technical security, notification

to the supervisory authority, and the circumstances
under which processing can be carried out, and, on
the other hand, in the right conferred on individuals,
the data on whom are the subject of processing, to be
informed that processing is taking place, to consult
the data, to request corrections and even to object to
processing in certain circumstances” (Italics added).

Notice that this type of system is basically a “binary”
system that involves the proprietor on one side and all
agents, represented in the EU Privacy Directive by the
“controller” on the other.

6 The Acts on the Proprietor’s PI
As a result, we need two types of PI flow models: one for
proprietors and one for agents. We construct this
proprietor/agent PI flow architecture with two regions:
the proprietor’s region of activities on his/her PI and the
others’ region of activities on the proprietor’s PI, as
shown in Figure 4. Notice that we concentrate in the
figure on the agent's region. This region is a copy of the
personal information flow model.
We assume that there is no interest in how a proprietor
collect and process his own PI. For example, the EU
Directive specifies that “there should be excluded the
processing of data carried out by a natural person in the
exercise of activities which are exclusively personal or
domestic, such as correspondence and the holding of
records of addresses” (EU Directive, 12).

Proprietor

Agency Company

Other person
Hospital

Government

X.com

Figure 3. Proprietor/others PI exchange scheme.

Proprietor’s
Region

Agent’s Region

 N

 K L M

 F

 A

 F

 O E

 I P

 J

 G

 B H

 D C

Non-proprietor

Creating

Processing

 Collecting

Store

Store

Utilize

Utilize

Mining

Store

Utilize

Disclosing

Disclosing

Figure 4. Architecture of Proprietor/Agent PI flow

Proprietor’s
Region

Agent’s Region

 N

 K L M

 F E

 A

 F

 O I P

 J

 H P

 B G D C

 Q

 G

 B H

 D C

Non-proprietor

 Creating

Processing

 Collecting

Store

Store Use

Use

Mining

Store
Use

Disclosing

Disclosing

Collecting

CRPIT Volume 63

26

We distinguish 17 types of acts on PI (labelled A through
O) as shown in Figure 4 and described in Table 1. These
acts form ordered sequences or chains as will be
discussed later.

Examples:

Act A: A person discloses PI to a hospital.

Act B: A hospital discloses PI to an insurance company.

Act C: PI is produced by a mining program (e.g., John is
a high-risk customer) of a bank is disclosed to crediting
company.

Act D: Processed PI (changing the original data to
another form through such operations as modification,
translation, summarization, generalization) is released
from a hospital to an insurance company.

Act E: A hospital stores PI in its automated or manual
system, accessing stored data.

Act F: A hospital uses PI to contact its patients.

Act G: A hospital stores processed PI (e.g., mined PI) in
its system .

Act H: An agent uses processed data for research.

Act J: An agent mines PI to extract implied PI (e.g., the
information Z is the grandfather of Y is taken from Z is
the father of W and W is the father of Y).

Act K: An agent stores PI produced by a mining
program.

Act L: An agent makes decisions based on PI that is
produced from a mining program.

Act M: An agent produces new PI using a mining
program (e.g., an analysis of customers produces the
information that John is a high-risk person).

Act N: A newspaper writer publishes PI.

Act O: An agent collects PI from another agent.

Act P: An agent creates PI (gossip) and processes it.

The advantage of this categorizing of "processing" of
personal data is that we can specify different types of
rules, requirements, restrictions for each type of act on PI
(Al-Fedaghi, 2006a). The next section proposes to use the
chains of acts on PI as a mechanism that is tied to the user
purpose.

7 Chains of Acts on Personal Information

We have now a foundation for developing a purpose-less
privacy protecting access control mechanism. We assume
that each purpose can be translated to a chain of acts on
PI. To simplify the discussion, the concept is introduced
through known examples in the research literature.

Chains of acts on PI are chains of information handling
that starts with one of the following acts:

Act A: A proprietor discloses his/her PI. This act can also
be described as an agent collecting PI from a proprietor.

Act O: An agent collects PI from another agent. In this
case O may be preceded by the act of disclosing agent to
indicate where the PI coming from.

Act N: A non-proprietor creates PI.

Acts Descriptions Comments

A Disclosing PI by
a proprietor

Act A also represents collecting
PI (by a collecting agent).

B Disclosing PI by
a collecting agent

B implies O (collecting PI by
another collecting agent)

C Disclosing PI by
a creating agent

In Figure 4, C implies B, that is,
the disclosed PI flows from a
collecting agent to another
collecting agent.

D Disclosing PI by
a processing
agent

In Figure 4, D implies B, that
is, the disclosed PI flows from a
processing agent to a collecting
agent.

E Storing PI by a
collecting agent

E (double arrow in figure 4)
includes retrieval. of PI.

F Using PI by a
collecting agent

“Using” indicate non-
informational operations.

G Storing PI by a
processing agent

We can separate the storing and
retrieval acts as two
independent acts in the model.

H Using PI by a
processing agent

Using processed PI may be
different from uses of other
types of PI.

I Processing PI by
an agent

PI flows from the collecting
phase to a processing phase,
assuming the same agent.

J Mining PI by a
mining agent

Mining is a type of processing
(notice the bi-directional
arrow). This type of mining
(back arrow) produces implied
PI but not new PI.

K Storing PI by a
creating agent

L Using PI by a
creating agent

M Creating PI by a
mining agent

Automatic creation of PI.
Notice that mining is a special
type of processing.

N Creating PI by a
non-proprietor

Non-automatic creation of PI
(e.g., gossip).

O Collecting PI
from non-
proprietor

O occurs simultaneously with
B: If an agent discloses PI then
there is an agent that collects
that PI.

P Processing of
created PI

Non-proprietor may creates PI
and process it immediately
without storing or acting on it.

Q Disclosing to
proprietor

E.g., Informing a person of
results of medical tests.

Table 1. Acts on Personal Information

Proc. Eighteenth Australasian Database Conference (ADC 2007)

27

These three acts, A, O, and N, are the only sources that
supply any agent with PI. Suppose that a company has a
piece of personal information. This piece of information
is either collected from its proprietor, from another agent,
or created internally by the agent. Starting with any of
these sources, that piece of PI flows into the PI
information handling system (manual or automatic)
subjected to different acts such as processing, utilization,
mining and so forth. This track of acts can be traced
through chains.

One benefit of these chains is designing the PI handling
system such that each piece of PI is constrained to flow in
specific chains.

Example: Suppose that a company collects PI from
proprietors and utilizes it in direct email telemarketing.
The chain of acts that describes the flow of PI in this
operation is AF (the sequence starts with act A then act F)
which includes:

Act A: Collecting PI from a proprietor

Act F: Using PI in direct telemarketing operation

If the company also stores the PI (act E: Storing and
retrieving) then we have two possibilities:

(1) PI is collected, stored, then used in telemarketing. The
chain AEF represents this sequence of acts.

(2) The PI is collected and utilized directly in
telemarketing, and in parallel stored and utilized later in
telemarketing. This is represented by the chains AF and
AEF. AF and AEF are two paths of flow of information,
one is directly from collecting to telemarketing and the
other goes from Collecting to Store to Use.

Suppose that the company also use the PI for third party
marketing (i.e., it sells the PI to another telemarketing
company). In this case, samples of possible chains:(1)

AB: Disclosing PI straight to the other agent without
using it itself in telemarketing.

(2) Two chains, AB and AF: Disclosing PI to the other
agent and using it in its own telemarketing. A sample
situation that reflects AB is the following: a customer
requests PI about a certain person from a private
investigation agency under the condition that the agency
does not keep records of PI after delivering it to the
requester.

(3) Two chains, AEF and AEB: Storing PI and using it,
and also disclosing PI to the other agent.

These types of acts on PI represent constraints on
methods of handling PI. The "enterprise purpose" is
represented by a set of these chains.

Example: Consider a proprietor, X, and two agents, Y
and Z. Assume that the flow of information reflects the
following roles for agents:

Proprietor: discloses his/her PI to collecting agent Y

Agent X: collects PI of X and discloses it to Agent Z.

Agent Y: collects PI from Agent X and processes it
through a data mining program that creates new PI which
is used in decision-making (e.g., denying a loan).

Agent Z: Collects PI from Y and processes it to use the
results in research.

Figure 5 shows the architecture of the flow of PI in such a
system.

Proprietor Region Agent X Agent Y Region Agent Z region

A

B O

Creating

Collecting

Proprietor

Disclosing
Disclosing

B

 I

 H

Collecting

Processing

Use

 L M

A

I J

 J

 D

 D O

Creating

Use

Collecting

Minin
g

Processing

Disclosing

Figure 5. The architecture of the flow of PI for the given example.

CRPIT Volume 63

28

Chains of X: Table 2 shows six possible chains that can
be assigned to X. Notice that a sequence such as AFB is
not mentioned because it means that the agent collects PI
then used (act F), and disclosed (act B) it. Acts F and B
are not dependent (in the flow of PI) on each other,
hence, we can write them in terms of the two basic
sequences: AF and AB.

In our example, by assumption, Agent X does not merely
collect PI, neither store nor use. The only chain used by
X is AB. We can observe here that such categorization of
utilization of PI is based on purely syntactical
consideration (the 17 acts and the relationships among
them) and does not depend on any particular situation.

Chains of Y: Possible chains that are applied to Agent Y
are: B, BI, BIJ, BIJM, BIJMN, and BID. However,
according to our example Agent Y use only the chain
BIJM.

Chains of Z: Possible chains that are applied to Agent Z
are: B, BI, and BIH.

Suppose that all three agents are in the same enterprise.
Then the enterprise system can organize the activities of
these agents such that each is constrained to a certain
chain. For example, X is not permitted to access PI
produced by the mining program, Y is not permitted to
disclose PI to X, Z is not permitted to disclose PI to
anyone.

8 Privacy Access Control

We are proposing to use chains of acts on PI to control
acting on PI instead of the so-called "business purposes"
used in privacy access control.
Example: This example is a revised version of Byun et
al. (2005). Suppose that we wish to allow three types of
users:

E-Analysts are the users who analyze the customer
information and prepare the contents of emails. They
have the permissions to access the customer profiles.

Writers are the users who write and send out emails to
customers. They have the permissions to access the email
addresses of the customers.

Service-Update refers to workers who send out updated
service information and then update the information.

In this scenario, we have three agents, the proprietor and
the system as an agent. The system represents the total
information system that the three agents are its users. The
chains for each agent are as follows, where we specify
only the relevant acts (qualified with "′" for the system):

System: B′, O′G′ : These are the required acts from the
system in the context of the example: B′ (disclosing PI)
which refers to provide viewing (access) of PI to other
agents; and O′G′ (collecting PI released by other agents
and storing it).

E-Analysts: B′OIBO′G′: That is, collecting PI from the
system (B′O), processing (altering) it (I), and disclosing it
to the system (O′) to be stored back (G′).

Writers: B′OF: That is, collecting PI from the system
(B′O) and use it to send out emails to customers. We
assume that sending out emails to customers is one of the
uses (Use box).

Service-Update: Includes two chains:

a) B′OF: That is, collecting PI from the system (B′O) and
using it to communicate with the customers to update
their PI.

(b) ABO′G′: That is, collecting the updated PI from
customers (A) and disclosing (releasing) it to the system
(BO′) to be stored back.

Table 2. Six possible chains that can be assigned to X.

 Possible chain of acts Examples Explanations
1 A Collecting PI to satisfy curiosity

without storing, using, or
disclosing it.

The purpose of act A alone
without being followed by
storing, using, or disclosing the
PI is a "mere collecting" act.

2 A then B Selling PI to agent Y Collected PI is immediately
disclosed to another agent.

3 A then E then B Selling PI to agent Y while
keeping a copy of it

As when a telemarketer uses PI
and also sells it to others.

4 A then E Just storing collected
information.

As in archival storage where data
may never be needed.

5 A then F Direct use of PI without storing it
6 A then E then F Storing PI then using it
 B…
 E…
 F…

The flow of PI starts from an origin that creates it. These chains are
illegal because they should start with A (PI is created by its
proprietor), M (PI is manually created by a non-proprietor), or N (PI is
automatically created by a non-proprietor).

Proc. Eighteenth Australasian Database Conference (ADC 2007)

29

Figure 6 shows the PI flow models for the three agents,
system, and proprietor. Each chain in this case is a
constraint on its relevant PI: email of Writers, profile of
E-Analysts, and the PI relevant to the Service-Update
workers.

This methodology is an alternative method to enterprise
purpose and roles hierarchies. Each PI is associated with
a chain that reflects permissible acts to accomplish the
customer purpose. If the purpose is direct email
telemarketing then the chain OF is associated with the
email information. The users (e.g., Writers in the
example) in this case can only collect the email
information and use it to send out emails to customers.
We assume that there is a system application program
that is designed to send out these emails to customers.
The chain OF is implemented by programs that allow
these users to access the email information. This mapping
between chains and users is a replacement of the mapping
between purposes hierarchies and users roles hierarchies.

9 Architecture for Personal Information
Database System

The high level description of architecture for a personal
information database system will be refers to as PIDB.

PIDB is formed from regions for proprietors and agents.
Each region is a copy of the PI flow model as described
previously.

Example: This example is a revised version of Massacci
et al. (2005) who built it from the case study proposed by
Agrawal et al. (2002).

Mississippi relies on Worldwide Express (WWEx) for
shipping books. WWEx is a delivery company that offers
a global network of specialized services – transportation,
international trade support and supply chain services.
WWEx also needs personal information to deliver books
for Mississippi. This information includes customer name
and shipping address. In turn, WWEx depends on local
delivery companies for door-to-door delivery. To this
end, WWEx delegates customer information to them.
Furthermore, Mississippi relies on the Credit Card
Company (CCC) for credit assessment. CCC needs to
obtain some information for providing credit assessment.
This information includes customer’s name and credit
card number, and the transaction between Mississippi and
the customer. For making credit decisions, CCC wants a
credit rating. For this, CCC depends on the Credit Rating
Company (CRC). CRC uses statistics to summarize past
experience so that predictive analysis can be used to
generate a rating for the customer. Based on the rating,
CCC can decide to accept or not the customer transaction.

This scenario includes one (type of) proprietor and six
agents as illustrated in Figure 7. The figure shows the
relationships between these acts. Mississippi has two
internal users.

Figure 8 shows the architecture of PIDB for the actors
Proprietor, Mississippi, Credit Card Company,
Worldwide Express and Local delivery companies. The
flow model of the internal departments can be specified
in similar way to the agents E-Analysts, Writers, and
Service-Update in the example in the previous section.
For example, the chain from ordering books to delivering
it to customer is described in the following chains:

 B′ B′
B′

G′

System O′ B′

 B′

 O′

 E-Analysts

 O

 I

D

 D

 B

Collecting

Disclosing

Store

Collecting

Processing

Disclosing

 O

 F

 Writers

Writers

Collecting

Use

 B O Service-Update

 F

 A

Collecting

Use

Proprietor Disclosing

Figure 6. Chains of three agents, the proprietor and the system.

CRPIT Volume 63

30

Mississippi: A′ E′ I′ G′ D′ B′

Mississippi collects PI from customer, stores, process,
stores (any results from processing), release Pi to be
disclosed to the Credit Card Company.

Credit Card Company: OIJMCB

Credit Card Company collects PI (from Mississippi),
process, mine, release (new PI, e.g., John's credit is OK),
and disclose it to Mississippi

.

Mississippi: O′I′D′

Mississippi collects results, process, and send delivering
order to Worldwide Express (Assuming, credit is OK).

Worldwide Express: OEBO

Worldwide Express collects PI, stores, and discloses it to
Local delivery companies.

Mississippi Charging Depart.

Shipping Depart.

Proprietor

Credit Card
Company

Worldwide
Express

Local delivery companies

Figure 7. General view of the relationships among six acts in the Mississippi example.

Proprietor
Disclosing

Mississippi A′

 O′

 E′

 I′ G′

 B′

 D′

 B′

Collecting

Store

Processing

Disclosing

Worldwide Express

 E

 O

 B

 O

Collecting

Disclosing

Store

Credit Card Company

 B

 C

 M

 J

 I

 O

Collecting

Processing

Mining

Disclosing

 B F

 Local delivery companies

 E

Collecting

Use

Store

Store

Creating

Customer

Figure 8. The architecture of PIDB for the Mississippi example.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

31

Local delivery companies: BEF

Local delivery companies collect PI, store and perform
the actual act of delivering the purchase.

As we see that other chains can be added to this scenario.
Privacy Constrains can be supper imposed on internal or
cross-organizational handling of personal information.
The method is distinguished by the limited number of
acts that form well defined chains of acts on personal
information. In comparison with the complexity of
hierarchies of purposes and roles and the mapping
between them this method promises an attractive
alternative. Additionally, the method is a manifestation of
the notion "privacy by design" that embeds privacy
constrains inside the system.

Figure 9 shows all possible chains of acts. PI entry points
are acts A, B, and N. It generates non-informational acts
(e.g., decisions) at F, H, and L. The dotted line between B
and O indicates simultaneous acts (disclosure and
collection) of two different agents as described
previously.

10 Conclusion
The concept of representing database system's privacy
constraints as chains of acts on personal information has
been shown to be a possible alternative method to
database techniques based on purpose hierarchies A great
deal of investigation is needed to formalize and
experiment with such a mechanism. The general method
has more applications than mere privacy protecting
access control method. It can additionally be applied in
writing privacy codes, guidelines, and statutes (Al-
Fedaghi (2006c)).

11 References

Agrawal, R. Kiernan, J. Srikant, R. and Xu. Y. (2002).
Hippocratic databases. In The 28th International
Conference on Very Large Databases (VLDB), Hong
Kong, China, August.

Al-Fedaghi, S. (2006a) Anatomy of Personal Information
Processing: Application to the EU Privacy Directive,
International Conference on Business, Law and
Technology (IBLT 2006), Copenhagen on December
5-7, 2006.

Al-Fedaghi, S. (2006b). Aspects of Personal Information
Theory, 7th, The Seventh Annual IEEE Information
Assurance Workshop (IEEE-IAW), West Point, NY:
United States Military Academy, June 20-23.

Al-Fedaghi, S. (2006c). Personal Information Flow
Model for P3P, W3C Workshop on Languages for
Privacy Policy Negotiation and Semantics-Driven
Enforcement, Ispra (Italy), 17-18 October 2006

Al-Fedaghi, S. (2005a). How to Calculate the Information
Privacy, The Third Annual Conference on Privacy,
Security and Trust, St. Andrews, New Brunswick,
Canada.

Al-Fedaghi, S. Fiedler G. and B. Thalheim B. (2005).
Privacy Enhanced Information Systems, Proceedings of
The 15th European-Japanese Conference on
Information Modeling And Knowledge Bases: Tallinn,
Estonia, 2005.

Byun, J. Bertino, E. and Li, N. (2005). Purpose Based
Access Control of Complex Data for Privacy
Protection, SACMAT’05, June 1–3, 2005, Stockholm,
Sweden.

EU Directive. (1995). DIRECTIVE 95/46/EC OF THE
EUROPEAN PARLIAMENT AND OF THE
COUNCIL, 24 October. http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:
31995L0046:EN:HTML

Fischer-Hübner, S. and Ott, A. (1998). From a Formal
Privacy Model to its Implementation, Proceedings of
the 21st National Information Systems Security
Conference, Arlington, VA, October 5-8, 1998.

He O. and Antón. A. I. (2003). A Framework for
Modeling Privacy Requirements in Role Engineering,
International Workshop on Requirements Engineering
for Software Quality (REFSQ 2003), Klagenfurt /
Velden, Austria, 16 - 17 June, 2003.

Massacci, F. and Mylopoulos, J. and Zannone, N. (2005)
Minimal Disclosure in Hierarchical Hippocratic
Databases with Delegation. 10TH EUROPEAN
SYMPOSIUM ON RESEARCH IN COMPUTER
SECURITY, Milan, Italy - September 12-14, 2005.

OECD (1980). Guidelines on the Protection of Privacy
and Transborder Flows of Personal Data,
http://www.oecd.org/document/18/0,2340,en_2649_34
255_1815186_1_1_1_1,00.html

P3P (2002). The Platform for Privacy Preferences 1.0
(P3P1.0) Specification, The World Wide Web
Consortium, April 16, 2002, http://www.w3.org/p3p/.

Sandhu, R. Ferraiolo, D. and Kuhn, R. (2000). The NIST
model for role-based access control: Towards a unified
standard. In the fifth ACM workshop on Role-based
access control, July 26-27, 2000.

Figure 9. Acts sequences. Wide blank arrows are
PI entry points and wide black arrows are uses
where PI generates non-informational acts.

A

B

 F

I G

C

D

E

M

H

L

J

K
N

O P

Q

CRPIT Volume 63

32

The privacy of k-NN retrieval for horizontal partitioned data —
new methods and applications

Artak Amirbekyan Vladimir Estivill-Castro

School of ICT, Griffith University,
Meadowbrook QLD 4131, Australia
Email: A.Amirbekyan@gu.edu.au

Abstract

Recently, privacy issues have become important in
clustering analysis, especially when data is horizon-
tally partitioned over several parties. Associative
queries are the core retrieval operation for many data
mining algorithms, especially clustering and k-NN
classification. The algorithms that efficiently support
k-NN queries are of special interest. We show how to
adapt well-known data structures to the privacy pre-
serving context and what is the overhead of this adap-
tation. We present an algorithm for k-NN in secure
multiparty computation. This is based on presenting
private computation of several metrics. As a result,
we can offer three approaches to associative queries
over horizontally partitioned data with progressively
less security. We show privacy preserving algorithms
for data structures that induce a partition on the
space; such as KD-Trees. Our next preference is our
Privacy Preserving SASH . However, we demonstrate
that the most effective approach to achieve privacy
is separate data structures for parties, where associa-
tive queries work separately, followed by secure com-
bination to produce the overall output. This idea
not only enhances security but also reduces commu-
nication cost between data holders. Our results and
protocols also enable us to improve on previous ap-
proaches for k-NN classification.

Keywords: Privacy Preserving Data Mining, Horizon-
tally Partitioned Data, Data Structures for Associa-
tive Queries. k-NN queries.

1 Introduction

Never have globalization and international collabo-
rations placed as much demand on partnerships be-
tween governments and/or corporations. Data min-
ing has been identified as one of the most useful tools
for the fight on terror and crime (Mena 2003). How-
ever, the information needed resides with many dif-
ferent data holders that must share their data with
each other; thus, data privacy becomes extremely im-
portant. Parties may mutually not trust each other,
but all parties are aware of the benefit brought by
such collaboration. In the privacy preserving model,
all parties of the partnership promise to provide their
private data to the collaboration, but none of them
wants the others or any third party to learn much
about their private data.

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at the Eighteenth Australasian Database Con-
ference (ADC2007), Ballarat, Victoria, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 63. James Bailey and Alan Fekete, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

For most data mining algorithms, the data is en-
coded as vectors in high dimensional space1. For these
algorithms, a measure of similarity (or dissimilarity)
is necessary and many times fundamental for their
operation. More importantly, in large databases,
attribute-vectors are the result of feature-extraction
processes and constitute elements of high-dimensional
spaces. These are subject to the curse of dimension-
ality and in such settings content-based retrieval un-
der the vector model must typically be implemented
as k-nearest-neighbour (k-NN) queries. k-NN queries
produce the k items whose features most closely re-
semble those of the query vector according to the sim-
ilarity measure. Therefore, the efficiency and scala-
bility of k-NN methods strongly depends on that of
k-NN search. And this directly impacts data mining
algorithms. Thus, k-NN search is fundamental for for
many data mining results.

Current database applications regularly use some
from of similarity search. Well known exam-
ples include medical imaging (Korn, Sidropoulos,
Faloutsos, Siegel & Proropapas 1996), and bioin-
formatics (Kahveci & Singh. 2001); moreover, also
time-series databases (Faloutsos, Ranganathan &
Manolopoulos May 1994), multimedia information
systems (Subrahmanian 1999), geographical informa-
tion systems (GIS) (Cheng, Dolin, Neary, Prabhakar,
Ravikanth, Wu, Agrawal, El Abbadi, Freeston, Singh,
Smith & Su 1997) and CAD/CAM (Berchtold 1997).
These applications commonly have some distance
function that acts as the similarity between two ob-
jects (among them Euclidean distance between the
corresponding feature vectors). Two illustrations are
the area of image databases (where the most similar
images to a given image (Ankerst, Kriegel & Seidl
1998) are retrieved in this way) and molecular biol-
ogy (Ankerst, Kastenmueller, Kriegel & Seidl 1999)
(where features are derived from 3D shape histograms
to find similar 3D proteins).

Data structures that efficiently find k-
NN includes search structures include quad-
trees (Samet 1984), KD-Trees (Bentley 1975),
and R-Trees (Guttmann 1984), and newer struc-
tures such as SR-trees (Katayama & Satoh 1997),
X-trees (Berchtold, Keim & Kriegel 1996), A-
trees (Sakurai, Yoshikawa, S. & Kojima 2000), and
iDistance (Yu, Ooi, Tan & Jagadish 2001). The
central role of these spatial indices in data mining
algorithms is illustrated by R-Trees for the efficiency
of the popular clustering algorithm DBSCAN (Ester,
Kriegel, Sander & Xu 1996).

We review secure multiparty computation in Sec-
tion 2 because it provides the context for our proto-
cols. While we review some existing protocols sev-
eral new extensions are provided here. In Section 3

1Attribute-vectors are the common input for learning algo-
rithms like decision trees, artificial neural network or for clustering
algorithms like k-Means or DBSCAN .

Proc. Eighteenth Australasian Database Conference (ADC 2007)

33

Figure 1: Horizontally partitioned data.

we introduce privacy preserving computation of some
common metrics. Then, Section 4 shows privacy
preserving k-NN queries. We include an analysis
of what is the realistic expectation of k-NN for se-
cure multiparty computation even in the ideal case.
Section 6 demonstrates that our protocols are suf-
ficient to produce a much better privacy preserv-
ing k-NN classifier for horizontally partitioned data.
From here, we move into three models for associative
queries. First, Section 7 proposes and demonstrates
that the most effective approach to achieve privacy
is separate data structures for parties, where asso-
ciative queries work separately, followed by a secure
combination protocol to produce the overall output.
This idea not only enhances security but also reduces
communication cost between data holders. However,
most privacy preserving data mining approaches sug-
gest a common data structure for mounting algo-
rithms on top. The most modern and effective k-NN
searcher for high dimensions with least assumptions
on the metric is the SASH (Houle 2003b, Houle &
Sakuma 2005). In Section 8, we show a privacy pre-
serving SASH . We chose the SASH because it is
neither a spatial index nor a metric index: it makes
no assumptions on the nature of the database el-
ements other than the existence of a pairwise dis-
tance measure, nor does it require the measure to
satisfy the triangle inequality. Houle (Houle 2003b)
has shown that for approximate k-NN queries on the
largest sets, the SASH consistently returns a high
proportion of the true k-NNs at speeds of roughly
two orders of magnitude faster than sequential search.
The SASH has been successfully applied to cluster-
ing and navigation of very large, very high dimen-
sional text data sets (Houle 2003a), and spatial data
mining of web documents (Morimoto, Aono, Houle
& McCurley 2003). The fact that the SASH does
not produce a partition of the search space adds ad-
ditional security. In Section 9 we demonstrate that
data structures that produce partitions (like R-Trees
or KD-Trees) can be converted to the privacy pre-
serving context but they are less secure. Section 10
offers a comparison and analysis while we conclude
with final remarks in Section 11.

2 Privacy Preserving Computation

We study collaboration between several parties that
wish to compute a function of their collective data.
In fact, they are to conduct data mining tasks on
the joint data set that is the union of all individual
data sets. Each wants the others to find as little as
possible of their own private data. To focus the dis-
cussion on privacy preserving collaboration, we will
regularly use two parties we name Alice and Bob. Of
course, the algorithms we describe here enable us to
involve more than two parties, but for simplicity we
will use only two parties. We focus on horizontally
partitioned data (see Fig. 1). Some of the records are
owned by Alice and the others by Bob. In the case
of more than two parties, then every party will own
some part (a number of records) from the database. A
direct and naive use of data mining algorithms on the

union of the data requires one party to receive data
(every record) from all other parties, or all parties to
send their data to a trusted central place. The recipi-
ent of the data would conduct the computation in the
resulting union. In settings where each party must
keep their data private, this is unacceptable. Note
that, for horizontally partitioned data, the more par-
ties are involved, the more records are involved and
the larger is the global database.

For simplicity, we may assume each party owns
one record only, so the number P of parties is also the
number m of records. Typically there would be more
records than parties (as in Fig. 1 where two parties
have data for 9 records). However, we consider Alice
as 4 virtual parties (one for each of the records) and
Bob as 5 virtual parties each controlling one of Bob’s
records. This simplifies the notation in some of the
algorithms (and communication between two virtual
parties of the same party just does not need to occur).

The setting for our methods is privacy preserving
computation originally developed under the name of
“secure multiparty computation” (SMC) (Goldreich
1998). Here Alice holds one input vector ~x and Bob
holds an input vector ~y. They both want to com-
pute a function f(~x, ~y) without each other learning
anything about each other’s input except what can
be inferred from f(~x, ~y). Yao’s Millionaires Prob-
lem (Yao 1982) provides the origin for SMC. In the
millionaires, Alice holds a number a while Bob holds
b. They want to identify who holds the larger value
(they compute if a > b) without neither learning
anything else about the others value. The function
f(~x, ~y) is the predicate f(a, b) = a > b. There are
now many solutions (Atallah & Du 2000) improv-
ing Yao’s original solution (that required exponential
complexity on the number of bits of (a + b); how-
ever, a recent solution (Cachin 1999) is linear on the
number of bits of (a + b)). We also adopt the semi-
honest (Goldreich 1998) model for secure computa-
tion, which means both parties will follow the pro-
tocol since both are interested in the results. They
will attempt to discover data (infer information) that
they do not own, but will not supply false information
in the protocol, neither will they fail to complete the
protocol. To be totally precise one would have to pro-
duce proofs for the notion to “infer information f(~x)
from ~x”. Such definition (Goldreich 1998) involves
simulated computation in polynomial time when ~x is
known. However, for space reasons we will not be so
rigorous and we will use the following definitions.

DEFINITION 2.1 We say that algorithm A is
more secure (preferred) than algorithm B if from the
output of algorithm A one can infer less information 2

than from algorithm B.
Note that adversaries will always know at least a

set of possible values of the confidential data. We
express this as a bounding box or range.

EXAMPLE 2.1 Alice has private data ~p, and af-
ter applying algorithm A, Bob can discover a bound-
ing box BBA where ~p lies. However, after applying
algorithm B, Bob can discover another bounding box
BBB. If BBB ⊂ BBA, then we say algorithm A is
more secure (preferred) than algorithm B.

EXAMPLE 2.2 Alice has private data ~p1, ~p2,· · · , ~pn and after applying algorithm A, Bob can dis-
cover bounding boxes BBAi with ~pi ∈ BBAi , for
i = 1, . . . , n. After applying algorithm B, Bob can dis-
cover boxes BBBj with ~pj ∈ BBBj , for j = 1, . . . , n.
If BBBj

⊂ BBAj
(for all j), then we say algorithm

A is more secure (preferred) than algorithm B.
2Less information means not only discovering approximate val-

ues for less number of private values, but it includes also a larger
bounding box for data approximations.

CRPIT Volume 63

34

2.1 Review of the Commodity Server

Although not strictly necessary, for performance rea-
sons, we can use the help from an extra server, the
commodity server, belonging to a third party. Alice
and Bob could then send request to the commodity
server and receive data (called commodities) from the
server, but the commodities should be independent
of Alice’s or Bob’s private data. The purpose of the
commodities is to help Alice and Bob conduct the de-
sired computation. The third party is semi-trusted in
the following sense: (1) The third party should not
be trusted; therefore it should not be possible (for
this third party) to derive the private information
of the data from Alice or Bob; it should not learn
the computation result either. (2) The third party
should not collude with both Alice and Bob. (3) The
third party follows the protocol correctly. Because
of these attributes, we say that the third party is a
semi-trusted party. In the real world, finding such
a semi-trusted third party is much easier than find-
ing a trusted third party. As we will see from our
solutions, the commodity server does not participate
in the actual computation between Alice and Bob, it
only supplies commodities that are independent of Al-
ice and Bob’s private data. Therefore, the server can
even generate independent data off-line beforehand,
and sell them as commodities to the prover and the
verifier (hence the name “commodity server”). The
commodity server model have been used previously
in the literature (Beaver 1998) for solving private in-
formation retrieval problems.

2.2 Review of the Scalar Product Protocol

In this protocol, Alice has a vector ~x and Bob has
another vector ~y (both with n elements). Alice and
Bob use the protocol to compute the scalar product
~xT · ~y between ~x and ~y, such that Alice gets V1 and
Bob gets V2, where V1+V2 = ~xT ·~y and V2 is randomly
generated by Bob. Namely, the scalar product of ~x
and ~y is divided into two secret pieces, with one going
to Alice and the other going to Bob. The computation
is performed in the domain of the reals < and by
Theorem 4.1 in (Du & Zhan 2002) both Alice and
Bob cannot learn each other’s private data.

Protocol (Scalar Product Protocol)

1. The Commodity Server generates two random
vectors ~Ra and ~Rb of size n, and lets ra + rb =
~RT

a · ~Rb, where ra (or rb) is a randomly generated
number. Then the server sends (~Ra; ra) to Alice,
and (~Rb; rb) to Bob.

2. Alice sends ~x′ = ~x + ~Ra to Bob, and Bob sends
~y′ = ~y + ~Rb to Alice.

3. Bob generates a random number V2, and com-
putes (~x′T ·~y)+(rb−V2); then he sends the result
to Alice.

4. Alice computes (~x′T ·~y+(rb−V2))−(~RT
a ·~y′)+ra =

~xT ·~y−V2 +(rb− ~RT
a · ~Rb +ra) = ~xT ·~y−V2 = V1.

The communication cost of this protocol is 4n, which
is 4 times more expensive than the optimal cost of a
two-party scalar product (the optimal cost of a scalar
product is defined as the cost of conducting the prod-
uct of ~x and ~y without the privacy constraints, namely
one party just sends its data in plain to the other
party). The cost can be further improved to 2n be-
cause the vectors ~Ra and ~Rb are random generated
by the commodity server; therefore the commodity
server can send just the seeds (numbers of constant

size) to Alice and Bob, and the seeds can be used to
compute the random vector. Solutions to the scalar
product protocol have been proposed before (Atallah
& Du 2000, Vaidya & C. Clifton 2002) and both of
these solutions achieves the security without using
a third party. While the commodity server is not
strictly necessary for our algorithms, in practice the
communication and computation costs is more expen-
sive than the solution without it that have a large
constant under the O(n) complexity, where n is the
size of the vectors.

2.3 Extension to the Add Vectors Protocol

The technique was introduced for manipulation of
vector operations as the “permutation protocol” (Du
& Atallah 2001) and is also known as the “permuta-
tion algorithm” (Vaidya & C. Clifton 2003)). In this
protocol, Alice has a vector ~x while Bob has vector ~y
and a permutation π. The goal is for Alice to obtain
π(~x+~y); that is Alice obtains the sum ~s of the vectors
in some sense. The entries are randomly permuted,
so Alice cannot perform ~s − ~x to find ~y. Also, Bob
is not to learn ~x. The solution is based on homomor-
phic encryption for which many implementations are
possible. The protocol works as follows.

1. Alice produces a key pair for a homomorphic
public key system and sends the public key to
Bob. We denote by E(·) and D(·) the corre-
sponding encryption and decryption system.

2. Alice encrypts ~x = (x1, · · · , xn)T and sends
E(~x) = (E(x1), · · · , E(xn))T to Bob.

3. Using the public key from Alice, Bob computes
E(~y) = (E(y1), · · · , E(yn))T and uses the ho-
momorphic property to compute E(~x + ~y) =
E(~x) × E(~y). Then, he permutes the entries by
π and sends π(E(~x + ~y)) to Alice.

4. Alice decrypts to obtain D(π(E(~x+~y))) = π(~x+
~y).

We will extend this protocol to the case of P ≥ 3
vectors, that is P > 2 parties are involved. In this
case there is no need to permute the result, because
D(·) is known only by Alice, and Alice will get the
value E(~v2 + · · ·+ ~vP), where ~vi is the vector owned
by ith party. The algorithm is as follows:

1. The 1st party (Alice), generates E(·) and D(·),
then sends only E(·) to the other parties.

2. Then, the P th party encrypts his data E(~vP) and
sends it to (P − 1)th party.

3. Next, the (P − 1)th party encrypts his data
E(~vP−1) and using homomorphic encryption
property computes

E(~vP−1)× E(~vP) = E(~vP−1 + ~vP)

and sends this to the (P − 2)th party.

4. The protocol continues until Alice (the first
party) will get E(~v2 + · · ·+ ~vP−1 + ~vP) and she
adds her data in the same way.

5. As Alice owns D(·), she decrypts the results and
sends them to all other parties.

Note that in Step 1, the P th party does not need to
permute his result because the (P − 1)th party does
not know D(·) to decrypt. In this case E(·) could be
as simple as adding random number (or X-or with
a random bit mask) and consequently D(·) will be
subtracting the random number previously added.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

35

2.4 New Protocol for the Maximum Value in
the Sum of Vectors.

We will look at the two party case separately from
three or more parties since these require slightly dif-
ferent solutions.

Two Party Case: Consider two attribute vec-
tors ~x and ~y, where only Alice knows ~x and only
Bob knows ~y. (where ~x = (x1, · · · , xn)T and ~y =
(y1, · · · , yn)T). The goal is to obtain maxi(xi + yi).
There is a variant that obtains the index i0 for which
xi + yi is maximum. However, the protocol should
never reveal both, because then the parties find a
value for the other. For example, Alice would find
maxi(xi +yi)−xi0 = yi0 . Even if the maximum value
is the only outcome revealed, and the protocol is ideal,
each party learns the value xi0 +yi0 of the maximum,
and thus, each party can subtract its data vector to
find n values among which on value is from the other
party. For example, Alice can compute xi0 + yi0 − xi
(for i = 1, . . . , n) and she finds n values one of which
must be yi0 owned by Bob.

Bob starts by generating a random value r and
using ~y + r = (y1 + r, . . . , yn + r)T in the add vector
protocol from Section 2.3. This provides Alice with
π(~x + ~y + r); that is, Alice obtains the sum vector
in permuted order, which will suffice for Alice to find
the maximum and inform Bob. If the maximum value
is the outcome sought, Alice provides only the value
xi0 +yi0 +r. Bob will subtract r and pass xi0 +yi0 to
Alice. If the index of where the maximum is sought,
then Alice provides only the index of where she found
the maximum and Bob applies π−1 to broadcast the
index. Note that Alice cannot learn which of the
coordinates provided the maximum value, until Bob
broadcast it. Note however, only when the maximum
is sought, Alice learns the random number r and all
the values in the entries of π(~x + ~y), but this is not
enough to learn any of the Bobs private data.

The Multiparty Case (P > 2): Here, direct
use of our extension to the add vectors protocol will
reveal slightly more information that we would like to;
namely, Alice obtains the sum of the vectors without
the effect of the permutation (see Subsection 2.3). She
is able not only to find the maximum, but the index i0
which hold the maximum of xi + yi as well. So, Alice
will know a bit more than the others. Therefore, we
will improve this protocol. The proposed protocol
works as follows. Assume there are P > 2 parties
and every party has a vector ~vi.

1. The 1st party (Alice), generates a random vector
~R = (r1, . . . , rn) and sends it to the P th party.

2. Then, the P th party adds his vector ~vP to the
random vector received from Alice and sends the
sum to the (P − 1)th party.

3. The protocol continues until Bob (the second
party) receives the sum ~Sb = ~v3 + · · ·+ ~vP + ~R

4. Alice and Bob use our finding the maximum
value in sum (or the index) for P = 2 with
the vectors ~Sa = ~v1 − ~R owned by Alice and
~Sb = ~v3 + · · · + ~vP + ~R + r owned by Bob (Bob
randomly generates r), which allows Alice to ob-
tain π(Sa + Sb) + r; that is the sum (translated
by r) of the vectors in permuted order.

5. Alice finds and passes the maximum value to
Bob who subtracts r and broadcast the result
to the other parties (or alternatively, if the index
is sought, Alice will pass the index to Bob who
will apply π−1 and broadcasts the index to all
parties).

Lemma Under the semi-honest model, for P > 2,
the version finding maximum value in the sum of
vectors protocol does not allow any party to learn
any party’s value nor the index for where such maxi-
mum lies.

Proof: The lemma holds in the multiparty (P >
2) case because of the random vector generated by
Alice masks the data from the 3rd party to the P th.
For Alice and Bob (the first and second parties), the
protocol is secure as per the two party case, except
that this time, even if Alice subtracts all the values in
its vector from the maximum value, she only obtains
partial sums and not value from the other parties.¤

A similar result applies to the version that broad-
cast the index but not the maximum value. In the lit-
erature, there are several algorithms to find privately
not the maximum value but the index of the maxi-
mum value in a sum of vectors (Estivill-Castro 2004,
Vaidya & C. Clifton 2003). Such algorithms are very
costly; some require a theoretical construction hard
to implement (Vaidya & C. Clifton 2003) while oth-
ers (Estivill-Castro 2004) required P iterations of the
add vectors protocol and a matrix of random values,
plus m iterations of a division protocol. Those algo-
rithms become slightly more efficient if they allow one
party to find all the sums. Note that our index ver-
sion of the algorithm does not allow this to happen
(only a translation of the sums is found by Alice).

3 Privacy Preserving Metrics

Here Alice has again a vector ~x while Bob has vector
~y. We introduce here secure computation of the Eu-
clidean distance between these vectors. Alice replaces
each component xi with three components x2

i ,−2xi, 1
while Bob replaces each yi component with 1, yi, y

2
i .

The dot product for these three components will then
be x2

i − 2xiyi + y2
i = (xi − yi)2. In general

∑

i

(xi − yi)2 = (
∑

i

x2
i ,−2x1, ...,−2xn, 1) ·

(1, y1, ..., yn,−
∑

i

y2
i),

and thus the Euclidean distance between two feature
vectors can also be expressed as a scalar product of
two vectors. Hence one could use the secure scalar
product protocol (Du & Zhan 2002) (see Section 2.2),
to compute a secure Euclidean distance. The result
is two pieces of information V1 and V2, with V1 going
to Alice, V2 going to Bob and

∑
i(xi−yi)2 = V1 +V2.

It is known that the Euclidean distance is not ro-
bust in higher dimensions due to the many terms in-
volved in the sum and the potential that a few val-
ues are magnified by squaring them. In other words,
distinguishing what is close and what is far becomes
very difficult. This is called the curse of dimensional-
ity. To ameliorate this unpleasant fact, other metrics
may be needed. We explore here the chessboard dis-
tance which is defined as

L∞(~x, ~y) = max(|x1 − y1|, ..., |xn − yn|).
Note that

(|x1 − y1|, . . . , |xn − yn|)T = |~x− ~y| = |~x + (−~y)|.
In order to compute the chessboard distance securely
we can use our protocol for finding the maximum
value in a sum of vectors for two parties. Note that
Alice learns π(|xi−yi|) which is not sufficient to learn
values from Bob.

CRPIT Volume 63

36

Other metrics that weight attributes differently
and used in k-NN classification can also be com-
puted securely using a strategy similar to the one
above (for example, variants like (~x−~y)T W (~x−~y) =∑

i wi(xi − yi)2 where W is a diagonal matrix of
weights known to all parties). It should now be clear
that it is also possible to compute securely the cosine
metric ~xT · ~y/(‖~x‖‖~y‖) as (~x/‖~x‖)T · (~y/‖~y‖).

4 Privacy Preserving k-NN Queries

This section describes our privacy preserving k-NN
algorithm. Later, we will show that with this opera-
tion we can build a privacy preserving SASH .

For the PP-k-NN protocol we are given a set of
vectors

~vT
1 = (v11, · · · , v1n), · · · , ~vT

m = (vm1, · · · , vmn)(1)

and a vector ~qT = (q1, q2, · · · , qn), where m is the
number of records/vectors involved in the computa-
tion. The goal is to find NN(~q, k) where NN(~q, k)
is the set of indices of the k nearest neighbours to
the vector q. Assume the query vector ~q and the first
l < m vectors are owned by Alice while the other
m − l vectors are owned by Bob. In the case of the
Euclidean distance, the distance values between ~q and
~vi, be partially distributed between Alice and Bob.
Alice will have

V 1
q,vl+1

, · · · , V 1
q,vm

(2)

and Bob will have

V 2
q,vl+1

, · · · , V 2
q,vm

, (3)

where dist(~q,~vi) = V 1
q,vi

+ V 2
q,vi

, l < i ≤ m. Of
course, Alice will have also the distance values for her
own data. At this stage, Alice and Bob can perform
the add vector protocol with the values that de-
termine dist(~q,~vi) = V 1

q,vi
+ V 2

q,vi
, l < i ≤ m. Alice

receives these values shuffled by the permutation π
that Bob knows. Alice finds among these values and
her own dist(~q,~vi), 1 < i ≤ l, the k smallest. If any
came from Bob’s, she lets know the indexes j to Bob
and Bob returns π−1(j) to Alice. Then, Alice broad-
casts the indexes of all k-NN. Note that Alice learns
all the distances from ~q to data points of Bob. We
will discuss this issue later in Section 7.

Theorem 4.1 The PP-k-NN protocol does not al-
low either Alice or Bob to learn each other’s private
data/vectors.

Proof: In the first step of the PP-k-NN protocol,
Alice obtains (2) and Bob obtains (3) as a result of
the secure scalar product. The next step applies the
secure add vector protocol (see Section 2.3) which al-
lows Alice to learn the distance values. But, because
the distances obtained by Alice were shuffled by Bob,
Alice cannot learn the values in List (3). Clearly, Bob
only learns the list of values in List (3) and the in-
dexes of the k-NN. This, of course, is not enough to
disclose Alice’s private data. ¤

This protocol is efficient, because the secure scalar
product can be implemented very efficiently in liner
time on the dimension m of the data. The secure
scalar product is executed at most m times for O(mn)
time. The secure add vectors depends on homo-
morphic encryption (which can be implemented with
RSA). Because the add vector protocol for PP-k-NN
operates here with at most m values, the complexity
of this phase only depends on m and not the dimen-
sion of the data. The total complexity is O(mn) time,
which is linear in the input as per List (1).

5 The Ideal Case For Privacy Preserving k-
NN queries

In this section we analyse what is the best possible
security we can expect for a k-NN query. Assume
Alice has a database D1 = { ~a1, · · · , ~am} and query
vector ~q, while Bob has database D2 = {~b1, · · · , ~bm}.
They want to compute privately

k-NN(~q, D1, D2) := 〈z1, · · · , zk〉D1
S

D2 ,

where z1, · · · , zk are the indexes of the vectors, which
are k-NNs to the query point ~q.

The literature of SMC has an ideal theoretical so-
lution for this problem. In fact, it is always possible
to securely compute f(~x, ~y) for a polynomial-time f
using private input ~x from Alice and private input
~y from Bob so that Alice learns nothing about ~y ex-
cept what can be computed from f(~x, ~y) and similarly
Bob learns nothing about ~x except what can be in-
ferred from ~y (Goldreich, Micali & Wigderson 1987).
There is still a lot of interest in protocols for SMC
because (1) the general solution requires f to be ex-
plicitly represented as a Boolean circuit of polynomial
size and (2) the constants involved are not small, once
the circuit is described the parties enter into a proto-
col holding shares of the inputs to gates and shares
of the outputs of gates. In data mining settings this
becomes impractical because even if represented as
a circuit of polynomial size in its input, the input
would represent the entire data sets of all the parties.
Moreover, the community in the filed keeps discover-
ing more efficient solutions for special cases of f .

If such an ideal (theoretically possible) protocol for
k-NN were constructed from describing the function
as a circuit, then every party obtains only the indexes
z1, · · · , zk. However, they also obtain what can be
inferred from this. Assume zi1 , · · · , zil

are indexes
of vectors that belongs to Alice, and zil+1 , · · · , zik

are the those of vectors that belongs to Bob. If
Bob constructs the k − (l + 1)th order Voronoi dia-
gram (Chazelle & Edelsbrunner 1987, Lee 1982) with
his data, he can discover a cell/bounding box(BB) for
the query vector ~q. These cells are not regular, and
in particular, the one for ~q could be extremely small
even if the number k − (l + 1) is small. Naturally,
the more of Bob’s vectors among the k-NNs of ~q, the
more likely a more accurate cell/BB. Thus, in the
ideal (theoretically possible) case, even Bob is able to
discover a cell/BB where the query point ~q lies.

On the other hand, if Alice computes

da
min = min

ai∈D1 and ai 6∈{azi1
,··· ,azil

}
(dist(~q, ~ai)),

then Alice will know that all Bob’s vectors that were
included in k-NN are in the hyper-sphere centred by
~q with radius da

min.

6 Applications to Classification

Learning classifiers is a common machine learning or
data mining task where from a training set of labelled
cases, a classifiers is constructed to find the class of
new instances. Famous approaches for this include
Artificial Neural Networks, Decision Trees, Decision
Lists and Support Vector Machines (Witten & Frank
2000). Recently, a solution for privately constructing
k-NN classifiers in horizontally partitioned data has
been proposed (Kantarcioğlu & Clifton 2004). This
solutions is limited because it requires a non-colluding
untrusted third party and is computationally costly
— O(P 2k2) where P is number of parties.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

37

Let us now see how we can use our PP k-NN proto-
col to solve this same problem far more efficiently and
without a third party. We assume there are P > 2
parties and the query point ~q belongs to the first
party. This is also an improvement from the previous
solution that required the query point to be public
(in our protocol, let the party that owns the query
point be the first party). So, we are given D1, · · · , DP

databases, where Di = ~pi
1, · · · , ~pi

n are the attribute
vectors for the i-th party. The t possible classes are
identified by a set L = l1, · · · , lt of labels. Each point
in D1∪· · ·∪DP has a label in L attached. The task is
to find which of lj ∈ L corresponds to the query point
~q by taking a majority vote in the labels associated
to the k-NNs of ~q. Now, using our PP k-NN protocol
(see Section 4), the parties can compute the k-NN of
the query vector ~q (although Alice will also know all
the distances). What we need now is to classify ~q.
The problem setting consists now of each party hold-
ing his/her training data vectors that are included in
the global k-NN of the query point ~q. Consequently,
they know labels (classification) associated with their
vectors. We want to compute which of the labels is
the most present in the overall k-NN vectors. Assume
the labels among the k-NN vectors are

Lk-NN

= 〈(1)i1
, · · · , l

(1)
ip1

, l
(2)
i1

, · · · , l
(2)
ip2

, · · · , l
(m)
i1

, · · · , l
(m)
ipm

〉

where p1 + p2 + · · ·+ pP = k and l
(j)
i1

, · · · , l
(j)
ipj

are the
labels of the vectors that the j-th party contributes
to the k-NN. Then label for ~q will be

lq = Majority(Lk-NN). (4)

Hence, the challenge is how to compute (4) privately.
In fact, this is equivalent to finding the row with

largest sum where each party owns a column, be-
cause l

(j)
i1

, · · · , l
(j)
ipj

are the labels of the vectors that
are known by the j-th party, he can compute sums of
every label present in l

(j)
i1

, · · · , l
(j)
ipj

, if there are labels
that were nor present, just put 0. This is the column
known by the i-th party. For example, assume the j-
th party labels are (l1, l2, l2, l1, l4, l4, l1), then he will
have (3, 2, 0, 2, 0, · · · , 0) as a representative column.

Hence, every party will know its representative
vector with length t. The protocol must add them
and find the index of the maximum value. This will
represent the class label that will be assigned to ~q. We
now use our index-version of the finding maximum
in the sum of vectors protocol (see Section 2.4)
to add all representative vectors, and then Alice (the
first party) can find the maximum value and the per-
muted index where the maximum lies. Because Bob
was the author of permutation π, then Bob can apply
π−1 to discover the original index where the maxi-
mum value lies. This will represent the label’s index
in L, so ~q will be labelled.

Example: Assume there are three parties and af-
ter computation of representative vectors they have
R(1) = (2, 0, 0, 3, 2, 0), R(2) = (0, 1, 2, 0, 4, 0), R(3) =
(0, 0, 1, 3, 1, 1). When we apply the secure add vec-
tors protocol Alice gets a permutation of R =
(2, 1, 3, 6, 7, 1), so the id that represents the maximum
value here is 5, then Bob needs to find the real id of
the maximum and broadcast it. Thus, label assigned
for ~q will be lπ−1(5).

Our solution is less costly that the solution requir-
ing a third party.

7 Private Combination of Local Associative
Queries

Because the data is horizontally partitioned, ev-
ery party owns part (a number of records) of the
database. Our algorithm in Section 4 allows Alice
to learn all the distances from its data point ~q to
the data points of Bob. In this sections we discuss
the rationale for this. First, note that if ~q were pub-
lic (Kantarcioğlu & Clifton 2004), then each party
could compute local k-NN and each would have a set
of k distance values. The problem then reduces to
find the k-richest millionaires and is solvable by re-
peated application of Yao’s Millionaires Problem.

Figure 2: How local results combined to obtain result
for joint database.

Figure 2 illustrates how the combining proceeds for
two parties, but it is also applicable when more par-
ties involved in the computation.

1. Alice and Bob use data structures (DS) to organ-
ise their data locally.

2. When the public query point ~q comes, both of
them calculate the local k-NN for their data us-
ing their own data structures.

3. Then, k repetition of Yao, Millionaires problem
determines the k smallest values for dist(~q,~v)
among the parties.

Now, if we assume that ~q is private and owned by
the first party, Alice, we have some complications if
Bob learns dist(~q,~v) for vectors ~v in Bob’s database
(even when distances between the query point and
Bob’s vectors can be calculated using PP metrics as in
Section 3). When the query point ~q is owned by Alice
and Bob receives the results of the distance calcula-
tions, then Bob has the possibility to locate the query
point ~q. For instance, say Bob knows dist(~q,~v1) = d1
and dist(~q,~v2) = d2. From the first fact, Bob will
know that ~q is in the hyper-sphere centred at ~v1 and
with radius d1. From the second fact, again ~q is in the
hyper-sphere centred at ~v2 and with radius d2. Hence,
~q in the intersections of this two hyper-spheres. With
a third point ~v3, Bob will learn q is at the intersec-
tion of 3 hyper-spheres. This may provide significant
information to identify values for ~q, or very small re-
gions where it lies. When the query point ~q owned by
Alice and Alice receives the results of distance calcu-
lations, Alice learns only that Bob’s vectors are in the
hyper-sphere centred at ~q and the radius depending
on the distances from ~q. Even, if Alice knows all the
distances from the query point ~q and indexes for Bob’s
vectors, Alice is unable to find the exact location of
any Bob’s vectors. Because all the hyper-spheres are
centred at ~q. These hyper-spheres either coincides
with each other or do not intersect each other. That
is the rationale why we allow the owner of the query
point to learn the distance values.

CRPIT Volume 63

38

8 The SASH Data Structure

In this section we show a strategy by which we limit
the number of distances that one party learns when
the k nearest neighbours to one of its data points is
performed. The idea comes form approaches where
the parties share a common data structure (Du &
Zhan 2002, Amirbekyan & Estivill-Castro 2006). Not
that when parties share a data structure, they share
the nodes and the pointers among the nodes, but not
the information stored at the nodes. If we want to
share a search data structure, but preserve privacy
we recommend the SASH . In this multi-level search
structure queries are processed by recursively locat-
ing approximate neighbours within the sample, and
then using the pre-established connections to discover
neighbours within the remainder of the data set. We
describe our privacy preserving version of the algo-
rithms of the SASH data structure. We consider n
objects for which a similarity measure dist(u, v) exists
between any two objects u and v. Since the SASH
assumes only a metric dist, we can use any of the
metrics between attribute-oriented vectors for which
we have presented SMC protocols.

The directed edge-weighted graph that constitutes
the SASH is shared by the parties. While each
database object corresponds to a unique node, only
the party that owns that record (vector) will know
the data and the index of that vector, the others will
only know who is the owner of the node. Thus, the
following makes no distinction between a node and
the database object to which it corresponds. Nodes
are organised into a hierarchy of levels, ranging from
a bottom level containing bn/2c nodes (the leaves), to
a top level containing a single node (the root). With
the possible exception of the top level, each level con-
tains half as many nodes as the level below it, rounded
down. The levels of the SASH are numbered from 1
(the top level) to h (the bottom level). Edges within
the SASH link nodes from consecutive levels. Each
node can have edges directed to at most p parent
nodes as the level above it, and to at most c child
nodes as the level below it. Every node except for the
root must have at least one parent. In the discussion
below, we will assume that each party stores (with
each edge (u, v)) the data that enables them to com-
pute securely k-NN regarding the distance dist(u, v)
(for example, in the case of Euclidean distance, the
value dist(u, v) may be partitioned among the parties
as a sum of values add into to dis(u, v)). Every node
v (other than the root) has an edge directed to one
parent g(v) that is designated as its guarantor. The
guarantor of v must have v as one of its children; v is
called the dependent of g(v). The requirement that
every node have a guarantor ensures that every node
is reachable from the root.

The edges of the SASH heuristically minimise the
distances between their endpoints. During the con-
struction, each new node is attached to a small num-
ber of its near neighbours from the level above it.
SASH edges do not induce a partition of the ob-
jects as lower levels. At the start of construction, the
SASH is empty, and the parties pick a random and
uniform order on the totality of the data to insert the
database objects. As a result of this, the parties al-
ternate being the party that owns the query point ~q
and because the internal k-NN queries in the SASH
are only for levels with restricted number of nodes,
the party does not get to learn distances to all data
points of the other parties.

Let SASH i denote the graph induced by the
nodes from level 1 through i, for 1 ≤ i ≤ h. SASH i
is a SASH in itself. The construction of the entire
SASH (that is, SASHh) proceeds by iteratively
constructing SASH1, SASH2, ..., SASHh in order.

The following algorithm shows how to build securely
SASHl given SASHl−1, for 1 ≤ l ≤ h, by adding
edges between nodes of the current last two levels.

Algorithm Privacy Preserving ConnectSASHLevel(l):

1. If l = 2, then every node of level 2 will have the
root node as its sole parent and guarantor, and
the root node will have all nodes of level 2 as
its children and dependents. This completes the
construction of SASH2.

2. Otherwise, for the remaining steps, we have l >
2. For each node v of level l, the parties choose
a set of up to p near neighbours Pi(v, p) from
among the nodes of each level for i = 1 to l:

(a) If i = 1, then Pi(v, p) consists of a single
node, the root.

(b) Otherwise, i > 1. Let P ′i (v) be the set of
distinct children of the nodes of Pi−1(v, p).
Set Pi(v, p) to be the p nodes of P ′i (v) clos-
est to v, according to the measure dist using
our privacy preserving k-NN operation. If
|P ′i (v)| < p, then set Pi(v, p) = P ′i (v).

3. Set the parents of v to the nodes in Pl−1(v, p).
Each element v at level l has up to p distinct
parents associated with points in its vicinity.

4. Create the child edges for the nodes of level l−1,
as follows:

(a) For each node u of level l − 1, determine
the list of distinct nodes C(u) of level l that
have chosen u as a parent.

(b) Use our Privacy Preserving k-NN to find the
c closest points to u among those in C(u).

(c) Set the children of u to be these c nearest
neighbours.

5. For each node v of level l, determine whether it
was accepted as a child of any node at level l−1.
If yes, then the closest node that accepted it as
a child becomes the guarantor g(v) of v, and v
becomes a dependent of g(v). Otherwise, label v
as an orphan node.

6. For each orphan node v at level l, a node at level
l− 1 is needed to act as its guarantor. The node
should be close as possible to v (in terms of the
distance measure), and must be unencumbered;
that is it must have fewer that the maximum al-
lowed number c of children. Find a guarantor for
v by successively doubling the size of the candi-
date parents set as follows:

(a) Set i = 1

(b) Compute Pl−1(v, 2ip) as in Step 2.

(c) If Pl−1(v, 2ip) has no unencumbered node,
increment i and go to 6b.

(d) Otherwise, choose as the guarantor g(v) the
unencumbered node of Pl−1(v, 2ip) that is
closest to v. Add v as a child and dependent
of g(v), and replace the parent of v furthest
from v by g(v).

This completes the construction of the privacy pre-
serving SASHl. Note that the information shared by
the parties is all the edges (parent/child relationships)
and results of k-NN queries that identify only owners
of vectors but do not reveal the data associated with
those vectors. It may be necessary to demonstrate to
all other parties that all the local data is involved in
the process. The SASH does not partition the search

Proc. Eighteenth Australasian Database Conference (ADC 2007)

39

space, but a KD-Tree or an R-Tree does. Our case
study is KD-Trees but the conclusions apply to R-
Trees, since in fact, a node in an R-Tree is a bounding
box for all data below that node.

9 Privacy Preserving KD-Trees

Multidimensional binary search trees (K-Dimensional
search trees or KD-Trees)3 are a generalisation of bi-
nary search trees for multidimensional points. A KD-
Tree for a set of K-dimensional records is such that:

1. Each node contains a K-dimensional record and
has an associated discriminant j ∈ {1, 2, ..., K}.

2. For every node with key ~x and discriminant j,
any record in the left subtree with key ~y satisfies
yj < xj and any record in the right subtree with
key ~y satisfies yj > xj .

3. The root node has depth 0 and discriminant
1. All nodes at depth d have discriminant
(d mod K) + 1.

A KD-Tree can be built by successive insertion into
an initially empty KD-Tree. When inserting a key ~x,
we compare the key to be inserted with some key ~y
at the root of some subtree: if ~y is at level j, we com-
pare x(j mod K)+1 and y(j mod K)+1, and recursively
continue the insertion in the left or the right subtree
of ~y, until a leaf (empty subtree) is found.

The construction of a shared K-dimensional search
tree enables one party to learn bounding boxes for the
other party’s data. Without loss of generality, we will
construct a secure solution for two parties and assume
that K = 2 (we are in 2D). So, for the moment, the
number P of parties is 2 (as well as the dimension m
of the attribute vectors). Extensions to more parties
and cases where each party holds more than two at-
tributes are easy to infer once we present the initial
case. So, in what follows we have a setting where the
data points look like ~p = (p1, p2) where both p1 and
p2 are known by only one party. Because we assumed
two parties and the data is horizontally partitioned
into two-dimensional domains for each party, we take
it that the first party (Alice) knows a fraction of the
total number of vectors while the other one (Bob)
knows the other part (some number of vectors). All
parties will know the structure of the tree; that is, all
parties will know how many nodes are at each level
and what records fall to the left or to the right on
each internal node. The data at a node is only known
by the party that owns the vector at that node. The
other party only knows they are not the owner. As
the tree is constructed, both parties hold an empty
tree. A random order is jointly decided on the total-
ity of the data. Both parties insert the first point,
one will be the owner. Later points are included by
the recursive insertion. As a data point arrives, there
are two possibilities, the data point and the root of
the subtree are owned by the same party. Then, that
party performs the comparison and announces the re-
sult without any other part discovering here anything
about the data values of the record being inserted or
of the subtree’s root. However, because data is par-
titioned horizontally, there would be cases where the
vector being inserted and the subtree root node are
own by different parties. In this case, they can use
Yao’s comparison protocol (Yao 1982) to compare the
two values. Thus, parties never announce their val-
ues, only the outcome of comparisons. Once this se-
cure comparison of levels is set in the KD-Tree, all
other algorithms for associative queries can be set up
in the privacy preserving KD-Tree.

3Here K = m the dimension of the vectors, while k means the
number of nearest neighbours.

Bob performs by y−coordinate

a

a2

a3

b2

b3

a4

b1

Alice performs by x−coordinate

Alice performs by x−coordinate

Alice performs by y−coordinate

Alice performs by y−coordinate

Bob performs by x−coordinate

1

y

2

a3

1a

a4

b1

b2

b3

x

a

Figure 3: Example of partial 2D-tree structure and
how Alice obtains range where ~b3 lies.

The KD-Tree is a sufficient data structure on small
data sets that fit in RAM (main memory) and for
which we are not performing many deletions and
insertions of records (or locks for multi-user access
or transactions) as it would be the case of a multi-
dimensional database. Although large databases that
use concurrent access and use external disks (I/O to
store on disk besides RAM) require R-Trees or other
partition-based data structure, we hope that the KD-
Tree illustration shows how this data structures could
be shared with some level of privacy for associative
queries. However, as we mentioned before, when the
data structure is shared, the tree structure is known
to all parties involved. The question is: How much
can be inferred from this kind of information? Unfor-
tunately, quite rapidly one party can learn bounding
boxes on the data of the other party. It is not uncom-
mon that on average, with a tree of depth 7, one party
would have compared values with 4 of its data points.
All data of other parties that fall in the bounding box
determined by those four points are known to be in-
side such bounding box. According to the algorithm’s
output both Alice and Bob know the structure shown
in Figure 3, but they do not know the values of the
each others points. Now let us see what Alice can
infer from the output and her data about Bob’s vec-
tor ~b3. Figure 3 shows how Alice obtains the ap-
proximate(range where the vector lies) location of ~b3.
Here, because the KD-Tree constructed by arranging
the values to the left or to the right, according to the
secure comparison, Alice using her values and already
constructed KD-Tree (she has as an output) detects
the approximate location of the vector owned by Bob.

Of course with vectors of higher dimensions (more
than 2) and more parties (more than 2), the level
of privacy is higher. With D dimensions one party
constructs a bounding box after having D × 2 points
in a path to some leaves.

10 Comparison and Analysis

While it is more effective and efficient that each party
compute the k-NN on its data and then to merge
them as in our privacy preserving k-NN algorithm,
the SASH allows the parties to monitor the partici-
pation of other parties. We have assumed the semi-
honest model, but if each party uses their own data
structure to answer locally its k-NN query, in real-
ity, one party may chose to keep away always some
different sections of their data as they see fit. With
a shared data structure, this is not possible. The
data in the shared structure will be involved in many
associative queries and many k-NN, perhaps the en-
tire process of classification or clustering. Clearly, the
methods are equivalent if one party decides from the

CRPIT Volume 63

40

beginning never to involve some set of records, but
then, the results will not be accurate for the union of
all records anyways.

We have shown that even in the ideal case, k-NN
queries tend to disclose some information about the
data of the parties involved. Even in the ideal case,
bounding boxes or bounding regions are found for
some of the data owned by other parties. From the
perspective of Definition 2.1, the separate data struc-
tures and secure k-NN is the most secure option, but
parties have less certainty that all others have con-
tributed their entire data sets. The secure SASH
allows parties to learn slightly more about the data
values of other parties, but provides more assurances
that all parties have contributed their data (otherwise
the shared SASH can not be constructed) or that the
data placed into the shared data structure is the ef-
fective union of the data. It does not enable to infer
directly bonding boxes for other party’s records. Par-
tition data structures, like KD-Trees (or R-Trees) are
the least private as they enable one party to immedi-
ately learn bounding boxes for the other’s data. All
these options incur a communication overhead. How-
ever, this is insignificant if we consider the overhead
for the transmission of all data to a trusted server
which performs the desired analysis on the join data.

10.1 Time Complexity Analysis

The complexity, of course, depends of the data struc-
tures, that every party uses locally and the number
of distances calculated for local k-NN, plus after com-
bining of the local k-NN query results the communi-
cation cost for sending the overall result to all parties.
The cost of communication in our algorithms is much
less that the communication cost when all parties mi-
grate their data to a trusted party. For example, in
the PP-k-NN protocol when ~q is public, one can easily
see that the cost of communication is only applied to
the vectors which are candidates for the k-NN query
(see Figure 2), which is clearly cheaper than bringing
all the data together.

In terms of CPU-time overhead, we have shown
that all the algorithms induce only a linear time
overhead. In all dictionary data structures, when
the data is high-dimensional, the CPU-time costs are
mainly those associated with metric evaluation. We
have chosen SASH , because this data structure is
very efficient in this manner. The approximate k-NN
queries proceeds by choosing Pi(q, k) at every level of
the SASH , then combing them and choosing k clos-
est to the query vector ~q. In the SASH (Houle &
Sakuma 2005, Houle 2003b) there are two strategies
for queries: uniform and geometric. Their paper sug-
gests that the geometric pattern improves both accu-
racy and search time. In geometric search instead of
finding at every level Pi(q, k), one looks for Pi(q, ki),

where ki = max{k1− h−i
log2 n ,

1
2
pc}, for all 1 ≤ i ≤ h.

The upper bounds on the number of distance compu-
tations for the SASH (Houle & Sakuma 2005, Houle
2003b) are as follows.

SASH construction: pcn log 2n

Approx. k-NN query (uniform): ck log 2n

Approx. k-NN query (geom.):
k1+ 1

log 2n

k
1

log 2n − 1
+ 2p3 log 2n

Note that the cost of the geometric pattern query is
less than uniform query. The cost of privacy would
then add a multiplicative constant to these costs.

11 Final remarks

The development of privacy preserving versions of
SASH and KD-Trees reveals that if the structure is
shared between parties, it provides some unnecessary
information (see Figure 3) and the information leak is
worse as the data structure is organised around parti-
tions of the space. That is, although the construction
data structures is secure, its operation can disclose
some private information. While these may seems un-
satisfactory, the fact remains that the protocols and
algorithms presented here are the most practical know
to our knowledge. They allow some level of protec-
tion at essentially affordable cost (the CPU-time is
affected only by a constant factor). Other methods
are essentially theoretical because the calculations we
want to perform here cannot be written into a small
circuit with as many inputs as all the data points.

We have presented several privacy preserving met-
rics and based on this, an algorithms to obtain k-NN
with some level of preserving privacy. This provide
some practical methods for applications in classifica-
tion and clustering with considerations to privacy.

References

Amirbekyan, A. & Estivill-Castro, V. (2006), Privacy
preserving DBSCAN for vertically partitioned
data, in ‘IEEE Int. Conf. on Intelligence and
Security Informatics, ISI 2006’, Springer Verlag
LNCS 3975, San Diego, CA, USA, pp. 141–153.

Ankerst, M., Kastenmueller, G., Kriegel, H. & Seidl,
T. (1999), Nearest neighbor classification in 3D
protein databases, in ‘In Proc. 7th Int. Conf.
on Intelligent Systems for Molecular Biology
(ISMB-99)’, pp. 34–43.

Ankerst, M., Kriegel, H. & Seidl, T. (1998), ‘A
multi-step approach for shape similarity in im-
age databases’, IEEE Transactions on Data En-
gineering 10(6), 996–1004.

Atallah, M. & Du, W. (2000), Secure multi-party
computational geometry, in ‘Proc. of the 7th Int.
Workshop on Algorithms and Data Structures’,
LNCS 2125, Springer Verlag, pp. 165–179.

Beaver, D. (1998), Server-assisted cryptography., in
‘NSPW ’98: Proc. of the 1998 workshop on New
security paradigms’, ACM Press, New York, NY,
USA, pp. 92–106.

Bentley, J. (1975), ‘Multidimensional binary search
trees used for associative retrieval.’, Communi-
cations of the ACM 18(9), 509–517.

Berchtold, K. H. P. (1997), Similarity search in CAD
database systems, in ‘Proc. of ACM SIGMOD
Int. Conf. on Management of Data’, Tuscon, Ari-
zona, pp. 564–567.

Berchtold, S., Keim, D. A. & Kriegel, H.-P. (1996),
The X-tree: An index structure for higher di-
mensional data, in ‘Proc. 22th VLDB Conf.’,
pp. 28–39.

Cachin, C. (1999), Efficient private bidding and auc-
tions with an oblivious third party, in ‘Proc. of
the 6th ACM Conf. on Computer and Commu-
nications Security’, SIGSAC, ACM Press, Singa-
pore, pp. 120–127.

Chazelle, B. & Edelsbrunner, H. (1987), ‘An im-
proved algorithm for constructing k-th order
voronoi diagrams’, IEEE Transactions of Com-
puters C(36), 1349–1354.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

41

Cheng, X., Dolin, R., Neary, M., Prabhakar, S.,
Ravikanth, K., Wu, D., Agrawal, D., El Abbadi,
E., Freeston, M., Singh, A., Smith, T. & Su, J.
(1997), Scalable access within the context of dig-
ital libraries, in ‘Proc. of the Int. Conf. on Ad-
vances in Digital Libraries, ADL’, Washington,
D.C., pp. 70–81.

Du, W. & Atallah, M. (2001), Privacy-preserving co-
operative statistical analysis, in ‘Proc. of the
17th Annual Computer Security Applications
Conf. (ACSAC)’, ACM SIGSAC, IEEE Com-
puter Society, New Orleans, Louisiana, pp. 102–
110.

Du, W. & Zhan, Z. (2002), Building decision tree
classifier on private data, in V. Estivill-Castro
& C. Clifton, eds, ‘Privacy, Security and Data
Mining’, IEEE ICDM Workshop Proc., Volume
14 in the Conf. in Research and Practice in IT
Series, ACS, Sydney, Australia, pp. 1–8.

Ester, M., Kriegel, H., Sander, S. & Xu, X. (1996),
A density-based algorithm for discovering clus-
ters in large spatial databases with noise, in
E. Simoudis, J. Han & U. Fayyad, eds, ‘Proc. of
the 2nd Int. Conf. on Knowledge Discovery and
Data Mining (KDD-96)’, AAAI, AAAI Press,
Menlo Park, CA, pp. 226–231.

Estivill-Castro, V. (2004), Private representative-
based clustering for vertically partitioned data,
in R. Baeza-Yates, J. Marroquin & E. Chávez,
eds, ‘Fifth Mexican Int. Conf. on Computer sci-
ence (ENC 04)’, SMCC, IEEE Computer Society
Press, Colima, Mexico, pp. 160–167.

Faloutsos, C., Ranganathan, M. & Manolopoulos, Y.
(May 1994), Fast subsequence matching in time-
series databases., in ‘In Proc. ACM SIGMOD
Int. Conf. on Management of Data’, Minneapo-
lis, pp. 419–429.

Goldreich, O. (1998), ‘Secure multi-party com-
putation’, Working draft, Department of
Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehevolt, Israel.
www.citeseer.ist.psu.edu/goldreich98secure.html.

Goldreich, O., Micali, S. & Wigderson, A. (1987),
How to play any mental game (extended ab-
stract), in A. Aho, ed., ‘Proc. of the 19th ACM
Annual Symposium on Theory of Computing’,
ACM Press, New York, pp. 218–229.

Guttmann, A. (1984), R-trees: a dynamic index
structure for spatial searching, in ‘Proc. ACM
SIGMOD Int. Conf. on Management of Data’,
pp. 47–57.

Houle, M. (2003a), Navigating massive data sets via
local clustering, in ‘KDD ’03: Proc. of the ninth
ACM SIGKDD Int. Conf. on Knowledge discov-
ery and data mining’, ACM Press, New York,
NY, USA, pp. 547–552.

Houle, M. (2003b), SASH: a spatial approximation
sample hierarchy for similarity, Technical Report
RT-0517, IBM Tokyo Research Laboratory. 16
pages.

Houle, M. & Sakuma, J. (2005), Fast approximate
similarity search in extremely high-dimensional
data sets, in ‘21st Int. Conf. on Data Engineering
ICDE’, IEEE Computer Society, Tokyo, Japan,
pp. 619–630.

Kahveci, T. & Singh., A. K. (2001), An efficient index
structure for string databases, in ‘VLDB Conf.’,
Rome, Italy, pp. 351–360.

Kantarcioğlu, M. & Clifton, C. (2004), Privatly com-
puting a distributed k-nn classifier, in J.-F.
Boulicaut, ed., ‘8-th European Conf. on Prin-
ciples and Practice of Knowledge Discovery in
Databases PKDD’, Vol. 3202, Springer Verlag
LNCS, pp. 279–290.

Katayama, N. & Satoh, S. (1997), The SR-tree: an in-
dex structure for high-dimensional nearest neigh-
bour queries, in ‘ACM SIGMOD Conf. on Man-
agement of Data’, Tucson, USA, pp. 369–380.

Korn, F., Sidropoulos, N., Faloutsos, C., Siegel, E.
& Proropapas, Z. (1996), Fast nearest neighbor
search in medical image databases, in ‘VLDB’,
Mumbai, India, pp. 215 – 226.

Lee, D. (1982), ‘On k-nearest neighbors voronoi dia-
grams in the plane.’, IEEE Transactions of Com-
puters C(31), 478–487.

Mena, J. (2003), Investigative Data Mining for Se-
curity and Criminal Detection, Butterworth-
Heinemann, US.

Morimoto, Y., Aono, M., Houle, M. & McCurley, K.
(2003), Extracting spatial knowledge from the
web, in ‘Int. Symp.on Applications and the In-
ternet (SAINT)’, Orlando, USA, pp. 326–333.

Sakurai, Y., Yoshikawa, M., S., U. & Kojima, H.
(2000), The A-tree: an index structure for high-
dimensional spaces using relative approximation,
in ‘26th VLDB Conf.’, pp. 519–526.

Samet, H. (1984), ‘The quad-tree and related hierar-
chical data structures’, ACM Computing Surveys
16(2), 187–260.

Subrahmanian, V. (1999), Principles of mutimedia
database systems, Morgan Kaufmann Publishers,
Inc., San Francisco, CA, USA.

Vaidya, J. & C. Clifton, C. (2002), Privacy preserv-
ing association rule mining in vertically parti-
tioned data, in ‘The Eighth ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Min-
ing’, SIGKDD, ACM Press, Edmonton, Canada,
pp. 639–644.

Vaidya, J. & C. Clifton, C. (2003), Privacy-preserving
k-means clustering over vertically partitioned
data, in ‘Proc. of the SIGKDD-ACM Conf. of
Data Mining’, ACM Press, Washington, D.C.,
US, pp. 206–215.

Witten, I. & Frank, E. (2000), Data Mining — Prac-
tical Machine Learning Tools and Technologies
with JAVA implementations, Morgan Kaufmann
Publishers, San Mateo, CA.

Yao, A. (1982), Protocols for secure computation, in
‘IEEE Symposium of Foundations of Computer
Science’, IEEE Computer Society, pp. 160–164.

Yu, B., Ooi, C., Tan, K. & Jagadish, H. (2001), In-
dexing the distance: an efficient method to KNN
processing, in ‘27th VLDB Conf.’, Rome, Italy,
pp. 421–430.

CRPIT Volume 63

42

A Processing Model for the Optimal Querying of Encrypted XML
Documents in XQuery

Tao-Ku Chang

Graduate Institute of Information and Computer
Education, National Taiwan Normal University

Taipei, Taiwan
tkchang@ice.ntnu.edu.tw

Gwan-Hwan Hwang
Department of Computer Science and Information

Engineering, National Taiwan Normal University Taipei,
Taiwan

ghhwang@csie.ntnu.edu.tw

Abstract
XQuery is a powerful and convenient language that is
designed for querying the data in XML documents. In
this paper, we address how to optimally query encrypted
XML documents using XQuery, with the key point being
how to eliminate redundant decryption so as to
accelerate the querying. We propose a processing model
that can automatically and appropriately translate the
XQuery statements for encrypted XML documents.
Furthermore, we show that XML schema is significantly
associated with queries over XML documents. The
implementation and experimental results demonstrate the
practicality of the proposed model.
Keyword: XML, XQuery, DSL, Security, Database.

1 Introduction
The XQuery language (Scott et al., 2005) proposed by
W3C was designed to be broadly applicable across all
types of XML data sources. Its mission is to provide
flexible query facilities to extract data from real and
virtual documents on the Web. XQuery uses an XML
data model that can represent XML documents,
sequences, or atomic elements (such as integers or
strings). The concept of XQuery is depicted in Figure 1.
Q represents an XQuery program that includes
navigation in XML documents using XPath (Clark and
DeRose, 1999), database statements (the so-called
FLWOR expressions), construction of new XML
elements, operations on XML Schema types, and
function calls. The XQuery engine queries and formats
data from an XML database that stores XML documents
according to Q, with the resultant XML document being
R.

XML is becoming a widespread data-encoding format
for Web applications and services, which makes it
important to secure XML documents in various ways.
For example, we may need to sign and encrypt XML
documents in order to ensure nonrepudiation and
confidentiality (Schneier, 1995). Based on XML
element-wise encryption (Maruyama and Imamura,
2000), the W3C’s XML encryption working group
(http://www.w3.org/Encryption/2001/Overview.html)
delivered a recommendation specification for XML
encryption (Imamura et al., 2002). The encrypted

Copyright (c) 2007, Australian Computer Society, Inc. This paper
appeared at the Eighteenth Australasian Database Conference
(ADC2007), Ballarat, Victoria, Australia. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 63. James Bailey
and Alan Fekete, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

document specifies a process for encrypting data and
representing the result in XML. The encrypted data may
be arbitrary data, an XML element, or the content of an
XML element. Figure 2 illustrates the concept of
element-wise encryption. Only one element (“Number”)
of the original document is encrypted. This enables XML
files to protect themselves because the sensitive data in
XML are encrypted by particular keys.

XQuery

Result R

Q

R

XQuery
engine

X1 X2 X3

X4 X5 X6

X7 Xn
…..

XML database

Figure 1: The data flow for querying XML documents

This paper addresses how to query data from these

encrypted XML documents in XQuery. The intuitive,
trivial method is to first decrypt the encrypted XML
documents and then use an XQuery program to obtain
the desired documents (see Figure 3). The drawback of
this approach is that it is quite inefficient in certain
situations because all of the encrypted elements in the
queried XML document must be decrypted. According
to its operational semantics, XQuery is normally used to
obtain a small set of elements from the target XML
documents. It is not theoretically necessary to decrypt all
the encrypted elements in the target XML document –
we only have to decrypt those elements that belong to
the result elements of the issued query. It is obvious that
a scheme that does not need to decrypt unwanted
elements should be more efficient than a scheme that
decrypts all the encrypted elements.

The first aim is to eliminate unnecessary decryption.
According to the specification of W3C XML encryption
(Imamura et al., 2002), the scopes of encryption could be
“element”, which encrypts a whole element (including
the start/end tags), or “content”, which encrypts the
content of an element (between the start/end tags).
Consider the XML document shown in Figure 4. The
“payer” and “cardinfo” elements are encrypted as a
whole; that is, their encryption scope is set to “element”.
In the encrypted XML document shown in Figure 5, the
“CipherData” element contains the encrypted data of the

Proc. Eighteenth Australasian Database Conference (ADC 2007)

43

“payer” and “cardinfo” elements, and is wrapped by
the “EncryptedData” element. We see that the tag
names of the “payer” and “cardinfo” elements
disappear. Figure 5 indicates that once the encryption
scope of an element is set to “element”, its tag name
cannot be examined unless we first decrypt the element.
The type of encryption scope is helpful to data security
because there is no clue about which element is
encrypted. Figure 6 lists an XQuery program that is used
to obtain the value of the “cardinfo” element from
Figure 4. It is obvious that we cannot use this program to
query the encrypted document shown in Figure 5; it
appears that we have to decrypt the two encrypted
elements before performing the query. However, since
we only want to query one of them, one of the
decryptions is redundant.

<?xml version='1.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>

<Name>John Smith</Name>
<CreditCard Limit='5,000' Currency='USD'>

<Number>4019 2445 0277 5567</Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>

</CreditCard>
</PaymentInfo>

<?xml version='1.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>

<Name>John Smith</Name>
<CreditCard Limit='5,000' Currency='USD'>

<Number>
<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#‘

Type='http://www.w3.org/2001/04/xmlenc#Content'>
<CipherData>

<CipherValue>A23B45C56</CipherValue>
</CipherData>

</EncryptedData> </Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>

</CreditCard>
</PaymentInfo>

Original XML
document

Element-wise
encrypted
document

Perform element-wise encryption

Figure 2: Example of element-wise encryption

XQuery

Result X

Q

X

XQuery
engine

Xs1 Xs2 Xs3

Xs4 Xs5 Xs6

Xs7 Xsn
…..

XML database

Decryption

Figure 3: A trivial way to query encrypted XML

documents
To improve the efficiency of decryption of encrypted

XML documents in the query process, we should avoid
performing unnecessary decryption. For the example
shown in Figure 4, Figure 5, and Figure 6, it is obvious
that some additional information is necessary to
eliminate the redundant decryption because the
encryption may break the structure of the XML
document. Sometimes the structure information should
be referred to during the query. As noted above, we use
XML Schema (Fallside and Walmsley, 2004) that
provides a means for defining the structure, content and
semantics of XML documents to support it. It is usually
used to validate XML documents but plays an important
role in the XML queries in this research. We will
illustrate it in Section 3. In this paper, we present the
type of information required to eliminate redundant

decryption and propose a processing model to
automatically translate an XQuery program written by
users to another one that can accurately locate the target
elements that should be decrypted. The presented
translation algorithm is optimal in terms of the
computation required for decryption.

<?xml version='1.0'?>

<transactions>

 <transaction>

 <payer id = “M123456789”>tony yao</payer>

 <price current="TWD">1350</price>

 <cardinfo>

 <cardtype>g</cardtype>

 <orgination>visa</orgination>

 <owner>tony yao</owner>

 <creditline>200000</creditline>

 <expiredate>12/01/2007</expiredate>

</cardinfo>

 </transaction >

</transactions>
Figure 4: An XML document

<?xml version='1.0'?>

<transactions>

 <transaction>

 <EncryptedData

Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>

 <CipherData>

<CipherValue>

mrs79DfdL+ODXzur3DZXBDJx2EwRgz+MRP3Nv9T20J2L

ltPYthkSAG0zVoCt+GZhSdcf4T9xLp78tOxRN/PgmGo2

hLSO/3OtqTNukDooxPmA7sADaWiZOe6rbrNdFY5QgjBA

Z8TlnQ3SSBiSM11rygoDei4LTJEROcN6Lq5lL/c=

<CipherValue>

 <CipherData>

</EncryptedData>

<price current="TWD">1350</price>

 <EncryptedData

Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>

 <CipherData>

<CipherValue>

h3IkkoyhsUL0uuC7MtSyw/xMfWlcKb144rH5EAQQ8vrj

rs3B1RwmIDF9lYBChHkfghk3eW4Jb6fQrnemykms7ZIA

y7dHpxL2lC7sJ0rX1UlDjzNoRHKVZo80IZzQ9yP/+mBl

br6C/mD5vE9aa2FEEAlFvdGxPeW62fKCD3ZM15kotIRw

yf5O+Ja1UJgLN2Juu5AQ3qkpScJBeocSeF207rveeCYP

yd+Nh/GrDFzjCndBOB1YV7RXXyUvaDu2PZ55OTwNufUQ

ggpvxpDZUZ7fSOkjzHrDN88ZwULKIf6aLBt1M=

<CipherValue>

 <CipherData>

</EncryptedData>

 </transaction>

</transactions>
Figure 5: An encrypted XML document

<transactions>

 {

 for $b in

doc("example.xml")/transactions/transaction/cardinfo

 where $b/cardno = "1234-5678-8765-4321"

 return

 $b/cardno

 }

</transactions>
Figure 6: An XQuery to extract “cardinfo” from an

XML file

CRPIT Volume 63

44

The remainder of this paper is organized as follows:
Section 2 presents the proposed processing model,
Section 3 presents an algorithm for the transformation of
XQuery statements for querying encrypted XML
documents, Section 4 presents our implementation and
experimental results, and Section 5 concludes the paper.

2 The Processing Model for Querying Encrypted
XML Documents
Optimally querying the encrypted XML documents in
XQuery requires information about security. Note that an
optimal query is defined as that requiring minimal
decryption for encrypted elements in the target XML
documents. Generally speaking, the encryption and
signature standards proposed by W3C offer a complete
definition of the format for the encrypted XML
document (Imamura et al., 2002). However, the language
is not sufficiently powerful for the programmer to
specify how to encrypt and sign his or her XML
documents. To overcome this limitation, we previously
proposed a security language that allows a programmer
to specify the security detail of XML documents: the
document security language (DSL) (Hwang and Chang,
2001, 2003, 2004, 2005). The DSL can be used to define
how to perform encryption and decryption, and the
embedding and verification of signatures. It offers a
security mechanism that integrates element-wise
encryption and temporal-based element-wise digital
signatures. Also, because the syntax of the
“EncryptedData” element in the XML encryption
standard prevents its extension to handle attribute
encryption, the DSL supports a type of element-wise
encryption that is more general: the scope of encryption
(or encryption granularity) can be a whole element, some
of the attributes of an element, or the content of an
element; where an attribute has two possible types of
encryption: (1) to only encrypt its value and (2) to
encrypt both its name and value (Chang and Hwang,
2003). The encrypted document produced by the DSL
securing tool can be made compatible with the XML
encryption and digital signature standard in cases where
attribute encryption is not applied.
Figure 7 illustrates the relationship between XML, DSL,
and the DSL securing tool. Figure 7A shows the process
of encrypting and embedding digital signatures. The
details of the encryption process and the digital signature
itself are stored in a DSL document in DP, DT, and DSig:
DP is the security pattern definition that specifies the
combination of security algorithms and encryption and
decryption keys, DT is the transformation description
definition that specifies the actual data transformation of
element-wise encryption, and DSig specifies how to
embed digital signatures in the resulting XML document.
The target XML document that is ready to be encrypted
and signed is X. The DSL securing tool reads, parses,
and analyzes DP, DT, DSig, and X, and then generates Xs
and DP’. Xs is still an XML document, but some of its
elements contain ciphertexts that are translated by the
DSL securing tool according to the encryption details
recorded in DP and DT. In addition to the encrypted
elements, Xs also contains signatures that are embedded
by the DSL securing tool. Each signature signs a portion

of the data in X. It should be noted that DP and DP’ may
contain different information: DP holds information
describing how to encrypt X, whereas DP’ should include
details of how to decrypt Xs. In addition, we have
developed a DSL editor with a graphical user-friendly
interface to make it easier for users to generate DSL
documents (Hwang and Chang, 2005).

(A) E n cry ptin g an d em bed d in g s ign atu res

(B) D ecryptin g a n d ve rify in g sign atu res

D S L
securing

tool

X M L X s

D S L D P ' + D Sig

X M L X ´

R esults o f d ig ita l
signature verification

D S L
securing

tool

X M L X s

D S L D P ' + D Sig

X M L X

D S L D P + D T + D Sig

Figure 7: The operational model for securing XML

documents

XQuery

Result

Translator Q

R

XQuery Q’

XML database
stores encrypted
XML documents

DSL DSchema S
XQuery
engine

Extension objects

Xs

Figure 8: The processing model for querying encrypted

XML documents
Figure 8 depicts the processing model we propose for
the efficient querying of encrypted XML documents. Q
is the original XQuery program. Note that Q is written to
query data from the original XML document (i.e., the
unencrypted document). D is a DSL document. The
encrypted XML document Xs is encrypted according to
D and is stored in the XML storage. Before Q is sent to
the XQuery engine, the translator parses it and translates
it into Q’. Q’ is also an XQuery program, but some
expressions in it are translated according to D and the
XML Schema S (Fallside and Walmsley, 2004). In cases
where the result document R contains some encrypted
elements in Xs or the query needs to consult some
encrypted element in Xs, Q’ contains codes to invoke
decryption functions that are the extension objects. Note
that the XML Schema S may not be available; however,
D is generally sufficient to generate an efficient XQuery
Q’. In certain circumstances the information contained in
S can be used to generate a more efficient query
compared with a transformation obtained by only
consulting D. The translation from Q to Q’ is detailed in
Section 3.

3 The Transformation Algorithm of XQuery
Statements for Querying Encrypted XML
Documents
Now we present our design of an algorithm that is used

Proc. Eighteenth Australasian Database Conference (ADC 2007)

45

to transform the XQuery statements; that is, the design of
the translator shown in Figure 8. We begin by
considering the syntax of the XQuery statement. Each
XQuery program contains one or more query
expressions. The FLWOR expression is the most
powerful of the XQuery expressions and is, in many
ways, similar to the SELECT-FROM-WHERE statement used
in SQL (ISO/IEC 9075-2, 2003). The formal grammar
for a FLWOR expression in XQuery is defined in (Boag
et al., 2005) as follows:
FLWORExpr ::= (ForClause | LetClause)

WhereClause? OrderByClause?
return ExprSingle

The above BNF1 form of the FLWOR expression is quite
protean, being capable of generating a large number of
possible query instances. The ExprSingle term
following the “return” keyword can itself be replaced
by another FLWOR expression, so that FLWOR
expressions can be strung together ad infinitum. The
replacement of an ExprSingle term by any other
expression type is what makes XQuery composable and
gives it its rich, expressive power. There are many
expression types in XQuery, each of which can be
plugged into the grammar wherever a more generic
ExprSingle expression is called for.

In this paper, we focus on FLWOR expressions to
implement the transformation algorithm, which is listed
in Figure 9. In the following we use four examples to
demonstrate this algorithm.
Algorithm: Transform a FLWOR expression for querying

encrypted XML documents

Input:

 Let F is a FLWOR expression of the form:

 FLWORExpr ::= (ForClause | LetClause)

 WhereClause? OrderByClause? return ExprSingle

 Let D is a DSL file

 Let S is an XML Schema

Output:

 N = A FLWOR expression

Begin_of_Algorithm

{

● Step 1:

Let T_set represents the set of the path templates in the

DSL file

Let IF_set represents the set of the paths in ForClause

Let IW_set represents the set of the paths in WhereClause?

 Let I_set = (IF_set ∪ IW_set)

Let R_set represents the set of paths referred in

ExprSingle. Note that if the ExprSingle is a FLWOR

expression, we do not add the paths referred in the

FLWOR expression to R_set

 BoundVariable_set = The bound variables in ForClause

TargetXML_set = The file names of target XML documents

in doc function

ForClause_String = The string of ForClause in F

 WhereClause_String = The string of WhereClause? in F

 ReturnClause_String = The string of “return” + ExprSingle

in F

N = Null string

● Step 2:

 if Intersection(I_set,T_set)=∅2 and

Intersection(R_set,T_set)=∅
{

 N = F

 }

 if Intersection(I_set,T_set)≠∅ and
Intersection(R_set,T_set)=∅

{

1 See Fischer and LeBlanc (1991) for more information about the
BNF representation. In this paper, all the nonterminal symbols are
underscored.
2 The symbol ∅ indicates the empty set.

 P_set = XPath_Transformation (IF_set,T_Set,S);

 Scope_Array =

Decryption_Scope (IF_Set,IW_set,R_set,T_set);

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

 BoundVariable_set_1(i) =

BoundVariable_set(i) +“_1”;

 }

 N = “for ”

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

N = BoundVariable_set_1(i) +“ in

doc(”+TargetXml_set(i)+“)”+P_set(i)+“\n”;

 }

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

 N = N +“let ” + BoundVariable_set(i)+

“=decryption(”+ BoundVariable_set_1(i)+“,\“”+

Scope_Array(i)+”\“)”+“\n”;

 }

 N = N + “return” + “\n”;

 N = N + “if”

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

N = N +“ ”+“(count(”+BoundVariable_set(i)+“)>0)”

if BoundVariable_set(i) ≠ null
{

 N = N + “ and”

}

}

 N = N + “ and ”+WhereClause_string+“\n”+“then ”+

ReturnCluase_string+“\n”+“else ()”+“\n”;

}

 if Intersection(I_set,T_set)=∅ and
Intersection(R_set,T_set)≠∅

{

Scope_Array =

Decryption_Scope(IF_set,IW_set,R_set,T_set);

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

 BoundVariable_set_1(i) =

BoundVariable_set(i) +“_1”;

 }

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

 New_forClause =

ForClause_String.replace(BoundVariable_set(i),

BoundVariable_set_1(i))

 }

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

 New_whereClause =

WhereClause_String.replace(BoundVariable_set(i),

BoundVariable_set_1(i))

 }

 N = N + New_forClause +“\n”

 N = N + New_whereClause +“\n”

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

N = N +“let ” + BoundVariable_set(i) +

“=decryption(”+ BoundVariable_set_1(i)+“,\“”+

Scope_Array(i)+"\“)”+“\n”;

 }

 N = N +“retrun”+“\n”;

 N = N + “if”

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

N = N +“ ”+“(count(”+BoundVariable_set(i)+“)>0)”

if BoundVariable_set(i) ≠ null
{

 N = N + “ and”

}

}

 N = N + “ and ”+WhereClause_string+“\n”+“then ”+

ReturnCluase_string+“\n”+“else ()”+“\n”;

}

 if Intersection(I_set,T_set)≠∅ and

CRPIT Volume 63

46

Intersection(R_set,T_set)≠∅
{

P_set = XPath_Transformation(IF_set, T_set, S)

Scope_Array =

Decryption_Scope(IF_set, IW_set, R_set, T_set);

 N =“for ”

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

N = BoundVariable_set_1(i) +“ in

doc(”+TargetXml_set(i)+“)”+P_set(i)+“\n”;

 }

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 N = N +“let ” + BoundVariable_set(i)+

“=decryption(”+ BoundVariable_set_1(i)+“,\“”+

scope_Array(i)+”\“)”+“\n”;

 }

 N = N + “return”+ “\n”;

 N = N + “if”

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

N = N +“ ”+“(count(”+BoundVariable_set(i)+“)>0)”

if BoundVariable_set(i) ≠ null
{

 N = N + “ and”

}

}

 N = N + “ and ”+WhereClause_string+“\n”+“then ”+

ReturnCluase_string+“\n”+“else ()”+“\n”;

}

}

End_of_Algorithm

Procedure XPath_Transformation(IF_set,T_set,S)

Input:

 IF_set = A set of paths

 T_set = The set of path templates in the DSL file

 S = An XML Schema

Output:

 P_set = A set of paths

Begin

{

 For i = 1 to (the number of paths in IF_set)

 {

if (IF_set(i) T_set) { ⊆
 Pt0 = A string in IF_set(i) from right to left until

character is “/”

Pt1 = Delete Pt0 in IF_set(i) from right

index = 0;

If S is available {

 index = check-schema (IF_set(i), S)

 }

 if index >=1{

P = Pt1 + “EncryptedData”+

“[” +index.toString()+“]”}

 else{

P = Pt1 + “EncryptedData”

 }

 }

 else {P=IF_set(i)}

 Write P to P_set

 }

}

End

Procedure Decryption_Scope(IF_set,IW_set,R_set,T_set,S)

Input:

 IF_set = The set of the path in ForClause

 IW_set = The set of the path in WhereClause?

 R_set = The set of paths referred in ExprSingle. Note that

if the ExprSingle is a FLWOR expression, we do not

add the paths referred in the FLWOR expression to

R_set

 T_set = The set of path templates in the DSL file

 S = An XML Schema

Output:

 Scope_Array = String Array

Begin

{

 for i = 1 to (the number of paths in IF_set)

 {

 scope = null string

if (IF_set(i) T_set) { ⊆
 scope = “all”

 Write scope to scope_Array

 Continue for loop

}

if (IW_set ⊆ T_set) and ((IW_set ∩ IF_set(i) ≠∅){
If S is available {

 index = check-schema (IW_set, S)

 }

 if (index >=1){

scope = scope + “child:EncryptedData”+

“[”+index.toString()+“]”

}

 else{

scope = scope + “child:EncryptedData”

 }

 }

if (R_set ⊆ T_set) and ((R_set ∩ IF_set(i) ≠∅) {
If S is available {

 index = check-schema (R_set, S)

 }

 if (scope <> null){

 scope = scope + “;”

 }

 if (index >=1){

scope = “child:EncryptedData”+

“[”+index.toString()+“]”

}

 else{

scope = “child:EncryptedData”

 }

 }

 Write scope to Scope_Array

 }

}

End

Figure 9: Transformation algorithm
The first example demonstrates an XQuery program

that queries some of the encrypted elements from the
target XML document.
Figure 10A lists a FLWOR expression that performs a
simple search that returns the “cardinfo” element from
the document example.xml (see Figure 4) where the
value of “/transactions/transaction/price” is
“1350”. The XML document shown in Figure 5 is that
encrypted according to the DSL document shown in
Figure 11. The input includes a FLWOR expression, a
DSL document, and an XML Schema. Step 1 defines
some variables: “T_set” represents the set of path
templates in the DSL file, “I_set” represents the set of
paths in “ForClause” and “WhereClause”, and “R_set”
represents the set of paths referred to in ExprSingle.
Note that if ExprSingle is a FLWOR expression, we do
not add the paths referred to in the FLWOR expression
to “R_set”. We present the situation in which
ExprSingle is a FLWOR expression in the third example.
In Step 2, we first compute the intersections of “I_set”
and “T_set” and of “R_set” and “T_set”. The intersection
of “I_set” and “T_set” is not the empty set when the
queried elements according to “ForClause” and
“WhereClause” contain encrypted elements. Similarly,
the intersection of “I_set” and “R_set” is not empty
when the return elements contain encrypted elements. In
this example there are two path templates in the DSL
document (see Figure 11), and we have T_set =
{“/transactions/transaction/payer,”
“/transactions/transaction/cardinfo”}, ForClause
= “for $b in

doc("example.xml")/transactions/transaction”,
WhereClause? = “where $b/price=1350”, I_set =
{“/transactions/transaction,”
“/transactions/transaction/cardinfo/price”},
ExprSingle = “$b/cardinfo”, and R_set =
{“/transactions/transaction/cardinfo”}. The
intersection of “I_set” and “T_set” is not the empty set,
whereas that of R_set and T_set is the empty set.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

47

According to the algorithm listed in Figure 9, the
translator then generates the transformed FLWOR
expression. The “ForClause” and “WhereClause?”
statements are changed to “for $b_1 in

doc("example.xml")/transactions/transaction” and
“where $b_1/price=1350”, respectively. A “LetClause”
statement (“let $b =

decryption($b_1,”child:EncryptedData[2]”)”) is
added after the “ForClause” and “WhereClause?”
statements. Note that “LetClause” invokes a decryption
function to decrypt the $b_1 variable since it contains the
encrypted elements that the original XQuery statement
wants to query. Finally, we change ExprSingle to “if
(count($b) >0 then {$b/cardinfo} else ()”. The
output FLWOR expression is listed in Figure 10B.

<transactions>
{
for $b in doc("example.xml")/transactions/transaction
where $b/price=1350
return

$b/cardinfo
}

</transactions>
(A) An input FLWOR expression

<transactions>
{
for $b_1 in doc("example.xml")/transactions/transaction
where $b_1/price=1350
let $b = decryption($b_1, “child:EncryptedData[2]”)
return

if (count($b) >0
then

{
$b/cardinfo

}
else ()

}
</transactions>

(B) An output FLWOR expression
Figure 10: An XQuery to extract “cardinfo” from an

encrypted XML file

<?xml version="1.0" ?>

<dsl:security_document

xmlns:dsl="http://www.xml-dsl.com/2002/dsl" version="1.0">

:

:

<dsl:template match="/transactions/transaction/payer">

<dsl:value-of-encrypted-node scope="element"

pattern="pattern1"/>

</dsl:template>

 <dsl:template match="/transactions/transaction/cardinfo">

 <dsl:value-of-encrypted-node scope="element"

pattern="pattern2"/>

 </dsl:template>

</dsl:security_document >

Figure 11: A DSL document

Figure 12A shows our second XQuery program, whose
“ForClause”, “WhereClause?”, and ExprSingle
expressions contain XPaths that point to encrypted
elements. The program performs a search that returns the
“cardno” element from the document example.xml (see
Figure 4), where the value of
“/transactions/transaction/cardinfo/cardno” is
“1234-5678-8765-4321”. In this example, we have T_set
= {“/transactions/transaction/payer,”
“/transactions/transaction/cardinfo”}, I_set =
{“/transactions/transaction/cardinfo,”
“/transactions/transaction/cardinfo/cardno”},
and R_set =
{“/transactions/transaction/cardinfo/cardno”}.

The intersections of I_set and T_set and of R_set and
T_set are not the empty set. According to the algorithm
listed in Figure 9, “ForClause” is changed to “for $b_1
in
doc("example.xml")/transactions/transaction/Enc

ryptedData[2]”. A “LetClause” statement (“let $b =
decryption($b_1,”all”)”) is added after the
“ForClause” statement. “LetClause” invokes a
decryption function to decrypt the $b_1 variable which
represents the elements pointed at by the XPath
/transactions/transaction/EncryptedData[2].
Finally, ExprSingle is modified by adding “if
(count($b) >0 and $b/cardno =

“1234-5678-8765-4321” then $b/cardno else ()”. The
output FLWOR expression is listed in Figure 12B.

<transactions>
{
for $b in doc("example.xml")/transactions/transaction/cardinfo
where $b/cardno = "1234-5678-8765-4321"
return

$b/cardno
}

</transactions>
(A) An input FLWOR expression

<transactions>
{
for $b_1 in doc("example.xml")/transactions/transaction/EncryptedData[2]
let $b = decryption($b_1, “all”)
return
if (count($b) >0 and $b/cardno = "1234-5678-8765-4321"
then $b/cardno
else ()

}
</transactions>

(B) An output FLWOR expression

Figure 12: An XQuery to extract “cardinfo” from an
encrypted XML file

Figure 13A is the third example, which is a more
complicated XQuery program. The ExprSingle
statement contains an FLWOR expression. The
“WhereClause?” statement in the outer FLWOR
expression contains encrypted elements. The FLWOR
expressions ExprSingle and “ForClause” also contain
encrypted elements. The transformation process occurs
from outside to inside. We first transform the outer
FLWOR expression: we have
T_set={“/transactions/transaction/payer,”
“/transactions/transaction/cardinfo”} and
I_set={“/transactions/transaction,”
“/transactions/transaction/payer”}. The inner
FLWOR expression “for $a in $b/cardinfo return $a”
will not be changed when transforming the outer
FLWOR expression: thus we have
R_set={“/transactions/transaction/price”}. After
invoking the intersection function, the intersection of
“I_set” and “T_set” is not the empty set whereas that of
R_set and T_set is the empty set. The “ForClause”
statement is changed to “for $b_1 in

doc("example.xml")/transactions/transaction”. A
“LetClause” statement (“let $b = decryption($b_1,
“child:EncryptedData[1]”)”) is added after
“ForClause”, which invokes a decryption function to
decrypt the $b_1 variable. Finally, we transform the
ExprSingle into the following statements:
“if (count($b) >0 and $b/payer = “tony yao”
then

{

CRPIT Volume 63

48

 <transaction>

 {

 $b/price

 for $a in $b/cardinfo return $a

 }

 </transaction>

}

else ()”.

After transforming the outer FLWOR expression, we
should proceed to transform the inner FLWOR
expression “for $a in $b/cardinfo return $a” to “for
$a_1 in $b/EncryptedData[2] $a =
decryption($b_1,"all") if count($a)>0 then return

$a else()” according to the algorithm listed in Figure 9.
The output XQuery program is listed in Figure 13B.

<transactions>

{
for $b in doc("example.xml")/transactions/transaction
where $b/payer="tony yao"
return

<transaction>
{

$b/price
for $a in $b/cardinfo
return $a

}
</transaction>

}
</transactions>

(A) An input FLWOR expression

<transactions>
{
for $b_1 in doc("example.xml")/transactins/transaction
let $b = decryption($b_1, "child:EncryptedData[1]")
return

if (count($b)>0 and $b/payer="tony yao")
then
{

<transaction>
{

$b/price
for $a_1 in $b/EncryptedData[2]
$a = decryption($b_1,"all")
if count($a)>0
then

return $a
else()

}
</transaction>

}
else()

}
</transactions>

(B) An output FLWOR expression

Figure 13: An XQuery to extract “cardinfo” from an
encrypted XML file

It is essential to use the DSL in the proposed

processing model because the translator must investigate
the DSL document to determine which elements were
encrypted. Although it is not compulsory to use XML
Schema, it can be used to further reduce the times
required for decryption. XML Schema is a DTD
successor that expresses shared vocabularies and
provides a guide for characterizing the structure, content,
and semantics of an XML document. Furthermore, XML
Schema offers (1) XML query validation, by exploiting
the XML query language syntax to translate relative
paths into absolute paths; and (2) identification of
parent–child relationships, which improves the
performance in solving XML queries for applications
that require detection of these and other
ancestor–descendant relationships.

In the following, we demonstrate that the XML
Schema can be used to optimize the query. Figure 14 is
an encrypted version of the XML document shown in
Figure 4. Note that all child nodes of the transaction

element are encrypted as a whole. If the user wants to
obtain the value of the “cardinfo” element, s/he must
write a “ForClause” statement such as “$b in
doc("example.xml")/transactions/transaction/Enc

ryptedData” in an XQuery program. However, there are
three elements with tags named “EncryptedData”. These
elements will be decrypted to check their tag names to
identify which is the “cardinfo” element. We can use
XML Schema to avoid the redundant decryption. Figure
15 lists the XML Schema of the XML document shown
in Figure 4. The translator looks it up to determine that
the “cardinfo” element is the third child element of the
“transaction” element. Thus, the “ForClause”
statement can be changed to
“doc("example.xml")/transactions/transaction/En
cryptedData[3]”, where the “[3]” means that only the
third “EncryptedData” element needs to be decrypted.

<?xml version='1.0'?>

<transactions>

 <transaction>

 <EncryptedData

Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>

 <CipherData>

<CipherValue>

mrs79DfdL+ODXzur3DZXBDJx2EwRgz+MRP3Nv9T20J2LltPY

thkSAG0zVoCt+GZhSdcf4T9xLp78tOxRN/PgmGo2hLSO/3Ot

qTNukDooxPmA7sADaWiZOe6rbrNdFY5QgjBAZ8TlnQ3SSBiS

M11rygoDei4LTJEROcN6Lq5lL/c=

<CipherValue>

 <CipherData>

</EncryptedData>

 <EncryptedData

Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>

 <CipherData>

<CipherValue>

CyT4UQrOQ1vijcGM8nbKsB1ckUTpBoNH1USfvHTiwhZjN/2+

bAyEoqzU07IbYXTCKzslnymXivI7waPYZ76V97W2/JqYxRpv

kBcml4MSulhbekSW+S//jRSjxPuk0FW1POaj7gF9lyWEN+F0

VpNvqMLceZAVWB7TKTVRx8LGU5l0w=

<CipherValue>

 <CipherData>

</EncryptedData>

 <EncryptedData

Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>

 <CipherData>

<CipherValue>

h3IkkoyhsUL0uuC7MtSyw/xMfWlcKb144rH5EAQQ8vrjrs3B

1RwmIDF9lYBChHkfghk3eW4Jb6fQrnemykms7ZIAy7dHpxL2

lC7sJ0rX1UlDjzNoRHKVZo80IZzQ9yP/+mBlbr6C/mD5vE9a

a2FEEAlFvdGxPeW62fKCD3ZM15kotIRwyf5O+Ja1UJgLN2Ju

u5AQ3qkpScJBeocSeF207rveeCYPyd+Nh/GrDFzjCndBOB1Y

V7RXXyUvaDu2PZ55OTwNufUQggpvxpDZUZ7fSOkjzHrDN88Z

wULKIf6aLBt1M=

<CipherValue>

 <CipherData>

</EncryptedData>

 </transaction>

</transactions>

Figure 14: An encrypted XML document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="transaction">

Proc. Eighteenth Australasian Database Conference (ADC 2007)

49

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="payer"/>

 <xs:element ref="price"/>

 <xs:element ref="cardinfo"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="transactions">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="transaction"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Figure 15: An XML Schema

4 Implementation and Experimental Results
Many implementations of the XQuery engine exist. For
example, Galax (http://www.galaxquery.org) is a
lightweight and extensible implementation of XQuery
1.0. Since it closely tracks the definition of XQuery 1.0
as specified by the W3C, it also implements XPath 2.0,
which is a subset of XQuery 1.0. Qexo
(http://www.gnu.org/software/qexo/) is a partial
implementation of the XQuery language that exhibits a
good performance because a query is compiled down to
the Java byte codes. Saxon (http://www.saxonica.com/)
is a complete and conformable implementation of XSLT
2.0, XQuery 1.0, and XPath 2.0. We employ Saxon as
the XQuery engine for executing XQuery programs.
According to the processing model shown in Figure 8,
we implement a translator that enables XQuery programs
written by users to query data from encrypted XML
documents according to the algorithm listed in Figure 9.
We also implement extension objects to perform the
decryption processes.

We have conducted experiments to evaluate the
performance of querying data from encrypted XML
documents. All of the experiments were performed on a
PC with a 2.4-GHz Pentium 4 processor, 1024 MB of
RAM, the MS Windows 2000 operating system, and
Java Development Kit 1.4 (Sun Microsystems). The
original XML document had 101 elements: a tree with
one root node and its 100 child element nodes, in which
each child node was associated with a text node which in
turn comprised either 100 or 500 bytes. Table 1 lists the
times required to decrypt the whole encrypted XML
document and then to query target elements. The
processing time increases dramatically with the number
of encrypted elements because all encrypted elements
need to be decrypted first. For comparison, Table 2 lists
the times required to query encrypted documents using
the XQuery statements generated by the algorithm listed
in Figure 9. The algorithm ensures that only target
elements are decrypted regardless of the number of
encrypted elements. It is obvious that eliminating
redundant decryption dramatically enhances the
performance of the query process: increasing the number
of encrypted elements in the target element has little
effect on the time required to perform the query, which
demonstrates the effectiveness of the processing model
proposed in the paper.

Average time
(in seconds) Total

elements
in

XML
file

Number
of

queried
elements
which are
encrypted

Number
of

elements
that are

decrypted

Number
of

encrypted
elements 100

bytes*
500

bytes*

101 10 10 10 1.8984 3.7687
101 10 20 20 3.1155 6.7626
101 10 30 30 4.3640 9.8033
101 10 40 40 5.2296 12.7827
101 10 50 50 6.5156 15.7282
101 10 60 60 7.3671 18.6812
101 10 70 70 8.6720 21.4690
101 10 80 80 9.9843 24.8675
101 10 90 90 11.2171 27.3998
101 10 100 100 12.1735 29.9295

*Number of bytes to be encrypted in an element

Table 1: The time required to obtain encrypted data by
decrypting the whole XML document

Average time
(in seconds) Total

elements
in

XML
file

Number
of

queried
elements
which are
encrypted

Number
of

elements
that are

decrypted

Number
of

encrypted
elements 100

bytes*
500

bytes*

101 10 10 10 1.8937 3.7672
101 10 10 20 1.8968 3.7735
101 10 10 30 1.8921 3.7781
101 10 10 40 1.8984 3.7702
101 10 10 50 1.8077 3.7626
101 10 10 60 1.9157 3.7657
101 10 10 70 1.8469 3.7656
101 10 10 80 1.8531 3.7765
101 10 10 90 1.1987 3.7891
101 10 10 100 1.8938 3.7828

*Number of bytes to be encrypted in an element

Table 2: The time required to query encrypted
documents using the XQuery statements generated by

our algorithm

5 Conclusion
In this paper we have presented a processing model for
efficiently querying encrypted XML documents using
XQuery. This model requires some documents for
optimal querying, including a DSL that specifies how to
encrypted the XML documents and the XML Schema of
the original XML documents. We can use this model to
optimally query the encrypted XML documents, in terms
of the computation required for decryption during the
query process. Moreover, the experimental results
presented here demonstrate that XQuery programs that
are transformed according DSL and XML Schema
exhibit good performance.

CRPIT Volume 63

50

References
Boag Scott, Chamberlin Don, Fernández Mary F., Florescu

Daniela, Robie Jonathan and Siméon Jérôme (2005),

“XQuery 1.0: An XML Query Language W3C Working

Draft.” http://www.w3.org/TR/xquery/

Clark J. and DeRose S. (1999), “XML Path Language (XPath)

Version 1.0. W3C Recommendation,”

http://www.w3.org/TR/1999/REC-xpath-19991116.xml

Schneier Bruce (1995), “Applied Cryptography: Protocols,

Algorithms, and Source Code in C,” 2nd Edition, published

by John Wiley & Sons.

Maruyama Hiroshi and Imamura Takeshi (2000),

“Element-wise XML Encryption.”

 http://www.alphaworks.ibm.com/tech/xmlsecuritysuite

“XML Encryption WG.”

http://www.w3.org/Encryption/2001/Overview.html.

Imamura Takeshi, Dillaway Blair, and Simon Ed (2002), “XML

Encryption Syntax and Processing. W3C Recommendation

10 December 2002.” http://www.w3.org/TR/xmlenc-core/

Hwang Gwan-Hwan and Chang Tao-Ku (2001), “Document

Security Language (DSL) and an Efficient Automatic

Securing Tool for XML Documents,” International

Conference on Internet Computing 2001, 24-28 June, Las

Vegas, Nevada, USA, pp: 393-399

Hwang Gwan-Hwan and Chang Tao-Ku (2004). “An

operational model and language support for securing XML

documents,” Computers & Security, Volume 23, Issue 6,

September 2004, pp: 498-529.

Chang Tao-Ku and Hwang Gwan-Hwan (2003), “Towards

Attribute Encryption and a Generalized Encryption Model

for XML,” International Conference on Internet Computing

2003, 23-26 June, Las Vegas, Nevada, USA, pp: 455-461.

Hwang Gwan-Hwan and Chang Tao-Ku (2005) “DSL Editior,”

http://www.xml-dsl.com/DSL_editor_detail.htm

Fallside David C. and Walmsley Priscilla (2004), “XML

Schema Part 0: Primer,” W3C Recommendation, 28

October 2004. http://www.w3.org/TR/xmlschema-0/

International Organization for Standardization, Information

Technology- Database Language-SQL-Part 2: Framework

(SQL/Framework), ISO/IEC 9075-2: 2003 and Information

Technology- Database Language-SQL-Part 2: Foundation

(SQL/Foundation), ISO/IEC 9075-2: 2003,

http://www.iso.org.

Fischer Charles N. and LeBlanc Richard J Jr. (1991). “Crafting

A Compiler with C”. The Benjamin/Cummings Publishing

Company, Inc.

Galax. Available from: http://www.galaxquery.org

Qexo. The GNU Kawa implementation of XQuery. Available

from: http://www.gnu.org/software/qexo/

Saxon. Available from: http://www.saxonica.com/

Sun Microsystems, “The Source for Java(TM) Technology,”

http://java.sun.com

Proc. Eighteenth Australasian Database Conference (ADC 2007)

51

http://www.w3.org/TR/xmldsig-core/

CRPIT Volume 63

52

Computer Assisted Assessment of SQL Query Skills

Stijn Dekeyser Michael de Raadt Tien Yu Lee

Department of Mathematics & Computing
University of Southern Queensland

Queensland, Australia

{dekeyser, deraadt, leet}@usq.edu.au

Abstract

Structured Query Language (SQL) is the dominant
language for querying relational databases today, and
is an essential topic in introductory database courses
in higher education. Even though the language is syn-
tactically simple, relatively concise, and highly struc-
tured, students experience many difficulties while
learning to express queries in SQL. In recent years
a small number of software tools have been proposed
to help students learn to write query statements and
to assess their querying skills.

In this paper we compare and evaluate existing
tools mainly from the perspective of database theory
and practice, but also from a pedagogical perspective.
Addressing the deficiencies and opportunities uncov-
ered by the evaluation, we then introduce SQLify, a
new tool that extends the current state of the art by
incorporating semantic feedback, enhanced automatic
assessment based on database theory, and peer review
to arrive at a richer learning experience for students,
as well as consistent assessment results and reduced
marking for instructors.

Keywords Computer Assisted Learning and As-
sessment, SQL, Conjunctive Queries, Query Equiv-
alence.

1 Introduction

Structured Query Language (SQL) is the dominant
database language today, comprising commands to
define relational schema objects (Data Definition
Language ddl) as well as provisions to manipulate
data (Data manipulation Language dml). In most in-
troductory level database courses in higher education,
learning to write dml query expressions in SQL re-
ceives a significant amount of attention. Students are
not only taught to write syntactically correct state-
ments, but more importantly to translate a natural
language question into a semantically correct SQL ex-
pression. This learning process is often difficult.

Researchers [10, 11, 14, 17, 19] have identified sev-
eral common problems that students encounter while
learning SQL. We list some of these:

• It is a burden for students to memorize the
database schema, possibly resulting in erroneous
solutions due to incorrect table or attribute
names. This burden also misleads the students

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at Eighteenth Australasian Database Conference
(ADC2007), Ballarat, Australia. Conferences in Research and
Practice in Information Technology, Vol. 63. James Bailey and
Alan Fekete, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

to focus on low-level syntax at the expense of
high-level query definition.

• Many students misunderstand the basic elements
of SQL and first order logic and the relational
data model in general. They have trouble grasp-
ing concepts such as joins, universal quantifica-
tion, grouping and aggregation, and some set op-
erations.

• Students may incorrectly perceive a query prob-
lem as being easy [19]. Thus, they need experi-
ence thinking about the semantics of questions
and expressing them in SQL. Part of the prob-
lem is that many common, useful, simple to un-
derstand, and potentially easy to express queries
are outside the bounds of relational complete-
ness. Conversely, many queries that can be ex-
pressed with a relationally complete language are
difficult to compose or comprehend.

• The declarative nature of SQL is rather difficult
for many learners to grasp. It requires them to
think sets rather than steps.

To overcome some of these problems, students are
typically provided with a relational database man-
agement system in which they can experiment and
increase their skills. However, this approach only
provides students with immediate feedback regarding
the syntactical correctness of their expressions1. This
is insufficient to prepare them for assessment, where
course instructors usually place more importance on
semantical correctness.

From the perspective of students a simple environ-
ment is needed in which they can test query expres-
sions and receive immediate feedback regarding both
syntax and semantics.

On the other side of the teaching–learning divide,
course instructors often desire a tool that helps them
teach querying skills while also enforcing consistency
in grading and helping to reduce their marking load,
freeing them for more effective teaching tasks. For
both parties, a tool that helps raise learning to higher
orders of thinking (particularly evaluation) can im-
prove educational outcomes [2].

Because relational query languages are not Turing
complete, and because important subsets of these lan-
guages allow decidability of query equivalence, tools
can be constructed that provide immediate syntac-
tic and semantic feedback. In recent years a small
number of tools that offer partial feedback have been

1Students may also get some idea of the semantic correctness of
their queries from evaluation, but a correct query answer for one
specific database instance may be misleading the student to think
the query is correct in general. In addition, students don’t always
know what the correct answer for a given instance should be.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

53

proposed. We evaluate a number of these in the next
section.

Motivation. (1) To build on the current state of
the art and improve the learning experience for stu-
dents attempting to master SQL, while helping in-
structors in assessment. (2) To inform database re-
searchers and teachers of educational SQL tools.

Contribution. This paper contains two distinct
contributions. First, we compare and evaluate ex-
isting computer assisted SQL tutoring and assess-
ment tools from the perspectives of Databases and
Computer Science Education. Secondly, we propose
SQLify as a tool building upon and enhancing these
existing solutions, especially in the areas of improved
computer assisted assessment and peer review.

Organization. In Section 2 we review existing
tools used for teaching and assessing SQL statements.
In Section 3 we then give a detailed description of
SQLify, before presenting an example run-through of
the system in Section 4. Some implementation de-
tails, especially concerning automatic query assess-
ment, are given in Section 5. We conclude with a
summary and future work in Section 6.

2 Evaluation of Existing Tools

In this section we review a number of tools that are
well described in literature.

• eSQL, proposed in 1997 in [10] to help teach the
concept of query processing. It is not used for
query evaluation or assessment.

• SQL-Tutor, developed at the University of Can-
terbury, Christchurch, in 1998 [14]. It provides
semantic feedback but is not used in assessment.

• AsseSQL, a tool created at the University of
Technology in Sydney in 2004 [16]. It provides
binary grading of queries submitted by students.

• SQLator, a tool created by the University of
Queensland also in 2004 [17]. This tool is similar
to AsseSQL.

A number of other tools and systems exist (e.g. [9]
and [11]) but are only partially described in scien-
tific research literature. Interestingly, however, very
few papers discuss database teaching in general and
most of them are not known to database researchers
as they are published in computer science education
literature.

We now offer a cross-disciplinary review of these tools,
first evaluating the systems from a database theory
and practice perspective, and then from a pedagogical
perspective. The review is summarized in Figure 1.

2.1 Database Perspective

The tools we studied for this paper were primarily
created and described from a computer science edu-
cation point of view, with minor regard to relational
database theory. None of them provide detailed im-
plementation information.

Both AsseSQL and SQLator [16, 17] use heuristical
methods to evaluate whether queries entered by stu-
dents in a test are correct. This involves running the
submitted query on a test database, and comparing

the output with that of the query included in the def-
inition of the question. In Relational Algebra terms,
the condition that is tested is

(a(I)− s(I)) ∪ (s(I)− a(I)) = φ (1)

where a is the correct query as supplied by the course
team, s is the query submitted by the student, and I
is an instance of the database supplied by the course
team. This test, however, is only approximate: it
is possible for students to cheat by creating simple
queries that produce the desired result, especially
when they are shown the database instance. Sadiq
and others in [17] report that their SQLator system
appropriately marks a query as correct in 95% of cases
when the test queries are relatively easy. This re-
sult is sufficient for a beginner’s course on SQL, but
may be more problematic for more advanced courses.
Also, the success of the heuristic depends in part on
the database instance used in the test; a badly de-
signed instance reduces the level of correctness of this
method.

In [16] Prior and Lister have therefore proposed
extending their AsseSQL tool to run an additional
test on a second database instance not known to the
students. While this indeed increases the correctness
of evaluation, it is still only a heuristic test.

In database theory it is well known that the class
of Conjunctive Queries has the important property
that it is decidable whether two queries are equiv-
alent. The CQ class is a significant subset of SQL
excluding the set operators and grouping statements.
In the introductory Database Systems course at the
University of Southern Queensland, more than 70% of
the time spent on teaching SQL is reserved for such
queries. Hence, for this type of query, a computer
assisted assessment tool should be able to evaluate
correctness of submitted queries with 100% accuracy.
For queries that are not in CQ, a heuristic approach
can still be used, but any automatic grading tool will
need to flag such cases so that the lecturer can in-
tervene appropriately. In Section 3 we detail use of
query equivalence decidability results to improve the
accuracy of computer-based assessment, and to allow
automatic grading of reviews performed by students
for their peers where possible.

The existing literature also does not address some
practical considerations with regard to database sys-
tems. For example, the use of the distinct keyword or
sorting in a query makes it impractical to test equiva-
lence using only the heuristic described above2. Fur-
thermore, both AsseSQL and SQLator seem vulnera-
ble to SQL injection attacks. These include attempts
to make unauthorised modifications to a database by
taking advantage of the level of access provided by the
interface. Care must be taken to check or rewrite a
submitted query before it is evaluated by the database
server.

None of the systems we reviewed have support for
teaching or assessing Relational Algebra expression
writing. We argue that adding such support is very
valuable, for two reasons. Firstly, most introductory
level relational database textbooks that we are fa-
miliar with (e.g. [5, 12, 20]) include the teaching of
relational algebra, often before teaching SQL. They
do so for a variety of reasons but mostly because stu-
dents who understand the relational algebra are more
likely to write better SQL queries: “relational algebra
is the key to understanding the inner workings of a
relational dbms, which in turn is essential in design-
ing SQL queries” [12]. Secondly, the techniques used

2CQ equivalence testing is also not sufficient for this purpose.

CRPIT Volume 63

54

Feature eSQL SQL-Tutor SQLator AsseSQL SQLify

Modelling of student to individualize instruc-
tional sessions

✗ ✓ ✗ ✗ ✗

Visualization of database schema ✗ ✓ ✗ ✗ ✓

Visualization of query processing ✓ ✗ ✗ ✗ ✓

Feedback on query semantics ✗ ✓ ✗ ✗ ✓a

Automatic assessment (using heuristics) ✗ ✗ ✓ ✓b ✓c

Automatic assessment (using CQ query equiva-
lence)

✗ ✗ ✗ ✗ ✓

Use of peer review for assessment ✗ ✗ ✗ ✗ ✓

Relational Algebra expressions support ✗ ✗ ✗ ✗ ✓d

Special treatment of distinct and order by ✗ ✗ ✗ ✗ ✓

SQL-injection attack countermeasures ✗ ✗ ✗ ✗ ✓

Figure 1: Comparison of existing tools and SQLify detailed in the remainder of this paper. (a) in practice
mode only. (b) on two instances (proposal only). (c) for queries not in CQ. (d) planned for next version.

in automated SQL teaching and assessment tools can
be readily used for the relational algebra as well, re-
quiring only a user-friendly (and, desirably, pedagog-
ical) interface for entering relational algebra state-
ments, and additional logic to convert students’ al-
gebra expressions into SQL, the latter of which is a
well-documented procedure.

2.2 Pedagogical Perspective

eSQL [10] was one of the earliest tools proposed for
teaching database concepts. This is a system similar
to a normal query interface except that the response
to a select statement is not merely to show the re-
sult, but also to show a sequence of images giving a
step-by-step account of how the query result is de-
termined. Hence, eSQL visualizes query processing,
at least at the conceptual level. This helps students
develop a mental model and enhances students’ un-
derstanding of the semantics of SQL. One of the steps
being visualized is the creation of the cartesian prod-
uct of the input tables. Since the number of rows in
the intermediate result may be far too large to show,
the system uses an ingenious algorithm to choose a
sample row set for display.

The main contribution of eSQL is therefore ped-
agogical. The tool is not meant to analyze queries
submitted by students, nor is it used in assessment.

SQL-Tutor [14] is a knowledge-based system that sup-
ports students in learning SQL. It focuses on the indi-
vidualization of instructional sessions towards a par-
ticular student, by developing a model of the student’s
knowledge, learning abilities and general character-
istics and tailoring instructional actions to the stu-
dent’s needs. SQL-Tutor is also an Intelligent Teach-
ing System designed as a guided learning environ-

ment, which helps students in overcoming the diffi-
culties in learning SQL. Students are given opportu-
nities to discover things by themselves; they can learn
by doing.

A major strength of SQL-Tutor is that this system
gives meaningful feedback on the semantic correctness
of queries in addition to feedback concerning syntax.
Moreover, there are five levels of feedback in the sys-
tem, yielding increasingly detailed information.

Another feature of SQL-Tutor is the visualization
of the database schema. This removes cognitive load
for students, allowing them to focus on higher level
query definition problems instead of low-level syntax.

However, SQL-Tutor does not visualize the way a
query is executed as eSQL does. In addition, the tool
only focusses on helping students practice before as-
sessment and does not help instructors in conducting
assessment.

Turning to the systems which support assessment,
both SQLator and AsseSQL [16, 17] apply only bi-
nary grading to queries submitted by students, and
do not provide comments or suggestions for improve-
ment. While Prior and Lister [16] argue the suffi-
ciency of this right-or-wrong approach, binary grad-
ing does not correct students’ misunderstandings or
encourage further learning.

As well as giving students query problems to solve,
AsseSQL also shows the desired result of the query
they are to write. This is justified as an attempt to
overcome students’ poor English skills, but creates an
unauthentic setting for student learning, as database
programmers typically do not know the result of a
query before submitting it to the server.

Both AsseSQL and SQLator create only a single chan-
nel of communication between the student and the

Proc. Eighteenth Australasian Database Conference (ADC 2007)

55

instructor via the system. No other forms of commu-
nication (e.g., peer to peer) are mentioned as being
part of these systems or used along-side these systems.

None of the tools we examined use peer review as
part of learning and assessment. According to Saun-
ders [18] peer learning is advantageous as “it offers the
opportunity for students to teach and learn from each
other, providing a learning experience that is quali-
tatively different from the usual teacher-student in-
teractions”. Peer review can take several forms. One
form takes a student’s submission and allows it to
be reviewed by a number of student-peers, a process
overseen by an instructor. Peer review has been suc-
cessfully incorporated in the assessment of student
work in various fields, including computing [6, 7, 13].
Peer review allows students to evaluate the work of
others which requires higher order thinking skills [2]
through evaluating the work of peers and reflecting
on their own work. With peer review, students also
receive feedback from more than one source enriching
the learning experience for students. Receiving feed-
back from peers can encourage a community of learn-
ing [3] which can in turn further encourage higher or-
der thinking. Peer review involves students in the as-
sessment process, encouraging increased engagement
in the course and ultimately improved learning out-
comes [6]. Peer review, when used as an assessment
tool, can also reduce the assessment workload of in-
structors.

3 SQLify

Having compared and evaluated existing computer
assisted learning and assessment tools both from a
Computer Science Education and a Database The-
ory point of view, we now turn to the description of
SQLify (pronounced as squalify) which aims to im-
prove existing solutions on several different fronts.

From the discussion in the previous section, it is clear
that combining semantic feedback, an enhanced au-
tomatic assessment algorithm, and peer review will
produce better outcomes for students and instructors
alike. Specifically, the following requirements have
driven the design of SQLify:

• Provide rich feedback to students in an auto-
mated and semi-automated fashion;

• Reduce the need for recall for students by pre-
senting the relevant relational schema;

• Illustrate the execution strategy for queries sub-
mitted by students to deepen their understand-
ing of database systems;

• Employ peer-review to enhance learning out-
comes for students (through students conduct-
ing evaluations and receiving feedback from more
sources);

• Use a query equivalence testing algorithm com-
bined with peer review effectively to yield a wider
range of final marks;

• Automatically judge the accuracy of reviews per-
formed by students as part of their assignments;

• Reduce the number of necessary moderations
conducted by instructors, freeing them for other
forms of teaching;

• Increase the consistency of marks allocated to
students.

Hence, the main focus of SQLify is computer assisted
practice and assessment using a sophisticated auto-
matic grading system in combination with peer re-
view.

3.1 Use of SQLify

The SQLify system is intended to assess a student’s
query writing skills through an online interface in
the context of assignments and preparing for assign-
ments3. Student use of the system can be seen to fall
into a series of phases.

1. Trial and submission

2. Reviewing peers’ submissions

3. Receiving feedback and marks.

Students will submit solutions to a number of prob-
lems. The value of their submission will be judged
by peers, the SQLify system and ultimately by the
instructor (see Figure 2).

Students complete reviews of (usually two) other
students submissions for which they are awarded
marks. The accuracy of their submission determines
the mark they receive for reviewing.

Correctness

of

Submission

Accuracy

of Review

Final Mark

Correctness

of

Submission

Accuracy

of Review

Correctness

of

Submission

Accuracy

of Review

Figure 2: Components of a student’s mark.

Finally the marks they received for submission and
the accuracy of their reviews is summed to form a final
mark.

The following subsections describe in detail the three
phases mentioned above.

3.1.1 Trial and Submission

Students are able to develop and trial their query an-
swers to a specific set of problems using SQLify and
immediately see how the automatic grading system
evaluates their work. The SQLify system will give one
of (a limited set of) the levels of correctness shown in
Figure 3. Students may practice query problems in-
definitely prior to starting work on assignments. The
mark they are shown during this trial period is not
necessarily what they would receive from the instruc-
tor for the correctness of their submission in assign-
ments; this is given later by the instructor under ad-
visement of the student’s peers and the SQLify sys-
tem. When the student is happy with their work they
may proceed to submitting query answers to assign-
ment problems.

Students completing assignments using SQLify will
typically be given a number of English-language prob-
lems (say three to five) that he or she would translate
to SQL4. The problems are well defined descriptions
of authentic, real world problems. Students’ query
answers are submitted through a web form; a screen-
shot of SQLify is shown in Figure 4.

3The system is not meant for use in the context of examination.
4Or Relational Algebra, as detailed in Section 6.

CRPIT Volume 63

56

L
e
v
e
l

Description S
tu

d
en

ts
ca

n
u
se

S
y
st

em
ca

n
u
se

In
st

ru
ct

o
r

ca
n

u
se

E
x
a
m

p
le

v
a
lu

e

L0 Syntax, output schema,
query semantics incor-
rect

✓ ✓ ✓ 0%

L1 Syntax is correct,
schema and semantics
incorrect

✓ ✓ ✓ 20%

L2 Syntax and schema cor-
rect, semantics are in-
correct

✓ ✓ ✓ 30%

L3 Syntax and schema cor-
rect, semantics largely
incorrect

✓ 40%

L4 Syntax and schema cor-
rect, semantics seem
largely incorrect (not
sure)

✓ 70%

L5 Syntax and schema cor-
rect, semantics just ad-
equate

✓ 80%

L6 Syntax and schema
correct, semantics seem
largely correct (not
sure)

✓ ✓ 90%

L7 Syntax, schema, and se-
mantics are correct

✓ ✓ ✓ 100%

Figure 3: Levels implied by evaluation sentences.
Different levels may be used by reviewing students,
the SQLify system, and by instructors. Internal as-
sessment values (last column) are example values for
each level; they may be changed by instructors using
SQLify.

The problems that students are asked to solve re-
late to differing database schema, so the student is
presented with the correct schema (and a sample in-
stance) for each individual problem. The student can
also be supplied with hints and comments, and also
with the desired output schema for the query (not
the desired output instance), if so determined by the
creator of the problem.

Once a query is submitted to the system it is checked
for SQL injection attacks. First, tables referenced
in the from clause of the submitted statement will
need to appear in the source database schema, or the
query will be rejected. Second, the where clause will
be analyzed and possibly rewritten using mainstream
SQL injection countermeasures.

In SQLify’s assessment mode, students will not be no-
tified if their submissions contain queries that are syn-
tactically incorrect (although they should have been
able to determine this themselves by trialing their
submission in a database). Demonstrating under-
standing of the particular SQL syntax of the database
system that is used by SQLify is a part of the as-
signment. Also, students may use any resources they
like while answering the problems, including SQL lan-
guage reference guides.

Students receive feedback about their submission in
the final phase (see Section 3.1.3).

Figure 4: SQLify screenshot of the query entry form.

3.1.2 Reviewing Peers’ Submissions

After submitting, most students are able to immedi-
ately proceed to complete reviews allocated to them.
A small pool of early-submitting students (usually
four) must wait until enough submissions have accu-
mulated before they can proceed to reviews. Such
early-submitters are informed that they must wait
and when this minimum pool has been reached the
system will automatically allocate reviews to the ini-
tial pool and inform them by email that they may
start reviews.

This single step submit-review process has been
successfully applied [6] and has several advantages
over a two step process (submit before deadline, re-
view after first deadline and before a second deadline):

• only one deadline is needed,

• the majority of students are not required to re-
turn to the site for the sole purpose of completing
reviews,

• students review the task they have just com-
pleted,

• students receive feedback from peers shortly after
submission, and

• students can work ahead in the course.

The disadvantage of a single phase review allocation
system is that it must distribute review allocations in
a way that maintains anonymity. If students can pre-
dict who they will review, collusion between students
is possible. This can be countered by complicating the
review allocation process and keeping its workings se-
cret, by requiring each submission to be reviewed by
more than one peer, and by comparing the accuracy
of a student’s review to that suggested by the system.

When the system has allocated reviews to a student,
reviewing can commence. The student is presented
with a similar screen to what they used to input their
query answer during the initial submission phase, but
where they were previously able to enter their answer
the system now shows a read-only query given by a
peer. The reviewing student additionally sees the re-
sult of applying the query on the relevant database in-
stance. The reviewing student then selects a level de-
scribed by a sentence from the list shown in Figure 3

Proc. Eighteenth Australasian Database Conference (ADC 2007)

57

that best describes their assessment of the correctness
of the query answer. The list of possible levels given
in Figure 3 shows all available levels of which the re-
viewing student may choose levels marked with a tick
in the column titled “Students can use”. No corre-
sponding internal values are shown to the reviewing
student. Reviewing students may express uncertainty
by choosing a sentence that includes “not sure”. This
allows the system to assign a wider range of marks
to reviews, but is also used to flag potential problems
that need to be moderated by an instructor.

By linking automatic assessment of queries with re-
views given by students, it is not only possible to eval-
uate the correctness of queries, but also the accuracy
of reviewers in judging that query. Students will re-
view the work of two peers knowing that the accuracy
of reviews they perform will also be assessed.

A student’s review accuracy should be marked high
when the level they selected for a peer’s query answer
is very similar to the level ultimately determined for
that query answer by the instructor. Conversely, ac-
curacy should be marked low when it differs greatly
from the instructor’s correctness mark. Hence, the
formula for marking accuracy of a review performed
by a student is quite simple.

accuracyMark =
100− | correctnessMark − studentMark |.

In other words, the mark given to a reviewer for the
accuracy of their review depends on the difference to
the correctness mark assigned by instructor. Note
that this formula has the additional affect that when
a student has signaled uncertainty (by picking level
L4 or L6) they will not be awarded full marks for this
review.

Giving fellow students a false high or low level
evaluation which differs for the mark applied by an
instructor will lose marks for the reviewing student.

As well as judging correctness levels for query an-
swers, reviewing students are also required to leave
a comment. Students are encouraged to give com-
ments of praise or positive suggestions for improve-
ment. This is arguably the most valuable part of the
reviewing process for both the reviewer and the re-
viewee.

select

...
SQLifySQLify

Instructor giving feedback

Peer giving feedback

Peer giving feedback

Student receiving

feedback

Figure 5: Feedback received by the student.

For the reviewer this is an opportunity to eval-
uate the work of a peer and in doing so, reflect on
their own work. This requires higher order thinking
skills [2] which will hopefully encourage greater learn-
ing outcomes.

For the reviewee receiving peer feedback means they
will receive feedback from more sources than just the
instructor or the system. The information contained
in comments can encourage a more personal rela-
tionship among students (even anonymously) and be-

tween instructors and students, thus helping to form
a community of learners.

For instructors, adding a comment allows elabora-
tion on why a student may have lost marks and posi-
tive encouragement on their progress. The instructor
may draw on a list of previously created comments to
speed up the moderation process. This also provides
consistency when multiple instructors are performing
moderations.

Another benefit of this system is to allow students
to flag peer reviews they believe to be incorrect for
instructor intervention. Although quite often the in-
structor would be moderating such cases, this feature
allows the student to express unhappiness with a re-
view. This can remove some anxiety related to having
their work assessed, in part, by algorithms and peers.

Note that the manner in which SQLify uses peer re-
view is based on an existing, fully evaluated and suc-
cessful peer-review system [6, 7].

3.1.3 Receiving Feedback and Marks

When all reviews of a student’s work are complete,
the instructor allocates a mark for the student’s work
based on the levels suggested by the SQLify system
(which does so on the basis of its own algorithm and
marks suggested by peers). Instructors must attend
to submissions that have been assessed differently
by each peer or by the system. Past experience [7]
has shown that in at least half of normal submis-
sions, peers alone are able to achieve non-conflicting
reviews, so this means moderation is most likely to
be unnecessary in these cases. Additionally, in many
cases SQLify can determine a level for a solution with
absolute certainty so this further eases the marking
load of the instructor.

Past experience also suggests that it is important that
students sense the instructor’s involvement in the as-
sessment process [7]. They see the instructor as an
authority and feel they deserve the attention of the
instructor during the assessment process. It is pos-
sible for good students who produce excellent work,
to be assessed equally by peers and the SQLify sys-
tem. In such cases the instructor may elect to assign a
mark based on the agreed standard of the work with-
out performing moderation. If a student achieves this
consistently through the semester, they may miss the
instructor’s input in their assessment; they may then
feel cheated by the assessment approach. It is pos-
sible to track how many times a student has been
moderated by an instructor and set target levels of
moderation at various points through the teaching
period. This way each student can be satisfied with
the attention they are receiving while still reducing
the marking load on instructors.

One of the clearest benefits of using a single-step peer
review system it that students receive feedback about
their submission as soon as a peer has completed their
review. Compared with a normal instructor marked
assignment where students must wait until after the
assignment deadline for feedback, previous use of the
approach suggested here returns feedback to students
within hours [7].

Once the peer review process is completed and the
instructor has assigned marks to students, the SQLify
system can calculate a final mark for each student.

The system suggests a final mark for a student’s as-
signment. It does so by summing both the correctness
marks for each query answer and accuracy marks for
the reviews conducted by that student (see details in

CRPIT Volume 63

58

Section 3.2.1). The weighting of correctness and re-
view accuracy for each problem in each assignment
could be varied according to the effort for each. An
example would be weighting the correctness marks
to 70% of the entire assessment and review accuracy
marks to 30%.

The instructor then chooses to accept or modify
the suggested mark (see Section 3.2.2). Such marks
may be released individually by the instructor or en
masse.

3.2 Details of how a correctness mark is de-
termined

The three phases described above result in a process
of assigning marks to queries and reviews. Three vari-
ables are kept per submitted query answer for each
student: a system correctness mark sys, and two cor-
rectness marks from peers std1 and std2. With the
aid of SQLify, the instructor then uses these marks to
determine an overall correctness mark for each query
answer the student submits.

3.2.1 How the system determines its correct-
ness mark (Determining values for sys)

The levels below are taken from Figure 3.

L0 The submission is syntactically incorrect
The submitted query is sent to the database en-
gine which returns a syntax error. The system is
certain that the query is syntactically incorrect,
so the internal value for sys is L0.

L1,L2 The submission is syntactically correct
The query is accepted by the database, upon
which the system checks whether the output
schema is the same as the one produced by the
solution query (supplied by the instructor). The
system can determine this exactly, and assigns
an internal mark of L1 for sys if the condition is
not met, and L2 if the condition is satisfied.

L6 The submission produces a result that is
probably correct but needs to be checked
or compared with peer marks
The query passes the output schema test, and
now undergoes examination of its semantics. If
the query does not belong to the Conjunctive
Query (CQ) class, only a heuristic approach is
possible. If the heuristics determine that the
query is correct, there is only a small chance that
in fact the query is not semantically correct (see
Section 2.1). Hence, the internal value for sys is
set to L6 if the test is successful, and L2 if it is
not.

L7 The submission is certainly correct
In case the query belongs to the CQ class, it is
possible to algorithmically decide whether it is
semantically equivalent to the set solution query.
If it is, the internal value for sys is set to L7,
otherwise sys will be reset to level L2.

As is clear, there is a significant gap between levels
L2 and L6; levels L3 to L5 cannot be chosen by the
system. This is because the SQLify system cannot
determine how good or how bad a query is that has
been proven to be semantically incorrect. Hence a
combination of peer review and instructor interven-
tion is used to come up with a wider range of accuracy
marks. Thus, as well as enhancing the learning expe-
rience of students, the peer review process also plays
a practical role in moderating the mark proposed by
the system and in flagging possible problems to the
instructor.

3.2.2 How the instructor determines a cor-
rectness mark for an answer

SQLify calculates a suggested correctness mark for
each submitted answer by using the marks given in
reviews by students when its own automatic assess-
ment is not sufficient. In many cases the system can
suggest a mark with great certainty which the instruc-
tor can accept. Instructor moderation is needed when
the system is uncertain about the student’s submis-
sion or if there are conflicts between peer reviews or
between reviews and the mark of the system. The
following procedure is used by the instructor to apply
the mark suggested by SQLify.

sys ≤ L1
(The submission is incorrect)

In this case, the suggested mark will be same
as sys, so possible internal values for the cor-
rectness mark are L0 or L1. The system is
always right in these cases, so no student
review marks need to be used to determine
the correctness mark and no instructor in-
tervention is necessary.

sys = L2 ∧ L2 ≤ std1 ≤ L4 ∧ L2 ≤ std2 ≤ L4
(The submission is largely incorrect)

In this case, both reviewing students agree
with the system that the submitted query is
semantically incorrect while the syntax and
output schema are correct. The suggested
mark will be the average of both student re-
views rounded up to the nearest level. So,
possible internal values for the correctness
mark are L2, L3 and L4 as chosen by the
instructor.

sys = L2 ∧ ¬(L2 ≤ std1 ≤ L4 ∧ L2 ≤ std2 ≤ L4)
(There is a conflict between reviewers and the system)

In this case either one or both of the re-
viewing students disagree with the system.
Hence, instructor intervention is appropri-
ate to moderate the conflict. The correct-
ness mark will be determined by the instruc-
tor and can be taken from L2, L3, L4, or
L5 as suggested by the system. The cor-
rectness mark cannot be higher than L5 be-
cause SQLify has determined the query to
be semantically incorrect. Also, the instruc-
tor can choose from the two additional levels
L3 and L5 because he is more experienced
than the reviewing students.

sys = L6 ∧ (std1 ≤ L4 ∨ std2 ≤ L4)
(The system suggests the answer is probably correct
but the reviewers disagree)

The system could only heuristically deter-
mine that the query semantics are likely to
be correct, while at least one of the review-
ing students believes that the query is incor-
rect. In this case, intervention is needed by
an instructor, who may choose any of the
suggested levels L0, L2, L6, and L7. The
chance is rather low that the query is indeed
incorrect, so the first two levels are only used
when the instructor believes that the stu-
dent may have attempted to cheat (L0) or
only accidentally confused the system (L2).

sys = L6 ∧ std1 ≥ L5 ∧ std2 ≥ L5
(The system thinks the query is probably correct and
the reviewers agree)

Proc. Eighteenth Australasian Database Conference (ADC 2007)

59

Both students believe the query may be cor-
rect, and SQLify has also determined that
this is likely. Intervention is not necessary as
students are motivated to conduct accurate
reviews. The system suggests a correctness
mark of L7 (100%).

sys = L7
(The system indicates that the answer is certainly cor-
rect)

The system has incontrovertibly determined
that the submitted query is correct, hence no
student review marks are needed to deter-
mine the correctness mark, and no instruc-
tor intervention is necessary. The system
strongly suggests a correctness mark of L7
(100%).

Based on the system’s recommendation the instructor
will set a correctness mark for each submitted answer.
Each correctness mark is summed together with the
marks calculated for the accuracy of reviews submit-
ted by a student to form a final mark which can be
released to the student.

4 Examples

To illustrate the workings of SQLify, two query prob-
lems are presented together with a description of how
they are evaluated using SQLify. The assessment pro-
cess to see how students’ submissions are evaluated is
followed through to a final mark.

4.1 Query Problems

The example problems make use of a database with
the following schema5.

employee(eNo, fname, lname, wage, dNo, eloc)
department(dNo, dname, dlocation)

The first query problem (qp1) is an example of
a Conjunctive Query (a problem in class CQ). In
this class it is possible to conclusively determine if a
supplied query is correct without employing heuristic
comparison.

Give the first and last names of all employ-
ees in the Sales department earning more
than 300 dollars.

The instructor supplies a solution query that will be
used by the system to test queries submitted by stu-
dents.

SELECT fname, lname FROM employee E,
department D WHERE E.dNo = D.dNo AND
dname = ‘Sales’ AND wage > 300; (qp1)

The following are two queries submitted by students.
They are both different to the solution presented by
the instructor, but both can be proved to be semanti-
cally equivalent to the instructor’s solution query and
are therefore considered correct. Correctness marks
given by the system and two peers are also shown.

Submitted query sys std1 std2
SELECT fname, lname FROM
employee JOIN department ON
dNo WHERE dname = ‘Sales’ AND
wage > 300; (sa1)

L7 L6 L7

SELECT fname, lname FROM
employee E WHERE wage > 300
AND EXISTS (SELECT * FROM
department D WHERE E.dNo =
D.dNo AND dname = ‘Sales’);
(sa2)

L7 L7 L4

5Instructors submitting their own query problems can submit
their own schemas and instances.

The following query is an incorrect query answer to
the above problem (qp1).

Submitted query sys std1 std2
SELECT fname, lname FROM
employee E WHERE dname =
‘Sales’ AND wage > 300; (sa3)

L2 L6 L4

The next problem (qp2) involves a query that is not
in CQ class.

List all locations where there is either an em-
ployee or a department.

The following is an instructor’s solution query for this
problem.

(SELECT eloc FROM employee) UNION
(SELECT dlocation FROM department);
(qp2)

An incorrect solution to this problem is given next.

Submitted query sys std1 std2
SELECT loc FROM employee,
department WHERE loc = eloc
OR loc = dlocation; (sa4)

L2 L2 L3

4.2 Marking query correctness

When the system has evaluated a submitted query
and peer reviews are complete for that query the sys-
tem will recommend a mark to the instructor. The
instructor can then assign a correctness mark for the
query.

The table below shows, for each row, the correctness
marks for a particular query submitted by a student,
as given by the system itself (sys), and two peers re-
viewing the query answer (std1 and std2). In addition,
a suggested mark is shown calculated by SQLify on
the basis of sys, std1 and std2 using the procedure de-
scribed in Section 3.2.2. Finally, the correctness mark
assigned by the instructor is listed; this mark may or
may not be the same as the suggested mark.

S
tu

d
en

t

P
ro

b
le

m

S
u
b
m

it
te

d
q
u
er

y

S
y
st

em
m

a
rk

(s
ys

)

R
ev

ie
w

er
1

M
a
rk

(s
td

1
)

R
ev

ie
w

er
2

M
a
rk

(s
td

2
)

S
u
g
g
es

te
d

m
a
rk

C
o
rr

ec
tn

es
s

m
a
rk

1 qp1 sa1 L7 3 L6 5 L7 L7 L7
1 qp2 sa4 L2 4 L2 5 L3 L3 L3

. . .
4 qp1 sa2 L7 1 L7 3 L4 L7 L7
5 qp1 sa3 L2 1 L6 2 L4 L4 L4

The internal values corresponding to levels given in
Figure 3 are not hard-coded into the system. The
instructor using SQLify can set these values during
use of the system. Hence the levels given in the last
column will translate into different scores for queries
as determined by the instructor.

4.3 Checking accuracy of reviews

The following table lists one row per peer review that
is performed in the context of an assignment. The
first row, for instance, shows that student 1 was a re-
viewer for a query (sa2) submitted by student 4 in
answer to query problem qp1. Student 1 gave this
query answer a correctness mark of L7. The correct-
ness mark for the submitted query answer ultimately

CRPIT Volume 63

60

given by the instructor was also L7. Hence, the ac-
curacy mark for this particular review is 100. For the
next review performed by this student there is a dif-
ference between the correctness mark given by this
student and the correctness mark set by the instruc-
tor. This difference causes their mark for accuracy to
be reduced.

R
ev

ie
w

er

R
ev

ie
w

ee

P
ro

b
le

m

S
u
b
m

is
si

o
n

R
ev

ie
w

er
’s

m
a
rk

C
o
rr

ec
tn

es
s

m
a
rk

D
iff

er
en

ce

A
cc

u
ra

cy
m

a
rk

1 4 qp1 sa2 L7 L7 0% 100%
1 5 qp1 sa3 L6 L4 20% 80%

. . .

4.4 Calculating a final mark

The last table below summarizes the various marks
that a particular student received for various query
problems and for the reviews performed. A weighted
final mark is given in the last row using the suggested
weightings of 70% for correctness and 30% for accu-
racy of reviews.

Student: 1
Correctness marks qp1 100%
(Weight 70%) qp2 50%

qp3 70%
Review accuracy qp1 100%
(Weight: 30%) qp2 80%

qp3 50%
Final Mark 74%

5 Implementation Aspects

The SQLify system has been implemented and is cur-
rently undergoing tests to prepare for first use in an
undergraduate database systems course offered later
this year.

The current version of the system was implemented
in a standard LAMP (Linux, Apache, MySQL, PHP)
environment and is integrated with university sys-
tems to manage assignment assessment for enrolled
students. However, the tutoring part of SQLify is
open for outside use, and can be accessed at [8].

While there are several implementation issues that
are worthy of description, we here only focus on the
process of testing query equivalence.

5.0.1 Heuristic Testing

When students submit a query for assessment, SQLify
first rewrites it to counter SQL injection attacks and
to align it with the actual database table names stored
in MySQL. As will become clear, the rewriting is also
useful for other reasons. Subsequently the system
checks syntactic correctness and the correctness of the
query’s output schema. If either of these fail, evalua-
tion stops and sys is set to either L0 or L1.

After rewriting, the heuristic test given in Formula 1
on page 2 is performed. The same measures used
in AsseSQL and SQLator are taken to increase the
reliability of the heuristic test.

If the heuristic test is negative, meaning that for
the specific database instance or instances stored in
MySQL the result of the query is different from that

of the correct query (as supplied by the instructor),
evaluation stops and the submitted query’s sys value
is set to L2.

In case the test was positive, but queries involve
set operations, grouping, or aggregation, the analy-
sis stops, and SQLify sets the sys variable to L6. Peer
reviews and instructor input will then further refine
the score for the submitted query.

5.0.2 CQ Equivalence Testing

If the submitted query is in the Conjunctive Query
class automatic evaluation continues. This is the case
if the query was able to be rewritten (in the previous
phase) into the following SQL form:

SELECT A1, . . . , An
FROM table1, . . . , tablet
WHERE 〈condition1〉 and . . . and 〈conditionc〉

where the conditioni, for 1 ≤ i ≤ c, consists of only
join conditions and equality comparisons, that is X =
Y , where X is a variable (column) and Y is either a
variable or constant.

Note that some SQL queries containing where
exists subqueries can be rewritten in this form.
Query sa2 given in Section 4 is such a case, and can
be rewritten as qp1 which conforms to the SQL sub-
set given above.

Testing the equivalence of conjunctive queries is a
basic problem on which query optimizers are partly
based. Since checking equivalence of two queries can
be done by testing the mutual containment of the
queries involved, the containment problem has been
studied extensively by many researchers.

Under the set semantics, the containment of con-
junctive queries using only equality tests was fully
solved by Chandra and Merlin [4], using the concept
of containment mapping. There has been extensive
work on the testing of set containment of inequality
conjunctive queries, and also on bag semantics with
either equality or inequality tests.

Recently, the idea of using a finite set of canoni-
cal databases to represent an infinite set of databases
is used by Penabad [15] to develop a general proce-
dure, called Query Containment Checker (QCC), to
test the containment problems of both equality and
inequality conjunctive queries, under both set and bag
semantics.

For SQLify we decided to implement an algorithm us-
ing tableaux representation of expressions [1] to test
the equivalence of equality conjunctive queries under
set semantics. The tableaux can be easily constructed
from the previous query rewriting phase. We will
leave all other fragments of the general containment
problem as an extension for future versions of our sys-
tem.

6 Conclusion and Future Work

In this paper a small set of existing tools used for
teaching and assessing SQL writing skills was re-
viewed. The tools were evaluated both from Com-
puting Education and Database perspectives, noting
possible areas of enhancement.

Secondly, we proposed a comprehensive new tool for
the teaching and assessment of SQL writing skills.
Central to the system is the use of an intricate au-
tomatic grading system and peer review. The main
reason for including peer review is to offer students a
richer learning experience. Additionally, peer reviews
assist in the assessment of assignments.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

61

SQLify uses a relatively complex method to assign
final grades to assignments, designed to (1) yield a
much wider range of grades than simply correct or
incorrect, (2) utilize database theory to arrive at a
computer assisted assessment, (3) set high quality de-
mands for student reviews, yielding a better learning
environment, and (4) reduce the number of necessary
interventions performed by course instructors.

Regarding future work, we are currently preparing
SQLify for use in a live course by the end of 2006.
We will then evaluate the usefulness of the system as
perceived by students and instructors. Any change in
student outcomes will be measured.

To evaluate relational algebra expressions two ad-
ditions to the system (planned for the next version
of SQLify) are needed: first, the implementation of
an interface that helps students construct syntacti-
cally correct algebra expressions, and second the im-
plementation of the algorithm that translates the sub-
mitted algebra expression to an equivalent SQL state-
ment. The generated statement is then processed in
the same way as a normal SQL statement.

References

[1] Serge Abiteboul, Richard Hull and Victor Vianu.
Foundations of Database Systems. Addison Wes-
ley, 1997.

[2] B. Bloom. Taxonomy of Educational Objectives.
Edwards Bros., Ann Arbor, Michigan, 1956.

[3] C. Brook and R. Oliver. Online learning commu-
nities: Investigation a design framework. Aus-
tralian Journal of Educational Technology, Vol-
ume 19, Number 2, pages 139–160, 2003.

[4] Ashok Chandra and Philip Merlin. Optimal im-
plementation of conjunctive queries in relational
data bases. In Proceedings of the ninth annual
ACM symposium on Theory of computing, pages
77–90, Boulder, Colorado, 1977.

[5] Thomas Connolly and Carolyn Begg. Database
Systems – A Practical Approach to Design, Im-
plementation, and Management. Addison Wes-
ley, fourth edition, 2005.

[6] Michael de Raadt, Mark Toleman and Richard
Watson. Electronic peer review: A large cohort
teaching themselves? In Proceedings of the 22nd
Annual Conference of the Australasian Society
for Computers in Learning in Tertiary Educa-
tion (ASCILITE’05), pages 159–168, Brisbane,
December 2005.

[7] Michael de Raadt, Mark Toleman and Richard
Watson. An effective system for electronic peer
review. International Journal of Business and
Management Education, Volume 13, Number 9,
pages 48–62, 2006.

[8] Stijn Dekeyser, Michael de Raadt and Tien Yu
Lee. SQLify project website. Technical report,
2006. http://www.sci.usq.edu.au/projects/
sqlify/.

[9] Suzanne Dietric, Eric Eckert and Kevin Pisca-
tor. WinRDBI – a Windows-based relational
database educational tool. In Proceedings of
SIGCSE ’97, pages 126–130, San Jose, Califor-
nia, March 1997.

[10] R. Kearns, S. Shead and A. Fekete. A teaching
system for SQL. In Proceedings of ACSE ’97,
pages 224–231, Melbourne, July 1997.

[11] Claire Kenny and Claus Pahl. Automated tutor-
ing for a database skills training environment.
In Proceedings of SIGCSE’05, pages 59–62, St.
Louis, Missouri, February 2005.

[12] Michael Kiefer, Arthur Bernstein and Philip
Lewis. Database Systems – An Application-
Oriented Approach. Addison Wesley, second edi-
tion, 2006.

[13] J. Kurhila, M. Miettinen, P. Nokelainen, P. Flo-
reen and H. Tirri. Peer-to-peer learning with
open-ended writable web. In Proceedings of the
8th Annual Conference on Innovation and Tech-
nology in Computer Science Education, pages
173–178, Thessaloniki, Greece, June 2003.

[14] Antonija Mitrovic. Learning SQL with a com-
puterized tutor. In Proceedings of SIGCSE’98,
pages 307–311, Atlanta, Georgia, February 1998.

[15] Miguel Penabad. General Procedure to Test Con-
junctive Query Containment. Ph.D. thesis, Uni-
versidade da Coruña, 2002.

[16] Julia Prior and Raymond Lister. The backwash
effect on SQL skills grading. In Proceedings of
ITiCSE’04, pages 32–36, Leeds, UK, June 2004.

[17] Shazia Sadiq, Maria Orlowska, Wasim Sadiq and
Joe Lin. SQLator—an online SQL learning work-
bench. In Proceedings of ITiCSE’04, pages 223–
227, Leeds, UK, June 2004.

[18] D. Saunders. Peer tutoring in higher education.
Studies in Higher Education, Volume 17, Num-
ber 2, pages 211–218, 2006.

[19] Ben Shneiderman. Improving the human factors
aspect of database interactions. ACM Transac-
tions on Database Systems, Volume 3, Number 4,
pages 417–439, 1978.

[20] Abraham Silberschatz, Henry Korth and S. Su-
darshan. Database System Concepts. McGraw-
Hill, fifth edition, 2006.

CRPIT Volume 63

62

Pruning SIFT for Scalable Near-Duplicate Image Matching

Jun Jie Foo Ranjan Sinha

School of Computer Science & IT
RMIT University, Melbourne, Australia, 3001

Email: {jufoo,rsinha}@cs.rmit.edu.au

Abstract

The detection of image versions from large image col-
lections is a formidable task as two images are rarely
identical. Geometric variations such as cropping, ro-
tation, and slight photometric alteration are unsuit-
able for content-based retrieval techniques, whereas
digital watermarking techniques have limited applica-
tion for practical retrieval. Recently, the application
of Scale Invariant Feature Transform (SIFT) interest
points to this domain have shown high effectiveness,
but scalability remains a problem due to the large
number of features generated for each image. In this
work, we show that for this application domain, the
SIFT interest points can be dramatically pruned to
effect large reductions in both memory requirements
and query run-time, with almost negligible loss in ef-
fectiveness. We demonstrate that, unlike using the
original SIFT features, the pruned features scales bet-
ter for collections containing hundreds of thousands
of images.

Keywords: near-duplicate image matching, near-
replicate image retrieval

1 Introduction

On the web, we often find copies, versions, or even
fragments of images that are scaled-down thumb-
nails, or variants of the same digital image that are,
legally or otherwise, kept by different sources. These
are often images that are almost identical but not
recognised as such due to common image manipula-
tions such as conversion to greyscale, change in color
balance and contrast, rescaling, rotating, cropping,
and filtering. Such image variants are commonly
known as near-duplicate images [Jaimes, Chang &
Loui 2002, Ke, Sukthankar & Huston 2004, Zhang
& Chang 2004].

In most cases, the storage and retrieval of dupli-
cate and near-duplicate images may be unnecessary
and, in the context of collections derived from the
web, may further present infringements of copyright.
However, the detection of these near-duplicate images
is a formidable task as two image versions are rarely
identical. They may differ in filename, format, and
size; simply saving an image may lead to bitwise dif-
ferences due to the variations in the coding standards
in different software.

While the detection of copied digital images have
been extensively researched in the field of digital wa-
termarking [Hartung & Kutter 1999, Johnson, Duric

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at Eighteenth Australasian Database Conference
(ADC2007), Ballarat, Australia. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 63. James
Bailey and Alan Fekete, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

& Jajodia 1999, Kang, Huang & Shi 2002, Kang,
Huang, Shi & Lin 2003], such methods are ill-suited
for retrieval applications due to practicality issues [Lu
& Hsu 2005, Qamra, Meng & Chang 2005]. Simi-
larly, content-based retrieval techniques [Smeulders,
Worring, Santini, Gupta & Jain 2000] — a well re-
searched area — are unsuitable as they are designed
for a much broader class of image matches with sim-
ilar traits of colour, texture, or shapes; these tech-
niques have been shown to have limited effectiveness
for this task [Chang, Wang & Wiederhold 1998, Sebe,
Lew & Huijsmans 1999, Luo & Nascimento 2003].

For the task of retrieval of near-duplicate im-
ages, Ke et al. [2004] have demonstrated near-perfect
accuracy using PCA-SIFT local descriptors [Ke &
Sukthankar 2004] on a moderate-sized image collec-
tion of about 20, 000 images, however, scalability and
efficiency aspects were not discussed. Qamra et al.
[2005] propose perceptual distance functions for near-
duplicate retrieval using color and texture image fea-
tures on large proprietary image collections; however,
limited effectiveness is observed, and efficiency as-
pects were only briefly discussed. Lu & Hsu [2005]
demonstrated an image hashing technique for the re-
trieval of near-duplicate images on a collection of
20, 000 images with limited effectiveness, wherein the
number of alterations, though large, are limited in
severity.

Thus far, in this domain, only Ke et al. [2004] have
demonstrated a method that is indeed highly accurate
for even relatively severe alterations. However, an in-
herent problem with applying SIFT [Lowe 2004] fea-
tures (represented with PCA-SIFT local descriptors)
is the large number of features — ranging from hun-
dreds to thousands — it generates per image, whereby
each feature is represented by a high dimensional fea-
ture vector [Ke & Sukthankar 2004]. Though these
large set of image features are indexed using Locality-
Sensitive Hashing [Gionis, Indyk & Motwani 1999, Ke
et al. 2004], we show that such large numbers of fea-
tures are impractical for moderate to large image col-
lections.

The SIFT detector was originally designed for ro-
bust matching of even small occluded objects; hence,
the quantity of features is crucial for such applica-
tions [Lowe 2004, Ke & Sukthankar 2004]. We hy-
pothesize that only a small subset of features are re-
quired for near-duplicate image matching, as most im-
ages of interest in this domain contain high percep-
tual similarity to their originals [Qamra et al. 2005].
In this work, we propose a pruning strategy that
reduces the number of SIFT features (consequently
PCA-SIFT local descriptors), thus enabling these de-
scriptors to scale well for a large collection containing
hundreds of thousands of images. Such a pruning
strategy simultaneously reduces the index size and
query response time to 1/10 and 1/50, respectively,
of the original approach, with little impact on effec-

Proc. Eighteenth Australasian Database Conference (ADC 2007)

63

tiveness.
In the following section, we describe the distinctive

local descriptors (mainly SIFT and PCA-SIFT). We
discuss the Locality Sensitive Hashing index structure
used in this work in Section 3. In Section 4, we in-
troduce our approach of pruning the SIFT interest
points and in Section 5, we describe the evaluation
methodology and experimental setup. The results are
presented and discussed in Section 6, followed by our
conclusions in Section 7.

2 Distinctive Local Descriptors

Local descriptors computed for images have been
demonstrated to be useful for object recogni-
tion [Lowe 2004], and robust image matching [Ke
et al. 2004, Grauman & Darrell 2005]. Given an
image, the idea is to detect image regions (cen-
tered around interest points) that possess proper-
ties invariant to geometric variation and photomet-
ric changes, so that distinctive local descriptors can
be computed for each region. Popular region detec-
tors include the Harris-Point, Harris-Laplace, Harris-
Affine, Hessian-Laplace, and Hessian-Affine; popular
descriptors include the SIFT (Scale Invariant Feature
Transform) [Lowe 2004], and PCA-SIFT [Ke & Suk-
thankar 2004], to name a few. For a complete survey
on region detectors and local descriptors, the reader is
directed to the work of Mikolajczyk & Schmid [2003]

In this work, we use the SIFT (scale invariant fea-
ture transform) detector — which uses regions similar
to Hessian-Laplace — as it has been demonstrated to
outperform most existing detectors [Mikolajczyk &
Schmid 2003]. We apply the PCA-SIFT descriptors
on the SIFT interest points, instead of the original
SIFT descriptors, as it has been reported to be both
highly distinctive [Ke & Sukthankar 2004] and highly
effective for near-duplicate image detection [Ke et al.
2004].

SIFT and PCA-SIFT descriptors

The Scale Invariant Feature Transform (SIFT) [Lowe
2004] devised for robust image feature detection is
invariant to scale, rotation, and affine transforms.
There are four major computational stages in SIFT
for extracting a set of image features, namely the
scale-space extrema detection, keypoint localization,
orientation assignment, and generation of local de-
scriptor.

In the first phase of the SIFT detector, the
difference-of-Gaussian (DoG) function uses a Gaus-
sian pyramid to identify any local peaks (keypoints)
in various locations and scales. (This is achieved by
finding the local scale-space extrema of the DoG).
In the second phase, poorly localized and unstable
keypoints below several threshold levels are rejected;
mainly based on contrast level and ratio of principal
curvature [Lowe 2004]. After all stable keypoints are
identified, each keypoint is assigned a dominant ori-
entation for rotation invariance in the third phase.
Additional keypoints are generated if there are mul-
tiple orientations within 80% threshold of the dom-
inant orientation; thus, there can be multiple key-
points with identical scale, location, but different ori-
entation.

Instead of computing SIFT local descriptors, we
use the PCA-SIFT descriptors which have been shown
to be the most distinctive [Mikolajczyk & Schmid
2003] compared to other descriptors. To generate
local descriptors, PCA-SIFT uses the same informa-
tion as the original SIFT descriptor, that is, location,
scale, and dominant orientations. PCA-SIFT con-
catenates the horizontal and vertical gradient maps

for the 41 × 41 region — centered around the key-
point, rotated to align its orientation to a canonical
direction — to produce a 2× 39× 39 = 3042 element
local descriptor (feature vector).

In cases where there are multiple dominant orien-
tations, a separate vector is calculated for each. Each
vector is then projected — using principal component
analysis, a common technique for dimensionality re-
duction — to a low-dimensional feature space using a
pre-computed eigenspace1. Ke et al. [2004] have em-
pirically determined that n = 36 feature spaces for
the local descriptor performs well for near-duplicate
image retrieval; wherein any two PCA-SIFT local de-
scriptors are deemed similar (a match) within an Eu-
clidean distance (L2-norm) of 3000. Hence, in this
work, we use the same settings.

The number of PCA-SIFT local descriptors are
dictated by the keypoints detected by SIFT, typically
ranging from hundreds to thousands per image (de-
pending on image complexity). The indexing of such
a substantial number of PCA-SIFT local descriptors
for large image collection is impractical and costly.
We later show that the number of keypoints that
SIFT generates can be significantly reduced by vary-
ing the threshold value in the second stage, resulting
in great gains in efficiency with only slight loss in ac-
curacy for matching near-duplicate images.

3 Indexing Local Descriptors

To index a set of 36-dimensional PCA-SIFT de-
scriptors, we use the Locality Sensitive Hashing
(LSH) index scheme [Indyk & Motwani 1998, Gio-
nis et al. 1999, Datar, Immorlica, Indyk & Mirrokni
2004, Ke et al. 2004, Bawa, Condie & Ganesan 2005]
for approximate nearest-neighbour matching in high-
dimensional spaces.

Given a set of points (PCA-SIFT descriptors) P ,
the distance between two points in the approximate
nearest neighbor search can be defined as:

d(q, p) ≤ (1 + r)d(q, P)

where q is the query point, and d(q, P) is the distance
of q to the closest point in P . The key idea of LSH is
to use a family of hash functions to ensure that the
probability of collision of two points is closely related
to the distance between them.

A hash function can be defined as gi(p) =
(h1(p), . . . , (hk(p)), for i = 1, . . . , l, where k deter-
mines the probability of collision, and l determines
the fraction of false negatives [Indyk & Motwani
1998]. More specifically, this family of hash functions
is called (r1, r2, p1, p2)-sensitive [Gionis et al. 1999]
for the distance between the elements in P for any
q, p ∈ P :

• if p ∈ β(q, r1) then PrH [h(q) = h(p)] ≤ p1

• if p ∈ β(q, r2) then PrH [h(q) = h(p)] ≥ p2

where β(q, r) denotes the set of elements within the
distance of r to q. Additionally, the requirements of
p1 > p2 and r1 < r2 has to be satisfied for locality-
sensitivity.

The family of functions can be efficiently com-
puted with a Hamming space Hd for d dimen-
sions [Gionis et al. 1999], whereby each d-dimensional
vector p(x1, . . . , xd) can be mapped to a Hamming

cube Hd
′

with d′ = Cd (where C denotes the largest
coordinate in P), transforming vector p to a binary
Hamming string p′.

1The eigenspace used in this work is provided by Ke & Suk-
thankar [2004].

CRPIT Volume 63

64

Given a transformed vector of p′, a hash gi(p), for
i = 1, . . . , l, can be obtained by a projection of vec-
tor p′ onto the coordinate set Ii (where I consists of
k elements that are sampled randomly with replace-
ment from {1, . . . , d′}) essentially hashing point p to
bucket gi(p). As the number of buckets can be high
depending on the cardinality of set P , a second level of
standard hashing is used to map the contents of gi(p)
to a hash table [Gionis et al. 1999]. Hence, there are
a total of l LSH tables, each using the LSH functions
from the Hd

′

family. The size of each hash table M
is determined using:

M =
n

αB

where n is the total number of points in a collec-
tion, and B, l, and k (critical for efficacy), are em-
pirically determined to be of size 20, 20, and 450, re-
spectively [Ke et al. 2004]; the utilization parameter
α is selected to be 0.5.

All points sharing identical hash values (collisions)
within a given hash table are estimated, by the Man-
hattan distance (L1-norm embedded in the Hamming
space), to be closer to each other than those that
do not. Thus, the search space of an approximate
nearest-neighbor match is greatly reduced to those
that share identical hash values. To further eliminate
the number of false positive matches, an additional
verification step is required as the LSH index struc-
ture returns only approximate matches based on L1
whereas the PCA-SIFT features require two vectors
to be within an L2 (Euclidean) norm of 3000 to be
deemed a match [Ke & Sukthankar 2004]; hence, all
keypoint matches are post-processed to discard false
positive matches. A final filtering phase is applied
using robust estimators such as RANdom SAmple
Consensus (RANSAC) [Fischler & Bolles 1981] to ge-
ometrically verify that two images are indeed near-
duplicates to ensure high precision in the returned
answers. We apply the same filtering in our work.

For query evaluation, all candidate matches are
returned by the LSH index for every query keypoint.
Hence, each query image is treated as a bag of points,
simulating a multi-point query evaluation. To do this
efficiently, we use an identical framework as Ke et al.
[2004], in that, we maintain two auxiliary index struc-
tures — File Table (FT) and Keypoint Table (KT) —
to map SIFT keypoints (and PCA-SIFT descriptors)
to their corresponding images; an entry in KT con-
sists of the file ID (index location of FT) and keypoint
information (x and y location, scale, orientation, and
the PCA-SIFT local descriptor). The cost of query
evaluation of a single image depends highly on the
cardinality of the set of keypoints P in any given im-
age. We observe an average of 1900 keypoints for
a large crawled image collection, which implies 1900
point queries to the LSH index for the evaluation of a
single image query; this is computationally intensive
and highly impractical for online interactive querying
on large image collections.

In the next section, we introduce our approach for
pruning the SIFT interest points.

4 Reducing SIFT Interest Points

With the SIFT detector, the number of computed
keypoints are typically in the order of 103 (this de-
pends on the image content, size, and complexity).
Such quantities of keypoints is often crucial for object-
recognition to enable even small occluded objects to
be reliably matched [Lowe 2004]. However, for re-
trieval tasks on large collections, such a large number
of keypoints can reduce any efficient index structure
to a sequential search.

We hypothesise that the application domain of
near-duplicate image detection may not require the
full set of keypoints, and often a small subset will
suffice. The rationale being that the application of
near-duplicate image matching is often targeted at
images displaying high perceptual similarity [Qamra
et al. 2005]; even cropped images (to a certain ex-
tent) will possess many similar traits (objects, sub-
jects, texture, and shape) to the original image.

To reduce the number of SIFT interest keypoints,
we vary the threshold applied to discard candidate
local peaks, specifically, the low contrast (intensity)
threshold. Earlier, a threshold value of 0.03 was em-
pirically observed to work [Lowe 2004] in the do-
main of object recognition, but it typically yields a
large number of keypoints. However, using geometric
verification techniques such as RANSAC [Fischler &
Bolles 1981], only a small number of keypoints — 3
to 5 — are required for reliable image matching [Lowe
2004, Ke et al. 2004].

There are two ways that this inclusion threshold
value can be used to reduce the cardinality of the
keypoint set:

1. Select top N most significant keypoints ranked
by the contrast value.

2. Raise the inclusion threshold value to discard
keypoints.

Both methods can be used to reduce the number
of keypoints. The second method, however, yields an
unstable number of keypoints as images with lower
average intensity level may not have any detected key-
points. Thus, varying the inclusion threshold could
yield undesirable results since no assumption can be
made regarding intensity levels of any given image.
Hence, we apply the former approach, which sets an
“upper bound” on the number of keypoints selected
in this phase. Images that do not have N detected
keypoints are not pruned; we experiment with varying
the number of N significant keypoints to determine
the optimal value. Note that the term upper bound
is used loosely, since some keypoints may share the
same location and scale information with multiple ori-
entation, resulting in approximately 15% additional
keypoints generated in the subsequent phase [Lowe
2004].

This pruning strategy enables images to be in-
dexed using only a small subset of keypoints (and
PCA-SIFT local descriptors) and as observed with
only slight loss in effectiveness during retrieval.

5 Evaluation Methodology

We now describe the series of experiments used to
empirically demonstrate the effectiveness of our ap-
proach. First, we evaluate the effectiveness of key-
point reduction by varying the number of detected
keypoints between 1900 (original number of keypoints
as observed in our collection) and using a subset
of 1000, 100 and 10 most significant keypoints. These
values are henceforth referred to as threshold value.

Second, we report the percentage of keypoint
matches between a query image and each of its im-
age alterations; this percentage is relative to the key-
points in the query image. Two keypoints are deemed
to be a match if the nearest-neighbors are within the
L2 norm of 3000. For an accurate evaluation, we use
the sequential scan for the nearest-neighbor search
on the collection of keypoints as the LSH index is an
approximate nearest-neighbor algorithm. Due to the
exhaustive computation involved with using several
keypoint thresholds, we use 100 random query sets

Proc. Eighteenth Australasian Database Conference (ADC 2007)

65

and evaluate the keypoint matches for each of its al-
terations (see below). All subsequent experiments are
performed using the LSH index with 200 queries.

Third, we evaluate the effects of keypoint reduc-
tion at all threshold levels, 1000, 100, and 10 and
compare them against the original approach in terms
of retrieval effectiveness (wherein the original image
is used to retrieve all altered versions). We apply the
standard recall and precision metrics, which are de-
fined as:

recall =
relevant images retrieved

total relevant images in collection

precision =
relevant images retrieved

total images retrieved

We also measure query run-time2, and index size.
Fourth, we evaluate the effectiveness of our ap-

proach — against the original approach — using each
altered image as a query to retrieve only its respec-
tive original image from which it is derived; for this
purpose specifically, we do not consider other altered
images that are relevant to a given query. In addition,
using a more stringent evaluation, we assess the re-
trieval effectiveness of our approach using each altered
image as a query to retrieve all other altered images
that are derived from the same original image; this is
also compared against the original approach.

Finally, we vary the threshold levels on both the
query images and the indexed test images (images
relevant to the query that are within the collection).
For instance, we use a query image with a thresh-
old value of 1000 to retrieve images that are indexed
using a threshold value of 100 to study their effects
on retrieval accuracy and query run-time. An iden-
tical framework to Ke et al. [2004] is used; the only
difference is the amount of PCA-SIFT features used.

All experiments are run on a two-processor
Xeon 3 GHz machine with 4 GB of main memory
running Linux 2.4.

Image Collections

To create our test collection, we select 200 images
at random from the crawled SPIRIT collection [Joho
& Sanderson 2004] and perform 50 common alter-
ations. We use the original image as a query whereby
all altered images are considered relevant answers.
Hence, each of the selected 200 images produce 50
altered versions, yielding 10, 000 images. We then se-
lect 10, 000 and 90, 000 additional images from the
SPIRIT collection to serve as noise, thereby creat-
ing two image collections — C1 and C2 — with ag-
gregated sizes of 20, 000 and 100, 000 images, respec-
tively. The list of alterations — similar to those of Ke
et al. [2004] and Qamra et al. [2005] — is as follows:

1. format change: format change from .jpg to .gif
(1)

2. colorise: each of the red, green, and blue chan-
nels are tinted by 10% (3)

3. contrast: increase and decrease contrast (2)

4. severe contrast: increase and decrease con-
trast 3× of original image (2)

5. crop: crop 95%, 90%, 80%, and 70% of image,
preserve center region (4)

6. severe crop: crop 60%, 50%, and 10% of image,
preserve center region (3)

7. despeckle: apply “despeckle” operation of Im-
ageMagick (1)

2Note that query run-time does not include feature extraction
time for simplicity.

8. frame: a frame size 10% of image is added using
random colors (4)

9. rotate: rotate image (by 90o, 180o, and 270o)
about its center (3)

10. scale-up: increase scale by 2×, 4×, and 8× (3)

11. scale-down: decrease scale by 2×, 4×, and 8×
(3)

12. saturation: alter saturation by 70%, 80%, 90%,
110%, and 120% (5)

13. intensity: alter intensity level by 80%, 90%,
110%, 120% (4)

14. severe intensity: alter intensity level by 50%
and 150% (2)

15. rotate+crop: rotate image (by 90o, 180o,
and 270o), crop 50% in center region (3)

16. rotate+scale: rotate image (by 90o, 180o,
and 270o), decrease scale 4x (3)

17. shear: apply affine warp on both x and y axes
using 5o, and 15o (4)

The number in parentheses is the number of instances
for each alteration type.3

For both collections C1 and C2, all images are con-
verted into greyscale4 and resized to 512 pixels in the
longer edge prior to feature extraction and indexing.

6 Results

We now present our results on the retrieval effective-
ness of our keypoint pruning strategy on several image
alterations and discuss the efficiency of this approach
in terms of query run-time, and index size.

Retrieval Effectiveness

As shown in Table 1, the effects of keypoint reduction
is presented for all threshold values on all 50 alter-
ations; the percentages are averaged over 100 queries.
Columns 1, 6, and 11 refer to the different alterations
(indicated by Alt); the adjacent columns denote the
percentage of keypoint matches within the L2 norm
of 3000. Columns 2, 7, and 12 (indicated by Default)
indicate the original number of keypoints per image,
which is observed to be an average of 1900 for our
collection.

We experiment with threshold values of 1000, 100,
and 10 (reflected in subsequent columns), reducing
the average keypoints per image to 1059, 130, and 14,
respectively. Table 1 shows that keypoint reduction
on all threshold values have little effect on the per-
centage of keypoints matched within the threshold
criterion for most image alterations. This implies that
our pruning strategy is appropriate for near-duplicate
image matching.

The variation between the percentage of matching
keypoints of image alterations are expected as some
alterations severely affect the local descriptors, yield-
ing lower overall keypoint matches. These trends are
relatively stable across all levels of reduction, which
leads us to believe that a small subset of keypoints is
sufficient for this application. This is an important
finding as the same criterion of L2-norm within 3000
is the basis by which the LSH index approximates
matching keypoints.

For some alterations, the slight increase in the per-
centage of matching keypoints, for some threshold
values as compared to the default, is explained by
the fact that matched keypoints are relative to the
number of detected keypoints in the image.

CRPIT Volume 63

66

Table 1: Percentage (%) of keypoint matches within L2 norm threshold at every level of reduction. Columns 1, 6,
and 11 indicate the different alterations (Alt). Keypoint thresholds of 1000, 100, and 10 are used. Default
indicates the original number of keypoints per image (average of 1, 900).

Alt Default 1000 100 10 Alt Default 1000 100 10 Alt Default 1000 100 10

1 84.4 87.2 90.2 88.9 18 46.3 50.5 56.6 55.2 35 20.9 21.3 23.2 19.3
2 78.2 81.3 85.1 83.8 19 22.7 23.8 31.7 32.5 36 3.2 2.5 0.3 0.6
3 81.0 84.1 87.1 85.7 20 7.8 7.9 12.2 14.3 37 52.3 52.7 61.0 62.4
4 68.5 72.8 76.5 73.5 21 4.6 3.7 3.6 5.0 38 47.3 54.2 46.4 33.9
5 67.9 69.9 73.6 71.1 22 59.3 62.5 66.1 58.6 39 42.6 46.0 47.4 41.6
6 40.5 45.7 49.6 42.7 23 60.2 62.8 65.3 58.6 40 37.1 34.9 32.0 29.4
7 36.3 42.1 47.0 38.2 24 59.2 62.0 64.5 56.8 41 18.0 17.1 19.2 16.4
8 31.6 37.3 42.8 35.2 25 80.8 84.0 87.9 86.4 42 20.4 17.9 17.6 14.7
9 26.4 31.0 36.4 32.3 26 82.4 85.5 88.8 86.7 43 17.7 16.7 18.7 15.7

10 59.0 59.8 71.4 70.4 27 84.3 87.1 90.9 89.5 44 18.1 16.6 19.7 18.1
11 73.2 78.5 84.5 84.4 28 83.8 86.8 90.2 90.4 45 18.3 16.7 17.9 15.3
12 38.8 37.0 42.7 38.2 29 81.9 85.0 88.4 87.6 46 17.5 16.1 19.3 18.5
13 32.7 31.6 36.2 30.4 30 68.5 70.5 76.6 75.5 47 43.9 47.3 53.1 41.2
14 31.8 30.5 33.3 14.7 31 74.6 77.5 81.8 80.4 48 12.1 12.1 9.0 6.9
15 36.1 35.0 41.6 38.3 32 74.6 79.0 82.7 80.2 49 35.7 35.4 34.8 15.1
16 46.6 51.4 57.6 53.7 33 65.8 72.7 73.8 65.5 50 19.4 17.4 9.5 5.3
17 49.1 53.2 54.6 51.5 34 22.3 24.9 29.6 25.6 - - - - -

10 100 1000

Keypoints Used

0

20

40

60

80

100

A
ve

ra
ge

 R
ec

al
l (

%
)

average recall

0

20

40

60

80

100

A
verage Precision (%

)average precision

Figure 1: Average recall and precision (%) of re-
trieved answers using original images as queries on
collection C1 using 1900 (default), 1000, 100, and 10
keypoints; all values are averaged over 200 queries.

10 100 1000

Keypoints Used

0

1

10

100

A
ve

ra
ge

 q
ue

ry
 r

un
-t

im
e

(s
ec

s)

query run-time

0

1

10

100

Index Size (G
B

)

index size

Figure 2: Average query run-time (secs) and Index
sizes (GB) using 1900 (default), 1000, 100, and 10
keypoints on Collection C1; all timings are averaged
over 200 queries.

Figure 1 shows the average recall and precision
of 200 queries on image collection C1. The origi-
nal image is used as a query to retrieve all its al-
terations; we apply the same variation of threshold
values (1000, 100, and 10). Using a small threshold
value of 100, we observe a high precision of 99.3%
with only a slight drop in average recall of 90.7%.
This implies that using roughly 100 keypoints, we re-
trieve 45 instead of 48 (default gives an average recall
of 97.1%) on average. The average precision values
for this threshold value also indicate that using less
than 10% of the default number of keypoints, most of
the relevant answers are retrieved with near-perfect
accuracy. However, a threshold value of 10 results
in a low average recall of 51.7%, indicating that too
severe a reduction, results in considerable loss in ef-
fectiveness as almost 45% of the relevant answers are
not retrieved.

Retrieval Efficiency

In Figure 2, we show the effect of varying threshold
values on query evaluation time and memory require-
ments. With default settings, a single query evalua-
tion on collection C1 takes 152.4 seconds on average
(over 200 queries). Using keypoint reduction with
thresholds of 1000, 100 and 10, we observe timings
of 69.4, 2.2, and 0.4 on average for a single query.
This is a significant result, given that a threshold
value of 100 also yields high effectiveness (average re-
call and precision of 90.7 and 99.3, respectively), with
only a fraction of the speed of the original approach.

The on-disk memory requirements for the index
(index size) of the same collection C1 is also consid-
erably reduced from 15.3 GB (default) to 8.5, 1.6,
and 0.2 GB, for threshold values of 1000, 100, and 10,
respectively. Note that the index size includes the
Keypoint Table (KT) — wherein each entry is 92
bytes in length — and the LSH index; we do not in-
clude the File Table (FT) as this remains unchanged.

We do not stress on the timing patterns that are
observed in our experiments as the existing implemen-
tation of the LSH index is not optimised in-memory;
the timings were merely an indication of savings by
the current framework. We believe an investigation

3All alterations are created using ImageMagick, http://www.
imagemagick.com.

4The PCA-SIFT features are extracted from greyscale images.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

67

0

10

20

30

40

50

60

70

80

90

100

110

120

A
ve

ra
ge

 R
ec

al
l (

%
)

Threshold Value 100

Default

co
lo

ris
e

co
nt

ra
st

fo
rm

at
 c

ha
ng

e
cr

op

de
sp

ec
kl

e
sc

al
e-

do
w

n
fr

am
e

in
te

ns
ity

ro
ta

te

ro
t+

cr
op

ro
t+

sc
al

e
sa

tu
ra

tio
n

se
ve

re
 c

on
tra

st
se

ve
re

 c
ro

p
se

ve
re

 in
te

ns
ity

sh
ea

r

sc
al

e-
up

Figure 3: Average recall of each alteration over 20 queries — on Collection C1 — to retrieve their respective
original images using the original approach and threshold value of 100; each of the 17 alteration groups are
described in Section 5, wherein there are 50 individual alterations in total.

0

10

20

30

40

50

60

70

80

90

100

110

120

A
ve

ra
ge

 P
re

ci
si

on
 (

%
)

Threshold Value 100

Default

co
lo

ris
e

co
nt

ra
st

fo
rm

at
 c

ha
ng

e
cr

op

de
sp

ec
kl

e
sc

al
e-

do
w

n
fr

am
e

in
te

ns
ity

ro
ta

te

ro
t+

cr
op

ro
t+

sc
al

e
sa

tu
ra

tio
n

se
ve

re
 c

on
tra

st
se

ve
re

 c
ro

p
se

ve
re

 in
te

ns
ity

sh
ea

r

sc
al

e-
up

Figure 4: Average precision of each alteration over 20 queries — on Collection C1 — to retrieve their respective
original images using the original approach and threshold value of 100; each of the 17 alteration groups are
described in Section 5, wherein there are 50 individual alterations in total.

CRPIT Volume 63

68

Table 2: Average recall and precision (%) of 200
queries on Collection C1 using four threshold values
of 1000, 100, and 10; default indicates the original
number of keypoints (1900 on average). Column 2
indicates the threshold value used for the query im-
ages.

Index Query Avg. Avg. Avg. Cand-
KP KP Recall Prec. run- idate

time Set

Default Default 97.1 93.1 152.4 62,549
1000 96.7 93.9 102.1 31,890
100 91.4 99.0 15.6 3,706
10 56.1 100.0 1.0 395

1000 Default 96.9 93.4 91.5 41,772
1000 96.7 94.1 69.4 27,634
100 91.4 98.9 10.8 3,413
10 56.2 100.0 0.7 372

100 Default 94.5 98.4 4.7 7,836
1000 94.5 98.5 2.8 5,279
100 90.7 99.3 2.2 2,647
10 56.2 100.0 0.5 321

10 Default 68.4 100.0 0.9 920
1000 68.4 100.0 0.7 634
100 67.6 100.0 0.5 385
10 51.7 100.0 0.4 265

on efficient in-memory data structures can further im-
prove scalability on even larger image collections.

The threshold value of 100 provides the best trade-
off between effectiveness and efficiency and hence we
apply this threshold value in further experiments.

Further Experiments

To investigate the effects of keypoint reduction on
each image alteration, we use each altered version to
retrieve its respective original image. We experiment
with a threshold value of 100 and compare it to the
original approach. Due to the large number of alter-
ations, it is impractical to query using all 200 queries
for each alteration; instead, we use 20 different queries
for each alteration. For this experiment specifically,
only the original images are indexed along with the
noise collection of C1; altered images are hence re-
placed by crawled images from the SPIRIT collection.
To avoid confusion, we refer to this collection as C′

1
Figures 3 and 4 depict the retrieval effectiveness —

average recall and precision, respectively — of each
alteration on Collection C′

1. The 50 alterations are
categorised into 17 groups as listed in Section 5. We
observe a pleasingly high — relative to the original
approach — average recall and precision across all
alteration groups. For most alteration groups, the
average recall is lossless, indicating that the original
image is found with the altered query image using
both threshold value of 100 and the original approach.
An even more surprising result as shown in Figure 4
is that the same threshold value achieves a overall
higher average precision than the original approach
across almost all alterations, except for scale-down,
rotate+scale, and shear. This indicates that our
pruning strategy does not adversely affect accuracy
but improves it; this can be explained the fact that
our pruning strategy reduces the number of keypoints
that are examined considerably, thereby also elimi-
nating the number of potential false matches.

Figures 5 and 6 show the effectiveness — average
recall and precision — of each alteration as queries in
the retrieval of all other alterations on Collection C1.

We observe a lower average recall for a threshold value
of 100 as compared to the original approach; however,
note that this is a rather stringent evaluation measure
given that a miss in one image alteration will be re-
flected in two groups. For instance, if a query image
of alteration A does not retrieve an image of alter-
ation B, a query the other way around would similarly
fail. Nevertheless, for most alterations the discrepan-
cies between them are relatively uniform, the only
exceptions are scale-down, severe contrast, and
shear, where we observe greater discrepancies. In
contrast, Figure 6 shows a higher precision for all al-
terations using the threshold value of 100, indicating
that the keypoint reduction slightly decreases com-
pleteness with no effect on the retrieval accuracy.

To further study the effects of keypoint reduction,
we vary the threshold levels between the query and
test images; thereby varying the quantity of indexed
keypoints and query keypoints. This experiment al-
lows us to determine whether using more keypoints
for the query (on a smaller number of indexed key-
points) yields higher effectiveness. Table 2, shows the
retrieval effectiveness of 200 queries on Collection C1
using three different variations for thresholding the
query and test images, mainly 1000, 100, and 10; de-
fault denotes the original number of keypoints (1900
on average). Columns 1 and 2 indicate threshold
value used for the test (indexed), and query images,
respectively. The last column indicates the average
candidate keypoints that are retrieved from the LSH
index during query evaluation.

As shown in this table, using the original num-
ber of keypoints to query for images using threshold
value of 100 yields a high average recall and precision,
of 94.5% and 98.4%, respectively, with a little un-
der 5 seconds; this is similarly observed for the use of
threshold value of 1000 for the query image, taking on
average close to 3 seconds. Also note that the number
of candidate keypoints that are examined are reduced
considerably with threshold value of 100; from a set
of 62, 549 to less than 10, 000. This is an important
finding, given that with this threshold value, the loss
of average recall is minimal while the savings in terms
of index size and query run-time is significant. Note
that similar trends are observed for other threshold
values.

Finally, to evaluate the effectiveness of our ap-
proach on large collections, we experiment with a
threshold value of 100 on Collection C2 — contain-
ing 100, 000 images. As shown in Table 3, the aver-
age recall and precision are similar to those of Collec-
tion C1. However, the average query run-time has in-
creased considerably with default and threshold value
of 1000 in the query images, as a result of a larger
candidate keypoint set. In contrast, the threshold
value of 100 for the query images is relatively un-
affected judging by the slight growth in candidate
keypoints. Furthermore, this threshold parameter re-
quires only 6.2 seconds, indicating that it scales well
for large image collections. We do not experiment on
the original approach on Collection C2 as the query
run-time is impractical. Using this threshold value,
we also observe an index size of 5.3 GB as compared
to the estimated 76.5 GB using the original approach.

7 Conclusion

In this work, we have shown that the SIFT interest
keypoints can be significantly pruned to reduce the
amount of features that are indexed. Such pruning
results in large reductions in both on-disk memory
requirements and query evaluation time with only a
slight loss in effectiveness.

To demonstrate the robustness of this approach,

Proc. Eighteenth Australasian Database Conference (ADC 2007)

69

0

10

20

30

40

50

60

70

80

90

100

110

120

A
ve

ra
ge

 R
ec

al
l (

%
)

Threshold Value 100

Default

co
lo

ris
e

co
nt

ra
st

fo
rm

at
 c

ha
ng

e
cr

op

de
sp

ec
kl

e
sc

al
e-

do
w

n
fr

am
e

in
te

ns
ity

ro
ta

te

ro
t+

cr
op

ro
t+

sc
al

e
sa

tu
ra

tio
n

se
ve

re
 c

on
tra

st
se

ve
re

 c
ro

p
se

ve
re

 in
te

ns
ity

sh
ea

r

sc
al

e-
up

Figure 5: Average recall of each alteration over 20 queries — on Collection C1 — to retrieve other altered
images using the original approach and threshold value of 100; each of the 17 alteration groups are described
in Section 5, wherein there are 50 individual alterations in total.

0

10

20

30

40

50

60

70

80

90

100

110

120

A
ve

ra
ge

 P
re

ci
si

on
 (

%
)

Threshold Value 100

Default

co
lo

ris
e

co
nt

ra
st

fo
rm

at
 c

ha
ng

e
cr

op

de
sp

ec
kl

e
sc

al
e-

do
w

n
fr

am
e

in
te

ns
ity

ro
ta

te

ro
t+

cr
op

ro
t+

sc
al

e
sa

tu
ra

tio
n

se
ve

re
 c

on
tra

st
se

ve
re

 c
ro

p
se

ve
re

 in
te

ns
ity

sh
ea

r

sc
al

e-
up

Figure 6: Average precision of each alteration over 20 queries — on Collection C1 — to retrieve other altered
images using the original approach and threshold value of 100; each of the 17 alteration groups are described
in Section 5, wherein there are 50 individual alterations in total.

CRPIT Volume 63

70

Table 3: Average recall and precision (%) of 200
queries on Collection C2 using threshold value of 100.
Column 2 indicates the threshold value used for the
query images.

Index Query Avg. Avg. Avg. Cand-
KP KP Recall Prec. run- idate

time Set

100 Default 94.5 98.2 40.8 19,215
1000 94.5 98.4 30.7 10,728
100 90.9 99.3 6.2 3,093
10 56.9 100.0 0.5 367

we examine the effects of pruning on several kinds —
including relatively severe ones — of image transfor-
mations. We show that our approach performs pleas-
ingly well, with average recall close to the original ap-
proach; we also observe average precision to surpass
the original approach.

Using parameters that show the best trade-off,
our pruning method reduces the index size to ap-
proximately 1/10, and the query run-time to 1/50 of
the original approach. Additionally, we demonstrate
that, unlike the original approach, our method scales
well for a large collection of 100, 000 images.

8 Acknowledgment

This work was supported by the Australian Research
Council.

References

Bawa, M., Condie, T. & Ganesan, P. 2005, LSH for-
est: Self-tuning indexes for similarity search.,
in A. Ellis & T. Hagino, eds, ‘WWW’, ACM,
pp. 651–660.

Chang, E., Wang, J. Z. & Wiederhold, G. 1998,
RIME: A replicated image detector for the
world-wide web, in ‘Proc. SPIE Int. Conf. on
Multimedia Storage and Archiving Systems III’.

Datar, M., Immorlica, N., Indyk, P. & Mirrokni, V. S.
2004, Locality-sensitive hashing scheme based on
p-stable distributions., in J. Snoeyink & J.-D.
Boissonnat, eds, ‘Symposium on Computational
Geometry’, ACM, pp. 253–262.

Fischler, M. A. & Bolles, R. C. 1981, ‘Random sample
consensus: A paradigm for model fitting with ap-
plications to image analysis and automated car-
tography.’, Commun. ACM 24(6), 381–395.

Gionis, A., Indyk, P. & Motwani, R. 1999, Similarity
search in high dimensions via hashing, in ‘Proc.
VLDB Int. Conf. on Very Large Data Bases’,
Morgan Kaufmann, Edinburgh, Scotland, UK,
pp. 518–529.

Grauman, K. & Darrell, T. 2005, Efficient image
matching with distributions of local invariant
features., in ‘Proc. CVPR Int. Conf. on Com-
puter Vision and Pattern Recognition’, pp. 627–
634.

Hartung, F. & Kutter, M. 1999, ‘Multimedia water-
marking techniques’, Proceedings IEEE (USA)
87(7), 1079–1107.

Indyk, P. & Motwani, R. 1998, Approximate near-
est neighbors: Towards removing the curse of di-
mensionality., in ‘Proc. STOC Int. Conf. on The-
ory of Computing’, ACM Press, Dallas, Texas,
USA, pp. 604–613.

Jaimes, A., Chang, S.-F. & Loui, A. C. 2002, Du-
plicate detection in consumer photography and
news video., in ‘Proc. MM Int. Conf. on Multi-
media’, pp. 423–424.

Johnson, N. F., Duric, Z. & Jajodia, S. 1999, On “Fin-
gerprinting” images for recognition, in ‘Proc.
MIS Int. Workshop on Multimedia Information
Systems’, Indian Wells, California, pp. 4–11.

Joho, H. & Sanderson, M. 2004, ‘The spirit collection:
an overview of a large web collection.’, SIGIR
Forum 38(2), 57–61.

Kang, X., Huang, J. & Shi, Y. Q. 2002, An image wa-
termarking algorithm robust to geometric distor-
tion., in ‘Proc. IWDW Int. Workshop on Digital
Watermarking’, Springer, Seoul, Korea, pp. 212–
223.

Kang, X., Huang, J., Shi, Y. Q. & Lin, Y. 2003, ‘A
DWT-DFT composite watermarking scheme ro-
bust to both affine transform and JPEG com-
pression.’, IEEE Trans. Circuits and Systems for
Video Technology 13(8), 776–786.

Ke, Y. & Sukthankar, R. 2004, PCA-sift: A more dis-
tinctive representation for local image descrip-
tors., in ‘Proc. CVPR Int. Conf. on Computer
Vision and Pattern Recognition’, IEEE Com-
puter Society, Washington, DC, USA, pp. 506–
513.

Ke, Y., Sukthankar, R. & Huston, L. 2004, An effi-
cient parts-based near-duplicate and sub-image
retrieval system, in ‘Proc. MM Int. Conf. on
Multimedia’, ACM Press, New York, NY, USA,
pp. 869–876.

Lowe, D. G. 2004, ‘Distinctive image features from
scale-invariant keypoints.’, Int. Journal of Com-
puter Vision 60(2), 91–110.

Lu, C.-S. & Hsu, C.-Y. 2005, ‘Geometric distortion-
resilient image hashing scheme and its appli-
cations on copy detection and authentication.’,
Multimedia Systems 11(2), 159–173.

Luo, J. & Nascimento, M. A. 2003, Content based
sub-image retrieval via hierarchical tree match-
ing., in ‘Proc. MMDB Int. Workshop on Multi-
media Databases’, pp. 63–69.

Mikolajczyk, K. & Schmid, C. 2003, A performance
evaluation of local descriptors., in ‘Proc. CVPR
Int. Conf. on Computer Vision and Pattern
Recognition’, pp. 257–263.

Qamra, A., Meng, Y. & Chang, E. Y. 2005, ‘En-
hanced perceptual distance functions and in-
dexing for image replica recognition.’, IEEE
Trans. Pattern Analysis and Machine Intelli-
gence 27(3), 379–391.

Sebe, N., Lew, M. S. & Huijsmans, D. P. 1999, Multi-
scale sub-image search., in ‘Proc. MM Int. Conf.
on Multimedia’, ACM Press, Orlando, FL, USA,
pp. 79–82.

Smeulders, A. W. M., Worring, M., Santini, S.,
Gupta, A. & Jain, R. 2000, ‘Content-based im-
age retrieval at the end of the early years’, IEEE
Trans on Pattern Analysis and Machine Intelli-
gence 22(12), 1349–1380.

Zhang, D. & Chang, S.-F. 2004, Detecting im-
age near-duplicate by stochastic attributed re-
lational graph matching with learning., in ‘Proc.
MM Int. Conf. on Multimedia’, pp. 877–884.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

71

CRPIT Volume 63

72

Optimizing XPath Queries on Streaming XML Data

Keerati Jittrawong Raymond K. Wong

University of New South Wales

and National ICT Australia

NSW 2052, Australia

wong@cse.unsw.edu.au

Abstract

XML stream processing has recently become popular for

many applications such as selective dissemination of

information. Several approaches have been proposed and

most of them are based on the idea of finite automata.

Different from these approaches, this paper presents a

novel and efficient method for evaluating XPath with

predicates on XML streaming data. For linear XPath

expressions, our approach is at least as fast as the best

method to date, i.e., with the cost of O(1) for each SAX

event. For XPath with predicates, experiments have shown

that our approach is efficient and scalable
.
.

Keywords: DFA, Stream Data, XML, XPath

Optimization.

1 INTRODUCTION

The popularity of XML as a standard for information

representation and exchange has created a wave of new

applications as well as challenges. In particular, due to the

demands from sensor network applications [20],

information dissemination [1], content based routing [28],

and processing of scientific data [23], efficient evaluation

of XPath expressions on XML stream data has attracted

lots of attentions very recently. Most of these recent

proposals are based on some form of finite automata and

can be categorized into approaches either based on

Nondeterministic Finite Automaton (NFA) or

Deterministic Finite Automaton (DFA). In general,

although DFA-based approach uses constant processing

time independent of the XPath query workload, there are

no space guarantees. Alternatively NFA-based approaches

can guarantee space requirements, but they require more

processing time. Example NFA-based approaches include

XFilter, YFilter, and XTrie [1, 9, 4], and DFA-based

approaches include Lazy DFA, and the XPush Machine

[15, 17]. Those approaches represent XPath queries as

finite automata, which can then be used to process against

the incoming streaming XML data. Out of these

Copyright (c) 2007, Australian Computer Society, Inc. This

paper appeared at the Eighteenth Australasian Database

Conference (ADC2007), Ballarat, Victoria, Australia.

Conferences in Research and Practice in Information

Technology (CRPIT), Vol. 63. James Bailey and Alan Fekete,

Eds. Reproduction for academic, not-for profit purposes

permitted provided this text is included.

approaches, the recent Lazy DFA [15] proposal addressed

some of the above issues. First, it showed that the number

of DFA states is small and will only be constructed lazily

at run time. We observed from their result that the

structure of input XML is usually small even though its

schema may allow data instances with infinite structures.

Based on their results and this observation, this paper

proposes a novel approach by first extracting the structure

of input XML documents and then using it for

preprocessing XPath query workload. We term this

special structure the Structure Index, due to the reason that

the XPath queries are preprocessed according to the

structure of the documents. While having better

scalability, this approach is also based on the structure of

the input XML documents, it thus will share some basic

characteristics of the DFA-based approaches. Therefore,

we also analyze and discuss the DFA-based approaches in

detail in this paper.

Our contributions can be summarized as follows:

� We propose a novel approach based on the Structure

Index which can be used to efficiently evaluate a

large number of XPath queries on XML streaming

data. We analyze the complexity of our approach

both in time and space, and also verify it by

experiments. After its short warm-up phase, it

achieves constant processing time per SAX event

independent of the query workload for linear XPath

expressions.

� We propose a method called Trigger Tree, which is

used to augment the Structure Index to efficiently

evaluate XPath expressions with nested paths. This

method is scalable with respect to both the number

of nested paths and the number of value-based

predicates when the queries have at least one

value-based predicate. The central idea behind is to

utilize the selectivity information of the value-based

predicates.

� We provide detailed analysis for the DFA-based

approaches, which has not been revealed in previous

papers.

2 RELATED WORK

Related work on evaluating XPath expressions on XML

data streams can be classified into DFA-based approaches

and NFA-based approaches. We first discuss some recent

NFA-based approaches below, followed by DFA-based

approaches and other alternatives.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

73

YFilter [9], a successor of XFilter [1], improves XFilter by

using path sharing concept. It also separates the filtering

problem of XPath expression into structure matching

(using path expressions) and content matching (using

value-based predicates). However, its performance still

depends on the query workload.

XTrie [4] was designed to support large-scale filtering of

streaming XML data. Unlike XFilter, XTrie supports

complex XPath queries with predicates. Its basic idea is to

use the trie to detect occurrences of substring matches for

each event that it receives.

For DFA-based approach, the Lazy DFA [15], the XPush

machine [17], and the recent work from Onizuka [26]

(which is an improvement of the lazy DFA approach) are

summarized below.

The XPush machine extends the lazy DFA approach to

handle complex queries with nested paths using

deterministic pushdown automaton in a bottom up

fashion. Although this approach uses constant processing

time in theory, it hardly achieves its theoretical

performance due to its huge memory usage, and its

efficiency in practice is about linear with the size of the

query workload.

The recent work by Onizuka consists of two parts. The

first part focuses on using lazy DFA with

document-oriented XML, which usually has a complex

schema. This class of data usually causes a problem in the

lazy DFA approach because of its large data guide [14].

Onizuka clustered a large query workload into a number

of smaller query workloads. Although this can reduce the

soft upper bound of lazy DFA, it does not reduce the hard

upper bound. Thus, the upper bound of lazy DFA still

depends on a query workload and can be large. Therefore,

this clustered lazy DFA approach can hardly achieve its

stable phase, which can be observed from its experimental

results.

Other approaches such as WebFilter [12] uses different

approach based on the technique in [11], which treats an

XML document as a set of attribute value pairs and an

XPath expression as a collection of predicate pairs. [16]

uses views of XML documents to speed up the processing

time, which means that it needs to augment the query

processor. Those approaches are interesting options and

need further investigation to be compared with automata

based approach.

3 THE STRUCTURE INDEX

In this section, we introduce the Structure Index, which is

document structure derived from the input XML

documents. It can be used to preprocess the structure

navigation part of XPath queries. At runtime, the Structure

Index can be used to efficiently find queries that match a

given XML document by traversing its structure, and

perform additional computation for predicate evaluation.

Example 3.1 Given two linear XPath queries:

Q1 = /a/*/c//d[text()=”a2z”]

Q2 = //d[text()=”t”]

This example will be used as an example in subsequent

sections.

3.1 Document Structure

Document structure is a minimal structure of an XML

document which is sufficient to answer structure

navigation part of an XPath expression. It ignores element

values, attribute values, duplicate elements, and document

order since those information are not essential for

structure navigation part. This is similar to an index

structure for XML data such as DataGuides [14], the Index

Fabric [7], and ViST [31]. However, those index

structures have a goal to index the data to facilitate

efficient query processing, while our document structure

has a goal to extract the structure of data that can be used

to preprocess queries. An example of an XML document

and its document structure is shown in Figure 1.

3.2 The Structure Index and Preprocessing

Structure Index is constructed by representing each

element or attribute node as a node in a Structure Index,

called Index Node. The relationships between Index

Nodes are the same as parent-child relationship in nodes

of document structure. This index will be used (as an

XML document tree) to preprocess the structural

navigation part of XPath queries. It will attempt to find all

possible ways that the structural parts of the queries can be

matched with this XML document tree. Subsequently,

each result from structure matching is stored at the Index

Node that it matches. Figure 2 is a Structure Index

resulting from document structure in Figure 1 (b), after

queries from Example 3.1 are preprocessed. Each oval

represents an Index Node where a text box shows queries

that match at this Index Node. The algorithm to construct

the Structure Index is described in Section 3.6.

 <c n=”1”>

 <d>

 <e>

 <f>3</f>

 <c/>

 </e>

 </d>

 </c>

 <c n=”2”>

(a) (b)

Figure 1. An XML document (a) and its document

structure (b).

<a>

 <@m/>

 <c>

 <@n/>

 <d>

 <e>

 <f>

 </f>

 <c>

 </c>

 </e>

 </d>

CRPIT Volume 63

74

As a side benefit, the Structure Index also maintains containment

and equivalence relationships between queries. These

relationships could be used to easily find containment and

equivalence for XPath queries, which has shown to be at worst

coNP-complete in general in [19], between XPath queries with

the given document and workload. As an example in Figure 2, it

can be easily observed that query Q2 contains query Q1 under

this structure domain since all nodes that the query Q1 match are

also match by query Q2.

3.2.1 Preprocessing of Value-based Predicates

In a large query workload, there may be a large number of

queries that have their structure navigation part matching

at the same Index Node (as in d
1
 node of Figure 2). Thus,

this leaves a large number of value-based predicates to be

evaluated at that node. A naïve solution is to evaluate

those value-based predicates separately, which does not

scale well. Here, we use Atomic Predicate Index from [17]

to preprocess those value-based predicates. However,

since we use the term value-based predicate, we slightly

change its name to Value-based Predicate Index.

3.3 Processing an XML Stream with the

Structure Index

In this section, we explain how a Structure Index can be

used to process an XML stream using SAX parser. To

process an XML stream with a Structure Index, we need a

pointer to point to the current Index Node and a stack to

maintain the previous Index Nodes. At this stage, we only

interested in the start and end element events, and assume

that character data is provided with an end element event.

Attributes are simulated to be the same as elements except

that its element name is added with a character ‘@’.

Those tasks can be easily done as a mediation process

between the SAX parser and the Structure Index. The

processing of modified SAX events is described below.

Initially, the current Index Node is set to root. On a start

element event, we push the current Index Node on the

stack and lookup for a next Index Node with the name

from the start element event. This takes only O(1) time,

since a lookup is implemented as a hash table lookup. On

an end element event, we evaluate the value-based

predicate index of the current Index Node with a given

character data. This takes only O(log2p) time, where p is a

number of value-based predicates of that node, because

the value-based predicate index is implemented as a

binary search tree. All queries where their value-based

predicates are evaluated to true, and queries without

value-based predicates are considered as match queries.

At the end, we pop the previous Index Node from the stack

and set it as the current Index Node.

As a running example, we use the Structure Index in

Figure 2 and modified SAX events in Figure 3 (b). At the

beginning, a current Index Node start at root element

Next, we see a startElement(a). We push the

current Index Node (root) to a stack, perform a lookup,

and set the current Index Node to a Index Node. Next, we

see a startElement(@m) and process it similarly to

the previous event. Now, we see an

endElement(“1”). Since there is no queries match at

this Index Node, we simply pop an Index Node from the

stack (root) and set the current Index Node to that Index

Node (root). The subsequent events are processed

similarly until we reach an end element event of d
1
 Index

Node, an endElement(“a2z”). At this Index Node,

the current Index Node points to Index Node d
1
, which we

can see that both queries Q1 and Q2 match; thus, we need

to evaluate the value-based predicate index of this node.

After evaluating the value-based predicate index with data

value “a2z”, the value-based predicate of query Q1 is

evaluated to true, while the value-based predicate of query

Q2 is evaluated to false. As a result, only query Q1

matches this document at this stage. Later on, we reach the

end element of d
2
 Index Node, which is an

endElement(“char”). Again, we evaluate the

value-based predicate index of this node, but no

value-based predicate is evaluated to true. At the end, only

query Q1 matches with this XML document. This running

example has shown that the Structure Index can be used to

efficiently find match queries.

In summary, processing XML stream with a Structure

Index takes O(1) for each start element event and takes

O(log2p) for each end element event. This O(log2p) can be

considered as a constant compare to the size of queries in a

workload. Therefore, the processing time per SAX event

of Structure Index for linear XPath queries is

approximately a constant, independent of the query

workload.

3.4 The Size of the Structure Index

As the Structure Index is document structure derived from

the input XML documents, it can be observed that the size

a

@m

b

d2

c1 d1

@n

e f

c2

root

Q2: text()=”t”

 Q1:text()=”a2z”

 Q2: text()=”t”

 <c n=”2”>

 <d>a<e>2</e>z</d>

 </c>

 <d>char</d>

startElement(a)

 startElement(@m)

 endElement(“1”)

 startElement(b)

 startElement(c)

 startElement(@n)

 endElement(“2”)

 startElement(d)

 startElement(e)

 endElement(“2”)

 endElement(“a2z”)

 endElement(“a2z”)

(a) (b

Figure 3. An XML document (a) and its modified SAX

events (b).

Figure 2. A Structure Index from document structure in

Figure 1(b) after queries from Example 3.1 are

preprocessed

Proc. Eighteenth Australasian Database Conference (ADC 2007)

75

of the Structure Index depends on the schema of the input

XML documents. A definition of document structure

results in the data guide [14] of input XML data.

Therefore, the upper bound of the size of the Structure

Index is the size of DataGuides, and does not depend on

the size of a query workload. An empirical observation in

[15] reveals that the size of DataGuides is usually small in

real data regardless of its schema for data-oriented XML,

because real data tends not to exploit all possible patterns

allowed by its schema. On the other hand, for datasets

where its data guide is large, the size of the Structure

Index can be large. This affects the performance of the

Structure Index significantly both in time (due to its Index

Node construction), and space (due to the space usage of

Index Nodes). This becomes the same characteristic as

with lazy DFA.

Additionally, to validate the size of the Structure Index,

we also show, in Figure 4, the number of Index Nodes in

Structure Indexes of three different datasets, which are

Protein [27], NASA [23] and NITF [8] datasets which is

used in [15] and [9]. Table 1 shows some characteristics of

the schemas of these three datasets.

Table 1. Characteristics of the schemas of three XML

datasets.

Dataset Number of

element names

Number of

attributes

Recursive

schema

Protein 64 13 No

NASA 142 197 Yes

NITF 123 510 Yes

For each dataset, we extract the first 200 XML documents

from the real dataset. In comparison, we also try to

generate synthetic data to be similar to the real data. Since

the Protein dataset has a maximum depth of 7, we generate

its synthetic using D=7 and RP=2. NASA has a maximum

depth of 8, so we generate its synthetic data using D=8 and

RP=2. However, we do not have real data for NITF, thus,

we generate it using the same parameter as in synthetic

NASA dataset. Table 2 show some characteristics of three

XML datasets. The results are shown in Figure 4.

Table 2. Characteristics of three XML datasets.

Dataset Number of

elements

Number of

attributes

No. of

elements and

attributes

Protein – Real 19336 1254 20590

Protein – Synthetic 19521 8891 28412

NASA – Real 39574 4152 43762

NASA – Synthetic 25860 25703 51563

NITF – Synthetic 7652 29365 37017

From Figure 4, it can be seen that there is a huge

difference in the number of Index Nodes between real and

synthetic data. In this result, the number of Index Nodes of

synthetic data continues to increase since its upper bound

is large, and it cannot reach its upper bound. In contrast,

the upper bound of real dataset is very small. After a short

period, the number of Index Nodes almost reaches the

upper bound, and becomes almost constant. In addition, it

can be seen that synthetic data of the Protein dataset has

the same characteristic as real data because its schema is

non-recursive. Thus, its synthetic data cannot be much

different from its real data

Nevertheless, another major space usage in the Structure

Index is the XPath expression table, which contains

pointers to the XPath expressions that kept at each Index

Node (for fast maintenance of the index in case of

document updates). The size of this table grows linearly

with the size of queries in a workload. However, this

XPath expression table is used to improve the

performance of Index Node construction, and can be

removed to save more space.

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200

No. of Documents

N
o

.
o

f
In

d
e

x
 N

o
d

e
s

Protein - Real

Protein - Synthetic

NASA - Real

NASA - Synthetic

NITF - Synthetic

3.5 Warm-up and Stable Phase

The processing of Structure Index can be divided into two

phases, which are warm-up phase and stable phase. The

warm-up phase is a phase where most of Index Nodes of

Structure Index are constructed. This Index Node

construction accounts for most of the processing time in

the warm-up phase. However, this processing overhead

only occurs at the beginning of the process. After it

reaches its stable phase, there is virtually no processing

overhead because construction of Index Nodes does not

occur or rarely occurs. At this stage, the processing time

becomes approximately constant as analyzed previously.

Nevertheless, under certain circumstance where data is

synthetic and their schemas are recursive, it is possible

that its stable phase will not be reached, and the processing

overhead from constructing an index is unavoidable.

However, this situation hardly occurs in practice for

data-oriented XML. To verify this analysis, we show the

number of Index Node construction, using the same

datasets from previous section, in Figure 5. The reported

number is an average number for groups of ten XML

documents.

Figure 4. Number of Index Nodes of three different

datasets for real data and synthetic data.

CRPIT Volume 63

76

0

20

40

60

80

100

120

0 50 100 150 200

No. of Documents

N
o

.
o

f
N

o
d

e
 C

o
n

s
tr

u
c
ti

o
n

Protein - Real

Protein - Synthetic

NASA - Real

NASA - Synthetic

NITF - Synthetic

From Figure 5, it can be seen that, for real data, major

constructions of Index Nodes occur at the very beginning

of the processing, and becomes zero, or a few after that.

On the other hand, for synthetic data, constructions of

Index Node are unavoidable because of its large upper

bound. Again, synthetic data of protein dataset has the

same characteristics as real data because of its

non-recursive schema.

3.6 Maintaining the Structure Index

3.6.1 Structure Update

Structure update occurs when the Structure Index

encounters unknown document structure and needs to

construct Index Nodes for this new document structure.

This process can be viewed as a learning process of the

Structure Index. An algorithm to construct a new Index

Node is given in Algorithm 3.1.

Algorithm 3.1 An algorithm to construct an Index Node

Method UPDATE-STRUCTURE (P, t)

Input: P is a parent Index Node where an update occur

 t is a name of found element or attribute.

Data: XPT is an XPath expression table of Index Node

P

Output: N is a new Index Node which is a child of P

1 Create new Index Node N;

2 Find XPath expression in XPT that has a name test t;

3 for (each expression e with name test t)

4 INSERT-EXPR (N, e);

5 Find XPath expression in XPT that has a name test *;

6 for (each expression e with name test *)

7 INSERT-EXPR (N, e);

8 p = parent of P;

9 while (p is not the root node)

10 Find XPath expression in XPT of p that has a

name test t with a descendant axis;

11 for (each expression e with name test t)

12 INSERT-EXPR (N, e);

13 Find XPath expression in XPT of p that has a

name test * with a descendant axis;

14 for (each expression e with name test *)

15 INSERT-EXPR (N, e);

16 p = parent of p;

17 set N as a children of P;

18 return N;

Method INSERT-EXPR (N, e)

Input: N is an Index Node

 e is a name of found element or attribute.

Data: XPT is an XPath expression table of Index Node

N

 MQ is a list of XPath queries that match at Index

Node N

 VPI is a value-based predicate index for XPath

queries that its structure navigation part match at

Index Node N

1 c = child of the main path of e;

2 if (c is NULL)

3 Insert c in MQ;

4 else if (c is a valued-based predicate)

5 Insert c in VPI;

6 else
7 Insert c in XPT;

8 for (each predicate p of e)

9 if (p is a valued-based predicate)

10 Insert p in VPI;

11 else

12 Insert p in XPT;

Intuitively, this algorithm simply evaluates queries with

the Structure Index. In this algorithm, structure update

occurs at an Index Node P with a new element or attribute

t. In each Index Node, important information are kept,

which are XPT, an XPath expression table of XPath

fragments of queries that match at this node, MQ, a list of

queries that match at this node, and VPI, a value-based

predicate index which is used to evaluate value-based

predicates of queries that match at this node. Then, a new

Index Node is constructed, and all XPath fragments that

have node test t and * need to insert in this new Index

Node. In addition, we also need to look for XPath

fragments that have node test t and * at each ancestor,

because the descendant axis can match at any level.

Alternatively, we can insert XPath fragments with

descendant axis at all of its descendant nodes, but this

requires more space, and the former method makes space

usage of the Structure Index less sensitive to the

descendant axis.

3.6.2 Query Update

Query update occurs when there is an update in the query

workload. There are two types of query update, insertion

and deletion.

Query insertion can be viewed as evaluating one query

with one XML document, since the Structure Index is

simply a structural part of XML documents. Generally,

Figure 5. The number of Index Node construction from

three different datasets for real and synthetic data.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

77

query insertion is very efficient because the Structure

Index is usually very small in data-oriented XML.

Additional work is required to insert value-based

predicates into a valued-based predicate index at each

corresponding Index Node. This is also very efficient

because valued-based predicate index is implemented as a

binary search tree.

Query deletion can be done by traversing the whole

Structure Index and removing the query from each Index

Node. This is also efficient because the Structure Index is

usually very small in data-oriented XML.

3.7 Nested Paths

In this section, we extend the Structure Index to handle

more complex XPath queries, queries with nested paths.

This kind of queries is more complex and quite different

from the problem of linear XPath queries. One general

approach that can be used to deal with this problem is to

decompose an XPath query with nested paths as multiple

linear XPath queries, and combine results from each linear

XPath query to answer the query with nested paths. This

approach is demonstrated in Example 3.2.

Example 3.2 Given the XPath query from Example 1.1:

Q0 = /a/*[c/@n>1][//d=3]//c

It can be decomposed into the following linear XPath

queries:

Q3.0 (main) = /a/*//c

Q3.1 (nested) = /a/*/c/@n>1

Q3.2 (nested) = /a/*//d=3

However, this approach becomes complicated since each

nested path must match under the same element of a

document. To avoid this problem, we use a slightly

different approach by viewing an XPath query with nested

paths as a tree of linear queries.

In addition, from an empirical observation with

data-oriented XML, a major difference between queries in

the query workload is not in their structure navigation part,

but in their predicate evaluation part. This is because

possible patterns of linear XPath queries without

predicates is quite limited. For example, consider different

the XPath queries in the form:

//keyword[text()=”database”]

//keyword[text()=”XML”]

//keyword[text()=”XPath”]

...

Those queries have the same structure navigation part, but

are different in their predicate evaluation part. This kind of

query is likely to happen and the domain values which can

be used in the predicate evaluation part is very large. As a

result, in a large query workload, there will be a large

number of value-based predicates to be evaluated, and

only a small amount of those value-based predicate will

evaluate to true. Therefore, we take advantage of this

observation by using the concept of trigger, where each

query has its Trigger Tree, and the processing of a trigger

occurs only when value-based predicates are evaluated to

true. This Trigger Tree allows a processing of arbitrary

nested paths and can be extended to support an XPath

query with boolean connectors. This approach to handle

XPath queries with nested paths are further described in

the following subsections.

3.7.1 Query Tree

A query tree is a tree that represents an XPath query. A

query tree of the query from Example 3.2 is shown in

Figure 6. It should be noticed that both nested paths

c/@n>1 and //d=3 are represented as

c/@n[text()>1] and //d[text()=3] respectively

since those forms can also represent main path with

value-based predicate, and it evaluate to the same result.

3.7.2 Trigger Tree

A Trigger Tree is a tree of trigger node that represents a

structure of an XPath query. A query tree of a query from

Example 3.2 is shown in Figure 7.

Later on, a Trigger Tree is preprocessed with the Structure

Index. This is illustrated in Figure 8 where the Structure

Index from document structure in Figure 1 (b) is

preprocessed with a Trigger Tree in Figure 7.

/a/* //c

c/@n[text>1]

//d[text=3]

Figure 7. A trigger tree of a query from Example 3.2.

Figure 8. A Structure Index from document structure in

Figure 1(b) after a Trigger Tree in Figure 7 is

preprocessed.

a

@m

b

d2

c1 d1

@n

e f

c2

root

/a/*
 //d[text=3]

c/@n[text>1]
/a/*

//c

//c

a * //c

c @n text()>1

//d text()=3

Figure 6. A query tree represents a query from Example 3.2.

CRPIT Volume 63

78

3.7.3 Trigger Tree at Run time

At run time, input XML documents are processed

similarly to the processing described in Section 3.3.

Additional work is that when a nested predicate matches,

it needs to trigger its parent; and if all children of the

parent match, the parent becomes true, and the following

condition is checked. If this trigger node (parent) also has

a parent, again, it needs to trigger its parent. If it does not

have a parent, it means that this node is a root node of a

Trigger Tree and a query corresponding to this node match

with this document. Nevertheless, extra work to clean up a

Trigger Tree, and some duplicate triggers has to be

handled carefully.

4 EXPERIMENTS

This section presents various experiments of the Structure

Index. Our execution environment consists of a Pentium

III 600 Mhz processor with 512MB memory running JVM

1.4.1 on Linux kernel 2.4.22. The SAX parser we used is

Xerces2 Java Parser 2.5.0 [2] in non-validating mode.

The NASA XML dataset [23] is chosen as an experiment

dataset because it is a data-oriented XML with recursive

schema. We used the first 200 XML documents

concatenated into a single file. We use a modified version

of the XPath generator in [9] to generate synthetic XPath

queries in distinct mode. The modification is to generate

value-based predicates using data values from the NASA

XML dataset.

All the numbers reported are averages of this dataset

unless stated otherwise. The probability of wildcard (*)

and descendant axis (//) is set to 20%. All reported

processing times are in milliseconds, including document

parsing time.

4.1 Experiment 1: Linear XPath Queries

The first experiment shows the performance of the

Structure Index when the query workload consist of linear

XPath queries. We varied the size of a query workload

from 1,000 to 1,000,000. The processing time reported in

the graph is the processing time for each XML document.

The reported time is an average time for each ten XML

documents.The results are shown in Figure 10.

0

100

200

300

400

500

600

700

0 50 100 150 200

No. of Documents

P
ro

c
e
s

s
in

g
 T

im
e

 (
m

s
)

1k

10k

100k

1000k

This experimental result has shown that, after the short

warm-up phase, our approach is extremely efficient. It

uses constant processing time independent of the query

workload. A little fluctuation comes from a few Index

Node constructions that rarely occur after the short

warm-up phase. Also, it should be noted that the

processing time of the warm-up phase depends on the size

of queries. This result comes from the construction cost of

Index Nodes, which is more expensive when the query

workload is large.

In comparison, we also use synthetic NASA data from

Section 3.4. To ease the comparison, we plotted one result

from real NASA dataset at the query size of 100,000. We

ran the experiment with the same above setting. The

results are shown in Figure 11.

From this result, there is a huge difference between the

processing time of synthetic data and real data as can be

compare in the case of 100,000 queries. Synthetic data

takes much more processing time, and depends on the

query workload, because it cannot achieve its stable phase.

In brief, for real data-oriented XML, the processing time

of the Structure Index is about constant independent of the

query workload, while, for synthetic data, it cannot

achieve its stable phase and results in decreased

performance.

0

100

200

300

400

500

600

0 50 100 150 200

No. of Documents

P
ro

c
e
s

s
in

g
 T

im
e

 (
m

s
)

1k

10k

100k

100k - Real

4.2 Experiment 2: XPath Queries with Nested

Paths

In this experiment, we evaluate the performance of the

Structure Index with Trigger Trees when the query

workload consists of XPath queries with nested paths. We

varied the size of a query workload from 10,000 to 50,000.

The probability of equal, range, and not equal operators

are set to 80%, 10% and 10% respectively. All reported

time is the processing time in stable phase. In the first

experiment, we show that the processing time of Trigger

Tree depends largely on selectivity of value-based

Figure 9. The processing time of real NASA data for 1k,

10k, 100k, 1000k queries.

Figure 10. The processing time of synthetic NASA data

for 1k, 10k, 100k queries.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

79

predicates. All queries have 3 nested paths. We vary

percentage of nested paths without value-based from 0,

25, 50, 75, and 100 percent. The result is shown in Figure

12.

0

50

100

150

200

250

300

350

0 10000 20000 30000 40000 50000

No. of Queries

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

0%

25%

50%

75%

100%

It can be seen from this figure that the scalability depends

on the percentage of nested paths without value-based

predicates, where pure nested paths with value-based

predicates (0%) has the best scalability, and pure nested

paths without value-based predicates (100%) has the

worst scalability. Also, the scalability of pure nested paths

with value-based predicates is quite distinct from the

others. Obviously, this comes from the selectivity of

value-based predicates because a nested path with

value-based predicate has a much higher selectivity. To

gain more understanding on this result, the number of

triggers is shown in Figure 13.

0

20000

40000

60000

80000

100000

120000

0 10000 20000 30000 40000 50000

No. of Queries

N
o

.
o

f
T

ri
g

g
e
rs 0%

25%

50%

75%

100%

This figure is very similar to the previous figure. This

result verifies that the processing time of Trigger Tree

depends primarily on the number of triggers. In addition,

when all nested paths have value-based predicates (0%),

Trigger Tree is very efficient. This result leads to the

concept of post-processing where less selective

value-based predicates are processed after more selective

value-based predicates has been satisfied.

4.3 Experiment 3: XPath Queries with Nested

Paths using Post-processing Concept

This experiment demonstrates the performance of the

Structure Index with Trigger Tree using post-processing

concept, when the query workload consists of XPath

queries with nested paths. The first result in Figure 14

shows the processing time of a Trigger Tree using

post-processing concept.

0

50

100

150

200

250

300

350

0 10000 20000 30000 40000 50000

No. of Queries

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

0%

25%

50%

75%

100%

From this figure, it can be seen that post-processing

significantly improves the performance because it post

process value-based predicates with low selectivity.

Nevertheless, for the case of pure nested paths without

value-based predicates (0%), the result is the same as in

the previous experiment. In this case, post-processing

cannot help because all its paths have low selectivity. To

gain more understanding, we also show the number of

triggers in Figure 15.

0

20000

40000

60000

80000

100000

120000

0 10000 20000 30000 40000 50000

No. of Queries

N
o

.
o

f
T

ri
g

g
e
rs 0%

25%

50%

75%

100%

As predicted, post-processing greatly reduces the number

of triggers. In fact, the number of triggers is even less than

the number of triggers of pure nested paths with

value-based predicates from the previous experiment.

This comes from that post-processing also postpone range

and not equal operators since it has lower selectivity than

Figure 11. A comparison of the processing time for

queries with nested paths with/without value-based

predicates.

Figure 12. A comparison of the number of triggers for

queries with nested paths with/without value-based

predicate.

Figure 13. A comparison of the processing time for

queries with nested paths with/without value-based

predicates using post-processing concept.

Figure 14. A comparison of the number of triggers for

queries with nested paths with/without value-based

predicates using post-processing concept.

CRPIT Volume 63

80

an equal operator. Again, the number of trigger of pure

nested paths without value-based predicates far exceeds

the others.

Next, we show the performance of post-processing

concept while varying the number of nested paths from 2,

5, and 8 nested paths. In this experiment, we vary the

number of queries from 20000 to 100000. We set the

percentage of nested paths without value-based predicate

to 67 percent in all queries since nested path tends to end

with value-based predicates. Other parameters are the

same as in the experiment 2. The result is shown in Figure

16.

0

5

10

15

20

25

30

35

40

0 20000 40000 60000 80000 100000

No. of Queries

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

2

5

8

From this result, the performance of Trigger Tree with

post-processing is highly scalable to a large number of

nested paths. In fact, queries with 2 nested paths use more

processing time than the others. Again, this comes from

the selectivity of the value-based predicates since more

nested paths means more chance for a query to has more

selective value-based predicates. However, queries with 8

nested paths also use more processing time than queries

with 5 nested paths. This comes from the number of

decomposed linear queries, where 5 nested paths

decompose to 600,000 linear queries, and 8 nested paths

decompose to 900,000 linear queries. Thus, there is more

chance for value-based predicates of queries with 8 nested

paths to be evaluated to true, while queries with 5 nested

paths is the most balance between its selectivity, and the

number of decomposed linear queries.

5 CONCLUSIONS

In this paper, we proposed a novel approach called

Structure Index for evaluating a large number of XPath

queries on XML streaming data. Our focus is on

data-oriented XML which has many practical

applications. Our approach is based on the document

structure, which can be easily derived from the input XML

documents. After that, XPath queries are preprocessed and

annotated into the Structure Index to facilitate efficient

matching against future input XML documents. We

analyzed the efficiency of the Structure Index both in time

and space, and also by experiments. After a short warm-up

phase, it achieves constant processing time, O(1), per

SAX event independent of the query workload for linear

XPath queries. In addition, we proposed a method called

Trigger Tree to efficiently evaluate XPath queries with

nested paths. This method is scalable in both the number

of nested paths and the number of value-based predicates

when the queries have at least one value-based predicate.

For space usage, the space efficiency of the Structure

Index depends on the size of the structure of the input

XML, which is usually very small for data-oriented XML.

The maintenance cost (query update) of our approach is

also very efficient because it also depends on the size of

(small) document structure.

6 REFERENCES

[1] M. Altinel, and M. Franklin. Efficient Filtering of XML

Documents for Selective Dissemination of Information. In

Proceedings of VLDB, pages 53-64, Cairo, Egypt,

September 2000.

[2] The Apache Software Foundation. Xerces2 Java Parser.

http://xml.apache.org/xerces2-j.

[3] S. Babu, and J. Widom. Continuous Queries Over Data

Streams. SIGMOD Record, 30(3):109-120, September

2001.

[4] C. Chan, P. Felber, M. Garofalakis, and R. Rastogi.

Efficient Filtering of XML Documents with XPath

Expressions. In Proceedings of the International

Conference on Data Engineering, 2002.

[5] J. Chen, D. DeWitt, F. Tian, Y. Wang. NiagaraCQ: A

Scalable Continuous Query System for Internet Databases.

In Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, pages 379-390,

Dallas, TX, May 2000.

[6] Y. Chen, S. B. Davidson, Y. Zheng. Validating Constraints

in XML. Technical report, University of Pennsylvania,

2002. Technical Report MS-CIS-02-03.

[7] B. F. Cooper, N. Sample, M. Franklin, G. R. Hjaltason, and

M.Shadmon. A fast index for semistructured data. In VLDB,

pages 341-350, September 2001.

[8] R. Cover, The SGML/XML Web Page.

http://www.w3.org/TR/xslt, 1999.

[9] Y. Diao, M. Altinel, M. Franklin, and P. Fischer. Path

Sharing and Predicate Evaluation for High-Performance

XML Filtering. In Proceedings of ACM Transactions on

Database Systems, December 2003

[10] Y. Diao, P. Fischer, M. Franklin, and R. To. Yfilter:

Efficient and scalable filtering of xml documents. In

proceeding of the International Conference on Data

Engineering, 2002.

[11] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, D.

Shasha. Filtering Algorithms and Implementations for Very

Fast Publish/Subscribe Systems. In Proceedings of ACM

SIGMOD, pages 115-126, Santa Barbara, California, May

2001.

[12] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, D. Shasha.

Webfilter: A High-throughput XML-based Publish and

Subscribe System. In Proceedings of The VLDB Journal,

pages 723-724, 2001.

[13] L. Fegaras, D. Levine, S. Bose, V. Chaluvadi. Query

Processing of Streamed XML Data. Submitted, November

2001.

Figure 15. The processing time for queries with nested

paths varying number of nested paths.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

81

[14] R. Goldman and J. Widom. DataGuides: enabling query

formulation and optimization in semistructured databases.

In Proceedings of Very Large Data Bases, pages 436-445,

September 1997.

[15] T. Green, G. Miklau, M. Onizuka, D. Suciu. Processing

XML Streams with Deterministic Automata. Submitted to

The 9th International Conference on Database Theory,

Siena, Italy, 8-10 January 2003.

[16] A. Gupta, A. Y. Halevy, D. Suciu. View Selection for

Stream Processing. Submitted to Fifth International

Workshop on the Web and Databases (WebDB 2002),

Madison, Wisconsin, June 2002.

[17] Ashish Gupta, Dan Suciu. Stream Processing of XPath

Queries with Predicates. In Proceeding of ACM SIGMOD

Conference on Management of Data, 2003.

[18] Z. Ives, A. Halevy, and D. Weld. An XML query engine for

network-bound data. In Proceedings of Very Large Data

Bases, December 2002.

[19] Z. Ives, A. Halevy, and D. Weld. Efficient Evaluation of

Regular Path Expressions on Streaming XML Data.

Technical report, University of Washington, 2000.

Technical Report UW-CSE-200-05-02.

[20] S. Madden and M. J. Franklin. Fjording the stream: An

architecture for queries over streaming sensor data. In

Proceedings of the 2002 Intl. Conf. on Data Engineering,

Feb 2002.

[21] G. Miklau, and D. Suciu. Containment and equivalence of

an XPath fragment. In Proceedings of the ACM

SIGMOD/SIGART, pages 65-76, June 2002.

[22] T. Milo, and D. Suciu. Index Structures for Path

Expressions. In ICDT ’99, 7th International Conference,

Jerusalem, Israel, January 10-12, 1999, pages 277-295,

1999.

[23] NASA’s astronomical data center. ADC XML resource

page. http://xml.gsfc.nasa.gov/.

[24] B. Nguyen, S. Abiteboul, and G. Cobena. Monitoring XML

Data on the Web. In Proceedings of the 2001 ACM

SIGMOD International Conference On Management of

Data, pages 437-448, May 2001.

[25] D. Olteanu, H. Meuss, T.Furche, and F. Bry. XPath:

Looking forward. In Proceedings of Workshop on XML

Data Management (XMLDM), LNCS. Springer, 2002.

[26] M. Onizuka. Light-weight XPath Processing of XML

Stream with Deterministic Automata. In Proceedings of

CIKM, 2003.

[27] Protein Information Resources. PIR International Protein

Sequence Database. http://pir.georgetown.edu.

[28] A. Snoeren, K. Conley, and D. Gifford. Mesh-based

Content Routing Using XML. In Proceedings of the 18th

Symposium on Operating Systems Principles, 2001.

[29] E. Viglas, and J. Naughton. Rate-based Query Optimization

for Streaming Information Sources. In Proceedings of

SIGMOD, 2002.

[30] W3C (1999) XML path language (XPath) 1.0.

http://www.w3.org/TR/xpath

[31] H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: A Dynamic

Index Method for Querying XML Data by Tree Structures.

In Proceedings of SIGMOD, 2003.

CRPIT Volume 63

82

Interoperability for Geospatial Analysis: a semantics and ontology-

based approach

Zarine Kemp
1
, Lei Tan

1
 and Jacqueline Whalley

2

1
Computing Laboratory, University of Kent

Canterbury, Kent CT2 7RY, U.K.

2
School of Computer and Information Sciences, Auckland University of Technology,

Private Bag 92006, Auckland 1020, New Zealand

Z.Kemp@kent.ac.uk

Abstract

Information extraction and integration from

heterogeneous, autonomous data resources are major

requirements for many spatial applications. Geospatial

analysis for scientific discovery involves identification of

relevant information resources, extraction and fusion of

requisite subsets of the information, application of spatial

analytical techniques and visualization of the results in an

appropriate form. The motivating application domain

underlying this research is marine environmental

management, although the principles discussed apply to a

wide range of scientific disciplines. The research

discussed in the paper focuses on integration of data

sources, data exploration and interactive data analysis. A

knowledge base is used to capture the semantics of the

spatial, temporal and thematic dimensions at a domain

level, and the context-aware framework exploited to meet

the requirements of a varied and distributed user

community with differing objectives.

Keywords: information fusion, geospatial analysis,

knowledge base, ontologies, visualization.

1 Introduction

Information technologies such as the Internet and Grid

computing have revolutionized the way that data

resources are discovered and shared. In application

domains dependent on geospatial and scientific

information, reuse, sharing and dissemination of data is a

major requirement. These information repositories are

maintained by autonomous organizations, are

heterogeneous in structure and semantics and are used by

researchers and decision-makers in various contexts and

from different perspectives. Interoperability of data and

services underpins the next phase of the World Wide

Web. Research in distributed databases, integration of

structured and semi-structured data and technologies for

mediator and information brokers have enabled

syntactical and structural heterogeneities to be overcome.

Issues relating to semantic heterogeneity are also being

tackled using metadata, ontologies and thesauri to express

Copyright © 2007, Australian Computer Society, Inc. This

paper appeared at the Eighteenth Australian Database

Conference (ADC2007), Ballarat, Victoria, Australia.

Conferences in Research and Practice in Information

Technology (CRPIT), Vol. 63. James Bailey and Alan Fekete,

Eds. Reproduction for academic, not-for profit purposes

permitted provided this text is included.

salient concepts and knowledge within a domain of

discourse.

In this paper we describe the architecture and framework

of a system for environmental information systems. We

suggest that in the context of geospatial information

systems a data integration approach based on a global

monolithic view of data, and a foundational ontology, is

not an appropriate solution. We propose an architecture

that provides interoperability, querying and analysis

capabilities for a community of researchers while

maintaining the autonomy of participating data sources.

The middleware framework uses an adaptable, scalable

knowledge base to accommodate semantic heterogeneity

and provide analysis services.

The next subsection describes a motivating application

and the data sources in the test bed. Section 2 discusses

system requirements and related work. Section 3 presents

the system architecture and details of the knowledge base.

Section 4, illustrates the interaction model using example

queries and section 5 concludes the paper.

1.1 Motivating Application

The system discussed in this paper is based on a platform

for marine research and decision support but the

requirements and principles are equally applicable to a

wide range of application areas. It is intended as a

research hub for a community of scientists who pool their

information resources and use analytical and visualization

tools for monitoring and understanding the marine

ecosystem. For example, users may wish to retrieve

detailed information about the fishing industry, study

phenomena such as algal blooms, explore the changes in

biodiversity in a particular part of the ecosystem, retrieve

applicable legislation or investigate the effects of

anthropogenic activities on particular marine species.

We discuss, briefly, the content and structural

characteristics of the data sets in the research test bed

emphasizing the geo-referenced attributes of the

information stores.

Industrial activity data: the two main activities are

fisheries and aggregate dredging for the building industry.

Management of fishing activities is regulated by the

Common Fisheries Policy (CFP) legislation of the

European Union using sea areas defined by the

International Council for the Exploration of the Sea

Proc. Eighteenth Australasian Database Conference (ADC 2007)

83

(ICES). Quotas are allocated by country, species and

marine area; these are ICES Divisions defined in vector

format. Data relating to fishery harvesting activities are

held in national databases by haul, spatial reference,

date/time and species/weight. The spatial reference type

in this case is by ICES statistical rectangle, a standard

grid defined for all EU waters, forming a hierarchical

subdivision of the quota divisions (illustrated in Figure 2).

Aggregate dredging: these are vector-defined areas where

licences have been granted for extraction of material from

the seabed. Environmental impact assessment reports and

research papers may be associated with these activities.

Research data: Annual surveys are conducted by research

centres based in different countries. The data sets consist

of environmental information such as sea surface

temperature, salinity, seabed type and biomass

abundances by species. The location of sampling stations

(geo-referenced point) is stored with the primary data sets

to enable variables to be subsequently interpolated over

the spatial extent of interest using an appropriate

interpolation technique.

Ad hoc surveys: for example of benthic fauna provide

data sources at fine spatial resolutions and are stored as

point samples in the database.

Other related data: Legislation applicable to activities,

species and habitats in marine environments. The statutes

refer to areas directly using geographic coordinates or,

indirectly, by reference to habitats for endangered

species.

Base data of the geography of the research area including

coastlines, ports and rivers are held in vector format using

standards such as ESRI .shp files (ESRI).

In addition to the data sources, marine researchers and

managers subscribe to domain-related ontologies. We

have included two typical global ontologies: an ontology

of marine species which consists of a tree-structured

biological taxonomy and a more complex marine habitat

multilevel classification that is becoming a European

standard (Connor et al 2004).

2 Requirements and Related Work

The primary role of the middleware is to provide the

abstractions and services that enable the development and

deployment of user-level applications in a heterogeneous,

distributed, computing environment. It must also be

geared to the geospatial requirements of marine

environment research communities as described by

Tsontos and Kiefer (2003). From the computational

perspective, the system should:

- support discovery of, and access to distributed,

heterogeneous information sources

- provide tools for representation, manipulation and

visualization of spatiotemporal and scientific data

- be adaptable to enable data sources, semantic

information and services to evolve according to the

requirements of the research community.

Halevy et al (2003) discussed the notion of

interoperability across the structure chasm, that is, over

sources that encompass structured and unstructured data.

More recently, the notion of dataspaces has been

proposed as a data management abstraction with

associated DataSpace Support Platforms (DSSPs) to

provide the required services (Franklin et al 2005). The

middleware described in this paper encompasses several

requirements of dataspaces using capabilities of extended

database management systems. Interoperability is based

on XML-based mediation techniques for data sets in

relational or object-relational databases (Wiederhold

1999). The knowledge base enables links between data

sources to be represented and supports keyword-based

information retrieval and querying.

A major characteristic of computation in the geographic

sciences domain is the pervasiveness of the space-time-

theme composite. Understanding phenomena in geo-

scientific domains requires queries and analyses to be

predicated in terms of these three dimensions. Theories

underlying these dimensions and their representation in

data management systems have been discussed by

researchers including Buckland and Lancaster (2004) and

Smith and Mark (1998). A consequence of this is that

interoperability platforms have to incorporate an

understanding of, and mappings between, different

conceptual views of space. Details of these are beyond

the scope of this paper but reference may be made to

international standards for geospatial data such as ISO

19115 (2003) and OGC (2003) and various classifications

of space such as the object and field view space or the

vector-raster views of space, reflecting alternative

conceptual spatial representations. In the marine domain

classifications of space may also involve complex

hierarchies such as the Joint Nature Conservation

Committee habitat classification (Connor et al, 2004).

Figure 1 illustrates a small subset of this classification.

 Figure 1. JNCC habitat classification (subset)

Similarly, multiple representations also arise in the case

of the temporal and thematic dimensions. The

middleware platform in this research uses ontologies in

the knowledge base to provide mappings between

CRPIT Volume 63

84

alternative spatiotemporal classifications as discussed in

Kemp and Frank (2005).

Users in a research community use their expertise and

experience to guide and inform the data they collect and

the analyses they undertake. Bouquet et al (2004) suggest

that application domain knowledge may be included by

‘contextualizing ontologies’. We propose extending

global ontologies to incorporate community (local) or

regional context using the knowledge base, as illustrated

in the following example.

A marine research community in the UK may include

data on fishing activity which refers to regulatory areas

for quota allocations and recording of catch statistics.

These areas are specific instances of a generic vector-

defined marine area feature. Extending the spatial

ontology to include this contextual knowledge makes this

semantic information explicit, facilitates data

interoperability and enables users to query and analyse

the information in a meaningful way. The map in Figure

2 shows a spatial containment hierarchy of marine areas

referred to in section 1.1. It shows ICES Divisions (large

non-uniform spaces), ICES rectangles (cells within each

division) and the fine scale research grid (Eastern English

Channel).

Figure 2: A nested hierarchy of marine areas

 Figure 3. Part of the spatial ontology

Figure 3 shows part of the spatial ontology in the

knowledge base (using the OGC standard) which has

been extended at the lowest level to include additional

semantics of marine space of relevance to the research

community.

Ontologies have been used in many applications to enable

shared concepts to inform the research. Gangemi et al

(2002) describe a detailed ontological framework for

fisheries. This FAO (United Nations Food and

Agriculture Organisation) initiative provides a platform

for unifying different thesauri, topic trees and taxonomies

to provide a formal, integrated ontological framework for

the fishery application domain. The semantic framework

from this initiative is similar to the ontology of the

thematic dimension included in our knowledge base. In

our system, spatial conceptualizations have to be

integrated with other dimensions, temporal and thematic.

Wadsworth et al (2005) identify a problem with using

ontologies, namely that of reconciling, alternative

overlapping conceptualizations. They describe a

semantic-statistical methodology for quantifying overlaps

to resolve the problem.

In many information systems, the ontologies, i.e. the

semantics underlying retrieval and querying of data are

completely hidden from the user. However, In some

situations scientists need to traverse the concept

hierarchies to enable them to specify the parameters for

tasks that constitute the workflow. In this system we have

enabled a navigational form of querying where some

level of semantic information has to be identified. A

simple example involves querying a data set using a

variable that is an element of a hierarchical classification.

The global taxonomy of marine species is such a

hierarchical classification. If the user wishes to query a

data set at the ‘genus’ level, then the user can indicate

that aggregation level for the analysis. The system

deduces that the concept ‘species’ in the data sources is

subsumed under the more general category ‘genus’ and

returns the aggregated values as required. The design of

the knowledge base also enables representation of the

semantics of different types of relationships.

3 Architecture of the Framework

3.1 Overview

In this section we present an overview of the prototype

system that was implemented for this research. Much of

the functionality provided by the framework consists of

dynamic composition of data and services. Typical

services consist of:

- flexible extraction of subsets from the heterogeneous

resources, dependent on user-specified parameters

- data discovery at different levels of abstraction

- sub-sampling, reclassification and re-gridding of

extracted data, if required

- processing data by applying computational models

- visualization of output in textual, tabular, graphic or

cartographic format.

Marine Geographic Surface

Polygon Layer <<abstract>>

Grid <<abstract>>

ICES Divisions ICES Statistical Rectangle Grid

Research Grid

1. .*

1

1. .*
1

1. .*

1

1. .*

1

1. .*
1 ICES Division

geometry

ICES Statistical Rectangle

cell_size

Research Rectangle

cell_size

Proc. Eighteenth Australasian Database Conference (ADC 2007)

85

User Interactions

Data

Retrieval Services

Knowledge Base

Services

Spatial-Temporal

Analysis Services

Metadata
Spatial

Temporal

Thematic

Data extraction

User’s Knowledge Based

Queries

Analysis computation

Knowledge reconciliation,

maintenance

Heterogeneous Information Sources

User queries
Maps

Tables, charts, maps

Dashed arrows indicate data flows

Solid arrows indicate flows of control

External

Services

GIS

Package

Statistical

Modelling

Package

Boxes indicate computational components

Ellipses indicate data components

Ontologies

Taxonomy

Knowledge Base

Middleware

Figure 4. Architecture of the framework – system components interaction

The diagram in Figure 4 provides a high-level view of the

system architecture showing the interaction between the

computational and data components of the system:

- The Data Retrieval Services provide the

functionality for querying different data sources.

Users’ queries are accepted and mediator services

used to retrieve and combine the required

information from the data sources.

- The Knowledge Base Services provide more

advanced searching and functionality. These

services include ontology-based searching, linking

data sources using thesauri and spatial-temporal

indexing.

- The Analysis Services provide computational

capabilities including linking to external software

packages for enviromental analyses using the data

extracted by the Knowledge Base Services. The

external capabilities include a GIS (Geographical

Information System) and a statistical modelling

package.

- User Interaction Services provide users with a

graphical interface to enable specification of

parameters and present results in appropriate

formats.

The system components identified in Figure 4 have been

implemented as interacting packages. Each package

consists of services that implement the functionality

provided by that package. The main system components

include: the QueryGUI package that encompasses the

interaction model of the framework, the

MediatorWrapper package that provides the functionality

for linking disparate data sources as required by specific

tasks and the XMLDataLink package that provides the

utility classes to interpret XML documents.

3.2 User Interaction Services

In the system framework, an XML format file is designed

to represent users’ queries, and data access services are

implemented as a set of Java objects. An example XML

query file is shown in Figure 5. The XML files are parsed

according to the DOM (Document Object Model)

standard using the JAXP (Java API for XML Parsing)

(JAXP, DOM , Ungerer and Goodchild 2003). The links

to relational databases are implemented by the JDBC to

ODBC driver provided in the Java library. Thus the data

sources can by distributed over a network environment.

CRPIT Volume 63

86

 <?xml version="1.0" ?>
- <Mediator:Table xmlns:Mediator="http://www.charm.ac.uk/">

- <Mediator:Row>

- <Mediator:Column Name="Year" Display="Yes">
 <Mediator:DataConcept Display="Yes">Year</Mediator:DataConcept>
- <Mediator:WhereCondition>

- <Mediator:Between>
 <Mediator:MinValue>2000</Mediator:MinValue>
 <Mediator:MaxValue>2003</Mediator:MaxValue>

 </Mediator:Between>
 <Mediator:OrderBy />

 <Mediator:GroupBy />
 </Mediator:WhereCondition>

 </Mediator:Column>
- <Mediator:Column Name="ICESRec" Display="No">

 <Mediator:DataConcept Display="No">ICESRec</Mediator:DataConcept>
- <Mediator:WhereCondition>
 <Mediator:Equal>29E9</Mediator:Equal>

 </Mediator:WhereCondition>

 </Mediator:Column>
- <Mediator:Column Name="Species" Display="No">
 <Mediator:DataConcept Display="No">Species</Mediator:DataConcept>
- <Mediator:WhereCondition>

 <Mediator:Equal>Dab</Mediator:Equal>
 </Mediator:WhereCondition>

 </Mediator:Column>
- <Mediator:Column Name="CEFAS Fisheries" Display="Yes">

 <Mediator:DataConcept Display="Yes" Source="CEFASFishery"

Aggregate="sum">Abundance</Mediator:DataConcept>
 </Mediator:Column>
- <Mediator:Column Name="IFREMER Fisheries" Display="Yes">

 <Mediator:DataConcept Display="Yes" Source="IFREMERFishery"

Aggregate="sum">Abundance</Mediator:DataConcept>
 </Mediator:Column>

 </Mediator:Row>
 </Mediator:Table>

 Figure 5. XML file representing a query.

The QueryGUI package provides the functionality for

user interaction. Users interact with the user interface of

package to submit queries to the underlying data sources

via the MainFrame object. The AddQueryButton adds a

new QueryPanel to the MainFrame. The RemoveButton

will remove the last QueryPanel from the MainFrame.

The user can add as many QueryPanels to the MainFrame

as required. The QueryPanel enables users to specify the

data sources, concepts (i.e. variables) and logical

conditions involved in a query. Options are also provided

to so that users can specify the style and format of the

displayed results.

3.3 Data Retrieval Services

The main purpose of this interface is to transform the

XML query to the underlying data source query language.

Each information source implements a wrapper interface

called DataSource that must be registered with the

Mediator. Wrappers consist of the structure specification

of a data source and an understanding of the

transformation between XML documents and the

underlying data.

The MediatorWrapper package implements part of the

wrapper-mediator methodology for interoperable data

sources as described by Wiederhold (2000). When the

user clicks on the “Execute” button on the user interface,

the query is generated as an XML file and sent to the

Mediator. The Mediator interprets the XML file, sends it

to the relevant data source wrapper according to the

content of the XML file, and combines the results

returned from each data source for the user. The mediator

does not have a global mediated schema that is shared by

all the participating data sources. It is only aware of the

data sources that are registered currently. It also gets

relevant information from the XML query file to

rearrange and merge the results returned from the data

sources. The results returned from each data source are

ResultSet type objects; they are combined into an

ArrayList of ArrayLists object by the combineResult2

method in the Mediator class.

The XMLDataLinkUtility package provides the utility

classes that can be used by other classes, such as the

XMLDataUtility; it contains methods to interpret XML

documents. The DataConcept class represents the

thematic concept on which a user’s query is based, such

as ‘year’, ‘species’, ‘abundance’. There are classes in this

package to map the terminologies used by users in the

DataConcept objects to the equivalent terms used in the

individual data sources. The DataLink classes also have

the necessary knowledge of the underlying data sources,

schemas or structures to form a query. If the underlying

data source is a relational database, the associated

DataLink object holds information about relation names

and attribute names in each relation, and the links

between relations. If the underlying data source is in

XML format, the DataLink object is aware of the

document type definition associated with each XML file.

3.4 Spatiotemporal Analysis Services

The Spatial-Temporal Analysis Services add

computational capabilities for the specialized analytical

tasks required by marine scientists. The example

modelling and simulation task used in the prototype

involves calculating Habitat Suitability Indices (HSI) for

different marine locations for a species. These indices are

then used to arrive at a classification of habitats for that

species, presented to the user in cartographic format.

data.dat

subFile.sub

Result1.out

Result2.out

…

Environmental

Raster maps

HIS Map

Blossom

ArcObject

 Figure 6. HSI Workflow diagram

Figure 6 illustrates the workflow involved in the analysis

process in this component. The user interacts with the

main interfaces to specify parameters for the analysis:

environmental variables, temporal range and species. The

software extracts relevant data from the data source,

generates an ASCII text file in the format required by the

statistical package Blossom (2005). The application

software interacts with Blossom commands to carry out

the analyses. The output returned by the Blossom

package is interpreted and used to produce Habitat

Proc. Eighteenth Australasian Database Conference (ADC 2007)

87

Suitability maps. Several map generating and

manipulation functionalities are used in producing the

final and intermediate maps: interpolation methods are

used to generate raster maps for the environmental

variables, and map algebra techniques are used to

combine the separate environmental maps into the

Habitat Suitability Index maps.

3.5 Knowledge Base Services

The Knowledge Base, discussed further in the subsection

3.5.1, maintains a repository of ontologies that represent

users’ understanding of relevant domain concepts. The

metamodel incorporates semantics and links between the

global ontologies (biological taxonomies, habitats etc.),

ontologies for dimensions space, time and theme and the

underlying data collections. The Knowledge Base

Services provide the functionality that enables users to

express queries in terms that are relevant to them. The

code in this component is similar, at the design level, to

the services in the QueryGUI package (section 3.2).

The user interaction model is an important aspect of this

component. Its interface includes browsing capabilities

for two reasons: first, it reveals to users the classification

schemes and hierarchies available to allow for semantics-

based querying (illustrated in section 4.1) and second, it

enables them to identify the level of the hierarchy

required. This selection prompts the system to generate

aggregate variable values at the required level of

abstraction. This feature is illustrated in the example in

section 4.2.

Another important aspect of the Knowledge Base services

functionality is to resolve semantic differences between

data sources. The case study in section 4.3 serves to

illustrate this feature using the example of inconsistency

in the classification of the environmental variable

sediment. The knowledge services use a reconciliation

method to reclassify the hierarchy in the data resource

and map it to the global domain classification for marine

habitats.

3.5.1 The Knowledge Base

Georeferenced digital libraries and web-based search

engines as described in Janee and Frew (2002) are

frequently underpinned by carefully curated ontologies

and gazetteers. In the case of our system framework, the

data schemas, diverse ontologies, classifications,

taxonomies and thesauri all represent relevant

information. Unifying a wide collection of semantic

fragments into a definitive well-crafted knowledge base is

a major challenge as discussed by Frank and Kemp

(2001). Another characteristic of the diverse data

resources is that they overlap in their content to varying

degrees. In order to accommodate the structural and

semantic diversity and to provide links between the data

sources in the application and the scientific domain

related concepts we provide layered conceptual domain

knowledge model. In addition to articulating the

semantics at various levels of abstraction, our framework

encapsulates the associated services required for

interoperability in multidimensional, hierarchical

information spaces (Kemp and Lee 2000). Zaslavsky et al

(2003) describe a similar system based on the Open

GRID Services Architecture as a community

cyberinfrastructure.

The knowledge base consists of a layered structure that

hides the complexity and diversity of the information

resources from end users. It consists of three types of

objects: metadata objects, dimension ontologies and

global or domain ontologies.

The metadata layer consists of metadata objects (one per

information source) that encapsulate collection or

document level information about each data source

conforming to standards prevailing in the marine

geoscience community. They contain administrative and

access information, details of the provenance of the data

sources, lineages and approximations of the spatial and

temporal extents of the underlying data. These

coordinates enable quick ‘first pass’ searches over the

data sets available in the information base. Metadata

objects also include information on the format/data type

of the spatial and temporal attributes in the collection to

determine the appropriate level of spatial integration

when data are extracted from more than one resource.

Many geoscientific data portals provide metadata views

for tasks such as data discovery, access services and

indication of fitness-for-use. Our knowledge base enables

each metadata object to be linked with one or more of the

types in the dimension ontologies to enable access to a

range of spatial and temporal services.

The components of the dimension level metadata objects

perform two functions. They articulate the domain

concepts that enable users to specify the spatial, temporal

and thematic parameters relevant to queries. They also

provide links to the underlying information sources to

enable transparent interoperability over the different data

sets. As most queries in environmental analysis examine

attributes with reference to the space-time-theme

composite, three ontologies have been provided at this

level: the spatial hierarchy, the temporal hierarchy and

the thematic classification. Figures 2 and 3 (in section 2)

illustrate part of the spatial ontology specialized by

community-related context. Each spatial class in the

ontology (Figure 3) is represented by its type_name,

textual label, textual description and structural and

functional specification. The classes in the bottom layer

of the ontology instantiate the aggregation semantics.

Thus, for example, a particular ICES Division may be

identified by its code (VIId), its complete or part textual

description (Eastern English Channel), its defining

coordinates (MBR: minimum bounding rectangle) and by

direct interaction at the user interface. The ontology

specification also enables the aggregation of aspatial

attributes of spaces contained_in the specified area.

 Similarly, the temporal hierarchy can provide several

perspectives on time. For example, a linear temporal view

enables investigation of phenomena using operators based

on temporal logic such as overlap, touch, disjoint and so

on. An alternative classification may be based on seasons

as shown in Figure 7.

CRPIT Volume 63

88

 Figure 7. Temporal seasonal classification

The seasonal classification is relevant for the framework

and could be implemented using either lookup tables or

functions depending on the spatial extent of the analysis.

In the current implementation, temporal attributes are

identified simply as time points and temporal intervals

with associated operators.

The thematic ontology consists of a hierarchy of textual

terms classified according to the main categories of

information sources in the testbed: ‘fisheries’,

’legislation’, ‘research’, ‘benthos’ and ‘dredging’.

Concept terms link to other domain related concepts,

using hierarchical (broader/narrower term), associative

and other relationships. Some of these concepts are also

linked to the global ontologies in the knowledge base. For

example, linking the concept ‘species’ to the global

taxonomy for marine species, provides access to the

semantics of the biological taxonomy.

The reference ontology layer contains the global

semantics applicable to the marine domain. Information

at this level refers to global repositories such as those

supported by the Global Biodiversity information Facility

(GBIF), Taxonomic Databases Working Group (TDWG)

and the Ocean Biodiversity Information System (OBIS).

In our prototype system we have included a structured

biological taxonomy of the species that occur in the

marine area of interest and are used for various tasks such

as providing the infrastructure for associating different

common names for scientifically identified species,

aggregating data at various levels of the hierarchy and

indirectly enabling the underlying data sets to be linked

for ad hoc analysis. A more complex example of an

ontology at this level is the detailed classification of

marine habitats (illustrated in Figure 1). This ongoing

European initiative on defining a classification for marine

spaces, starts with fairly coarse classifications based on a

few major physical parameters and proceeds through

successive levels of refinement to include topographic

features and biotic communities associated with the

ecological units. In the current version of the project the

main use of this ontology is to enable users to define

habitat suitability indexes for relevant species depending

on the variables available in the underlying data sets.

4 Geospatial information retrieval: case

studies

In this section the capabilities of the research framework

are illustrated using typical queries and analysis tasks.

4.1 Interoperability of data sources

The first example illustrates retrieval of data from two

heterogeneous fishery databases. The query parameters

specify retrieval of:

- Theme: fishery, subtheme catch

- Theme: species Solea solea

- Time: temporal interval (calendar dates)

- Space: ICES rectangle (the second level of the

spatial hierarchy, illustrated in Figure 2)

- Display mode: map

Figure 8 illustrates the output showing the requied

variables from two separate national databases.

 Figure 8. Data from heterogeneous databases

4.2 Aggregation of data at user-specified level

of concept hierarchy

This example illustrates the interaction of an information

source with one of the semantic hierarchies in the

knowledge base, the biological taxonomy. The user has

navigated the taxonomy and selected the genus Loligo as

the aggregation level for thematic information to be

retrieved. The abundance values refer to the data

collected in annual research surveys. Figure 9 shows the

abundance of this genus (all species aggregated), from the

identified input source, in cartographic format. In this

case, the visualization of the spatial dimension is in point

form, with the size of the icons of the sampling locations

reflecting the relative values of the abundance. The ICES

grid is superimposed on the map for visual reference, for

example for industrial catch of the same genus.

 Figure 9. Aggregated abundance of selected genus

Proc. Eighteenth Australasian Database Conference (ADC 2007)

89

4.3 Visualization based on ontology-defined

classification

This example illustrates the use of a domain level (global)

ontology, the habitat classification (Connor et al, 2004),

to reclassify an alternative classification in one of the data

sources. The ontology includes seabed sediment classes

in its definition of marine areas at level 2 (see Figure 1).

The first frame, Figure 10 (A), shows a small subsection

of this classification where the class ‘Littoral sediment’

(LS) is further subdivided into three subclasses, ‘Littoral

coarse sediment’ (LCS), ‘Littoral sand’ (LSa) and

‘Littoral mud’ (Lmu). This particular research survey

database uses an alternative sediment classification

system (Larsonneur et al 1979), which contains four

subclasses at this level: ‘Coarse sand’, ‘Fine sand’,

‘Gravel and pebbles’ and ‘Mud’ as shown in Figure 10

(B). When this data set is used locally, this classification

is appropriate. However, when it is integrated with data

sets from other national data sets, the global ontology is

used to reclassify it to achieve semantic consistency.

Figure 10 (C) shows the same data in map form where the

original categories ‘Fine sand’ and ‘Coarse sand’ have

been merged for equivalence with the ontological class

‘Littoral sand’. Thus the framework enables individual

databases to maintain local heterogeneity and also

provides a reclassification service, when required, for

global interoperability.

 Figure 10(A) Global ontology

 Figure 10(B) Local classification (4 sub classes)

Figure 10(C). Reclassification of sediment types

(3 subclasses)

4.4 User-specified spatial search and multiple

thematic retrieval

This example illustrates the discovery of multi-theme

data and related information. User interaction in this

example starts with an interactively specified rectangle of

interest as shown in the upper window of Figure 11.

Figure 11. Multi-theme output and retrieval of linked

information

The system reveals the data sources relevant to the search

space and enables the user to refine the query by

specifying required parameters. In this example, the

environmental variable surface salinity is displayed as a

raster map (interpolated from point samples in the

research database), overlaid with information relating to

fishery catch data for species Solea solea by ICES

rectangles. Unstructured information in the user-specified

search rectangle referring to active dredging areas is also

displayed in the lower window. The knowledge base

enables the system to discover that the dredging areas

have association links with text documents (research

reports). The existence of the documents is indicated on

the map using document shaped icons which also indicate

CRPIT Volume 63

90

the number of relevant documents discovered (1 in this

case). Clicking on the hyperlinks displays the contents of

the documents.

5 Conclusion and future work

Initial results of this research are promising. Flexible and

open-ended support for scientists and decision-makers

can be provided by enabling interoperability across

dispersed heterogeneous information sources coupled

with appropriate metadata and semantic knowledge.

The future of the World Wide Web will involve scientific

domains with a large number of existing metamodels and

ontologies (Costello and Vanden Berghe 2006). There

will also be increasing requirements to extend or

contextualize existing ontologies and map between

different ontological specifications. A related requirement

is to enable the ontological resources (knowledge bases)

to evolve and be easily updated, as data sets and metadata

models are added to the resources for a research

community (Reinoso-Castillo et al 2003). In our system,

the collection level metadata and the ontologies are part

of the knowledge base which functions as a community

resource at a central hub. This makes it easier to extend

the range and type of information resources and related

semantics available to researchers in a scientific domain.

There are several interesting directions for future work.

Ontologies and reasoning: Investigation of formal

ontology specification languages to enable reasoning with

multiple ontologies in complex scientific domains.

Real-time response: Many environmental monitoring

tasks such as early warning systems for natural hazards

require real-time responses. Wiederhold (2000) has

suggested that real-time simulations should be an integral

part of decision-making frameworks. A future extension

of this research will consider the design and performance

implications of this requirement.

Platform for creating and maintaining the knowledge

base: It would be useful to include an interface to enable

users to discuss and update the knowledge model as a

collective activity. This could be similar to a ‘blackboard’

component in decision support systems. Such a facility

would encourage cooperative decision-making and thus

be of interest in areas such as the marine domain where

there exist recognized conflicts of interest between user

groups such as the fishing industry and marine biologists.

Ontologies and reasoning: Investigation of formal

ontology specification languages to enable reasoning with

multiple ontologies in complex scientific domains.

Distributed framework: The design of the framework and

the underlying technologies assume that the data, users

and computational framework are distributed. To achieve

a disciplined model for the framework, standards such as

WSDL, UDDI and SOAP should also be investigated as

well as the promise of the GRID architecture for a

federated infrastructure as discussed by Watson (2005).

6 References

Blossom: Blossom Statistical Software. US Geological

Survey.

http://www.fort.usgs.gov/products/software/blossom/bl

ossom.asp Accessed 8 Aug. 2006.

Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini,

L. and Stuckenschmidt, H. (2004):Contextualizing

ontologies. Journal of Web Semantics 1(4): available

online:

http://www.websemanticsjournal.org/ps/pubs/2004-20

Buckland, M. and Lancaster, L. (2004): Combining Place,

time and Topic. D-Lib Magazine 10(5), ISSN 1082-

9873.

CFP: The European Union Common Fisheries

Policy.http://ec.europa.eu/dgs/fisheries/index_en.html

 Accessed May 2006.

Connor, D.W., Allen, J.H., Golding, N., Howell, K.L.,

Lieberknecht, L.M., Northen, K.O. and Reker, J.B.,

(2004): The Marine Habitat Classification for Britain

and Ireland, Version 04.05 JNCC, Peterborough, ISBN

1 861 07561 8.

Costello, M. and Vanden Berghe, E. (2006): ‘Ocean

Biodiversity Informatics’: a new era in marine biology

research and management. Marine Ecology Progress

Series 316: 203-214.

DOM: Document Object Model,

http://www.w3.org/DOM/

ESRI: Environmental Systems Research Institute,

http://www.esri.com/ Accessed Jan. 2006.

Frank, R. and Kemp, Z. (2001): Ontologies for

knowledge discovery in environmental information

systems. Proc. Workshop on Complex reasoning on

geographical data (CRGD), Raffaeta, A. and Renso, C.

(Eds). December, 2001, pp 15-30, Paphos, Cyprus, 2001.

Franklin, M., Halevy, A. and Maier, D. (2005): From

Databases to Dataspaces: A New Abstraction for Data

Management. ACM SIGMOD 34(4): 27-33.

Gangemi, A., Fisseha, F., Pettman, I., Pisanelli, D.M.,

Taconet, M. and Keizer, J. (2002): A Formal

Ontological Framework for Semantic Interoperability

in the Fishery Domain, Proc. ISCW 2002,

International Semantic Web Conference, June 9-12,

Sardinia, Italy.

GBIF: Global Biodiversity Information Facility.

http://www/gbif.org/ Accessed Aug. 2006.

Halevy, A., Etzioni, O., Doan, A., Ives, Z., Madhavan, J.,

McDowell, L. and Tatarinov, I. (2003): Crossing the

Structure Chasm. Proc. Conference on Innovative

Database Research (CIDR 2003), Asilomar, CA,

USA. January, 2003).

ICES: International Council for the Exploration of the

Sea, http://www.ices.dk/ Accessed May, 2006.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

91

ISO: International Standards Organization.

http://www.iso.org/ Accessed Jul. 2006.

Janeé, G. and Frew, J., (2002): The ADEPT Digital

Library Architecture, ACM / IEEE Joint Conference on

Digital Libraries, July 2002, Portland, Oregon.

JAXP: Java API for XML Processing.

http://java.sun.com/webservices/jaxp/ Accessed June

2005.

Kemp, Z. and Lee, H. (2000): A Multidimensional Model

for Exploratory Spatiotemporal Analysis. Proc. 5th

International Conference on GeoComputation,

Carlisle, B. and Abrahart, R. (Eds). University of

Greenwich, UK.

Kemp, Z. and Frank, R. (2005): Knowledge

representation and semantic interoperability in marine

information systems. In GIS/Spatial Analyses in

Fishery and Aquatic Sciences (Vol. 2). Nishida, T.,

Kailola, P. and Hollingworth, C. (Eds). Fishery-

Aquatic Research Group, Saitama, Japan. 735 pp.

ISBN: 4-9902377-0-6.

Larsonneur, C., Vaslet, D., J.-P. Auffret. (1979): Les

Sédiments Superficiels de la Manche, Carte

Géologique de la Marge Continentale Française.

Bureau des Recherches Géologiques et Minières,

Ministère de Industrie, Service Géologique National,

Orléans, France.

OBIS: Ocean Biogeographic Information System.

.http://www.iobis.org/ Accessed Aug. 2006.

OGC: Open geospatial Consortium.

http://www.opengeospatial.org/ Accessed Jul. 2006.

Reinoso-Castillo, J., Silvescu, A., Caragea, D., Pathak, J.,

and Honavar, V. (2003): Information extraction and

integration from heterogeneous, distributed,

autonomous information sources – A federated

ontology-driven, query-centric approach. In IEEE

International Conference on Information Integration

and Reuse, Las Vegas, Nevada, 2003.

Smith, B. and Mark, D. (1998): Ontology and Geographic

Kinds. Proc. 8th International Symposium on Spatial

Data Handling, SDH '98, Poiker, T. amd Chrisman, N.

(Eds). Vancouver, Canada, July 1998.

TDWG: Taxonomic Databases Working Group.

http://www.nhm.ac.uk/hosted_sites/tdwg/ Accessed

Nov. 2005.

Tsontos, V. and Kiefer, D. (2003): The Gulf of Maine

biogeographical information system project:

developing a spatial data management frameworkin

support of OBIS. Oceanologica Acta 25 (2003): 199-

206.

Ungerer, J. M. and Goodchild, F. M. (2002): Integrating

spatial data analysis and GIS: a new implementation

using the Component Object Model (COM),

International Journal of Geographic Information

Science, IJGIS, 16(1): 41-53.

Wadsworth, R., Balzter, H., Gerard, F. George, C.,

Comber, L. and Fisher, P. (2005): Quantified

Conceptual Overlaps: their use for reconciling

inconsistent data sets using Siberian land cover as an

example. Proc. GISPlanet 2005 Conference, 30 May -

4 June 2005, Estoril, Portugal.

Watson, P. (2005): Databases in Grid Applications:

Locality and Distribution. In Databases: Enterprise,

Skills and Innovation. Jackson, M. Nelson. D. and

Stirk, S. (Eds). Lecture Notes in Computer Science

3567, Springer.

Wiederhold, G. (1999): Mediation to Deal with

Heterogeneous Data Sources. In Interoperating

Geographic Information Systems, Vckovski, A.

Brassel, K. and Schek H-J. (Eds). Springer Lecture

Notes in Computer Science 1580.

Wiederhold, G. (2000): Information Systems that Really

Support Decision-making, Journal of Intelligent

Information Systems, 14(2) 85-94.

Zaslavsky, I., Baru, C., Bhatia, K., Memon, P., Velikhov,

P. and Veyster, V. (2003): Grid-enabled mediation

services for geo-spatial information. Proceedings of

NG2I-03, Workshop on Next Generation Geospatial

Information, Cambridge, Massachusetts, USA, October

19-21, 2003.

CRPIT Volume 63

92

Selectivity Estimation by Batch-Query based Histogram and
Parametric Method

Jizhou Luo1 Xiaofang Zhou2 Yu Zhang2 Heng Tao Shen2 Jianzhong Li1

1Harbin Institute of Technology, China
2University of Queensland, Australia

{luojizhou,ljzh}@hit.edu.cn {zxf,zhang,shenht}@itee.uq.edu.au

Abstract

Histograms are used extensively for selectivity estima-
tion and approximate query processing. Workload-
aware dynamic histograms can self-tune itself based
on query feedback without scanning or sampling the
underlaying datasets in a systematic and comprehen-
sive way. Dynamic histograms allocate more buckets
not only for the areas with most skewed data distribu-
tion but also according to users’ interest. However,it
takes long time to ‘warm-up’ (i.e., a large number
of queries need to be processed before the histogram
can provide a satisfactory coverage and accuracy).
Thus, it is less effective to adapt with workload pat-
tern changes. In this paper, we propose a novel online
query scheduling algorithm which can significantly re-
duce the warm-up time for dynamic histograms. A
parametric method is proposed to remedy the prob-
lem of inaccurate query selectivity estimation for the
areas with poor histogram coverage. Experimental
results demonstrate a significant effectiveness and ac-
curacy improvement of our approach.

1 Introduction

Most commercial database systems maintain his-
tograms for the purpose of selectivity estimation
and approximate query processing (Lim, Wang &
Vitter 2003). Typically, the process of building his-
tograms involves sorting and partitioning the data
into buckets, based on scanning or sampling the data.
Histograms built in such a way are often called sta-
tic histograms in a sense that, once being built, they
will remain unchanged even when the underlying data
distribution is changed over time. This type of his-
tograms needs to be rebuilt periodically or when the
error of selectivity estimation reaches a pre-specified
threshold. In order to reduce the cost of building
and maintaining histograms for very large datasets,
self-tuning histograms have attracted growing atten-
tion recently(Aboulnaga & Chaudhuri 1999, Bruno,

Supported by ARC under Grant No.DP0663272; the Na-
tional Natural Science Foundation of China under Grant
No.60273082.

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at the Eighteenth Australasian Database Con-
ference (ADC2007), Ballarat, Victoria, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 63. James Bailey and Alan Fekete, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

Chaudhuri & Gravano 2001, Srivastava, Haas, Markl,
Megiddo, Kutsch & Tran 2006, Loannidis 2003). Self-
tuning histograms are built based on query feed-
back. It provides an inexpensive way to construct
histograms for large datasets with a low up-front over-
head. While such histograms can adapt well to the
changes of the underlying data distribution, they typ-
ically assume that user queries follow a stable work-
load pattern. That is, newly arrived queries are more
likely to visit the areas where previous queries just
visited, and the ares visited by more queries in the
past are likely to be visited more frequently in the
future. This type of ‘workload-aware’ histograms
concentrates on building high quality histograms for
these ‘hot’ areas, at the expense of poor quality or
even no coverage for other areas. For many database
applications where the query workload patterns do
change over time, this type of histograms may not
work well. It is important to investigate self-tuning
histograms that can adapt to the changes of both data
distribution and workload patterns.

In this paper, we consider an online query schedul-
ing method to speed up accuracy convergence process
such that a histogram can reach a satisfactory aver-
age selectivity estimation accuracy more rapidly when
workload pattern changes. This is achieved by giving
a higher priority to the queries in the areas which
are ‘hot’ (according to recently arrived and executed
queries) and skewed (according to recent query feed-
back). On the other hand, there are always some
queries which do not follow the current workload pat-
tern. Estimation accuracy for the queries to these ar-
eas can be poor for self-turning histograms, adversely
affecting the performance of the entire system, often
measured by the average estimation inaccuracy. This
problem is more serious at the beginning of workload
pattern changes. Instead of using uniform distribu-
tion assumption, a novel parametric selectivity esti-
mation method is proposed in this paper for queries
in the areas with poor or no histogram coverage. The
information required for applying parametric estima-
tion is simple and online maintainable. Our work in
this paper is based on STHoles histograms(Bruno
et al. 2001), but provides a significant improvement
for convergence speed and overall estimation accuracy
for queries with changing workload patterns.

The rest of the paper is organized as follows. Sec-
tion 2 introduces notations, definitions and the basic
idea of STHoles. An online query scheduling method
is introduced in Section 3, and selectivity estimation
for range queries using the novel parametric method
in Section 4. A performance evaluation is reported
in Section 5, with related work reviewed in Section 6.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

93

We conclude this paper in Section 7.

2 Preliminaries

As we consider only range queries in this paper, we
can assume that there is only one relation of n at-
tributes. We also assume that an attribute con-
tains only countable value coded as integers. Let
R = (X1, . . . Xn) be the schema of a relation, whose
domain is D = (D1× . . .Dn). Let r be an instance of
R, and Vi ⊆ Di be the set of Xi values in r.

A hyperrectangle B in D is defined as B =
{(x1, . . . xn) ∈ D|vi

l < xi < vi
u, i = 1..n}. B

can be represented using two n-dimensional points
vl = (v1

l , . . . vn
l) and vu = (v1

u, . . . vn
u), where vi

l =
minv∈B vi and vi

u = maxv∈B vi. Thus, B can be de-
noted as B =< vl, vu >. The volume of B(vl, vu)
is vol(B(vl, vu)) =

∏
i=1..n(vi

u − vi
l). The topological

relationships we are interested between two hyperrec-
tangles B and B′ are disjoint (B ∩ B′ = ∅), overlap-
ping (B ∩ B′ 6= ∅) and containment (B is nested in
B′, denoted as B ⊆ B′). A containment tree can be
constructed for a set of hyperrectangles Bi, 1 = 1..w,
such that 1) the root node is the entire space of in-
terest, 2) a child node is nested inside a parent node,
and 3) no sibling nodes are nested among each other.

A histogram H for relation r is a collection of
hyperrectangle and frequency pairs. That is, H =
{(Bi, fi)|i = 1..m}, where fi is the expected number
of r tuples inside Bi (the points on a hyperplane of a
hyperrectangle is assigned to only one hyperrectangle
following the open-close hyperplane convention). The
estimated frequency of r tuples in Bi is also denoted
as H(Bi), and Bi is referred to as a bucket. For dif-
ferent types of histograms, all buckets in a histogram
of r may form a partition, a cover, or a partial cover
of D or V.

For a hyperrectangle Bq =< v, v′ >, a range query
q(Bq) against r retrieves all {x ∈ r|x ∈ B(v, v′)}. Bq
is called the query region of q. The collection of query
result is the query feedback of q, and the number of
tuples in the result collection is denoted as act(r, q).
We use est(H, q) to denote the estimated number of
tuples returned from executing q against r according
to histogramH. If data distribution inside any bucket
is assumed to be uniform, this estimation can be done
in a straightforward way:

est(H, q) =
∑

Bi∈H

vol(Bi ∩Bq)
vol(Bi)

H(Bi)

Next we introduce STHoles histograms(Bruno
et al. 2001), which is a representative method to build
and maintain histograms using query feedback. To
simplify our discussion and for better visualization,
we set n = 2 hereafter. However, our discussions are
applicable to higher dimensions.

There are many different ways to construct the ini-
tial histogram. Assuming that initially the histogram
is empty. Once a query is executed, the query feed-
back becomes available and can be used to identify
any skewed data distribution by checking the precise
number of tuples returned for the query in the ar-
eas overlapping with other existing buckets. Once a
significant variation of data distribution is found for
any part of a bucket, a ‘hole’ is created to give a
more accurate expected frequency for that part us-
ing a new bucket, and the frequency of the existing

bucket affected will be adjusted with the new infor-
mation. Some sophisticated algorithms are proposed
in (Bruno et al. 2001) to determine bucket shapes and
perform bucket mergers. This approach does not re-
quire a systematic/comprehensive scan of the under-
lying dataset, but allocates buckets according to user
query feedback. This approach is called ‘workload-
aware’, as the refinement of a histogram is directed
by user’s collective interest (as per queries). It can
also adapt to the changes of data distribution, as
such changes are eventually reflected in query feed-
back that leads to changes of the histogram.

Assume bucket B in a STHoles histogram contain
a number of holes (i.e., a set of buckets B1, . . . Bk,
where these child buckets do not overlap by defini-
tion). The net volume and net frequency of B can be
defined as

volnet(B) = vol(B)−
k∑

i=1

vol(Bi)

and

fnet(B) = f(B)−
k∑

i=1

f(Bi)

The density of a bucket B is defined as

d(B) =
fnet(B)

volnet(B)

Define a workload W as a sequence of |W | queries.
A common metric to measure the performance of a
histogram is the average absolute error over W :

E(r,H,W) =
1
|W |

∑

q∈W

|est(H, q)− act(r, q)|

In STHoles, a histogram may not fully cover the en-
tire data space, thus there may not exist any buck-
ets for certain areas. To make robust comparison
across different datasets, a normalized absolute error
metric is used in (Bruno et al. 2001) by introducing
estuni(r, q) which is the estimated result size by as-
suming uniform data distribution for the areas where
no histograms are available. That is,

E′(r,H,W) =
E(r,H,W)
Euni(r,W)

where

Euni(r,W) =
1
|W |

∑

q∈W

|estuni(r, q)− act(r, q)|

The STHoles approach makes an explicit assump-
tion that workload pattern is stable. Therefore, his-
togram performance is evaluated by using a train-
ing workload to create a histogram, and then to use
a validation histogram to compute the error metric,
where the validation workload has the same distrib-
ution pattern as to that of the training workload (in
terms of both coverage and query foci areas). For
many database applications, queries do follow some
workload patterns within a period, but the patterns
may change over time. Not being able to divide
queries into training and validation queries, the order

CRPIT Volume 63

94

Notation Description

id query ID
B query area
hot, gap hotness scale and gap value
est, rst the estimated and actual number of tuples
children pointers to children nodes
parent pointer to the parent node
next pointer to the next execution candidate node

Table 1: A table of attributes.

of executing queries becomes important as the feed-
back from a query can impact on other queries. In
other words, this problem is an online query schedul-
ing problem with a continuous stream of range queries
targeting variable query regions. We approach this
problem from two aspects: 1) a fast-convergence on-
line scheduling algorithm to give higher priority for
the queries in the areas where more queries need to
be observed to improve the overall quality of the his-
togram; and 2) a novel estimation method using con-
cise and online maintainable information to estimate
the selectivity for queries in an area with no or poor
histogram coverage.

3 Online Query Scheduling

In this section, we propose a scheduling algorithm
based on both the recent past query history and
the queries in the buffer (i.e., arrived but yet to be
processed). For each query q, we define two measures
first: hotness scale and the gap value.

The hotness scale of q in relation to a set Q of
queries is defined as hot(q, Q) =

∑k
i=1 Si × ni, where

{Si|i = 1..k} is a set of disjoint rectangles inside q.B
generated by overlaying all q′.B together, q′ ∈ Q, and
ni is the number of queries in Q whose query regions
cover Si (because each Si is obtained by a complete
overlay of all query regions in Q, the case for a query
in Q to partially cover any Si does not exist). Intu-
itively, a query is hotter if it is in a larger area that
many other queries also are interested in. Obviously,
the hotness scale changes when new queries arrive.

For two regions B1 and B2, B1 ⊆ B2, their density
difference can be measured using a gap value, which
is defined as

gap(B1, B2) =
d(B1)
d(B2)

=
fnet(B2)

volnet(B2)
× volnet(B1)

fnet(B1)

Clearly, a gap value falls into range (0,+∞), where
gap = 1 means that there is no difference between
the density of B1 and B2; 0 < gap < 1 means that
the inner bucket B1 has a lower density (and a smaller
value of gap indicates a larger density difference); and
gap > 1 means that the inner bucket B1 has a higher
density (and a larger value of gap indicates a larger
density difference).

3.1 Query Tree Construction

Assume that continuously arriving query stream is
stored in a buffer. The buffer size is limited but large
enough so we do not need to consider the problem
of query buffer overflow. Further, we assume that a
query has a deadline for it to be executed, but in gen-
eral queries can be deferred for execution within the
specified time limit in favor of a better overall sys-
tem performance. This is a common assumption for

batch query processing. Once a new query arrives,
the scheduling algorithm must compute its hotness
and gap values, and update the changes of these val-
ues in relation to other yet-to-execute queries in the
buffer. The queries in the buffer need to be orga-
nized in such a way that updates when new queries
arrive and the algorithm to select queries for execu-
tion can be efficiently supported. We propose to or-
ganize the current queries according to their natural
containment relationship. Table 1 lists the attributes
recorded for each node in the tree.

Algorithm 1: InsertQuery

input: q: arriving query, QT : root of a query tree
output: QT : query tree updated with q

01. t ← QT ; q.hot ← vol(q);

02. while t 6= null {
03. if q.B ⊆ t.B {
04. t.hot ← t.hot + q.hot;

05. t ← the first unvisited child of t;
06. } else { // q will be inserted here

07. for each child node q′ ∈ t.children {
08. if q′.B ⊆ q.B // replace a child
09. q.hot ← q.hot + q′.hot;

10. let q′ be a child of q, and q a child of t;

11. else { // exchange hotness with a sibling
12. q.hot ← q.hot + vol(q.B ∩ q′.B);

13. q′.hot ← q′.hot + vol(q.B ∩ q′.B);

14. }
15. }
16. t ← the next node to visit according to DFS;
17. }
18. }
19. return QT ;

The root node of the tree is initialized to cover the
entire space. The algorithm to insert a new query q
into the tree is simple: a depth-first search (DFS) is
performed on the current query tree to find all queries
whose query regions fully contain q.B, and the hot-
ness value for all the nodes traversed during the search
will be updated. Algorithm 1 is the sketch of this al-
gorithm. If q.B is nested inside t.B, t is a node in the
tree, t.hot will be increased by q.hot and the search
will continue for all of children nodes of t (lines 3-5).
If q.B is not nested inside a node t, then q will be
inserted as a child of t, and the search of this branch
of the tree is completed and moved to another part of
the query tree according to DFS until no more nodes
to search (lines 7-13). When q is to be inserted as
a child of t, there are two different cases: 1) a child
node q′ of t are nested inside q.B. In this case, q′ will
become a child of q and pass its hotness value to q
before q is inserted as a child of t (lines 8-10); 2) a
child node q′ of t is not nested in q.B, in this case,
the volume of overlapping areas of q and q′.B will be
added to the hotness value of both q and q′ (lines 11-
13). Note that a query may be nested inside more
than one sibling nodes; in this case, the search will
be followed along all these subtrees. That is, a query
can be inserted into multiple places in the tree. It is
not difficult to see that the above algorithm maintain
the hotness scale values for all nodes in the tree after
a new query is inserted. The reason for a query q
to be inserted into multiple places in the tree is that
all nodes that contain q.B must be prossed to get its
share of increased hotness scale resulting from q.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

95

3.2 Query Scheduling

In order to minimize the average error for a sequence
of queries, a query is selected to execute such that
its feedback can benefit the process of tuning the his-
tograms most for the remaining and future queries.
Before discussing the scheduling algorithm, we ex-
plain two observations.

observation 1. In order to make a histogram more
adaptive to workload pattern changes, one should test
the queries on hot spots first. If two spots’ hotness
degrees are identical, one should test the queries which
are as close as possible to those areas where data is
more disproportionately distributed. This strategy can
speed up accuracy convergence of the histogram.

observation 2. If the density of bucket B1 is much
smaller than that of bucket B2, then the data distri-
bution in bucket B2 is more interesting than that in
bucket B1. So, it is rationale to choose a child query
of B2 to execute in the next step in order to speed up
the convergence of the histogram. Otherwise, the data
distribution in bucket B1 is more interesting; thus it
is better to choose a sibling query of B2 to execute in
the next step in order to speed up the convergence.

Based on these two observations and using the
query tree data structure, a simple scheduling algo-
rithm can be used to select the top k queries from the
query tree according to their hotness values. These
k queries will be further selected to choose the one
with the smallest gap value. Figure 1 illustrate the
rational behind this heuristics of choosing the small-
est gap value. This can be understood by considering
the following three cases:

Case 1: if g1 < g2 < 1, this means that q1.parent
is more dense than q1.parent.parent comparing with
its counterpart of q2.parent. Based on the above
heuristics rule, q1 is selected to execute.

Case 2: if g2 > g1 > 1, this means that q2.parent
is less dense than q2.parent.parent comparing with its
counterpart of q2.parent. So q1 has a higher priority.

Case 3: if g2 > 1 > g1, it is straightforward to tell
q1.parent is much more dense than q1.parent.parent
comparing with its counterpart of q2.parent. q1 will
be executed first.

The above three cases all suggest to select a query
with the smallest gap value. Note that a gap value is
only known after some queries are executed. When a
new query is inserted, its gap value is inherited from
its parent, and the gap value for the root is defined
as 1. Once a query q is executed, q.rst is set to the
number of tuples in the query result, and for each
children nodes q′ of q, q′.gap = d(q.parent.B)/d(q.B).
In other words, the gap value of a node is the ratio
of the densities of its parent and grand-parent nodes.
This is important because the gap value of a node is
used to prioritize query execution (i.e., its own density
is unknown), so its gap value indicates if its parent
node is in an area with skewed data distribution.

Once q is selected, it is not removed from the query
tree immediately; rather, q.est is set to the current es-
timated selectivity of q (when q is inserted into the
query tree, q.est = q.rst = 0). The reason of doing
so is that executed queries are still useful for iden-
tifying the areas with large hotness and gap values.
These executed queries, as explained next, will only
be deleted when the query buffer is about to run out
for new arrivals. q.rst is set to the actual number
of tuples in the result of q after its execution. It is

q
1

q
1
.parent

q
2
.parent

 q
2

q
1
.parent.parent

q
2
.parent.parent

Figure 1: Scheduling order with gap value

mentioned before that a query may be inserted into
more than one place in the tree. Multiple instances
of the same query are treated as different queries in
the scheduling algorithm, except that they will be ex-
ecuted only once and are deleted together.

3.3 Discussions

Building Histograms The scheduling algorithm
proposed in this paper is an orthogonal improvement
to the STHoles idea. With the optimized order of
query execution, the basic ideas and algorithms in
STHoles are still applicable here. A noticeable dif-
ference between our method and STHoles is how the
entire data space is approximated in the histogram.
In STHoles, the histogram is initialized to be empty;
in our method, the initial histogram is a single bucket
that covers that entire space of interest with uniform
distribution. A uniform distribution about a very
large area can lead to a considerably worse overall
estimation accuracy error; thus, STHoles avoids this
problem by making an assumption that a consistent
workload pattern means that, after a training period,
no new queries will retrieve data from previously un-
visited region. For the query stream environment con-
sidered in this paper, this assumption can no longer
be made. Further, consider the case where a query
to a large region is followed by a number of queries
targeting some small areas. This is equivalent to the
problem of how to deal with the entire space. We ad-
dress this problem by a novel parametric selectivity
estimation method we propose in this paper. Another
difference comparing to STHoles is that a different
merger algorithm is used in our approach, as will be
discussed later.

Query Deletion Once a query is executed, it
needs to be removed from the query tree. Otherwise
the query buffer will reach its limit and new queries
can not be stored for optimization. However, if a
query is deleted from the query tree immediately after
execution (and its children nodes will be ‘promoted’
one level up), then the query tree tends to be a flat
structure and becomes ineffective to trace the users’
interests. This may also cause the histogram over-
sensitive to users’ interest change (such as a small
variation of workload pattern), as buckets are moved
around too quickly and affected too much by the new
arrivals without the balancing factor of recent past
queries. To overcome this problem, we store the ex-
ecuted queries in another First-In-First-Out queue of
a pre-determined size. After query q is executed, q
remains in the query tree but is also pushed into the
queue. The oldest query will be removed from the
queue when the queue is full, and only at this time, q
is deleted from the query tree.

Starvation Using the scheduling algorithm de-
scried above, some queries may be forced to wait for
a long time or even never get executed (because they
are from a ‘cold’ area for example). While such wait-

CRPIT Volume 63

96

ing has no negative impact on the error metric we
try to minimize, they can cause problems from user’s
side. It also has a side effect that the available size of
the query buffer is reduced by the queries that cannot
be cleared for too long. This problem can be solved
by recording, for each query q, a pair of time values
q.t1 and q.t2, q.t1 ≤ q.t2, where t1 is its arrival time
and t2 is the maximum tolerate time which can be a
default time set by the system (i.e., 3 minutes after
arrival) or a time set by the user. These two values
can be used to let the queries that have been waiting
for too long or approaching the deadline ‘jump the
queue’. Using feedback-based histograms, however,
means that these time-activated queries may not in
the areas with good histogram coverage, thus may
have a negative impact on the error metric measure.
This problem is addressed in the next section using
the parametric selectivity estimation method.

4 Selectivity Estimation

Traditionally, the data in a bucket is assumed to be
uniform. Selectivity estimation, therefore, can be
done easily as mentioned before. However, the whole
idea of STHoles is built on the observation that data
inside a bucket may not be uniform (thus, ‘holes’ are
opened inside a bucket once a significant variation of
data distribution is found in a bucket). An interesting
case is how to estimate the selectivity for a region in-
side a large bucket which consists of a number of hole
buckets. We argue that if the query region is close to
those hole buckets in a large bucket, a better estima-
tion can be obtained by considering the frequency of
those hole buckets. The situation of estimating selec-
tivity for a query in an area which has no histogram
is in the same category. We propose a parametric
method to estimate the selectivity for areas close to
the child buckets.
Algorithm 2: EstInBucket

input: B: a bucket of H; q: a query covered by r(B)
//r(B) is the rectangle bounded by the boundary of B

output: S: selectivity estimation of q
1. E ← 0;

2. For each child bucket B′ of B;

3. qB ← q ∩ r(B);
4. if qB 6= ∅ then E ← E + EstInBucket(qB , B′);
5. q ← q \ qB ;

6. if cr(B) < threshold then E ← E +
R R

q ϕ(x, y) dxdy;

7. else E ← E +
vol(q)

volnet(B)
∗ f(B);

8. return E;

Given a user query q, its selectivity is estimated by
a recursive algorithm EstInBucket(q, B), as shown
in Algorithm 2. EstInBucket(q, B) recursively es-
timates the selectivity of the intersection area be-
tween q and each child bucket B′ ∈ child(B), where
child(B) consists of all the child buckets of B (lines
2-5). If the cover ratio Cr is less than a pre-
specified threshold, a density function ϕ(x, y) is pro-
posed to capture the data distribution around each
child bucket (line 6). In other words, we use child
buckets’ information to estimate selectivity in bucket
B. However, if the cover ratio Cr is greater than the
threshold, we assume all the tuples in B are uniformly
distributed and estimate the selectivity as fnet(B)
times the ratio of the volume of q falling in B over
volnet(B)(line 7). We defer the discussion on density
function ϕ(x, y) to the next subsection.

4.1 Density Function

In this subsection, we deduce the density function
ϕ(x, y) used in Algorithm 2. Our idea is based on
the following observation.

observation 3. The difference between the data dis-
tribution in the area around a bucket and that in the
bucket is unlikely to change dramatically.

This observation is based on the fact that bucket
boundaries are determined by user queries, rather
than some optimal separation based on data distribu-
tion. This observation implies that information about
data distribution in each bucket can be used to ap-
proximate the data distribution of the area nearby.
Without a uniform distribution assumption, an ap-
propriate density function needs to be identified to
describe data distribution.

Define a barycenter (i.e., center of mass) of a
bucket as the point in the bucket where the fre-
quency of the bucket can be viewed as concentrated
on that point. If data are uniformly distributed
within the area bounded by the boundary of bucket,
this barycenter should be the center of the bucket.
However, when data are not uniformly distributed,
i.e., the area has been separated by hole buckets, it
is nontrivial to compute the barycenter, as the cen-
ter moves with respect to each insertion, deletion and
frequency update of a child bucket. To determine the
barycenter (x̄Bi

, ȳBi
) for bucketBi in H, we use the

following propositions.

Proposition 1. Suppose bucket A is the only child
bucket of bucket B, d(A) and d(B) are their densities
under uniformly distribution assumption respectively,
then the barycenter of bucket B can be calculated as
follows:

x̄B =
1

2f(B)

X
X∈{A,B}

(d(X)− d(P (X)))F1(X)

ȳB =
1

2f(B)

X
X∈{A,B}

(d(X)− d(P (X)))F2(X)

where P (X) is the parent of X, d(P (B)) = 0 and
F1(X(vl, vu)) = (v2

u − v2
l)([v1

u]2 − [v1
l]2),

F2(X(vl, vu)) = (v1
u − v1

l)([v2
u]2 − [v2

l]2).

Proof. According to the formula calculating the
barycenter of an area in the plane with density func-
tion ρ(x, y), we have

x̄B =
1

f(B)

Z Z
B

xρ(x, y) dxdy

=
1

f(B)
(

Z Z
B

xd(B) dxdy +

Z Z
A

x(d(A)− d(B)) dxdy)

The result of the expression is what we expected.
The calculation of ȳB is similar.

Proposition 2. Let B as a bucket in H, A as an arbi-
trary hole bucket of B, d(A) as density of A, and p(A)
as the parent of bucket A. By setting d(P (B)) = 0,
the barycenter of B can be computed as follows under
the uniformly distribution assumption:

x̄B =
1

2f(B)

X
A

(d(A)− d(P (A)))F1(A)

ȳB =
1

2f(B)

X
A

(d(A)− d(P (A)))F2(A).

Proc. Eighteenth Australasian Database Conference (ADC 2007)

97

Proof. By proposition 1, we can use the induction on
the number of levels in the bucket-tree rooted at B
to verify this proposition easily.

Once the barycenters of buckets are calculated,
we can use a parametric function to model the data
distribution around these buckets as follows. Let B
be a bucket of histogram H, point (x̄B , ȳB) be its
barycenter, ρB be the density of point (x̄B , ȳB) in B,
and uB be the shortest distance from (x̄B , ȳB) to the
boundary of B. According to Observation 3, barycen-
ter’s density is supposed to be maximal and the den-
sity around this point decreases continuously in the
manner characterized by a parametric function gθ(t),
where θ is the parameters to be determined and t rep-
resents the distance from the query to (x̄B , ȳB). Sev-
eral issues need to be considered. Firstly, the valid ra-
dius of parametric function gθ(t) must be determined
(within and only within this radius the barycenter of
this bucket can be used for estimation). Secondly,
the number of parameters in function gθ(t) must be
determined. And thirdly, the type of function should
be determined. we discuss each of them below.

Let us consider the radius of the parametric func-
tion fist. Since the histogram is built from query
feedback, the frequencies in each bucket and all its
child buckets are known. That is, the data density
of bucket B can be computed precisely and is not af-
fected by any other buckets. Thus, the valid radius
of each parametric function gθ(t) cannot exceed the
distance disB from (x̄B , ȳB) to its nearest barycenter.
Hence, we get have the following condition (1).

gθ(disB) = 0 (1)

Each parametric function can only be used to esti-
mate the data distribution around its owner bucket.
When a query is far away from all buckets, there is
no buckets to be used for selectivity estimation. In
this case, we follow the assumption of uniform den-
sity. The idea above is based on the principle “more
information we known, better accuracy we can get.”

Next, let us determine the number of parameters
in function gθ(t). Except condition (1), we only know
the average data density dB in bucket B. The exact
density at the barycenter is not available. Generally,
the influence form one barycenter reduces with the
distance. Denote the density of point p, which is the
nearest point on the boundary of B to its barycenter
(x̄B , ȳB), as d(B). We get condition (2)

gθ(uB) = d(B) (2)

Thus, we have only two conditions to determine a
parametric function gθ(t) and the number of parame-
ters needed for this function is at most 2.

It is more complex to select the type of the para-
metric function. A polynomial function with only two
parameters such as at + b, at2 + bt, at2 + b, can be
used. When the data distribution is known, a more
accurate function can be applied. For example, we
can choose ae−bt as the function if we know that data
follows Gaussian distribution approximately. After
the function type is determined, function parameters
can be determined by using condition (1) and condi-
tion (2). Denote the obtained function for bucket B
as gB(t), t ∈ [uB , disB]. This function can be easily
extended to be defined for the whole space as below.

GB(t) =

8><>:d(B) t < uB

gB(t) uB < t ≤ disB

0 otherwise

(3)

1
B

2
B
old
B

p
B

1
B

d
B

p
B

(b)
(a)

new
B

Figure 2: Buckets Update

If a query point p is covered by more than one
bucket, its density estimation is a combination from
the influences from all these buckets. Thus, this den-
sity function is

ϕ(x, y) =
X

B∈child(B)

GB(dis((x, y), (x̄B , ȳB))).

4.2 Dynamic Maintenance of Histogram

With more buckets added, a histogram will reach the
size of available memory allocated. In order to be
adaptive to the changes of underlying data distribu-
tion and user’s interest, some existing buckets need to
be merged, by considering two different cases: parent-
child buckets merge (where a parent bucket merges
with one of its child bucket) and sibling-sibling merge
(where two buckets under the same parent bucket
merge).

For the first case, we scan all the buckets’ gap value
and find out the minimum gap value. Denote the
bucket with minimum gap value Gmin as Bmin. Data
density in Bmin is the closest to that of its parent
bucket. This means least penalty will be caused if
Bmin is merged with its parent bucket. Figure 2 (a)
illustrates an example. After B1 is created in Bd, the
actual density of Bd is similar to Bp. Thus, Bd needs
to be merged with Bp.

For the other case, to compare two sibling buckets
(B1 and B2)on the same level under parent bucket
Bp, we find the smallest hyperrectangle Bnew that
encloses both B1 and B2 (Bruno et al. 2001). Figure 2
(b) illustrates an example. In general, Bnew contains
old part Bold (the shadowed region in the example)
from Bp. As we are able to calculate the area of Bold,
we can easily get the frequency of Bold approximately
by using

f(Bold) = f(Bp)
V (Bold)

V (Bp)

In the mean while, Bp becomes Bp′ , volume and
frequency are updated respectively. Having Bp′ and
Bnew’s volume and frequency, we get a new gap value
Gnew for Bnew.There are two drawbacks in sibling-
sibling merge. On one side, the identification of Bnew
is very expensive because we must test if any two
sibling buckets forms as the configuration in figure 2
(b) without any other sibling bucket falling into the
shadowed region. On the other side, f(Bold) is an
estimation number, which may lead to an misleading.

Based on the above discussion, we give parent-
child merge a higher priority than sibling merge.
That is, we determine a parent-child merge candidate
bucket Bmin globally and then to determine wether
there is an better sibling merge candidate bucket
Bnew such that Gnew < Gmin. If so, we will merge

CRPIT Volume 63

98

some two sibling buckets into Bnew; otherwise, we
merge Bmin with its parent.

After two buckets are merged, the barycenter of
each bucket needs to be updated, as well as the gap
values of the buckets surrounding the merged bucket.
Suppose the barycenter of a bucket B is (x̄B , ȳB),
and a new query causes updating the histogram by
inserting a new bucket BI somewhere in bucket B and
deleting a bucket BD in bucket B1. It is possible that
B = B1 (see Figure 2). Now we need calculate the
barycenter of the updated bucket B and B1. Since if
B = B1, we can finish this update by first calculating
the updated barycenter for a insertion in B following
by calculating the updated barycenter for a deletion
in B. So, we only consider the update caused by a
single operation, insertion or deletion.

Proposition 3. Let B is a bucket of histogram H,
d(B) is the density of B and (x̄B , ȳB) is the barycenter
of B. If a bucket BI with density d(BI) is insert into
B and causes the density of B changed as d′(B), then
the barycenter of B can be updated as follows.

x̄ = x̄ + (d′(B)− d(B))[
X

X∈child(B)

F1(X)− F1(B)]

+ (d(BI)− d(P (B)))F1(BI)

ȳ = ȳ + (d′(B)− d(B))[
X

X∈child(B)

F2(X)− F2(B)]

+ (d(BI)− d(P (B)))F2(BI)

Proof. Calculate the barycenter of B before and after
insertion with proposition 2, and subtract the former
from the latter them.

Proposition 4. Let B is a bucket of histogram H,
d(B) is the density of B and (x̄B , ȳB) is the barycen-
ter of B. If a child bucket BD of B with density
d(BD) is merged with bucket B and causes the den-
sity of B changed as d′(B), then the barycenter of B
can be updated as follows.

x̄ = x̄ + (d′(B)− d(B))[F1(B)

−
X

X∈child(B)\{BD}
F1(X)]− (d(BD)− d′(B))F1(BD)

ȳ = ȳ + (d′(B)− d(B))[F2(B)

−
X

X∈child(B)\{BD}
F2(X)]− (d(BD)− d′(B))F2(BD)

The proof of this proposition is similar as above.

5 Experimental Evaluation

In this section, we compare the performance of our
proposed methods with STHoles in the context of
changing data distribution and changing workload
patterns. In addition to comparing their estimation
accuracy, two other impotent factors are also consid-
ered: convergence speed and memory sizes. We call
our technique BQHist hereafter.

In our experiment, a real-world dataset is used:
the State Regional Ecosystem (SRE) dataset with
398, 464 polygons representing different species’ cov-
erage. Synthetic datasets of 2- and 3-dimensions are
also used: one with Gauss distribution and one with
logistic distribution. The Gauss distribution data

consists of a number of Gaussian bells with a pre-
determined standard deviation. The total number of
tuples is 1,600,000. A Zipf distribution regulates the
number of tuples in each Gaussian bell. The logistic
dataset is generated in a similar way.

5.1 Estimation Accuracy

For different datasets, we examine estimation accu-
racy of our algorithm using parametric or uniform
estimation at different cover ratios, as detailed in dif-
ferent types of workload. The capacity of the query
buffer is set to 200 throughout the experiment (i.e.,
at any time no more than 200 queries can be cached
in the buffer for scheduling).

Workload 1: This workload pattern is designed
to compare estimation accuracy. It consists of 1050
queries, with 50, 100, 300 and 600 queries to retrieve
2%, 1%, 0.4% and 0.3% of the whole dataset respec-
tively. These queries are distributed uniformly in the
region, and their combined query areas cover 50% of
the total area.

Result: Figure 3 shows the accuracy after 250
queries are executed on SRE dataset. BQHist with
uniform estimation performs at least 30% more ac-
curate than STHoles. This figure also shows that
BQHist with uniform estimation performs better
than BQHist with parametric estimation, which is
consistent with what we discussed before, as this
workload distribution is not skewed much.

0

0.2

0.4

0.6

0.8

Log
 Gauss
 SRE

Dataset, group1

E
rr

or
 R

at
e

STHoles
 BQHist-par
 BQHist-uni

Figure 3: Accuracy of different estimation methods

0

0.2

0.4

0.6

0.8

1

1.2

SRE exp
 SRE linear
 SRE poly

dataset, function

E
rr

or
 R

at
e

Uniform
 BQHist-uni
 BQHist-par

Figure 4: Accuracy of different functions

0

0.2

0.4

0.6

0.8

1

1.2

SRE 2
SRE 3
SRE 4
SRE 5
 SRE 6
SRE 7

Dataset, degree

E
rr

or
 R

at
e

BQHist-par
 BQHist-uni

Figure 5: Accuracy of different polynomial powers

Workload 2: This workload is designed to examine
the cases where query areas are concentrated to a

Proc. Eighteenth Australasian Database Conference (ADC 2007)

99

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2D Gauss

exp

2D Gauss

linear

2D Gauss

poly

3D Gauss

exp

3D Gauss

linear

3D Gauss

poly

dataset, function

E
rr

or
 R

at
e

BQHist-par
 BQHist-uni

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2D Log

exp

2D Log

linear

2D Log

poly

3D Log

exp

3D Log

linear

3D Log

poly

dataset, function

E
rr

or
 R

at
e

BQHist-par
 BQHist-uni

Figure 6: Accuracy of different functions

0

0.2

0.4

0.6

0.8

1

0
 40

80

12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

of queries

E
rr

or
 r

at
e

STHoles
 BQHist

SRE
 Distribution

Figure 7: Error rates with workload pattern change

small area. It still uses 1050 queries but the total area
covered by these queries occupy just 10% of the total
area. Further, these queries are nested to 10 levels,
with 10 top-level queries retrieving 3% of tuples from
the dataset, and each query is followed by two child
queries which retrieve 10% of the data in its parent.

Result: Figure 4 shows the normalized absolute
errors of using different parametric functions and uni-
formity based estimation on SRE dataset. This fig-
ures clearly shows that the BQHist can achieve a
much higher accuracy comparing to the uniformity-
based estimation, for all the three sample functions
used; and for the case of polynomial function, a 50%
improvement has been achieved. The reason here is
that SRE is not a highly skewed dataset, which means
that the frequencies of the areas around a buckets do
not change dramatically from that in the bucket. A
polynomial function reflects this behavior well, as its
value does not drop quickly in a short distance away
from the starting point. A uniformity-based estima-
tion, on the other side, results in an underestimation
around a bucket’s child buckets and an overestimation
at the area far from the child buckets.

Figure 5 shows that the differences among poly-
nomial’s powers (on SRE dataset) do not have a sig-
nificant impact on estimation accuracy. This insensi-
tivity is a nice property, as these powers are typically
not easy to determine. Figure 6 shows the normalized
absolute errors of using different parametric functions
on the four synthetic datasets. Since the distribution
of the synthetic data is known in prior, one can pre-
dict which function has better performance, as the
more similar they are, the better accuracy the result
is. Because exponential function is the same as Gauss
distribution, it leads to the best accuracy. Since lo-
gistics distribution is the most similar among three

functions, it delivers good results as well. However,
the polynomial function is constantly robust across
all the tests with error rate less than 50% of uniform
distribution error rate. Furthermore, we notice that
with the number of dimension increasing to there, the
error rates only change slightly.

5.2 Changing Workload Patterns

Workload 3: This workload is designed to test the
impact of changing workload patterns. Four clusters
of queries are used, where the areas for the queries
in one cluster do not overlap with the queries from
another cluster. For each cluster, 400 queries with a
uniform selectivity of 0.25% are randomly distributed
in the area of the cluster. During the tests, only 100
queries are used from each cluster (i.e., after these 100
queries in a cluster are processed, the queries from an-
other cluster are used straightaway). The normalized
error is calculated with the previously tested queries.

Result: Figure 7 shows the results on SRE (ex-
perimental results on other datasets, which confirm a
similar trend, are omitted due to space limit). It is
clear that BQHist results in a lower error rate than
STHoles consistently, especially when the workload
pattern moves from one cluster to another.

5.3 Convergence Speed and Cache Capacity

Workload 4: This workload is designed to test the
convergence speed and the impact of cache capac-
ity (as it can be argued that the additional mem-
ory required by BQHist can be used by STHoles
to improve its performance by using more buckets).
50 queries from Workload 1 and other two group of
queries are used as training queries, and 1050 vali-
dation queries following the same distribution as the
training queries are used to measure the normalized
absolute error. The initial queries of both sequential
and batched order are the same. We use three groups
of 1050 queries with 25% cover ratio distributed in
the region following the Gaussian, Zipfian (with the z
parameter, which indicates distribution skewness, set
to 2) and unform distribution. The selectivity ranges
from 1% (50 queries), 0.25% (200 queries), to 0.05%
(800 queries).

Result: Figure 8 shows the results on different
datasets, methods and cache capacities. In general,
the error rates drop sharply in around first 300 queries
when system is able to cache all the queries(BQHist-
full). When the QT tree is flat (i.e., too many query
nodes are on top level), BQHist becomes less effec-
tive (shown in the second part of Figure 8) as the
gap value’s function is not fully utilized. However,
the result is still about 20% better than STHoles.
The performance of BQHist-300 is between STHoles
and BQHist-full, which indicates that a larger cache
leads to a better performance. Figure 9 demonstrates
that BQHist is at least 10% more accurate than
STHoles with randomly distributed queries.

Workload 5: A scheduling algorithm is proposed
in subsection 3.2 to select the top k queries from the
query tree according to their hotness value. This
workload is designed to test the impact of k values
on our the performance of our method. In the first
experiment, 400 queries in a single cluster from Work-
load 3 are used. In the second experiment, queries
from all Workload 3 clusters are involved.

Result: Recall that these top k queries are se-
lected according to the hotness value in the query

CRPIT Volume 63

100

0

0.2

0.4

0.6

0.8

1

1
 100
 200
 300
 400

of queries

E
rr

or
 R

at
e

BQHist-top45
 BQHist-top30
 BQHist-top15

0

0.2

0.4

0.6

0.8

1

0
 40

80

12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

of queries

E
rr

or
 R

at
e

BQHist-top15
 BQHist-top30
 BQHist-top45

Figure 8: Convergence rates

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

STHoles
 BQHist

Figure 9: Convergence for random queries

0

0.2

0.4

0.6

0.8

1

0
 40

80

12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

of queries

E
rr

or
 R

at
e

BQHist-top15
 BQHist-top30
 BQHist-top45

0

0.2

0.4

0.6

0.8

1

1
 100
 200
 300
 400

of queries

E
rr

or
 R

at
e

BQHist-top15
 BQHist-top30
 BQHist-top45

Figure 10: Accuracy using hotness and gap

Log
 -->
 Gauss with 500 queries

0

0.2

0.4

0.6

0.8

1

1.2

25%
 50%
 75%
 100%

Percentage of swap

E
rr

or
 R

at
e

STHoles
 BQHist

Figure 11: Accuracy after dataset updates

tree. Thus, a larger k value deemphasize the im-
portance of the hotness value, giving more room to
select query execution according to their gap values.
The first figure in Figure 10 shows that the conver-
gence speed increases when the k value decreases (as
all queries are from the same cluster, thus it is more
important to cover disproportional area than hot ar-
eas). In other words, the gap value is a better perfor-
mance indicator than the hotness indicator. On the
contrary, the second figure shows that a bigger k value
can make our method more adaptive to workload pat-
tern changes, since the hot spots, which change when
workload patterns change, have a better chance to be
visited than those disproportional areas.

5.4 Effect of Updates

One of the benefits of building histograms based on
batch query feedback is that such a histogram keeps
updating when the data distribution changes. This
final set of tests evaluates how BQHist adapts to
data distribution changes.

Workload 6: In this experiment, we progressively
swap the Gaussian and Logistics datasets and test the
accuracy. We start with the Gaussian dataset and
test with 350 and 500 queries respectively. Then we
swap a certain percentage of data with the Logistic
dataset and test with another 350 and 500 queries
respectively. Finally we use validation queries to test
the accuracy. To simulate the reality that queries
keep coming in, we set up a query pool with 2100
queries with random order. For STHoles, we choose
the first 350 and 500 queries as validation queries. For
BQHist, we organize the first 1050 queries in the QT
tree for the first half of workload, but we only use 350
and 500 queries among them respectively. Then, we
add another 1050 queries in QT and test the same
amount as first half in second half workload.

Result: Figure 11 shows the accuracy of his-
togram adapts to data distribution changing from
the Gaussian to Logistic datasets. One can observe
that BQHist is more adaptive than STHoles with
data distribution update, as its line is smoother than
STHoles ins both cases.

6 Related Work

Several selectivity estimation techniques have been
proposed in the past, including sampling (Wu,
Agrawal & Abbadi 2002, Lipton, Naughton &
Schneider 1990, Wu, Agrawal & Abbadi 2001),
histograms (Aboulnaga & Chaudhuri 1999, Bruno
et al. 2001, An, Yang & Sivasubramaniam 2001,
Chen & Roussopoulus 1994, Donjerkovic, Ioannidis &
Ramakrishnan 2000, Ioannidis & Poosala 1995, Jin,
An & Sivasubramaniam 2000) and parametric tech-
nique (Konig & Weikum 1999). The tuple sampling
technique (Lipton et al. 1990, Wu et al. 2001) sum-
marizes a relation by taking uniform samples from
the tuples in the relation. When a query is posed to
an estimator, the estimator considers the sample size
and sampling result and produces results. Paramet-
ric technique, also known as the curve-fitting tech-
nique, approximates data distributions using distrib-
ution functions with a limited number of parameters.
In (Chen & Roussopoulus 1994, Sun, Ling, Rishe &
Deng 1993), a general polynomial function and least
squares fitting are used to choose its coefficients, while
(Konig & Weikum 1999) represents the distribution

Proc. Eighteenth Australasian Database Conference (ADC 2007)

101

as a linear combination of some mathematical func-
tions. The coefficients of the functions are adjusted
using feedback information. The main problem with
this approach is that usually it is very difficult to find
a function to describe arbitrary data distribution.

Histograms can be constructed either statically or
dynamically (see (Loannidis 2003) for a survey). Sta-
tic histograms have been well studied in literature,
such as wavelet based histograms (Matias, Vitter &
Wang 1998) and the V -optimal(F, F) (Poosala, Ioan-
nidis, Haas & Shekita 1996) and V -optimal(V, F)
(Jagadish, Koudas, Muthukrishnan, Poosala, Sevcik
& Suel 1998) family of histograms. After histograms
are built using such static approaches, buckets and
frequencies remain fixed regardless of any changes in
the dataset. The histograms are rebuilt when the er-
ror of selectivity estimation reaches some threshold.
On the other side, dynamic histograms can capture
the changes in the data distribution. This type of his-
tograms works well for close to uniform tuple density
by considering query workload information and query
execution feedback to progressively refine histogram
buckets. Buckets with non-uniform density can be de-
tected and split into smaller and more accurate buck-
ets. Adjacent buckets of similar data distribution can
also be detected and merged to recuperate space for
more critical regions. STGrid histograms use query
workloads to refine a grid-based histogram structure
(Aboulnaga & Chaudhuri 1999). A problem of this
method is that the grid partitioning strategy can be
too rigid, as data distributions generally form clusters
which leads to many not-so-useful buckets. In (Lim
et al. 2003), SASH is proposed to use a two-phase
method to automatically build and maintain an op-
timal set of histograms using query feedback infor-
mation. A sampling-based approach for incremental
maintenance of approximate histograms is reported
in (Gibbons, Mattias & Poosala 1997). In (Thaper,
Guha, Indyk & Koudas 2002), dynamic histogram on
data stream is addressed.

(Bruno et al. 2001) proposed a histogram called
STHoles. It is a ‘workload aware’ histogram tech-
nique allows nested histogram buckets to capture re-
gions with nearly uniform data distribution. To con-
struct an STHoles histogram, one can start with an
empty histogram or a single bucket histogram that
covers the entire domain. The actual result of each
query in the workload is intercepted from the query
processor and is used to refine the histogram. By com-
puting the overlapping regions of a query with each
histogram bucket, one can refine the histogram by
‘drilling holes’ or zooming into the buckets that cover
the query region. If the total number of buckets ex-
ceeds the fixed storage constraint, one can merge ad-
jacent similar buckets, which results in the smallest
penalty on the query estimation accuracy.

7 Conclusions

In this paper, we have proposed two effective methods
to make dynamic histograms adaptive to changing
workload patterns.We have addressed the problems
in STHoles which is a representative self-tuning his-
tograms by using an online scheduling algorithm that
orders query execution such that histograms built
from the feedback can adapt much more rapidly but
not oversensitively to the changes of the underlying
workload patterns. An selectivity estimation algo-
rithm has also been proposed to improve estimation

accuracy for queries in the areas close to but not
covered by high quality buckets, using a technique
based on parametric approximation. Both the on-
line scheduling algorithm and selectivity estimation
algorithms can be incrementally maintained. Our ex-
periments have demonstrated that our methods can
improve consistently the range query selectivity esti-
mation accuracy by nearly 50%, comparing STHoles
which is a highly effective and practical histogram
method. Our future work include investigating the
problem of non-aligned window query selectivity es-
timation, and extending our techniques to join selec-
tivity estimation.

References

Aboulnaga, A. & Chaudhuri, S. (1999), Self-tuning histograms:
Building histograms without looking at data, in ‘SIG-
MOD’.

An, N., Yang, Z. Y. & Sivasubramaniam, A. (2001), Selectivity
estimation for spatial joins, in ‘ICDE’.

Bruno, N., Chaudhuri, S. & Gravano, L. (2001), Stholes:
A multidimensional workload-aware histogram, in ‘SIG-
MOD’.

Chen, C. M. & Roussopoulus, N. (1994), Adaptive selectivity
estimation using query feedback, in ‘SIGMOD’.

Donjerkovic, D., Ioannidis, Y. & Ramakrishnan, R. (2000),
Dynamic histograms: Capturing evolving data sets, in
‘SIGMOD’.

Gibbons, P., Mattias, Y. & Poosala, V. (1997), Fast incremen-
tal maintenance of approximate histograms, in ‘VLDB’.

Ioannidis, Y. E. & Poosala, V. (1995), Balancing histogram op-
timality and practicality for query result size estimation,
in ‘SIGMOD’.

Jagadish, H. V., Koudas, N., Muthukrishnan, S., Poosala, V.,
Sevcik, K. C. & Suel, T. (1998), Optimal histograms with
quality guarantees, in ‘VLDB’.

Jin, J., An, N. & Sivasubramaniam, A. (2000), Analyzing range
queries on spatial data, in ‘ICDE’.

Konig, A. C. & Weikum, G. (1999), Combining histograms and
parametric curve fitting for feedback-driven query result-
size estimation, in ‘VLDB’.

Lim, L., Wang, M. & Vitter, J. S. (2003), Sash: A self-adaptive
histogram set for - dynamically changing workloads, in
‘VLDB’.

Lipton, R. J., Naughton, J. F. & Schneider, D. A. (1990), Prac-
tical selectivity estimation through adaptive sampling, in
‘SIGMOD’.

Loannidis, Y. (2003), The history of histograms (abridged), in
‘VLDB’.

Matias, Y., Vitter, J. S. & Wang, M. (1998), Wavelet-based
histograms for selectivity estimation, in ‘SIGMOD’.

Poosala, V., Ioannidis, Y. E., Haas, P. J. & Shekita, E. J.
(1996), Improved histograms for selectivity estimation of
range predicates, in ‘SIGMOD’.

Srivastava, U., Haas, P. J., Markl, V., Megiddo, N., Kutsch,
M. & Tran, T. M. (2006), Isomer: Consistent histogram
construction using query feedback, in ‘ICDE’.

Sun, W., Ling, Y., Rishe, N. & Deng, Y. (1993), An instant and
accurate size estimation method for joins and selections in
an retrival-intensive environment, in ‘SIGMOD’.

Thaper, N., Guha, S., Indyk, P. & Koudas, N. (2002), Dynam-
ica multidimensional histogram, in ‘SIGMOD’.

Wu, Y. L., Agrawal, D. & Abbadi, A. E. (2001), Applying
the golden rule of sampling for query estimation, in ‘SIG-
MOD’.

Wu, Y. L., Agrawal, D. & Abbadi, A. E. (2002), Query esti-
mation by adaptive sampling, in ‘ICDE’.

CRPIT Volume 63

102

A Heuristic Approach to Cost-Efficient Derived Horizontal

Fragmentation of Complex Value Databases

Hui Ma, Klaus-Dieter Schewe, Qing Wang

Massey University, Department of Information Systems
& Information Science Research Centre

Private Bag 11 222, Palmerston North, New Zealand,
Email: h.ma|k.d.schewe|q.q.wang@massey.ac.nz

Abstract

Derived horizontal fragmentation is one of the main
database distribution design techniques. Unlike
primary horizontal fragmentation, the decision of de-
rived horizontal fragmentation is not straightforward.
In the literature, in the context of the relational
model, derived horizontal fragmentation of a member
relation is achieved by performing semijoins with
fragments of one of its owner relations, which is
chosen in an ad hoc manner without evaluating the
system performance. Similar approaches are found
in the literature for the object oriented data model.
We note that fragmentation and allocation are often
considered separately, disregarding that they are
using the same input information to achieve the
same objective, i.e. improve the overall system per-
formance. This paper addresses derived horizontal
fragmentation and allocation simultaneously in the
context of complex data model. The core of the
paper is a heuristic approach to derived horizontal
fragmentation, which uses a cost model and is
targeted at globally minimising costs.

Keywords. Derived horizontal fragmentation,
distribution design, cost model, heuristic procedure,
complex value databases

1 Introduction

There are two types of horizontal fragmentation, pri-
mary and derived. In the literature often when hori-
zontal fragmentation is discussed, it is mainly primary
horizontal fragmentation (Zhang 1993)(Ra 1993)(Ra
& Park 1993)(Shin & Irani 1991)(Bellatreche, Karla-
palem & Li 1998). Derived horizontal fragmentation
seems have not received the same interests as primary
horizontal fragmentation, even though the impact of
using it to improve the system performance is com-
patible to other distribution design techniques.

Unlike primary horizontal fragmentation, which
is performed using predicates of queries accessing
the data, the decision of derived horizontal frag-
mentation is not straightforward. In the literature
derived horizontal fragmentation is firstly discussed
in the context of the relational datamodel (RDM)
and then discussed in the context of the object ori-
ented datamodel (OODM). When derived horizon-
tal fragmentation (DHF) is discussed in the RDM it
refers to horizontal fragmentation defined on a mem-
ber relation of a link according to fragmentation of

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at the Eighteenth Australasian Database Confer-
ence (ADC2007), Ballarat, Australia. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 63.
James Bailey and Alan Fekete, Eds. Reproduction for aca-
demic, not-for profit purposes permitted provided this text is
included.

one of its owner relations (Özsu & Valduriez 1999)
(Ceri, Negri & Pelagatti 1982). However, when there
is more than one owner relation of a member re-
lation it is not clear which owner relation should
be chosen even with the criteria given in (Özsu &
Valduriez 1999). Further, it is not discussed how to
deal with owner relations if their member relations
have been horizontally fragmented using predicates
but the owner relations do not have predicates de-
fined on it. Later, when DHF is discussed in the
context of OODM, it refers to fragmentation of an
non-leaf class fragmented on fragmentation of a leaf
class (Karlapalem & Navathe 1994)(Bellatreche, Kar-
lapalem & Simonet 1997)(Bellatreche, Karlapalem &
Basak 1998). Again, the restriction that derived frag-
mentation can only be performed on a non-leaf class
based on a leaf class is not reasonable. With the exis-
tence of these deficiencies of derived horizontal frag-
mentation further research is essential. In the mean-
time, with the current popularity of web information
systems that often support web-based database ap-
plication, including object-oriented database, object-
relational database or databases based on the eXten-
sible Markup Language (XML), there are needs of
efficient and effective database design technique on
the common aspect of these models, complex data
model. In this article we discuss derived horizontal
fragmentation on complex datamodel with the aim
of solving the exiting problems of derived horizontal
fragmentation.

The aim of database distribution design is to im-
prove the performance of applications accessing the
database. Therefore, a cost model should be em-
ployed to evaluate the total query costs of the global
queries while making decisions on derived horizontal
fragmentation. (Ceri et al. 1982) indicated that the
important parameter needed for horizontal fragmen-
tation is the number of accesses performed by the
applications to different portions of data. However,
the parameter is not used while performing derived
horizontal fragmentation. Further, DHF is performed
in an ad hoc way without considering how it will af-
fect the resulting system performance. Only at the
later stage of allocation, system performance is eval-
uated. We argue that once the decision on derived
horizontal fragmentation has been made, the possi-
bilities of minimising total query costs are restricted
at the stage of allocation. In this paper, we address
the problem to design derived horizontal fragmenta-
tion and to allocate fragments in a way such that
the overall performance of the distributed database
system is better than the one of an equivalent cen-
tralised one. That is, we first develop a query cost
model for complex value databases. Then we present
a heuristic approach to minimise query costs for the
case of derived horizontal fragmentation. We show
that the minimisation of transportation costs is de-
cisive, and that can be achieved by refining derived

Proc. Eighteenth Australasian Database Conference (ADC 2007)

103

horizontal fragmentation using all the candidate frag-
mentation schemata. The work in this article is to
extend the work in (Ma, Schewe & Wang n.d.) and
in (Ma, Schewe & Wang 2006).

In Section 2 we present the basic definitions of
a complex value datamodel that is adapted from
the Higher-Order Entity Relationship model (HERM)
from (Thalheim 2000). For this model we also briefly
describe a general query algebra following the general
approach in (Schewe 2001) and algebraic query opti-
misation, for which we adapt the techniques from the
RDM and from (Kirchberg, Riaz-ud-Din, Schewe &
Tretiakov 2006). In addition, we briefly review the
definition of horizontal fragmentation and its impact
on query trees. In Section 3 we then discuss a cost
model. In Section 4 we present some problems of the
existing derived horizontal fragmentation approaches
in the literature followed by a heuristic approach that
solves the problem. Besides discussing the correctness
and complexity of the heuristic we also show an ex-
perimental evaluation of the proposed heuristic. We
conclude with a short summary in Section 5.

2 Complex Value Databases

In this section we briefly present the basic definitions
of a complex value datamodel following the work in
(Thalheim 2000). Furthermore, for this model, we
briefly present a generic query algebra and discuss
heuristic algebraic query optimisation.

2.1 The Datamodel

In order to define complex values we use a type sys-
tem, which can be defined using abstract syntax as:

t = b | (a1 : t1, . . . , an : tn) | {t},

with b as an arbitrary collection of base types, (·) and
{·} as constructors for records and finite sets, respec-
tively. Base types include BOOL, OK PIC MPIC ,
CARD and INT , DATE .

On the basis of this type system we can define
database schemata, which are sets of database types.
A database type of level k has a name E and con-
sists of a set comp(E) = {r1 : E1, . . . , rn : En}
of components with pairwise different role names ri

and database types Ei on levels lower than k with
at least one database type of level exactly k − 1, a
set attr(E) = {a1, . . . , am} of attributes, each asso-
ciated with a data type dom(ai) as its domain, and
a key id(E) ⊆ comp(E) ∪ attr(E). We shall write
E = (comp(E), attr(E), id(E)). A database schema
is a finite set S of database types such that for all
E ∈ S and all ri : Ei ∈ comp(E) we also have Ei ∈ S.
That is, schemata are closed under component refer-
ences.

Given a database schema S we associate two
types t(E) and k(E) – called representation type
and key type, respectively – with each E = ({r1 :
E1, . . . , rn : En}, {A1, . . . , Ak}, {ri1

: Ei1
, . . . , rim

:
Eim

, Aj1
, . . . , Aj`

}) ∈ S:

• The representation type of E is the tuple type
t(E) = (r1 : t(E1), . . . , rn : t(En), A1 :
dom(A1), . . . , Ak : dom(Ak)).

• The key type of E is the tuple type
k(E) = (ri1

: k(Ei1
), . . . , rim

: k(Eim
), Aj1

:
dom(Aj1

), . . . , Aj`
: dom(Aj`

)).

Finally, a database db over a schema S is an S-
indexed family {db(E)}E∈S such that each db(E) is a
finite set of values of type t(E) satisfying the following
two conditions:

• whenever t1, t2 ∈ db(E) coincide on their projec-
tion to id(E), they are already equal;

• for each t ∈ db(E) and each ri : Ei ∈ comp(E)
there is some ti ∈ db(Ei) such that the projection
of t onto ri is ti.

Example 2.1. The following database schema is
adapted from the ODIN system (Feyer, Kao, Schewe
& Thalheim 2000):

Department = (∅, {name, homepage, contact},
{name})
Lecturer = ({in:Department}, {name, position,
homepage, email}, {name, in:Department})
Paper = (∅, {no, kind, name, level, description, reg-
ularity, points}, {no})
Prerequisite = ({of:Paper, for:Paper}, ∅,
{of:Paper, for:Paper})
Lecture = ({goal:Paper}, {semester, schedule, lit-
erature, comment}, {goal:Paper, semester})
Teach = ({who:Lecturer, for:Lecture}, ∅,
{who:Lecturer, for:Lecture})

Recollect that in (Ceri, Navathe & Pelagatti 1983)
member relation and owner relation are defined as
the relation at the tail of a join link and a relation
at the head of the link, respectively. In our complex
data model the link between a member database type
and a owner database type is simply a link between a
database type and one of its component. For example,
if E1 ∈ comp(E2), then E1 is the owner database type
and E2 is the member database type.

2.2 Query Algebra and Heuristic Query Op-
timisation

As query algebra for complex databases has been dis-
cussed in (Ma, Schewe & Wang 2006), we do not re-
peated them here. As derived horizontal fragmen-
tation will involve semijoin, we now define semijoin
in this section. With the existence of the join types
t1 ./t t2 the join over t can be defined as

C1 ./t C2 = {z : TC1
./t TC2

| ∃z1 ∈ C1.∃z2 ∈ C2.
πt1

(z) = z1 ∧ πt2
(z) = z2}.

Simijoin is performed by applying join operation
first and then applying projection operation:

C1 nt C2 = {z : πC1
(TC1

./t TC2
) | ∃z′ ∈ TC1

./t

TC2
. ∧ z = πt1

(z′)}.
To discuss heuristic query optimisation we need to

employ a query tree, which are drawn from a query
algebra in the same way as for the relational data
model. Furthermore, using the same heuristics as for
the RDM, we can rearrange a query tree in a way
that (if possible) we first apply structural recursion
operations src[e, g,t] on the sets of input database,
i.e. on some db(E). In particular, we first apply se-
lections and projections, the operations that can be
expressed by structural recursion (Schewe 2001), on
some db(E).

Projection is a special case of map. To define
map, we first consider a function f : t → t′ for arbi-
trary types t and t′. We then “raise” f to a func-
tion map(f) : {t} → {t′} by applying f to each
element of a set. Obviously, we have map(f) =
src[∅, single ◦ f,∪].

Next, considering a function ϕ : t → BOOL, we
define selection as an operation filter(ϕ) : {t} →
{t}, which associates with a given set the subset of
all elements “satisfying the predicate” ϕ, i.e. elements
that are mapped to T. Then we may write
filter(ϕ) = src[∅, if then else ◦ (ϕ × single ×
(empty ◦ triv)),∪]
with the function if then else : BOOL × t × t → t
with (T, x, y) 7→ x and (F, x, y) 7→ y.

CRPIT Volume 63

104

2.3 Horizontal Fragmentation

Let us now define operations for horizontal fragmen-
tation. Similar to the RDM horizontal fragmentation
exploits the fact that each database type E defines a
set db(E) in a database db, thus can be partitioned
into disjoint subsets.

There are two types of Horizonal fragmentation:
primary horizontal fragmentation and derived frag-
mentation. Primary horizontal fragmentation refers
to the fragmentation on database types using pred-
icates (Ma 2003). Derived horizontal fragmentation
refers to performing fragmentation on database types
R using semijoins with fragments of its component
database types R′ or a database type having R as
a component, i.e., R′ ∈ comp(R) or R ∈ comp(R′).
As in any database db the database type E is as-
sociated with a finite set db(E), we obtain an easy
generalisation of relational horizontal fragmentation.
For this let E be some database type. Take boolean
valued functions ϕi (i = 1, . . . , n) such that for each
database db we obtain

db(E) =

n⋃

i=1

(db(Ei)), 1 ≤ i ≤ n.

with disjoint sets db(Ei). For primary fragmentation,
db(Ei) = filter(ϕi)db(E). For derived fragmenta-
tion, db(Ei) = db(E) n db(E′

i
) with primary fragmen-

tation schema of E′, i.e., FE′ = {E′

1, . . . , E
′

n
}. There

is always a remainder db(En+1) = db(E) − (db(E) n

db(E′). We then replace E in the schema by n + 1
new database types Ei, all with the same definition
as E. Note that the biggest number for n is the num-
ber of network nodes k, i.e., n + 1 ≤ k. Note that
we do not restrict ourself to perform derived hori-
zontal fragmentation on a database type using hori-
zontal fragmentation schema of only its components
as in (Özsu & Valduriez 1999), (Baião, Mattoso &
Zaverucha 2000). This extension makes derived hor-
izontal fragmentation to be applied in more general
cases.

In the complex data model introduced in Section
2, database types are on different levels. If a type
is derived fragmented with the fragmentation schema
of a type of its components, then the resulting frag-
ments will be disjoint. If a type is fragmented using
the fragmentation schema of a type which has it as
a component, then the properties of disjointness can-
not be guaranteed. However, if an extra procedure
of removing overlaps is employed, disjointness can be
guaranteed.

Example 2.2. Take the schema from Example 2.1
and fragment the database type Paper into two new
instances Advanced Paper and Basic Paper us-
ing ϕ1 ≡ level ≥ 300 and ϕ2 ≡ level < 300.
Fragment the database type Lecture by semi-join
with the fragments of Paper we get:

Advanced Lecture = LecturenAdvanced Paper

Basic Lecture = Lecture n Basic Paper

Note that database type Lecture is derived frag-
mented using the fragmentation schema of its com-
ponent Paper. Therefore the disjointness crite-
ria is satisfied because the inclusion constraints be-
tween a database type and its component, i.e.,
t[Paper](Lecturer) = t(Paper).

Horizontal fragmentation corresponds to replacing
E in the query tree by some union E1 ∪ · · ·∪En. An-
other round of query optimisation might shift the se-
lection filter(ϕ) and the projection map(πX) inside

the newly introduced union, but the “upper part” of
the query tree would not be affected. Therefore, in
order to optimise horizontal fragmentation, it is deci-
sive and sufficient to consider subqueries of the form
the following (Ma et al. n.d.).

map(πX)(filter(ϕ)(db(E))) (*)

3 A Cost Model

Taking the same cost model as in (Ma, Schewe &
Wang 2006) we now analyse the query costs in the
case of derived horizontal fragmentation. Size cal-
culation for leaves and nodes are discussed in (Ma,
Schewe & Wang 2006). For the convenience of discus-
sion we briefly present the cost model in the following.
The major objective is to base the fragmentation de-
cision on the efficiency of the most frequent queries.
As a general pragmatic guideline we follow the recom-
mended rule of thumb to consider only the 20% most
frequent queries, as these usually account for most of
the data access (Özsu & Valduriez 1999).

Assume fragmentation of type E results in a set
of fragments {E1, . . . , En} of average sizes s1, . . . , sn.
If the network has a set of nodes N = N1, . . . , Nk

we have to allocate these fragments to one of the
nodes, which gives rise to a mapping λ : {1, . . . , n} →
{1, . . . , k}, which we call a location assignment . This
decide the allocation of leaves of query trees, which
are fragments. For each intermediate node v in each
relevant query tree, we must also associate a node
λ(v), i.e., λ(v) indicating the node in the network
that the intermediate query result corresponding to v
will be stored at.

Given a location assignment λ we can compute the
total costs of query processing. Let the set of queries
be Qm = {Q1, . . . , Qm}. Query costs are composed
of two parts: storage costs and transportation costs :
costsλ(Qj) = storλ(Qj) + transλ(Qj).

The storage costs give a measure for retrieving the
data back from secondary storage, which is mainly
determined by the size of the data. The storage costs
of a query Qj depend on the size of the intermediate
results and on the assigned locations, which decide
the storage cost factors. It can be expressed as

storλ(Qj) =
∑

h

s(h) · dλ(h),

where h ranges over the nodes of the query tree for Qj ,
s(h) are the sizes of the involved sets, and di indicates
the storage cost factor for node Ni (i = 1, . . . , k).

The transportation costs provide a measure for
transporting between two nodes of the network. The
transportation costs of query Qj depend on the sizes
of the involved sets and on the assigned locations,
which decide the transport cost factor between every
pair of sites. It can be expressed by

transλ(Qj) =
∑

h

∑

h′

cλ(h′)λ(h) · s(h
′).

Again the sum ranges over the nodes h of the query
tree for Qj , h′ runs over the predecessors of h in the
query tree, and cij is the transportation cost factor
for data transport from node Ni to node Nj (i, j ∈
{1, . . . , k}).

Furthermore, for each query Qj we assume a value
for its frequency fj . The total costs of all the queries
in Qm are the sum of the costs of each query multi-
plied by its frequency:

m∑

j=1

costλ(Qj) · fj .

Proc. Eighteenth Australasian Database Conference (ADC 2007)

105

In general, the distribution could be called optimal
if we find a fragmentation and allocation schema such
that the resulting total query costs are minimal. As
this problem is practically incomputable, we suggest
to use a heuristic instead.

4 A Heuristic Method for Derived Horizontal
Fragmentation and Allocation

In the following we first present an example to show
the problems of existing approaches of derived hori-
zontal fragmentation. We will attempt to solve the
problem by first analysing the cost model and then
propose a heuristic method based on the result of the
analysis. We will show how the heuristic method is
applied with a simple example. Then we will prove
that the proposed heuristic is correct with regard to
the criteria of correctness of fragmentation in (Özsu
& Valduriez 1999).

4.1 An Motivating Example

Assume there are three relations A,B,C in a
database. Relation C is accessed by four queries
Q1, . . . , Q4 with different frequencies f1, . . . , f4. Re-
lation A is accessed by Q1 and Q2. Relation B is
accessed by Q3 and Q4. Relation A and B have been
horizontally fragmented using predicates. Relation
A has been fragmented into A1, A2 which are allo-
cated to site 1 and 2 respectively, i.e., λ(A1) = 1,
λ(A2) = 2. Relation B has been fragmented into two
fragments, B3 and B4 which are allocated to site 3
and 4, respectively. Assume that there is no predicate
defined on C, which is accessed by all four queries,
and MAX(f1, f2, f3, f4) = f1, performing only pri-
mary horizontal fragmentation we will have Scenario
I depicted in Figure 1, in which C is allocated to
site 1, i.e., λ1(C) = 1 according to cost optimisition
rule. In figures below, all remote transactions and
their frequencies are depicted with solid lines and val-
ues on the lines, while local transactions are depicted
in dashed lines with their frequencies marked on the
lines.

A1 A2C

Site 1 Site 2

B3

Site 3

B4

Site 4

Figure 1: Scenario I - Primary Fragmentation Only

Assuming that the transportation cost factors
among all sites are same, the total query costs of Sce-
nario I is computed as:

costλ1
(Q) = sC · f2 + sC · f3 + sC · f4

When a member relation has more than one owner
relation, there will be more than one possible derived
horizontal fragmentation schemata. In this case it is

recommended to choose a fragmentation that is used
in more applications (Özsu & Valduriez 1999). As-
sume f1 +f2 > f3 +f4, relation C is therefore derived
horizontally fragmented by semi-join with fragments
of A. The resulting fragmentation and fragment al-
location is depicted in Scenario II in Figure 2. The
total query costs for Scenario II are:

costλ2
(Q) = sC1

· f3 + sC2
· f3 + sC1

· f4 + sC2
· f4

A1 A2
C1

Site 1 Site 2

B3

Site 3

B4

Site 4

C2

Figure 2: Scenario II - Primary and Derived Frag-
mentation on One Fragmentation Scheme

However, performing derived fragmentation based
on fragmentation schema of relation A can only im-
prove the performance of the queries which access
both the member relation C and owner relation A.
However, the performance of the queries that access
the member relation C together with another owner
relation B cannot be improved. That is, the chance
of optimising the system performance is restricted,
if the fragmentation of C is only based on fragmen-
tation of one owner relation. Now we look at what
happens if we take into consideration fragmentation
of both owner relations. In this case, we have two
fragmentation schemata for C, i.e., FC = {C1a, C2a}
and F ′

C
= {C3b, C4b} with:

C1a = C n A1, C2a = C n A2

C3b = C n B3, C4b = C n B4

Applying intersection operation on Cia ∈ FC , (1 ≤
i ≤ 2) and Cjb ∈ F ′

C
, (3 ≤ j ≤ 4) we get the following

finer fragmentation:

C1a3b = C1a ∩ C3b, C1a4b = C1a ∩ C4b,

C2a3b = C2a ∩ C3b, C2a4b = C2a ∩ C4b

Assuming f1 > f3, f1 > f4, f2 < f3, f2 > f4, with
the cost model introduced in 3 we get the optimized
allocation of the four atom fragments as following:

λ(C1a3b) = 1, λ(C1a4b) = 1,

λ(C2a3b) = 3, λ(C2a4b) = 2

Scenario III in Figure 3 depicts the finer derived
horizontal fragmentation and fragment allocation.

In the case of Scenario III, the total query costs
are:

costλ3
(Q) = sC2a3b

·f2 +sC1a
·f3 +sC1a

·f4 +sC2a4b
·f4

CRPIT Volume 63

106

A1 A2
C1a

Site 1 Site 2

B3

Site 3

B4

Site 4

C2a4b

C2a3b

Figure 3: Scenario III - Primary and Derived Frag-
mentation on Two Fragmentation Schemata

Comparing with the costs in Scenario I and Sce-
nario II we get:

costλ1
(Q) − costλ2

(Q)

= sC · f2 + sC · f3 + sC · f4 − (sC1
· f3 + sC2

· f3

+sC1
· f4 + sC2

· f4)

= sC · f2 + sC · f3 + sC · f4 − (sC1
+ sC2

) · f3

−(sC1
+ sC2

) · f4

> 0

We can conclude that the derived fragmentation
indeed can further reduce the total query costs and
therefore should be employed while doing database
distribution design.

costλ2
(Q) − costλ3

(Q)

= sC1
· f3 + sC2

· f3 + sC1
· f4 + sC2

· f4

−(sC2a3b
· f2 + sC1a

· f3 + sC1a
· f4 + sC2a4b

· f4)

= sC2
· f3 + sC2

· f4 − (sC2a3b
· f2 + sCC2a4b

· f4)

> 0

The above formula proves that costλ2
(Q) >

costλ3
(Q). This result shows that a finer derived frag-

mentation approach can lead to better system perfor-
mance than derived fragmentation based on fragmen-
tation schema of one owner relation.

4.2 Some Terms

We now define some terms to facilitate our discussion
of derived horizontal fragmentation. Let db(Eji) =
{t|t ∈ filter(ϕj)(db(Ei))} denote the set of tuples
of Ei accessed by query Qj .

As we do not restrict derived fragmentation to be
performed on a member relation only according to one
of its owner relation, in the complex data model we
introduce terms: target type and related type, which
have broader meanings. A target type is a database
type to be derived fragmented using semijoin with
fragments of other database types, either at its lower
level or its high level.

A related type of a target type is a type that
has been horizontally fragmented and are accessed by
queries together with the target type.

The request of a fragment Ek

i
at a site h over a

network is the sum of frequencies of all the queries

that are issued at site h and access Ek

i
:

requesth(Ek

i
) =

m∑

j=1,λ(Qj)=h,db(Eji)∩db(Ek
i
) 6=∅

fj

The affinity between a target type Ed and one
fragment Ek

i
of its related type is the sum of fre-

quencies of all the queries Qj accessing Ed and the
fragment Ek

i
together at site h:

affh(Ed, E
k

i
) =

m∑

j=1,λ(Qj)=h,db(Eji)∩db(Ek
i
) 6=∅,db(Eji)∩db(Ed) 6=∅

fj

When there is more than one fragmentation
schema of a given target type, we define atom derived
horizontal fragments, or atom fragments in short,
as the intersections of fragments of one fragmenta-
tion schema with fragments of another fragmenta-
tion schema. For example, FC = {C1, . . . , Cm} and
F ′

C
= {C ′

1, . . . , C
′

n
}, then Ci∩C ′

i
is an atom fragment.

According to our discussion of how horizontal frag-
mentation affects query costs, the allocation of frag-
ments to network nodes, following the cost minimi-
sation heuristics, already determine the location as-
signment provided that an optimal location assign-
ment for the queries was given prior to the fragmen-
tation. Horizontal fragmentation will only change the
subqueries in the form of (*). In this case we evalu-
ate a derived horizontal fragmentation by comparing
the total query costs before and after the fragmenta-
tion. After the derived horizontal fragmentation the
instance of a database type will be replaced by a set of
atom fragments which are allocated to network nodes
that lead to the least query costs.

Taking the cost model introduced in Section 3 we
now investigate how total query costs are affected by
derived horizontal fragmentation. Assume there are
two related types A and B, one target type C. Let
Ciai′b be the atom fragment, λ1 indicate a distribution
design without derived horizontal fragmentation, λ2
indicate a distribution design with derived horizontal
fragmentation and fragment allocation, tj be the op-
timal allocation of the root of subqueries in the form
(*), x indicate the site that C is allocated before it
is derived horizontally fragmented, y denote an opti-
mal allocation of atom fragment Ciai′b = Cia ∩ Ci′b.
As the transportation costs dominate the total query
costs, we get the following formulae:

costλ1
(Qm) − costλ2

(Qm)

=

m∑

j=1

costλ1
(Qj) · fj −

m∑

j=1

costλ2
(Qj) · fj

=

m∑

j=1

(
∑

h1

∑

h′

1

cλ(h′

1
)λ(h1) · s(h

′

1)) · fj

−

m∑

j=1

(
∑

h2

∑

h′

2

cλ(h′

2
)λ(h2) · s(h

′

2)) · fj

=

m∑

j=1

ctjx · sC · fj −

m∑

j=1

(

k∑

i=1

k∑

i′=1

sCiai′b
· ctjy) · fj

In order to maximize the value of costλ1
(Qm) −

costλ2
(Qm) we need to minimise the value of

m∑
j=1

(
k∑

i=1

k∑
i′=1

sCiai′b
· ctjy) · fj . For a single atom frag-

ment Ciai′b, we need to minimise the value of
m∑

j=1

ctjy ·

Proc. Eighteenth Australasian Database Conference (ADC 2007)

107

fj . This leads to a heuristic which allocates atom
fragments Ciai′b to a site that accesses it most often
by queries Qj together with a related fragment, either
Ai or Bi′ . The optimal allocation is y = tj in which
case ctjy = 0. That is, we allocate the atom fragment
Ciai′b to a site that request it most often. This will
maximize the local data availability for the most fre-
quent queries. The accesses of Ciai′b by queries are
either with Ai, Bi′ or no of them. Therefore the differ-
ence between aff(C,Ai) aff(C,Bi′) will reflect the
local request at site i and i′, and indicate the differ-
ence between requesti(C) and requesti′(C). In other
words, we should allocate an atom fragment to the
same site of the related fragment which has the high-
est affinities with the target type. In the following
section we present a heuristic procedure for derived
horizontal fragmentation.

4.3 Heuristics for Derived Horizontal Frag-
mentation

We perform derived horizontal fragmentation with
the following steps. Read and write queries are not
distinguished because replication is not considered at
this stage.

1. Take the most frequently used 20% queries Qm.

2. Process primary horizontal fragmentation using
the heuristic in (Ma, Schewe & Wang 2006) to
get a set of primary horizontal fragmentation
schemata.

3. Get a set of target types that have not been frag-
mented primarily but are accessed together with
some related fragments.

4. For each of the target database types find the set
of queries that accessed both the target type and
corresponding related types and get the frequen-
cies of each query.

5. For each of the target type get the request of each
fragment of the related data types.

6. Use fragmentation schemata of each of related
types to perform derived fragmentation of the
target type. Allocate resulting fragments to the
same site of the corresponding related fragment
involved in the semi-join. Remove overlaps be-
tween each pair of the resulting fragments. A
overlap part is allocated to the same site as the
related fragment that are requested the most by
queries.

7. If there are more than one derived fragmenta-
tion schema from step 3 perform derived frag-
mentation refinement by performing intersection
between every pair fragments from two different
schemata to get a set of atom fragment.

8. Allocate atom fragment to the same site of the
related fragments that have the highest affinity
with the target type.

This procedure is formally described by the algo-
rithm below.

Algorithm 1 (Derived Horizontal Fragmenta-
tion and Fragment Allocation).
Input: Qm = {Q1, . . . , Qm} /* a set of global queries

Ed /* a type with a set of components and
attributes

a set of network nodes N = {1, . . . , k}
a set of fragmentation schemata resulting

from primarily fragmentation
Ei = E1

i
∪ · · · ∪ Ek

i

Output: derived horizontal fragmentation schema
and fragment allocation schema

Begin

for each h ∈ {1, . . . , k} let Eh

d
= ∅ endfor

for each related type Ei ∈ {E1, . . . , Ec} do

Eh

di
= Ed n Eh

i

endfor
for each fragments Eh

di
/* remove overlaps

for each fragments Eh
′

di
do

Ehh
′

di
= Eh

di
∩ Eh

′

di

choose y such that request(Ey

i
) =

min{request(Eh

i
), request(Eh

′

i
)}

Ey

di
= Ey

di
−Ehh

′

di
/* remove intersection

from the smaller request node
endfor

endfor
for each Eh

di
do

for each Eh
′

di′
do

Ehh
′

dii′
= Eh

di
∩ Eh

′

di′

affh(Ed, E
z
x
) =

max{affh(Ed, E
k

i
), affh(Ed, E

k
′

i′
)}

Ez

d
= Ez

d
∪ Ehh

′

dij

endfor
endfor

endfor

Example 4.1. Taking again the database schema
in Example 2.1, we now assume for a target
database type Lecturer, there are two related
database types, Department and Teach, each
of which has been horizontally fragmented into
three fragments that are allocated to network
notes, 1, 2, 3, respectively, i.e., FDepartment =
{Department1,Department2,Department3},
FTeach = {Teach1,Teach2,Teach3}. To perform
derived horizontal fragmentation of type Lecturer
we go through the following procedure:

1. With each related type semijoin is performed to
get a set of horizontal fragments. Remove the
overlap between each pair of fragments.

Type Lecturer can then be derived horizon-
tally fragmented according to the fragmentation
schemata of Department and Teach. The
fragments resulting from semijoin with fragments
of Department are:

Lecturer1D′ = Lecturer n Department1,
Lecturer2D′ = Lecturer n Department2,
Lecturer3D′ = Lecturer n Department3,
Lecturer4D′ = Lecturer − (Lecturer n

Department)

Because Department is a component of Lec-
turer. Therefore, the above fragments are dis-
joint. Also, all objects for Department in Lec-
turer must be in one of fragments of Depart-
ment. Hence, Lecturer4D′ is always a empty
set. Therefore, we can directly get the following
disjoint fragments:

Lecturer1D,Lecturer2D,Lecturer3D.

Similarly, fragment Lecturer by performing
semijoin with fragments of Teach we get

Lecturer1T ′ = Lecturer n Teach1,
Lecturer2T ′ = Lecturer n Teach2,
Lecturer3T ′ = Lecturer n Teach3,
Lecturer4T ′ = Lecturer − (Lecturer n

Teach)

Because Lecturer is a component of Teach
there might be overlaps between the above frag-
ments. Removing overlap we get the following
disjoint fragments:

CRPIT Volume 63

108

Lecturer1T ,Lecturer2T ,
Lecturer3T ,Lecturer4T .

2. Perform intersection between all fragments re-
sulted from semijoin with Department and
fragments resulted from semijoin with fragments
of Teach, we have 12 intersections:

Lecturer1D1T = Lecturer1D∩Lecturer1T ,
Lecturer1D2T = Lecturer1D∩Lecturer2T ,
Lecturer1D3T = Lecturer1D∩Lecturer3T ,
Lecturer1D4T = Lecturer1D∩Lecturer4T ,

Lecturer2D1T = Lecturer2D∩Lecturer1T ,
Lecturer2D2T = Lecturer2D∩Lecturer2T ,
Lecturer2D3T = Lecturer2D∩Lecturer3T ,
Lecturer2D4T = Lecturer2D∩Lecturer4T ,

Lecturer3D1T = Lecturer3D∩Lecturer1T ,
Lecturer3D2T = Lecturer3D∩Lecturer2T ,
Lecturer3D3T = Lecturer3D∩Lecturer3T ,
Lecturer3D4T = Lecturer3D∩Lecturer4T .

3. For each of the intersections we decide its allo-
cation based on the allocation of corresponding
related fragments and their frequencies. Two sit-
uations may occur.

• Intersections resulting from fragments at
the same site.
Among the above intersections,
Lecturer1D1T ,Lecturer2D2T ,Lecture
-r3D3T are resulted from intersections of
the fragments at the same network node.
Therefore we allocate them at the same site
of this related fragments.
λ(Lecturer1D1T) = 1,
λ(Lecturer2D2T) = 2,
λ(Lecturer3D3T) = 3,

• Intersections resulting from fragments at
different sites.
In this case the affinities between related
types, involved in the intersections, and the
target type will be used to decide the allo-
cation of the atom fragment. The related
fragment that have highest affinity with the
target type will decide the allocation of the
atom derived fragment.
For example, the allocation of
Lecturer1D2T will be decided by the
values of aff(Lecturer,Department1),
aff(Lecturer,Teach2). If aff(Lectur
-er,Department1) = MAX{(aff(Lectu
-rer,Department1), aff(Lecturer,Te
-ach2)} then allocate C1D2T to site 1.
Otherwise allocate it to site 2.

Example 4.2. Looking back at the exam-
ple in 4.1 there are four atom fragments,
C1a3bC1a4b, C2a3b, C2a4b. To allocate this atom frag-
ments we compare affinities. For example, to allocate
C1a3b we compare affinities aff(C,A1), aff(C,B3).
As aff(C,A1) = f1 and aff(C,B3) = f3 and
f1 > f3. Hence, we allocate C1a3b to site 1.

In the same way we have:
λ(C1a4b) = 1 because aff(C,A1) = f1, aff(C,B4) =
f4 and f1 > f4
λ(C2a3b) = 3 because aff(C,A2) = f2, aff(C,B3) =
f3 and f3 > f2.
λ(C2a4b) = 2 because aff(C,A2) = f2,aff(C,B4) =
f4 and f2 > f4.

The allocation resulted from the heuristic using
affinities is the same as the optimised allocation in
the example in 4.1.

4.4 Discussion

In this section we will prove that the proposed ap-
proach for derived horizontal fragmentation is correct
with regard to the criteria in (Özsu & Valduriez 1999).
In addition we will analysis the complexity of the pro-
posed approach.

Let C be an instance of a target database type,
A and B be the instances of two related types,
which are fragmented as FA = {A1, . . . , Am}, FB =
{B1, . . . , Bn}. Database type C have common at-
tribute between A, and B. That means C is either a
component of A and B of have A or B as a compo-
nent. The following shows that criteria of fragmen-
tation, disjointness, reconstruction, completeness, are
satisfied.

• Completeness: As shown in the definition of
derived horizontal fragmentation, there always
is a remainder which contains all instances of
C which do not match instance in A or B. In
other words, if an object can not be selected us-
ing semi-join with fragments of A or B, it will be
in the remainder fragment.

• Disjointness: To check disjointness between
each pair of atom derived fragments Ciajb∩Ci′aj′b

we can check the following three situations: i =
i′, j = j′ and i 6= i′ ∧ j 6= j′.

For the first two situations the prove of disjoint-
ness are straightforward. Because Cjb and Cj′b

are disjoint, the disjointness between Ciajb and
Ciaj′b is guaranteed.:

Ciajb ∩ Ciaj′b = (Cia ∩ Cjb) ∩ (Cia ∩ Cj′b)

= Cia ∩ (Cjb ∩ Cj′b)

= ∅

Similarly, because Cia and Ci′a are disjoint Ciajb

and Ci′ajb is disjoint.

Ciajb ∩ Ci′ajb = (Cia ∩ Cjb) ∩ (Ci′a ∩ Cjb)

= Cjb ∩ (Cia ∩ Ci′a)

= ∅

For general cases i 6= i′ ∧ j 6= j′.

Ciajb ∩ Ci′aj′b = (Cia ∩ Cjb) ∩ (Ci′a ∩ Cj′b)

= (Cia ∩ Ci′a) ∩ (Cjb ∩ Cj′b)

= ∅

• Reconstruction: The formulae below show
that the union of all atom derived fragments re-
construct the original instance C.

m⋃

i=1

n⋃

j=1

Ciajb =
m⋃

i=1

n⋃

j=1

(Cia ∩ Cjb)

=

m⋃

i=1

(Cia ∩

n⋃

j=1

Cjb)

=

m⋃

i=1

(Cia ∩ C)

= C ∩
m⋃

i

Cia

= C ∩ C

= C

Proc. Eighteenth Australasian Database Conference (ADC 2007)

109

The complexity of this approach is higher than
the traditional approaches using fragmentation of one
owner relation but the improvement of system per-
formance make the pay on complexity worthwhile.
Lets c be the number of related types of a given
target type, n be the number of records of the tar-
get type, m be the average number of records of
instances of related types, k be the number of net-
work nodes. The complexity of our approach, which
deals with derived fragmentation and allocation, is
O(kc + c · m · log(m) + n · log(n) + c · k2) for de-
rived fragmentation procedure, including performing
semi-join, removing overlap and fragment. For ex-
ample, if there are two related types for a target
type, the complexity of the traditional approach is
O(m · log(m) + n · log(n) + k2) while our approach
is O(2 · m · log(m) + n · log(n) + 3 · k2). The com-
plexity, for the one time design procedure, does not
change very much while the system performance can
be indeed improved, for the long term using of the
system.

4.5 Experimental Evaluation of the Heuris-
tics

We present here some experiments that have been
conducted to verify the algorithm, DR Frag Alloc,
proposed above. We used the same testbed as in
(Ma, Schewe & Wang 2006). The testbed has been
designed with a database schema S, which was pop-
ulated with records to get db(S). Then we assumed
from four sites over a network there are 30 queries,
which were the 20% most frequently queries or used
by most critical transactions. These 30 queries were
designed by applying the similar pattern of queries as
in OO7 project (Carey, DeWitt & Naughton 1993).
According to the well-known 20/80 rule, the system
performance is assessed by the total query costs of
these 30 queries. Some of the types were accessed
by queries with predicates while other types, target
types, were accessed by queries though joining with
related types or directly. To test the heuristic we de-
signed queries such that there were two target types,
each of which had two related types. The types that
have predicates defined on had been horizontally frag-
mented using the heuristics proposed in (Ma, Schewe
& Wang 2006). With these fragmented related types
we performed derived horizontal fragmentation on the
target types using the following two approaches:

• case I: using the algorithm 1 introduced above.

• case II: using the traditional approach based on
fragments of one owner type. (Özsu & Valduriez
1999).

We ran the tests on three different instances of
different sizes. Comparing the results we use the fol-
lowing table:

case I II
Instance 1 21079 · 106 21152 · 106

Instance 2 78111 · 106 78456 · 106

Instance 3 136565 · 106 136724 · 106

The experimental results showed that the total
query costs for case I is smaller than for case II on all
three different database instances. This means that
our heuristic approach for derived horizontal fragmen-
tation can lead to better system performance than
using the traditional approaches according to frag-
mentation of one owner relation. This valid our pro-
posed heuristic approach in this article. Further, we
observed that the time to process the tests using our

approach was of similar length as the time using the
traditional approach. Furthermore, even though the
improvement of performance is not significant, con-
sidering that the two target types are of small sizes,
each of which only has 0.5% of the total number of the
tuples of the database instances, and that the queries
accessing the target types only count for about 12%
total query costs, we can expect better performance
improvement for some other database instances and
queries.

5 Conclusion

In this paper we presented a heuristic approach to
derived horizontal fragmentation for complex data-
model. The work in this paper complement the
work in (Ma, Schewe & Wang 2006) to provide a
complete design procedure of horizontal fragmenta-
tion, including primary horizontal fragmentation and
derived horizontal fragmentation, for complex data-
model. The major objective is to provide a tractable
approach to minimising the query processing costs by
performing horizontal fragmentation and fragment al-
location simultaneously.

The next step of our work is to integrate the hand-
ing of horizontal fragmentation, which has been dis-
cussed in (Ma, Schewe & Wang 2006) and in this pa-
per, and vertical fragmentation, which has been dis-
cussed in (Ma, Schewe & Kirchberg 2006), with the
consideration of the requirement of global optimisa-
tion.

References

Baião, F., Mattoso, M. & Zaverucha, G. (2000), Hor-
izontal fragmentation in object dbms: New is-
sues and performance evaluation, in ‘Proc. The
19th IEEE International Performance, Comput-
ing and Communications Conference’, IEEE CS
Press, Phoenix, pp. 108–114.

Bellatreche, L., Karlapalem, K. & Basak, G. (1998),
Horizontal class partitioning for queries in object
oriented databases, Technical report, HKUST-
CS98-6.

Bellatreche, L., Karlapalem, K. & Li, Q. (1998),
Complex methods and class allocation in dis-
tributed object-oriented database systems, in
‘Object Oriented Information Systems’, pp. 239–
256.

Bellatreche, L., Karlapalem, K. & Simonet, A. (1997),
Horizontal class partitioning in object-oriented
databases, in ‘DEXA ’97: Proceedings of the
8th International Conference on Database and
Expert Systems Applications’, Springer-Verlag,
London, UK, pp. 58–67.

Carey, M. J., DeWitt, D. J. & Naughton, J. F. (1993),
‘The OO7 benchmark’, SIGMOD Record (ACM
Special Interest Group on Management of Data)
22(2), 12–21.

Ceri, S., Navathe, S. & Pelagatti, G. (1983), ‘Distri-
bution design of logical database schemes’, IEEE
Trans. Software Eng SE-9(4), 487–503.

Ceri, S., Negri, M. & Pelagatti, G. (1982), Horizon-
tal data pertitioing in database design, in ‘Proc.
the ACM SIGMOD International Conference on
Management of Data’, pp. 128–136.

Feyer, T., Kao, O., Schewe, K.-D. & Thalheim, B.
(2000), Design of data-intensive web-based in-
formation services, in Q. Li, Z. M. Ozsuyoglu,

CRPIT Volume 63

110

R. Wagner, Y. Kambayashi & Y. Zhang, eds,
‘Proceedings of the 1st International Confer-
ence on Web Information Systems Engineering
(WISE 2000)’, IEEE Computer Society, pp. 462–
467.

Karlapalem, K. & Navathe, S. B. (1994), Mate-
rialization of redesigned distributed relational
databases, Master’s thesis, Hong Kong Univer-
sity of Science and Technology, Hong Kong.

Kirchberg, M., Riaz-ud-Din, F., Schewe, K.-D. & Tre-
tiakov, A. (2006), ‘Towards algebraic query op-
timisation for xquery’, LNCS Journal on Data
Semantics VII . to appear.

Ma, H. (2003), Distribution design in object oriented
databases, Master’s thesis, Massey University.

Ma, H., Schewe, K.-D. & Kirchberg, M. (2006),
A heuristic approach to vertical fragmentation
incorporating query information, in O. Vasile-
cas, J. Eder & A. Caplinskas, eds, ‘Proceed-
ings of the 7th International Baltic Conference
on Databases and Information Systems’, IEEE,
pp. 69–76.

Ma, H., Schewe, K.-D. & Wang, Q. (2006), A heuris-
tic approach to cost-efficient fragmentation and
allocation of complex value databases, in G. D.
J. Bailey, ed., ‘Proc. ADC 2006’, Vol. 49 of CR-
PIT, Hobart, Australia.

Ma, H., Schewe, K.-D. & Wang, Q. (n.d.), ‘Distribu-
tion design for higher-order data models’, Data
and Knowledge Engineering . to appear.

Özsu, M. T. & Valduriez, P. (1999), Principles of Dis-
tributed Database Systems, Alan Apt, New Jer-
sey.

Ra, M. (1993), Horizontal partitioning for distributed
database design, in M. Orlowska & M. Papa-
zoglou, eds, ‘Advances in Database Research’,
World Scientific Publishing, pp. 101–120.

Ra, M. & Park, Y.-S. (1993), Data fragmenta-
tion and allocation for pc-based distributed
database, in ‘The Third International Sympo-
sium on Database Systems for Advanced Appli-
cations’, Taejon, South Korea.

Schewe, K.-D. (2001), On the unification of query al-
gebras and their extension to rational tree struc-
tures, in M. Orlowska & J. Roddick, eds, ‘Proc.
Australasian Database Conference 2001’, Aus-
tralian Computer Society, pp. 52–59.

Shin, D.-G. & Irani, K. B. (1991), ‘Fragmenting re-
lations horizontally using a knowledge-based ap-
proach’, IEEE Trans. Softw. Eng. 17(9), 872–
883.

Thalheim, B. (2000), Entity-Relationship Modeling:
Foundations of Database Technology, Springer-
Verlag.

Zhang, Y. (1993), On horizontal fragmentation of
distributed database design, in M. Orlowska &
M. Papazoglou, eds, ‘Advances in Database Re-
search’, World Scientific Publishing, pp. 121–
130.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

111

CRPIT Volume 63

112

Condensative Stream Query Language for Data Streams

Lisha Ma1 Werner Nutt2 Hamish Taylor1

1School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh, UK

2Faculty of Computer Science
Free University of Bozen-Bolzano, Italy

Abstract

In contrast to traditional database queries, a query
on stream data is continuous in that it is periodically
evaluated over fractions (sliding windows) of the data
stream. This introduces challenges beyond those en-
countered when processing traditional queries. Over
a traditional DBMS (Database Management System),
the answer to an aggregate query is usually much
smaller than the answer to a similar non-aggregate
query making query processing condensative. Cur-
rent proposals for declarative query languages over
data streams do not support such condensative pro-
cessing. Nor is it yet well understood what query
constructs and what semantics should be adopted for
continuous query languages.

In order to make existing stream query languages
more expressive, a novel stream query language CSQL
(Condensative Stream Query Language) are pro-
posed over a sequence-based stream model (Ma &
Nutt 2005). It is shown that the sequence model sup-
ports a precise tuple-based semantics that is lacking
in previous time-based models, and thereby provides
a formal semantics to understand and reason about
continuous queries. CSQL supports sliding window
operators found in previous languages and processes
a declarative semantics that allows one to specify and
reason about the different meanings of the frequency
by which a query returns answer tuples, which are
beyond previous query languages over streams. In
addition, a novel condensative stream algebra is de-
fined by extending an existing stream algebra with a
new frequency operator, to capture the condensative
property. It is shown that a condensative stream al-
gebra enables the generation of efficient continuous
query plans, and can be used to validate query op-
timisation. Finally, it is shown via an experimental
study that the proposed operators are effective and
efficient in practice.

Keywords: Data Stream, Stream Query Language,
Window Aggregation, Sequence Model, Stream Alge-
bra, Condensative Queries.

1 Introduction

Stream data can be characterised as an unbounded
list of data elements that arrive in an order and at a
rate over which a Data Stream Management System
(DSMS) has no control. These can be found in a large
variety of applications as diverse as stock ticker pro-

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at Eighteenth Australasian Database Conference
(ADC2007), Ballarat, Australia. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 63. James
Bailey and Alan Fekete, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

cessing, network traffic analysis, intrusion detection,
sensor monitoring, web tracking and personalisation.

Compared to a traditional database architecture
in which data is persistent and queries can be consid-
ered to be dynamic, in these new applications data
can be considered active whereas queries are persis-
tent or long-standing. As a result, traditional rela-
tional database technology designed to support ap-
plications over relatively static data has not proved
entirely suitable for data stream applications.

A new research area, data stream processing, has
generated considerable interest from both industry
and research community seeking to bridge the gap
between current technology and the needs of these
emerged applications. This has resulted in more chal-
lenging requirements being generated for the data
stream field with increasing interaction among dif-
ferent academic fields and a growing demand for in-
formation sharing to address many related research
problems in semantics, query processing and run-
time management. Among all the interesting issues,
one major challenge is the development of techniques
for providing continuously updating answers to ag-
gregate queries over potentially unbounded streams.
A general approach to addressing this challenge is
by means of both window queries and a centralised
query processing approach. Window queries add win-
dow clauses to continuous queries and allow aggregate
queries to be evaluated over a segment of the input
data stream rather than over the entire stream. There
has been a surge of interest in the research issues in-
volved in developing algorithms for windowed aggre-
gate queries (Arasu & Widom 2004b, Chandrasekaran
& Franklin 2002, Cranor, Johnson, Spataschek &
Shkapenyuk 2003, Dobra, Garofalakis, Gehrke &
Rastogi 2002, Dobra et al. 2002, Gilbert, Kotidis,
Muthukrishnan & Strauss 2001, Li, Maier, Tufte, Pa-
padimos & Tucker 2005).. Driven by different pur-
poses, a number of Data Stream Management Sys-
tems (DSMSs) have been developed (Babcock, Babu,
Datar, Motwani & Widom 2002, Abadi, Carney,
Çetintemel, Cherniack, Convey, Lee, Stonebraker,
Tatbul & Zdonik 2003, Yao & Gehrke 2003, Cranor
et al. 2003, Chen, DeWitt, Tian & Wang 2000, Chan-
drasekaran, Cooper, Deshpande, Franklin, Heller-
stein, Hong, Krishnamurthy, Madden, Raman, Reiss
& Shah 2003) and several stream query languages
(Arasu, Babcock, Babu, McAlister & Widom 2004,
Dobra et al. 2002, Hammad, Franklin, Aref &
Elmagarmid 2003, Arasu & Widom 2004a) have been
recently proposed.

However, current techniques have two serious lim-
itations. First, most current stream languages do
not have the necessary language constructs to sup-
port condensative query processing over streams in
the manner of traditional DBMSs (Database Manage-
ment Systems). Aggregate query processing is called
condensative in a traditional DBMS since the answer

Proc. Eighteenth Australasian Database Conference (ADC 2007)

113

to an aggregate query is usually much smaller than
the answer to its non-aggregate counterpart. It is
crucial that a declarative stream language supports
condensative query processing over distributed data
streams due to the large amount of data that is usu-
ally involved and the limited storage capacity that is
usually available, such that aggregation will not be
performed over a window where queries return new
results whenever the window content changes. Sec-
ond, the focus of previous work has mainly been on
query execution while fundamental questions in con-
nection with data models and formal semantics for
queries have not yet been thoroughly addressed. The
lack of this makes it difficult to reason about aggre-
gate queries and compare different languages within a
uniform semantics. Moreover, it makes it difficult to
define a clear and sensible semantics for distributed
data stream processing, as is usually the case when
dealing with data streams.
Prior Work. Prior work in this area has been fo-
cused on operations and system architectures for data
stream processing, to augment existing technologies
and build new systems for stream-based applications,
e.g.,(Babcock et al. 2002, Abadi et al. 2003, Yao
& Gehrke 2003, Cranor et al. 2003, Chen et al.
2000, Sullivan 1996, Chandrasekaran et al. 2003).
Among the few established works on studying stream
query languages, CQL (Continuous Query Language)
(Arasu & Widom 2004a) is one of the most powerful
relation-based languages. It is used in the STREAM
system, and is proposed with full semantics over
a time-based model. CQL provides advanced win-
dowing capabilities, and it is even possible to PAR-
TITION a window on an attribute and specify the
width of a window (e.g. ROWS 100 or RANGE 100
MINUTES). However as the order of tuples is not
uniquely defined in a time-based model, there is no
clear semantics for continuous queries involving tuple-
based sliding windows or moving aggregation. An-
other expressive language that supports condensation
is StreaQuel, which is implemented in TelegraphCQ
(Chandrasekaran et al. 2003). In StreaQuel, each
query definition is followed by a for-loop construct
that specifies (1) the set of windows over which the
query is to be executed, and (2) how often the query
should be run. Recently, Li et al. (Li et al. 2005) have
proposed a similar, but more declarative way to define
windowed aggregate queries. Their window definition
has three parameters: RANGE specifies the window
size, SLIDE the window movement, and WATTR the
granularity, that is, whether RANGE and SLIDE are
defined in terms of timestamps or sequence numbers
of tuples. All these patterns were defined with re-
spect to window identifiers. Such semantics define a
function to identify uniquely each window extent for a
given window aggregate query; also, they require an
inverse function that, for each tuple, it determines
the extents of the window to which the tuple be-
longs.Window identifier semantics was implemented
in an extended version of the Niagara Query Engine
(Chen et al. 2000) for evaluating aggregate window
queries over data streams. In all three languages fre-
quency and window length have to be defined in terms
of the same granularity. Besides frequency can not ex-
ist independently without a window expression and
has to be defined in a fixed place within a query due
to the limited semantics to interpret different mean-
ings of frequency, e.g., the frequency over the input
stream cannot be differentiated from the frequency
over the result stream.

A host of research exists on tackling aggregate
query evaluation over data streams. Widely differ-
ing approaches employing, e.g., hashing, sampling,
sketches and wavelets, just to name a few, have been

proposed in the literature (Golab & Özsu 2003, Bab-
cock et al. 2002, Carney, Çetintemel, Cherniack, Con-
vey, Lee, Seidman, Stonebraker, Tatbul & Zdonik
2002, Yao & Gehrke 2003, Arasu & Widom 2004b,
Chandrasekaran & Franklin 2002, Cranor et al. 2003,
Dobra et al. 2002, Gilbert et al. 2001, Li et al. 2005).
All those approaches, however, are workload-driven,
as opposed to being user-driven. In more detail, it is
desirable to give the user considerable freedom in how
windows are defined and handled by the system. In
other words, the user should be in a position to de-
clare window semantics at the language level, rather
than rely on the system to deduce tradeoffs between
accuracy and resource consumption, as is usually the
case. This is what where termed condensative query
evaluation: the user should be able to declare how
frequently sampling should take place and the sys-
tem should perform aggregation based on the user’s
instructions.

This paper introduces a Condensative Stream
Query language (CSQL) over the sequence model.
CSQL aims to extend the expressiveness of stream
query languages along the dimension of answer fre-
quency, which is a live issue for continuous queries
and for which no analogy exist in classical databases.
It is shown that CSQL supports sliding window op-
erators found in previous languages, and a frequency
operator. It is also shown that CSQL is capable of
expressing useful sample queries such as queries with
user-defined sampling, mixed jumping windows, and
nested aggregation, which are beyond previous query
languages over streams. More specifically, the main
contributions are as follows.

1. Sampling and jumping windows are incorporated
in a declarative fashion into a novel Condensative
Stream Query Language (CSQL), along with its
formal semantics and syntax over the sequence
model (Ma & Nutt 2005). It is shown that CSQL
can specify window queries found in (Arasu
& Widom 2004a, Carney et al. 2002, Chan-
drasekaran et al. 2003, Chen et al. 2000, Yao
& Gehrke 2003); also it supports (1) a way
to express frequency requirements on both base
and derived streams (2) user-defined group-based
sampling (3) a mixed jumping window over
streams (4) various forms of aggregation, e.g.,
nested aggregation. None of them can be realised
in previous stream query languages.

2. A condensative stream algebra is introduced ex-
tending the existing stream algebra with a new
kind of operator, called a frequency operator
as well as showing its concrete semantics. Ap-
proaches to optimisation for the condensative
model such as splitting, interleaving and compo-
sitional operations are discussed. Furthermore
as an independent operator, the frequency op-
erator can be easily pushed down in a stream
algebra to avoid unnecessary computation based
on local and non-local semantics. This allows the
possibility of splitting aggregate query process-
ing techniques into two levels, namely, tuple sam-
pling and aggregation evaluation, which provides
a flexible mechanism to interact with different
advanced aggregate operators.

3. Finally, these ideas have been implemented in a
prototype query engine. In order to demonstrate
the efficiency gained by a pushed down frequency
operator for a jumping window query over an or-
dered sequence stream, it is compared with the
window Id approach presented in (Li et al. 2005).
The experimental results show that a pushed
down frequency operator is effective and outper-
forms the window Id approach and that a con-

CRPIT Volume 63

114

densative stream algebra can be reasonably op-
timised for continuous queries with a frequency-
based equivalence. It is also shown how to evalu-
ate “mixed jumping window” queries, which can-
not be handled by existing approaches.

Organisation. The remainder of the paper is organ-
ised as follows. Section 2 reviews sequence databases
and the time-based data model. Sections 3, 4 and 5
introduce the semantics of the CSQL language. Lan-
guage syntax is presented in section 6. Algebraic rules
for the operators and example CSQL queries are given
in section 7 and 8, respectively. The main algorithms
for CSQL are given in section 9, while experimental
results are presented in section 10. Section 11 con-
cludes the paper and discusses future work.

2 Background

In this section two previous data models are reviewed,
from which the proposed model draws some features.

2.1 Sequence Database Model

The SEQ sequence model and algebra were intro-
duced by Seshadri et al. in (Seshadri, Livny &
Ramakrishnan 1995). They define a sequence as an
ordering function from the integers (or another or-
dered domain such as calendar dates) to the items
in the sequence. The SEQ model separates the data
from the ordering information and can deal with dif-
ferent types of sequence data by supporting an ex-
pressive range of sequence queries.

Some operators, such as selection, projection, vari-
ous set operations, and aggregation (including moving
windows) are carried over from the relational model.
A number of operators for manipulating sequences
have also been developed. The SEQ model has been
implemented in SRQL (Sorted Relational Query Lan-
guage) (Ramakrishnan, Donjerkovic, Ranganathan,
Beyer & Krishnaprasad 1998), in which sequences are
implemented as logically or physically sorted multi-
sets (relations) and the language attempts to exploit
the sort order.

2.2 Time-based Stream Model

In a data stream model, data items appear in a time-
varying, continuously arriving, and append-only for-
mat.

A formal time-based stream model has been de-
fined in (Arasu & Widom 2004a) and a declarative
Continuous Query Language (CQL), including a for-
mal semantics, has been defined. CQL has been im-
plemented in the STREAM system at Stanford. The
core of the model is as follows: Let Dr be the set of
all tuples that satisfy the schema r. Let T be the set
of all timestamps. Then a stream s with schema r is
a subset

s ⊆ Dr × T ,

such that for every τ ∈ T the bag {{e | 〈e, τ〉 ∈ s}}
is finite. P(Dr) denotes the set of all subsets of Dr.
A time-dependent relation R for the schema r is a
mapping:

R : T → P(Dr),

such that each set R(τ) is finite. With these def-
initions, a stream can be transformed into a time-
varying relation and vice versa.

3 Sequence Model

In a time-based model the order of tuples is not
uniquely defined. This drawback leads to ambigu-
ous semantics for continuous queries involving tuple-
based sliding windows or moving aggregation. To
address this issue, features are drawn from sequence
databases and is constructed a sequence dependent
model for streams. In this section the model and
its formal semantics are introduced. As will be seen
in the next two sections, the model is more expres-
sive than the existing time-based model in (Arasu &
Widom 2004a). The section concludes by describing
the common properties that need to be shared by dif-
ferent data stream models, and that the new model
aims to encode. An abstract relational stream is re-
quired to have the following characteristics:
• A stream consists of tuples;

• A stream has a relational schema and all its tu-
ples comply with that schema;

• A stream develops over time. Therefore it is
assumed that there is a set T to represent the
time domain, such as wall-clock time or the nat-
ural numbers. A timestamp is any value from T .
Timestamps are linearly ordered.

3.1 Relational Schema

A relation schema has the form:

r〈a1 : T1, . . . , ak : Tk〉,
where r is a relation symbol, a1, . . . , ak are attributes,
and T1, . . . , Tk are types as in SQL. A timestamp is
not included as a default attribute in the schema in
case there is a need to separate various different times-
tamps associated with a tuple such as the tuple’s birth
time or its arrival time.

3.2 Time Domain

There is no restriction on whether the time domain
has to use wall clock time or the natural numbers.
However it is still required that the general properties
of the time domain be defined. A time domain should
be ordered. Let R ⊆ X × X be an ordering (i.e, R
is reflexive, antisymmetric and transitive). For every
ordering R the strict version R′ of R is defined by

xR′y iff xRy and x 6= y.

A binary relation is
Linear: if for all x, y ∈ X where x 6= y either xR′y
or yR′x
Dense: if for all x, y ∈ X where xR′y, there is a
z ∈ X such that xR′z and zR′y
Discrete: if for every two elements x, y ∈ X where
xR′y, there are only finitely many elements z
between them, i.e, there are only finitely many z
such that xR′z and zR′y
If a linear ordering R′ is discrete, then for every ele-
ment x ∈ X, either at least one element y is such that
xR′y, or there is no element y such that xR′y. A time
ordering is required to have following properties:

1. Any two distinct timestamps must be compara-
ble. This means, the ordering should be linear.

2. The ordering should not be dense, but discrete.
A time domain with these properties is essentially

identical with the integers or an interval of the inte-
gers. A window of length n consists of the starting
point plus the next (n− 1) elements. If the time do-
main has a first element and is not bounded, then it
can be represented by the natural numbers.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

115

3.3 Local and Non-Local Semantics

A stream operator is a function Ω that takes a stream
s as input and outputs a stream Ωs. Stream opera-
tors that apply to a stream can be local or non-local.
Suppose there is an operator Q that transfers a data
stream s from a sequence model to a time based model
Qs, andQs(t) represents a bag of the tuples that have
timestamp t.

Definition 1 Ω is local if:

Qs1(t) = Qs2(t)implies (Ω(Qs1))(t) = (Ω(Qs2))(t),

otherwise it is non-local.

Most relational operators are local such as selec-
tion σ, and most stream operators are non-local such
as sliding window operators W.

4 Stream Operators

It is shown that queries expressible in a time-based
model can also be specified in this model. Further-
more, as will be seen in section 8, the model and oper-
ators are capable of expressing queries found in prac-
tice that are beyond previous models and languages.
Next, some typical stream operators are introduced
in this model.

4.1 Selection Operator

First the conditions for a selection operator are de-
fined. A term is either an attribute name or a value
constant. An atomic condition is an expression of the
form

t1 ρ t2,

where t1, t2 are terms and ρ is a comparison like “<”,
“6”, “=”, “>”, or “>”. Arbitrary conditions can
be built up from atomic conditions using the boolean
connectives “¬”, “∨”, or “∧”. Conditions are denoted
by the letter C.

For every condition C a selection operator σC is
defined. Intuitively, σC(s) is the subsequence of tu-
ples with index j of stream s, where j ∈ N. σC(s) is
defined for an arbitrary stream s recursively by saying
what it is the tuple σC(s)(j) for an arbitrary number
j. The set of indices I1 is defined as

I1 =
{

k ∈ N
∣∣∣ s(k) satisfies C

}
.

If I1 6= ∅, then let n1 = min I1 and define σC(s)(1) :=
s(n1), otherwise let σC(s) = ⊥. Now, suppose nj is
defined for some j ∈ N. Then let

Ij+1 =
{

k ∈ N
∣∣∣ s(k) satisfies C and k > nj

}
.

Again, if Ij+1 6= ∅, then let nj+1 = min Ij+1 and
define σC(s)(j+1) := s(nj+1), otherwise let σC(s)(j+
1) be undefined. Also, σC(s)(j + 1) is undefined if nj
is undefined.

4.2 Sliding Window Operators

Wt will be used to denote a time-based window, and
Wn will be used to denote a tuple-based sliding win-
dow.

Time-based Sliding Window

A time-based sliding window Wt is bounded by its
temporal size t even though it is not known exactly
how many tuples there are within the window size.
However it slides whenever the time slot increases.
The sliding rate will depend on the time granularity.
sτ (k) is introduced to denote the timestamp for tuple
s(k). More formally, the output stream Wts is defined
as a sequence of sets Wts(j) for a given j in stream s.
Wts(j) is not defined if s(j) is not defined, otherwise

Wts(j) =
{

s(k)
∣∣∣ sτ (k) + t > sτ (j) and k 6 j

}
.

Tuple-based Sliding Window

A tuple-based sliding window will slide whenever a
new tuple arrives. So, for every n ∈ N, a tuple-based
sliding window Wn over stream s produces a sequence
of sets

Wns(j) =
{

s(k)
∣∣∣ k > max{0, j − n} and k 6 j

}
.

4.3 Frequency Operator

The frequency operator F will pick the stream tuple
based on a defined frequency. Depending on how the
frequency is set, different types of frequency operators
can be defined. Basically, the parameters can be set
either by a physical bound (tuple-based) or a logical
bound (time-based). In order to separate the different
bounds, Fn and Ft are used to denote a tuple-based
frequency operator and a time-based frequency oper-
ator respectively.

Tuple-based Frequency Operator

For every natural number n ∈ N a tuple-based fre-
quency operator Fn selects every n-th tuple of a
stream. Formally:

Fns(j) = s(n× j).

Time-based Frequency Operator

For every time instance t a time-based frequency op-
erator Ft selects tuples with timestamp j × t as a
stream Fts, where j ∈ N.

If there is no tuple with timestamp j× t, then the
last tuple is output within that time slot. Fts(j) is
a subsequence of tuples with order j over order nj of
stream s, where j ∈ N. Then if s(nj) 6= ∅ let

nj = max
{

k ∈ N
∣∣∣ (j − 1)× t 6 sτ (k) 6 j × t

}
,

otherwise it is undefined. Now, Fts(j) = s(nj), for
all j ∈ N if nj is defined, otherwise Fts(j) =⊥.

4.4 Jumping Windows

Sometimes, the window needs to jump rather than
slide. This can be achieved by applying a frequency
operator to a sequence of sets instead of posing a fre-
quency to a sequence of tuples. Such a kind of win-
dow is called a jumping window. Depending on how
the frequency length is defined. Jumping windows
are categarised into two different types: tuple-based
jumping windows and time-based jumping windows.

CRPIT Volume 63

116

Tuple-based Jumping Window

For every number n ∈ N, and a sequence of sets Ws
that are produced by the sliding window operators
Wn or Wt, a tuple-based jumping window Fn(Ws)
selects every n-th set of Ws as follows:

(Fn(Ws))(j) = Ws(n× j).

Time-based Jumping Window

For a sequence of sets Ws that are produced by a
sliding window operator W applied to the stream s,
A time-based jumping window Ft(Ws) is obtained by
selecting a subsequence Ws(nj) (j ∈ N) of Ws(n). In-
tuitively, Ft(Ws)(j) is the first window that contains
an element with a timestamp that is greater or equal
to t × j. Formally, for an arbitrary stream s and a
window operator W , Ft(Ws) is defined recursively by
saying what it is the set Ft(Ws)(j) for an arbitrary
number j. The set of indices Ij is defined as

Ij =
{

i ∈ N
∣∣∣ ∃k. s(k) ∈ Ws(i) ∧ sτ (k) ≥ j × t

}
.

If Ij 6= ∅, then nj := min Ij , and Ft(Ws)(j) :=
Ws(nj), otherwise let Ft(Ws)(j) = ⊥.

Time-based Jumping Operator

For every time instance t, and a stream Ws that is
produced by applying a sliding window operator W
to a stream s. A time-based jumping window Ft(Ws)
is obtained by selecting a bag of tuples for every mul-
tiple of t from stream Ws. (Ft(Ws))(τ) is defined for
an arbitrary time t, where t ∈ T as:

(Ft(Ws))(τ) =
{

Ws(τ) if τ = j × t for some j ∈ N
∅ otherwise

5 Condensative Stream Queries

A condensative stream query Q, in essence, is a tra-
ditional SPJ query augmented with frequency predi-
cates (not necessarily have to be an aggregate query).
Conceptually such queries have the “canonical” form
of Eq. 1 in terms of relational algebra:

Q = π∗F(p1,...,pn)σB(c1,...,cm)(R1 × . . .×Rh) (1)

That is, upon the product of the base relations (R1×
. . . × Rh), two types of operations performed with
projected attributes (as indicated) are returned as the
results.

Filtering: a Boolean function σB(c1,...,cm) filters the
results by the selection operator σB (e.g., B =
c1 ∧ c2 ∧ c3), and

Frequency: a Frequency function F(p1, . . . , pn)
picks up the results from the base relations.

The goal is to support such condensative stream
queries efficiently. Condensative stream models
boolean filtering, i.e., σB(c1,...,cm) as a first-class con-
struct in query processing. With algebraic support
for optimisation, Boolean filtering is virtually never
processed in the canonical form (of Eq. 1). Consider,
for instance, B = c1 ∧ c2 for c1 as a selection over
R and c2 as a join condition over R × S. The alge-
bra framework supports splitting of selections (e.g.,
σc1∧c2(R × S) ≡ σc1σc2(R × S) ≡ σc1(R ./c2 S))
and interleaving them with other operators (e.g.,
σc1(R ./c2 S) ≡ σc1(r) ./c2 S). Their algebraic equiv-
alences enable query optimisation to transform the

canonical form into efficient query plans by splitting
and interleaving.

Such algebraic support, splitting and interleav-
ing for optimisation, are completely inherited for
frequency, i.e., F(p1, . . . , p2). Moreover, the sup-
port can be compositional. Suppose there is a fre-
quency function F = p1 ∧ p2 ∧ p3, for p1, p2, p3 as
a frequency condition over R1, R2, R3 respectively.
p1, p2, p3 are either all time-based or all tuple-based.
Suppose p3modp2 = 0, p3modp1 = 0, p2modp1 = 0,
then the frequency functions are compositional (e.g.,
Fp1Fp2Fp3(R1 × R2 × R3) ≡ Fp1Fp2Fp2(R1 × R2 ×
R3) ≡ Fp1Fp1Fp1(R1×R2×R3) ≡ Fp1(R1)×(R2×Fp1

R3). When queries are nested, frequency functions
can be compositional even when the frequencies in-
volved do not have the same granularity. (e.g, for a
self-join query (R1 ×Fp1

R2) ×Fp2
(R1 ×Fp1

R2), the
inner frequency condition p1 has the priority to syn-
chronise the outer frequency condition p2, (R1 ×Fp1

R2)×Fp2
(R1×Fp1

R2) ≡ (R1×Fp1
R2)×Fp1

(R1×Fp1

R2)).
Finally relational algebra’s pushing down optimi-

sation is extended into a stream algebra. The op-
erators which can be used in a stream algebra are
categorised by local and non-local semantics defined
in definition 1 as such semantics assist the pushing
down optimisation approach. An operator can be
easily pushed down if it is a local operator such as
a time-based frequency operator or a selection op-
erator, otherwise not, i.e., suppose there is a time
based frequency function F , then F(R1×R2×R3) ≡
F(R1)×F(R2)×F(R3).

6 Syntax of CSQL

CSQL is a stream language that adds additional lan-
guage patterns to SQL to support a stream processing
ability. The core syntax of CSQL can be described
with a context-free grammar.
string: represents for any valid string
number: represents any valid number
asterisk: represents *
<Query>−→<Select><From> | <Select><From><Where> |

<Select><From><Where><GroupBy>
<Name>−→string | <Name>.<Name> |asterisk|

<Name>AS<Name>
<Attribute List>−→<Name> | <Name>(,<Name>)∗
<Granularity>−→Milliseconds|Seconds|Minutes|Hours|Tuples|

Millisecond|Second|Minute|Hour|Tuple
<Length>−→number
<Frequency>−→[<Fre>Partitioned By <Attribute List>]|

[<Fre>]
<Fre>−→Frequency<Length><Granularity>
<Range>−→Range<Length><Granularity>
<Compare>−→> | < | >= | <= | = | <>
<Clause>−→<Name><Compare><Name> |

<Name><Compare>number
<op>−→ and|or
<Condition>−→<Clause> | <Clause> (<op><Clause>)∗
<term>−→COUNT|SUM|AVG|MAX|MIN
<Aggregation>−→<term> (<Name>)|

<Aggregation> (, <Aggregation>)∗
<Select>−→ SELECT <SelectTerm> |<Select><Frequency>
<SelectTerm>−→<Aggregation> | <Attribute List> |

<SelectTerm> (, <SelectTerm>)∗
<From>−→ FROM <FromTerm>
<LeftBracket>−→(
<RightBracket>−→)
<FromTerm>−→<Name> | <Name><Frequency> |

<Name> [<Range>]|
<Name> [<Frequency>, <Range>]|
<LeftBracket><Query><RightBracket>AS
<FromTerm> |
<FromTerm> (, <FromTerm>)∗

<Where>−→ WHERE <Condition>
<GroupBy>−→GROUP BY <Attribute List>

Proc. Eighteenth Australasian Database Conference (ADC 2007)

117

7 Example Scenario and Queries

In practice there has been an increasing need for ag-
gregate queries. To illustrate this, consider a scenario
of a tracing system to study the behavior of wild ani-
mals, which collects distributed sensor measurements.
One of the sensors records the pulse of an animal.
Upon every heart beat of an animal it will send out
a tuple with a timestamp and the animal’s ID. The
schema of the relation for these measurements has the
form

Pulse〈Id, Timestamp〉
The other type of sensors report on an animal’s blood
pressure and body temperature regularly, for example
every (full) second. It has a core relation

BodyCondition〈Id, Species, BTemp, BloodP,Timestamp〉
In these two relations: Id is the unique number of each
animal, Species represents the type of animal, Times-
tamp represents the timestamp, BloodP is the blood
pressure of the animal, and BTemp is the animal’s
temperature. For ease of presentation, it is assumed
that tuples arrive in the order of their timestamp at-
tribute. Here are four queries with requirements on
how often to evaluate them.

1. Simple sampling query: For every 100 tuples,
report all horses’ body condition records.

2. Latest result query: Report the latest results
of measurement on blood pressure and body tem-
perature for each animal at the rate of one read-
ing every minute, and evaluate the query for ev-
ery 100 arriving tuples.

3. Aggregate query: For each animal, what is the
pulse rate per minute? It is supposed that the
user wants to know the result for every 10 tuples.

4. Nested aggregate query: For each animal,
what is the average pulse rate per hour? It is
supposed that the user wants to make use of the
answers to the first query and expects a result
every minute.

8 CSQL vs. Condensative Stream Algebra

The Condensative Stream Query Language (CSQL) is
similar to SQL but extended with operators such as
those discussed in Section 4, as well as a mechanism
for directly submitting plans in a stream algebra that
underlies the language.

In the CSQL language, a frequency operator can
be expressed by adding to a range variable of a
stream, say S, the expression [Frequency F], where
F denotes an interval length. The length is either de-
fined in terms of a number of tuples as [Frequency n
Tuples] (“every n tuples”) or in terms of a time pe-
riod, e.g. as [Frequency t Minutes] (“every t minutes”).
The operator picks tuples based on the predefined fre-
quency length from the base stream. For group-based
sampling [Frequency F Partitioned By A1, . . . , Ak] is
used. The operator will partition S into different sub-
streams based on the grouping attributes A1, . . . , Ak,
then for each substream the operator picks tuples
based on the predefined frequency. The frequency is
separated for an input stream and a result stream by
putting the frequency expression in either the FROM
clause or the SELECT clause.

The frequency operator can be combined with slid-
ing window operators when the window needs to move
much faster. Such a kind of window is called a jump-
ing window. When Frequency = 1 Tuple, it is equiva-
lent to a normal sliding window. Depending on how

the frequency length is defined, tuple-based and time-
based jumping windows can be distinguished. Instead
of computing the answer whenever a new tuple ar-
rives, the frequency operator requires a computation
only after an interval of the frequency length. This
means that, the operator will take a “nap” between
any two computations. A jumping window has two
parameters:

The window size W . All of the tuples that arrive
from the start during a period of W , or within
W tuples have to be stored for a computation.

The length of the “nap” F . A new window is
only output after the nap is over.

A jumping window is always defined by a sliding
window operator, followed by a frequency operator
expression, such as [Range W , Frequency F]. The se-
mantics supports the mixing of tuple-based frequen-
cies with time-based window bounds and vice versa.
Such windows are called “mixed jumping windows”.

To enable frequency-based query processing and
optimisation, the relational algebra (Kießling 2002) is
extended into a stream algebra (Babcock et al. 2002)
by substituting relations for streams, where the op-
erators, and algebraic laws “respect” and take ad-
vantage of the “compositional” property introduced
in section 5. Such a stream algebra is extended by
adding the new operator frequency operator F and
the sliding window operator W, and so generalise the
existing relational operators (e.g., π,A, σ,G in fig-
ure 1) to be “frequency-based”. CSQL is shown to
be declarative by expressing the frequency in differ-
ent places within a query. It is also shown how those
differences affect the stream algebra in figure 1 and 2
respectively. Consider the first query.

Figure 1: Stream Algebra for Example Queries 1 & 2

Query 1

“For every 100 tuples, report all horses’ body condi-
tion records.”. The query can be interpreted as for
every 100 tuples over the base stream:

Q1(a):

SELECT *
FROM BodyCondition AS B

[Range 1 Minute, Frequency 100 Tuples]
WHERE B.Species = ’horse’

It can also be understood as for every 100 tuples
over an answer stream (a stream full of animal’s pulse
rate per minute).

CRPIT Volume 63

118

Q1(b):

SELECT * [Frequency 100 Tuples]
FROM BodyCondition AS B [Range 1 Minute]
WHERE B.Species = ’horse’

Thirdly it can be understood as for every 100 tu-
ples over a substream w.r.t to each animal.

Q1(c):

SELECT *
[Frequency 100 Tuples Partitioned By B.Id]

FROM BodyCondition B [Range 1 Minute]
WHERE B.Species = ’horse’

This shows how CSQL supports different mean-
ings of frequency. Figure 1 and 2 give more intuitive
interpretation for these three queries using stream al-
gebra.

Query 2

Report the latest results of measurement on blood
pressure and body temperature for each animal at
the rate of one reading every minute, and evaluate
the query for every 100 arriving tuples.

SELECT * [Frequency 1 Minute Partitioned By B.Id]
FROM BodyCondition B

[Frequency 100 Tuples Partitioned By B.Id]

This query will take all the last 100 tuples, and then
group the stream into substreams with equality of
grouping attribute “Id”. Finally it returns the re-
lation that contains all the latest results from each
substream within a minute.

Query 3

“For each animal, what is the pulse rate per minute?”,
and supposing the user wants to know the result for
every 10 tuples.

SELECT P.Id, COUNT(*)
[Frequency 10 Tuples Partitioned By P.Id]

FROM Pulse P
[Range 1 Minute, Frequency 1 Tuple]

GROUP BY P.Id

This mixed jumping window query will evaluate
the query with sliding semantics Frequency = 1 Tuple.
It will count the last minute’s worth of Pulse tuples
for each animal after receiving every incoming tuple.
It can be easily optimised by using the default jump-
ing semantics Range = Frequency without losing the
precision of the result. Then the frequency operator
will evaluate the relational query over the window, at
the end of the nap period. The frequency operator
sitting in the SELECT clause will sample the result-
ing substream for each animal picking one tuple out
of every ten tuples.

Query 4

“For each animal, what is the average pulse rate per
hour?”, and supposing that the user wants to make
use of the answers to the first query and expects a
result every minute.

SELECT PR.Id, AVG(PR.Rate)
[Frequency 1 Minute Partitioned By PR.Id]

FROM (SELECT P.Id, COUNT(*)
[Frequency 10 Tuples Partitioned By P.Id]
AS Rate

FROM Pulse P [Range 1 Minute,
Frequency 1 Tuple]

GROUP BY P.Id)
AS PulseRate PR
[Range 1 Hour, Frequency 1 Tuple]

GROUP BY PR.Id

This query contains two nested frequencies, but
only the outer query determines how often the inner
query is evaluated. The inner query or a similar
query can also be registered with a frequency that
is an integer fraction of 10 tuples as an independent
view, then this existing inner query can be used to
answer a new query.

Figure 2: Stream Algebra for Example Queries 3 & 4

9 Frequency Algorithms

Some aggregation algorithms are provided from the
implementation for the CSQL language below. The
algorithms are categorised based on the frequency
declaration. The main optimisation in the algorithm
is to find the right window for each tuple (one tuple
can belong to more than one window). As the window
can be constructed incrementally within a sequence
model, any time-based declaration (window or fre-
quency) may lead to the next tuple jumping over some
empty windows. A variable jumpto is therefore de-
fined to calculate the starting bound of a target win-
dow. Time-based declarations also require two point-
ers to mark the current insertion and deletion points.
Based on different updating requirements (lazy or ea-
ger), the old tuple can be either deleted whenever the
new tuple is inserted or the old tuple deleted when
the timestamp changes. Note that a different buffer is
used for different window, e.g., a circular buffer with
fixed size wn when the window length is in sequence
number and a linked list when the window length is
in the time range wt.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

119

Algorithm 1 Non-grouping Aggregation with Time-
based Frequency
Require: frequency length is in time range, non-

grouping aggregate query
Input: tuple, query starting time q, current loop
index i, frequency length ft, window length wt
Output: answer over windowed stream Ws

if wt is in time range & wt ≤ ft then
jumpto= ft ∗ i− wt + q + 1;
{jumpto: sliding window bound}
while tτ ≥ jumpto+wt do

i++;
jumpto= ft ∗ i− wt + q + 1;
{tτ : tuple’s timestamp}

end while
while tτ < jumpto do

discard current tuple;
get next tuple;

end while
while tτ < jumpto+wt do

insert tuple into the buffer;
get next tuple;

end while
perform moving aggregation over the buffer;
i++;

else if wt is in time range & wt > ft then
while tτ > ft ∗ i + q do

i++;
jumpto= ft ∗ i− wt + q + 1;

end while
while tτ ≤ ft ∗ i + q & tτ ≥ ft ∗ i−wt + q do

insert tuple into the buffer;
τO = τhead;
{τhead: timestamp of first tuple in buffer}
τN = τtail;
{τtail: timestamp of last tuple in buffer}
get next tuple;

end while
perform aggregation over the buffer;
update the buffer by condition: τN -τO ≤ wt;
i++;

end if

Algorithm 2 Non-grouping Aggregation with
Mixed-jumping Window
Require: frequency length is in time range, non-

grouping aggregate query, wt is in sequence num-
ber
Input: tuple, query starting time q, current loop
index i, frequency length ft, window length wt
Output: answer over windowed stream Ws

while tτ > ft ∗ i + q do
i++;

end while
while tτ ≤ ft ∗ i + q do

insert tuple into the buffer;
get next tuple;

end while
perform moving aggregation over the buffer;
i++;

Algorithm 3 Aggregation with Partitioned Tuple-
based Frequency
Require: partitioned tuple-based frequency

Input: tuple, query starting time q, current
inner loop index i for each group, frequency
length fn, window length wn or wt
Output: answer over windowed stream W
if window length is in sequence number wn &
wn ≤ fn then

jumpto= fn ∗ i− wn + 1;
while tn ≤ jumpto do

discard current tuple;
end while
while tn ≤ fn ∗ i do

insert tuple into the buffer;
get next tuple;

end while
perform aggregation over the buffer;
i++

else if window length is in sequence number wn
& wn ≥ fn then

while tn ≤ fn ∗ i do
insert tuple into the buffer;
get next tuple;

end while
perform aggregation over the buffer;
i++;

else if window length is in time range wt then
while tn ≤ fn ∗ i do

insert tuple into the buffer;
τO=τhead;
τN=τtail;
update the buffer by condition: τN -τO ≤ wt;
get next tuple;

end while
perform aggregation over the buffer;
i++;

end if

10 Experimental Study

To evaluate the effectiveness of proposed semantics,
the conceptual operators were implemented in a pro-
totype query engine and a preliminary experimental
study is conducted. The framework was implemented
in Java and experiments were executed on a Pentium
IV 2.4Ghz with 512M of RAM. Wall clock timings
are used and execution time is calculated by measur-
ing the average cost of 10000 answer tuples. Stream-
ing behavior was simulated by using a pull-based ex-
ecution model: the more effective the algorithm, the
more tuples it is able to process. Since a frequency
operator typically spends its time sampling and ag-
gregating, there is a clear division of work. The in-
terest is in showing how it is possible to optimize the
sampling cost in such an environment, as the aim is
to treat the efficiency of the aggregation algorithm as
an orthogonal issue. Therefore, the same aggregation
was used in all experiments, and the execution time
is calculated as the sum of scanning the input stream
and producing the aggregate. As a result, any per-
formance gain observed will be due to the efficiency
of the sampling methodology, which is directly tied
to how well the semantics of the operators can be
implemented.

Experiments are divided into two parts. Firstly,
the performance of the pushed down frequency oper-
ators are evaluated in contrast to the window identi-
fier approach for a tuple-based jumping window (AVG)
query. Note that one tuple may be in the contents of
multiple windows.

The efficiency of evaluating queries without or
with a GROUP BY-clause is shown in figures 3 and 4 re-

CRPIT Volume 63

120

Figure 3: Cost Ratio of Frequency vs. Window Id
Approach (a).

Figure 4: Cost Ratio of Frequency vs. Window Id
Approach (b).

spectively. The horizontal axis is the frequency length
measured in tuples. The vertical axis is the execu-
tion time using a pushed down frequency operator
expressed as a fraction of the execution time of the
window identifier approach. The window length is
represented as a percentage of the frequency length.
For example a 30% W/F ration for a frequency length
F of 1000 tuples will evaluate the query over a window
length bounded by 300 tuples. As an independent op-
erator, the frequency operator can be easily pushed
down in a query plan to avoid unnecessary compu-
tation. This allows aggregate query processing to be
split in two levels: (1) tuple sampling, and (2) aggre-
gation evaluation; this modelling provides a flexible
mechanism to interact with different advanced aggre-
gate operators. Our experiment showed that pushing
down the frequency operator is an effective technique
and it significantly outperforms the window identi-
fier approach. Secondly, the efficiency of processing

Figure 5: Performance of Mixed Jumping Window.

mixed jumping window queries was evaluated. That
cannot be handled by existing approaches. Figure 5
shows the upper bound performance time of a mixed

jumping window (AVG) query that has a frequency
length specified on a tuple basis and a window length
specified on a time basis. The horizontal axis is the
frequency length (measured in tuples) where the win-
dow length is measured in seconds. The vertical axis
is the total execution time (per answer tuple appear-
ing in the average) measured in milliseconds. Note
that performance can be further improved if a more
efficient aggregation algorithm is employed.

11 Conclusion

This paper has studied stream queries from a theo-
retical angle. More specifically, it has incorporated
sampling and jumping in a declarative fashion in a
query language, CSQL. Furthermore a formal seman-
tics has been introduced on both new data model
and along with a novel frequency operator for extend-
ing stream query languages with more expressibility,
allowing e.g., for user-defined sampling and conden-
sative query processing.

In the future there is the prospect of handling more
complex queries, which require the automatic con-
struction of distributed query plans, based on tech-
niques for answering continuous queries using contin-
uous views. A key operation in creating such plans is
to determine whether a query is contained in another
query. While this problem has been thoroughly in-
vestigated for queries over static databases, it is still
open for continuous queries. The algebraic perspec-
tive of the model is also an interesting issue to be
investigated in the future by defining extensions of re-
lational operators to handle data stream constructs,
and to study further the resulting ”stream algebra”
and other properties of these extensions.

Furthermore, little work considers data stream
processing over different forms of stream data such
as tuple-like data or token-like data. Though a data
stream is commonly recognised as continuously arriv-
ing data usually at a high rate, an individual data
stream item can appear in various forms such as
tuple-like data (relational tuples or instances of ob-
jects) or token-like data (XML files), or numerical
data (treated as a special case of tuple-like data). In
relation-based models (e.g. STREAM (Babcock et al.
2002)), items are transient tuples stored in virtual
relations, possibly horizontally partitioned across re-
mote nodes. In object-based models (e.g. COUGAR
(Yao & Gehrke 2003) and Tribeca (Sullivan 1996)),
sources and item types are modelled as (hierarchical)
data types with associated methods. Semi-structured
data models for data streams have just recently
been introduced (Koch, Scherzinger, Schweikardt &
Stegmaier 2004, Florescu, Hillery, Kossmann, Lucas,
Riccardi, Westmann, Carey & Sundararajan 2004).
In an XML context, a “tuple” is often specifically re-
ferred to as a set of cells, where each cell contains
a set of XML nodes (e.g. XML trees). Each data
stream item is a token such as a start tag, an end tag
or a PCDATA item. The work published here relates
well to previous work in selectively extracting data
for XML files (Fan & Ma 2006), which can lead to
a promising bridge effort between querying relational
data streams and XML streams.

Finally, as CSQL is a declarative stream lan-
guage which is able to describe how to transform
streams into smaller result streams, it will be useful
for queries in large distributed applications. Such a
foundation is surely key to develop a general-purpose
well-understood distributed query processor for dis-
tributed data streams.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

121

References

Abadi, D. J., Carney, D., Çetintemel, U., Cherniack,
M., Convey, C., Lee, S., Stonebraker, M., Tatbul,
N. & Zdonik, S. B. (2003), ‘Aurora: a new model
and architecture for data stream management.’,
VLDB Journal 12(2), 120–139.

Arasu, A., Babcock, B., Babu, S., McAlister, J.
& Widom, J. (2004), ‘Characterizing memory
requirements for queries over continuous data
streams.’, ACM Transactions on Database Sys-
tems 29(1), 162–194. ACM Press.

Arasu, A. & Widom, J. (2004a), ‘A denotational se-
mantics for continuous queries over streams and
relations.’, SIGMOD Record 33(3), 6–11. ACM
Press.

Arasu, A. & Widom, J. (2004b), Resource sharing in
continuous sliding-window aggregates., in ‘Pro-
ceedings of International Conference on Very
Large Databases (VLDB)’, Morgan Kaufmann,
pp. 336–347.

Babcock, B., Babu, S., Datar, M., Motwani, R.
& Widom, J. (2002), Models and issues in
data stream systems., in ‘Proceedings of ACM
Symposium on Principles of Database Systems
(PODS)’, ACM Press, pp. 1–16.

Carney, D., Çetintemel, U., Cherniack, M., Con-
vey, C., Lee, S., Seidman, G., Stonebraker, M.,
Tatbul, N. & Zdonik, S. B. (2002), Monitoring
streams - a new class of data management appli-
cations., in ‘Proceedings of International Confer-
ence on Very Large Databases (VLDB)’, Morgan
Kaufmann, pp. 215–226.

Chandrasekaran, S., Cooper, O., Deshpande, A.,
Franklin, M. J., Hellerstein, J. M., Hong, W., Kr-
ishnamurthy, S., Madden, S., Raman, V., Reiss,
F. & Shah, M. A. (2003), TelegraphCQ: Contin-
uous dataflow processing for an uncertain world.,
in ‘Proceedings of the Biennial Conference on In-
novative Data Systems Research (CIDR)’, ACM
Press, pp. 269–280.

Chandrasekaran, S. & Franklin, M. J. (2002), Stream-
ing queries over streaming data., in ‘Pro-
ceedings of International Conference on Very
Large Databases (VLDB)’, Morgan Kaufmann,
pp. 203–214.

Chen, J., DeWitt, D., Tian, F. & Wang, Y. (2000),
NiagaraCQ: A scalable continuous query system
for internet databases., in ‘Proceedings of ACM
SIGMOD Conference on Management of Data
(SIGMOD)’, ACM Press, pp. 379–390.

Cranor, C., Johnson, T., Spataschek, O. &
Shkapenyuk, V. (2003), Gigascope: A stream
database for network applications., in ‘Proceed-
ings of ACM SIGMOD Conference on Manage-
ment of Data (SIGMOD)’, ACM Press, pp. 647–
651.

Dobra, A., Garofalakis, M. N., Gehrke, J. & Rastogi,
R. (2002), Processing complex aggregate queries
over data streams., in ‘Proceedings of ACM SIG-
MOD Conference on Management of Data (SIG-
MOD)’, ACM Press, pp. 61–72.

Fan, W. & Ma, L. (2006), Selectively storing XML
data in relations., in ‘Proceedings of Interna-
tional Conference on Database and Expert Sys-
tems Applications (DEXA)’, Lecture Notes in
Computer Science, Springer Verlag, pp. 518–526.

Florescu, D., Hillery, C., Kossmann, D., Lucas, P.,
Riccardi, F., Westmann, T., Carey, M. J. &
Sundararajan, A. (2004), ‘The BEA stream-
ing xquery processor.’, The VLDB Journal
13(3), 294–315.

Gilbert, A. C., Kotidis, Y., Muthukrishnan, S. &
Strauss, M. (2001), Surfing wavelets on streams:
One-pass summaries for approximate aggregate
queries., in ‘Proceedings of International Confer-
ence on Very Large Databases (VLDB)’, Morgan
Kaufmann, pp. 79–88.

Golab, L. & Özsu, M. T. (2003), ‘Issues in data
stream management.’, SIGMOD Record (ACM
Special Interest Group on Management of Data)
32(2), 5–14. ACM Press.

Hammad, M. A., Franklin, M. J., Aref & Elma-
garmid, A. K. (2003), Scheduling for shared
window joins over data streams., in ‘Pro-
ceedings of International Conference on Very
Large Databases (VLDB)’, Morgan Kaufmann,
pp. 297–308.

Kießling, W. (2002), Foundations of preferences in
database systems., in ‘Proceedings of Inter-
national Conference on Very Large Databases
(VLDB)’, Morgan Kaufmann, pp. 311–322.

Koch, C., Scherzinger, S., Schweikardt, N. &
Stegmaier, B. (2004), FluXQuery: An optimiz-
ing XQuery processor for streaming XML data.,
in ‘Proceedings of International Conference on
Very Large Databases (VLDB)’, Morgan Kauf-
mann, pp. 1309–1312.

Li, J., Maier, D., Tufte, K., Papadimos, V. & Tucker,
P. A. (2005), Semantics and evaluation tech-
niques for window aggregates in data streams.,
in ‘Proceedings of ACM SIGMOD Conference on
Management of Data (SIGMOD)’, ACM Press,
pp. 311–322.

Ma, L. & Nutt, W. (2005), Semantics of stream oper-
ators for condensatively querying data streams.,
in ‘IEEE International Conference on e-Business
Engineering (ICEBE)’, IEEE Computer Society,
pp. 518–526.

Ramakrishnan, R., Donjerkovic, D., Ranganathan,
A., Beyer, K. S. & Krishnaprasad, M. (1998),
SRQL: Sorted relational query language., in
‘Proceedings of International Conference on Sci-
entific and Statistical Database Management
(SSDBM)’, IEEE Computer Society, pp. 84–95.

Seshadri, P., Livny, M. & Ramakrishnan, R. (1995),
SEQ: A model for sequence databases., in ‘Pro-
ceedings of IEEE International Conference on
Data Engineering (ICDE)’, IEEE Computer So-
ciety, pp. 232–239.

Sullivan, M. (1996), Tribeca: A stream database man-
ager for network traffic analysis., in ‘Proceed-
ings of International Conference on Very Large
Databases (VLDB)’, Morgan Kaufmann, p. 594.

Yao, Y. & Gehrke, J. (2003), Query processing in
sensor networks., in ‘Proceedings of the Bien-
nial Conference on Innovative Data Systems Re-
search (CIDR)’, ACM Press, pp. 233–244.

CRPIT Volume 63

122

Incremental Mining for

Temporal Association Rules for Crime Pattern Discoveries

Vincent Ng*, Stephen Chan, Derek Lau, Cheung Man Ying
Department of Computing

The Hong Kong Polytechnic University,
Hong Kong, China

cstyng@comp.polyu.edu.hk

Abstract

In recent years, the concept of temporal association rule
(TAR) has been introduced in order to solve the problem
on handling time series by including time expressions into
association rules. In real life situations, temporal
databases are often appended or updated. Rescanning the
complete database every time is impractical while existing
incremental mining techniques cannot deal with temporal
association rules. In this paper, we propose an incremental
algorithm for maintaining temporal association rules with
numerical attributes by using the negative border method.
The new algorithm has been implemented to support the
discoveries of crime patterns in a district of Hong Kong.
We have also experimented with another real life database
of courier records of a shipping company. The preliminary
results show a significant improvement over rerunning
TAR algorithm..

Keywords: Temporal Association Rules, Incremental
Mining, Crime Analysis .

1 Introduction

Association rule plays an important role in data mining
and has been becoming applicable in many areas. Since
the pioneering works of Agrawal, Imielinski and Swami
(1993) and Agrawal and Srikant (1994), it has led to many
proposals of mining of association rules such as fast
mining approaches, updating approaches, and various
formations of rule patterns such as temporal patterns
discussed in Wang, Yang and Muntz (1999, 2001). In
general, most transactional database systems accumulate
small size of incremental datasets and are appended into
the main databases regularly. In such situations,
incremental mining becomes a necessity. Incremental
mining algorithms (Cheung, Han, Ng, Fu and Fu 1996,
Cheung, Han, Ng, Wong 1996, Ayad, El-Makky and Taha
2001, Cheng, Yan, and Han 2004, Ayan, Tansel and Arkun
1999, Chang, Yang 2003, Cheung, Lee and Kao 1997)
have been developed and are mostly focused on
minimizing the number of database rescanning.

Copyright (c) 2007, Australian Computer Society, Inc.
This paper appeared at the Eighteenth Australasian
Database Conference (ADC2007), Ballarat, Victoria,
Australia. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 63. James Bailey
and Alan Fekete, Eds. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

Currently there is no updating algorithm available for
temporal association rules. In our work, we have
developed a new algorithm call ITAR for incremental
mining of temporal association rules by employing the
skeleton of ICAP (Ayad, El-Makky and Taha 2001). For
the rest of the paper, section 2 provides a review of related
works ITAR. Section 3 gives a description of the
incremental mining problem of temporal association rules.
Section 4 presents the proposed algorithm ITAR in details.
The section afterwards describes how the algorithm has
been adopted for crime pattern discovery. Another real life
dataset has been used to experiment with the new
algorithm and the results are presented in section 6.
Section 7 concludes our work.

2 Related Works

2.1 Temporal Association Rules with
Numerical Attributes

The definition of temporal association rules is provided in
the works of Wang, Yang and Muntz (1999, 2001)
together with the introduction of the TAR (Temporal
Association Rule) algorithm. It deals with objects in a
database, DB. Each object Oi has a unique ID and a set of
numerical attributes A1, A2,… ,An. The DB is viewed as a
set of sequences of snapshots S1, S2, … , St and each
snapshot has objects consisting of attributes with their
numerical values.

Evolutions are defined to represent the temporal changes
of attribute value of some object histories. Given an
attribute Ai, an attribute evolution E(Ai) of length m
describes the value change of Ai over m consecutive
snapshots. E(Ai) = (Ai ? [l1, u1]) ? (Ai ? [l2, u2]) ? …
? (Ai ? [lm, um]) represents the changes of Ai over m
consecutive snapshots where [lj, u j] is the interval of values
of Ai , and is the union of a sequence of adjacent base
intervals. For example, an employee’s salary changes
from an interval of $40,000 and $45,000 to an interval of
$50,000 to $55,000, and then to an interval $60,000 to
$65,000. This example represents an evolution that across
3 snapshots regardless of it is consecutive or not. The
attribute value is presented in the interval form instead of
distinct values.

A temporal association rule can be discovered from base
cubes as long as it achieves the minimum support and
strength. Let A1, A2, … .An be a subset of attributes. A
temporal association rule, R, of length m is defined as:

Proc. Eighteenth Australasian Database Conference (ADC 2007)

123

l E(A1) ∩E(A2) ∩… ∩ E(Ak-1) ∩ E(Ak+1) ∩… ∩
E(An) => E(Ak), and

l E(Ai) is an evolution of length m with attributes Ai(1
<= i <= n).

In TAR, three thresholds, which are support, density and
strength, are introduced to select interesting temporal
association rules. The support of a temporal rule E(A1) ∪
E(A2) ∪ … ∪ E(Ak-1) ∪ E(Ak+1) ∪ … ∪ E(An) ⇒ E(Ak) is
the support of an evolution conjunction E(A1) ∪ E(A2) ∪
… ∪ E(An), that is the number of object histories of length
m which follow this evolution conjunction. The density is
the ratio of the number of objects to total number of
objects, which will make a base cube considered “dense”.
The base cube is defined as evolution cube which consist
of a set of attributes and whose values fall into base
interval regarded as non-distinguishable. The density is
introduced to ensure that a cube will not be included as
part of a rule if there is no enough evidence to show that
the rule holds for the cube. The strength of an association
rule is Support(E(A1) ∪ E(A2) ∪ … ∪ E(An)) /
Support(E(A1) ∪ E(A2) ∪ … ∪ E(Ak-1) ∪ E(Ak+1) ∪ … ∪
E(An). The strength indicates the degree of dependence
between attributes (A1, A2, … , An) of the rule.

The TAR algorithm has two phases. The first phase is to
find all base cubes, BaseCube, which satisfy the density
threshold after partitioning each attribute domain into b
base intervals. Based on dense base cubes, the second
phase finds all valid temporal rule sets. In our work, we
focus on refining phase 1. It is because updating original
database by appending incremental database affects the
densities and the distributions of existing discovered base
cubes, i.e. BaseCube.

2.3 Incremental Mining of Association Rules

The problem of incremental mining was solved by the
FUP algorithm (Cheung, Han, Ng, Fu and Fu 1996). Let
LDB be a set of frequent itemsets in a transactional database
DB. Let Ldb be a set of frequent itemsets in an incremental
database db that is going to be appended to DB then
eventually form DB+. With the same support threshold, it
is required to discover LDB+. The output of LDB+ is a new
set of frequent itemsets as the result of incremental mining.
The itemsets of winners and losers are defined below.

l Winners: infrequent itemsets of DB that become
frequent in DB+ after adding the increment data to
the database.

l Losers: frequent itemsets of DB that become
infrequent DB+ after adding the increment data to
the database.

Let X be an itemset and superscript DB or db present the
type of database. In order to discover the winners and
losers from itemsets, itemsets can be classified into four
types from LDB and Ldb as shown in Figure 1.

 X ∈Ldb X ∉Ldb

X ∈LDB 1 2

X ∉LDB 3 4

Figure 1. Itemset updating scenarios.

Scenarios (1) and (4) in Figure 1 are easy to handle
because itemsets belong either (1) and (4) represent
itemsets definitely become winners and losers,
respectively. Itemsets in scenario (2) and scenario (3) are
the uncertainty areas because itmesets can become either
winners and losers. Scenario (2) would be the easier one
because support counts of itemsets in LDB are already
available and itemsets can become winners as long as
updated support counts are equal or exceed the minimum
support. Scenario (3) would require rescanning the
original database since the support counts of itemsets in
original database DB were unknown.

The major drawback of the FUP is that it was built on the
Apriori algorithm with small modifications. Many passes
of checking against the original database would usually be
required. To remedy this problem, a concept of negative
border introduced by Toivomen in 1996 can indicate the
need for an update of rules. Informally, the negative
border of a set of frequent itemsets L consists of all the
itemsets that are not in L but have all their subsets in L.
The itemsets in negative border for subsequent
incremental mining have potential to become a winner as
long as it achieves the minimum support threshold. On the
other hand, if no winner appeared in the negative border,
there is no need for checking further in the original
database. The negative border, therefore, can provide a
signal of the need for updating the database. It has been
also used in ICAP (Ayad, El-Makky and Taha 2001) and
IUS (Zheng, Xu, and Ma 2002) to improve the efficiency
of speed and minimize the use of resources during mining.

3 Incremental Mining of Temporal Association
Rules

3.1 Incremental Mining Problem

The problem of incremental mining of temporal
association rules is mostly identical to the one in general
association rules. The idea is to discover new sets of dense
base cubes by reallocating the average density in
hyercubes of evolution spaces when there is another set of
objects db added into DB.

Let DenseDB = ∪∪ T

j

m

i

densitybcbcjiBaseCube
11

}|{),(
==

>==

be a set of dense base cubes from all sliding windows of
DB that satisfies the density threshold where m is width of
window and T is the number of attributes. An incremental
database db can be added to DB and the DenseDB is needed
to be updated.

After updating, all winners are updated to DenseDB+ and
losers are updated to temporal negative border TNBd. The
negative border, TNBd, keeps all losers that were the

CRPIT Volume 63

124

winners in previous DB. The concept of temporal negative
border here is dissimilar to original negative border. It
aims to avoid generating un-necessary powersets of base
cube from the winners. Further details of temporal
negative border and its comparison will be presented in
Section 3.3. Before continuing our discussion, the
notations used in this paper are shown in Figure 2.

DB The original database

db The incremental database

DB+ The updated database (DB+ = DB ∪ db)

|DB|, |db|, |DB+| Number of objects in DB, db,

and DB+, respectively

TDB , Tdb, TDB+ Set of snapshots in DB, db,

and DB+, respectively

Ts
DB, Te

DB,Ts
db,

Te
db,Ts

DB+ , Te
DB+

Starting snapshot and ending snapshot in DB,

db, and DB+.

ODB , Odb, ODB+ Set of objects in DB, db, and DB+ , respectively

bc A base cube of the set of attribute

evolution follows the same temporal sequence

DenseDB, Densedb

, DenseDB+

Dense base cubes for DB, db,

 and DB+, respectively

BaseCube(i,m) Level-wise regional base cube having i

 distinct attributes and length m of evolutions

dbn nth incremental database for mining

m Size of sliding window

b Number of intervals for attributes

min_sup Minimum support threshold

e Density threshold

W(j,m) Sliding window with width m

and starting snapshot is j

Figure 2: Notations used.

3.2 Different Cases in Updating Temporal
Association Rules

We adopt the similar approaches to handle INSERT and
APPEND cases as in IncSpan (Cheng, Yan, and Han
2004). INSERT case represents pure object growth in a
database regardless to snapshot domain coverage. New
objects in db might introduce new timestamps (snapshots)
of attributes. Also, db might introduce itemsets with new
atomic items which were not existed in DB. The APPEND
case presented in IncSpan adds itemsets at the end of
sequence of an existing sequence, where T > Te

DB. In
terms of snapshot coverage, APPEND case can also
include previous snapshots, where Ts

DB <= T <= Te
DB and T

∉ TDB and T < Ts
DB and T ∉ TDB. After updating, Ts

db+ and
Te

db+ will be updated. The coverage of the db in DB could
be classified into 3 types of coverage, total overlapping,
partial overlapping and non-overlapping.

Ts
DB+ DB db Ts

DB+ DB Db

 Ts
DB Ts

db

 Ts
DB

 Ts
db

 Te
db

 Te
DB

 Te
DB Te

db

Te
DB+ Te

DB+

 (a) (b)

 Total Overlapping

Ts
DB+ DB db Ts

DB+ DB Db

 Ts
DB Ts

db

 Ts
DB

 Te
db

 Ts
db

 Te
DB

 Te
db Te

DB

Te
DB+ Te

DB+

 (c) (d)

 Partial Overlapping

Ts
DB+ DB db Ts

DB+ DB db

 Ts
DB Ts

db

 Te
db

 Ts
DB

 Te
DB

 Ts
db

 Te
db Te

DB

Te
DB+ Te

DB+

 (e) (f)

 Non-overlapping
Figure 3. Snapshot Coverage for APPEND

Total overlapping is that the domain of snapshots of either
DB or db fully covers each other. Case (a) in Figure 3 does
not have any new snapshot to be introduced into DB,
where Tdb ? TDB, and Ts

DB = Ts
db = Te

db = Te
DB . Case (b) in

Figure 3 introduces new snapshots which beyond both
sides of domain, where TDB ? Tdb, and Ts

db = Ts
DB = Te

DB =
Te

db. The domain of snapshots in DB+ will be updated to
same as db.

Partial overlapping is that some snapshots of db cover the
domain snapshots in DB. Case (c) in Figure 3 represents
that db introduces new subsequent snapshots at the end
point of domain where Ts

DB = Ts
db = Te

DB = Te
db and the

Proc. Eighteenth Australasian Database Conference (ADC 2007)

125

updated domain will be Ts
DB+ = Ts

DB , Te
DB+ = Te

db in DB+.
Case (d) in Figure 3 has new snapshots from db
complementing aforetime side where, Ts

db = Ts
DB = Te

db =
Te

DB, and the updated domain will be Ts
DB+ = Ts

db , Te
DB+ =

Te
DB

Non-overlapping is that there is no overlapped snapshot in
db. Case (e) in Figure 3 is similar to the APPEND case in
IncSpan where new subsequent snapshots attributes are to
be introduced and Ts

DB = Te
DB < Ts

db = Te
db and updated

domain for DB+ will be Ts
DB+ = Ts

DB , Te
DB+ = Te

db. Case
(f) in Figure 3 is the inverse version of case (e) where Ts

db
= Te

db < Ts
DB = Te

DB , and updated domain for DB+ will be
Ts

DB+ = Ts
db , Te

DB+ = Te
DB.

Besides timestamp considerations, new objects may be
added during updating. There can be five different cases of
temporal database insertion. In order for better
explanation, we illustrate with a sample database. Given a
database with one object, and let I = {A1, A2, A3, ... , A6} be
its set of literals. The object consists of set of items with
timestamp as {{T1: A1, A2, A3}, { T2: A2, A3, A5}, {T3: A1, A3,
A5, A6}, {T4: A1, A2, A3}}. The object could be transformed
to be a set of atomic items {A1T1, A2T1, A3T1, A2T2, A3T2,
A5T2, A1T3, A3T3, … , A3T4}. Therefore, the set of atom
items will be extended if the timestamp of new data is
growing.

• Case 1: Updating values of existing atom items:
Atomic items are modified for an existing object. For
example, atomic items A1T1=2 and A2T2=4 are to be
replaced by A1T1=3 and A2T2=5, where Ts

DB<= T <=
Te

DB. After updating, the average density of base
cubes might be affected because the new values of
relevant items might be fall into other interval.

• Case 2: Inserting items into existing snapshots: In

this case, un-existed items X ? I are to be
supplemented. For example, items A4T1, A2T3, and
A4T3 with their values, which were not existed in DB
and where Ai ? I and Ts

DB <= T <= Te
DB , are intersect

into the existing histories. Therefore, the object is
updated to {A1T1, A2T1, A3T1, A4T1, A2T2, A3T2, A5T2,
A1T3, A2T3, A3T3,… , A3T4}. After updating, the
average density of base cubes would be affected
because new atomic items were inserted into DB.

• Case 3: Appending subsequent snapshots: Introduces

new timestamp items where Ai ? I and T > Te
DB. For

example, {{T5 : A2, A3, A4}, {T6: A4, A6}} insert into
subsequent object history.

• Case 4: Inserting new items into existing snapshots:
From case 1 to case 3, the items are only the member
of existing literals. However, db can introduce some
new literals such as in set J = {A7, A8, ..., A10}, where J
n I = Ø . This is similar to case 2 but incremental data
has new literals. Incremental database db consists of
{{T1: A7, A8,}, {T4: A8, A9}}, where Ts

DB <= T <= Te
DB

and Ai ? J.

• Case 5: Appending subsequent snapshots with new
literals of item: This is similar to case 3 but

incremental data is new literals of item. Incremental
database db consist of {{T5: A7, A8,}, {T8: A8, A9}},
where Tn > Te and Ai ? J .

In our work, we focus on case 3, case 4 and case 5 in
which new objects are inserted or appended in the
incremental database.

3.3 Temporal Negative Border
Since mining temporal association rules is restricted by
sliding windows and temporal sequence, the original
concept of negative border when applied directly would
introduce the following problems:

• The power set, P(R) where R is a temporal association
rule, generation approach by the original negative
border for the base cubes is not practical because the
set of literals for obtaining atomic items in base cubes
can become very large since temporal evolution is
continuous in nature.

• Constructing level-wise dense base cube Dense of

every slide window lattice employs the AprioriGen
method. However, it requires additional computation
effort to construct the set of minimal itemsets X? R
not in Dense. Computation effort includes time for
processing, and memory and I/O usage for generating
and storing all power set of rules P(R) from frequent
itemsets to negative border by the AprioriGen
method.

• The updating problem of temporal rules has a

fundamental difference from generic association rules
in which the set of literals I = {i1, i2, … , i3} was well
established and predictable. In temporal association
rule mining, snapshot evolution is continuously
growing and the set of literals becomes large.
Consequently, the size of negative border becomes
relatively large.

Hence, we define a variation of negative border, called the
temporal negative borde (TNB)r, to simplify the
computation problem above. The TNB of set of base
cubes, DenseDBn which follow the past object histories in
evolution cubes, is referred to as TNBd(Dense). That is
TNBd(DenseDBn) = {bc | bc ∉ DenseDBn and bc ?

dbi
n

i

Dense∪1−

∃ , where 1 <= i < n }. In other words, it says to

include all the losers in the last incremental mining if these
base cubes have been winners before.

Suppose DB is the initial database and subsequent
incremental database are represented as dbi, where 1 <= i
<= n. The negative border in the first mining is empty
since there was no existing negative border. From second
mining iteration onward, the negative border would keep
previous losers. There are 3 sets of dense bases, DenseDB,
Densedb, and TNBd(DenseDB) to be processed for each
mining iteration. The TNBd(DenseDB) in second mining is
still empty. TNBd(DenseDB+) is formed from the losers of
DB. Since the losers from all Densedb are never to be
considered, for any base cube, bc, in DenseDB , it must be
winners of Densedb. Therefore, the losers from DenseDB

CRPIT Volume 63

126

must also be the winners of some previous db. There are
several benefits in using the temporal negative border:

• It is able to eliminate un-necessary sets of base
cubes. It would not generate powersets that do
not exist in db nor DB.

• With using the new negative border, the

rescanning of the complete database can be at
most one time. The new base cubes having new
snapshot(s) or existing snapshot(s) not occurred
in previous Dense are discovered.

• It handles the problem of the INSERT and

APPEND cases. In temporal association rules,
the INSERT case introduces object histories of
new objects. It can be easily handled based on
the property of support counts between winners
and losers as well as the intersections mapping
concept in ICAP (Ayad, El-Makky and Taha
2001, Cheng). The APPEND case involves new
discovered base cubes in Densedb, where base
cubes were not previously discovered both in
DenseDB and TNBd. Attached snapshots in such
base cubes are either new (T >= Te

DB or T <= Ts
DB)

or existing timestamps (Ts
DB <= T <= Te

DB). New
discovered base cube will be required an original
database rescan. In our algorithm, it can deal
with the INSERT case and the hybrid of INSERT
and APPEND case since db only contains new
objects.

4 Incremental TAR Algorithm

Our Incremental Temporal Association Rule (ITAR)
algorithm as shown in Figure 4 has two assumptions. The
first one is the incremental database db only contains new
objects with their details which were not existed in DB.
Second, if a base cube bc in db satisfied the density
threshold before the database is updated, bc will satisfy the
density threshold in DB+ as well; otherwise, bc is never to
be considered. No matter bc was already in either DenseDB
or TNBd(DenseDB).

The ITAR algorithm takes input as the set of dense base
cubes DenseDB of the original database DB and the
negative border TNBd(DenseDB). Incremental database db
is to be mined separately using TAR algorithm that delivers
a new set of dense base cubes Densedb. After the merging
of three sets of dense base cubes, five different groups
from the sets can be identified and each group will be
respectively processed. The proposed algorithm can be
summarized in the following steps:

1. Use the original TAR algorithm to discover dense

base cubes (all level-wise base cubes of all sliding
window) denoted as Densedb in the incremental
database db.

2. With the discovered Densedb, all intersections of
Densedb, DenseDB, and TNBd(DenseDB) could be
identified. After accumulating each base cube’s
density, winners will be fall into DenseDB+
meanwhile losers will be fall into new negative
border, TNBd(DenseDB+).

3. After step 2, the remaining bases cubes would be
filtered from the sets of intersections. Remaining
base cubes in DenseDB are required to check their
densities again for the updated object counts. On the
other hand, remaining base cubes in TNBd(DenseDB)
will automatically be fall into TNBd(DenseDB+)
since such base cubes are not the winners in current
mining.

4. All base cubes of DenseDB and TNBd(DenseDB) have
been offset. The remainders in Densedb represent
those were not occurred in both DenseDB and
TNBd(DenseDB) but are new discovered base cubes
from db. It requires rescanning the original database
to updated densities for remainders. If a base cube
bc satisfies the density threshold, bc will fall into
DenseDB; otherwise, it will fall into
TNBd(DenseDB+).

ITAR Algorithm:

Function ITAR (DenseDB, TNBd(DenseDB), db)

1. Compute Densedb using TAR algorithm

2. DenseDB+ = Ø ; TNBd(DenseDB+) = Ø

3. |DB+| = |DB| + |db| // Accumulate the number of object to DB+

4. For each base cube bc in DenseDB ∩ Densedb do // (1)

5. bc.count of DB+ = bc.count of DB + bc.count of db

6. DenseDB+ = DenseDB+ U {bc}

7.For each base cube bc in TNBd(DenseDB) ∩ Densedb do // (2)

8. bc.count of DB+ = bc.count of DB + bc.count of db

9. if bc.count of DB+ >= |DB+| / b x e then

10. DenseDB+ = DenseDB+ U {bc}

11. else TNBd(DenseDB+) = TNBd(DenseDB+) U {bc}

12. For each base cube bc in DenseDB do // (3)

13. if bc.count of DB+ >= |DB+| / b x e then

14. DenseDB+ = DenseDB+ U {bc}

15. else TNBd(DenseDB+) = TNBd(DenseDB+) U {bc}

17.For each base cube bc in

TNBd(DenseDB) {bc | bc ∉ Densedb} do // (4)

18. TNBd(DenseDB+) = TNBd(DenseDB+) U {bc}

19. if Densedb {bc | bc ∉ TNBd(DenseDB)

and bc ∉ DenseDB} = Ø then // (5)

20. For each O in DB do

21. For all cube bases bc in O do

22. if bc ? Densedb then

23. bc.count of DB+ = bc.count of DB+ ++

24. For each bc in Densedb do

25. if bc.count >= |DB+| / b x e then

26. Dense1
DB+= Dense1

DB+ ∪ {bc}

27. else

28. TNBd(DenseDB+=) = TNBd(DenseDB+) U {bc}

29. Return DenseDB+ and TNBd (DenseDB+)

Figure 4: A high level description of algorithm ITAR

Proc. Eighteenth Australasian Database Conference (ADC 2007)

127

The idea of ITAR is to merge the dense base cubes between
the intersections of DenseDB, Densedb, and TNBd(DenseDB).
During step 4, rescanning the original database is required
if and only if the remaining base cubes do not belong to
any intersections from db.

The original negative border (Toivonen 1996) made use of
the idea in the Apriori algorithm to generate all candidate
itemsets where negative border of L consists of minimal
itemsets X not in L. Our variation of negative border does
not posses the same property. The proposed temporal
negative border avoids the power set of base cube
generation. A smaller negative border is exploited to
improve mining performance by cutting down redundant
or insignificant base cube checking. For example, suppose
a base cube bc = {E(A),E(B),E(C)} was never a winner
previously but subsets ({E(A)}, {E(B)}, {E(C)},
{E(A),E(B)}, … , {E(B),E(C)}) of bc were the winners.
The original negative border would hold bc which might
be already by power set. However, temporal negative
border never keeps it.

5. Crime Pattern Discoveries

We have adopted the new algorithm, ITAR, to support a
crime pattern analysis for a district in Hong Kong for
better computational performance. In the developed
system, an end-user can make a request for mining of the
temporal association rules through the interface of the
system. The interface will accept a user request and then
the corresponding query is generated for collecting
corresponding crime data from the database. The query
specifies the day range (week, month), attributes and grid
size, and counts of crime incidence to be utilized. The
query can also filter crime data with missing values. In
order to generalize the coordinates of crime data,
coordinates are divided into grids for better spatial mining
results. Figure 11 shows a system architecture of the crime
pattern analysis system.
Crime information extraction is done by crime extractor,
which collects and analyses user requests, collects
corresponding crime data from the database, processes the
data and then passes the data to dense base cube generator
to create base cubes for mining. The results of the dense
base cube generator is used for examining crime trends,
generating spatial-temporal associations, or mining
incrementally. The mining results are returned to the
end-user through a graphical interface. The back-end
database stores the crime data for analysis. Dense base
cubes generated from the dense base cube generator are
also stored in the database to prepare for incremental
mining. When the system requires mining incrementally,
the original dense base cubes can be retrieved from the
database.

Crime trend discovery is done by crime trend generator,
which collects dense base cubes generated from dense
base cube generator, analyses snapshots in dense base
cubes and outputs the trend results. In order to generate a
dense base cube, the density of the conjunction of
snapshots in the cube must be greater than the density
threshold. The density thresholds can control the
generation of trend, so that if there are enough records or

evidence to show that a trend exists, the trend will be
discovered.
Incremental base cube discovery is done by incremental
base cube generator, which collects original dense base
cubes generated from dense base cube generator or the
database, mines dense base cubes from incremental
database, merges the dense base cubes of incremental
database to cubes of original database and passes the
updated dense base cubes to the spatial-temporal
association rules generator to generate the rules.
Since continuous temporal change of value of crime
attributes is mined, the crime attributes must be in
numerical form. However, there is no numerical attribute,
except coordinates, in the crime data provided. The
offence and mo (modus operandi, which means
committing crime method) attributes of crime data are
categorized into different levels of seriousness, with
values from 1 to 10. Figure 5 and Figure 6 shows some
examples of categorizing of offence and mo respectively.

Figure 5. Examples of Categorizing of Offence

Figure 6. Examples of Categorizing of MO

Offence Seriousness

Affray 1

Breach of condition of stay 2

Resisting arrest 3

Lending at excessive rate 4

Criminal damage 5

Robbery, deception 6

Burglary 7

Criminal intimidation 8

Assault 9

Arson, child abuse 10

MO Seriousness

Loitering – causing others to be
concerned

1

Loitering – with intent to commit
an arrestable offence

2

Theft – steal from locker 3

Theft – pickpocket – cut open 4

Deception – modelling school 5

Robber – use knife, fruit knife
20cm long

6

Wounding – minor dispute 7

Possession of dangerous drug
–stop and search

8

Possession of dangerous drug
-operation

9

False imprisonment – escort
back and detain to settle debt

10

CRPIT Volume 63

128

Although the crime data is stored in a transaction database,
it can be viewed as a sequence database, which records a
set of snapshots that capture crimes happened at different
locations in different time intervals (week or month). Each
base snapshot generated from crime data records the
values of a set of crime attributes in base intervals. For
example, a base snapshot may record that there are ten
crimes with offence=4 happened at grid (x=4, y=8) in
January. When association relationship (crime1⇒crime2)
between two crimes happened in different locations are
tried to discover, base snapshots must record attributes of
the two crimes. However, there is no single crime record
consists of two crimes happened at two different locations,
so single crime record cannot be used to generate base
snapshot with two crimes. In order to grouping two crime
records together to generate the base snapshot, we assume
that when two crimes happened in the same time interval
(week or month), there is correlation relationship between
the crimes. For example, a base snapshot may record that
there are ten crime incidence happened in January, one of
the crimes with offence=4 happened at grid (x=4, y=8),
another crimes with offence=8 happened at grid (x=10,
y=14).
The spatial-temporal crime analysis system has been
developed by the JAVA 2 programming language (JDK
1.5.0_06). Eclipse 3.0 Software Developer's Kit was used
as development platform for debugging and building the
system. MySQL server 5.0 was used as database of the
system. Figure 7 shows the interface of the system.

Figure 7. Crime Pattern Analysis System

6 Experiments

6.1 Environment and Configuration

For the verification of the performance of the ITAR
algorithm, we have tried it with a real data set. The data
used here is a transactional database with customers
shipment details for the whole year of 2002 obtained from
a shipping company. There are a total of 40,000 customer
transactions to represent the daily histories of shipment
services used. Each transaction has a customer ID, and a
shipment product with its total volume of the same day.
The snapshot was taken once a month, from Jan 2002 to
Dec 2002. With the real dataset, a synthetic temporal
database for the experiments is generated by means of

SQL with grouping and aggregation techniques . Each
element of the database contains an object with its
identifier and object histories of 12 snapshots (months).
The properties of the synthetic temporal database are
summarized and listed in Figure 8.

Number of objects in
temporal database

40,000

Number of attributes 5

Period 1 Jan 2002 to 31 Dec
2002

Snapshots Each month
represent 1 snapshot

Figure 8. Synthetic dataset properties for experiments

Furthermore, the synthetic temporal database with 40,000
objects has also been randomly partitioned into 20 sets of
small and equal size datasets as incremental databases.
Each dataset consists of 2,000 objects (5 percents of the
original database) with their object histories. Meanwhile,
we used these small datasets to generate another 20 sets of
accumulated datasets for different mining iterations. For
example, the accumulated dataset for nth iteration
incremental mining has the 1st to nth small datasets. There
are two types of experiments. The first type is to compare
the mining speed between ITAR and TAR. The second type
is to verify the resultant temporal rules generated by the
two algorithms respectively.

6.2 Mining Performance

In executing ITAR, the number of base intervals for
attributes in the dataset, the width of sliding window, and
the density threshold are the important parameters that can
determine required runtime.

We divided the set of experiments that used different
parameters: attribute intervals from 10 to 40, the widths of
sliding windows from 3 to 5, and density thresholds from
0.5 to 2. In each experiment, we fixed the values for two
parameters and adjusted the remaining one. The
Accumulated ITAR (AITAR) algorithm is implemented as
the TAR algorithm was applied to the complete database
every time when there is an update on the database. Figure
9 shows the results of ITAR algorithm under different
setups of parameters. In Figure 10, it shows the ratio of
mining efficiency between ITAR and TAR. Second, it
shows the ratio of mining efficiency between accumulated
ITAR (AITAR) and TAR.

In both Figures 9 and 10, the performance of ITAR with
different parameters is very stable and showing good
performance. In contrast, the performance of TAR shows a
linearly growth along the mining sequence.

7 Conclusion

Researches in temporal association rules mining have been
developing for many years. Due to the re-scanning issue
in TAR in order to handle dataset updating, an incremental

Proc. Eighteenth Australasian Database Conference (ADC 2007)

129

algorithm ITAR (Incremental TAR) is proposed in this
paper. The algorithm applies the techniques of
incremental mining on the TAR to update the dense base
cubes after the update of the original database by adding
new objects with temporal histories. Due to the nature of
the temporal association rules mining model, a variation of
negative border is proposed for ITAR in order to simplify
the use of the original. Temporal negative border
proposed in this paper only keeps all past winners which
are becoming losers instead of comprising the power set of
dense base cubes. Therefore, the number of losers of base
cubes held by temporal negative border can be minimized.
The ITAR algorithm has been adopted in a crime pattern
analysis system. Furthermore, two sets of experiments
have been conducted to measure the relative performance
of the new algorithm compared to the TAR algorithm. The
results reflected that the exhibitions of ITAR benefit a
significant efficiency against TAR in term of efficiency
ratio. Moreover, using temporal negative border enables
the avoidance of any missing base cube when using ITAR.

Acknowledgement

The work of the authors is supported in part by the CERG
RGC Grant of research project code PolyU 5106/05E
(BQ938).

ITAR - By Varying Sliding Windows

-
200
400
600
800

1,000
1,200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mining Sequence

R
un

tim
e

(S
ec

.)

Slide Window = 3 Slide Window = 4 Slide Window = 5

ITAR - By Varying Base Intervals

-
200
400
600
800

1,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mining Sequence

R
u

n
tim

e
(S

ec
.)

Base Intervals = 10 Base Intervals = 20 Base Intervals= 40

ITAR By Varying Densities

-

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mining Sequence

R
un

tim
e

(S
ec

.)

Density = 0.5 Density = 1 Density = 2

Figure 9. Mining Efficiency of ITAR comparison by
different parameters

Sliding Window = 3

-
2,000
4,000
6,000
8,000

10,000
12,000

1 3 5 7 9 11 13 15 17 19

Mining Sequence

R
u
n
tim

e
(S

ec
.)

ITAR AITAR TAR

Sliding Window = 4

-

5,000

10,000

15,000

20,000

1 3 5 7 9 11 13 15 17 19

Mining Sequence

R
u
n
tim

e
(S

ec
.)

ITAR AITAR TAR

Sliding Window = 5

-

5,000

10,000

15,000

20,000

1 3 5 7 9 11 13 15 17 19

Mining Sequence
R
u
n
tim

e
(S

ec
.)

ITAR AITAR TAR

Base Intervals = 10

-
2,000
4,000
6,000
8,000

10,000
12,000

1 3 5 7 9 11 13 15 17 19

Mining Sequence

R
u
n
tim

e
(S

ec
.)

ITAR AITAR TAR

Base Intervals = 20

-
2,000
4,000
6,000
8,000

10,000
12,000

1 3 5 7 9 11 13 15 17 19

Mining Sequence

R
u
n
tim

e
(S

ec
.)

ITAR AITAR TAR

Base Intervals = 40

-

5,000

10,000

15,000

20,000

1 3 5 7 9 11 13 15 17 19

Mining Sequence

R
u
n
tim

e
(S

ec
.)

ITAR AITAR TAR

Density = 0.5

-
2,000
4,000
6,000
8,000

10,000
12,000

1 3 5 7 9 11 13 15 17 19

Mining Sequence

R
u
n
tim

e
(S

ec
.)

ITAR AITAR TAR

CRPIT Volume 63

130

Density = 1

0
1000
2000
3000
4000
5000
6000

1 3 5 7 9 11 13 15 17 19

Mining Sequence

R
u
n
tim

e
(S

ec
.)

ITAR AITAR TAR

Density = 2

-
1,000
2,000
3,000
4,000
5,000
6,000

1 3 5 7 9 11 13 15 17 19
Mining Sequence

R
u
n
tim

e
(S

ec
.)

ITAR AITAR TAR

Figure 10. Mining Efficiency comparisons (by Varying
Density thresholds)

8 References

Agrawal, R., Imielinski, T. and Swami, A. (1993): Mining
association rules between sets of items in large
databases. Proc. ACM SIGMOD International
Conference on Management of Data, Washington DC,
USA, 22:207-216, ACM Press.

Agrawal. R., and Srikant. R. (1994) Fast algorithms for
mining association rules. Proc. of the 20th Int’l Conf. on
Very Large Database, Santiago, Chile, Sept. 1994, pp.
487-499.

Ayad. A., El-Makky. N., and Taha. Y. (2001) Incremental
Mining of Constrained Association Rules. In First
International SIAM Conference on Data Mining
(SDM01), Chicago, April 2001.
http://www.siam.org/meetings/sdm01/pdf/sdm01_01.p
df.

Ayan, N.F., Tansel, A.U., and Arkun, E. (1999) An
efficient algorithm to update large itemsets with early
pruning. The 5th Conference on Knowledge Discovery
and Data Mining (SIGKDD99), AMC Press, San Diego,
USA, pp. 439-450.

Cheng. H., Yan. X., and Han. J. (2004) “IncSpan:
Incremental Mining of Sequential Patterns in Large
Database”, Proc. 2004 Int. Conf. on Knowledge
Discovery and Data Mining (KDD'04), Seattle, WA,
Aug. 2004, pp. 527-532.

Chang, C.H., Yang S.H. (2003) Enhancing SWF for
incremental association mining by itemset maintenance.
The 7th Pacific-Asia Conference on Knowledge
Discovery and Data Mining, PKADD 203, LNAI 2637,
Springer, Seoul, Korea, pp 301-312.

Cheung. D.W., Han. J., Ng. V., Fu. A., and Fu. Y. (1996)
A fast distributed algorithm for mining association
rules. In Proc. 1996 Int. Conf. Parallel and Distributed
Information Systems, pp. 31-44, Miami Beach, FL. Dec
1996

Cheung. D.W., Han. J., Ng. V., and Wong. Y. (1996)
Maintenance of discovered association rules in large
databases: An incremental updating technique. In Proc.
1996 Int. Conf. Data Engineering (ICDE’96), pp.
106-114, New Orleans, LA, Feb. 1996

Cheung. D.W., Lee, S.D., Kao, B. (1997) A general
incremental technique for maintaining discovered
association rules. The 5th International Conference on
Database Systems for Advanced Applications,
Melbourne, Australia, pp. 185-194.

Toivonen, H. (1996) Sampling large database for
association rules. In 22nd International Conference on
Very Large Database (VLDB’96), pp. 135-145,
Mumbay, India, September 1996.

Wang. W., Yang. Y., and Muntz. R. (1999) Temporal
Association Rules with Numerical Attributes. NCLA
CSD Technical Report 990011, 1999.

Wang. W., Yang. Y., and Muntz. R. (2001) TAR: temporal
association rules on evolving numerical attributes,.
Proceedings of the 17th IEEE International Conference
on Data Engineering, pp. 283-292, 2001.

Zheng. Q., Xu. K., and Ma. S. (2002) The Algorithm of
Updating Sequetial Pattern, 2002,
http://xxx.arxiv.org/ftp/cs/papers/0203/0203027.pdf.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

131

Figure 11. Overview of the Crime Pattern Analysis System

User Interface

Database

Crime Data
Extractor

Dense Base
Cube Generator

Spatial-Temporal
Association Rule

Generator

Incremental
Dense Base

Cube Generator

Decremental
Dense Base

Cube Generator

Crime Trend
Generator

Spatial-Temporal
Mining System

CRPIT Volume 63

132

Proc. Eighteenth Australasian Database Conference (ADC 2007)

133

CRPIT Volume 63

134

Proc. Eighteenth Australasian Database Conference (ADC 2007)

135

CRPIT Volume 63

136

Proc. Eighteenth Australasian Database Conference (ADC 2007)

137

CRPIT Volume 63

138

Proc. Eighteenth Australasian Database Conference (ADC 2007)

139

CRPIT Volume 63

140

Distributed Text Retrieval From Overlapping Collections

Milad Shokouhi Justin Zobel Yaniv Bernstein

School of Computer Science and Information Technology
RMIT University,

PO Box 2476V, Melbourne, 3001, Australia
Email: {milad,jz,ybernste}@cs.rmit.edu.au

Abstract

In standard text retrieval systems, the documents
are gathered and indexed on a single server. In dis-
tributed information retrieval (DIR), the documents
are held in multiple collections; answers to queries
are produced by selecting the collections to query and
then merging results from these collections. However,
in most prior research in the area, collections are as-
sumed to be disjoint. In this paper, we investigate the
effectiveness of different combinations of server selec-
tion and result merging algorithms in the presence of
duplicates. We also test our hash-based method for
efficiently detecting duplicates and near-duplicates in
the lists of documents returned by collections. Our
results, based on two different designs of test data,
indicate that some DIR methods are more likely to
return duplicate documents, and show that remov-
ing such redundant documents can have a significant
impact on the final search effectiveness.

Keywords: Distributed information retrieval, dupli-
cate and near-duplicate detection, similarity measure-
ment, search engines

1 Introduction

In standard text retrieval systems, the collection of
documents is indexed at a single location and made
available to users through a search interface. Such
centralized information retrieval (IR) is efficient and
effective when the documents can be gathered to-
gether, but such consolidation is not always possible.
On the web, for example, many documents are not
crawlable and can only be accessed by that particular
site’s search interface. Such documents form the hid-
den web, which has been reported to be many times
larger than the fraction of the web that can be crawled
(Bergman 2001). Also, crawling the web can be pro-
hibitively slow; some documents are held on servers
whose delivery speed makes crawling impractical.

A solution is provided by distributed information
retrieval (DIR), in which documents held on multi-
ple servers are made available through a single inter-
face. Distributed search over multiple collections—
also known as federated search—has been an active
area of research for over a decade. In addition to mak-
ing hidden-web documents centrally accessible, there
are other gains; for example, with DIR the costs of
crawling can be avoided, and distributed indexes can
be updated more easily than the alternatives.

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at the Eighteenth Australasian Database Con-
ference (ADC2007), Ballarat, Victoria, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 63. James Bailey and Alan Fekete, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

In DIR, queries are submitted to a central com-
ponent, known as the broker. For efficiency, the
broker sends the query to only a limited number of
collections—creating the problem of collection selec-
tion. In order to select suitable collections for each
query, the broker should acquire information about
each collection in advance—creating the problem of
collection representation. A collection’s representa-
tion set is the broker’s knowledge about each collec-
tion. Queries are compared with representation sets,
and collections that are more likely to return relevant
documents are selected (Callan, Lu & Croft 1995,
Gravano, Garcia-Molina & Tomasic 1999). The se-
lected collections return their answers to the broker,
which merges the results and presents them to the
user (Callan et al. 1995, Si & Callan 2003b)—creating
the problem of result merging.

In cooperative environments, collections provide
the broker with comprehensive information about
their indexes, typically comprised of data such as
lexicon statistics and collection size, allowing the
broker to effectively select suitable collections for a
query (Allan et al 2003, Meng, Yu & Liu 2002). In
uncooperative environments, collections do not pro-
vide such information. To identify likely collections,
the broker must first create sample surrogates by
downloading a limited number of documents from
collections (Callan, Connell & Du 1999, Callan &
Connell 2001, Ipeirotis & Gravano 2004, Ipeirotis &
Gravano 2002). In semi-cooperative environments,
the broker has incomplete knowledge about the col-
lections. However, it might receive supplementary
information such as document scores from collec-
tions, allowing more accurate results merging (Callan
et al. 1995, Si & Callan 2003b).

Many collection representation techniques (Callan
et al. 1999, Callan & Connell 2001, Ipeirotis &
Gravano 2004, Ipeirotis & Gravano 2002, Shokouhi,
Scholer & Zobel 2006), collection selection techniques
(Callan et al. 1995, Gravano et al. 1999, Nottelmann
& Fuhr 2003, Si & Callan 2003a, Si & Callan 2004, Yu-
wono & Lee 1997, Zobel 1997), and result merging
techniques (Callan et al. 1995, Kirsch 2003, Si &
Callan 2003b) have been investigated. However, in
almost all reported experiments, it is assumed that
collections do not overlap, so that any given docu-
ment is only available in one collection.

In practice, however, this assumption is frequently
valid. For example, many research articles are in-
dexed by both the ACM portal1 and the IEEE
Xplore2 digital libraries. Therefore, a broker that
sends queries to both online collections may receive
many duplicate documents. Detecting such dupli-
cates is far from straightforward, as they may be de-
livered from different URLs and have slight changes,
such as in their metadata or presentation, that do not

1http://portal.acm.org
2http://ieeexplore.ieee.org

Proc. Eighteenth Australasian Database Conference (ADC 2007)

141

alter the content but mean that the documents are
not identical. Retrieval of all candidate documents
by the broker to check for duplication imposes sig-
nificant expense—in standard DIR the broker need
not inspect the documents—while, as we show, fail-
ure to eliminate duplicates can significantly degrade
the quality of answers returned.

Although distributed search among overlapped
collections has been suggested as one of the major is-
sues in DIR (Allan et al 2003, Meng et al. 2002), the
problem has not been thoroughly explored. We have
previously proposed that grainy hash vectors (GHVs)
can be used for removing duplicate and near-duplicate
documents from result lists (Bernstein, Shokouhi &
Zobel 2006). However, these experiments used a cen-
tralized index. Moreover, in this work the perfor-
mance of DIR techniques in the presence of dupli-
cates and near-duplicates is not comprehensively in-
vestigated.

In this paper, we use GHVs on distributed testbeds
to remove duplicate and near-duplicate documents
from the results. We also analyze the behavior of
well-known DIR collection selection and result merg-
ing strategies on overlapped collections. As a basis for
this work, we propose two mechanisms for creating
experimental testbeds from standard test collections.
One, based on windowing, is somewhat artificial but
allows precise setting of the level of duplication, thus
allowing us to explore the impact of parameters in a
controlled way; the other, based on query result sets,
generates collections with some consistency of topic.
To our knowledge, such a study on overlapped collec-
tions has not previously been undertaken.

In our experiments, we find that GHVs are effec-
tive at identifying duplicates in answer sets, and that
removal of such duplicates can have a substantial im-
pact on effectiveness. We also find that relative per-
formance of the collection selection and result merg-
ing methods depends to some extent on the testbed
used, demonstrating that care is required in the de-
velopment of resources and interpretation of outcomes
for such research questions.

2 Distributed information retrieval

In DIR, the broker receives each query, distributes
it to selected servers, and merges results to give a
consolidated list to return to the user. Before the
broker can begin processing queries, it must gather a
representation set for each collection. In cooperative
protocols such as STARTS (Gravano, Chang, Garcia-
Molina & Paepcke 1997), collections provide the bro-
ker with comprehensive information about their in-
dexes including the lexicon statistics and the number
of documents. However, access to such a representa-
tion set for each collection may not be possible; in un-
cooperative environments, the broker must download
a limited number of documents from each collection
and use them as a representation set.

Query-based sampling (QBS) was proposed by
Callan et al. (1999) for uncooperative environments.
In this approach, an initial query is selected from a
list of frequent keywords and is submitted to a col-
lection. The top N documents returned by the col-
lection are downloaded by the broker and the next
query is picked, usually at random, from the contents
of these documents. This process continues until a
sufficient number of documents (k) has been down-
loaded. Callan et al. (1999) claimed that N = 4 and
k = 300 are suitable values; in contrast, we have sug-
gested that the rate of discovery of new terms in the
downloaded documents is a suitable indicator of when
sampling should stop (Shokouhi et al. 2006). In this
paper, we use the values suggested by Callan et al.

(1999), to make our results comparable to related
work in this area (Nottelmann & Fuhr 2003, Si &
Callan 2003b, Si & Callan 2003a, Si & Callan 2004).

Once representation sets are created, the broker
can use them to pass queries to collections that are
deemed as likely to contain relevant documents. In
some collection selection techniques, the broker uses
variants of standard IR measures to compute the
similarity of a query with collection representation
sets. CORI (Callan et al. 1995), GlOSS (Gravano
et al. 1999) and CVV (Yuwono & Lee 1997) are a
few well-known examples of such approaches. Among
these, CORI was reported to produce the highest pre-
cision (Craswell, Bailey & Hawking 2000, Powell &
French 2003, Rasolofo, Abbaci & Savoy 2001).

In CORI, the belief P (t|c) for observing a query
term t in collection c is computed as below:

P (t|c) = db + (1 − db) × Tc × Ic

Tc = dt + (1 − dt) ·
log(ft,c + 0.5)

log(maxc(ft) + 1.0)

Ic =
log(N+0.5

cf
)

log(N + 1.0)

where ft,c is the document frequency of t in c and cf
is the number of collections containing the term t. dt

is the minimum term frequency component while db

is the minimum belief component when t occurs in
c. dt and db are respectively set to 0.4 and 0.5 by
default. N represents the total number of collections
while maxc(ft) is the maximum document frequency
in c. The final weight of a collection c for query Q is
calculated by summing up the computed beliefs P (t|c)
for all query terms t ∈ Q.

Although more recent studies suggest that CORI is
generally worse than other methods on many testbeds
(D’Souza, Zobel & Thom 2004, Si & Callan 2003a), it
is still used frequently for collection selection research
(Si & Callan 2004, Si & Callan 2005, Avrahami, Yau,
Si & Callan 2006). Thus we use CORI as one of our
collection selection methods in this paper.

In recent years, new collection selection algorithms
have been shown to produce better results than
CORI (Hawking & Thomas 2005, Si, Jin, Callan &
Ogilvie 2002, Si & Callan 2003a, Si & Callan 2004, Si
& Callan 2005) on some testbeds. In HARP (Hawking
& Thomas 2005), the anchor texts available in a large
crawled repository are used to create the representa-
tion sets, which for each collection consists of the an-
chor texts of URLs available in the crawled data that
are targeting the collection. This is similar to Q-pilot
(Sugiura & Etzioni 2000).

ReDDE (Si & Callan 2003a) ranks collections ac-
cording to the estimated number of relevant docu-
ments. The broker creates a central index of all sam-
pled documents, then each submitted query is eval-
uated on this index before being sent to collections.
The number of relevant documents in each collection
is estimated from the contribution of collections in the
top-ranked documents. UUM (Si & Callan 2004) esti-
mates the probability of relevance of documents inside
each collection using training queries and their related
relevance judgments. UUM was reported to produce
better results than ReDDE (Si & Callan 2004).

RUM (Si & Callan 2005) is a variant of UUM
that also considers the search effectiveness of collec-
tions. As in ReDDE, RUM maintains a central in-
dex of all sampled documents on the broker. In the
training stage, the documents returned by collections
for queries are compared to those ranked by the cen-
tral index. In addition, the broker downloads a few

CRPIT Volume 63

142

top-ranked documents from each collection and cal-
culates their weights in the central index. Based on
the weights of downloaded documents for the train-
ing queries, the broker then approximates the search
effectiveness of each collection. Si & Callan (2005)
suggest that RUM can slightly outperform UUM.

RUM and UUM have significant drawbacks: both
require a set of training queries and relevance judg-
ments. RUM also downloads documents from each
collection for the training queries. In practical situa-
tions, relevance judgments may be costly and down-
loading documents might be infeasible. Therefore, we
use ReDDE (Si & Callan 2003a) as a practical repre-
sentative of recent collection selection algorithms.

Selected collections return their answers to the
broker. The broker then merges the results and rep-
resents them to the user.

The document score values reported by collections
are not comparable as they are computed by differ-
ent retrieval models and rely on inconsistent lexicon
statistics. The goal of result merging algorithms is
to calculate a global score for each document that is
comparable to the scores of documents returned by
other collections.

In CORI result merging (Callan et al. 1995), the
global score DG of a document d returned by a collec-
tion (c) is calculated according to its normalized doc-
ument score (D′) and collection score (C′). The for-
mer is the collection-specific weight of d reported by
its original collection (c) and the latter is the weight
of c calculated by the broker.

C′ =
(C − Cmin)

(Cmax − Cmin)

D′ =
(D − Dc

min)

(Dc
max − Dc

min)

DG =
D′ + 0.4 × D′ × C′

1.4

where Dc

min and Dc
max are respectively the minimum

and maximum document scores reported by collection
c, and Cmin and Cmax are the minimum and maxi-
mum weights that can be assigned to any collection
by the broker during collection selection.

SSL (Si & Callan 2003b) uses a semi-supervised
learning method to create a model for each collection
that maps document scores into global scores. SSL
creates a central index of all sampled documents. For
a query, some of the documents returned by any col-
lection c might be already available in the central in-
dex. SSL compares the central weights of such overlap
documents with the reported scores from c and then
approximates the weights of other documents that are
not available in the central index.

When collections use an identical retrieval model,
all overlap documents can be used to train a single
linear model that maps collection-specific scores into
approximated global scores. In such a scenario, for an
overlap document d returned from any selected col-
lection c, two scores are available: D is the score re-
ported by the original collection and DS is the weight
of document computed by the central, sample-based
index.

Using the values for D and DS , SSL trains a linear
model that converts the reported scores by collections
to their approximated central scores, with parameters
a and b used to combine scores as follows:

DG = a × D + b × DS × C

where C is the weight of collection c from which d is
drawn. Given this information, SSL can accurately
approximate the central scores of documents. The

central index can be assumed to be representative of
the global information, so the weights of documents
in the central index are likely to be representative of
their global scores.

For simplicity, we assume that all collections in
our experiments are using INQUERY (Callan, Croft
& Harding 1992) as their retrieval model. Thus, we
use SSL single-model as one of our merging methods.

CORI and SSL are intended for semi-cooperative
environments where document scores are broadcast
by collections. In the absence of document scores,
they calculate the pseudoscores of documents as de-
scribed by Si et al. (2002). Other merging strategies
(Kirsch 2003, Si et al. 2002) typically follow the same
strategy but are not as well-known as CORI and SSL.
Therefore, in our experiments we use CORI and SSL
for merging.

DIR merging is not equivalent to data fusion or the
merging problem in metasearch (Croft 2000, Fox &
Shaw 1994, Lee 1997). In data fusion, different rank-
ing functions are applied to the same collection (Meng
et al. 2002). In the presence of multiple collections,
queries are usually sent to all of them without collec-
tion selection. Therefore, in data fusion or metasearch
merging, collection representation sets are not usually
required. Also, documents are merged solely based on
their ranks or reported scores by collections.

3 Overlapping collections

Distributed retrieval from overlapped collections has
been described as one of the current challenges in IR
(Allan et al 2003, Meng et al. 2002). However, all of
the methods discussed above assume that collections
do not have overlapped documents or that the number
of duplicates is negligible.

Metasearch engines such as ProFusion (Gauch,
Wang & Gomez 1996), MetaCrawler (Selberg &
Etzioni 1997), and Grouper (Zamir & Etzioni 1999)
remove duplicate documents from the results by ag-
gregating those that point to the same URL. The
rank of a duplicate document in the final result is
calculated according to its position in the ranklists of
different search engines. Typically, this involves use
of methods such as CombSUM or ComMNZ (Fox &
Shaw 1994), or other similar approaches (Lee 1997).
Some researchers argue that such methods cannot
be defined in the context of DIR and should be de-
scribed in the broader category of metasearch (Si &
Callan 2003b).

These metasearch methods have two major draw-
backs; they cannot detect and remove near-duplicates
and they are unable to distinguish exact dupli-
cate documents with different URLs (mirror URLs).
Moreover, a recent study (Wu & McClean 2006) sug-
gests that when the rate of overlap between the final
results of collections is less than 60%, the performance
of such methods significantly degrades.

To our knowledge, the only discussion of removal
duplicates and near-duplicates during merging in DIR
is that given by Bernstein et al. (2006). This approach
is discussed in detail in the following sections.

Duplicate documents can also be avoided by using
an overlap-aware collection selection method. Her-
nandez & Kambhampati (2005) introduced COSCO,
which considers the rate of overlap among collections
during collection selection. For a query, COSCO does
not select two collections that are likely to return
many identical documents. The approach, although
interesting, has defects. COSCO requires a large
number of training queries to learn the rates of over-
lap between collections for each topic. In addition,
COSCO was not tested for detection of near-duplicate

Proc. Eighteenth Australasian Database Conference (ADC 2007)

143

documents, which, as discussed below, is a much more
challenging problem (Zobel & Bernstein 2006).

We argue that removal of duplicates during merge
is more appropriate because overlap-aware collection
selection methods may be lossy. That is, ignoring a
collection that includes unvisited relevant documents
can affect the final precision. In contrast, if dupli-
cate removal occurs during merging, all relevant docu-
ments can be retrieved by the broker. We now explore
methods for detection and removal of duplicates.

4 Detection of duplicates and near-duplicates

There are many sources of duplication in text collec-
tions. For example, a crawl of documents harvested
from the web may yield duplicates due to factors in-
cluding URL aliasing; copies of the same document
held at several mirrors; each author of a paper plac-
ing a copy on their website; republication of news sto-
ries by multiple online newspapers; and commercial
websites presenting local copies of public documents.

Exact copies are easy to detect, but many dupli-
cates are not exact copies. A newspaper that repub-
lishes a newswire article may edit it to reflect local
knowledge, and the page context such as advertis-
ing and ‘related story’ links is likely to be different.
Some stories are regularly recycled, such as birthday
notices and Groundhog Day features. Policy docu-
ments and legislation may differ little from jurisdic-
tion to jurisdiction, as policymakers adopt models
from elsewhere. Ultimately, the question of whether
two documents are duplicates is highly application-
dependent—for example, in some contexts two docu-
ments that differ only in publication date may be re-
garded as having a significant difference. However, we
have found that, in the context of search, mechanisms
for detecting duplication such as those described in
this section are consistent with user judgements as to
whether documents are duplicates or near-duplicates.
(Bernstein & Zobel 2005, Zobel & Bernstein 2006).

In the context of search, duplicate detection can
take place during either indexing or retrieval. At in-
dexing time, duplicate detection involves processing
the entire collection to find pairs of documents that
appear to be duplicates or near-duplicates (Manber
1994, Brin, Davis & Garćıa-Molina 1995, Broder,
Glassman, Manasse & Zweig 1997, Fetterly, Manasse
& Najork 2003, Bernstein & Zobel 2004). In a DIR
system, such an approach is unlikely to be feasible,
particularly in uncooperative environments. Thus we
must focus on methods that can be used to eliminate
duplicates from answer lists. However, we wish to
avoid adding significant costs to the query evaluation
mechanism. A DIR duplicate-detection mechanism
that involved fetching all of the answer documents
from each collection is not attractive.

As we have described elsewhere (Bernstein et al.
2006), the most suitable methods described in previ-
ous literature are based on computing a brief descrip-
tor of each document. In a semi-cooperative environ-
ment, each collection could return these descriptors,
allowing efficient duplicate detection. We now sum-
marize our previous analysis of prior methods.

A descriptor-based approach that is superficially
attractive is to use deterministic term extraction to
identify terms in each document that are deemed
likely to be indicative of duplication (Chowdhury,
Frieder, Grossman & McCabe 2002, Ilyinski, Kuzmin,
Melkov & Segalovich 2002, Cooper, Coden & Brown
2002, Conrad, Guo & Schriber 2003, Kolcz, Chowd-
hury & Alspector 2004). The assumption is that near-
duplicates will share an exact set of such terms, so
that hashing them will produce a descriptor that can
be matched extremely fast. This term extraction pro-

cess must take place at index time; otherwise, query
processing would be much more expensive.

However, such approaches can only succeed if they
are effective at identifying indicative terms. A prob-
lem is that a common design principle in these ap-
proaches is to select terms that are significant within
the document, that is, are relatively rare across the
corpus. In DIR, there are no cross-corpus statistics,
and even in centralized retrieval the corpus is not
static; thus the same term extraction method will pro-
duce different term sets in different collections. It is
not at all clear that such term extraction methods can
be reliable in the absence of global statistics. Another
problem is that it is not known how robust these tech-
niques are, as a single difference between the term sets
means that near-duplication is not detected. A pro-
posed solution is to return multiple hashes per doc-
ument (Pugh & Henzinger 2003, Kolcz et al. 2004),
but in the absence of global statistics it is still unclear
that this can be effective.

The other widely-investigated approach to dupli-
cate detection is to use chunks (Hoad & Zobel 2003),
an approach that has been proposed for a vari-
ety of applications (Manber 1994, Lyon, Malcolm &
Dickerson 2001, Brin et al. 1995, Conrad et al. 2003,
Broder et al. 1997, Bernstein & Zobel 2004, Bern-
stein & Zobel 2005). In chunking, each document
is parsed into strings of text, each typically of some
fixed length or some fixed number of words. A pair of
documents is deemed to be duplicated if they share
a sufficient number of chunks. Chunk-extraction can
be selective or exhaustive; some methods use only a
few chunks per document, while in others every word
occurrence is the start of a new chunk. Given a set
of chunks, the resemblance between two documents
(Broder et al. 1997) can be defined as:

R(d, d′) =
|d̂ ∩ d̂′|

|d̂ ∪ d̂′|

where d̂ is the set of chunks extracted from docu-
ment d.

A complete set of chunks is not a particularly use-
ful document descriptor in DIR. However, the method
of Fetterly et al. (2003), which we call minimal-chunk
sampling, can be used for chunk selection. By use
of an appropriate class of hash functions, by use of
ρ functions from this class, chunks can be sampled
in an unbiased way. Each chunk is hashed with each
function, and for each of the ρ functions the small-
est observed hash value yielded by any chunk is kept.
These hash values can be used as proxies for chunks
in determining resemblance. Fetterly et al. (2003) use
ρ = 84, giving 84 32-bit hashes, a total of 336 bytes.
For DIR, this is a significant data volume to trans-
mit per document. It is therefore attractive to seek a
more compact alternative.

5 Grainy hash vectors

A grainy hash vector (GHV) (Bernstein et al. 2006)
is a form of minimal-chunk sampling method. How-
ever, it has features derived from deterministic term
extraction techniques, and the vectors are only a few
bytes, making it suitable for DIR. Bernstein et al.
(2006) list the major benefits of GHVs as below:

• Efficiency; the hash vectors are designed to fit
into a single machine word of 32 or 64 bits.

• Theoretical foundation; GHVs are based on
mathematical principles that are amenable to
analysis.

CRPIT Volume 63

144

• Fast comparison; thousands of document vectors
can be compared in a few milliseconds using bit-
parallelism techniques.

• Robust comparison; GHVs do not change sig-
nificantly in the presence of small differences in
documents.

A GHV of n bits consists of ρ w-bit hashes and is
represented as follows:

ρ(n, w) =
⌊ n

w

⌋

Each of the w-bit hashes is produced by a separate
minimal-chunk sampling technique. Therefore, for a
64-bit GHV with w = 2, there are 32 2-bit hashes that
are merged into the vector. The value of w should be
a factor of n, to avoid having unused bits.

For small values of w, there is a significant prob-
ability of collision between the outputs of different
minimal hashes. For w = 2, for example, it is likely
that most of the minimal hashes will be the bit pair 00
(hash values for different chunks are sorted and the 2
least significant bits of the smallest hash value are se-
lected). On the other hand, using large values for
w may be computationally expensive, and reduces
the number of hashes per vector. Therefore, GHV
initially uses minimal sampling to produce ρ 32-bit
hashes for each document. Then the least significant
w bits of each hash value are used to give the GHV.

For a pair of documents with resemblance r (0 ≤
r ≤ 1), the probability of having the same hash value
at any given position of their GHVs is:

φ(r; w) = r + (1 − r)(2−w)

If two documents have resemblance r, they will at
least have r of their hash vectors in common. Thus,
the probability of a hash match between their hash
vectors is r. The second component calculates the
probability of having the same hash value while the
two source chunks are different.

Assuming that for each bit the in a vector the
probability of being 0 or 1 is independent the other
bits, we can conclude that the number of matches
between two vectors with resemblance r follows a bi-
nomial distribution Bi(ρ(n, w), φ(r; w)), and thus

P (X = k) =

(
ρ

k

)
φk(1 − φ)ρ−k

where P (X = k) is the probability of having k
matches between the vectors of two documents with
resemblance r.

For each query, collections send a GHV per docu-
ment they return to the broker. The broker detects
and removes duplicates or near-duplicates according
to the number of mismatches between any given pair
of vectors. If w = 1, this amounts to counting the
number of bits that match in the vectors; if the num-
ber is sufficiently high, the documents are deemed to
be likely to be duplicates or near-duplicates.

A critical question, then, is what is the minimum
number of mismatches between two GHVs if the doc-
uments they represent are not near-duplicates? That
is, a threshold for the number of mismatches needs
to be set to minimise the number of false misses.
(False misses are much more acceptable than false
matches in this application; the former means that
duplicate information is presented, while the latter
means that novel information is lost.) Bernstein
et al. (2006) compared the accuracy of GHVs with
the duplicate detection method DECO (Bernstein &
Zobel 2004), for different values of n and w. They
found that GHVs can effectively detect duplicates or
near-duplicates using n = 64, w = 2, and a threshold

0 20 40 60 80 100

Uniform testbed (112 Collections)

1

10

100

1000

10000

N
um

be
r

of
 d

oc
um

en
ts

Number of overlapped documents
Number of relevant documents

Size of collections = 30000 documents

Figure 1: Collection sizes, distribution of relevant
documents and the amount of overlap between con-
sequent collection pairs in the uniform testbed.

of 8 mismatches, without significant false misses. We
apply the suggested values by Bernstein et al. (2006)
and use 32 minimal-chunk hashes to create 32 2-bit
hash values for each document.

We now compare the performance of collection se-
lection and result merging algorithms on collections
that overlap. We also analyze the impact of removing
duplicates and near-duplicates from the list of results
in terms of search effectiveness, using GHVs to deter-
mine whether documents are likely to be duplicates.

6 Testbeds

In current well-known DIR testbeds such as trec123-
100col-bysource or trec4-kmeans,3 the degree of over-
lap between collections is intentionally set to zero.
Therefore, current testbeds are not suitable for eval-
uating DIR methods in the presence of overlap. We
create three testbeds using the documents available
in the TREC GOV data (Craswell & Hawking 2002).
These testbeds are as follows:

uniform-112col-dups (uniform): This testbed is
comprised of 112 collections, each containing 30 000
documents, created using a sliding window on the
TREC GOV documents. The first 30 000 documents
comprise the first collection. Then a random percent-
age R (R ≥ 25%) is picked. The second collection is
created from the last R% of the first collection and
the next documents from the GOV corpus to a total
size of 30 000 documents. The rest of the collections
are generated in the same sliding window manner.

Figure 1 shows the distribution of relevant docu-
ments for TREC topics 551–600 among the collections
in this testbed. As was expected, relevant documents
are spread uniformly among collections. The figure
also shows the number of documents in each collec-
tion that are shared with the previous collection. The
rate of overlap varies from 25% to 99%.

skewed-115col-dups (skewed): Collection selec-
tion algorithms show variable performance on differ-
ent testbeds. Some approaches such as CORI are
found to be less effective when the distribution of
collection sizes is skewed (D’Souza et al. 2004, Si &
Callan 2003a). To create such a testbed, we adapt
the approach Si & Callan (2003a) used for deriving

3Available at www.cs.cmu.au/∼callan/Data.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

145

5000 10000 15000 20000 25000 30000

Collection Size (Number of documents)

0

10

20

30

40

50
N

um
be

r
of

 c
ol

le
ct

io
ns

50

32

38

31

25

Min collection size: 5016
Max collection size: 29956
Avg collection size: 16100

Figure 2: Collection sizes in the Qprobed testbed.

0 10 20 30 40 50 60 70 80 90 100 275

Number of relevant documents

0

10

20

30

40

N
um

be
r

of
 c

ol
le

ct
io

ns

21

38

24 23

16
13

9
11

2
5

14

Min relevant docs: 2

Max relevant docs: 275

Avg relevant docs: 43

Figure 3: Distribution of relevant documents in the
Qprobed testbed.

the so-called representative testbed from the trec123-
100col-bysource documents. Every tenth collection
in the uniform testbed starting from the first collec-
tion is collapsed into a single large collection. The
same procedure is repeated starting with the second
and third collections and another two large collections
are created. The testbed thus contains the uniform
testbed plus an additional three large collections.

Qprobed-176col-dups (Qprobed): 176 collec-
tions have been generated by passing 200 probe
queries to an index of the TREC GOV documents.
Queries are the most frequent single terms in a query
log supplied by a major search engine, of queries with
a highly ranked answer in the .gov domain. For
each query, a random number of results between 5 000
and 30 000 are extracted and gathered as a collection.
Queries that return less than 5 000 documents are dis-
carded. The average size of collections in this testbed
is 16 100 documents while the largest and smallest
collections contain 29 956 and 5 016 documents. The
distribution of collection sizes and the number of rel-
evant documents among collections are depicted in
Figures 2 and 3. Considering Figure 3, for example,
there are 50 collections that have between 5 000 and
10 000 documents, and there are 38 collections that
contain between 10 and 20 relevant documents each
for TREC topics 551–600.

The degree of overlap among collections in this
testbed is diverse. Figure 4 shows that there are

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ratio of overlap between collection pairs

1

10

100

1000

10000

N
um

be
r

of
 c

ol
le

ct
io

n
pa

ir
s

29813

758

122
54

25 17
7

4

Figure 4: Degree of overlap between collections in the
Qprobed testbed.

29813 collection pairs that have less than 10% over-
lap while the rate of overlap for four collection pairs
is close to 100%.

The ideal testbed for these experiments would be
complete crawls of websites from the hidden web, but
by construction such crawls are not easily available.
Another good testbed would be crawls of sites known
to contain high levels of overlap. There are such sites
in the TREC GOV data (in which we believe more
than half the pages are duplicates or near duplicates),
but identifying them is far from straightforward. It is
for these reasons that other ways of forming testbeds
are of interest. The uniform and skewed collections
are somewhat artificial, but they allow exploration of
the effectiveness of DIR methods as a function of the
extent of overlap. The Qprobed testbed consists of
collections with some degree of internal consistency,
and the collections are comprised of documents se-
lected by a method that is fully independent of the
techniques we are exploring.

In the next section we investigate the effectiveness
of different DIR algorithms on the discussed testbeds.

7 Experimental results

On each testbed, we explore three combinations of
collection selection and result merging algorithms.
These are CORI-CORI, ReDDE-CORI, and ReDDE-
SSL where the first part specifies the collection selec-
tion method and the last part represents the merging
algorithm used for the experiments.

We use query-based sampling to gather 300 docu-
ments from each collection. The sampled documents
from each collection are used as its representation set.
In addition, aggregating all representation sets cre-
ates a central sample index that is used by SSL re-
sult merging (Si & Callan 2003b). All experiments
reported in this paper use the Lemur toolkit.4 Meth-
ods are compared according to their precision at the
top n returned documents (P@n). For each query, at
most 1 000 answers are returned.

We use a 64-bit GHV with w = 2 and a threshold
of 8 mismatches out of possible 32, as recommended
by Bernstein et al. (2006). Collections provide the
broker with a GHV for each answer they return. They
also publish the document scores of their returned an-
swers that then will be used by the broker for result

4http://www.lemurproject.org

CRPIT Volume 63

146

merging. That is, we assume a semi-cooperative en-
vironment.

Duplicate and near-duplicate documents in an an-
swer list can be regarded as redundant and irrelevant,
as they do not add to the user’s knowledge. We use
GHV to identify duplicate and near-duplicate docu-
ments in the final merged results. Then we compare
the search effectiveness of two scenarios where in the
first one, duplicates are considered as irrelevant and
in the second set duplicates are removed. In the first
scenario, the broker removes those documents that
GHV detects as redundant from the list of results.
The upper tables for each combination contain the
precision values for this scenario.

In the second scenario, the returned duplicate
and near-duplicate documents are considered as ir-
relevant. To avoid bias, we do not use GHV to
judge whether documents are duplicates and near-
duplicates; instead, the broker uses a list of near-
duplicate documents in the TREC GOV that are
identified by DECO (Bernstein & Zobel 2004) dupli-
cate detection method.5

One might expect that the lists of duplicate doc-
uments detected by GHV and DECO would be sig-
nificantly different. However, our investigations show
that 93% of documents that are identified as near-
duplicate by GHV are also detected by DECO, while,
72% of all documents that are identified by DECO
are detected by GHV. The high rate of accuracy and
coverage of GHVs for detecting near-duplicate docu-
ments is consistent with the reported values by Bern-
stein et al. (2006) on a centralized index. On av-
erage, over all experiments, use of GHVs detects 9
near-duplicates per query while this number is 12.5
for DECO. Considering that 1 000 documents are col-
lected per query, the difference of 2.5 documents has
negligible impact on the final effectiveness. Also, this
is further evidence that GHVs avoid false misses.

Note that DECO removes exact-duplicate pairs
according to their document identifiers. All exact-
duplicates are detected and removed by GHV as there
is no mismatch between their vectors.

We use the t-test to measure the statistical sig-
nificance of difference between results in the presence
and absence of duplicates. The differences at 0.95,
0.99 and 0.999 confidence intervals are respectively
specified with ∗, †, and ‡. The baseline for all exper-
iments against which significance is measured is the
effectiveness of retrieval when the returned duplicates
and near-duplicates are considered as irrelevant. The
differences are measured against the scenario in which
redundant documents are removed by GHV.

Table 1 shows the effectiveness of different com-
binations on the uniform testbed. Cutoff (CO) val-
ues indicate the number of collections selected for
each query. Comparing the first two sets of ex-
periments (CORI-CORI and ReDDE-CORI) suggests
that CORI and ReDDE collection selection meth-
ods have similar performance on the uniform testbed.
Considering that all collections in this testbed con-
tain an identical number of documents, the results
are consistent with the previous observations of Si
& Callan (2003a), which suggest the performance of
CORI and ReDDE are similar when the distribution
of collection sizes is not skewed. As in experiments on
collections that do not overlap (Si & Callan 2003b),
SSL merges results more effectively than does CORI
on the uniform testbed.

The impact of removing duplicates and near-
duplicates becomes more apparent as the cutoff value
grows. In addition, the effectiveness of ReDDE-SSL
improve more significantly than the other combina-

5The list of near-duplicate documents detected by DECO is
available at: http://www.cs.rmit.edu.au/∼ybernste

Table 1: The impact of removing duplicate and near-
duplicate documents. Results are obtained by running
the TREC topics 551–600 (title) on the “uniform”
testbed. CO represents the cutoff value.

P@5 P@10 P@15 P@20
Duplicates Removed (CORI-CORI)
CO3 0.0840 0.0620 0.0507 0.0470
CO5 0.0840 0.0700 0.0587 0.0510
CO10 0.1760∗ 0.1240† 0.1093∗ 0.0970†

CO20 0.1959† 0.1449† 0.1252† 0.1153†

Duplicates Irrelevant (CORI-CORI)
CO3 0.0800 0.0600 0.0493 0.0460
CO5 0.0800 0.0680 0.0573 0.0500
CO10 0.1560 0.1120 0.1027 0.0890
CO20 0.1592 0.1306 0.1129 0.1031
Duplicates Removed (ReDDE-CORI)
CO3 0.0907 0.0542 0.0431 0.0354
CO5 0.1250 0.0729 0.0583 0.0521
CO10 0.1583 0.1083 0.0958 0.0857
CO20 0.1625 0.1333† 0.1139∗ 0.1083†

Duplicates Irrelevant (ReDDE-CORI)
CO3 0.0907 0.0542 0.0431 0.0354
CO5 0.1208 0.0708 0.0583 0.0479
CO10 0.1500 0.0979 0.0917 0.0833
CO20 0.1542 0.1187 0.1056 0.1010
Duplicates Removed (ReDDE-SSL)
CO3 0.1167 0.0667 0.0528 0.0490
CO5 0.1583 0.1062∗ 0.0861 0.0719
CO10 0.1875∗ 0.1479∗ 0.1347∗ 0.1177∗

CO20 0.2042∗ 0.1979∗ 0.1667‡ 0.1458†

Duplicates Irrelevant (ReDDE-SSL)
CO3 0.1167 0.0667 0.0514 0.0479
CO5 0.1417 0.0979 0.0847 0.0708
CO10 0.1759 0.1375 0.1264 0.1135
CO20 0.1792 0.1792 0.1500 0.1323

tions when duplicates are removed. This suggests
that selecting more collections and using ReDDE-
SSL combination increase the likelihood of finding
duplicate documents in the final results. The proba-
ble explanation is that ReDDE-SSL is more effective
than the other methods at giving the same document
the same score when it is present in multiple collec-
tions. That is, if one copy of a duplicate document
is fetched, then under ReDDE-SSL the other copy is
also likely to be fetched. (The number of duplicates
and near-duplicates returned by different combina-
tions is shown in Table 4 and is discussed later.)

Table 2 shows similar results on the skewed
testbed. For small cutoff values, ReDDE significantly
outperforms CORI, because the three largest collec-
tions contain many relevant documents that get high
ranks by ReDDE for the majority of queries. The bet-
ter performance of ReDDE is not surprising as it is
designed for situations where the distribution of col-
lection sizes is skewed (Si & Callan 2003a). SSL is
again the dominant merging algorithm and produces
better results than CORI.

As in previous experiments on the uniform
testbed, removing duplicate documents changes the
final precision more significantly for larger cutoff val-
ues. The gaps are also similarly larger when ReDDE
is used for collection selection and SSL is used for
result merging, for the reasons given above.

However, the results on the Qprobed testbed,
shown in Table 3, are rather different. The CORI-
CORI combination produces the greatest effective-
ness when duplicate documents are removed. Com-
paring the results of ReDDE-CORI and ReDDE-SSL
combinations suggests that the performance of SSL

Proc. Eighteenth Australasian Database Conference (ADC 2007)

147

Table 2: The impact of removing duplicate and near-
duplicate documents. Results are obtained by run-
ning the TREC topics 551–600 (title) on the “skewed”
testbed. CO represents the cutoff value.

P@5 P@10 P@15 P@20
Duplicates Removed (CORI-CORI)
CO3 0.0880 0.0660 0.0573 0.0520
CO5 0.0800 0.0680 0.0613 0.0530
CO10 0.1680† 0.1220∗ 0.1133∗ 0.0970†

CO20 0.1840† 0.1380‡ 0.1253† 0.1140‡

Duplicates Irrelevant (CORI-CORI)
CO3 0.0840 0.0640 0.0560 0.0510
CO5 0.0760 0.0660 0.0600 0.0520
CO10 0.1440 0.1120 0.1053 0.0900
CO20 0.1520 0.1200 0.1133 0.0990
Duplicates Removed (ReDDE-CORI)
CO3 0.1625 0.1312 0.1139∗ 0.1052
CO5 0.1625 0.1417 0.1208∗ 0.1125
CO10 0.1667 0.1437 0.1250∗ 0.1177∗

CO20 0.1583∗ 0.1417∗ 0.1278∗ 0.1208†

Duplicates Irrelevant (ReDDE-CORI)
CO3 0.1583 0.1271 0.1097 0.1010
CO5 0.1583 0.1375 0.1167 0.1083
CO10 0.1583 0.1354 0.1194 0.1125
CO20 0.1542 0.1333 0.1208 0.1135
Duplicates Removed (ReDDE-SSL)
CO3 0.1625 0.1417† 0.1097∗ 0.1000∗

CO5 0.1708∗ 0.1458∗ 0.1278† 0.1115†

CO10 0.1917∗ 0.1583† 0.1444† 0.1260†

CO20 0.1833† 0.1646† 0.1556‡ 0.1437‡

Duplicates Irrelevant (ReDDE-SSL)
CO3 0.1458 0.1208 0.1014 0.0906
CO5 0.1542 0.1354 0.1111 0.1010
CO10 0.1750 0.1312 0.1250 0.1104
CO20 0.1583 0.1417 0.1306 0.1135

and CORI merging methods is similar. Therefore,
the high effectiveness of CORI-CORI is largely due
to its effective collection selection method. We ob-
served similar trends for CORI and ReDDE on a simi-
lar testbed (trec4-kmeans (Xu & Callan 1998)) in our
preliminary experiments. We believe that ReDDE is
not as effective as CORI on testbeds where the distri-
bution of collection sizes in not skewed and the doc-
uments within each collection have similar topicality.

These results illustrate the importance of using di-
verse testbeds in such experiments; the uniform and
skewed results are not predictive of the results on a
collection created with another method.

As in experiments on the other testbeds, removal
of duplicates may drastically improve the final preci-
sion. The difference can be significant at the 0.999
confidence interval for larger cutoff values.

The number of duplicate and near-duplicate doc-
uments detected by GHVs for different combina-
tions is presented in Table 4. In the uniform and
skewed testbeds, the number of near-duplicates de-
tected climbs significantly for CORI-CORI while it
remains near constant for the other combinations. In
the Qprobed testbed, the number of near-duplicates
in the result declines by selecting more collections,
which is possibly an artefact of the way the testbed
was constructed.

Comparing the exact-duplicate (ED) numbers for
ReDDE-CORI and ReDDE-SSL suggests that SSL is
more likely to return exact-duplicates in the final re-
sults than CORI. Using CORI and ReDDE collec-
tion selection algorithms leads to similar number of
exact-duplicates on the uniform and skewed testbeds.

Table 3: The impact of removing duplicate and near-
duplicate documents. Results are obtained by running
the TREC topics 551–600 (title) on the “Qprobed”
testbed. CO represents the cutoff value.

P@5 P@10 P@15 P@20
Duplicates Removed (CORI-CORI)
CO3 0.1959 0.1776† 0.1578† 0.1378∗

CO5 0.2163 0.1857† 0.1592† 0.1439†

CO10 0.2204† 0.1898† 0.1660‡ 0.1469†

CO20 0.2571† 0.2143‡ 0.1782‡ 0.1612‡

Duplicates Irrelevant (CORI-CORI)
CO3 0.1878 0.1612 0.1442 0.1296
CO5 0.2000 0.1653 0.1401 0.1235
CO10 0.1918 0.1633 0.1333 0.1204
CO20 0.2204 0.1776 0.1429 0.1255
Duplicates Removed (ReDDE-CORI)
CO3 0.1750 0.1500 0.1194 0.1000∗

CO5 0.2000 0.1729 0.1403∗ 0.1167∗

CO10 0.2125 0.1938∗ 0.1597† 0.1406†

CO20 0.2083 0.1958 0.1681† 0.1469†

Duplicates Irrelevant (ReDDE-CORI)
CO3 0.1667 0.1396 0.1139 0.0938
CO5 0.1875 0.1583 0.1292 0.1094
CO10 0.2000 0.1771 0.1389 0.1271
CO20 0.1958 0.1812 0.1444 0.1302
Duplicates Removed (ReDDE-SSL)
CO3 0.1625 0.1396 0.1083 0.0958
CO5 0.2125∗ 0.1542† 0.1319† 0.1146∗

CO10 0.2458† 0.1958† 0.1611† 0.1427‡

CO20 0.2292† 0.2021‡ 0.1736‡ 0.1542‡

Duplicates Irrelevant (ReDDE-SSL)
CO3 0.1625 0.1313 0.1028 0.0885
CO5 0.1917 0.1333 0.1153 0.1042
CO10 0.2042 0.1687 0.1403 0.1167
CO20 0.1750 0.1500 0.1319 0.1156

However, collections selected by CORI return more
exact-duplicates on the Qprobed testbed.

The coverage values in Table 4 represent the frac-
tion of unique documents in the testbeds that are
being searched on different cutoff points. The cov-
erage values grow linearly for all combinations in the
uniform and Qprobed testbeds. This implies that col-
lections selected by CORI and ReDDE contain similar
number of documents.

In the skewed testbed, the coverage values for
ReDDE collection selection increases very quickly for
small cutoff values while it grows linearly for CORI.
This is due to the fact that the three largest collec-
tions in the skewed testbeds get high ranks by ReDDE
for the majority of queries. Therefore, they are very
likely to be selected by the broker in the top three or
five collections. However in CORI, the three largest
collections do not have any advantage over the other
collections to be selected.

8 Conclusions

We have investigated the problem of distributed in-
formation retrieval on collections that overlap, eval-
uating the effectiveness of several collection selection
and result merging algorithms. Our experiments are
broadly consistent with previous observations on the
traditional, disjoint DIR testbeds: ReDDE is a bet-
ter collection selection algorithm than CORI when
the distribution of collection sizes is skewed, and SSL
is a more effective result merging method than CORI.
However, on a testbed where documents in each col-

CRPIT Volume 63

148

Table 4: Number of duplicates, near-duplicates and coverage values obtained by collection selection and result
merging combinations on the three testbeds. For all experiments, the TREC topics 551–600 (title) have been
used and the numbers are averaged over all queries. CO is the cutoff value. For each query, 1 000 answers are
collected. ND and ED stand for near-duplicate and exact-duplicate respectively.

ND ED coverage ND ED coverage ND ED coverage

CORI-CORI ReDDE-CORI ReDDE-SSL
Uniform
CO3 8 53 0.06 9 19 0.06 10 53 0.06
CO5 10 78 0.11 9 66 0.11 11 77 0.11
CO10 11 116 0.21 8 110 0.21 9 118 0.21
CO20 15 191 0.38 11 174 0.38 11 195 0.38
Skewed
CO3 9 56 0.06 11 106 0.31 10 143 0.31
CO5 11 82 0.11 9 140 0.35 11 193 0.35
CO10 13 122 0.23 12 163 0.42 10 229 0.42
CO20 15 211 0.42 9 211 0.54 11 298 0.54
Qprobed
CO3 15 136 0.06 8 76 0.04 8 83 0.04
CO5 9 218 0.11 6 145 0.07 6 158 0.07
CO10 5 340 0.21 5 241 0.14 6 264 0.14
CO20 5 451 0.38 6 335 0.27 4 371 0.27

lection may share topicality, CORI seems to be a bet-
ter option than ReDDE for collection selection.

For this work we introduced three testbeds created
from documents available in the TREC GOV corpus.
The different testbeds yield results that are some-
what inconsistent, demonstrating that design of ex-
periment is critical to achieving robust results in this
area—conclusions based solely on one testbed might
not generalise.

We have shown that removing duplicates and near-
duplicates can significantly improve the final search
effectiveness. We used grainy hash vectors to de-
tect duplicate and near-duplicate documents in the
final list of results on the broker. Grainy hash vec-
tors successfully identified 72% of all near-duplicate
documents in the results. The accuracy of GHVs is
consistent with the values we previously reported on
a centralized index (Bernstein et al. 2006). These
results demonstrate that duplicate removal need not
be expensive, and can greatly enhance the quality of
results returned by a search engine.

References

Allan et al, J. (2003), ‘Challenges in information retrieval
and language modeling: report of aworkshop held at the
center for intelligent information retrieval, University of
Massachusetts Amherst, september 2002’, SIGIR Forum
37(1), 31–47.

Avrahami, T., Yau, L., Si, L. & Callan, J. (2006), ‘The FedLe-
mur: federated search in the real world’, Journal of the
American Society for Information Science and Technol-
ogy 57(3), 347–358.

Bergman, M. (2001), ‘The deep Web: Surfacing hidden value’,
Journal of Electronic Publishing 7(1).

Bernstein, Y., Shokouhi, M. & Zobel, J. (2006), Compact fea-
tures for detection of near-duplicates in distributed re-
trieval, in ‘Proceedings of String Processing and Informa-
tion Retrieval Symposium (to appear)’, Glasgow, Schot-
land.

Bernstein, Y. & Zobel, J. (2004), A scalable system for
identifying co-derivative documents, in ‘Proceedings of
String Processing and Information Retrieval Symposium’,
Padova, Italy, pp. 55–67.

Bernstein, Y. & Zobel, J. (2005), Redundant documents and
search effectiveness, in ‘Proceedings of 14th ACM CIKM
Conference on Information and Knowledge Management’,
Bremen, Germany, pp. 736–743.

Brin, S., Davis, J. & Garćıa-Molina, H. (1995), Copy detec-
tion mechanisms for digital documents, in ‘Proceedings of
ACM SIGMOD international conference on Management
of Data’, San Jose, California, pp. 398–409.

Broder, A. Z., Glassman, S. C., Manasse, M. S. & Zweig, G.
(1997), ‘Syntactic clustering of the web’, Computer Net-
works and ISDN Systems 29(8-13), 1157–1166.

Callan, J. & Connell, M. (2001), ‘Query-based sampling of text
databases’, ACM Transactions on Information Systems
19(2), 97–130.

Callan, J., Connell, M. & Du, A. (1999), Automatic discovery
of language models for text databases, in ‘Proceedings of
ACM SIGMOD International Conference on Management
of Data’, Philadelphia, Pennsylvania, pp. 479–490.

Callan, J., Croft, W. B. & Harding, S. M. (1992), The IN-
QUERY retrieval system, in ‘Proceedings of third Inter-
national Conference on Database and Expert Systems Ap-
plications’, Valencia, Spain, pp. 78–83.

Callan, J., Lu, Z. & Croft, W. B. (1995), Searching distributed
collections with inference networks, in ‘Proceedings of
18th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval’, Seat-
tle, Washington, pp. 21–28.

Chowdhury, A., Frieder, O., Grossman, D. & McCabe, M. C.
(2002), ‘Collection statistics for fast duplicate document
detection’, ACM Transactions on Information Systems
20(2), 171–191.

Conrad, J. G., Guo, X. S. & Schriber, C. P. (2003), Online
duplicate document detection: Signature reliability in a
dynamic retrieval environment, in ‘Proceedings of 12th
ACM CIKM Conference on Information and Knowledge
Management’, New Orleans, Louisiana, pp. 443–452.

Cooper, J. W., Coden, A. R. & Brown, E. W. (2002), Detecting
similar documents using salient terms, in ‘Proceedings of
11th ACM CIKM Conference on Information and Knowl-
edge Management’, McLean, Virginia, pp. 245–251.

Craswell, N., Bailey, P. & Hawking, D. (2000), Server selection
on the World Wide Web, in ‘Proceedings of Fifth ACM
Conference on Digital Libraries’, San Antonio, Texas,
pp. 37–46.

Craswell, N. & Hawking, D. (2002), Overview of the
TREC-2002 Web Track, in ‘Proceedings of TREC-2002’,
Gaithersburg, Maryland.

Croft, B. (2000), ‘Combining approaches to information re-
trieval’, Advances in information retrieval, chapter 1
pp. 1–36.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

149

D’Souza, D., Zobel, J. & Thom, J. (2004), Is CORI effec-
tive for collection selection? an exploration of parame-
ters, queries, and data, in ‘Proceedings of Australian Doc-
ument Computing Symposium’, Melbourne, Australia,
pp. 41–46.

Fetterly, D., Manasse, M. & Najork, M. (2003), On the evo-
lution of clusters of near-duplicate web pages, in ‘Pro-
ceedings of first Latin American Web Congress’, IEEE,
pp. 37–45.

Fox, E. & Shaw, J. (1994), Combination of multiple searches, in
‘Proceedings of TREC-1994’, NIST Special Publication,
Gaithersburg, Maryland, pp. 105–108.

Gauch, S., Wang, G. & Gomez, M. (1996), ‘ProFusion: In-
telligent fusion from multiple, distributed search engines’,
Journal Universal Computer Science 2(9), 637–649.

Gravano, L., Chang, C. K., Garcia-Molina, H. & Paepcke, A.
(1997), STARTS: Stanford proposal for Internet meta-
searching, in ‘Proceedings of ACM SIGMOD Interna-
tional Conference on Management of Data’, Tucson, Ari-
zona, pp. 207–218.

Gravano, L., Garcia-Molina, H. & Tomasic, A. (1999), ‘GlOSS:
text-source discovery over the Internet’, ACM Transac-
tions on Database Systems 24(2), 229–264.

Hawking, D. & Thomas, P. (2005), Server selection methods
in hybrid portal search, in ‘Proceedings of 28th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval’, Salvador, Brazil,
pp. 75–82.

Hernandez, T. & Kambhampati, S. (2005), Improving text col-
lection selection with coverage and overlap statistics, in
‘Proceedings of 14th International Conference on World
Wide Web’, Chiba, Japan.

Hoad, T. C. & Zobel, J. (2003), ‘Methods for identifying ver-
sioned and plagiarised documents’, Journal of the Amer-
ican Society for Information Science and Technology
54(3), 203–215.

Ilyinski, S., Kuzmin, M., Melkov, A. & Segalovich, I. (2002),
An efficient method to detect duplicates of web documents
with the use of inverted index, in ‘Proceedings of 11th
International Conference on World Wide Web’, Honolulu,
Hawaii.

Ipeirotis, P. G. & Gravano, L. (2002), Distributed search over
the hidden Web: Hierarchical database sampling and se-
lection., in ‘Proceedings of 28th International Conference
on Very Large Data Bases’, Hong Kong, China, pp. 394–
405.

Ipeirotis, P. G. & Gravano, L. (2004), When one sample is not
enough: improving text database selection using shrink-
age, in ‘Proceedings of ACM SIGMOD International Con-
ference on Management of Data’, Paris, France, pp. 767–
778.

Kirsch, T. (2003), ‘Document retrieval over networks wherein
ranking and relevance scores are computed at the client
for multiple database documents’, U.S. Patent 5,659,732
.

Kolcz, A., Chowdhury, A. & Alspector, J. (2004), Improved ro-
bustness of signature-based near-replica detection via lex-
icon randomization, in ‘Proceedings of ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining’, Seattle, WA, pp. 605–610.

Lee, J. (1997), Analyses of multiple evidence combination, in
‘Proceedings of the 20th annual international ACM SI-
GIR conference on Research and development in informa-
tion retrieval’, Philadelphia, Pennsylvania, United States,
pp. 267–276.

Lyon, C., Malcolm, J. & Dickerson, B. (2001), Detecting short
passages of similar text in large document collections, in
‘Proceedings of Conference on Empirical Methods in Nat-
ural Language Processing’, Philadelphia, Pennsylvania.

Manber, U. (1994), Finding similar files in a large file system,
in ‘Proceedings of USENIX Winter Technical Conference’,
San Fransisco, CA, pp. 1–10.

Meng, W., Yu, C. & Liu, K. (2002), ‘Building efficient and
effective metasearch engines’, ACM Computing Surveys
34(1), 48–89.

Nottelmann, H. & Fuhr, N. (2003), Evaluating different meth-
ods of estimating retrieval quality for resource selection,
in ‘Proceedings of 26th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval’, Toronto, Canada, pp. 290–297.

Powell, A. L. & French, J. (2003), ‘Comparing the performance
of collection selection algorithms’, ACM Transactions on
Information Systems 21(4), 412–456.

Pugh, W. & Henzinger, M. H. (2003), ‘Detecting duplicate and
near-duplicate files (United States Patent 6,658,423)’.

Rasolofo, Y., Abbaci, F. & Savoy, J. (2001), Approaches to
collection selection and results merging for distributed in-
formation retrieval, in ‘Proceedings of 10th ACM CIKM
International Conference on Information and knowledge
management’, Atlanta, Georgia, pp. 191–198.

Selberg, E. & Etzioni, O. (1997), ‘The MetaCrawler architec-
ture for resource aggregation on the web’, IEEE Expert
12(1), 8–14.

Shokouhi, M., Scholer, F. & Zobel, J. (2006), Sample sizes for
query probing in uncooperative distributed information
retrieval, in ‘Proceedings of of Eighth Asia Pacific Web
Conference’, Harbin, China, pp. 63–75.

Si, L. & Callan, J. (2003a), Relevant document distribution
estimation method for resource selection, in ‘Proceed-
ings of 26th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval’,
Toronto, Canada, pp. 298–305.

Si, L. & Callan, J. (2003b), ‘A semisupervised learning method
to merge search engine results’, ACM Transactions on
Information Systems 21(4), 457–491.

Si, L. & Callan, J. (2004), Unified utility maximization frame-
work for resource selection, in ‘Proceedings of 13th ACM
CIKM Conference on Information and Knowledge Man-
agement’, Washington, D.C., pp. 32–41.

Si, L. & Callan, J. (2005), Modeling search engine effective-
ness for federated search, in ‘Proceedings of 28th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval’, Salvador, Brazil.

Si, L., Jin, R., Callan, J. & Ogilvie, P. (2002), A language mod-
eling framework for resource selection and results merging,
in ‘Proceedings of 11th ACM CIKM International Confer-
ence on Information and Knowledge Management’, New
York, NY, pp. 391–397.

Sugiura, A. & Etzioni, O. (2000), Query routing for web search
engines: architectures and experiments, in ‘Proceedings
of the 9th international World Wide Web conference on
Computer networks’, North-Holland Publishing Co., Am-
sterdam, The Netherlands, pp. 417–429.

Wu, S. & McClean, S. (2006), ‘Result merging methods
in distributed information retrieval with overlapping
databases’, Journal of Information Retrieval (In press)
.

Xu, J. & Callan, J. (1998), Effective retrieval with distributed
collections, in ‘Proceedings of 21st Annual International
ACM SIGIR Conference on Research and Development
in Information Retrieval’, Melbourne, Australia, pp. 112–
120.

Yuwono, B. & Lee, D. L. (1997), Server ranking for distributed
text retrieval systems on the internet, in ‘Proceedings of
the Fifth International Conference on Database Systems
for Advanced Applications (DASFAA)’, World Scientific
Press, Melbourne, Australia, pp. 41–50.

Zamir, O. & Etzioni, O. (1999), Grouper: a dynamic cluster-
ing interface to web search results, in ‘Proceedings of 8th
International Conference on World Wide Web’, Toronto,
Canada, pp. 1361–1374.

Zobel, J. (1997), Collection selection via lexicon inspection, in
P. Bruza, ed., ‘Proceedings of the Australian Document
Computing Symposium’, pp. 74–80.

Zobel, J. & Bernstein, Y. (2006), The case of the duplicate doc-
uments: Measurement, search, and science, in ‘Proceed-
ings of of Eighth Asia Pacific Web Conference’, Harbin,
China, pp. 26–39.

CRPIT Volume 63

150

Building a disordered protein database: A case study in managing

biological data

Arran D. Stewart Xiuzhen Zhang

School of Computer Science and IT, RMIT University
Email: {arstewar, zhang}@cs.rmit.edu.au

Abstract

A huge diversity of biological databases is available
via the Internet, but many of these databases have
been developed in an ad hoc manner rather than in
accordance with any data management principles. In
addition, in the area of disordered protein databases,
many of the databases have not been made publicly
available. This poses challenges to researchers, since
reliable protein databases are required in order to test
and measure the accuracy of protein structure pre-
diction software. In this paper, we describe our work
developing a disordered protein database using data
from the protein secondary structure database DSSP-
cont. In particular, we discuss the way in which we
have addressed the issues of data cleaning, query pro-
cessing and interoperability. This research is a pilot
study in managing biological data.
Keywords: disordered proteins, biological data man-
agement

1 Introduction

The number of biological databases available via the
Internet is large and constantly increasing. The num-
ber of publicly available databases that appear each
year is so many that the Nucleic Acids Research Jour-
nal dedicates an entire issue to them annually (Sr-
danovic et al. 2005), and this listing does not in-
clude many more databases which are developed by
researchers but not made publicly available.

These biological databases vary greatly in size
and complexity (Luscombe et al. 2001). On the
one hand one can find extremely large, “industrial
scale” databases like the Protein Data Bank (PDB,
http://www.rcsb.org/pdb/) (Berman et al. 2000),
which stores data on the position of atoms within pro-
tein structures as determined by such techniques as X-
ray crystallography or Nuclear Magnetic Resonance
(NMR) spectroscopy. The PDB has a complicated,
multi-tier infrastructure, an integrated workflow sys-
tem, and dedicated staff to maintain and develop it.
At the other extreme are small, temporary collections
of flat files put together by individual bioinformatics
researchers or small teams.

The multiplicity of biological databases has at-
tracted considerable attention from members of the
database research community. Some have called for
more research into the data management issues of bi-
ological databases—for instance, Gupta (2004), Ja-
gadish & Olken (2003) and Wooley & Lin (2005).

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at the Eighteenth Australasian Database Con-
ference (ADC2007), Ballarat, Victoria, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 63. James Bailey and Alan Fekete, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

A number of important issues have been recognized,
such as the complexity of queries and data models in
biological databases (discussed further in section 2).

In this paper we report on how we have
addressed data management issues in building
a disordered protein database using data from
the DSSPcont (http://cubic.bioc.columbia.edu/
services/DSSPcont/) protein secondary structure
database. We also suggest practical implementation
tips for bioinformaticists working on structural biol-
ogy database projects. We provide a more detailed
explanation of what disordered protein segments are
later in section 2.1. Roughly, however, they can be
described as highly flexible regions of protein which
do not adopt a regular, stable structure under nor-
mal physiological conditions. Our aim in the present
research is to develop a reliable database of protein
structural data which users can query in order to iden-
tify protein segments that meet particular criteria for
being disordered.

In particular, we discuss the following issues:

• Data cleaning and transformation. High
quality data is crucial to the success of any
database. One important data quality issue is
that of data semantics. For instance, the con-
cept of solvent accessibility (SA) has been widely
used to compute the hydrophobic contribution to
the stability of proteins, and is used for defining
protein disorder in our study. Raw SA scores
derived from databases such as DSSPcont re-
quire normalization before they can be used as
a reliable measure of protein flexibility. How-
ever, this normalization has been performed in a
number of different ways in the biological litera-
ture. We propose normalization of SA according
to the method of Ahmad et al. (2003) to avoid
semantic disparity and ensure the reliability of
our database.

• Incremental query processing. Queries run
on biological databases are usually complex—the
information needed is typically defined by com-
pound criteria rather than a single condition, and
are often performed on sequences or more com-
plex data structures. In extracting disordered
segments from DSSPcont, for instance, our cri-
teria for identifying segments as disordered are
based on a combined set of parameters. Fur-
thermore, biologists often want to examine how
changes in parameters affect the result data. We
therefore design our system in such a way that
queries are processed incrementally to improve
efficiency.

• Data interoperability and storage. The
text-based FASTA format is widely used for data
exchange in bioinformatics. However interoper-
ability considerations, and the ability to store
metadata about sequences in a structured way,

Proc. Eighteenth Australasian Database Conference (ADC 2007)

151

make XML a preferable option. We discuss how
data is organized in our system.

Our prototype disordered database can be used to
compare the performance of different disorder predic-
tion models. Since it represents a set of disordered
segments collected according to a clearly-defined def-
inition of disorder, by comparing the properties of our
collection with others compiled according to different
criteria, our database can also be used to examine the
relationships between different types of disorder. The
database is currently in use by staff at the Walter
and Eliza Hall Institute of Medical Research (WEHI,
http://www.wehi.edu.au/) for analyzing the prop-
erties of existing disordered proteins. It is intended
that a Web-based interface be developed to make the
database available for public use.

1.1 Related work

As noted previously, several studies have included
general discussions of various data management issues
for biological databases, and the need for increased ef-
fort in this area from the database community—for
instance, Gupta (2004), Jagadish & Olken (2003) and
Wooley & Lin (2005). However, general guidelines on
how to resolve such issues have not yet been devel-
oped. Although not a general solution, our work is
a pilot study in applying general data management
principles to building a specific purpose database.

Bry & Kroger (2003) have examined in detail
various biological databases and describe the de-
velopment of data management technology in such
databases. They noted that developers of biological
databases have typically taken an ad hoc approach to
data management issues.

Herbert et al. (2004) proposed a framework for
managing and integrating evolutionary experimental
data, and discussed data cleaning as a necessary step
in data integration. They used a conceptual model
to resolve mismatches and achieve uniformity among
different terms. In contrast, our approach is to phys-
ically clean the data itself.

Much work on protein disorder has focused on de-
veloping models which can predict disorder from pro-
tein sequences (e.g., (Linding et al. 2003a), (Linding
et al. 2003b), and (Cheng et al. 2005)). Building such
models and evaluating their accuracy requires reliable
training databases of known disorder in existing pro-
teins. However, the training databases used in these
research efforts are generally not intended for re-use
and are not made publicly available. Data manage-
ment issues are not discussed in any of these works.

DisProt (http://www.disprot.org/) (Vucetic
et al. 2005) is the only publicly available disordered
protein database. It contains records of protein seg-
ments that have been reported in the biological lit-
erature as showing disorder in experiments. Since
different definitions of disorder have been adopted
by experimenters, and since several distinct types of
protein disorder are believed to exist, the use of Dis-
Prot’s data is not suitable for studies that require a
single, consistent definition of disorder. Additionally,
the exact extent of a disordered segment in DisProt
will have been determined by experimenters, and thus
contains a subjective element. For our purposes, it is
preferable that disordered segments be identified by
objectively applied criteria. Data management issues
are not discussed in this work.

2 Background

Although highly diverse, biological databases do have
some similarities. For instance, those available via

the World Wide Web typically follow a 3-tier archi-
tectural model (Smail-Tabbone et al. 2005). At the
bottom level is the actual database, at the top is
a web interface, and in between is a software layer
which mediates between the two. The middle layer
turns requests made via the Web interface into ac-
tual database queries, and presents database results
in HTML format.

Biological databases typically store data of a com-
plex and often hierarchical nature (Brusic et al. 1998).
The data may include sequences (for instance, DNA
or protein sequences), graphs (for instance, metabolic
pathways) or spatial information (for instance, 3D
protein structures). It is possible to store such struc-
tures in a relational DBMS (RDBMS) by decompos-
ing them into tables, but the result is often an overly
complex relational schema (Bry & Kroger 2003). As
a result, the use of an RDBMS has been described as
being a “clumsy and awkward” way of manipulating
complex biological data (Wooley & Lin 2005).

Consequently, biological databases have typically
taken alternative approaches to data management.
The earliest approach (and still a common one) was
to simply store data as text-based flat files (Nelson
et al. 2003). Some biological databases adopted a
format known as ASN.1, originally developed for de-
scribing telecommunications protocols (Bry & Kroger
2003). More recent approaches have been the use of
object-oriented or object-relational DBMSs (Jagadish
& Olken 2003), or XML- or other semi-structured
DBMSs (Shui et al. 2003).

The sorts of queries made on biological databases
can typically be expressed succinctly in English, but
lead to complex processing requirements. Singh
(2003) gives several illustrative examples: “find all
genes that are structurally similar to a given gene
and express similarly over a specific DNA microarray
dataset”; “find all proteins that are structurally sim-
ilar to a given protein, used in a given pathway, and
are expressed similarly as another given protein in a
given experiment”; and “find all protein pairs that are
less than 30% similar at a string level, share a given
active site, and co-occur in some metabolic pathway”.
All of these queries would lead to complex processing
of non-atomic data types.

Our area of research—disordered protein
databases—is a good example of the challenges
faced. As will be seen in the next section, protein
data is complex and hierarchical in nature, and
querying it requires more complex processing than
can be expressed in relational queries.

2.1 Proteins and their structure

Proteins are complex biological molecules made up
of long sequences of small molecules—amino acids or
residues—linked together in a chain. A single pro-
tein can contain a number of chains of amino acids
(Branden & Tooze 1991); a protein will typically con-
tain hundreds of amino acids, and some contain thou-
sands.

Proteins have several levels of structure (Baxe-
vanis & Ouellette 2005). At the level of primary
structure, a protein chain can simply be viewed as
a string of letters, with each letter representing one
of 20 naturally-occurring amino acids (listed in Ta-
ble 1).

For instance, the primary sequence of the hu-
man myoglobin protein, used to carry oxygen in the
muscles, begins “GLSDGEWQLVLNVWGKVEA”.1

However, each amino acid has chemical and physi-
cal properties which cause it to interact with nearby

1This sequence was obtained from the SWISS-PROT database,
at http://ca.expasy.org/sprot/, accession number P02144.

CRPIT Volume 63

152

Amino acid Abbreviation
Alanine A
Arginine R
Asparagine N
Aspartic acid D
Cysteine C
Glutamic acid E
Glutamine Q
Glycine G
Histidine H
Isoleucine I

Amino acid Abbreviation
Leucine L
Lysine K
Methionine M
Phenylalanine F
Proline P
Serine S
Threonine T
Tryptophan W
Tyrosine Y
Valine V

Table 1: Naturally occurring amino acids. Source: Lesk (2002).

HEADER OXYGEN TRANSPORT 19-FEB-91 2MM1 2MM1 2
COMPND MYOGLOBIN MUTANT WITH LYS 45 REPLACED BY ARG AND CYS 110 2MM1 3
COMPND 2 REPLACED BY ALA (K45R, C110A MUTANT) 2MM1 4
SOURCE HUMAN (HOMO $SAPIENS) RECOMBINANT FORM EXPRESSED IN 2MM1 5
SOURCE 2 (ESCHERICHIA $COLI) 2MM1 6
AUTHOR S.R.HUBBARD,W.A.HENDRICKSON,D.G.LAMBRIGHT,S.G.BOXER 2MM1 7
REVDAT 1 15-JAN-93 2MM1 0 2MM1 8
JRNL AUTH S.R.HUBBARD,W.A.HENDRICKSON,D.G.LAMBRIGHT,S.G.BOXER 2MM1 9
JRNL TITL X-RAY CRYSTAL STRUCTURE OF A RECOMBINANT HUMAN 2MM1 10
JRNL TITL 2 MYOGLOBIN MUTANT AT 2.8 ANGSTROMS RESOLUTION 2MM1 11
JRNL REF J.MOL.BIOL. V. 213 215 1990 2MM1 12
JRNL REFN ASTM JMOBAK UK ISSN 0022-2836 070 2MM1 13
REMARK 1 2MM1 14
REMARK 2 2MM1 15
REMARK 2 RESOLUTION. 2.8 ANGSTROMS. 2MM1 16
REMARK 3 2MM1 17
REMARK 3 REFINEMENT. BY THE RESTRAINED LEAST SQUARES PROCEDURE OF J. 2MM1 18
REMARK 3 KONNERT AND W. HENDRICKSON (PROGRAM *PROLSQ*. THE R 2MM1 19
REMARK 3 VALUE IS 0.158. 2MM1 20
REMARK 3 2MM1 21
...
SEQRES 1 153 GLY LEU SER ASP GLY GLU TRP GLN LEU VAL LEU ASN VAL 2MM1 43
SEQRES 2 153 TRP GLY LYS VAL GLU ALA ASP ILE PRO GLY HIS GLY GLN 2MM1 44
SEQRES 3 153 GLU VAL LEU ILE ARG LEU PHE LYS GLY HIS PRO GLU THR 2MM1 45
...
ATOM 1 N GLY 1 -5.817 17.320 15.842 1.00 18.38 2MM1 66
ATOM 2 CA GLY 1 -4.704 17.705 14.942 1.00 17.81 2MM1 67
ATOM 3 C GLY 1 -3.356 17.578 15.656 1.00 17.07 2MM1 68
ATOM 4 O GLY 1 -3.081 16.578 16.353 1.00 17.43 2MM1 69
ATOM 5 N LEU 2 -2.521 18.595 15.488 1.00 16.23 2MM1 70
ATOM 6 CA LEU 2 -1.187 18.608 16.091 1.00 15.37 2MM1 71
ATOM 7 C LEU 2 -1.322 18.457 17.619 1.00 14.87 2MM1 72

Figure 1: The PDB file format. Extracts from a sample PDB file for the human myoglobin protein.

amino acids, and result in protein chains folding into
repetitive structures such as helices or sheets (Bax-
evanis & Ouellette 2005, Berg et al. 2002). These
local, repetitive structures are known as the protein’s
secondary structure.

The repetitive structures are a compact configura-
tion for the protein chain, and this helps the protein
achieve stability. The main forms of secondary struc-
ture are alpha helices and beta strands (which can also
join together to form beta sheets). Some researchers
consider alpha helices and beta strands/sheets to be
the only “ordered” secondary structures (for instance,
see (Uversky 2002)), whereas others include less com-
mon structures such as “3/10 helices” (for instance,
(Linding et al. 2003a)). Helices other than alpha
helices are rarely observed in proteins except at the
ends of protein chains. Hence, we have adopted the
approach of considering only alpha helices and beta
strands/sheets as “ordered”.

The ordered secondary structures (helices and
sheets) are typically linked to each other by unstruc-
tured lengths of protein that are typically classified
as “coils”, “loops” and “turns”. In normal circum-
stances, the secondary structures of proteins further
fold up into a complex three-dimensional structure,
specific to each protein (Berg et al. 2002, Luscombe
et al. 2001); this three-dimensional arrangements of
the protein chains is known as the protein’s tertiary

structure (Branden & Tooze 1991). The final shape
a protein assumes depends on the exact sequence of
amino acids which compose it, as well as on the prop-
erties of its environment (for instance, a protein may
fold differently depending on whether it is an acid or
alkaline environment, or whether the ambient tem-
perature is warm or cool) (Raven & Johnson 1989).

One of the central tenets of structural biology is
that the function of a protein is determined by its
three-dimensional structure. However, it has recently
been recognized that unstructured or disordered re-
gions of protein also play critical roles in protein func-
tion (Dunker et al. 2002, Dyson & Wright 2005,
Linding et al. 2003a). Although no single consistent
definition has yet been developed, loosely speaking,
disordered protein segments are highly flexible regions
of protein whose structures are difficult to investigate
experimentally. Segments of protein which form sta-
ble three-dimensional structures are described as or-
dered, and those that do not as disordered (Cheng
et al. 2005). It is also believed that there are sev-
eral different types of protein disorder (Dunker et al.
2002, Linding et al. 2003a).

Proc. Eighteenth Australasian Database Conference (ADC 2007)

153

 # RESIDUE AA ... ACC G H I T E B S L ...

 31 71 A G ... 0 0 0 0 0 0 0 0 100 ...
 32 72 A V ... 0 0 0 0 0 0 0 100 0 ...
 33 73 A R ... 36 0 0 0 10 0 0 90 0 ...
 34 74 A V ... 0 0 0 0 0 0 87 13 0 ...
 35 75 A D ... 5 0 0 0 0 0 0 0 100 ...
 36 76 A L ... 14 0 0 0 0 0 0 0 100 ...
 37 77 A G ... 19 0 0 0 0 0 0 0 100 ...
 38 78 A E ... 50 0 0 0 0 100 0 0 0 ...

Figure 2: Extracts from a sample DSSPcont file.

2.2 The Protein Data Bank and derived
databases

The main source of protein structural data is the
PDB. The PDB contains data on over 32,000 pro-
teins (over 21 gigabytes of data), and new proteins
are added weekly. The primary format for exchange
of PDB data is a text-based flat-file format. Each file
contains data on the coordinates of the atoms in one
protein, and details of the experimental procedures
which created that data (Baxevanis & Ouellette 2005,
Berman et al. 2000, Cohen 2004). The files consist of
a body, containing the 3D coordinates of all atoms in
the protein (usually about 2000 atoms per protein),
and a header containing metadata about the protein
and how the coordinates were derived. Figure 1 shows
extracts from a PDB file.

The DSSP database2 is derived from PDB
data (Carter et al. 1983). It uses atomic coordinate
data from PDB to derive a description of a protein’s
secondary structure. Each amino acid in a protein
is described as being part of various sorts of helix,
sheet, or loop. A later database which extends the ap-
proach of DSSP is the DSSPcont database3 (Carter
et al. 1983). Whereas DSSP assigns amino acids to a
set of discrete structural categories (a process called
“structural assignment”), DSSPcont performs contin-
uous structural assignment—for each structural cat-
egory, a probability is given that the amino acid falls
into that category. DSSPcont is particularly useful
in a study of disordered proteins, because the con-
tinuous assignment process captures flexibility in the
positions of residues.

At the time of initial development of our database,
the DSSPcont database contained 20,216 text-based
flat files. Each file in the database records information
on one protein; the files are named using the PDB ac-
cession number for the protein, with a “.dsspc” exten-
sion. A single protein may consist of multiple protein
chains, each identified by a single-letter abbreviation
(“A”, “B”, and so on), and chains are separated by
a delimiter record in which the amino acid type is
marked as “!” (an exclamation mark). The total set
of files is 1815 MB in size.

For each residue, DSSP and DSSPcont assign it
to one of eight categories of structure, as shown in
Table 2. Such a detailed classification is more than
we need, however, since our aim is simply to divide
residues into the two categories of “structured” or
“unstructured”. For our purposes, only three of the
categories are considered “structured”, namely alpha
helices, beta strands, and beta sheets. All the other
types of structure are considered “unstructured”.

2http://swift.cmbi.ru.nl/gv/dssp/
3Available at http://cubic.bioc.columbia.edu/services/

DSSPcont/.

3 Extracting Disordered Protein Segments

In the present research, we aim to develop a database
of protein structural data (ultimately derived from
PDB data), and query it to locate disordered protein
segments.

At the time of writing, we have developed a proto-
type which implements the bottom (database) level
of the system, and processes queries made on the
data. The top (presentation) level remains to be im-
plemented.

As noted previously, it is generally accepted that
a low degree of secondary structure combined with
high flexibility implies disorder. Our query can be ex-
pressed as follows: given a threshold Tu of secondary-
level unstructuredness, and a threshold Tf of flexibil-
ity, which residues in a set of protein chains exceeded
both these thresholds? That is, which residues r have
unstructuredness ru ≥ Tu and flexibility rf ≥ Tf?

The DSSPcont database was selected as the most
easily usable source of reliable structure and flexibility
data. For any specified amino acid, the DSSPcont
format provides us with information on its propensity
for secondary structure or lack of structure, and a
measurement of its SA.

3.1 Data cleaning and transformation: com-
puting relative solvent accessibility

Solvent accessibility (SA) measures the proportion of
an amino acid’s surface which is exposed to the sol-
vent surrounding a protein (for instance, water). The
interior of a protein is densely packed; thus, SA is low
for amino acids in the interior of a protein, and high
for those on the surface. SA is measured in units of
square Ångstrøms. 4 In general, the higher the SA of
a region of residues, the more flexible it is.

DSSPcont provides raw SA measurements for
amino acids. However, since amino acids vary in size,
this figure is not comparable between different amino
acids: a certain number of square Ångstrøms might
constitute a very small proportion of a large amino
acid, but a large proportion of a small one. We there-
fore normalize the SA of amino acids: the relative
solvent accessibility (RSA) of an amino acid is the ra-
tio of absolute solvent accessibility to the maximum
observed accessibility for the amino acid type.

Different researchers have developed different
methods of determining the maximum surface area,
which give slightly different measurements (Richard-
son & Barlow 1999). Since we consistently adopt the
values observed by Ahmad et al. 2003, all the RSA
values we calculate are comparable. However, they
are not comparable with RSA values obtained by dif-
ferent normalization methods. If one wants to com-
pare RSA values between our data set and another
which uses a different normalization method, RSA
values for one or the other of the data sets would
need to be recalculated.

4One Ångstrøm equals 0.1 nanometres.

CRPIT Volume 63

154

Structure Label
Alpha helix A
3/10 helix G
Pi helix I

Beta bridge B

Structure Label
Extended beta strand E

Turn T
Bend S

Other/loop L

Table 2: Structural categories used by DSSPcont.

PDB DSSPcontDB

Accessibility
data

Calculate solvent
accessibility

Assign residues to
structural categories

DSSP program

Normalize solvent
accessibility

High accessibility
regionsDisordered

regions

Identify highly
unstructured

regions

Identify high
accessibility

regions

Figure 3: Processing of data

Although the files in the PDB are generally of high
quality, some forms of “noise” and bad data do occur.
One form of bad data we detect is residues that have
been marked as “X” for “unknown” in the DSSP-
cont data files—is detected, and these residues are
“sequestered”: they are not included in any statisti-
cal analyses of the data (but can be inspected sepa-
rately). Other more subtle forms of noise can also
occur, and represent a possibility for future work in
this area.

Two conflicting requirements in relation to data
noise are that although users typically want to remove
or lessen the effects of noise, they often also want
access to the original experimental data on which a
database was based, and to have good records of the
“provenance” (or history) of the data (Jagadish &
Olken 2003). Our approach to resolving these con-
flicting requirements is to retain and make available
the original DSSPcont data, but to allow “noise” to
be screened out at the query stage.

3.2 Incremental query processing: creating a
RSA repository

As discussed previously our queries to DSSPcont for
disordered residues are defined by two criteria: (1) a
high level of unstructuredness for a residue, and (2)
and a high level of RSA . The level of unstructured-
ness for a residue r is the probability that the residue
is not part of an alpha helix or beta strand. By refer-
ring to Table 2, we can see that this is therefore the
sum of the probabilities that the residue is part of a
3/10 helix (G), pi helix (I), turn (T), bend (S) and
“other/loop” (L):

unstructuredness = P (G) + P (I) + P (T) + P (S) + P (L)

We wish to identify regions where the unstructured-
ness exceeds a threshold for unstructuredness α—
unstructuredness ≥ α—as well as having a high level
of RSA, RSA(r) ≥ β, where β is the threshold for
RSA .

One simple way to identify disordered residues
is to iterate over all the residues in the DSSPcont
database, calculate the RSA and unstructuredness for
each residue and identify which residues meet both
criteria. A notable problem with the approach is the

the large number of costly disk reads (recall that there
are 20,216 files in the DSSPcont database). Thus,
we only perform calculation of RSA once, creating an
RSA repository with RSA values for the entire DSSP-
cont database.

On the other hand, to compare the disordered re-
gions obtained by our approach with those by other
approach such as DisProt, we need to run many
disorder-extraction queries with different parameter
settings for unstructuredness and flexibility. In or-
der to amortize space and time costs over multiple
queries, we therefore process queries incrementally—
caching the result of the first step for use in later
queries. For instance, one might wish to hold the RSA
threshold constant at, say, 25%, and use 5 different
parameters for the threshold of unstructuredness to
see what effect this would have. Firstly, regions are
identified which meet the 25% RSA threshold and
the results are cached. Then, when looking for re-
gions which also meet the unstructuredness criteria,
we need only consider the high-RSA regions, rather
than iterating over the whole DSSPcont database. Of
course, it is also possible to detect regions in the oppo-
site order—unstructured regions first, and then high-
RSA regions within them—but for brevity, we restrict
ourselves here to discussing the case in which we first
identify high-RSA regions, and then disordered re-
gions within those high-RSA regions.

3.3 The complete procedure

Our complete procedure for extracting disordered seg-
ments from DSSPcont is shown in Figure 3. The pro-
cess of creating the disordered database is as follows:

1. Firstly, normalize absolute SA for all residues
in the DSSPcont database and store these in a
repository of RSA data. This repository is used
in the next stage for identifying high-accessibility
regions.

2. Identify high-RSA regions, by iterating over the
DSSPcont database and referring to the reposi-
tory of RSA data. The algorithm for identifying
high-RSA regions is shown in Figure 4.

3. Iterate over the set of high-RSA regions and iden-
tify sub-regions of those regions which addition-

Proc. Eighteenth Australasian Database Conference (ADC 2007)

155

Input:
• A database RSADB of amino acid records
• A minimum RSA threshold β
• A minimum length threshold Tlength

Output:
• A set HighRSA of regions of high solvent accessibility

Method:
1. for each protein chain C in RSADB:
2. for each residue r in C:
3. if RSAr ≥ β and StartPos has not been set:
4. StartPos ← r
5. if RSAr < β and StartPos has been set:
6. EndPos ← r
7. length← EndPos − StartPos + 1
8. if length > Tlength:
9. add 〈StartPos,EndPos〉 to HighRSA

Figure 4: Algorithm: Locate regions of high relative solvent accessibility

Input:
• A set HighRSA of regions of high solvent accessibility
• A set DSSPcont of mappings from ResidueID to structural assignments
• A minimum unstructuredness threshold α
• A minimum length threshold Tlength

Output:
• A set DisorderedRegions of disordered regions

1. for each region R in HighRSA:
2. for each residue r in R:
3. From DSSPcont, look up P (G)r, P (I)r, P (T)r, P (S)r and P (L)r

4. Calculate the degree of unstructuredness of r:
unstructurednessr ← P (G)r + P (I)r + P (T)r + P (S)r + P (L)r

5. if unstructurednessr ≥ α and StartPos has not been set:
6. StartPos ← r
7. if unstructurednessr < α and StartPos has been set:
8. EndPos ← r
9. length ← EndPos − StartPos + 1
10. if length > Tlength:
11. Add 〈StartPos,EndPos〉 to DisorderedRegions

Figure 5: Algorithm: Locate disordered regions

ally are highly unstructured (that is, have a low
level of secondary structure). The algorithm for
identifying disordered regions is shown in Fig-
ure 5.

In step 1, since all residues in the DSSPcont data
set must be iterated over, the time taken to create the
RSA repository will be proportional to the number of
residues in the DSSPcont database, that is, the algo-
rithm is of O(n) time complexity. The space required
is likewise proportional to the number of residues.
Once RSA values have been calculated for all residues,
we then have enough information to detect disordered
regions. We also allow a user to specify a minimum
length of disordered region they wish to detect. This
can help save on disk usage. It is less likely that a
very short region will provide statistically useful in-
formation; if users are only interested in, say, regions
over 20 residues length, we can save space by ignoring
all regions less than that length

In step 2, to detect high-RSA regions, we iter-
ate over the DSSPcont database, this time using our
database of RSA values to look up the RSA for each
residue. When the RSA rises above the threshold,
we record this as being the possible start of a high-
RSA region. When the RSA falls below the threshold
again, we have reached the end of a possible region.
If the length of the region exceeds the user-specified
length threshold, we add it to the result set of high-
RSA regions. In step 3, the algorithm for identifying

disordered regions iterates over all residues in the pre-
viously detected high-RSA regions, and similarly to
the previous algorithm, flags any sub-regions which
exceed the unstructuredness threshold. Both algo-
rithms are straight forward, and are of O(n) com-
plexity, where n is the number of residues under con-
sideration.

3.4 Implementation

The Perl and Python languages are the most fre-
quently used in the bioinformatics field (Cohen 2004)
and are therefore a natural choice for developing data
processing routines for our database. We have made
use of Python for our data processing routines, and
some use of Perl for data analysis.

Parsers exist for the DSSP format, but none for
the newer DSSPcont format. We therefore created
a parser for the DSSPcont format by adapting algo-
rithms used in the BioPython (Chapman & Chang
2000) (see http://www.biopython.org/) and BioP-
erl (Stajich et al. 2002) (see http://www.bioperl.
org/) open source bioinformatics toolkits.

The DSSPcont format contains a range of header
information (see Figure 2) not used in the present re-
search application, which we therefore ignore. This
includes fields such as “AUTHOR” (identifying the
authors of the research which solved the structure of
the relevant protein) and statistics of various sorts

CRPIT Volume 63

156

>sp|P02144|MYG_HUMAN Myoglobin - Homo sapiens (Human).
GLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASED
LKKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKHP
GDFGADAQGAMNKALELFRKDMASNYKELGFQG

Figure 6: Example of FASTA file format. Source: SWISS-PROT database, at http://ca.expasy.org/sprot/.

10 20 30 40 50 60 70 80 90
40

60

80
1

10

100

1000

10000

100000

Count of regions >= min.
length

Min. length

Structure threshold (%)

4-5

3-4

2-3

1-2

0-1

(a) Disordered regions detected as unstructuredness

threshold is varied.

10 20 30 40 50 60 70 80 90

0.1

0.2

0.3

1

10

100

1000

10000

100000

1000000

Count of regions >= min.
length

Min. length

Relative solvent accessibility

5-6

4-5

3-4

2-3

1-2

0-1

(b) Disordered regions detected as RSA threshold is
varied.

Figure 7: Disordered protein regions under different parameters

on the chemical bonds and structures within the pro-
tein (for instance, the total number of various types
of hydrogen bonds). The data of interest to us is the
residue records—one line of text per amino acid which
list each residue in the protein, and give columns con-
taining the structural data. Each line is 169 charac-
ters long, and data columns are identified by their
position in the line for instance, the amino acid type
of a residue is specified in the 13th character, and the
SA in positions 34 to 37.5

There are some challenges in parsing DSSPcont
data and integrating the results with other data
sources. For instance, the ID numbers allocated to
each residue in a protein do not correspond to those
used by many other formats (although fortunately,
DSSPcont also records PDB residue ID numbers).
Additionally, the DSSPcont records contain discon-
tinuities where the end of a protein chain is reached
or where a region of missing structural data in the
PDB is encountered, and these must be detected and
handled by the parsing routine.

The output of normalizing solvent accessibility
for all residues in the DSSPcont database (step 1
of the complete procedure for extracting disordered
regions) is an index which can be used to look up
the RSA for any specified residue in the DSSPcont
data set, where a residue is specified by a protein ID,
a chain ID and a residue position number. These
identifiers are based on the PDB system—the pro-
tein ID is the PDB accession number, the chain ID
is the PDB chain ID, and so on. As with any in-
dex, our index can be modelled as a set of map-
pings from input (in this case, a residue ID—a tuple
〈ProteinID, ChainID, ResiduePosition〉) to out-
put (the RSA value). The function was implemented
in Python; internally, the index is stored as a set of
serialized Python data structures, since the code for
reading and writing these to and from disk has been
optimized to be very fast. The RSA data for each
protein is serialized as a single file, within which the
RSA for a specific amino acid can be looked up in
constant time.

Both the algorithm for identifying high-RSA re-
gions (Figure 4) and the algorithm for identifying
disordered regions (Figure 5) output sets of regions.

5http://cubic.bioc.columbia.edu/services/DSSPcont/DSSPcont.
html.

Internally, our implementations of these algorithms
store the sets as serialized Python data structures.
For each protein, a serialized file contains a list of the
detected regions for that protein. Fully specifying the
location of a region requires specifying its start and
end—thus, a region consists of a pair of residue IDs.

4 Managing the Disordered Protein
Database

As discussed in Section 3, our disordered protein re-
gion extraction procedure are run with different un-
structuredness and flexibility parameter settings so
as to examine how these parameters affect the regions
extracted and to verify the feasibility of our definition
of disorder. The results are shown in Figure 7.

Figure 7(a) shows the effect on the number of re-
gions found as we vary the level of unstructuredness
required. It would appear that varying this thresh-
old causes some variation, but has not nearly so pro-
nounced an effect as does length. This seems to
be because although DSSPcont uses a “continuous”
method of assigning structure categories to residues,
many residues show only either a very high chance of
belonging to a category, or a very low one. That is,
given a particular category (say, “alpha helix”), it ap-
pears that most residues are either given a high (often
90% to 100%) chance of belonging to that category,
or a very low one (say, 0% to 10%), with few residues
falling into intermediate probabilities.

Figure 7(b) shows the effect on the number of re-
gions found as we vary the RSA threshold. For long
regions (greater than about 65 residues in length),
varying the adsAcRSA threshold does not seem to
have a great impact on the number of regions de-
tected, whereas for shorter regions, varying the ad-
sAcRSA threshold from 0.4 to 0.1 can result in more
than 10 times as many regions being detected. This
suggests that where very long (> 65 residue length)
regions occur at all, they have a very high adsAcRSA
(> 0.4), whereas shorter regions have a lower and
more variable adsAcRSA.

A question that is left to answer is how to store
and manage the extracted disordered protein regions.
This question is complicated by the complexity of our
data. Considering the difficulty of applying generic
Database Management Systems (DBMSs) and the

Proc. Eighteenth Australasian Database Conference (ADC 2007)

157

characteristics that the data is used, we propose to
manage the database with our custom data manage-
ment tools. Specifically, data is stored internally as
flat text files and output is in XML and text-based
FASTA format for compatibility and interoperability
reasons.

Generic DBMSs are in general not suitable for
managing disordered segments. This is partly due
to the fact that the data they contain is complex in
structure. With relational DBMSs, representing the
position and structural information of disordered seg-
ments is difficult and awkward. Alternatively, simply
storing the data as unstructured binary or text-based
fields (that is, BLOBs, or Binary Large OBjects, and
CLOBs, or Character Large OBjects) means addi-
tional routines must be written for interpreting and
using these fields.

Additionally, as with many biological databases,
the patterns of access in our database differ signifi-
cantly from most transactional databases. New data
is required to be added at a reasonably slow rate
(when compared with transactional systems), and
once added, is only retrieved by users rather than
edited. Only a small number of users require write
access to the system. As a result, features of generic
DBMSs such as concurrency control, transaction-
based processing, and so on may not be needed (Han
& Kamber 2001).

On the other hand, historically, many biological
databases adopted the approach of storing their data
as text-based flat files, and writing customized rou-
tines to parse and manage this data (Nelson et al.
2003). Because flat files are so widely used in the
bioinformatics world, supporting them, at least as a
format which can be exported, is important. Many
bioinformatics analysis tools which operate on se-
quence data only accept data in the “FASTA” for-
mat. Figure 6 shows an example of the format, which
is very simple. FASTA files begin with a “comment”
line which starts with the “>” character, and are
followed by 60-character-width lines containing the
actual sequence. Thus, rather than using a generic
DBMS, we use the operating system file system di-
rectly, and define our own routines for storing and
managing data in FASTA format—effectively creat-
ing a custom DBMS. Due to the effort involved in
implementing all the features (such as transactions,
for instance) typically found in generic DBMSs, our
system is far simpler.

XML (Bray et al. 2000) is becoming a widely used
format for the storage and interchange of biological
data (Srdanovic et al. 2005). Considering the inter-
operability of our data in future applications, we also
support managing data in the XML format.

5 Conclusions

We have presented a prototype system for building a
disordered protein database from PDB data using the
derived secondary structure database DSSPcont. We
have discussed the data management issues that arise
in building the system, and in particular, we have
proposed techniques for data cleaning, incremental
query processing and data storage and analysis. We
have also discussed implementation considerations on
the management of protein sequence data. Work is
underway to develop tools for analyzing the protein
disorder databases and to make our prototype system
publicly available.

Our system has demonstrated that our approach
for building biological databases is feasible. Our sys-
tem has also reflected on that managing biological
data should follow the “business rules” in biology.
The experimental nature of the biological rules leads

to the uncertainty in data and calls for specialized
tools for managing different types of biological data.
Indeed our work is an initial part of a bioinformat-
ics project focusing on the study of disordered pro-
teins. Our future work will focus on developing a
suite of tools for querying and mining the disordered
database.

Acknowledgements

The authors would like to thank Dr. Zhi-Ping Feng
from The Walter and Eliza Hall Institute of Medical
Research for helpful discussions.

References

Ahmad, S., Gromiha, M. A. & Sarai, A. (2003), ‘Real
value prediction of solvent accessibility from amino
acid sequence’, Proteins 50(4), 629–635.

Baxevanis, A. D. & Ouellette, B. F. F. (2005), Bioin-
formatics: A Practical Guide to the Analysis of
Genes and Proteins, John Wiley & Sons, Hoboken,
NJ.

Berg, J. M., Tymoczko, J. L. & Stryer, L. (2002), Bio-
chemistry, Fifth Edition: International Version,
W. H. Freeman.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland,
G., Bhat, T. N., Weissig, H., Shinyalov, I. N. &
Bourne, P. E. (2000), ‘The Protein Data Bank’,
Nucleic Acids Research 28, 235–242.

Branden, C. & Tooze, J. (1991), Introduction to Pro-
tein Structure, Garland Publishing, NY.

Bray, T., Paoli, J., Sperberg-McQueen, C. M. &
Maler, E. (2000), Extensible Markup Language
(XML) 1.0 Second Edition W3C Recommendation,
Technical Report REC-xml-2001006, World Wide
Web Consortium.

Brusic, V., Wilkins, J. S., Stanyon, C. A. &
Zeleznikow, J. (1998), Data learning: Understand-
ing biological data, in G. Merrill & D. K. Pathak,
eds, ‘Knowledge Sharing Across Biological and
Medical Knowledge Based Systems: Papers from
the 1998 AAAI Workshop’, AAAI Press, pp. 12–
19.

Bry, F. & Kroger, P. (2003), ‘A computational biol-
ogy database digest: Data, data analysis, and data
management’, Distributed and Parallel Databases
13(1), 7–42.

Carter, P., Andersen, C. A. F. & Rost, B. (1983),
‘DSSPcont: continuous secondary structure as-
signments for proteins’, Nucleic Acids Research
31(13), 3293–3295.

Chapman, B. & Chang, J. (2000), ‘Biopython:
Python tools for computational biology’, SIGBIO
Newsletter 20(2), 15–19.

Cheng, J., Sweredoski, M. & Baldi, P. (2005), ‘Ac-
curate prediction of protein disordered regions by
mining protein structure data’, Data Minining and
Knowledge Discovery 11(3), 213–222.

Cohen, J. (2004), ‘Bioinformatics—An introduction
for computer scientists’, ACM Computing Surveys
36(2).

Dunker, A. K., Brown, C. J., Lawson, J. D., Iak-
oucheva, L. M. & Obradovic, Z. (2002), ‘Intrin-
sic disorder and protein function’, Biochemistry
41(21), 6573–6582.

CRPIT Volume 63

158

Dyson, H. J. & Wright, P. E. (2005), ‘Intrinsically
unstructured proteins and their functions’, Nature
Reviews 6, 197–208.

Gupta, A. (2004), ‘Life science research and data
management’, SIGMOD Record 33(2), 12–14.

Han, J. & Kamber, M. (2001), Data Mining: Con-
cepts and Techniques, Morgan Kaufmann Publish-
ers, San Francisco, CA.

Herbert, K. G., Gehani, N. H. & Piel, W. H. (2004),
‘BIO-AJAX: an extensible framework for biological
data cleaning’, 33(2), 51–57.

Jagadish, H. V. & Olken, F. (2003), ‘Database man-
agement for life science research: Summary re-
port of the workshop on data management for
molecular and cell biology at the National Library
of Medicine, Bethesda, Maryland, February 2–3,
2003’, OMICS 7(1), 131–137.

Lesk, A. M. (2002), Bioinformatics, Oxford Univer-
sity Press, Oxford, UK.

Linding, R., Jensen, L. J., Diella, F., Bork, P., Gib-
son, T. J. & Russell, R. R. (2003a), ‘Protein dis-
order prediction: implications for structural pro-
teomics’, Structure 11(11), 1453–1459.

Linding, R., Russell, R. B., Neduva, V. & Gibson,
T. J. (2003b), ‘GlobPlot: Exploring protein se-
quences for globularity and disorder’, Nucleic Acids
Research 31(13), 3701–3708.

Luscombe, N. M., Greenbaum, D. & Gerstein, M.
(2001), ‘What is bioinformatics? A proposed defi-
nition and overview of the field’, Methods of Infor-
mation in Medicine 40, 346–358.

Nelson, M. R., Reisinger, S. J. & Henry, S. G. (2003),
‘Designing databases to store biological informa-
tion’, BIOSILICO 1(4), 134–142.

Raven, P. H. & Johnson, G. B. (1989), Biology, Times
Mirror/Mosby College Publishing, St Louis, Mis-
souri.

Richardson, C. J. & Barlow, D. J. (1999), ‘The bot-
tom line for prediction of residue solvent accessibil-
ity’, Protein Engineering 12(12), 1051–1054.

Shui, W. M., Wong, R. K., Graham, S. C., Lee,
L. K. & Church, W. B. (2003), A new approach
to protein structure and function analysis us-
ing semi-structured databases, in Y.-P. P. Chen,
ed., ‘First Asia-Pacific Bioinformatics Conference
(APBC2003)’, Vol. 19 of Conferences in Research
and Practice in Information Technology, Australian
Computer Society, Inc., Adelaide, Australia, p. ???

Singh, A. K. (2003), ‘Querying and mining biological
databases’, OMICS: A Journal of Integrative Biol-
ogy 7(1), 7–8.

Smail-Tabbone, M., Osman, S., Messai, N., Napoli,
A. & Devignes, M.-D. (2005), Bioregistry: A
structured metadata repository for bioinformatic
databases, in ‘CompLife 2005 (First International
Symposium on Computational Life Science, Kon-
stanz, Germany, September 25-27, 2005)’, Vol.
3695, Springer, Berlin, pp. 46–56.

Srdanovic, M., Schenk, U., Schwieger, M. & Cam-
pagne, F. (2005), ‘Critical evaluation of the JDO
API for the persistence and portability require-
ments of complex biological databases’, BMC
Bioinformatics 6(1), 5.

Stajich, J. E., Block, D., Boulez, K., Brenner, S. E.,
Chervitz, S. A., Dagdigian, C., Fuellen, G., Gilbert,
J. G., Korf, I., Lapp, H., Lehvaslaiho, H., Matsalla,
C., Mungall, C. J., Osborne, B. I., Pocock, M. R.,
Schattner, P., Senger, M., Stein, L. D., Stupka, E.,
Wilkinson, M. D. & Birney, E. (2002), ‘The Bioperl
toolkit: Perl modules for the life sciences’, Genome
Research 12(10), 1611–1618.

Uversky, V. N. (2002), ‘What does it mean to be
natively unfolded?’, European Journal of Biochem-
istry 269, 2–12.

Vucetic, S., Obradovic, Z., Vacic, V., Radivojac, P.,
Peng, K., Iakoucheva, L. M., Cortese, M. S., Law-
son, J. D., Brown, C. J., Sikes, J. G., Newton, C. D.
& Dunker, A. K. (2005), ‘DisProt: A database of
protein disorder’, Bioinformatics 21(1), 137–140.

Wooley, J. & Lin, H., eds (2005), Catalyzing Inquiry
at the Interface of Computing and Biology, The Na-
tional Academies Press, Washington.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

159

CRPIT Volume 63

160

Efficient Similarity Search by Summarization in Large Video
Database

Xiangmin Zhou, Xiaofang Zhou and Heng Tao Shen

School of Information Technology and Electrical Engineering
University of Queensland,

St. Lucia, QLD 4072 Australia,
Email: {emily,zxf,shenht}@itee.uq.edu.au

Abstract

With the explosion of video data, video processing
technologies have advanced quickly and been applied
into many fields, such as advertisements, medical etc..
To fast search these video data, an important issue
is to effectively organize videos by data compacting
and indexing. However, practically, many useful
distances for video comparison are suitable to human
perception, but non-metric. Therefore, traditional
high dimensional data structures can not be utilized
to index videos directly when non-metric measures
are applied. In this paper, we propose a compact
video representation based on global summarization,
by which each video in database is mapped into a
digital string(a series of cluster id). Consequently,
the inter-frame similarity measure is transformed
into inter-cluster comparison. Then, we propose an
efficient index strategy based on sequence decompo-
sition and reconstruction, by which the spatial index
methods can be utilized with non-metric measures
for video similarity search. We employ an optimal
B+-tree with an inverted list attached, for quickly
identifying similar clusters and locating potentially
similar videos respectively. Finally, a clustering
based query summarization technique is proposed,
which can greatly reduce the IO and CPU cost in
the query processing by batch mapping.

Keywords: Video Summarization, Decomposition
and Reconstruction, Batch Query Mapping, Multi-
Symbol Representation.

1 Introduction

Recently, content-based video search has attracted
much attention, due to its wide applications in many
areas such as advertising, news video broadcasting
and personal video archive. In a video search system,
a user typically wants to retrieve videos which are
most similar to a video example or the video in his
mind.

For efficient video similarity search in large video
database, there are two typical approaches: compact
video representation and effective video index. The
first approach is to reduce the computational cost
of similarity measure between two videos by repre-
senting them in a much simpler way. As a video se-
quence typically consists of a large number of frames
which are high dimensional vectors, and inter-video

Copyright (c) 2007, Australian Computer Society, Inc. This
paper appeared at the Eighteenth Australasian Database Con-
ference (ADC2007), Ballarat, Victoria, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 63. James Bailey and Alan Fekete, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

similarity is generally measured by identifying the
similarity match for every single frame in each se-
quence, which results in high computational cost for
large video databases. The second approach is to re-
duce the number of sequence comparisons in large
video database by indexing videos efficiently. For
a video database which contains large numbers of
videos, identifying similar videos by exhaustive scan-
ning all videos is apparently undesirable. We need to
index videos (or their summaries) in an efficient way,
thus limiting the search space and reducing the num-
ber of inter-video comparisons. However, the existing
similarity search methods have not addressed both of
two issues with a non-metric distance function.

In (Shen, Ooi & Zhou 2005), the authors pro-
posed ViTris for video summarization, and optimal
B+-tree for indexing, however, they neglected the
temporal ordering in a video sequence, thus possibly
compromising the effectiveness of similarity search.
In (Lee, Chun, Kim, Lee & Chung 2000), the authors
proposed to summarize each video sequence by sev-
eral Minimum Bounding Rectangles (MBRs), and to
use R-tree (Guttman 1984) for indexing. However,
this video representation method was customized for
mean Euclidean distance measure, which preserves
the temporal order in a video sequence only in a strict
manner. Gaps within video sequences cannot be dealt
with well.

In this paper, we propose a summarization based
video similarity search approach, which has the fol-
lowing main features: Firstly, we symbolize each
video sequence as a digital string. This video symbol-
ization makes each video be represented compactly,
moreover, it facilitates video sequence matching. Sec-
ondly, we propose an index strategy based on se-
quence decomposition and reconstruction, which can
use traditional index structure to manage video sum-
maries for efficient video search with non-metric mea-
sures. We perform the video sequence matching by
using an edit distance variant, which is a non-metric
measure. It takes into consideration not only the tem-
poral ordering inherent in video sequences, but also
the inter-frame similarity between two compared se-
quences. And finally, we employ some optimizations
to improve the search performance and effectiveness,
which includes novel query summarization method
and multi-symbol representation method.

The rest of the paper is organized as follows. The
related work to video search is presented in Section 2.
Section 3 describes our approach, including video rep-
resentation, indexing, and similarity search. Section 4
presents our performance study, and Section 5 con-
cludes the whole paper.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

161

2 Related Work

In general, the method used to address the video se-
quence matching problem depends on the technique
used to represent the sequences (Adjeroh, Lee,& King
1999). One popular video representation technique
is to represent each video sequence as key frames.
This type of representation is mainly used for video
browsing (Chang, Sull & Lee 1999, Zhu, Wu, Fan,
Elmagarmid & Aref 2004). Several video representa-
tions (Lee et al 2000, Cheung & Zakhor 2003, Shen
et al 2005) are proposed in recent years for effective
video similarity search. We only briefly review a few
representatives.

Lee et al. (Lee et al 2000) proposed to partition
each video sequence into subsequences, and represent
each subsequence by a Minimum Boundary Rectan-
gle(MBR). Accordingly, the query processing is based
on these MBRs, instead of scanning data elements of
entire sequences. Thus, it is fast and needs small
storage overhead compared with a sequential scan.
To index these MBRs, a R-tree structure is utilized.
The main problem with this representation is that, it
can not be used for similarity measure with local time
shifting. As such, some similar videos may be consid-
ered as dissimilar due to frame insertion or deletion.

In (Cheung et al 2003), authors proposed a video
representation named V ideo Signature (or ViSig).
Its basic idea is to summarize each video with a small
set of its sampled frames, called video signature, and
estimate the percentage of similar frames shared by
two sequences by computing the percentage of sim-
ilar ViSig frame pairs. In our previous work (Shen
et al 2005), we introduced a video representation
model called ViTri. A sequence is first summarized
into a small number of clusters which contain similar
videos, and each cluster is modelled as a hypersphere
in a high-dimensional space, which is represented by
a video triplet (or ViTri). As such, the inter-video
similarity is measured by the inter-cluster similarity
of them, which is in turn estimated by the number
of similar frames shared among the clusters (Shen
et al 2005). To further facilitate the search process,
ViTris are indexed by an optimal B+-tree. However,
both of these two video representation methods do
not consider the temporal ordering in similarity mea-
sure.

We improve the previous work for content-
based video search by symbolizing video sequences,
which reduces the dimensionality of frame and
keep the temporal order in video sequence. Many
high-dimensional indexing methods have been pro-
posed (Bohm, Berchtold & Keim 2001). In our work,
for non-metric measure, we propose a sequence de-
composition and reconstruction based indexing strat-
egy to index the clusters and symbol segments(a
Triplet representing a series of identical symbols) by
employing an index structure which is closely related
to iDistance (Jagadish, Ooi, Tan, Yu & Zhang 2005)
or similar indexing methods. In these methods, high-
dimensional data are first transformed into single
dimensional data, and single-dimensional indexing
methods such as B+-tree are then used. For example,
in iDistance, by selecting a reference point and com-
puting the distance of each high-dimensional point to
the reference point, a high-dimensional point is trans-
formed into a single-dimensional value.

3 Our Approach

In this section, we describe in detail our similarity
search approach, which includes the following aspects:
how a video sequence is represented, how sequences
are decomposed and reconstructed, how indexes are

constructed, and finally, give a query video, how sim-
ilarity search is performed and optimized.

3.1 Video Representation

As mentioned earlier, each video sequence consists of
a large number of frames, which results in high com-
putational cost in similarity search. Thus, we need to
represent video sequences in a compact and effective
way.

Based on the observation, that nearby frames in
a video are very similar, and also similar videos usu-
ally share similar frames, we can summarize a video
sequence by the clusters that contain similar frames.
Specifically, suppose each video frame in a database
is represented as a high-dimensional image feature
vector, we employ a hierarchical clustering method
(e.g., k-means) and perform clustering over all frames
in the database. As such, the whole database is
formed into a set of clusters, each containing simi-
lar frames with inter-frame distances (measured by
Euclidean distance) less than or equal to ε (called
clustering threshold). We represent a cluster C by
< id, O, r,N >, where

1. id is the cluster identifier;

2. O is the cluster centre which indicates the po-
sition of the cluster in the original high dimen-
sional space;

3. r is the radius of boundary hypersphere of the
cluster.

4. N is the number of frames in the cluster.

Suppose each video frame is represented by its
cluster id, we can symbolize each video sequence as
a digital string which consists of the cluster ids of its
video frames. This video symbolization makes each
video be represented compactly, moreover, it facili-
tates video similarity matching with consideration of
temporal ordering.

3.2 Two-layer Video Indexing

To facilitate video search, we need to organize video
data by indexing. Since video sequences can not be
indexed directly by traditional index structures when
a non-metric distance measure is utilized. We adopt
video decomposition strategy before video data are
indexed. In a video sequence, a series of consecutive
frames that are mapped into the same symbol con-
sists of a video segment, which can be represented
by < vid, pos, len >, where vid is the identifier of the
video where the symbol appears; pos is the first po-
sition of the symbol in the video; len is the length of
the segment that shows the frequency of the symbol
appearance in the video.

We build index on compact video representations.
Our index structure includes two parts: (1) An opti-
mal B+-tree for indexing clusters which contain sim-
ilar video frames in the database; (2) An inverted
file for indexing the decomposed video segments. As
B+-tree is used for indexing one-dimensional data, we
first map each cluster center, O, a high-dimensional
vector, into a one-dimensional value based on O’s dis-
tance to a selected reference point, and then use this
one-dimensional value as a key in B+-tree. For se-
lecting the reference point, we borrowed the method
employed in (Shen et al 2005), where an optimal ref-
erence point lies on the line identified by the first
principle component and out of its variance segment.

Figure 1 shows the index structure. Each leaf node
in the structure may have several entries, and each
entry contains a key with a cluster and a pointer to

CRPIT Volume 63

162

key
 key

root

key
 key

non-leaf

key
 C

 key
 C
 ..

leaf

B
+
-tree

Inverted File

.

.

.

.
. .

V
id
,
pos
,
 len

.....

V
id
,
pos
,
 len

V
id
,
pos
,
 len

.....

V
id
,
pos
,
 len

V
id
,
pos
,
 len

.....

V
id
,
pos
,
 len

Figure 1: The two-layer index structure.

the corresponding position of the inverted file. The
inverted file is used for locating a video segment, i.e.,
which video sequence a symbol appears in.

3.3 Similarity Search

Given a query video, we need to search the database
for most similar videos. During a search, three steps
are mainly involved: query mapping, sequence recon-
structing, and sequence matching. In the following,
we describe each step in detail.

Query mapping For each frame in a query video,
we first map it to a set of symbols which are most sim-
ilar to itself and whose distances from it are within
a given similarity threshold ε. With our index struc-
ture, we can easily identify these symbols. According
to the triangular inequality, these symbols’ key values
should be between |x− ε| and |x + ε|, where x is the
distance of the query frame to the selected reference
point. However, in this process, a frame may not be
mapped into any cluster. It shows that this frame is
dissimilar with any video frame in the database. In
this case, this frame is represented by a special sym-
bol ‘−’, which is dissimilar with any symbol. Further,
according to these symbols (except ‘−’), the poten-
tially similar video segments can be retrieved by the
inverted file. By this process, any dissimilar video
segment is filtered out. Thus, we can symbolize the
query video with the potentially similar videos iden-
tified.

To further reduce the number of similar candi-
dates, we adopt the following two filtering strategies:
(1) filtering small symbol segments; (2) filtering com-
mon symbol segments. The former one is to filter out
the candidates that has low similarity with the query.
If only few small segments belong to a certain video,
these segments will be filtered out from the candidate
set. The latter one is to filter out the discriminative
segments. If most of the video candidates include the
segments consisting of the same symbol, these seg-
ments can not contribute to the final query results.
These symbol segments will be thrown off.

Sequence reconstructing For video segments ob-
tained by query mapping, we need to recompose sym-
bol sequences according to the location information
of each similar segment. To ensure the proper similar
results, this process has to confirm to the following
rule, ie., the similarity between a reconstructed sym-
bol sequence and the query should be the same as
that between its original one and the query. How-
ever, there may be cases in which some frames in a
similar sequence are not similar to any frame in a
query at all, and thus these frames cannot be identi-
fied. Therefore, it is impossible to achieve the com-
pletely same symbol sequences with the original ones
by reconstruction.

Since the identified symbols have the same similar-
ity with query as ‘−’, by sequence reconstruction, we
represent these unidentified frames as ‘−’, and facili-
tate future similarity matching. For example, suppose
a query video Q :< f1f2f3 > is mapped to < 223 >
(‘2’ and ‘3’ are cluster ids), and also suppose, after
query mapping by the index, two video sequences in
the database are possibly similar to Q, S1 represented
as < 11222 >, and S2 represented as < 3344 >. As no
symbol in Q is similar to ‘1’ and ‘4’, S1 and S2 will be
instead represented as < −− 222 > and < 33−− >
respectively.

Sequence Matching By the above steps, only possi-
bly similar videos are obtained and reconstructed. To
refine the results and decide the final query results,
we adopt Probability-based Edit Distance, or PED,
as a distance measure for sequence matching.

Edit distance is widely used in string matching.
Though it is possible for us to use it directly for the
similarity measure between video symbol sequences,
better performance can be achieved by PED, which
takes into consideration not only the temporal order-
ing inherent in video sequences, but also the inter-
symbol similarity of two different symbols in symbol
sequences.

For a video symbol sequence S < s1, s2, ..., sm >,
its PED to a query symbol video Q < q1, q2, ..., qn >
is computed as follows:

Proc. Eighteenth Australasian Database Conference (ADC 2007)

163

PED(S,Q)

=





0 m = n = 0
m m > 0 and n = 0
min{PED(Sm−1,Qn−1) + p,

PED(Sm,Qn−1 + 1),
PED(Sm−1,Qn + 1)} otherwise

(1)
Here, p is decided by the probability distance d

between si and qj . We measure d by |Ci−Cj |
|Ci| , where

Ci is the cluster which contains si, Cj is that covers
qj , and |Ci| represents the number of video frames
in Ci; and |Ci −Cj | represents the number of frames
which are in Ci but not covered by Cj . Note that this
measurement of the similarity degree is probability-
based. Given a T (called probability threshold), if
d is less than T , these two symbols are similar, then
p = 0; else, p = 1.

The whole similarity search process is shown in
Figure 2

Procedure KNNSimilaritySearch.
input: Q - query video sequence

k - the number of similar videos
output: similar videos
1. {Ck} ←QuerySummarization(Q)
2. for each cluster Ck ∈ {Ck}
3. Let the representative frame be fki
4. ref← GetB+treeRefpoint
5. dist=Dist(ref,fki)
6. {minKey,maxKey}←MappingkeyRange
7. {Ci}←SearchB+tree(minKey,maxKey)
8. Mappingframe(fki)
9. for each frame fkj ∈ Ck (fkj 6= fki)
10. for each cluster Ci ∈{Ci}
11. if(|Dist(ref, fki)-Dist(ref, Ci)| < ε)
12. dist=Dist(fki, Ci)
13. Mapping to video segments
14. Filtering video segments
15. IgnoreCommenSymbolSegments
16. ThrowOffSmallSegments
17. Reconstruct candidate sequences
18. MatchingQueryAndCandidates
19. return results

Figure 2: : The similarity search algorithm.

3.4 Optimizations

Some optimizations are employed to reduce the infor-
mation loss in video representation and improve the
performance of similarity search.

3.4.1 Multi-Symbol Representation

To capture more information from original high di-
mensional space and improve the query result of
similarity search, we proposed multi-symbol repre-
sentation for query video. By this representation,
each frame in a video is mapped to a set of clus-
ters that cover it. Thus, each frame corresponds to
a set of symbols. And then, the whole sequence is
transformed into a symbol set sequence, denoted as
(SQ

1 , SQ
2 , ...SQ

n).
For all the clusters containing a certain frame, each

of them is similar with the symbolized frame to differ-
ent extent. To obtain the optimal performance, the
symbols in a certain symbol set is accessed orderly.
Here, they are sorted by the distances between this
frame and its cluster centers in the original space.

Among them, the cluster having the smallest Eu-
clidean distance to the frame is also called principal
cluster. Accordingly, the id of the principal cluster is
the principal symbol. The inter-symbol similarity is
decided by the the probability distance between the
principal symbols.

Given two sequences and the inter-frame similarity
threshold, ε, in order to judge the inter-frame simi-
larity of two sequences in the original high dimen-
sional space, a multi-symbol match method is em-
ployed to compare a specific symbol in the symbol se-
quence data with a symbol set of the query sequence.
This symbol will be compared with each in symbol
set orderly. If two symbols are same or completely
dissimilar, the comparison process will be stopped.
Otherwise, the comparison operation continues over
the next one in its symbol set, until the completely
similar or dissimilar symbol is obtained or all sym-
bols in the symbol set is visited. If all the symbols
in symbol set are overlapped with one in the symbol
sequence data, the probability distance is applied.

This multi-symbol match is based on the following
theory.

Theorem 1. Given the symbol set of a frame f,
namely s =< c1, c2, ...cn >, and a symbol c′, if cm
is similar with c′, then it is impossible for c′ to be
dissimilar with another symbol cn in the symbol set,
where cm and cn are two different symbols in the sym-
bol set.

Proof. Since cm and cn are different symbols of f, f
falls in the intersection part of them.

Suppose cm be completely similar with c’, all the
relations of symbol set are shown in Figure 3, we have
f similar with c’. Then

d(f, c′) ≤ ε

2
Suppose on the contrary that cn and c’ are dissim-

ilar completely. according to the rule of dissimilarity
between symbols, any frame f

′
in the cluster of cn,

will have a distance more than ε
2+ r’ from c’. Since

frame f is in the cluster of cn, we have

d(f, c′) >
ε

2
+ r′

These two assumptions contradict each other, thus
would not exist in the meanwhile.

f

c
m

c
n

c'

r'

r
m

r
n

Figure 3: Similarity between symbol and symbol set

Figure 4 summarize the algorithm for the similar-
ity measure between a symbol and a symbol set.

CRPIT Volume 63

164

Matching Video Symbol and Symbol Set.
1. Given video symbol c’ and symbol set s, here

s=< c1, c2, ...cn >
2. for(All symbols in the symbol set s, ci)
3 If(ci and c’ are (dis)similar completely)
4 GetInterSymbolSimilarity;
5 StopCheckingSymbolSet;
6 else
7 CheckNextSymbolInSymbolSet;
8 if(Not found completely (dis)similar pair)
9 MeasurePDistToPrincipleSymbol;

Figure 4: : Similarity Measure between Symbol and
Symbol Set.

3.4.2 Batch Query Mapping

For mapping a query video to the corresponding sym-
bols and further retrieving the potential similar seg-
ments, the naive method is to map each video frame
one by one. As a query sequence may also consist of a
large number of frames, naive method is costly. In or-
der to improve the query mapping and the similarity
search, based on observation 1, we proposed batch
query mapping that performs a batch of individual
frame mappings by the index.

Observation 1. In a video, there exists a lot of very
similar frames, which share the same query space in
the process of mapping, thus accessing the same disk
blocks. Batch processing for them can avoid the un-
necessary IO access.

We propose a query summarization method based
on local clustering, which perform clustering over
query frames by their inter-frame similarity. Since
nearby frames in a video are usually quite similar.
By doing so, a query sequence is formed into a small
number of query clusters which contain similar query
frames, where the inter-frame distance in the same
cluster is no more than the similarity threshold, ε.

Due to the small number of the query clusters,
the number of disk re-accesses is reduced greatly. For
each frame cluster, with radius r1, the cluster cen-
ter is chosen as a representative. The symbolization
for the frames in the whole cluster is completed by
finding the first symbol, with radius R1, of this repre-
sentative, and then obtaining all neighboring cluster
spaces with distances no more than R1+r1 from the
first cluster center. Meanwhile, the distance between
each cluster in query space and the representative is
used to perform the filtering based on triangular in-
equality, reducing the CPU cost of mapping. Con-
sequently, both IO and CPU cost for query mapping
are reduced greatly, thus enhancing the performance
of similarity search.

4 Performance Study

In this section, we present an empirical study to eval-
uate the proposed approach over large real video data
sets. The evaluation is based on two aspects: (1) the
effectiveness of video symbolization; (2) the efficiency
of video indexing.

4.1 Setup

The experiments are conducted over two real datasets
from 6000 15s video clips and 896 10s clips , which
are recorded by using Virtual Dub at PAL frame rate
of 25fps (Shen et al 2005). Each frame is represented
as a 64-d vector in the RGB color space. In the same

Para Description
ε Clustering threshold
T Probability threshold
K Number of most similar sequences

Table 1: Parameters used in the experiments.

set of tests, the lengthes of video sequences used are
similar.

For the effectiveness, we evaluate symbolization
representation by comparing with key frames ap-
proach, where key frames are obtained by shot bound-
ary detection method (Nagasaka & Tanaka 1992), to
test the information loss. As the original data has
no information loss, we examine the effectiveness by
employing the video symbolization and the original
videos and see how close the results generated by the
PED over symbol sequences are to those by the edit
distance (ED) in the original space. ED in original
space is different from PED in how to decide the p.
If the Euclidean distance between two frames is more
than ε, p=1; otherwise, p=0. The set of query results
by ED in the original space is denoted as rel, and that
from summarization method is ret, the Accuracy of
matching is defined as:

Accuracy =
|rel ⋂ ret|
|rel| (2)

For the efficiency, we compare our proposed two-
layer indexing method with optimal reference based
B+-tree, the high performance of which has been
proved in (Shen et al 2005), and sequential scan as
a base. By varying the size of video dataset, the effi-
ciency of two-layer video indexing and ViTris index-
ing are compared. We measure the search efficiency
in terms of IO and CPU cost. IO cost is evaluated
by the number of page accesses, and the size of each
page is set to be 4k. For CPU, we use the number of
distance calculations, since it dominates the time of
CPU cost and is also objective. All the experiments
were performed on a Sun Enterprise E420(4*450MHz
CPU’s with 4GB RAM). Table 1 summarizes the pa-
rameters used in the experiments.

4.2 Effectiveness of Symbolization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2
 0.3
 0.4
 0.5

Elipse

P
re

ci
si

o
n

PEDFRAS

KEYFRAME

A
cc

ur
ac

y

Symbolization

∈

Figure 5: Accuracy By ε Varying in KNN Search on
15s Clips

To examine the effectiveness of symbolization, we
need to estimate the value of optimal probability

Proc. Eighteenth Australasian Database Conference (ADC 2007)

165

threshold of similar symbols, T, in probability mea-
sure. According to our analysis, T=0.5 is the optimal
symbol similarity threshold.

We evaluate our representation approach by turn-
ing the ε value, for testing the information loss of it
with clustering threshold. Figure 5 shows the test re-
sults. We fixed T to 0.5, and changed ε from 0.2 to
0.5. Obviously, the accuracy of our method is much
better than that of key frames representation. Mean-
while, with the increasing of ε, the effectiveness tends
to degrade for both methods, because of the more
information lose for them. For the symbol sequence
similarity search, since the overlap extent is small for
small ε, inter-symbol similarity is very close to inter-
frame similarity, leading to high effectiveness of it.
With the ε increasing, due to the high overlapping,
the stability of inter-symbol comparison degrades ac-
cordingly, causing the degradation of effectiveness.

4.3 Efficiency of Batch Mapping

During query mapping, a query video which consists
of large numbers of frames may need to be summa-
rized first to reduce the cost. In this set of experi-
ments, we compare the performance of batch mapping
with that of the naive mapping approach.

0

5

10

15

20

25

30

2000
 3000
 4000
 5000
 6000

Number of Sequences

IO
 C

o
st

(k
)

W/O Query Summarization

Local Clustering

Batch mapping

Naive method

Number of Sequences in Database

N
um

be
r o

f P
ag

e
A

cc
es

se
s

(*
10

00
)

Figure 6: IO in Batch Mapping

0

200

400

600

800

1000

1200

1400

2000
 3000
 4000
 5000
 6000

Number of Sequences

C
P

U
 C

o
st

 (
k)

W/O Query Summarization

Local Clustering

Batch mapping

Naive method

Number of Sequences in Database

N
um

be
r o

f E
uc

lid
ea

n
C

al
cu

la
tio

ns
 (*

10
00

)

Figure 7: CPU in Batch Mapping

Figure 6 and 7 show the IO cost and CPU cost
respectively. As shown in the figures, the batch map-
ping improves the performance a lot, and both IO
cost and CPU cost are reduced greatly. For naive
approach, each query frame needs to be mapped to
the index space one by one. Also, the same index
space may be accessed repeatedly as nearby frames

in a query video are usually similar and share the
same index space, thus incurring much more IO and
CPU costs. When the batch mapping is used, sim-
ilar frames are clustered together, thus query map-
ping has less IO costs. Meanwhile, in the batch map-
ping, the filtering based on triangular inequality is
performed, accordingly, the CPU cost of batch map-
ping is also reduced greatly.

4.4 Efficiency of Two-layer Video Indexing

In this part, we performed experiments to test the
two-layer index method by comparing with ViTris in-
dexing and the sequential scan as a base. The IO cost
and CPU cost are shown in the Figures 8 and 9.

Obviously, compared with ViTris indexing and se-
quential scan, the filtering ability of two-layer index
has been improved greatly. Since two-layer index
gives up a large number of candidates, in which only
very few similar query symbols appear or only com-
mon symbols which are not discriminative, the num-
ber of IO and that of probability edit distance calcula-
tions are reduced noticeably, up to half. At the same
time, it is clear that the filtering ability is more effi-
cient for small K, with the increasing of K, becoming
a bit weaker, but still keep high efficiency.

0

5

10

15

20

25

30

35

10
 20
 30
 40
 50

K in KNN Search

N
u

m
b

er
 o

f
IO

(k
)
 V-FRAS

Optimal B+-tree

Scan

Two-layer indexing

ViTri
 indexing

Scan

K
 in
 KNN
 Search

N
um

be
r o

f P
ag

e
A

cc
es

se
s

(*
10

00
)

Figure 8: Effect of K in KNN Search

0

500

1000

1500

2000

2500

3000

10
 20
 30
 40
 50

K in KNN Search

N
u

m
b

er
 o

f
P

E
D

 C
al

cu
la

ti
o

n

V-FRAS

Optimal B+-tree

Scan

Two-layer indexing

ViTri
 indexing

Scan

N
um

be
r o

f

PE

D

 C

al
cu

la
tio

ns

K
 in
 KNN
 Search

Figure 9: Effect of K in KNN Search

4.5 Effect of Dataset Size

We compare the efficiency of our two-layer video in-
dexing with ViTris indexing in case of varying the
number of 15s video clips varying from 2500 to 5000.
Figure 10 and 11 show the IO cost and the number

CRPIT Volume 63

166

of frame comparisons in two-layer video indexing by
comparing with that of B+-tree based ViTri indexing.

We can see that, with the increasing of the data
size, the IO and CPU costs increase for both of them.
For another, obviously, the two-layer video index
needs far less IO and frames comparison than ViTri
indexing, since two-layer video index performs high
dimensional distance calculations only in the process
of frame mapping, while not in similarity measure.
Moreover, query summarization based batch mapping
can filter out most of the unconcerned symbols, thus
reducing the cost of two-layer video indexing greatly.
Comparing with B+-tree based ViTri indexing, for
the same video dataset, the cost of two-layer video
indexing is improved one order of magnitude.

0

2

4

6

8

10

12

2500
 3000
 3500
 4000
 4500
 5000

Num of Video Clips

N
u

m
 o

f
IO

(k
)

V-FRAS

ViTri indexing

Two-layer indexing

ViTri
 indexing

Number of Sequences in Database

N
um

be
r o

f P
ag

e
A

cc
es

se
s

(*
10

00
)

Figure 10: Efficiency by varying dataset size

0

20

40

60

80

100

120

140

160

180

200

2500
 3000
 3500
 4000
 4500
 5000

Num of Video Clips

N
u

m
 o

f
64

-d
 D

is
ta

n
ce

 C
al

cu
la

ti
o

n
(k

)

V-FRAS

ViTri indexing

Two-layer indexing

ViTri
 indexing

Number of Sequences in Database

N
um

be
r o

f E
uc

lid
ea

n
C

al
cu

la
tio

ns
(*

10
00

)

Figure 11: Efficiency by varying dataset size

5 Conclusions

In this paper, we have proposed a summarization
based video similarity search approach, which has
the following features: by video symbolization, each
video sequence is symbolized as a digital string, which
facilitates similarity matching with consideration of
temporal ordering; by decomposition and reconstruc-
tion based video indexing strategy, video data are in-
dexed and similar videos can be efficiently retrieved
with non-metric similarity measure. Further, opti-
mizations have been employed to further improve the
search performance. We have done extensive perfor-
mance study and our results have shown that our ap-
proach is very efficient, while keeping high search ac-
curacy.

6 Acknowledgments

This research was supported by ARC grant
DP0663272 and an Endeavour IPRS.

References

Adjeroh, D. A., Lee, M. C. & King, I. (1999), A
distance measure for video sequences, in ‘Com-
puter Vision and Image Understanding’, Vol. 75,
pp. 25–45.

Bohm,C., Berchtold,S. & Keim, D. (2001), Search-
ing in High-dimensional Spaces: Index Struc-
tures for Improving the Performance of Multi-
media Databases,in ‘ACM Computing Surveys’,
Vol. 33, pp. 322-373.

Chang, H. S., Sull, S. & Lee, S. U. (1999), Effi-
cient video indexing scheme for content-based
retrieval, in ‘IEEE Transactions on Circuits and
Systems for Video Technology’, Vol. 9, pp. 1269-
1279.

Cheung, S-C. S. & Zakhor, A. (2003), Efficient video
similarity measurement with video signature, in
‘IEEE Transactions on Circuits and Systems for
Video Technology’, vol. 13,2003, pp. 59-74.

Guttman, A. (1984), R-Trees: A Dynamic Index
Structure for Spatial Searching, in ‘Proceedings
of the ACM SIGMOD International Conference
on Management of Data’, ACM Press, Boston,
Massachusetts, USA, pp. 47-57.

Jagadish, H. V., Ooi, B. C., Tan, K-L., Yu, C. &
Zhang, R. (2005), iDistance: An adaptive B+-
tree based indexing method for nearest neighbor
search, in ‘ACM Transactions on Data Base Sys-
tems (TODS)’, Vol. 30 ACM Press, New York,
NY, USA, pp. 364–397.

Kim, S. H. & Park, R-H (2002), An efficient algorithm
for video sequence matching using the modified
Hausdorff distance and the directed divergence,
in ‘IEEE Transactions on Circuits and Systems
for Video Technology’, Vol. 12 , pp. 592-596.

Lee, S-L., Chun, S-J., Kim, D-H., Lee, J-H.& Chung,
C-W. (2000), Similarity Search for Multidimen-
sional Data Sequences, in ‘Proceedings of the
International Conference on Data Engineering’,
Vol. 12 , pp. 599-608.

Nagasaka, A. & Tanaka, Y. (1992), Automatic
Video Indexing and Full-Video Search for Ob-
ject Appearances, in ‘Proceedings of the IFIP
TC2/WG 2.6 Second Working Conference on
Visual Database Systems II’, Vol. 12 ,North-
Holland, pp. 113–127.

Shen, H. T., Ooi, B. C. & Zhou, X. (2005), To-
wards Effective Indexing for Very Large Video
Sequence Database, in ‘Proceedings of the ACM
SIGMOD International Conference on Manage-
ment of Data’, pp. 730-741.

Zhu, X., Wu, X., Fan, J., Elmagarmid, A. K. & Aref,
W. G. (2004), Exploring video content structure
for hierarchical summarization, in ‘Multimedia
System’, Vol. 10, pp. 98-115.

Proc. Eighteenth Australasian Database Conference (ADC 2007)

167

CRPIT Volume 63

168

Author Index

Ahmad, Mohammad Nazir, 13
Al-Fedaghi, Sabah S., 23
Amirbekyan, Artak, 33

Bailey, James, iii
Bernstein, Yaniv, 141

Chan, Stephen, 123
Chang, Tao-Ku, 43
Colomb, Robert M., 13

de Raadt, Michael, 53
Dekeyser, Stijn, 53

Estivill-Castro, Vladimir, 33

Fekete, Alan, iii
Foo, Jun Jie, 63

Hwang, Gwan-Hwan, 43

Jittrawong, Keerati, 73

Kemp, Zarine, 83

Lau, Derek, 123
Lee, Tien Yu, 53
Li, Jianzhong, 93
Lin, Xuemin, 7
Luo, Jizhou, 93

Ma, Hui, 103
Ma, Lisha, 113

Ng, Vincent, 123
Nutt, Werner, 113

Osman, Deanna J., 133

Ramamritham, Krithi, 3

Schewe, Klaus-Dieter, 103
Shen, Heng Tao, 93, 161
Shokouhi, Milad, 141
Sinha, Ranjan, 63
Stewart, Arran D., 151

Tan, Lei, 83
Taylor, Hamish, 113

Wang, Qing, 103
Whalley, Jacqueline, 83
Wong, Raymond K., 73

Yearwood, John L., 133
Ying, Cheung Man, 123

Zhang, Xiuzhen, 151
Zhang, Yu, 93
Zhou, Xiangmin, 161
Zhou, Xiaofang, 93, 161
Zobel, Justin, 141

Proc. Eighteenth Australasian Database Conference (ADC 2007)

169

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 53 - Conceptual Modelling 2006
Edited by Markus Stumptner, University of South
Australia, Sven Hartmann, Massey University, New
Zealand and Yasushi Kiyoki, Keio University, Japan.
January, 2006. 1-920-68235-X.

Contains the proceedings of the Third Asia-Pacific Conference on Conceptual Modelling
(APCCM2006), Hobart, Tasmania, Australia, January 2006.

Volume 54 - ACSW Frontiers 2006
Edited by Rajkumar Buyya, University of Mel-
bourne, Tianchi Ma, University of Melbourne,
Rei Safavi-Naini, University of Wollongong, Chris
Steketee, University of South Australia and Willy
Susilo, University of Wollongong. January, 2006. 1-
920-68236-8.

Contains the proceedings of the Fourth Australasian Symposium on Grid Computing and e-
Research (AusGrid 2006) and the Fourth Australasian Information Security Workshop (Net-
work Security) (AISW 2006), Hobart, Tasmania, Australia, January 2006.

Volume 55 - Safety Critical Systems and Software 2005
Edited by Tony Cant, University of Queensland.
April, 2006. 1-920-68237-6.

Contains the proceedings of the 10th Australian Workshop on Safety Related Programmable
Systems, August 2005, Sydney, Australia.

Volume 56 - Vision in Human-Computer Interaction
Edited by Roland Goecke, Antonio Robles-Kelly,
and Terry Caelli, NICTA. November, 2006. 1-920-
68238-4.

Contains the proceedings of the HCSNet Workshop on the Use of Vision in Human-Computer
Interaction (VisHCI 2006).

Volume 57 - Multimodal User Interaction 2005
Edited by Fang Chen and Julien Epps National
ICT Australia. April, 2006. 1-920-68239-2.

Contains the proceedings of the NICTA-HCSNet Multimodal User Interaction Workshop 2005,
Sydney, Australia, 13-14 September 2005.

Volume 58 - Advances in Ontologies 2005
Edited by Thomas Meyer, National ICT Australia,
Sydney and Mehmet Orgun Macquarie University.
December, 2005. 1-920-68240-6.

Contains the proceedings of the Australasian Ontology Workshop (AOW 2005), Sydney, Aus-
tralia, 6 December 2005.

Volume 60 - Information Visualisation 2006
Edited by Kazuo Misue, Kozo Sugiyama and Jiro
Tanaka. February, 2006. 1-920-68241-4.

Contains the proceedings of the Asia-Pacific Symposium on Information Visualization (APVIS
2006), Tokyo, Japan, February 2006.

Volume 61 - Data Mining 2006
Edited by Simeon Simoff, University of Technology,
Sydney and Graham Williams Australian Taxation
Office and University of Canberra. December, 2006.
1-920-68242-2.

Contains the proceedings of the Australasian Data Mining Conference (AusDM 2006), Decem-
ber 2006.

Volume 62 - Computer Science 2007
Edited by Gillian Dobbie, University of Auckland,
New Zealand. January, 2007. 1-920-68243-0.

Contains the proceedings of the Thirtieth Australasian Computer Science Conference
(ACSC2007), Ballarat, Victoria, Australia, January 2007.

Volume 63 - Database Technologies 2007
Edited by James Bailey, University of Melbourne
and Alan Fekete, University of Sydney. January,
2007. 1-920-68244-9.

Contains the proceedings of the Eighteenth Australasian Database Conference (ADC2007),
Ballarat, Victoria, Australia, January 2007.

Volume 64 - User Interfaces 2007
Edited by Wayne Piekarski, University of South
Australia. January, 2007. 1-920-68245-7.

Contains the proceedings of the Eighth Australasian User Interface Conference (AUIC2007),
Ballarat, Victoria, Australia, January 2007.

Volume 65 - Theory of Computing 2007
Edited by Joachim Gudmundsson, NICTA, Aus-
tralia and Barry Jay UTS, Australia . January,
2007. 1-920-68246-5.

Contains the proceedings of the Thirteenth Computing: The Australasian Theory Symposium
(CATS2007), Ballarat, Victoria, Australia, January 2007.

Volume 66 - Computing Education 2007
Edited by Samuel Mann, Otago Polytechnic and
Simon Newcastle University. January, 2007. 1-920-
68247-3.

Contains the proceedings of the Ninth Australasian Computing Education Conference
(ACE2007), Ballarat, Victoria, Australia, January 2007.

Volume 67 - Conceptual Modelling 2007
Edited by John F. Roddick, Flinders University and
Annika Hinze, University of Waikato, New Zealand.
January, 2007. 1-920-68248-1.

Contains the proceedings of the Fourth Asia-Pacific Conference on Conceptual Modelling
(APCCM2007), Ballarat, Victoria, Australia, January 2007.

Volume 68 - ACSW Frontiers 2007
Edited by Ljiljana Brankovic, University of Newcas-
tle, Paul Coddington, University of Adelaide, John
F. Roddick, Flinders University, Chris Steketee,
University of South Australia, Jim Warren, the Uni-
versity of Auckland, and Andrew Wendelborn, Uni-
versity of Adelaide. January, 2006. 1-920-68249-X.

Contains the proceedings of the ACSW Workshops - The Australasian Information Security
Workshop: Privacy Enhancing Systems (AISW), the Australasian Symposium on Grid Com-
puting and Research (AUSGRID), and the Australasian Workshop on Health Knowledge Man-
agement and Discovery (HKMD), Ballarat, Victoria, Australia, January 2007.

Volume 72 - Advances in Ontologies 2006
Edited by Mehmet Orgun Macquarie University and
Thomas Meyer, National ICT Australia, Sydney. De-
cember, 2006. 1-920-68253-8.

Contains the proceedings of the Australasian Ontology Workshop (AOW 2006), Hobart, Aus-
tralia, December 2006.

Volume 73 - Intelligent Systems for Bioinformatics 2006
Edited by Mikael Boden and Timothy Bailey
University of Queensland. December, 2006. 1-920-
68254-6.

Contains the proceedings of the AI 2006 Workshop on Intelligent Systems for Bioinformatics
(WISB-2006), Hobart, Australia, December 2006.

CRPIT Volume 63

170

	A00 Headers.pdf
	A01CRPITV63Ramamritham.pdf
	A02 Headers.pdf
	A02CRPITV63Lin.pdf
	CRPITV63 Headers.pdf
	CRPITV63Ahmad.pdf
	Introduction
	Managing Ontologies and Ontology Tools
	What are the main components of ontology server? What kind o

	Ontologies and Semantic Web
	An Ontology Server
	Ontology Server Functionality
	Ontology Server Repository
	A Comparison of Ontology Servers
	Comparison Framework

	Conclusions and Future Works
	References
	(Appendix) Table 1. A Comparison of Ontology Servers

	CRPITV63AlFedaghi.pdf
	CRPITV63Amirbekyan.pdf
	CRPITV63Chang.pdf
	
	

	CRPITV63ChangZZZ.pdf
	CRPITV63Dekeyser.pdf
	CRPITV63Foo.pdf
	CRPITV63FooZZZ copy.pdf
	CRPITV63Jittrawong.pdf
	CRPITV63Kemp.pdf
	CRPITV63Luo.pdf
	CRPITV63MaH.pdf
	CRPITV63MaHZZZ copy 1.pdf
	CRPITV63MaL.pdf
	CRPITV63Ng.pdf
	CRPITV63Osman.pdf
	CRPITV63OzmanZZZ copy 2.pdf
	CRPITV63Shokouhi.pdf
	CRPITV63Stewart.pdf
	CRPITV63StewartZZZ copy 4.pdf
	CRPITV63Zhou.pdf
	CRPITV63ZhouZZZ copy 3.pdf
	Trailers.pdf

